1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/AssumptionCache.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/MDBuilder.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Errc.h"
88 #include "llvm/Support/Error.h"
89 #include "llvm/Support/FileSystem.h"
90 #include "llvm/Support/GlobPattern.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/TargetParser/Triple.h"
93 #include "llvm/Transforms/IPO.h"
94 #include "llvm/Transforms/IPO/FunctionAttrs.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
96 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
104 using namespace llvm
;
105 using namespace wholeprogramdevirt
;
107 #define DEBUG_TYPE "wholeprogramdevirt"
109 STATISTIC(NumDevirtTargets
, "Number of whole program devirtualization targets");
110 STATISTIC(NumSingleImpl
, "Number of single implementation devirtualizations");
111 STATISTIC(NumBranchFunnel
, "Number of branch funnels");
112 STATISTIC(NumUniformRetVal
, "Number of uniform return value optimizations");
113 STATISTIC(NumUniqueRetVal
, "Number of unique return value optimizations");
114 STATISTIC(NumVirtConstProp1Bit
,
115 "Number of 1 bit virtual constant propagations");
116 STATISTIC(NumVirtConstProp
, "Number of virtual constant propagations");
118 static cl::opt
<PassSummaryAction
> ClSummaryAction(
119 "wholeprogramdevirt-summary-action",
120 cl::desc("What to do with the summary when running this pass"),
121 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
122 clEnumValN(PassSummaryAction::Import
, "import",
123 "Import typeid resolutions from summary and globals"),
124 clEnumValN(PassSummaryAction::Export
, "export",
125 "Export typeid resolutions to summary and globals")),
128 static cl::opt
<std::string
> ClReadSummary(
129 "wholeprogramdevirt-read-summary",
131 "Read summary from given bitcode or YAML file before running pass"),
134 static cl::opt
<std::string
> ClWriteSummary(
135 "wholeprogramdevirt-write-summary",
136 cl::desc("Write summary to given bitcode or YAML file after running pass. "
137 "Output file format is deduced from extension: *.bc means writing "
138 "bitcode, otherwise YAML"),
141 static cl::opt
<unsigned>
142 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
144 cl::desc("Maximum number of call targets per "
145 "call site to enable branch funnels"));
148 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden
,
149 cl::desc("Print index-based devirtualization messages"));
151 /// Provide a way to force enable whole program visibility in tests.
152 /// This is needed to support legacy tests that don't contain
153 /// !vcall_visibility metadata (the mere presense of type tests
154 /// previously implied hidden visibility).
156 WholeProgramVisibility("whole-program-visibility", cl::Hidden
,
157 cl::desc("Enable whole program visibility"));
159 /// Provide a way to force disable whole program for debugging or workarounds,
160 /// when enabled via the linker.
161 static cl::opt
<bool> DisableWholeProgramVisibility(
162 "disable-whole-program-visibility", cl::Hidden
,
163 cl::desc("Disable whole program visibility (overrides enabling options)"));
165 /// Provide way to prevent certain function from being devirtualized
166 static cl::list
<std::string
>
167 SkipFunctionNames("wholeprogramdevirt-skip",
168 cl::desc("Prevent function(s) from being devirtualized"),
169 cl::Hidden
, cl::CommaSeparated
);
171 /// Mechanism to add runtime checking of devirtualization decisions, optionally
172 /// trapping or falling back to indirect call on any that are not correct.
173 /// Trapping mode is useful for debugging undefined behavior leading to failures
174 /// with WPD. Fallback mode is useful for ensuring safety when whole program
175 /// visibility may be compromised.
176 enum WPDCheckMode
{ None
, Trap
, Fallback
};
177 static cl::opt
<WPDCheckMode
> DevirtCheckMode(
178 "wholeprogramdevirt-check", cl::Hidden
,
179 cl::desc("Type of checking for incorrect devirtualizations"),
180 cl::values(clEnumValN(WPDCheckMode::None
, "none", "No checking"),
181 clEnumValN(WPDCheckMode::Trap
, "trap", "Trap when incorrect"),
182 clEnumValN(WPDCheckMode::Fallback
, "fallback",
183 "Fallback to indirect when incorrect")));
187 std::vector
<GlobPattern
> Patterns
;
188 template <class T
> void init(const T
&StringList
) {
189 for (const auto &S
: StringList
)
190 if (Expected
<GlobPattern
> Pat
= GlobPattern::create(S
))
191 Patterns
.push_back(std::move(*Pat
));
193 bool match(StringRef S
) {
194 for (const GlobPattern
&P
: Patterns
)
202 // Find the minimum offset that we may store a value of size Size bits at. If
203 // IsAfter is set, look for an offset before the object, otherwise look for an
204 // offset after the object.
206 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
207 bool IsAfter
, uint64_t Size
) {
208 // Find a minimum offset taking into account only vtable sizes.
209 uint64_t MinByte
= 0;
210 for (const VirtualCallTarget
&Target
: Targets
) {
212 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
214 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
217 // Build a vector of arrays of bytes covering, for each target, a slice of the
218 // used region (see AccumBitVector::BytesUsed in
219 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220 // this aligns the used regions to start at MinByte.
222 // In this example, A, B and C are vtables, # is a byte already allocated for
223 // a virtual function pointer, AAAA... (etc.) are the used regions for the
224 // vtables and Offset(X) is the value computed for the Offset variable below
230 // A: ################AAAAAAAA|AAAAAAAA
231 // B: ########BBBBBBBBBBBBBBBB|BBBB
232 // C: ########################|CCCCCCCCCCCCCCCC
235 // This code produces the slices of A, B and C that appear after the divider
237 std::vector
<ArrayRef
<uint8_t>> Used
;
238 for (const VirtualCallTarget
&Target
: Targets
) {
239 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
240 : Target
.TM
->Bits
->Before
.BytesUsed
;
241 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
242 : MinByte
- Target
.minBeforeBytes();
244 // Disregard used regions that are smaller than Offset. These are
245 // effectively all-free regions that do not need to be checked.
246 if (VTUsed
.size() > Offset
)
247 Used
.push_back(VTUsed
.slice(Offset
));
251 // Find a free bit in each member of Used.
252 for (unsigned I
= 0;; ++I
) {
253 uint8_t BitsUsed
= 0;
254 for (auto &&B
: Used
)
257 if (BitsUsed
!= 0xff)
258 return (MinByte
+ I
) * 8 + llvm::countr_zero(uint8_t(~BitsUsed
));
261 // Find a free (Size/8) byte region in each member of Used.
262 // FIXME: see if alignment helps.
263 for (unsigned I
= 0;; ++I
) {
264 for (auto &&B
: Used
) {
266 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
272 return (MinByte
+ I
) * 8;
278 void wholeprogramdevirt::setBeforeReturnValues(
279 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
280 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
282 OffsetByte
= -(AllocBefore
/ 8 + 1);
284 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
285 OffsetBit
= AllocBefore
% 8;
287 for (VirtualCallTarget
&Target
: Targets
) {
289 Target
.setBeforeBit(AllocBefore
);
291 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
295 void wholeprogramdevirt::setAfterReturnValues(
296 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
297 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
299 OffsetByte
= AllocAfter
/ 8;
301 OffsetByte
= (AllocAfter
+ 7) / 8;
302 OffsetBit
= AllocAfter
% 8;
304 for (VirtualCallTarget
&Target
: Targets
) {
306 Target
.setAfterBit(AllocAfter
);
308 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
312 VirtualCallTarget::VirtualCallTarget(GlobalValue
*Fn
, const TypeMemberInfo
*TM
)
314 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()),
319 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
320 // tables, and the ByteOffset is the offset in bytes from the address point to
321 // the virtual function pointer.
327 } // end anonymous namespace
331 template <> struct DenseMapInfo
<VTableSlot
> {
332 static VTableSlot
getEmptyKey() {
333 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
334 DenseMapInfo
<uint64_t>::getEmptyKey()};
336 static VTableSlot
getTombstoneKey() {
337 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
338 DenseMapInfo
<uint64_t>::getTombstoneKey()};
340 static unsigned getHashValue(const VTableSlot
&I
) {
341 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
342 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
344 static bool isEqual(const VTableSlot
&LHS
,
345 const VTableSlot
&RHS
) {
346 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
350 template <> struct DenseMapInfo
<VTableSlotSummary
> {
351 static VTableSlotSummary
getEmptyKey() {
352 return {DenseMapInfo
<StringRef
>::getEmptyKey(),
353 DenseMapInfo
<uint64_t>::getEmptyKey()};
355 static VTableSlotSummary
getTombstoneKey() {
356 return {DenseMapInfo
<StringRef
>::getTombstoneKey(),
357 DenseMapInfo
<uint64_t>::getTombstoneKey()};
359 static unsigned getHashValue(const VTableSlotSummary
&I
) {
360 return DenseMapInfo
<StringRef
>::getHashValue(I
.TypeID
) ^
361 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
363 static bool isEqual(const VTableSlotSummary
&LHS
,
364 const VTableSlotSummary
&RHS
) {
365 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
369 } // end namespace llvm
371 // Returns true if the function must be unreachable based on ValueInfo.
373 // In particular, identifies a function as unreachable in the following
375 // 1) All summaries are live.
376 // 2) All function summaries indicate it's unreachable
377 // 3) There is no non-function with the same GUID (which is rare)
378 static bool mustBeUnreachableFunction(ValueInfo TheFnVI
) {
379 if ((!TheFnVI
) || TheFnVI
.getSummaryList().empty()) {
380 // Returns false if ValueInfo is absent, or the summary list is empty
381 // (e.g., function declarations).
385 for (const auto &Summary
: TheFnVI
.getSummaryList()) {
386 // Conservatively returns false if any non-live functions are seen.
387 // In general either all summaries should be live or all should be dead.
388 if (!Summary
->isLive())
390 if (auto *FS
= dyn_cast
<FunctionSummary
>(Summary
->getBaseObject())) {
391 if (!FS
->fflags().MustBeUnreachable
)
394 // Be conservative if a non-function has the same GUID (which is rare).
