[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / IPO / WholeProgramDevirt.cpp
blob01aba47cdbffff01dadabf109e0980dad8cb7e0f
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
48 // is supported.
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/AssumptionCache.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/MDBuilder.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Errc.h"
88 #include "llvm/Support/Error.h"
89 #include "llvm/Support/FileSystem.h"
90 #include "llvm/Support/GlobPattern.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/TargetParser/Triple.h"
93 #include "llvm/Transforms/IPO.h"
94 #include "llvm/Transforms/IPO/FunctionAttrs.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
96 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
98 #include <algorithm>
99 #include <cstddef>
100 #include <map>
101 #include <set>
102 #include <string>
104 using namespace llvm;
105 using namespace wholeprogramdevirt;
107 #define DEBUG_TYPE "wholeprogramdevirt"
109 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
110 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
111 STATISTIC(NumBranchFunnel, "Number of branch funnels");
112 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
113 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
114 STATISTIC(NumVirtConstProp1Bit,
115 "Number of 1 bit virtual constant propagations");
116 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
118 static cl::opt<PassSummaryAction> ClSummaryAction(
119 "wholeprogramdevirt-summary-action",
120 cl::desc("What to do with the summary when running this pass"),
121 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
122 clEnumValN(PassSummaryAction::Import, "import",
123 "Import typeid resolutions from summary and globals"),
124 clEnumValN(PassSummaryAction::Export, "export",
125 "Export typeid resolutions to summary and globals")),
126 cl::Hidden);
128 static cl::opt<std::string> ClReadSummary(
129 "wholeprogramdevirt-read-summary",
130 cl::desc(
131 "Read summary from given bitcode or YAML file before running pass"),
132 cl::Hidden);
134 static cl::opt<std::string> ClWriteSummary(
135 "wholeprogramdevirt-write-summary",
136 cl::desc("Write summary to given bitcode or YAML file after running pass. "
137 "Output file format is deduced from extension: *.bc means writing "
138 "bitcode, otherwise YAML"),
139 cl::Hidden);
141 static cl::opt<unsigned>
142 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
143 cl::init(10),
144 cl::desc("Maximum number of call targets per "
145 "call site to enable branch funnels"));
147 static cl::opt<bool>
148 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
149 cl::desc("Print index-based devirtualization messages"));
151 /// Provide a way to force enable whole program visibility in tests.
152 /// This is needed to support legacy tests that don't contain
153 /// !vcall_visibility metadata (the mere presense of type tests
154 /// previously implied hidden visibility).
155 static cl::opt<bool>
156 WholeProgramVisibility("whole-program-visibility", cl::Hidden,
157 cl::desc("Enable whole program visibility"));
159 /// Provide a way to force disable whole program for debugging or workarounds,
160 /// when enabled via the linker.
161 static cl::opt<bool> DisableWholeProgramVisibility(
162 "disable-whole-program-visibility", cl::Hidden,
163 cl::desc("Disable whole program visibility (overrides enabling options)"));
165 /// Provide way to prevent certain function from being devirtualized
166 static cl::list<std::string>
167 SkipFunctionNames("wholeprogramdevirt-skip",
168 cl::desc("Prevent function(s) from being devirtualized"),
169 cl::Hidden, cl::CommaSeparated);
171 /// Mechanism to add runtime checking of devirtualization decisions, optionally
172 /// trapping or falling back to indirect call on any that are not correct.
173 /// Trapping mode is useful for debugging undefined behavior leading to failures
174 /// with WPD. Fallback mode is useful for ensuring safety when whole program
175 /// visibility may be compromised.
176 enum WPDCheckMode { None, Trap, Fallback };
177 static cl::opt<WPDCheckMode> DevirtCheckMode(
178 "wholeprogramdevirt-check", cl::Hidden,
179 cl::desc("Type of checking for incorrect devirtualizations"),
180 cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
181 clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
182 clEnumValN(WPDCheckMode::Fallback, "fallback",
183 "Fallback to indirect when incorrect")));
185 namespace {
186 struct PatternList {
187 std::vector<GlobPattern> Patterns;
188 template <class T> void init(const T &StringList) {
189 for (const auto &S : StringList)
190 if (Expected<GlobPattern> Pat = GlobPattern::create(S))
191 Patterns.push_back(std::move(*Pat));
193 bool match(StringRef S) {
194 for (const GlobPattern &P : Patterns)
195 if (P.match(S))
196 return true;
197 return false;
200 } // namespace
202 // Find the minimum offset that we may store a value of size Size bits at. If
203 // IsAfter is set, look for an offset before the object, otherwise look for an
204 // offset after the object.
205 uint64_t
206 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
207 bool IsAfter, uint64_t Size) {
208 // Find a minimum offset taking into account only vtable sizes.
209 uint64_t MinByte = 0;
210 for (const VirtualCallTarget &Target : Targets) {
211 if (IsAfter)
212 MinByte = std::max(MinByte, Target.minAfterBytes());
213 else
214 MinByte = std::max(MinByte, Target.minBeforeBytes());
217 // Build a vector of arrays of bytes covering, for each target, a slice of the
218 // used region (see AccumBitVector::BytesUsed in
219 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220 // this aligns the used regions to start at MinByte.
222 // In this example, A, B and C are vtables, # is a byte already allocated for
223 // a virtual function pointer, AAAA... (etc.) are the used regions for the
224 // vtables and Offset(X) is the value computed for the Offset variable below
225 // for X.
227 // Offset(A)
228 // | |
229 // |MinByte
230 // A: ################AAAAAAAA|AAAAAAAA
231 // B: ########BBBBBBBBBBBBBBBB|BBBB
232 // C: ########################|CCCCCCCCCCCCCCCC
233 // | Offset(B) |
235 // This code produces the slices of A, B and C that appear after the divider
236 // at MinByte.
237 std::vector<ArrayRef<uint8_t>> Used;
238 for (const VirtualCallTarget &Target : Targets) {
239 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
240 : Target.TM->Bits->Before.BytesUsed;
241 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
242 : MinByte - Target.minBeforeBytes();
244 // Disregard used regions that are smaller than Offset. These are
245 // effectively all-free regions that do not need to be checked.
246 if (VTUsed.size() > Offset)
247 Used.push_back(VTUsed.slice(Offset));
250 if (Size == 1) {
251 // Find a free bit in each member of Used.
252 for (unsigned I = 0;; ++I) {
253 uint8_t BitsUsed = 0;
254 for (auto &&B : Used)
255 if (I < B.size())
256 BitsUsed |= B[I];
257 if (BitsUsed != 0xff)
258 return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
260 } else {
261 // Find a free (Size/8) byte region in each member of Used.
262 // FIXME: see if alignment helps.
263 for (unsigned I = 0;; ++I) {
264 for (auto &&B : Used) {
265 unsigned Byte = 0;
266 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
267 if (B[I + Byte])
268 goto NextI;
269 ++Byte;
272 return (MinByte + I) * 8;
273 NextI:;
278 void wholeprogramdevirt::setBeforeReturnValues(
279 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
280 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
281 if (BitWidth == 1)
282 OffsetByte = -(AllocBefore / 8 + 1);
283 else
284 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
285 OffsetBit = AllocBefore % 8;
287 for (VirtualCallTarget &Target : Targets) {
288 if (BitWidth == 1)
289 Target.setBeforeBit(AllocBefore);
290 else
291 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
295 void wholeprogramdevirt::setAfterReturnValues(
296 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
297 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
298 if (BitWidth == 1)
299 OffsetByte = AllocAfter / 8;
300 else
301 OffsetByte = (AllocAfter + 7) / 8;
302 OffsetBit = AllocAfter % 8;
304 for (VirtualCallTarget &Target : Targets) {
305 if (BitWidth == 1)
306 Target.setAfterBit(AllocAfter);
307 else
308 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
312 VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
313 : Fn(Fn), TM(TM),
314 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()),
315 WasDevirt(false) {}
317 namespace {
319 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
320 // tables, and the ByteOffset is the offset in bytes from the address point to
321 // the virtual function pointer.
322 struct VTableSlot {
323 Metadata *TypeID;
324 uint64_t ByteOffset;
327 } // end anonymous namespace
329 namespace llvm {
331 template <> struct DenseMapInfo<VTableSlot> {
332 static VTableSlot getEmptyKey() {
333 return {DenseMapInfo<Metadata *>::getEmptyKey(),
334 DenseMapInfo<uint64_t>::getEmptyKey()};
336 static VTableSlot getTombstoneKey() {
337 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
338 DenseMapInfo<uint64_t>::getTombstoneKey()};
340 static unsigned getHashValue(const VTableSlot &I) {
341 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
342 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
344 static bool isEqual(const VTableSlot &LHS,
345 const VTableSlot &RHS) {
346 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
350 template <> struct DenseMapInfo<VTableSlotSummary> {
351 static VTableSlotSummary getEmptyKey() {
352 return {DenseMapInfo<StringRef>::getEmptyKey(),
353 DenseMapInfo<uint64_t>::getEmptyKey()};
355 static VTableSlotSummary getTombstoneKey() {
356 return {DenseMapInfo<StringRef>::getTombstoneKey(),
357 DenseMapInfo<uint64_t>::getTombstoneKey()};
359 static unsigned getHashValue(const VTableSlotSummary &I) {
360 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
361 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
363 static bool isEqual(const VTableSlotSummary &LHS,
364 const VTableSlotSummary &RHS) {
365 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
369 } // end namespace llvm
371 // Returns true if the function must be unreachable based on ValueInfo.
373 // In particular, identifies a function as unreachable in the following
374 // conditions
375 // 1) All summaries are live.
376 // 2) All function summaries indicate it's unreachable
377 // 3) There is no non-function with the same GUID (which is rare)
378 static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
379 if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
380 // Returns false if ValueInfo is absent, or the summary list is empty
381 // (e.g., function declarations).