398 // All function summaries are live and all of them agree that the function is
404 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
405 // the indirect virtual call.
406 struct VirtualCallSite
{
407 Value
*VTable
= nullptr;
410 // If non-null, this field points to the associated unsafe use count stored in
411 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412 // of that field for details.
413 unsigned *NumUnsafeUses
= nullptr;
416 emitRemark(const StringRef OptName
, const StringRef TargetName
,
417 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
418 Function
*F
= CB
.getCaller();
419 DebugLoc DLoc
= CB
.getDebugLoc();
420 BasicBlock
*Block
= CB
.getParent();
423 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
424 << NV("Optimization", OptName
)
425 << ": devirtualized a call to "
426 << NV("FunctionName", TargetName
));
429 void replaceAndErase(
430 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
431 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
434 emitRemark(OptName
, TargetName
, OREGetter
);
435 CB
.replaceAllUsesWith(New
);
436 if (auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
437 BranchInst::Create(II
->getNormalDest(), &CB
);
438 II
->getUnwindDest()->removePredecessor(II
->getParent());
440 CB
.eraseFromParent();
441 // This use is no longer unsafe.
447 // Call site information collected for a specific VTableSlot and possibly a list
448 // of constant integer arguments. The grouping by arguments is handled by the
449 // VTableSlotInfo class.
450 struct CallSiteInfo
{
451 /// The set of call sites for this slot. Used during regular LTO and the
452 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453 /// call sites that appear in the merged module itself); in each of these
454 /// cases we are directly operating on the call sites at the IR level.
455 std::vector
<VirtualCallSite
> CallSites
;
457 /// Whether all call sites represented by this CallSiteInfo, including those
458 /// in summaries, have been devirtualized. This starts off as true because a
459 /// default constructed CallSiteInfo represents no call sites.
460 bool AllCallSitesDevirted
= true;
462 // These fields are used during the export phase of ThinLTO and reflect
463 // information collected from function summaries.
465 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
467 bool SummaryHasTypeTestAssumeUsers
= false;
469 /// CFI-specific: a vector containing the list of function summaries that use
470 /// the llvm.type.checked.load intrinsic and therefore will require
471 /// resolutions for llvm.type.test in order to implement CFI checks if
472 /// devirtualization was unsuccessful. If devirtualization was successful, the
473 /// pass will clear this vector by calling markDevirt(). If at the end of the
474 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
475 /// to each of the function summaries in the vector.
476 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
477 std::vector
<FunctionSummary
*> SummaryTypeTestAssumeUsers
;
479 bool isExported() const {
480 return SummaryHasTypeTestAssumeUsers
||
481 !SummaryTypeCheckedLoadUsers
.empty();
484 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
485 SummaryTypeCheckedLoadUsers
.push_back(FS
);
486 AllCallSitesDevirted
= false;
489 void addSummaryTypeTestAssumeUser(FunctionSummary
*FS
) {
490 SummaryTypeTestAssumeUsers
.push_back(FS
);
491 SummaryHasTypeTestAssumeUsers
= true;
492 AllCallSitesDevirted
= false;
496 AllCallSitesDevirted
= true;
498 // As explained in the comment for SummaryTypeCheckedLoadUsers.
499 SummaryTypeCheckedLoadUsers
.clear();
503 // Call site information collected for a specific VTableSlot.
504 struct VTableSlotInfo
{
505 // The set of call sites which do not have all constant integer arguments
506 // (excluding "this").
509 // The set of call sites with all constant integer arguments (excluding
510 // "this"), grouped by argument list.
511 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
513 void addCallSite(Value
*VTable
, CallBase
&CB
, unsigned *NumUnsafeUses
);
516 CallSiteInfo
&findCallSiteInfo(CallBase
&CB
);
519 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallBase
&CB
) {
520 std::vector
<uint64_t> Args
;
521 auto *CBType
= dyn_cast
<IntegerType
>(CB
.getType());
522 if (!CBType
|| CBType
->getBitWidth() > 64 || CB
.arg_empty())
524 for (auto &&Arg
: drop_begin(CB
.args())) {
525 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
526 if (!CI
|| CI
->getBitWidth() > 64)
528 Args
.push_back(CI
->getZExtValue());
530 return ConstCSInfo
[Args
];
533 void VTableSlotInfo::addCallSite(Value
*VTable
, CallBase
&CB
,
534 unsigned *NumUnsafeUses
) {
535 auto &CSI
= findCallSiteInfo(CB
);
536 CSI
.AllCallSitesDevirted
= false;
537 CSI
.CallSites
.push_back({VTable
, CB
, NumUnsafeUses
});
540 struct DevirtModule
{
542 function_ref
<AAResults
&(Function
&)> AARGetter
;
543 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
545 ModuleSummaryIndex
*ExportSummary
;
546 const ModuleSummaryIndex
*ImportSummary
;
549 PointerType
*Int8PtrTy
;
550 IntegerType
*Int32Ty
;
551 IntegerType
*Int64Ty
;
552 IntegerType
*IntPtrTy
;
553 /// Sizeless array type, used for imported vtables. This provides a signal
554 /// to analyzers that these imports may alias, as they do for example
555 /// when multiple unique return values occur in the same vtable.
556 ArrayType
*Int8Arr0Ty
;
559 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
561 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
563 // Calls that have already been optimized. We may add a call to multiple
564 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565 // optimize a call more than once.
566 SmallPtrSet
<CallBase
*, 8> OptimizedCalls
;
568 // Store calls that had their ptrauth bundle removed. They are to be deleted
569 // at the end of the optimization.
570 SmallVector
<CallBase
*, 8> CallsWithPtrAuthBundleRemoved
;
572 // This map keeps track of the number of "unsafe" uses of a loaded function
573 // pointer. The key is the associated llvm.type.test intrinsic call generated
574 // by this pass. An unsafe use is one that calls the loaded function pointer
575 // directly. Every time we eliminate an unsafe use (for example, by
576 // devirtualizing it or by applying virtual constant propagation), we
577 // decrement the value stored in this map. If a value reaches zero, we can
578 // eliminate the type check by RAUWing the associated llvm.type.test call with
580 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
581 PatternList FunctionsToSkip
;
583 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
584 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
585 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
586 ModuleSummaryIndex
*ExportSummary
,
587 const ModuleSummaryIndex
*ImportSummary
)
588 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
589 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
590 Int8Ty(Type::getInt8Ty(M
.getContext())),
591 Int8PtrTy(PointerType::getUnqual(M
.getContext())),
592 Int32Ty(Type::getInt32Ty(M
.getContext())),
593 Int64Ty(Type::getInt64Ty(M
.getContext())),
594 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
595 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M
.getContext()), 0)),
596 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
597 assert(!(ExportSummary
&& ImportSummary
));
598 FunctionsToSkip
.init(SkipFunctionNames
);
601 bool areRemarksEnabled();
604 scanTypeTestUsers(Function
*TypeTestFunc
,
605 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
606 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
608 void buildTypeIdentifierMap(
609 std::vector
<VTableBits
> &Bits
,
610 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
613 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
614 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
616 ModuleSummaryIndex
*ExportSummary
);
618 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
620 bool trySingleImplDevirt(ModuleSummaryIndex
*ExportSummary
,
621 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
622 VTableSlotInfo
&SlotInfo
,
623 WholeProgramDevirtResolution
*Res
);
625 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
627 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
628 VTableSlotInfo
&SlotInfo
,
629 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
631 bool tryEvaluateFunctionsWithArgs(
632 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
633 ArrayRef
<uint64_t> Args
);
635 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
637 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
638 CallSiteInfo
&CSInfo
,
639 WholeProgramDevirtResolution::ByArg
*Res
);
641 // Returns the global symbol name that is used to export information about the
642 // given vtable slot and list of arguments.
643 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
646 bool shouldExportConstantsAsAbsoluteSymbols();
648 // This function is called during the export phase to create a symbol
649 // definition containing information about the given vtable slot and list of
651 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
653 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
654 uint32_t Const
, uint32_t &Storage
);
656 // This function is called during the import phase to create a reference to
657 // the symbol definition created during the export phase.
658 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
660 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
661 StringRef Name
, IntegerType
*IntTy
,
664 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
666 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
667 Constant
*UniqueMemberAddr
);
668 bool tryUniqueRetValOpt(unsigned BitWidth
,
669 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
670 CallSiteInfo
&CSInfo
,
671 WholeProgramDevirtResolution::ByArg
*Res
,
672 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
674 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
675 Constant
*Byte
, Constant
*Bit
);
676 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
677 VTableSlotInfo
&SlotInfo
,
678 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
680 void rebuildGlobal(VTableBits
&B
);
682 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
685 // If we were able to eliminate all unsafe uses for a type checked load,
686 // eliminate the associated type tests by replacing them with true.
687 void removeRedundantTypeTests();
691 // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
693 // Caller guarantees that `ExportSummary` is not nullptr.
694 static ValueInfo
lookUpFunctionValueInfo(Function
*TheFn
,
695 ModuleSummaryIndex
*ExportSummary
);
697 // Returns true if the function definition must be unreachable.
699 // Note if this helper function returns true, `F` is guaranteed
700 // to be unreachable; if it returns false, `F` might still
701 // be unreachable but not covered by this helper function.
703 // Implementation-wise, if function definition is present, IR is analyzed; if
704 // not, look up function flags from ExportSummary as a fallback.
705 static bool mustBeUnreachableFunction(Function
*const F
,
706 ModuleSummaryIndex
*ExportSummary
);
708 // Lower the module using the action and summary passed as command line
709 // arguments. For testing purposes only.
711 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
712 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
713 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
717 ModuleSummaryIndex
&ExportSummary
;
718 // The set in which to record GUIDs exported from their module by
719 // devirtualization, used by client to ensure they are not internalized.