382 return false;
385 for (const auto &Summary : TheFnVI.getSummaryList()) {
386 // Conservatively returns false if any non-live functions are seen.
387 // In general either all summaries should be live or all should be dead.
388 if (!Summary->isLive())
389 return false;
390 if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
391 if (!FS->fflags().MustBeUnreachable)
392 return false;
394 // Be conservative if a non-function has the same GUID (which is rare).
395 else
396 return false;
398 // All function summaries are live and all of them agree that the function is
399 // unreachble.
400 return true;
403 namespace {
404 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
405 // the indirect virtual call.
406 struct VirtualCallSite {
407 Value *VTable = nullptr;
408 CallBase &CB;
410 // If non-null, this field points to the associated unsafe use count stored in
411 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412 // of that field for details.
413 unsigned *NumUnsafeUses = nullptr;
415 void
416 emitRemark(const StringRef OptName, const StringRef TargetName,
417 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
418 Function *F = CB.getCaller();
419 DebugLoc DLoc = CB.getDebugLoc();
420 BasicBlock *Block = CB.getParent();
422 using namespace ore;
423 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
424 << NV("Optimization", OptName)
425 << ": devirtualized a call to "
426 << NV("FunctionName", TargetName));
429 void replaceAndErase(
430 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
431 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
432 Value *New) {
433 if (RemarksEnabled)
434 emitRemark(OptName, TargetName, OREGetter);
435 CB.replaceAllUsesWith(New);
436 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
437 BranchInst::Create(II->getNormalDest(), &CB);
438 II->getUnwindDest()->removePredecessor(II->getParent());
440 CB.eraseFromParent();
441 // This use is no longer unsafe.
442 if (NumUnsafeUses)
443 --*NumUnsafeUses;
447 // Call site information collected for a specific VTableSlot and possibly a list
448 // of constant integer arguments. The grouping by arguments is handled by the
449 // VTableSlotInfo class.
450 struct CallSiteInfo {
451 /// The set of call sites for this slot. Used during regular LTO and the
452 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453 /// call sites that appear in the merged module itself); in each of these
454 /// cases we are directly operating on the call sites at the IR level.
455 std::vector<VirtualCallSite> CallSites;
457 /// Whether all call sites represented by this CallSiteInfo, including those
458 /// in summaries, have been devirtualized. This starts off as true because a
459 /// default constructed CallSiteInfo represents no call sites.
460 bool AllCallSitesDevirted = true;
462 // These fields are used during the export phase of ThinLTO and reflect
463 // information collected from function summaries.
465 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
466 /// this slot.
467 bool SummaryHasTypeTestAssumeUsers = false;
469 /// CFI-specific: a vector containing the list of function summaries that use
470 /// the llvm.type.checked.load intrinsic and therefore will require
471 /// resolutions for llvm.type.test in order to implement CFI checks if
472 /// devirtualization was unsuccessful. If devirtualization was successful, the
473 /// pass will clear this vector by calling markDevirt(). If at the end of the
474 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
475 /// to each of the function summaries in the vector.
476 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
477 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
479 bool isExported() const {
480 return SummaryHasTypeTestAssumeUsers ||
481 !SummaryTypeCheckedLoadUsers.empty();
484 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
485 SummaryTypeCheckedLoadUsers.push_back(FS);
486 AllCallSitesDevirted = false;
489 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
490 SummaryTypeTestAssumeUsers.push_back(FS);
491 SummaryHasTypeTestAssumeUsers = true;
492 AllCallSitesDevirted = false;
495 void markDevirt() {
496 AllCallSitesDevirted = true;
498 // As explained in the comment for SummaryTypeCheckedLoadUsers.
499 SummaryTypeCheckedLoadUsers.clear();
503 // Call site information collected for a specific VTableSlot.
504 struct VTableSlotInfo {
505 // The set of call sites which do not have all constant integer arguments
506 // (excluding "this").
507 CallSiteInfo CSInfo;
509 // The set of call sites with all constant integer arguments (excluding
510 // "this"), grouped by argument list.
511 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
513 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
515 private:
516 CallSiteInfo &findCallSiteInfo(CallBase &CB);
519 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
520 std::vector<uint64_t> Args;
521 auto *CBType = dyn_cast<IntegerType>(CB.getType());
522 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
523 return CSInfo;
524 for (auto &&Arg : drop_begin(CB.args())) {
525 auto *CI = dyn_cast<ConstantInt>(Arg);
526 if (!CI || CI->getBitWidth() > 64)
527 return CSInfo;
528 Args.push_back(CI->getZExtValue());
530 return ConstCSInfo[Args];
533 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
534 unsigned *NumUnsafeUses) {
535 auto &CSI = findCallSiteInfo(CB);
536 CSI.AllCallSitesDevirted = false;
537 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
540 struct DevirtModule {
541 Module &M;
542 function_ref<AAResults &(Function &)> AARGetter;
543 function_ref<DominatorTree &(Function &)> LookupDomTree;
545 ModuleSummaryIndex *ExportSummary;
546 const ModuleSummaryIndex *ImportSummary;
548 IntegerType *Int8Ty;
549 PointerType *Int8PtrTy;
550 IntegerType *Int32Ty;
551 IntegerType *Int64Ty;
552 IntegerType *IntPtrTy;
553 /// Sizeless array type, used for imported vtables. This provides a signal
554 /// to analyzers that these imports may alias, as they do for example
555 /// when multiple unique return values occur in the same vtable.
556 ArrayType *Int8Arr0Ty;
558 bool RemarksEnabled;
559 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
561 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
563 // Calls that have already been optimized. We may add a call to multiple
564 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565 // optimize a call more than once.
566 SmallPtrSet<CallBase *, 8> OptimizedCalls;
568 // Store calls that had their ptrauth bundle removed. They are to be deleted
569 // at the end of the optimization.
570 SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
572 // This map keeps track of the number of "unsafe" uses of a loaded function
573 // pointer. The key is the associated llvm.type.test intrinsic call generated
574 // by this pass. An unsafe use is one that calls the loaded function pointer
575 // directly. Every time we eliminate an unsafe use (for example, by
576 // devirtualizing it or by applying virtual constant propagation), we
577 // decrement the value stored in this map. If a value reaches zero, we can
578 // eliminate the type check by RAUWing the associated llvm.type.test call with
579 // true.
580 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
581 PatternList FunctionsToSkip;
583 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
584 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
585 function_ref<DominatorTree &(Function &)> LookupDomTree,
586 ModuleSummaryIndex *ExportSummary,
587 const ModuleSummaryIndex *ImportSummary)
588 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
589 ExportSummary(ExportSummary), ImportSummary(ImportSummary),
590 Int8Ty(Type::getInt8Ty(M.getContext())),
591 Int8PtrTy(PointerType::getUnqual(M.getContext())),
592 Int32Ty(Type::getInt32Ty(M.getContext())),
593 Int64Ty(Type::getInt64Ty(M.getContext())),
594 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
595 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
596 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
597 assert(!(ExportSummary && ImportSummary));
598 FunctionsToSkip.init(SkipFunctionNames);
601 bool areRemarksEnabled();
603 void
604 scanTypeTestUsers(Function *TypeTestFunc,
605 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
606 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
608 void buildTypeIdentifierMap(
609 std::vector<VTableBits> &Bits,
610 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
612 bool
613 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
614 const std::set<TypeMemberInfo> &TypeMemberInfos,
615 uint64_t ByteOffset,
616 ModuleSummaryIndex *ExportSummary);
618 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
619 bool &IsExported);
620 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
621 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622 VTableSlotInfo &SlotInfo,
623 WholeProgramDevirtResolution *Res);
625 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
626 bool &IsExported);
627 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
628 VTableSlotInfo &SlotInfo,
629 WholeProgramDevirtResolution *Res, VTableSlot Slot);
631 bool tryEvaluateFunctionsWithArgs(
632 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
633 ArrayRef<uint64_t> Args);
635 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
636 uint64_t TheRetVal);
637 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
638 CallSiteInfo &CSInfo,
639 WholeProgramDevirtResolution::ByArg *Res);
641 // Returns the global symbol name that is used to export information about the
642 // given vtable slot and list of arguments.
643 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
644 StringRef Name);
646 bool shouldExportConstantsAsAbsoluteSymbols();
648 // This function is called during the export phase to create a symbol
649 // definition containing information about the given vtable slot and list of
650 // arguments.
651 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652 Constant *C);
653 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654 uint32_t Const, uint32_t &Storage);
656 // This function is called during the import phase to create a reference to
657 // the symbol definition created during the export phase.
658 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
659 StringRef Name);
660 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
661 StringRef Name, IntegerType *IntTy,
662 uint32_t Storage);
664 Constant *getMemberAddr(const TypeMemberInfo *M);
666 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
667 Constant *UniqueMemberAddr);
668 bool tryUniqueRetValOpt(unsigned BitWidth,
669 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
670 CallSiteInfo &CSInfo,
671 WholeProgramDevirtResolution::ByArg *Res,
672 VTableSlot Slot, ArrayRef<uint64_t> Args);
674 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
675 Constant *Byte, Constant *Bit);
676 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
677 VTableSlotInfo &SlotInfo,
678 WholeProgramDevirtResolution *Res, VTableSlot Slot);
680 void rebuildGlobal(VTableBits &B);
682 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
685 // If we were able to eliminate all unsafe uses for a type checked load,
686 // eliminate the associated type tests by replacing them with true.
687 void removeRedundantTypeTests();
689 bool run();
691 // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
693 // Caller guarantees that `ExportSummary` is not nullptr.
694 static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
695 ModuleSummaryIndex *ExportSummary);
697 // Returns true if the function definition must be unreachable.
699 // Note if this helper function returns true, `F` is guaranteed
700 // to be unreachable; if it returns false, `F` might still
701 // be unreachable but not covered by this helper function.
703 // Implementation-wise, if function definition is present, IR is analyzed; if
704 // not, look up function flags from ExportSummary as a fallback.
705 static bool mustBeUnreachableFunction(Function *const F,
706 ModuleSummaryIndex *ExportSummary);
708 // Lower the module using the action and summary passed as command line
709 // arguments. For testing purposes only.
710 static bool
711 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
712 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
713 function_ref<DominatorTree &(Function &)> LookupDomTree);
716 struct DevirtIndex {
717 ModuleSummaryIndex &ExportSummary;
718 // The set in which to record GUIDs exported from their module by
719 // devirtualization, used by client to ensure they are not internalized.
720 std::set<GlobalValue::GUID> &ExportedGUIDs;
721 // A map in which to record the information necessary to locate the WPD
722 // resolution for local targets in case they are exported by cross module
723 // importing.
724 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
726 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
728 PatternList FunctionsToSkip;
730 DevirtIndex(
731 ModuleSummaryIndex &ExportSummary,
732 std::set<GlobalValue::GUID> &ExportedGUIDs,
733 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
734 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
735 LocalWPDTargetsMap(LocalWPDTargetsMap) {
736 FunctionsToSkip.init(SkipFunctionNames);
739 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
740 const TypeIdCompatibleVtableInfo TIdInfo,
741 uint64_t ByteOffset);
743 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
744 VTableSlotSummary &SlotSummary,
745 VTableSlotInfo &SlotInfo,
746 WholeProgramDevirtResolution *Res,
747 std::set<ValueInfo> &DevirtTargets);
749 void run();
751 } // end anonymous namespace
753 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
754 ModuleAnalysisManager &AM) {
755 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
756 auto AARGetter = [&](Function &F) -> AAResults & {
757 return FAM.getResult<AAManager>(F);
759 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
760 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
762 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
763 return FAM.getResult<DominatorTreeAnalysis>(F);
765 if (UseCommandLine) {
766 if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
767 return PreservedAnalyses::all();
768 return PreservedAnalyses::none();
770 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
771 ImportSummary)
772 .run())
773 return PreservedAnalyses::all();
774 return PreservedAnalyses::none();
777 // Enable whole program visibility if enabled by client (e.g. linker) or
778 // internal option, and not force disabled.
779 bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
780 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
781 !DisableWholeProgramVisibility;
784 static bool
785 typeIDVisibleToRegularObj(StringRef TypeID,
786 function_ref<bool(StringRef)> IsVisibleToRegularObj) {
787 // TypeID for member function pointer type is an internal construct
788 // and won't exist in IsVisibleToRegularObj. The full TypeID
789 // will be present and participate in invalidation.
790 if (TypeID.ends_with(".virtual"))
791 return false;
793 // TypeID that doesn't start with Itanium mangling (_ZTS) will be
794 // non-externally visible types which cannot interact with
795 // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796 if (!TypeID.consume_front("_ZTS"))
797 return false;
799 // TypeID is keyed off the type name symbol (_ZTS). However, the native
800 // object may not contain this symbol if it does not contain a key
801 // function for the base type and thus only contains a reference to the
802 // type info (_ZTI). To catch this case we query using the type info
803 // symbol corresponding to the TypeID.
804 std::string typeInfo = ("_ZTI" + TypeID).str();
805 return IsVisibleToRegularObj(typeInfo);
808 static bool
809 skipUpdateDueToValidation(GlobalVariable &GV,
810 function_ref<bool(StringRef)> IsVisibleToRegularObj) {
811 SmallVector<MDNode *, 2> Types;
812 GV.getMetadata(LLVMContext::MD_type, Types);
814 for (auto Type : Types)
815 if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
816 return typeIDVisibleToRegularObj(TypeID->getString(),
817 IsVisibleToRegularObj);
819 return false;
822 /// If whole program visibility asserted, then upgrade all public vcall
823 /// visibility metadata on vtable definitions to linkage unit visibility in
824 /// Module IR (for regular or hybrid LTO).
825 void llvm::updateVCallVisibilityInModule(
826 Module &M, bool WholeProgramVisibilityEnabledInLTO,
827 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
828 bool ValidateAllVtablesHaveTypeInfos,
829 function_ref<bool(StringRef)> IsVisibleToRegularObj) {
830 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
831 return;
832 for (GlobalVariable &GV : M.globals()) {
833 // Add linkage unit visibility to any variable with type metadata, which are
834 // the vtable definitions. We won't have an existing vcall_visibility
835 // metadata on vtable definitions with public visibility.
836 if (GV.hasMetadata(LLVMContext::MD_type) &&
837 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
838 // Don't upgrade the visibility for symbols exported to the dynamic
839 // linker, as we have no information on their eventual use.
840 !DynamicExportSymbols.count(GV.getGUID()) &&
841 // With validation enabled, we want to exclude symbols visible to
842 // regular objects. Local symbols will be in this group due to the
843 // current implementation but those with VCallVisibilityTranslationUnit
844 // will have already been marked in clang so are unaffected.
845 !(ValidateAllVtablesHaveTypeInfos &&
846 skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
847 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
851 void llvm::updatePublicTypeTestCalls(Module &M,
852 bool WholeProgramVisibilityEnabledInLTO) {
853 Function *PublicTypeTestFunc =
854 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
855 if (!PublicTypeTestFunc)
856 return;
857 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
858 Function *TypeTestFunc =
859 Intrinsic::getDeclaration(&M, Intrinsic::type_test);
860 for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
861 auto *CI = cast<CallInst>(U.getUser());
862 auto *NewCI = CallInst::Create(
863 TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
864 std::nullopt, "", CI);
865 CI->replaceAllUsesWith(NewCI);
866 CI->eraseFromParent();
868 } else {
869 auto *True = ConstantInt::getTrue(M.getContext());
870 for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
871 auto *CI = cast<CallInst>(U.getUser());
872 CI->replaceAllUsesWith(True);
873 CI->eraseFromParent();
878 /// Based on typeID string, get all associated vtable GUIDS that are
879 /// visible to regular objects.
880 void llvm::getVisibleToRegularObjVtableGUIDs(
881 ModuleSummaryIndex &Index,
882 DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
883 function_ref<bool(StringRef)> IsVisibleToRegularObj) {
884 for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
885 if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
886 for (const TypeIdOffsetVtableInfo &P : typeID.second)
887 VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
891 /// If whole program visibility asserted, then upgrade all public vcall
892 /// visibility metadata on vtable definition summaries to linkage unit
893 /// visibility in Module summary index (for ThinLTO).
894 void llvm::updateVCallVisibilityInIndex(
895 ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
896 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
897 const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
898 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
899 return;
900 for (auto &P : Index) {
901 // Don't upgrade the visibility for symbols exported to the dynamic
902 // linker, as we have no information on their eventual use.
903 if (DynamicExportSymbols.count(P.first))
904 continue;
905 for (auto &S : P.second.SummaryList) {
906 auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
907 if (!GVar ||
908 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
909 continue;
910 // With validation enabled, we want to exclude symbols visible to regular
911 // objects. Local symbols will be in this group due to the current
912 // implementation but those with VCallVisibilityTranslationUnit will have
913 // already been marked in clang so are unaffected.
914 if (VisibleToRegularObjSymbols.count(P.first))
915 continue;
916 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
921 void llvm::runWholeProgramDevirtOnIndex(
922 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
923 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
924 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
927 void llvm::updateIndexWPDForExports(
928 ModuleSummaryIndex &Summary,
929 function_ref<bool(StringRef, ValueInfo)> isExported,
930 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
931 for (auto &T : LocalWPDTargetsMap) {
932 auto &VI = T.first;
933 // This was enforced earlier during trySingleImplDevirt.
934 assert(VI.getSummaryList().size() == 1 &&
935 "Devirt of local target has more than one copy");
936 auto &S = VI.getSummaryList()[0];
937 if (!isExported(S->modulePath(), VI))
938 continue;
940 // It's been exported by a cross module import.
941 for (auto &SlotSummary : T.second) {
942 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
943 assert(TIdSum);
944 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
945 assert(WPDRes != TIdSum->WPDRes.end());
946 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
947 WPDRes->second.SingleImplName,
948 Summary.getModuleHash(S->modulePath()));
953 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
954 // Check that summary index contains regular LTO module when performing
955 // export to prevent occasional use of index from pure ThinLTO compilation
956 // (-fno-split-lto-module). This kind of summary index is passed to
957 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958 const auto &ModPaths = Summary->modulePaths();
959 if (ClSummaryAction != PassSummaryAction::Import &&
960 !ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961 return createStringError(
962 errc::invalid_argument,
963 "combined summary should contain Regular LTO module");
964 return ErrorSuccess();
967 bool DevirtModule::runForTesting(
968 Module &M, function_ref<AAResults &(Function &)> AARGetter,
969 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
970 function_ref<DominatorTree &(Function &)> LookupDomTree) {
971 std::unique_ptr<ModuleSummaryIndex> Summary =
972 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
974 // Handle the command-line summary arguments. This code is for testing
975 // purposes only, so we handle errors directly.
976 if (!ClReadSummary.empty()) {
977 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
978 ": ");
979 auto ReadSummaryFile =
980 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
981 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
982 getModuleSummaryIndex(*ReadSummaryFile)) {
983 Summary = std::move(*SummaryOrErr);
984 ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
985 } else {
986 // Try YAML if we've failed with bitcode.