720 std::set
<GlobalValue::GUID
> &ExportedGUIDs
;
721 // A map in which to record the information necessary to locate the WPD
722 // resolution for local targets in case they are exported by cross module
724 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
;
726 MapVector
<VTableSlotSummary
, VTableSlotInfo
> CallSlots
;
728 PatternList FunctionsToSkip
;
731 ModuleSummaryIndex
&ExportSummary
,
732 std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
733 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
)
734 : ExportSummary(ExportSummary
), ExportedGUIDs(ExportedGUIDs
),
735 LocalWPDTargetsMap(LocalWPDTargetsMap
) {
736 FunctionsToSkip
.init(SkipFunctionNames
);
739 bool tryFindVirtualCallTargets(std::vector
<ValueInfo
> &TargetsForSlot
,
740 const TypeIdCompatibleVtableInfo TIdInfo
,
741 uint64_t ByteOffset
);
743 bool trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
744 VTableSlotSummary
&SlotSummary
,
745 VTableSlotInfo
&SlotInfo
,
746 WholeProgramDevirtResolution
*Res
,
747 std::set
<ValueInfo
> &DevirtTargets
);
751 } // end anonymous namespace
753 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
754 ModuleAnalysisManager
&AM
) {
755 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
756 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
757 return FAM
.getResult
<AAManager
>(F
);
759 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
760 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
762 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
763 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
765 if (UseCommandLine
) {
766 if (!DevirtModule::runForTesting(M
, AARGetter
, OREGetter
, LookupDomTree
))
767 return PreservedAnalyses::all();
768 return PreservedAnalyses::none();
770 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
773 return PreservedAnalyses::all();
774 return PreservedAnalyses::none();
777 // Enable whole program visibility if enabled by client (e.g. linker) or
778 // internal option, and not force disabled.
779 bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO
) {
780 return (WholeProgramVisibilityEnabledInLTO
|| WholeProgramVisibility
) &&
781 !DisableWholeProgramVisibility
;
785 typeIDVisibleToRegularObj(StringRef TypeID
,
786 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
787 // TypeID for member function pointer type is an internal construct
788 // and won't exist in IsVisibleToRegularObj. The full TypeID
789 // will be present and participate in invalidation.
790 if (TypeID
.ends_with(".virtual"))
793 // TypeID that doesn't start with Itanium mangling (_ZTS) will be
794 // non-externally visible types which cannot interact with
795 // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796 if (!TypeID
.consume_front("_ZTS"))
799 // TypeID is keyed off the type name symbol (_ZTS). However, the native
800 // object may not contain this symbol if it does not contain a key
801 // function for the base type and thus only contains a reference to the
802 // type info (_ZTI). To catch this case we query using the type info
803 // symbol corresponding to the TypeID.
804 std::string typeInfo
= ("_ZTI" + TypeID
).str();
805 return IsVisibleToRegularObj(typeInfo
);
809 skipUpdateDueToValidation(GlobalVariable
&GV
,
810 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
811 SmallVector
<MDNode
*, 2> Types
;
812 GV
.getMetadata(LLVMContext::MD_type
, Types
);
814 for (auto Type
: Types
)
815 if (auto *TypeID
= dyn_cast
<MDString
>(Type
->getOperand(1).get()))
816 return typeIDVisibleToRegularObj(TypeID
->getString(),
817 IsVisibleToRegularObj
);
822 /// If whole program visibility asserted, then upgrade all public vcall
823 /// visibility metadata on vtable definitions to linkage unit visibility in
824 /// Module IR (for regular or hybrid LTO).
825 void llvm::updateVCallVisibilityInModule(
826 Module
&M
, bool WholeProgramVisibilityEnabledInLTO
,
827 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
,
828 bool ValidateAllVtablesHaveTypeInfos
,
829 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
830 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
832 for (GlobalVariable
&GV
: M
.globals()) {
833 // Add linkage unit visibility to any variable with type metadata, which are
834 // the vtable definitions. We won't have an existing vcall_visibility
835 // metadata on vtable definitions with public visibility.
836 if (GV
.hasMetadata(LLVMContext::MD_type
) &&
837 GV
.getVCallVisibility() == GlobalObject::VCallVisibilityPublic
&&
838 // Don't upgrade the visibility for symbols exported to the dynamic
839 // linker, as we have no information on their eventual use.
840 !DynamicExportSymbols
.count(GV
.getGUID()) &&
841 // With validation enabled, we want to exclude symbols visible to
842 // regular objects. Local symbols will be in this group due to the
843 // current implementation but those with VCallVisibilityTranslationUnit
844 // will have already been marked in clang so are unaffected.
845 !(ValidateAllVtablesHaveTypeInfos
&&
846 skipUpdateDueToValidation(GV
, IsVisibleToRegularObj
)))
847 GV
.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit
);
851 void llvm::updatePublicTypeTestCalls(Module
&M
,
852 bool WholeProgramVisibilityEnabledInLTO
) {
853 Function
*PublicTypeTestFunc
=
854 M
.getFunction(Intrinsic::getName(Intrinsic::public_type_test
));
855 if (!PublicTypeTestFunc
)
857 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
)) {
858 Function
*TypeTestFunc
=
859 Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
860 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
861 auto *CI
= cast
<CallInst
>(U
.getUser());
862 auto *NewCI
= CallInst::Create(
863 TypeTestFunc
, {CI
->getArgOperand(0), CI
->getArgOperand(1)},
864 std::nullopt
, "", CI
);
865 CI
->replaceAllUsesWith(NewCI
);
866 CI
->eraseFromParent();
869 auto *True
= ConstantInt::getTrue(M
.getContext());
870 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
871 auto *CI
= cast
<CallInst
>(U
.getUser());
872 CI
->replaceAllUsesWith(True
);
873 CI
->eraseFromParent();
878 /// Based on typeID string, get all associated vtable GUIDS that are
879 /// visible to regular objects.
880 void llvm::getVisibleToRegularObjVtableGUIDs(
881 ModuleSummaryIndex
&Index
,
882 DenseSet
<GlobalValue::GUID
> &VisibleToRegularObjSymbols
,
883 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
884 for (const auto &typeID
: Index
.typeIdCompatibleVtableMap()) {
885 if (typeIDVisibleToRegularObj(typeID
.first
, IsVisibleToRegularObj
))
886 for (const TypeIdOffsetVtableInfo
&P
: typeID
.second
)
887 VisibleToRegularObjSymbols
.insert(P
.VTableVI
.getGUID());
891 /// If whole program visibility asserted, then upgrade all public vcall
892 /// visibility metadata on vtable definition summaries to linkage unit
893 /// visibility in Module summary index (for ThinLTO).
894 void llvm::updateVCallVisibilityInIndex(
895 ModuleSummaryIndex
&Index
, bool WholeProgramVisibilityEnabledInLTO
,
896 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
,
897 const DenseSet
<GlobalValue::GUID
> &VisibleToRegularObjSymbols
) {
898 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
900 for (auto &P
: Index
) {
901 // Don't upgrade the visibility for symbols exported to the dynamic
902 // linker, as we have no information on their eventual use.
903 if (DynamicExportSymbols
.count(P
.first
))
905 for (auto &S
: P
.second
.SummaryList
) {
906 auto *GVar
= dyn_cast
<GlobalVarSummary
>(S
.get());
908 GVar
->getVCallVisibility() != GlobalObject::VCallVisibilityPublic
)
910 // With validation enabled, we want to exclude symbols visible to regular
911 // objects. Local symbols will be in this group due to the current
912 // implementation but those with VCallVisibilityTranslationUnit will have
913 // already been marked in clang so are unaffected.
914 if (VisibleToRegularObjSymbols
.count(P
.first
))
916 GVar
->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit
);
921 void llvm::runWholeProgramDevirtOnIndex(
922 ModuleSummaryIndex
&Summary
, std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
923 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
924 DevirtIndex(Summary
, ExportedGUIDs
, LocalWPDTargetsMap
).run();
927 void llvm::updateIndexWPDForExports(
928 ModuleSummaryIndex
&Summary
,
929 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
930 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
931 for (auto &T
: LocalWPDTargetsMap
) {
933 // This was enforced earlier during trySingleImplDevirt.
934 assert(VI
.getSummaryList().size() == 1 &&
935 "Devirt of local target has more than one copy");
936 auto &S
= VI
.getSummaryList()[0];
937 if (!isExported(S
->modulePath(), VI
))
940 // It's been exported by a cross module import.
941 for (auto &SlotSummary
: T
.second
) {
942 auto *TIdSum
= Summary
.getTypeIdSummary(SlotSummary
.TypeID
);
944 auto WPDRes
= TIdSum
->WPDRes
.find(SlotSummary
.ByteOffset
);
945 assert(WPDRes
!= TIdSum
->WPDRes
.end());
946 WPDRes
->second
.SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
947 WPDRes
->second
.SingleImplName
,
948 Summary
.getModuleHash(S
->modulePath()));
953 static Error
checkCombinedSummaryForTesting(ModuleSummaryIndex
*Summary
) {
954 // Check that summary index contains regular LTO module when performing
955 // export to prevent occasional use of index from pure ThinLTO compilation
956 // (-fno-split-lto-module). This kind of summary index is passed to
957 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958 const auto &ModPaths
= Summary
->modulePaths();
959 if (ClSummaryAction
!= PassSummaryAction::Import
&&
960 !ModPaths
.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961 return createStringError(
962 errc::invalid_argument
,
963 "combined summary should contain Regular LTO module");
964 return ErrorSuccess();
967 bool DevirtModule::runForTesting(
968 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
969 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
970 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
971 std::unique_ptr
<ModuleSummaryIndex
> Summary
=
972 std::make_unique
<ModuleSummaryIndex
>(/*HaveGVs=*/false);
974 // Handle the command-line summary arguments. This code is for testing
975 // purposes only, so we handle errors directly.