987 consumeError(SummaryOrErr.takeError());
988 yaml::Input In(ReadSummaryFile->getBuffer());
989 In >> *Summary;
990 ExitOnErr(errorCodeToError(In.error()));
994 bool Changed =
995 DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
996 ClSummaryAction == PassSummaryAction::Export ? Summary.get()
997 : nullptr,
998 ClSummaryAction == PassSummaryAction::Import ? Summary.get()
999 : nullptr)
1000 .run();
1002 if (!ClWriteSummary.empty()) {
1003 ExitOnError ExitOnErr(
1004 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
1005 std::error_code EC;
1006 if (StringRef(ClWriteSummary).ends_with(".bc")) {
1007 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
1008 ExitOnErr(errorCodeToError(EC));
1009 writeIndexToFile(*Summary, OS);
1010 } else {
1011 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1012 ExitOnErr(errorCodeToError(EC));
1013 yaml::Output Out(OS);
1014 Out << *Summary;
1018 return Changed;
1021 void DevirtModule::buildTypeIdentifierMap(
1022 std::vector<VTableBits> &Bits,
1023 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1024 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
1025 Bits.reserve(M.global_size());
1026 SmallVector<MDNode *, 2> Types;
1027 for (GlobalVariable &GV : M.globals()) {
1028 Types.clear();
1029 GV.getMetadata(LLVMContext::MD_type, Types);
1030 if (GV.isDeclaration() || Types.empty())
1031 continue;
1033 VTableBits *&BitsPtr = GVToBits[&GV];
1034 if (!BitsPtr) {
1035 Bits.emplace_back();
1036 Bits.back().GV = &GV;
1037 Bits.back().ObjectSize =
1038 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1039 BitsPtr = &Bits.back();
1042 for (MDNode *Type : Types) {
1043 auto TypeID = Type->getOperand(1).get();
1045 uint64_t Offset =
1046 cast<ConstantInt>(
1047 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1048 ->getZExtValue();
1050 TypeIdMap[TypeID].insert({BitsPtr, Offset});
1055 bool DevirtModule::tryFindVirtualCallTargets(
1056 std::vector<VirtualCallTarget> &TargetsForSlot,
1057 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1058 ModuleSummaryIndex *ExportSummary) {
1059 for (const TypeMemberInfo &TM : TypeMemberInfos) {
1060 if (!TM.Bits->GV->isConstant())
1061 return false;
1063 // We cannot perform whole program devirtualization analysis on a vtable
1064 // with public LTO visibility.
1065 if (TM.Bits->GV->getVCallVisibility() ==
1066 GlobalObject::VCallVisibilityPublic)
1067 return false;
1069 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1070 TM.Offset + ByteOffset, M, TM.Bits->GV);
1071 if (!Ptr)
1072 return false;
1074 auto C = Ptr->stripPointerCasts();
1075 // Make sure this is a function or alias to a function.
1076 auto Fn = dyn_cast<Function>(C);
1077 auto A = dyn_cast<GlobalAlias>(C);
1078 if (!Fn && A)
1079 Fn = dyn_cast<Function>(A->getAliasee());
1081 if (!Fn)
1082 return false;
1084 if (FunctionsToSkip.match(Fn->getName()))
1085 return false;
1087 // We can disregard __cxa_pure_virtual as a possible call target, as
1088 // calls to pure virtuals are UB.
1089 if (Fn->getName() == "__cxa_pure_virtual")
1090 continue;
1092 // We can disregard unreachable functions as possible call targets, as
1093 // unreachable functions shouldn't be called.
1094 if (mustBeUnreachableFunction(Fn, ExportSummary))
1095 continue;
1097 // Save the symbol used in the vtable to use as the devirtualization
1098 // target.
1099 auto GV = dyn_cast<GlobalValue>(C);
1100 assert(GV);
1101 TargetsForSlot.push_back({GV, &TM});
1104 // Give up if we couldn't find any targets.
1105 return !TargetsForSlot.empty();
1108 bool DevirtIndex::tryFindVirtualCallTargets(
1109 std::vector<ValueInfo> &TargetsForSlot,
1110 const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
1111 for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1112 // Find a representative copy of the vtable initializer.
1113 // We can have multiple available_externally, linkonce_odr and weak_odr
1114 // vtable initializers. We can also have multiple external vtable
1115 // initializers in the case of comdats, which we cannot check here.
1116 // The linker should give an error in this case.
1118 // Also, handle the case of same-named local Vtables with the same path
1119 // and therefore the same GUID. This can happen if there isn't enough
1120 // distinguishing path when compiling the source file. In that case we
1121 // conservatively return false early.
1122 const GlobalVarSummary *VS = nullptr;
1123 bool LocalFound = false;
1124 for (const auto &S : P.VTableVI.getSummaryList()) {
1125 if (GlobalValue::isLocalLinkage(S->linkage())) {
1126 if (LocalFound)
1127 return false;
1128 LocalFound = true;
1130 auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1131 if (!CurVS->vTableFuncs().empty() ||
1132 // Previously clang did not attach the necessary type metadata to
1133 // available_externally vtables, in which case there would not
1134 // be any vtable functions listed in the summary and we need
1135 // to treat this case conservatively (in case the bitcode is old).
1136 // However, we will also not have any vtable functions in the
1137 // case of a pure virtual base class. In that case we do want
1138 // to set VS to avoid treating it conservatively.
1139 !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1140 VS = CurVS;
1141 // We cannot perform whole program devirtualization analysis on a vtable
1142 // with public LTO visibility.
1143 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1144 return false;
1147 // There will be no VS if all copies are available_externally having no
1148 // type metadata. In that case we can't safely perform WPD.
1149 if (!VS)
1150 return false;
1151 if (!VS->isLive())
1152 continue;
1153 for (auto VTP : VS->vTableFuncs()) {
1154 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1155 continue;
1157 if (mustBeUnreachableFunction(VTP.FuncVI))
1158 continue;
1160 TargetsForSlot.push_back(VTP.FuncVI);
1164 // Give up if we couldn't find any targets.
1165 return !TargetsForSlot.empty();
1168 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1169 Constant *TheFn, bool &IsExported) {
1170 // Don't devirtualize function if we're told to skip it
1171 // in -wholeprogramdevirt-skip.
1172 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1173 return;
1174 auto Apply = [&](CallSiteInfo &CSInfo) {
1175 for (auto &&VCallSite : CSInfo.CallSites) {
1176 if (!OptimizedCalls.insert(&VCallSite.CB).second)
1177 continue;
1179 if (RemarksEnabled)
1180 VCallSite.emitRemark("single-impl",
1181 TheFn->stripPointerCasts()->getName(), OREGetter);
1182 NumSingleImpl++;
1183 auto &CB = VCallSite.CB;
1184 assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1185 IRBuilder<> Builder(&CB);
1186 Value *Callee =
1187 Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1189 // If trap checking is enabled, add support to compare the virtual
1190 // function pointer to the devirtualized target. In case of a mismatch,
1191 // perform a debug trap.
1192 if (DevirtCheckMode == WPDCheckMode::Trap) {
1193 auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1194 Instruction *ThenTerm =
1195 SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1196 Builder.SetInsertPoint(ThenTerm);
1197 Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1198 auto *CallTrap = Builder.CreateCall(TrapFn);
1199 CallTrap->setDebugLoc(CB.getDebugLoc());
1202 // If fallback checking is enabled, add support to compare the virtual
1203 // function pointer to the devirtualized target. In case of a mismatch,
1204 // fall back to indirect call.
1205 if (DevirtCheckMode == WPDCheckMode::Fallback) {
1206 MDNode *Weights =
1207 MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
1208 // Version the indirect call site. If the called value is equal to the
1209 // given callee, 'NewInst' will be executed, otherwise the original call
1210 // site will be executed.
1211 CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1212 NewInst.setCalledOperand(Callee);
1213 // Since the new call site is direct, we must clear metadata that
1214 // is only appropriate for indirect calls. This includes !prof and
1215 // !callees metadata.
1216 NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1217 NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1218 // Additionally, we should remove them from the fallback indirect call,
1219 // so that we don't attempt to perform indirect call promotion later.
1220 CB.setMetadata(LLVMContext::MD_prof, nullptr);
1221 CB.setMetadata(LLVMContext::MD_callees, nullptr);
1224 // In either trapping or non-checking mode, devirtualize original call.
1225 else {
1226 // Devirtualize unconditionally.
1227 CB.setCalledOperand(Callee);
1228 // Since the call site is now direct, we must clear metadata that
1229 // is only appropriate for indirect calls. This includes !prof and
1230 // !callees metadata.
1231 CB.setMetadata(LLVMContext::MD_prof, nullptr);
1232 CB.setMetadata(LLVMContext::MD_callees, nullptr);
1233 if (CB.getCalledOperand() &&
1234 CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1235 auto *NewCS =
1236 CallBase::removeOperandBundle(&CB, LLVMContext::OB_ptrauth, &CB);
1237 CB.replaceAllUsesWith(NewCS);
1238 // Schedule for deletion at the end of pass run.
1239 CallsWithPtrAuthBundleRemoved.push_back(&CB);
1243 // This use is no longer unsafe.
1244 if (VCallSite.NumUnsafeUses)
1245 --*VCallSite.NumUnsafeUses;
1247 if (CSInfo.isExported())
1248 IsExported = true;
1249 CSInfo.markDevirt();
1251 Apply(SlotInfo.CSInfo);
1252 for (auto &P : SlotInfo.ConstCSInfo)
1253 Apply(P.second);
1256 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1257 // We can't add calls if we haven't seen a definition
1258 if (Callee.getSummaryList().empty())
1259 return false;
1261 // Insert calls into the summary index so that the devirtualized targets
1262 // are eligible for import.
1263 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1264 // to better ensure we have the opportunity to inline them.
1265 bool IsExported = false;
1266 auto &S = Callee.getSummaryList()[0];
1267 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
1268 /* RelBF = */ 0);
1269 auto AddCalls = [&](CallSiteInfo &CSInfo) {
1270 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1271 FS->addCall({Callee, CI});
1272 IsExported |= S->modulePath() != FS->modulePath();
1274 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1275 FS->addCall({Callee, CI});
1276 IsExported |= S->modulePath() != FS->modulePath();
1279 AddCalls(SlotInfo.CSInfo);
1280 for (auto &P : SlotInfo.ConstCSInfo)
1281 AddCalls(P.second);
1282 return IsExported;
1285 bool DevirtModule::trySingleImplDevirt(
1286 ModuleSummaryIndex *ExportSummary,
1287 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1288 WholeProgramDevirtResolution *Res) {
1289 // See if the program contains a single implementation of this virtual
1290 // function.