976 if (!ClReadSummary
.empty()) {
977 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
979 auto ReadSummaryFile
=
980 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
981 if (Expected
<std::unique_ptr
<ModuleSummaryIndex
>> SummaryOrErr
=
982 getModuleSummaryIndex(*ReadSummaryFile
)) {
983 Summary
= std::move(*SummaryOrErr
);
984 ExitOnErr(checkCombinedSummaryForTesting(Summary
.get()));
986 // Try YAML if we've failed with bitcode.
987 consumeError(SummaryOrErr
.takeError());
988 yaml::Input
In(ReadSummaryFile
->getBuffer());
990 ExitOnErr(errorCodeToError(In
.error()));
995 DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
,
996 ClSummaryAction
== PassSummaryAction::Export
? Summary
.get()
998 ClSummaryAction
== PassSummaryAction::Import
? Summary
.get()
1002 if (!ClWriteSummary
.empty()) {
1003 ExitOnError
ExitOnErr(
1004 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
1006 if (StringRef(ClWriteSummary
).ends_with(".bc")) {
1007 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_None
);
1008 ExitOnErr(errorCodeToError(EC
));
1009 writeIndexToFile(*Summary
, OS
);
1011 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_TextWithCRLF
);
1012 ExitOnErr(errorCodeToError(EC
));
1013 yaml::Output
Out(OS
);
1021 void DevirtModule::buildTypeIdentifierMap(
1022 std::vector
<VTableBits
> &Bits
,
1023 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1024 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
1025 Bits
.reserve(M
.global_size());
1026 SmallVector
<MDNode
*, 2> Types
;
1027 for (GlobalVariable
&GV
: M
.globals()) {
1029 GV
.getMetadata(LLVMContext::MD_type
, Types
);
1030 if (GV
.isDeclaration() || Types
.empty())
1033 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
1035 Bits
.emplace_back();
1036 Bits
.back().GV
= &GV
;
1037 Bits
.back().ObjectSize
=
1038 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
1039 BitsPtr
= &Bits
.back();
1042 for (MDNode
*Type
: Types
) {
1043 auto TypeID
= Type
->getOperand(1).get();
1047 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
1050 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
1055 bool DevirtModule::tryFindVirtualCallTargets(
1056 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
1057 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
,
1058 ModuleSummaryIndex
*ExportSummary
) {
1059 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
1060 if (!TM
.Bits
->GV
->isConstant())
1063 // We cannot perform whole program devirtualization analysis on a vtable
1064 // with public LTO visibility.
1065 if (TM
.Bits
->GV
->getVCallVisibility() ==
1066 GlobalObject::VCallVisibilityPublic
)
1069 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
1070 TM
.Offset
+ ByteOffset
, M
, TM
.Bits
->GV
);
1074 auto C
= Ptr
->stripPointerCasts();
1075 // Make sure this is a function or alias to a function.
1076 auto Fn
= dyn_cast
<Function
>(C
);
1077 auto A
= dyn_cast
<GlobalAlias
>(C
);
1079 Fn
= dyn_cast
<Function
>(A
->getAliasee());
1084 if (FunctionsToSkip
.match(Fn
->getName()))
1087 // We can disregard __cxa_pure_virtual as a possible call target, as
1088 // calls to pure virtuals are UB.
1089 if (Fn
->getName() == "__cxa_pure_virtual")
1092 // We can disregard unreachable functions as possible call targets, as
1093 // unreachable functions shouldn't be called.
1094 if (mustBeUnreachableFunction(Fn
, ExportSummary
))
1097 // Save the symbol used in the vtable to use as the devirtualization
1099 auto GV
= dyn_cast
<GlobalValue
>(C
);
1101 TargetsForSlot
.push_back({GV
, &TM
});
1104 // Give up if we couldn't find any targets.
1105 return !TargetsForSlot
.empty();
1108 bool DevirtIndex::tryFindVirtualCallTargets(
1109 std::vector
<ValueInfo
> &TargetsForSlot
,
1110 const TypeIdCompatibleVtableInfo TIdInfo
, uint64_t ByteOffset
) {
1111 for (const TypeIdOffsetVtableInfo
&P
: TIdInfo
) {
1112 // Find a representative copy of the vtable initializer.
1113 // We can have multiple available_externally, linkonce_odr and weak_odr
1114 // vtable initializers. We can also have multiple external vtable
1115 // initializers in the case of comdats, which we cannot check here.
1116 // The linker should give an error in this case.
1118 // Also, handle the case of same-named local Vtables with the same path
1119 // and therefore the same GUID. This can happen if there isn't enough
1120 // distinguishing path when compiling the source file. In that case we
1121 // conservatively return false early.
1122 const GlobalVarSummary
*VS
= nullptr;
1123 bool LocalFound
= false;
1124 for (const auto &S
: P
.VTableVI
.getSummaryList()) {
1125 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1130 auto *CurVS
= cast
<GlobalVarSummary
>(S
->getBaseObject());
1131 if (!CurVS
->vTableFuncs().empty() ||
1132 // Previously clang did not attach the necessary type metadata to
1133 // available_externally vtables, in which case there would not
1134 // be any vtable functions listed in the summary and we need
1135 // to treat this case conservatively (in case the bitcode is old).
1136 // However, we will also not have any vtable functions in the
1137 // case of a pure virtual base class. In that case we do want
1138 // to set VS to avoid treating it conservatively.
1139 !GlobalValue::isAvailableExternallyLinkage(S
->linkage())) {
1141 // We cannot perform whole program devirtualization analysis on a vtable
1142 // with public LTO visibility.
1143 if (VS
->getVCallVisibility() == GlobalObject::VCallVisibilityPublic
)
1147 // There will be no VS if all copies are available_externally having no
1148 // type metadata. In that case we can't safely perform WPD.
1153 for (auto VTP
: VS
->vTableFuncs()) {
1154 if (VTP
.VTableOffset
!= P
.AddressPointOffset
+ ByteOffset
)
1157 if (mustBeUnreachableFunction(VTP
.FuncVI
))
1160 TargetsForSlot
.push_back(VTP
.FuncVI
);
1164 // Give up if we couldn't find any targets.
1165 return !TargetsForSlot
.empty();
1168 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
1169 Constant
*TheFn
, bool &IsExported
) {
1170 // Don't devirtualize function if we're told to skip it
1171 // in -wholeprogramdevirt-skip.
1172 if (FunctionsToSkip
.match(TheFn
->stripPointerCasts()->getName()))
1174 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1175 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1176 if (!OptimizedCalls
.insert(&VCallSite
.CB
).second
)
1180 VCallSite
.emitRemark("single-impl",
1181 TheFn
->stripPointerCasts()->getName(), OREGetter
);
1183 auto &CB
= VCallSite
.CB
;
1184 assert(!CB
.getCalledFunction() && "devirtualizing direct call?");
1185 IRBuilder
<> Builder(&CB
);
1187 Builder
.CreateBitCast(TheFn
, CB
.getCalledOperand()->getType());
1189 // If trap checking is enabled, add support to compare the virtual
1190 // function pointer to the devirtualized target. In case of a mismatch,
1191 // perform a debug trap.
1192 if (DevirtCheckMode
== WPDCheckMode::Trap
) {
1193 auto *Cond
= Builder
.CreateICmpNE(CB
.getCalledOperand(), Callee
);
1194 Instruction
*ThenTerm
=
1195 SplitBlockAndInsertIfThen(Cond
, &CB
, /*Unreachable=*/false);
1196 Builder
.SetInsertPoint(ThenTerm
);
1197 Function
*TrapFn
= Intrinsic::getDeclaration(&M
, Intrinsic::debugtrap
);
1198 auto *CallTrap
= Builder
.CreateCall(TrapFn
);
1199 CallTrap
->setDebugLoc(CB
.getDebugLoc());
1202 // If fallback checking is enabled, add support to compare the virtual
1203 // function pointer to the devirtualized target. In case of a mismatch,
1204 // fall back to indirect call.
1205 if (DevirtCheckMode
== WPDCheckMode::Fallback
) {
1207 MDBuilder(M
.getContext()).createBranchWeights((1U << 20) - 1, 1);
1208 // Version the indirect call site. If the called value is equal to the
1209 // given callee, 'NewInst' will be executed, otherwise the original call
1210 // site will be executed.
1211 CallBase
&NewInst
= versionCallSite(CB
, Callee
, Weights
);
1212 NewInst
.setCalledOperand(Callee
);
1213 // Since the new call site is direct, we must clear metadata that
1214 // is only appropriate for indirect calls. This includes !prof and
1215 // !callees metadata.
1216 NewInst
.setMetadata(LLVMContext::MD_prof
, nullptr);
1217 NewInst
.setMetadata(LLVMContext::MD_callees
, nullptr);
1218 // Additionally, we should remove them from the fallback indirect call,
1219 // so that we don't attempt to perform indirect call promotion later.
1220 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1221 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1224 // In either trapping or non-checking mode, devirtualize original call.
1226 // Devirtualize unconditionally.
1227 CB
.setCalledOperand(Callee
);
1228 // Since the call site is now direct, we must clear metadata that
1229 // is only appropriate for indirect calls. This includes !prof and
1230 // !callees metadata.
1231 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1232 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1233 if (CB
.getCalledOperand() &&
1234 CB
.getOperandBundle(LLVMContext::OB_ptrauth
)) {
1236 CallBase::removeOperandBundle(&CB
, LLVMContext::OB_ptrauth
, &CB
);
1237 CB
.replaceAllUsesWith(NewCS
);
1238 // Schedule for deletion at the end of pass run.
1239 CallsWithPtrAuthBundleRemoved
.push_back(&CB
);
1243 // This use is no longer unsafe.
1244 if (VCallSite
.NumUnsafeUses
)
1245 --*VCallSite
.NumUnsafeUses
;
1247 if (CSInfo
.isExported())
1249 CSInfo
.markDevirt();
1251 Apply(SlotInfo
.CSInfo
);
1252 for (auto &P
: SlotInfo
.ConstCSInfo
)
1256 static bool AddCalls(VTableSlotInfo
&SlotInfo
, const ValueInfo
&Callee
) {
1257 // We can't add calls if we haven't seen a definition
1258 if (Callee
.getSummaryList().empty())
1261 // Insert calls into the summary index so that the devirtualized targets
1262 // are eligible for import.