1291 auto *TheFn = TargetsForSlot[0].Fn;
1292 for (auto &&Target : TargetsForSlot)
1293 if (TheFn != Target.Fn)
1294 return false;
1296 // If so, update each call site to call that implementation directly.
1297 if (RemarksEnabled || AreStatisticsEnabled())
1298 TargetsForSlot[0].WasDevirt = true;
1300 bool IsExported = false;
1301 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1302 if (!IsExported)
1303 return false;
1305 // If the only implementation has local linkage, we must promote to external
1306 // to make it visible to thin LTO objects. We can only get here during the
1307 // ThinLTO export phase.
1308 if (TheFn->hasLocalLinkage()) {
1309 std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1311 // Since we are renaming the function, any comdats with the same name must
1312 // also be renamed. This is required when targeting COFF, as the comdat name
1313 // must match one of the names of the symbols in the comdat.
1314 if (Comdat *C = TheFn->getComdat()) {
1315 if (C->getName() == TheFn->getName()) {
1316 Comdat *NewC = M.getOrInsertComdat(NewName);
1317 NewC->setSelectionKind(C->getSelectionKind());
1318 for (GlobalObject &GO : M.global_objects())
1319 if (GO.getComdat() == C)
1320 GO.setComdat(NewC);
1324 TheFn->setLinkage(GlobalValue::ExternalLinkage);
1325 TheFn->setVisibility(GlobalValue::HiddenVisibility);
1326 TheFn->setName(NewName);
1328 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1329 // Any needed promotion of 'TheFn' has already been done during
1330 // LTO unit split, so we can ignore return value of AddCalls.
1331 AddCalls(SlotInfo, TheFnVI);
1333 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1334 Res->SingleImplName = std::string(TheFn->getName());
1336 return true;
1339 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1340 VTableSlotSummary &SlotSummary,
1341 VTableSlotInfo &SlotInfo,
1342 WholeProgramDevirtResolution *Res,
1343 std::set<ValueInfo> &DevirtTargets) {
1344 // See if the program contains a single implementation of this virtual
1345 // function.
1346 auto TheFn = TargetsForSlot[0];
1347 for (auto &&Target : TargetsForSlot)
1348 if (TheFn != Target)
1349 return false;
1351 // Don't devirtualize if we don't have target definition.
1352 auto Size = TheFn.getSummaryList().size();
1353 if (!Size)
1354 return false;
1356 // Don't devirtualize function if we're told to skip it
1357 // in -wholeprogramdevirt-skip.
1358 if (FunctionsToSkip.match(TheFn.name()))
1359 return false;
1361 // If the summary list contains multiple summaries where at least one is
1362 // a local, give up, as we won't know which (possibly promoted) name to use.
1363 for (const auto &S : TheFn.getSummaryList())
1364 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1365 return false;
1367 // Collect functions devirtualized at least for one call site for stats.
1368 if (PrintSummaryDevirt || AreStatisticsEnabled())
1369 DevirtTargets.insert(TheFn);
1371 auto &S = TheFn.getSummaryList()[0];
1372 bool IsExported = AddCalls(SlotInfo, TheFn);
1373 if (IsExported)
1374 ExportedGUIDs.insert(TheFn.getGUID());
1376 // Record in summary for use in devirtualization during the ThinLTO import
1377 // step.
1378 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1379 if (GlobalValue::isLocalLinkage(S->linkage())) {
1380 if (IsExported)
1381 // If target is a local function and we are exporting it by
1382 // devirtualizing a call in another module, we need to record the
1383 // promoted name.
1384 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1385 TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1386 else {
1387 LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1388 Res->SingleImplName = std::string(TheFn.name());
1390 } else
1391 Res->SingleImplName = std::string(TheFn.name());
1393 // Name will be empty if this thin link driven off of serialized combined
1394 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1395 // legacy LTO API anyway.
1396 assert(!Res->SingleImplName.empty());
1398 return true;
1401 void DevirtModule::tryICallBranchFunnel(
1402 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1403 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1404 Triple T(M.getTargetTriple());
1405 if (T.getArch() != Triple::x86_64)
1406 return;
1408 if (TargetsForSlot.size() > ClThreshold)
1409 return;
1411 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1412 if (!HasNonDevirt)
1413 for (auto &P : SlotInfo.ConstCSInfo)
1414 if (!P.second.AllCallSitesDevirted) {
1415 HasNonDevirt = true;
1416 break;
1419 if (!HasNonDevirt)
1420 return;
1422 FunctionType *FT =
1423 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1424 Function *JT;
1425 if (isa<MDString>(Slot.TypeID)) {
1426 JT = Function::Create(FT, Function::ExternalLinkage,
1427 M.getDataLayout().getProgramAddressSpace(),
1428 getGlobalName(Slot, {}, "branch_funnel"), &M);
1429 JT->setVisibility(GlobalValue::HiddenVisibility);
1430 } else {
1431 JT = Function::Create(FT, Function::InternalLinkage,
1432 M.getDataLayout().getProgramAddressSpace(),
1433 "branch_funnel", &M);
1435 JT->addParamAttr(0, Attribute::Nest);
1437 std::vector<Value *> JTArgs;
1438 JTArgs.push_back(JT->arg_begin());
1439 for (auto &T : TargetsForSlot) {
1440 JTArgs.push_back(getMemberAddr(T.TM));
1441 JTArgs.push_back(T.Fn);
1444 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1445 Function *Intr =
1446 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1448 auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1449 CI->setTailCallKind(CallInst::TCK_MustTail);
1450 ReturnInst::Create(M.getContext(), nullptr, BB);
1452 bool IsExported = false;
1453 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1454 if (IsExported)
1455 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1458 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1459 Constant *JT, bool &IsExported) {
1460 auto Apply = [&](CallSiteInfo &CSInfo) {
1461 if (CSInfo.isExported())
1462 IsExported = true;
1463 if (CSInfo.AllCallSitesDevirted)
1464 return;
1466 std::map<CallBase *, CallBase *> CallBases;
1467 for (auto &&VCallSite : CSInfo.CallSites) {
1468 CallBase &CB = VCallSite.CB;
1470 if (CallBases.find(&CB) != CallBases.end()) {
1471 // When finding devirtualizable calls, it's possible to find the same
1472 // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1473 // calls, which can cause duplicate call sites to be recorded in
1474 // [Const]CallSites. If we've already found one of these
1475 // call instances, just ignore it. It will be replaced later.
1476 continue;
1479 // Jump tables are only profitable if the retpoline mitigation is enabled.
1480 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1481 if (!FSAttr.isValid() ||
1482 !FSAttr.getValueAsString().contains("+retpoline"))
1483 continue;
1485 NumBranchFunnel++;
1486 if (RemarksEnabled)
1487 VCallSite.emitRemark("branch-funnel",
1488 JT->stripPointerCasts()->getName(), OREGetter);
1490 // Pass the address of the vtable in the nest register, which is r10 on
1491 // x86_64.
1492 std::vector<Type *> NewArgs;
1493 NewArgs.push_back(Int8PtrTy);
1494 append_range(NewArgs, CB.getFunctionType()->params());
1495 FunctionType *NewFT =
1496 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1497 CB.getFunctionType()->isVarArg());
1498 PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1500 IRBuilder<> IRB(&CB);
1501 std::vector<Value *> Args;
1502 Args.push_back(VCallSite.VTable);
1503 llvm::append_range(Args, CB.args());
1505 CallBase *NewCS = nullptr;
1506 if (isa<CallInst>(CB))
1507 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1508 else
1509 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1510 cast<InvokeInst>(CB).getNormalDest(),
1511 cast<InvokeInst>(CB).getUnwindDest(), Args);
1512 NewCS->setCallingConv(CB.getCallingConv());
1514 AttributeList Attrs = CB.getAttributes();
1515 std::vector<AttributeSet> NewArgAttrs;
1516 NewArgAttrs.push_back(AttributeSet::get(
1517 M.getContext(), ArrayRef<Attribute>{Attribute::get(
1518 M.getContext(), Attribute::Nest)}));
1519 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
1520 NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1521 NewCS->setAttributes(
1522 AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1523 Attrs.getRetAttrs(), NewArgAttrs));
1525 CallBases[&CB] = NewCS;
1527 // This use is no longer unsafe.
1528 if (VCallSite.NumUnsafeUses)
1529 --*VCallSite.NumUnsafeUses;
1531 // Don't mark as devirtualized because there may be callers compiled without
1532 // retpoline mitigation, which would mean that they are lowered to
1533 // llvm.type.test and therefore require an llvm.type.test resolution for the
1534 // type identifier.
1536 for (auto &[Old, New] : CallBases) {
1537 Old->replaceAllUsesWith(New);
1538 Old->eraseFromParent();
1541 Apply(SlotInfo.CSInfo);
1542 for (auto &P : SlotInfo.ConstCSInfo)
1543 Apply(P.second);
1546 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1547 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1548 ArrayRef<uint64_t> Args) {
1549 // Evaluate each function and store the result in each target's RetVal
1550 // field.
1551 for (VirtualCallTarget &Target : TargetsForSlot) {
1552 // TODO: Skip for now if the vtable symbol was an alias to a function,
1553 // need to evaluate whether it would be correct to analyze the aliasee
1554 // function for this optimization.
1555 auto Fn = dyn_cast<Function>(Target.Fn);
1556 if (!Fn)
1557 return false;
1559 if (Fn->arg_size() != Args.size() + 1)
1560 return false;
1562 Evaluator Eval(M.getDataLayout(), nullptr);
1563 SmallVector<Constant *, 2> EvalArgs;
1564 EvalArgs.push_back(
1565 Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1566 for (unsigned I = 0; I != Args.size(); ++I) {
1567 auto *ArgTy =
1568 dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1569 if (!ArgTy)
1570 return false;
1571 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1574 Constant *RetVal;
1575 if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1576 !isa<ConstantInt>(RetVal))
1577 return false;
1578 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1580 return true;
1583 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1584 uint64_t TheRetVal) {
1585 for (auto Call : CSInfo.CallSites) {
1586 if (!OptimizedCalls.insert(&Call.CB).second)
1587 continue;
1588 NumUniformRetVal++;
1589 Call.replaceAndErase(
1590 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1591 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1593 CSInfo.markDevirt();
1596 bool DevirtModule::tryUniformRetValOpt(
1597 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1598 WholeProgramDevirtResolution::ByArg *Res) {
1599 // Uniform return value optimization. If all functions return the same
1600 // constant, replace all calls with that constant.
1601 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1602 for (const VirtualCallTarget &Target : TargetsForSlot)
1603 if (Target.RetVal != TheRetVal)
1604 return false;
1606 if (CSInfo.isExported()) {
1607 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1608 Res->Info = TheRetVal;
1611 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1612 if (RemarksEnabled || AreStatisticsEnabled())
1613 for (auto &&Target : TargetsForSlot)
1614 Target.WasDevirt = true;
1615 return true;
1618 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1619 ArrayRef<uint64_t> Args,
1620 StringRef Name) {
1621 std::string FullName = "__typeid_";
1622 raw_string_ostream OS(FullName);
1623 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1624 for (uint64_t Arg : Args)
1625 OS << '_' << Arg;
1626 OS << '_' << Name;
1627 return OS.str();
1630 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1631 Triple T(M.getTargetTriple());
1632 return T.isX86() && T.getObjectFormat() == Triple::ELF;
1635 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1636 StringRef Name, Constant *C) {
1637 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1638 getGlobalName(Slot, Args, Name), C, &M);
1639 GA->setVisibility(GlobalValue::HiddenVisibility);
1642 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1643 StringRef Name, uint32_t Const,
1644 uint32_t &Storage) {
1645 if (shouldExportConstantsAsAbsoluteSymbols()) {
1646 exportGlobal(
1647 Slot, Args, Name,
1648 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1649 return;
1652 Storage = Const;
1655 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1656 StringRef Name) {
1657 Constant *C =
1658 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1659 auto *GV = dyn_cast<GlobalVariable>(C);
1660 if (GV)
1661 GV->setVisibility(GlobalValue::HiddenVisibility);
1662 return C;
1665 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1666 StringRef Name, IntegerType *IntTy,
1667 uint32_t Storage) {
1668 if (!shouldExportConstantsAsAbsoluteSymbols())
1669 return ConstantInt::get(IntTy, Storage);
1671 Constant *C = importGlobal(Slot, Args, Name);
1672 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1673 C = ConstantExpr::getPtrToInt(C, IntTy);
1675 // We only need to set metadata if the global is newly created, in which
1676 // case it would not have hidden visibility.
1677 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1678 return C;
1680 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1681 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1682 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1683 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1684 MDNode::get(M.getContext(), {MinC, MaxC}));
1686 unsigned AbsWidth = IntTy->getBitWidth();
1687 if (AbsWidth == IntPtrTy->getBitWidth())
1688 SetAbsRange(~0ull, ~0ull); // Full set.
1689 else
1690 SetAbsRange(0, 1ull << AbsWidth);
1691 return C;
1694 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1695 bool IsOne,
1696 Constant *UniqueMemberAddr) {
1697 for (auto &&Call : CSInfo.CallSites) {
1698 if (!OptimizedCalls.insert(&Call.CB).second)
1699 continue;
1700 IRBuilder<> B(&Call.CB);
1701 Value *Cmp =
1702 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1703 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1704 Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1705 NumUniqueRetVal++;
1706 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1707 Cmp);
1709 CSInfo.markDevirt();
1712 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1713 return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
1714 ConstantInt::get(Int64Ty, M->Offset));
1717 bool DevirtModule::tryUniqueRetValOpt(
1718 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1719 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1720 VTableSlot Slot, ArrayRef<uint64_t> Args) {
1721 // IsOne controls whether we look for a 0 or a 1.
1722 auto tryUniqueRetValOptFor = [&](bool IsOne) {
1723 const TypeMemberInfo *UniqueMember = nullptr;
1724 for (const VirtualCallTarget &Target : TargetsForSlot) {
1725 if (Target.RetVal == (IsOne ? 1 : 0)) {
1726 if (UniqueMember)
1727 return false;
1728 UniqueMember = Target.TM;
1732 // We should have found a unique member or bailed out by now. We already
1733 // checked for a uniform return value in tryUniformRetValOpt.
1734 assert(UniqueMember);
1736 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1737 if (CSInfo.isExported()) {
1738 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1739 Res->Info = IsOne;
1741 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1744 // Replace each call with the comparison.
1745 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1746 UniqueMemberAddr);
1748 // Update devirtualization statistics for targets.
1749 if (RemarksEnabled || AreStatisticsEnabled())
1750 for (auto &&Target : TargetsForSlot)
1751 Target.WasDevirt = true;
1753 return true;
1756 if (BitWidth == 1) {
1757 if (tryUniqueRetValOptFor(true))
1758 return true;
1759 if (tryUniqueRetValOptFor(false))
1760 return true;
1762 return false;
1765 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1766 Constant *Byte, Constant *Bit) {
1767 for (auto Call : CSInfo.CallSites) {
1768 if (!OptimizedCalls.insert(&Call.CB).second)
1769 continue;
1770 auto *RetType = cast<IntegerType>(Call.CB.getType());
1771 IRBuilder<> B(&Call.CB);
1772 Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
1773 if (RetType->getBitWidth() == 1) {
1774 Value *Bits = B.CreateLoad(Int8Ty, Addr);
1775 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1776 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1777 NumVirtConstProp1Bit++;
1778 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1779 OREGetter, IsBitSet);
1780 } else {
1781 Value *Val = B.CreateLoad(RetType, Addr);
1782 NumVirtConstProp++;
1783 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1784 OREGetter, Val);
1787 CSInfo.markDevirt();
1790 bool DevirtModule::tryVirtualConstProp(
1791 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1792 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1793 // TODO: Skip for now if the vtable symbol was an alias to a function,
1794 // need to evaluate whether it would be correct to analyze the aliasee
1795 // function for this optimization.
1796 auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1797 if (!Fn)
1798 return false;
1799 // This only works if the function returns an integer.
1800 auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1801 if (!RetType)
1802 return false;
1803 unsigned BitWidth = RetType->getBitWidth();
1804 if (BitWidth > 64)
1805 return false;
1807 // Make sure that each function is defined, does not access memory, takes at
1808 // least one argument, does not use its first argument (which we assume is
1809 // 'this'), and has the same return type.
1811 // Note that we test whether this copy of the function is readnone, rather
1812 // than testing function attributes, which must hold for any copy of the
1813 // function, even a less optimized version substituted at link time. This is
1814 // sound because the virtual constant propagation optimizations effectively
1815 // inline all implementations of the virtual function into each call site,
1816 // rather than using function attributes to perform local optimization.
1817 for (VirtualCallTarget &Target : TargetsForSlot) {
1818 // TODO: Skip for now if the vtable symbol was an alias to a function,
1819 // need to evaluate whether it would be correct to analyze the aliasee
1820 // function for this optimization.
1821 auto Fn = dyn_cast<Function>(Target.Fn);
1822 if (!Fn)
1823 return false;
1825 if (Fn->isDeclaration() ||
1826 !computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1827 .doesNotAccessMemory() ||
1828 Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1829 Fn->getReturnType() != RetType)
1830 return false;
1833 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1834 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1835 continue;
1837 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1838 if (Res)
1839 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1841 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1842 continue;
1844 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1845 ResByArg, Slot, CSByConstantArg.first))
1846 continue;
1848 // Find an allocation offset in bits in all vtables associated with the
1849 // type.
1850 uint64_t AllocBefore =
1851 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1852 uint64_t AllocAfter =
1853 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1855 // Calculate the total amount of padding needed to store a value at both
1856 // ends of the object.
1857 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1858 for (auto &&Target : TargetsForSlot) {
1859 TotalPaddingBefore += std::max<int64_t>(
1860 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1861 TotalPaddingAfter += std::max<int64_t>(
1862 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1865 // If the amount of padding is too large, give up.
1866 // FIXME: do something smarter here.
1867 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1868 continue;
1870 // Calculate the offset to the value as a (possibly negative) byte offset
1871 // and (if applicable) a bit offset, and store the values in the targets.
1872 int64_t OffsetByte;
1873 uint64_t OffsetBit;
1874 if (TotalPaddingBefore <= TotalPaddingAfter)
1875 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1876 OffsetBit);
1877 else
1878 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1879 OffsetBit);
1881 if (RemarksEnabled || AreStatisticsEnabled())
1882 for (auto &&Target : TargetsForSlot)
1883 Target.WasDevirt = true;
1886 if (CSByConstantArg.second.isExported()) {
1887 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1888 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1889 ResByArg->Byte);
1890 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1891 ResByArg->Bit);
1894 // Rewrite each call to a load from OffsetByte/OffsetBit.
1895 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1896 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1897 applyVirtualConstProp(CSByConstantArg.second,
1898 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1900 return true;
1903 void DevirtModule::rebuildGlobal(VTableBits &B) {
1904 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1905 return;
1907 // Align the before byte array to the global's minimum alignment so that we
1908 // don't break any alignment requirements on the global.
1909 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1910 B.GV->getAlign(), B.GV->getValueType());
1911 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1913 // Before was stored in reverse order; flip it now.
1914 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1915 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1917 // Build an anonymous global containing the before bytes, followed by the
1918 // original initializer, followed by the after bytes.