1263 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1264 // to better ensure we have the opportunity to inline them.
1265 bool IsExported
= false;
1266 auto &S
= Callee
.getSummaryList()[0];
1267 CalleeInfo
CI(CalleeInfo::HotnessType::Hot
, /* HasTailCall = */ false,
1269 auto AddCalls
= [&](CallSiteInfo
&CSInfo
) {
1270 for (auto *FS
: CSInfo
.SummaryTypeCheckedLoadUsers
) {
1271 FS
->addCall({Callee
, CI
});
1272 IsExported
|= S
->modulePath() != FS
->modulePath();
1274 for (auto *FS
: CSInfo
.SummaryTypeTestAssumeUsers
) {
1275 FS
->addCall({Callee
, CI
});
1276 IsExported
|= S
->modulePath() != FS
->modulePath();
1279 AddCalls(SlotInfo
.CSInfo
);
1280 for (auto &P
: SlotInfo
.ConstCSInfo
)
1285 bool DevirtModule::trySingleImplDevirt(
1286 ModuleSummaryIndex
*ExportSummary
,
1287 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1288 WholeProgramDevirtResolution
*Res
) {
1289 // See if the program contains a single implementation of this virtual
1291 auto *TheFn
= TargetsForSlot
[0].Fn
;
1292 for (auto &&Target
: TargetsForSlot
)
1293 if (TheFn
!= Target
.Fn
)
1296 // If so, update each call site to call that implementation directly.
1297 if (RemarksEnabled
|| AreStatisticsEnabled())
1298 TargetsForSlot
[0].WasDevirt
= true;
1300 bool IsExported
= false;
1301 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
1305 // If the only implementation has local linkage, we must promote to external
1306 // to make it visible to thin LTO objects. We can only get here during the
1307 // ThinLTO export phase.
1308 if (TheFn
->hasLocalLinkage()) {
1309 std::string NewName
= (TheFn
->getName() + ".llvm.merged").str();
1311 // Since we are renaming the function, any comdats with the same name must
1312 // also be renamed. This is required when targeting COFF, as the comdat name
1313 // must match one of the names of the symbols in the comdat.
1314 if (Comdat
*C
= TheFn
->getComdat()) {
1315 if (C
->getName() == TheFn
->getName()) {
1316 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
1317 NewC
->setSelectionKind(C
->getSelectionKind());
1318 for (GlobalObject
&GO
: M
.global_objects())
1319 if (GO
.getComdat() == C
)
1324 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
1325 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
1326 TheFn
->setName(NewName
);
1328 if (ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFn
->getGUID()))
1329 // Any needed promotion of 'TheFn' has already been done during
1330 // LTO unit split, so we can ignore return value of AddCalls.
1331 AddCalls(SlotInfo
, TheFnVI
);
1333 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1334 Res
->SingleImplName
= std::string(TheFn
->getName());
1339 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
1340 VTableSlotSummary
&SlotSummary
,
1341 VTableSlotInfo
&SlotInfo
,
1342 WholeProgramDevirtResolution
*Res
,
1343 std::set
<ValueInfo
> &DevirtTargets
) {
1344 // See if the program contains a single implementation of this virtual
1346 auto TheFn
= TargetsForSlot
[0];
1347 for (auto &&Target
: TargetsForSlot
)
1348 if (TheFn
!= Target
)
1351 // Don't devirtualize if we don't have target definition.
1352 auto Size
= TheFn
.getSummaryList().size();
1356 // Don't devirtualize function if we're told to skip it
1357 // in -wholeprogramdevirt-skip.
1358 if (FunctionsToSkip
.match(TheFn
.name()))
1361 // If the summary list contains multiple summaries where at least one is
1362 // a local, give up, as we won't know which (possibly promoted) name to use.
1363 for (const auto &S
: TheFn
.getSummaryList())
1364 if (GlobalValue::isLocalLinkage(S
->linkage()) && Size
> 1)
1367 // Collect functions devirtualized at least for one call site for stats.
1368 if (PrintSummaryDevirt
|| AreStatisticsEnabled())
1369 DevirtTargets
.insert(TheFn
);
1371 auto &S
= TheFn
.getSummaryList()[0];
1372 bool IsExported
= AddCalls(SlotInfo
, TheFn
);
1374 ExportedGUIDs
.insert(TheFn
.getGUID());
1376 // Record in summary for use in devirtualization during the ThinLTO import
1378 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1379 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1381 // If target is a local function and we are exporting it by
1382 // devirtualizing a call in another module, we need to record the
1384 Res
->SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
1385 TheFn
.name(), ExportSummary
.getModuleHash(S
->modulePath()));
1387 LocalWPDTargetsMap
[TheFn
].push_back(SlotSummary
);
1388 Res
->SingleImplName
= std::string(TheFn
.name());
1391 Res
->SingleImplName
= std::string(TheFn
.name());
1393 // Name will be empty if this thin link driven off of serialized combined
1394 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1395 // legacy LTO API anyway.
1396 assert(!Res
->SingleImplName
.empty());
1401 void DevirtModule::tryICallBranchFunnel(
1402 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1403 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1404 Triple
T(M
.getTargetTriple());
1405 if (T
.getArch() != Triple::x86_64
)
1408 if (TargetsForSlot
.size() > ClThreshold
)
1411 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
1413 for (auto &P
: SlotInfo
.ConstCSInfo
)
1414 if (!P
.second
.AllCallSitesDevirted
) {
1415 HasNonDevirt
= true;
1423 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
1425 if (isa
<MDString
>(Slot
.TypeID
)) {
1426 JT
= Function::Create(FT
, Function::ExternalLinkage
,
1427 M
.getDataLayout().getProgramAddressSpace(),
1428 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
1429 JT
->setVisibility(GlobalValue::HiddenVisibility
);
1431 JT
= Function::Create(FT
, Function::InternalLinkage
,
1432 M
.getDataLayout().getProgramAddressSpace(),
1433 "branch_funnel", &M
);
1435 JT
->addParamAttr(0, Attribute::Nest
);
1437 std::vector
<Value
*> JTArgs
;
1438 JTArgs
.push_back(JT
->arg_begin());
1439 for (auto &T
: TargetsForSlot
) {
1440 JTArgs
.push_back(getMemberAddr(T
.TM
));
1441 JTArgs
.push_back(T
.Fn
);
1444 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
1446 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
1448 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
1449 CI
->setTailCallKind(CallInst::TCK_MustTail
);
1450 ReturnInst::Create(M
.getContext(), nullptr, BB
);
1452 bool IsExported
= false;
1453 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1455 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
1458 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
1459 Constant
*JT
, bool &IsExported
) {
1460 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1461 if (CSInfo
.isExported())
1463 if (CSInfo
.AllCallSitesDevirted
)
1466 std::map
<CallBase
*, CallBase
*> CallBases
;
1467 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1468 CallBase
&CB
= VCallSite
.CB
;
1470 if (CallBases
.find(&CB
) != CallBases
.end()) {
1471 // When finding devirtualizable calls, it's possible to find the same
1472 // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1473 // calls, which can cause duplicate call sites to be recorded in
1474 // [Const]CallSites. If we've already found one of these
1475 // call instances, just ignore it. It will be replaced later.
1479 // Jump tables are only profitable if the retpoline mitigation is enabled.
1480 Attribute FSAttr
= CB
.getCaller()->getFnAttribute("target-features");
1481 if (!FSAttr
.isValid() ||
1482 !FSAttr
.getValueAsString().contains("+retpoline"))
1487 VCallSite
.emitRemark("branch-funnel",
1488 JT
->stripPointerCasts()->getName(), OREGetter
);
1490 // Pass the address of the vtable in the nest register, which is r10 on
1492 std::vector
<Type
*> NewArgs
;
1493 NewArgs
.push_back(Int8PtrTy
);
1494 append_range(NewArgs
, CB
.getFunctionType()->params());
1495 FunctionType
*NewFT
=
1496 FunctionType::get(CB
.getFunctionType()->getReturnType(), NewArgs
,
1497 CB
.getFunctionType()->isVarArg());
1498 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
1500 IRBuilder
<> IRB(&CB
);
1501 std::vector
<Value
*> Args
;
1502 Args
.push_back(VCallSite
.VTable
);
1503 llvm::append_range(Args
, CB
.args());
1505 CallBase
*NewCS
= nullptr;
1506 if (isa
<CallInst
>(CB
))
1507 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
1509 NewCS
= IRB
.CreateInvoke(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
1510 cast
<InvokeInst
>(CB
).getNormalDest(),
1511 cast
<InvokeInst
>(CB
).getUnwindDest(), Args
);
1512 NewCS
->setCallingConv(CB
.getCallingConv());
1514 AttributeList Attrs
= CB
.getAttributes();
1515 std::vector
<AttributeSet
> NewArgAttrs
;
1516 NewArgAttrs
.push_back(AttributeSet::get(
1517 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
1518 M
.getContext(), Attribute::Nest
)}));
1519 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
1520 NewArgAttrs
.push_back(Attrs
.getParamAttrs(I
));
1521 NewCS
->setAttributes(
1522 AttributeList::get(M
.getContext(), Attrs
.getFnAttrs(),
1523 Attrs
.getRetAttrs(), NewArgAttrs
));
1525 CallBases
[&CB
] = NewCS
;
1527 // This use is no longer unsafe.