1919 auto NewInit = ConstantStruct::getAnon(
1920 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1921 B.GV->getInitializer(),
1922 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1923 auto NewGV =
1924 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1925 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1926 NewGV->setSection(B.GV->getSection());
1927 NewGV->setComdat(B.GV->getComdat());
1928 NewGV->setAlignment(B.GV->getAlign());
1930 // Copy the original vtable's metadata to the anonymous global, adjusting
1931 // offsets as required.
1932 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1934 // Build an alias named after the original global, pointing at the second
1935 // element (the original initializer).
1936 auto Alias = GlobalAlias::create(
1937 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1938 ConstantExpr::getGetElementPtr(
1939 NewInit->getType(), NewGV,
1940 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1941 ConstantInt::get(Int32Ty, 1)}),
1942 &M);
1943 Alias->setVisibility(B.GV->getVisibility());
1944 Alias->takeName(B.GV);
1946 B.GV->replaceAllUsesWith(Alias);
1947 B.GV->eraseFromParent();
1950 bool DevirtModule::areRemarksEnabled() {
1951 const auto &FL = M.getFunctionList();
1952 for (const Function &Fn : FL) {
1953 if (Fn.empty())
1954 continue;
1955 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1956 return DI.isEnabled();
1958 return false;
1961 void DevirtModule::scanTypeTestUsers(
1962 Function *TypeTestFunc,
1963 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1964 // Find all virtual calls via a virtual table pointer %p under an assumption
1965 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1966 // points to a member of the type identifier %md. Group calls by (type ID,
1967 // offset) pair (effectively the identity of the virtual function) and store
1968 // to CallSlots.
1969 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1970 auto *CI = dyn_cast<CallInst>(U.getUser());
1971 if (!CI)
1972 continue;
1974 // Search for virtual calls based on %p and add them to DevirtCalls.
1975 SmallVector<DevirtCallSite, 1> DevirtCalls;
1976 SmallVector<CallInst *, 1> Assumes;
1977 auto &DT = LookupDomTree(*CI->getFunction());
1978 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1980 Metadata *TypeId =
1981 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1982 // If we found any, add them to CallSlots.
1983 if (!Assumes.empty()) {
1984 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1985 for (DevirtCallSite Call : DevirtCalls)
1986 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1989 auto RemoveTypeTestAssumes = [&]() {
1990 // We no longer need the assumes or the type test.
1991 for (auto *Assume : Assumes)
1992 Assume->eraseFromParent();
1993 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1994 // may use the vtable argument later.
1995 if (CI->use_empty())
1996 CI->eraseFromParent();
1999 // At this point we could remove all type test assume sequences, as they
2000 // were originally inserted for WPD. However, we can keep these in the
2001 // code stream for later analysis (e.g. to help drive more efficient ICP
2002 // sequences). They will eventually be removed by a second LowerTypeTests
2003 // invocation that cleans them up. In order to do this correctly, the first
2004 // LowerTypeTests invocation needs to know that they have "Unknown" type
2005 // test resolution, so that they aren't treated as Unsat and lowered to
2006 // False, which will break any uses on assumes. Below we remove any type
2007 // test assumes that will not be treated as Unknown by LTT.
2009 // The type test assumes will be treated by LTT as Unsat if the type id is
2010 // not used on a global (in which case it has no entry in the TypeIdMap).
2011 if (!TypeIdMap.count(TypeId))
2012 RemoveTypeTestAssumes();
2014 // For ThinLTO importing, we need to remove the type test assumes if this is
2015 // an MDString type id without a corresponding TypeIdSummary. Any
2016 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2017 // type test assumes can be kept. If the MDString type id is missing a
2018 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2019 // exporting phase of WPD from analyzing it), then it would be treated as
2020 // Unsat by LTT and we need to remove its type test assumes here. If not
2021 // used on a vcall we don't need them for later optimization use in any
2022 // case.
2023 else if (ImportSummary && isa<MDString>(TypeId)) {
2024 const TypeIdSummary *TidSummary =
2025 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
2026 if (!TidSummary)
2027 RemoveTypeTestAssumes();
2028 else
2029 // If one was created it should not be Unsat, because if we reached here
2030 // the type id was used on a global.
2031 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
2036 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
2037 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
2039 for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
2040 auto *CI = dyn_cast<CallInst>(U.getUser());
2041 if (!CI)
2042 continue;
2044 Value *Ptr = CI->getArgOperand(0);
2045 Value *Offset = CI->getArgOperand(1);
2046 Value *TypeIdValue = CI->getArgOperand(2);
2047 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
2049 SmallVector<DevirtCallSite, 1> DevirtCalls;
2050 SmallVector<Instruction *, 1> LoadedPtrs;
2051 SmallVector<Instruction *, 1> Preds;
2052 bool HasNonCallUses = false;
2053 auto &DT = LookupDomTree(*CI->getFunction());
2054 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
2055 HasNonCallUses, CI, DT);
2057 // Start by generating "pessimistic" code that explicitly loads the function
2058 // pointer from the vtable and performs the type check. If possible, we will
2059 // eliminate the load and the type check later.
2061 // If possible, only generate the load at the point where it is used.
2062 // This helps avoid unnecessary spills.
2063 IRBuilder<> LoadB(
2064 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2066 Value *LoadedValue = nullptr;
2067 if (TypeCheckedLoadFunc->getIntrinsicID() ==
2068 Intrinsic::type_checked_load_relative) {
2069 Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2070 LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
2071 LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2072 GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2073 LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2074 LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2075 } else {
2076 Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2077 LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
2080 for (Instruction *LoadedPtr : LoadedPtrs) {
2081 LoadedPtr->replaceAllUsesWith(LoadedValue);
2082 LoadedPtr->eraseFromParent();
2085 // Likewise for the type test.
2086 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2087 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2089 for (Instruction *Pred : Preds) {
2090 Pred->replaceAllUsesWith(TypeTestCall);
2091 Pred->eraseFromParent();
2094 // We have already erased any extractvalue instructions that refer to the
2095 // intrinsic call, but the intrinsic may have other non-extractvalue uses
2096 // (although this is unlikely). In that case, explicitly build a pair and
2097 // RAUW it.
2098 if (!CI->use_empty()) {
2099 Value *Pair = PoisonValue::get(CI->getType());
2100 IRBuilder<> B(CI);
2101 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2102 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2103 CI->replaceAllUsesWith(Pair);
2106 // The number of unsafe uses is initially the number of uses.
2107 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2108 NumUnsafeUses = DevirtCalls.size();
2110 // If the function pointer has a non-call user, we cannot eliminate the type
2111 // check, as one of those users may eventually call the pointer. Increment
2112 // the unsafe use count to make sure it cannot reach zero.
2113 if (HasNonCallUses)
2114 ++NumUnsafeUses;
2115 for (DevirtCallSite Call : DevirtCalls) {
2116 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2117 &NumUnsafeUses);
2120 CI->eraseFromParent();
2124 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2125 auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2126 if (!TypeId)
2127 return;
2128 const TypeIdSummary *TidSummary =
2129 ImportSummary->getTypeIdSummary(TypeId->getString());
2130 if (!TidSummary)
2131 return;
2132 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2133 if (ResI == TidSummary->WPDRes.end())
2134 return;
2135 const WholeProgramDevirtResolution &Res = ResI->second;
2137 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2138 assert(!Res.SingleImplName.empty());
2139 // The type of the function in the declaration is irrelevant because every
2140 // call site will cast it to the correct type.
2141 Constant *SingleImpl =
2142 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2143 Type::getVoidTy(M.getContext()))
2144 .getCallee());
2146 // This is the import phase so we should not be exporting anything.
2147 bool IsExported = false;
2148 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2149 assert(!IsExported);
2152 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2153 auto I = Res.ResByArg.find(CSByConstantArg.first);
2154 if (I == Res.ResByArg.end())
2155 continue;
2156 auto &ResByArg = I->second;
2157 // FIXME: We should figure out what to do about the "function name" argument
2158 // to the apply* functions, as the function names are unavailable during the
2159 // importing phase. For now we just pass the empty string. This does not
2160 // impact correctness because the function names are just used for remarks.
2161 switch (ResByArg.TheKind) {
2162 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2163 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2164 break;
2165 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2166 Constant *UniqueMemberAddr =
2167 importGlobal(Slot, CSByConstantArg.first, "unique_member");
2168 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2169 UniqueMemberAddr);
2170 break;
2172 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2173 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2174 Int32Ty, ResByArg.Byte);
2175 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2176 ResByArg.Bit);
2177 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2178 break;
2180 default:
2181 break;
2185 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2186 // The type of the function is irrelevant, because it's bitcast at calls
2187 // anyhow.
2188 Constant *JT = cast<Constant>(
2189 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2190 Type::getVoidTy(M.getContext()))
2191 .getCallee());
2192 bool IsExported = false;
2193 applyICallBranchFunnel(SlotInfo, JT, IsExported);
2194 assert(!IsExported);
2198 void DevirtModule::removeRedundantTypeTests() {
2199 auto True = ConstantInt::getTrue(M.getContext());
2200 for (auto &&U : NumUnsafeUsesForTypeTest) {
2201 if (U.second == 0) {
2202 U.first->replaceAllUsesWith(True);
2203 U.first->eraseFromParent();
2208 ValueInfo
2209 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2210 ModuleSummaryIndex *ExportSummary) {
2211 assert((ExportSummary != nullptr) &&
2212 "Caller guarantees ExportSummary is not nullptr");
2214 const auto TheFnGUID = TheFn->getGUID();
2215 const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2216 // Look up ValueInfo with the GUID in the current linkage.
2217 ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2218 // If no entry is found and GUID is different from GUID computed using
2219 // exported name, look up ValueInfo with the exported name unconditionally.
2220 // This is a fallback.
2222 // The reason to have a fallback:
2223 // 1. LTO could enable global value internalization via
2224 // `enable-lto-internalization`.
2225 // 2. The GUID in ExportedSummary is computed using exported name.
2226 if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2227 TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2229 return TheFnVI;
2232 bool DevirtModule::mustBeUnreachableFunction(
2233 Function *const F, ModuleSummaryIndex *ExportSummary) {
2234 // First, learn unreachability by analyzing function IR.
2235 if (!F->isDeclaration()) {
2236 // A function must be unreachable if its entry block ends with an
2237 // 'unreachable'.
2238 return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2240 // Learn unreachability from ExportSummary if ExportSummary is present.
2241 return ExportSummary &&
2242 ::mustBeUnreachableFunction(
2243 DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2246 bool DevirtModule::run() {
2247 // If only some of the modules were split, we cannot correctly perform
2248 // this transformation. We already checked for the presense of type tests
2249 // with partially split modules during the thin link, and would have emitted
2250 // an error if any were found, so here we can simply return.
2251 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2252 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2253 return false;
2255 Function *TypeTestFunc =
2256 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2257 Function *TypeCheckedLoadFunc =
2258 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2259 Function *TypeCheckedLoadRelativeFunc =
2260 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2261 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2263 // Normally if there are no users of the devirtualization intrinsics in the
2264 // module, this pass has nothing to do. But if we are exporting, we also need
2265 // to handle any users that appear only in the function summaries.
2266 if (!ExportSummary &&
2267 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2268 AssumeFunc->use_empty()) &&
2269 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2270 (!TypeCheckedLoadRelativeFunc ||
2271 TypeCheckedLoadRelativeFunc->use_empty()))
2272 return false;
2274 // Rebuild type metadata into a map for easy lookup.
2275 std::vector<VTableBits> Bits;
2276 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2277 buildTypeIdentifierMap(Bits, TypeIdMap);
2279 if (TypeTestFunc && AssumeFunc)
2280 scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2282 if (TypeCheckedLoadFunc)
2283 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2285 if (TypeCheckedLoadRelativeFunc)
2286 scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2288 if (ImportSummary) {
2289 for (auto &S : CallSlots)
2290 importResolution(S.first, S.second);
2292 removeRedundantTypeTests();
2294 // We have lowered or deleted the type intrinsics, so we will no longer have
2295 // enough information to reason about the liveness of virtual function
2296 // pointers in GlobalDCE.
2297 for (GlobalVariable &GV : M.globals())
2298 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2300 // The rest of the code is only necessary when exporting or during regular
2301 // LTO, so we are done.
2302 return true;
2305 if (TypeIdMap.empty())
2306 return true;
2308 // Collect information from summary about which calls to try to devirtualize.
2309 if (ExportSummary) {
2310 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2311 for (auto &P : TypeIdMap) {
2312 if (auto *TypeId = dyn_cast<MDString>(P.first))
2313 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2314 TypeId);
2317 for (auto &P : *ExportSummary) {
2318 for (auto &S : P.second.SummaryList) {
2319 auto *FS = dyn_cast<FunctionSummary>(S.get());
2320 if (!FS)
2321 continue;
2322 // FIXME: Only add live functions.
2323 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2324 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2325 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2328 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2329 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2330 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2333 for (const FunctionSummary::ConstVCall &VC :
2334 FS->type_test_assume_const_vcalls()) {
2335 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2336 CallSlots[{MD, VC.VFunc.Offset}]
2337 .ConstCSInfo[VC.Args]
2338 .addSummaryTypeTestAssumeUser(FS);
2341 for (const FunctionSummary::ConstVCall &VC :
2342 FS->type_checked_load_const_vcalls()) {
2343 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2344 CallSlots[{MD, VC.VFunc.Offset}]
2345 .ConstCSInfo[VC.Args]
2346 .addSummaryTypeCheckedLoadUser(FS);
2353 // For each (type, offset) pair:
2354 bool DidVirtualConstProp = false;
2355 std::map<std::string, GlobalValue *> DevirtTargets;
2356 for (auto &S : CallSlots) {
2357 // Search each of the members of the type identifier for the virtual
2358 // function implementation at offset S.first.ByteOffset, and add to
2359 // TargetsForSlot.
2360 std::vector<VirtualCallTarget> TargetsForSlot;
2361 WholeProgramDevirtResolution *Res = nullptr;
2362 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2363 if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2364 TypeMemberInfos.size())
2365 // For any type id used on a global's type metadata, create the type id
2366 // summary resolution regardless of whether we can devirtualize, so that
2367 // lower type tests knows the type id is not Unsat. If it was not used on
2368 // a global's type metadata, the TypeIdMap entry set will be empty, and
2369 // we don't want to create an entry (with the default Unknown type
2370 // resolution), which can prevent detection of the Unsat.
2371 Res = &ExportSummary
2372 ->getOrInsertTypeIdSummary(
2373 cast<MDString>(S.first.TypeID)->getString())
2374 .WPDRes[S.first.ByteOffset];
2375 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2376 S.first.ByteOffset, ExportSummary)) {
2378 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2379 DidVirtualConstProp |=
2380 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2382 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2385 // Collect functions devirtualized at least for one call site for stats.
2386 if (RemarksEnabled || AreStatisticsEnabled())
2387 for (const auto &T : TargetsForSlot)
2388 if (T.WasDevirt)
2389 DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2392 // CFI-specific: if we are exporting and any llvm.type.checked.load
2393 // intrinsics were *not* devirtualized, we need to add the resulting
2394 // llvm.type.test intrinsics to the function summaries so that the
2395 // LowerTypeTests pass will export them.
2396 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2397 auto GUID =
2398 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2399 for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2400 FS->addTypeTest(GUID);
2401 for (auto &CCS : S.second.ConstCSInfo)
2402 for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2403 FS->addTypeTest(GUID);
2407 if (RemarksEnabled) {
2408 // Generate remarks for each devirtualized function.
2409 for (const auto &DT : DevirtTargets) {
2410 GlobalValue *GV = DT.second;
2411 auto F = dyn_cast<Function>(GV);
2412 if (!F) {
2413 auto A = dyn_cast<GlobalAlias>(GV);
2414 assert(A && isa<Function>(A->getAliasee()));
2415 F = dyn_cast<Function>(A->getAliasee());
2416 assert(F);
2419 using namespace ore;
2420 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2421 << "devirtualized "
2422 << NV("FunctionName", DT.first));
2426 NumDevirtTargets += DevirtTargets.size();
2428 removeRedundantTypeTests();
2430 // Rebuild each global we touched as part of virtual constant propagation to
2431 // include the before and after bytes.
2432 if (DidVirtualConstProp)
2433 for (VTableBits &B : Bits)
2434 rebuildGlobal(B);
2436 // We have lowered or deleted the type intrinsics, so we will no longer have
2437 // enough information to reason about the liveness of virtual function
2438 // pointers in GlobalDCE.
2439 for (GlobalVariable &GV : M.globals())
2440 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2442 for (auto *CI : CallsWithPtrAuthBundleRemoved)
2443 CI->eraseFromParent();
2445 return true;
2448 void DevirtIndex::run() {
2449 if (ExportSummary.typeIdCompatibleVtableMap().empty())
2450 return;
2452 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2453 for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2454 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2455 // Create the type id summary resolution regardlness of whether we can
2456 // devirtualize, so that lower type tests knows the type id is used on
2457 // a global and not Unsat. We do this here rather than in the loop over the
2458 // CallSlots, since that handling will only see type tests that directly
2459 // feed assumes, and we would miss any that aren't currently handled by WPD
2460 // (such as type tests that feed assumes via phis).
2461 ExportSummary.getOrInsertTypeIdSummary(P.first);
2464 // Collect information from summary about which calls to try to devirtualize.
2465 for (auto &P : ExportSummary) {
2466 for (auto &S : P.second.SummaryList) {
2467 auto *FS = dyn_cast<FunctionSummary>(S.get());
2468 if (!FS)
2469 continue;
2470 // FIXME: Only add live functions.
2471 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2472 for (StringRef Name : NameByGUID[VF.GUID]) {
2473 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2476 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2477 for (StringRef Name : NameByGUID[VF.GUID]) {
2478 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2481 for (const FunctionSummary::ConstVCall &VC :
2482 FS->type_test_assume_const_vcalls()) {
2483 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2484 CallSlots[{Name, VC.VFunc.Offset}]
2485 .ConstCSInfo[VC.Args]
2486 .addSummaryTypeTestAssumeUser(FS);
2489 for (const FunctionSummary::ConstVCall &VC :
2490 FS->type_checked_load_const_vcalls()) {
2491 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2492 CallSlots[{Name, VC.VFunc.Offset}]
2493 .ConstCSInfo[VC.Args]
2494 .addSummaryTypeCheckedLoadUser(FS);
2500 std::set<ValueInfo> DevirtTargets;
2501 // For each (type, offset) pair:
2502 for (auto &S : CallSlots) {
2503 // Search each of the members of the type identifier for the virtual
2504 // function implementation at offset S.first.ByteOffset, and add to
2505 // TargetsForSlot.
2506 std::vector<ValueInfo> TargetsForSlot;
2507 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2508 assert(TidSummary);
2509 // The type id summary would have been created while building the NameByGUID
2510 // map earlier.
2511 WholeProgramDevirtResolution *Res =
2512 &ExportSummary.getTypeIdSummary(S.first.TypeID)
2513 ->WPDRes[S.first.ByteOffset];
2514 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2515 S.first.ByteOffset)) {
2517 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2518 DevirtTargets))
2519 continue;
2523 // Optionally have the thin link print message for each devirtualized
2524 // function.
2525 if (PrintSummaryDevirt)
2526 for (const auto &DT : DevirtTargets)
2527 errs() << "Devirtualized call to " << DT << "\n";
2529 NumDevirtTargets += DevirtTargets.size();