1528 if (VCallSite
.NumUnsafeUses
)
1529 --*VCallSite
.NumUnsafeUses
;
1531 // Don't mark as devirtualized because there may be callers compiled without
1532 // retpoline mitigation, which would mean that they are lowered to
1533 // llvm.type.test and therefore require an llvm.type.test resolution for the
1536 for (auto &[Old
, New
] : CallBases
) {
1537 Old
->replaceAllUsesWith(New
);
1538 Old
->eraseFromParent();
1541 Apply(SlotInfo
.CSInfo
);
1542 for (auto &P
: SlotInfo
.ConstCSInfo
)
1546 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1547 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1548 ArrayRef
<uint64_t> Args
) {
1549 // Evaluate each function and store the result in each target's RetVal
1551 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1552 // TODO: Skip for now if the vtable symbol was an alias to a function,
1553 // need to evaluate whether it would be correct to analyze the aliasee
1554 // function for this optimization.
1555 auto Fn
= dyn_cast
<Function
>(Target
.Fn
);
1559 if (Fn
->arg_size() != Args
.size() + 1)
1562 Evaluator
Eval(M
.getDataLayout(), nullptr);
1563 SmallVector
<Constant
*, 2> EvalArgs
;
1565 Constant::getNullValue(Fn
->getFunctionType()->getParamType(0)));
1566 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
1568 dyn_cast
<IntegerType
>(Fn
->getFunctionType()->getParamType(I
+ 1));
1571 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
1575 if (!Eval
.EvaluateFunction(Fn
, RetVal
, EvalArgs
) ||
1576 !isa
<ConstantInt
>(RetVal
))
1578 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1583 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1584 uint64_t TheRetVal
) {
1585 for (auto Call
: CSInfo
.CallSites
) {
1586 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1589 Call
.replaceAndErase(
1590 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1591 ConstantInt::get(cast
<IntegerType
>(Call
.CB
.getType()), TheRetVal
));
1593 CSInfo
.markDevirt();
1596 bool DevirtModule::tryUniformRetValOpt(
1597 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1598 WholeProgramDevirtResolution::ByArg
*Res
) {
1599 // Uniform return value optimization. If all functions return the same
1600 // constant, replace all calls with that constant.
1601 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1602 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1603 if (Target
.RetVal
!= TheRetVal
)
1606 if (CSInfo
.isExported()) {
1607 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1608 Res
->Info
= TheRetVal
;
1611 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1612 if (RemarksEnabled
|| AreStatisticsEnabled())
1613 for (auto &&Target
: TargetsForSlot
)
1614 Target
.WasDevirt
= true;
1618 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1619 ArrayRef
<uint64_t> Args
,
1621 std::string FullName
= "__typeid_";
1622 raw_string_ostream
OS(FullName
);
1623 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1624 for (uint64_t Arg
: Args
)
1630 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1631 Triple
T(M
.getTargetTriple());
1632 return T
.isX86() && T
.getObjectFormat() == Triple::ELF
;
1635 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1636 StringRef Name
, Constant
*C
) {
1637 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1638 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1639 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1642 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1643 StringRef Name
, uint32_t Const
,
1644 uint32_t &Storage
) {
1645 if (shouldExportConstantsAsAbsoluteSymbols()) {
1648 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1655 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1658 M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Arr0Ty
);
1659 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1661 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1665 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1666 StringRef Name
, IntegerType
*IntTy
,
1668 if (!shouldExportConstantsAsAbsoluteSymbols())
1669 return ConstantInt::get(IntTy
, Storage
);
1671 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1672 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1673 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1675 // We only need to set metadata if the global is newly created, in which
1676 // case it would not have hidden visibility.
1677 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1680 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1681 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1682 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1683 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1684 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1686 unsigned AbsWidth
= IntTy
->getBitWidth();
1687 if (AbsWidth
== IntPtrTy
->getBitWidth())
1688 SetAbsRange(~0ull, ~0ull); // Full set.
1690 SetAbsRange(0, 1ull << AbsWidth
);
1694 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1696 Constant
*UniqueMemberAddr
) {
1697 for (auto &&Call
: CSInfo
.CallSites
) {
1698 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1700 IRBuilder
<> B(&Call
.CB
);
1702 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
, Call
.VTable
,
1703 B
.CreateBitCast(UniqueMemberAddr
, Call
.VTable
->getType()));
1704 Cmp
= B
.CreateZExt(Cmp
, Call
.CB
.getType());
1706 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1709 CSInfo
.markDevirt();
1712 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1713 return ConstantExpr::getGetElementPtr(Int8Ty
, M
->Bits
->GV
,
1714 ConstantInt::get(Int64Ty
, M
->Offset
));
1717 bool DevirtModule::tryUniqueRetValOpt(
1718 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1719 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1720 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1721 // IsOne controls whether we look for a 0 or a 1.
1722 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1723 const TypeMemberInfo
*UniqueMember
= nullptr;
1724 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1725 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1728 UniqueMember
= Target
.TM
;
1732 // We should have found a unique member or bailed out by now. We already
1733 // checked for a uniform return value in tryUniformRetValOpt.
1734 assert(UniqueMember
);
1736 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1737 if (CSInfo
.isExported()) {
1738 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1741 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1744 // Replace each call with the comparison.
1745 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1748 // Update devirtualization statistics for targets.
1749 if (RemarksEnabled
|| AreStatisticsEnabled())
1750 for (auto &&Target
: TargetsForSlot
)
1751 Target
.WasDevirt
= true;
1756 if (BitWidth
== 1) {
1757 if (tryUniqueRetValOptFor(true))
1759 if (tryUniqueRetValOptFor(false))
1765 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1766 Constant
*Byte
, Constant
*Bit
) {
1767 for (auto Call
: CSInfo
.CallSites
) {
1768 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1770 auto *RetType
= cast
<IntegerType
>(Call
.CB
.getType());
1771 IRBuilder
<> B(&Call
.CB
);
1772 Value
*Addr
= B
.CreatePtrAdd(Call
.VTable
, Byte
);
1773 if (RetType
->getBitWidth() == 1) {
1774 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1775 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1776 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1777 NumVirtConstProp1Bit
++;
1778 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1779 OREGetter
, IsBitSet
);
1781 Value
*Val
= B
.CreateLoad(RetType
, Addr
);
1783 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1787 CSInfo
.markDevirt();
1790 bool DevirtModule::tryVirtualConstProp(
1791 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1792 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1793 // TODO: Skip for now if the vtable symbol was an alias to a function,
1794 // need to evaluate whether it would be correct to analyze the aliasee
1795 // function for this optimization.
1796 auto Fn
= dyn_cast
<Function
>(TargetsForSlot
[0].Fn
);
1799 // This only works if the function returns an integer.
1800 auto RetType
= dyn_cast
<IntegerType
>(Fn
->getReturnType());
1803 unsigned BitWidth
= RetType
->getBitWidth();
1807 // Make sure that each function is defined, does not access memory, takes at
1808 // least one argument, does not use its first argument (which we assume is
1809 // 'this'), and has the same return type.
1811 // Note that we test whether this copy of the function is readnone, rather
1812 // than testing function attributes, which must hold for any copy of the
1813 // function, even a less optimized version substituted at link time. This is
1814 // sound because the virtual constant propagation optimizations effectively
1815 // inline all implementations of the virtual function into each call site,
1816 // rather than using function attributes to perform local optimization.
1817 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1818 // TODO: Skip for now if the vtable symbol was an alias to a function,
1819 // need to evaluate whether it would be correct to analyze the aliasee
1820 // function for this optimization.
1821 auto Fn
= dyn_cast
<Function
>(Target
.Fn
);
1825 if (Fn
->isDeclaration() ||
1826 !computeFunctionBodyMemoryAccess(*Fn
, AARGetter(*Fn
))
1827 .doesNotAccessMemory() ||
1828 Fn
->arg_empty() || !Fn
->arg_begin()->use_empty() ||
1829 Fn
->getReturnType() != RetType
)
1833 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1834 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1837 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1839 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1841 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1844 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1845 ResByArg
, Slot
, CSByConstantArg
.first
))
1848 // Find an allocation offset in bits in all vtables associated with the
1850 uint64_t AllocBefore
=
1851 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1852 uint64_t AllocAfter
=
1853 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1855 // Calculate the total amount of padding needed to store a value at both
1856 // ends of the object.
1857 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1858 for (auto &&Target
: TargetsForSlot
) {
1859 TotalPaddingBefore
+= std::max
<int64_t>(
1860 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1861 TotalPaddingAfter
+= std::max
<int64_t>(
1862 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1865 // If the amount of padding is too large, give up.
1866 // FIXME: do something smarter here.
1867 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1870 // Calculate the offset to the value as a (possibly negative) byte offset
1871 // and (if applicable) a bit offset, and store the values in the targets.
1874 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1875 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1878 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1881 if (RemarksEnabled
|| AreStatisticsEnabled())
1882 for (auto &&Target
: TargetsForSlot
)
1883 Target
.WasDevirt
= true;
1886 if (CSByConstantArg
.second
.isExported()) {
1887 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1888 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1890 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1894 // Rewrite each call to a load from OffsetByte/OffsetBit.
1895 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1896 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1897 applyVirtualConstProp(CSByConstantArg
.second
,
1898 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1903 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1904 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1907 // Align the before byte array to the global's minimum alignment so that we
1908 // don't break any alignment requirements on the global.
1909 Align Alignment
= M
.getDataLayout().getValueOrABITypeAlignment(
1910 B
.GV
->getAlign(), B
.GV
->getValueType());
1911 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), Alignment
));
1913 // Before was stored in reverse order; flip it now.
1914 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1915 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1917 // Build an anonymous global containing the before bytes, followed by the
1918 // original initializer, followed by the after bytes.
1919 auto NewInit
= ConstantStruct::getAnon(
1920 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1921 B
.GV
->getInitializer(),
1922 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1924 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1925 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1926 NewGV
->setSection(B
.GV
->getSection());
1927 NewGV
->setComdat(B
.GV
->getComdat());
1928 NewGV
->setAlignment(B
.GV
->getAlign());
1930 // Copy the original vtable's metadata to the anonymous global, adjusting
1931 // offsets as required.
1932 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1934 // Build an alias named after the original global, pointing at the second
1935 // element (the original initializer).
1936 auto Alias
= GlobalAlias::create(
1937 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1938 ConstantExpr::getGetElementPtr(
1939 NewInit
->getType(), NewGV
,
1940 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1941 ConstantInt::get(Int32Ty
, 1)}),
1943 Alias
->setVisibility(B
.GV
->getVisibility());
1944 Alias
->takeName(B
.GV
);
1946 B
.GV
->replaceAllUsesWith(Alias
);
1947 B
.GV
->eraseFromParent();
1950 bool DevirtModule::areRemarksEnabled() {
1951 const auto &FL
= M
.getFunctionList();
1952 for (const Function
&Fn
: FL
) {
1955 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &Fn
.front());
1956 return DI
.isEnabled();
1961 void DevirtModule::scanTypeTestUsers(
1962 Function
*TypeTestFunc
,
1963 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1964 // Find all virtual calls via a virtual table pointer %p under an assumption
1965 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1966 // points to a member of the type identifier %md. Group calls by (type ID,
1967 // offset) pair (effectively the identity of the virtual function) and store
1969 for (Use
&U
: llvm::make_early_inc_range(TypeTestFunc
->uses())) {
1970 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
1974 // Search for virtual calls based on %p and add them to DevirtCalls.
1975 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1976 SmallVector
<CallInst
*, 1> Assumes
;
1977 auto &DT
= LookupDomTree(*CI
->getFunction());
1978 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1981 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1982 // If we found any, add them to CallSlots.
1983 if (!Assumes
.empty()) {
1984 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1985 for (DevirtCallSite Call
: DevirtCalls
)
1986 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
, nullptr);
1989 auto RemoveTypeTestAssumes
= [&]() {
1990 // We no longer need the assumes or the type test.
1991 for (auto *Assume
: Assumes
)
1992 Assume
->eraseFromParent();
1993 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1994 // may use the vtable argument later.
1995 if (CI
->use_empty())
1996 CI
->eraseFromParent();
1999 // At this point we could remove all type test assume sequences, as they
2000 // were originally inserted for WPD. However, we can keep these in the
2001 // code stream for later analysis (e.g. to help drive more efficient ICP
2002 // sequences). They will eventually be removed by a second LowerTypeTests
2003 // invocation that cleans them up. In order to do this correctly, the first
2004 // LowerTypeTests invocation needs to know that they have "Unknown" type
2005 // test resolution, so that they aren't treated as Unsat and lowered to
2006 // False, which will break any uses on assumes. Below we remove any type
2007 // test assumes that will not be treated as Unknown by LTT.
2009 // The type test assumes will be treated by LTT as Unsat if the type id is
2010 // not used on a global (in which case it has no entry in the TypeIdMap).
2011 if (!TypeIdMap
.count(TypeId
))
2012 RemoveTypeTestAssumes();
2014 // For ThinLTO importing, we need to remove the type test assumes if this is
2015 // an MDString type id without a corresponding TypeIdSummary. Any
2016 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2017 // type test assumes can be kept. If the MDString type id is missing a
2018 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2019 // exporting phase of WPD from analyzing it), then it would be treated as
2020 // Unsat by LTT and we need to remove its type test assumes here. If not
2021 // used on a vcall we don't need them for later optimization use in any
2023 else if (ImportSummary
&& isa
<MDString
>(TypeId
)) {
2024 const TypeIdSummary
*TidSummary
=
2025 ImportSummary
->getTypeIdSummary(cast
<MDString
>(TypeId
)->getString());
2027 RemoveTypeTestAssumes();
2029 // If one was created it should not be Unsat, because if we reached here
2030 // the type id was used on a global.
2031 assert(TidSummary
->TTRes
.TheKind
!= TypeTestResolution::Unsat
);
2036 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
2037 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
2039 for (Use
&U
: llvm::make_early_inc_range(TypeCheckedLoadFunc
->uses())) {
2040 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
2044 Value
*Ptr
= CI
->getArgOperand(0);
2045 Value
*Offset
= CI
->getArgOperand(1);
2046 Value
*TypeIdValue
= CI
->getArgOperand(2);
2047 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
2049 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
2050 SmallVector
<Instruction
*, 1> LoadedPtrs
;
2051 SmallVector
<Instruction
*, 1> Preds
;
2052 bool HasNonCallUses
= false;
2053 auto &DT
= LookupDomTree(*CI
->getFunction());
2054 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
2055 HasNonCallUses
, CI
, DT
);
2057 // Start by generating "pessimistic" code that explicitly loads the function
2058 // pointer from the vtable and performs the type check. If possible, we will
2059 // eliminate the load and the type check later.
2061 // If possible, only generate the load at the point where it is used.
2062 // This helps avoid unnecessary spills.
2064 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
2066 Value
*LoadedValue
= nullptr;
2067 if (TypeCheckedLoadFunc
->getIntrinsicID() ==
2068 Intrinsic::type_checked_load_relative
) {
2069 Value
*GEP
= LoadB
.CreatePtrAdd(Ptr
, Offset
);
2070 LoadedValue
= LoadB
.CreateLoad(Int32Ty
, GEP
);
2071 LoadedValue
= LoadB
.CreateSExt(LoadedValue
, IntPtrTy
);
2072 GEP
= LoadB
.CreatePtrToInt(GEP
, IntPtrTy
);
2073 LoadedValue
= LoadB
.CreateAdd(GEP
, LoadedValue
);
2074 LoadedValue
= LoadB
.CreateIntToPtr(LoadedValue
, Int8PtrTy
);
2076 Value
*GEP
= LoadB
.CreatePtrAdd(Ptr
, Offset
);
2077 LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEP
);
2080 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
2081 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
2082 LoadedPtr
->eraseFromParent();
2085 // Likewise for the type test.
2086 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
2087 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
2089 for (Instruction
*Pred
: Preds
) {
2090 Pred
->replaceAllUsesWith(TypeTestCall
);
2091 Pred
->eraseFromParent();
2094 // We have already erased any extractvalue instructions that refer to the
2095 // intrinsic call, but the intrinsic may have other non-extractvalue uses
2096 // (although this is unlikely). In that case, explicitly build a pair and
2098 if (!CI
->use_empty()) {
2099 Value
*Pair
= PoisonValue::get(CI
->getType());
2101 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
2102 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
2103 CI
->replaceAllUsesWith(Pair
);
2106 // The number of unsafe uses is initially the number of uses.
2107 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
2108 NumUnsafeUses
= DevirtCalls
.size();
2110 // If the function pointer has a non-call user, we cannot eliminate the type
2111 // check, as one of those users may eventually call the pointer. Increment
2112 // the unsafe use count to make sure it cannot reach zero.
2115 for (DevirtCallSite Call
: DevirtCalls
) {
2116 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
,
2120 CI
->eraseFromParent();
2124 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
2125 auto *TypeId
= dyn_cast
<MDString
>(Slot
.TypeID
);
2128 const TypeIdSummary
*TidSummary
=
2129 ImportSummary
->getTypeIdSummary(TypeId
->getString());
2132 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
2133 if (ResI
== TidSummary
->WPDRes
.end())
2135 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
2137 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
2138 assert(!Res
.SingleImplName
.empty());
2139 // The type of the function in the declaration is irrelevant because every
2140 // call site will cast it to the correct type.
2141 Constant
*SingleImpl
=
2142 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
2143 Type::getVoidTy(M
.getContext()))
2146 // This is the import phase so we should not be exporting anything.
2147 bool IsExported
= false;
2148 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
2149 assert(!IsExported
);
2152 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
2153 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
2154 if (I
== Res
.ResByArg
.end())
2156 auto &ResByArg
= I
->second
;
2157 // FIXME: We should figure out what to do about the "function name" argument
2158 // to the apply* functions, as the function names are unavailable during the
2159 // importing phase. For now we just pass the empty string. This does not
2160 // impact correctness because the function names are just used for remarks.
2161 switch (ResByArg
.TheKind
) {
2162 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2163 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
2165 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
2166 Constant
*UniqueMemberAddr
=
2167 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
2168 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
2172 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
2173 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
2174 Int32Ty
, ResByArg
.Byte
);
2175 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
2177 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
2185 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
2186 // The type of the function is irrelevant, because it's bitcast at calls
2188 Constant
*JT
= cast
<Constant
>(
2189 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
2190 Type::getVoidTy(M
.getContext()))
2192 bool IsExported
= false;
2193 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
2194 assert(!IsExported
);
2198 void DevirtModule::removeRedundantTypeTests() {
2199 auto True
= ConstantInt::getTrue(M
.getContext());
2200 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
2201 if (U
.second
== 0) {
2202 U
.first
->replaceAllUsesWith(True
);
2203 U
.first
->eraseFromParent();
2209 DevirtModule::lookUpFunctionValueInfo(Function
*TheFn
,
2210 ModuleSummaryIndex
*ExportSummary
) {
2211 assert((ExportSummary
!= nullptr) &&
2212 "Caller guarantees ExportSummary is not nullptr");
2214 const auto TheFnGUID
= TheFn
->getGUID();
2215 const auto TheFnGUIDWithExportedName
= GlobalValue::getGUID(TheFn
->getName());
2216 // Look up ValueInfo with the GUID in the current linkage.
2217 ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFnGUID
);
2218 // If no entry is found and GUID is different from GUID computed using
2219 // exported name, look up ValueInfo with the exported name unconditionally.
2220 // This is a fallback.
2222 // The reason to have a fallback:
2223 // 1. LTO could enable global value internalization via
2224 // `enable-lto-internalization`.
2225 // 2. The GUID in ExportedSummary is computed using exported name.
2226 if ((!TheFnVI
) && (TheFnGUID
!= TheFnGUIDWithExportedName
)) {
2227 TheFnVI
= ExportSummary
->getValueInfo(TheFnGUIDWithExportedName
);
2232 bool DevirtModule::mustBeUnreachableFunction(
2233 Function
*const F
, ModuleSummaryIndex
*ExportSummary
) {
2234 // First, learn unreachability by analyzing function IR.
2235 if (!F
->isDeclaration()) {
2236 // A function must be unreachable if its entry block ends with an
2238 return isa
<UnreachableInst
>(F
->getEntryBlock().getTerminator());
2240 // Learn unreachability from ExportSummary if ExportSummary is present.
2241 return ExportSummary
&&
2242 ::mustBeUnreachableFunction(
2243 DevirtModule::lookUpFunctionValueInfo(F
, ExportSummary
));
2246 bool DevirtModule::run() {
2247 // If only some of the modules were split, we cannot correctly perform
2248 // this transformation. We already checked for the presense of type tests
2249 // with partially split modules during the thin link, and would have emitted
2250 // an error if any were found, so here we can simply return.
2251 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
2252 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
2255 Function
*TypeTestFunc
=
2256 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
2257 Function
*TypeCheckedLoadFunc
=
2258 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
2259 Function
*TypeCheckedLoadRelativeFunc
=
2260 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative
));
2261 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
2263 // Normally if there are no users of the devirtualization intrinsics in the
2264 // module, this pass has nothing to do. But if we are exporting, we also need
2265 // to handle any users that appear only in the function summaries.
2266 if (!ExportSummary
&&
2267 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
2268 AssumeFunc
->use_empty()) &&
2269 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()) &&
2270 (!TypeCheckedLoadRelativeFunc
||
2271 TypeCheckedLoadRelativeFunc
->use_empty()))
2274 // Rebuild type metadata into a map for easy lookup.
2275 std::vector
<VTableBits
> Bits
;
2276 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
2277 buildTypeIdentifierMap(Bits
, TypeIdMap
);
2279 if (TypeTestFunc
&& AssumeFunc
)
2280 scanTypeTestUsers(TypeTestFunc
, TypeIdMap
);
2282 if (TypeCheckedLoadFunc
)
2283 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
2285 if (TypeCheckedLoadRelativeFunc
)
2286 scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc
);
2288 if (ImportSummary
) {
2289 for (auto &S
: CallSlots
)
2290 importResolution(S
.first
, S
.second
);
2292 removeRedundantTypeTests();
2294 // We have lowered or deleted the type intrinsics, so we will no longer have
2295 // enough information to reason about the liveness of virtual function
2296 // pointers in GlobalDCE.
2297 for (GlobalVariable
&GV
: M
.globals())
2298 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2300 // The rest of the code is only necessary when exporting or during regular
2301 // LTO, so we are done.
2305 if (TypeIdMap
.empty())
2308 // Collect information from summary about which calls to try to devirtualize.
2309 if (ExportSummary
) {
2310 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
2311 for (auto &P
: TypeIdMap
) {
2312 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
2313 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
2317 for (auto &P
: *ExportSummary
) {
2318 for (auto &S
: P
.second
.SummaryList
) {
2319 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2322 // FIXME: Only add live functions.
2323 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2324 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2325 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2328 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2329 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2330 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2333 for (const FunctionSummary::ConstVCall
&VC
:
2334 FS
->type_test_assume_const_vcalls()) {
2335 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2336 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2337 .ConstCSInfo
[VC
.Args
]
2338 .addSummaryTypeTestAssumeUser(FS
);
2341 for (const FunctionSummary::ConstVCall
&VC
:
2342 FS
->type_checked_load_const_vcalls()) {
2343 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2344 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2345 .ConstCSInfo
[VC
.Args
]
2346 .addSummaryTypeCheckedLoadUser(FS
);
2353 // For each (type, offset) pair:
2354 bool DidVirtualConstProp
= false;
2355 std::map
<std::string
, GlobalValue
*> DevirtTargets
;
2356 for (auto &S
: CallSlots
) {
2357 // Search each of the members of the type identifier for the virtual
2358 // function implementation at offset S.first.ByteOffset, and add to
2360 std::vector
<VirtualCallTarget
> TargetsForSlot
;
2361 WholeProgramDevirtResolution
*Res
= nullptr;
2362 const std::set
<TypeMemberInfo
> &TypeMemberInfos
= TypeIdMap
[S
.first
.TypeID
];
2363 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
) &&
2364 TypeMemberInfos
.size())
2365 // For any type id used on a global's type metadata, create the type id
2366 // summary resolution regardless of whether we can devirtualize, so that
2367 // lower type tests knows the type id is not Unsat. If it was not used on
2368 // a global's type metadata, the TypeIdMap entry set will be empty, and
2369 // we don't want to create an entry (with the default Unknown type
2370 // resolution), which can prevent detection of the Unsat.
2371 Res
= &ExportSummary
2372 ->getOrInsertTypeIdSummary(
2373 cast
<MDString
>(S
.first
.TypeID
)->getString())
2374 .WPDRes
[S
.first
.ByteOffset
];
2375 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeMemberInfos
,
2376 S
.first
.ByteOffset
, ExportSummary
)) {
2378 if (!trySingleImplDevirt(ExportSummary
, TargetsForSlot
, S
.second
, Res
)) {
2379 DidVirtualConstProp
|=
2380 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
2382 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
2385 // Collect functions devirtualized at least for one call site for stats.
2386 if (RemarksEnabled
|| AreStatisticsEnabled())
2387 for (const auto &T
: TargetsForSlot
)
2389 DevirtTargets
[std::string(T
.Fn
->getName())] = T
.Fn
;
2392 // CFI-specific: if we are exporting and any llvm.type.checked.load
2393 // intrinsics were *not* devirtualized, we need to add the resulting
2394 // llvm.type.test intrinsics to the function summaries so that the
2395 // LowerTypeTests pass will export them.
2396 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
2398 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
2399 for (auto *FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
2400 FS
->addTypeTest(GUID
);
2401 for (auto &CCS
: S
.second
.ConstCSInfo
)
2402 for (auto *FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
2403 FS
->addTypeTest(GUID
);
2407 if (RemarksEnabled
) {
2408 // Generate remarks for each devirtualized function.
2409 for (const auto &DT
: DevirtTargets
) {
2410 GlobalValue
*GV
= DT
.second
;
2411 auto F
= dyn_cast
<Function
>(GV
);
2413 auto A
= dyn_cast
<GlobalAlias
>(GV
);
2414 assert(A
&& isa
<Function
>(A
->getAliasee()));
2415 F
= dyn_cast
<Function
>(A
->getAliasee());
2419 using namespace ore
;
2420 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
2422 << NV("FunctionName", DT
.first
));
2426 NumDevirtTargets
+= DevirtTargets
.size();
2428 removeRedundantTypeTests();
2430 // Rebuild each global we touched as part of virtual constant propagation to
2431 // include the before and after bytes.
2432 if (DidVirtualConstProp
)
2433 for (VTableBits
&B
: Bits
)
2436 // We have lowered or deleted the type intrinsics, so we will no longer have
2437 // enough information to reason about the liveness of virtual function
2438 // pointers in GlobalDCE.
2439 for (GlobalVariable
&GV
: M
.globals())
2440 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2442 for (auto *CI
: CallsWithPtrAuthBundleRemoved
)
2443 CI
->eraseFromParent();
2448 void DevirtIndex::run() {
2449 if (ExportSummary
.typeIdCompatibleVtableMap().empty())
2452 DenseMap
<GlobalValue::GUID
, std::vector
<StringRef
>> NameByGUID
;
2453 for (const auto &P
: ExportSummary
.typeIdCompatibleVtableMap()) {
2454 NameByGUID
[GlobalValue::getGUID(P
.first
)].push_back(P
.first
);
2455 // Create the type id summary resolution regardlness of whether we can
2456 // devirtualize, so that lower type tests knows the type id is used on
2457 // a global and not Unsat. We do this here rather than in the loop over the
2458 // CallSlots, since that handling will only see type tests that directly
2459 // feed assumes, and we would miss any that aren't currently handled by WPD
2460 // (such as type tests that feed assumes via phis).
2461 ExportSummary
.getOrInsertTypeIdSummary(P
.first
);
2464 // Collect information from summary about which calls to try to devirtualize.
2465 for (auto &P
: ExportSummary
) {
2466 for (auto &S
: P
.second
.SummaryList
) {
2467 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2470 // FIXME: Only add live functions.
2471 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2472 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2473 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2476 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2477 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2478 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2481 for (const FunctionSummary::ConstVCall
&VC
:
2482 FS
->type_test_assume_const_vcalls()) {
2483 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2484 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2485 .ConstCSInfo
[VC
.Args
]
2486 .addSummaryTypeTestAssumeUser(FS
);
2489 for (const FunctionSummary::ConstVCall
&VC
:
2490 FS
->type_checked_load_const_vcalls()) {
2491 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2492 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2493 .ConstCSInfo
[VC
.Args
]
2494 .addSummaryTypeCheckedLoadUser(FS
);
2500 std::set
<ValueInfo
> DevirtTargets
;
2501 // For each (type, offset) pair:
2502 for (auto &S
: CallSlots
) {
2503 // Search each of the members of the type identifier for the virtual
2504 // function implementation at offset S.first.ByteOffset, and add to
2506 std::vector
<ValueInfo
> TargetsForSlot
;
2507 auto TidSummary
= ExportSummary
.getTypeIdCompatibleVtableSummary(S
.first
.TypeID
);
2509 // The type id summary would have been created while building the NameByGUID
2511 WholeProgramDevirtResolution
*Res
=
2512 &ExportSummary
.getTypeIdSummary(S
.first
.TypeID
)
2513 ->WPDRes
[S
.first
.ByteOffset
];
2514 if (tryFindVirtualCallTargets(TargetsForSlot
, *TidSummary
,
2515 S
.first
.ByteOffset
)) {
2517 if (!trySingleImplDevirt(TargetsForSlot
, S
.first
, S
.second
, Res
,
2523 // Optionally have the thin link print message for each devirtualized
2525 if (PrintSummaryDevirt
)
2526 for (const auto &DT
: DevirtTargets
)
2527 errs() << "Devirtualized call to " << DT
<< "\n";
2529 NumDevirtTargets
+= DevirtTargets
.size();