[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineAndOrXor.cpp
blob5fd944a859ef098be2d353a1cee58a4402c830b4
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
22 using namespace llvm;
23 using namespace PatternMatch;
25 #define DEBUG_TYPE "instcombine"
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32 InstCombiner::BuilderTy &Builder) {
33 ICmpInst::Predicate NewPred;
34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35 return TorF;
36 return Builder.CreateICmp(NewPred, LHS, RHS);
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42 InstCombiner::BuilderTy &Builder) {
43 FCmpInst::Predicate NewPred;
44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45 return TorF;
46 return Builder.CreateFCmp(NewPred, LHS, RHS);
49 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
50 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
51 /// whether to treat V, Lo, and Hi as signed or not.
52 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
53 const APInt &Hi, bool isSigned,
54 bool Inside) {
55 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
56 "Lo is not < Hi in range emission code!");
58 Type *Ty = V->getType();
60 // V >= Min && V < Hi --> V < Hi
61 // V < Min || V >= Hi --> V >= Hi
62 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
63 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
64 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
65 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
68 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
69 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
70 Value *VMinusLo =
71 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
72 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
73 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
76 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
77 /// that can be simplified.
78 /// One of A and B is considered the mask. The other is the value. This is
79 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
80 /// only "Mask", then both A and B can be considered masks. If A is the mask,
81 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
82 /// If both A and C are constants, this proof is also easy.
83 /// For the following explanations, we assume that A is the mask.
84 ///
85 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
86 /// bits of A are set in B.
87 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
88 ///
89 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
90 /// bits of A are cleared in B.
91 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
92 ///
93 /// "Mixed" declares that (A & B) == C and C might or might not contain any
94 /// number of one bits and zero bits.
95 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
96 ///
97 /// "Not" means that in above descriptions "==" should be replaced by "!=".
98 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
99 ///
100 /// If the mask A contains a single bit, then the following is equivalent:
101 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
102 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
103 enum MaskedICmpType {
104 AMask_AllOnes = 1,
105 AMask_NotAllOnes = 2,
106 BMask_AllOnes = 4,
107 BMask_NotAllOnes = 8,
108 Mask_AllZeros = 16,
109 Mask_NotAllZeros = 32,
110 AMask_Mixed = 64,
111 AMask_NotMixed = 128,
112 BMask_Mixed = 256,
113 BMask_NotMixed = 512
116 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
117 /// satisfies.
118 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
119 ICmpInst::Predicate Pred) {
120 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
121 match(A, m_APInt(ConstA));
122 match(B, m_APInt(ConstB));
123 match(C, m_APInt(ConstC));
124 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
125 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
126 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
127 unsigned MaskVal = 0;
128 if (ConstC && ConstC->isZero()) {
129 // if C is zero, then both A and B qualify as mask
130 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
131 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
132 if (IsAPow2)
133 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
134 : (AMask_AllOnes | AMask_Mixed));
135 if (IsBPow2)
136 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
137 : (BMask_AllOnes | BMask_Mixed));
138 return MaskVal;
141 if (A == C) {
142 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
143 : (AMask_NotAllOnes | AMask_NotMixed));
144 if (IsAPow2)
145 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
146 : (Mask_AllZeros | AMask_Mixed));
147 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
148 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
151 if (B == C) {
152 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
153 : (BMask_NotAllOnes | BMask_NotMixed));
154 if (IsBPow2)
155 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
156 : (Mask_AllZeros | BMask_Mixed));
157 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
158 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
161 return MaskVal;
164 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
165 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
166 /// is adjacent to the corresponding normal flag (recording ==), this just
167 /// involves swapping those bits over.
168 static unsigned conjugateICmpMask(unsigned Mask) {
169 unsigned NewMask;
170 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
171 AMask_Mixed | BMask_Mixed))
172 << 1;
174 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
175 AMask_NotMixed | BMask_NotMixed))
176 >> 1;
178 return NewMask;
181 // Adapts the external decomposeBitTestICmp for local use.
182 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
183 Value *&X, Value *&Y, Value *&Z) {
184 APInt Mask;
185 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
186 return false;
188 Y = ConstantInt::get(X->getType(), Mask);
189 Z = ConstantInt::get(X->getType(), 0);
190 return true;
193 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
194 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
195 /// the right hand side as a pair.
196 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
197 /// and PredR are their predicates, respectively.
198 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair(
199 Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS,
200 ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) {
201 // Don't allow pointers. Splat vectors are fine.
202 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
203 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
204 return std::nullopt;
206 // Here comes the tricky part:
207 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
208 // and L11 & L12 == L21 & L22. The same goes for RHS.
209 // Now we must find those components L** and R**, that are equal, so
210 // that we can extract the parameters A, B, C, D, and E for the canonical
211 // above.
212 Value *L1 = LHS->getOperand(0);
213 Value *L2 = LHS->getOperand(1);
214 Value *L11, *L12, *L21, *L22;
215 // Check whether the icmp can be decomposed into a bit test.
216 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
217 L21 = L22 = L1 = nullptr;
218 } else {
219 // Look for ANDs in the LHS icmp.
220 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
221 // Any icmp can be viewed as being trivially masked; if it allows us to
222 // remove one, it's worth it.
223 L11 = L1;
224 L12 = Constant::getAllOnesValue(L1->getType());
227 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
228 L21 = L2;
229 L22 = Constant::getAllOnesValue(L2->getType());
233 // Bail if LHS was a icmp that can't be decomposed into an equality.
234 if (!ICmpInst::isEquality(PredL))
235 return std::nullopt;
237 Value *R1 = RHS->getOperand(0);
238 Value *R2 = RHS->getOperand(1);
239 Value *R11, *R12;
240 bool Ok = false;
241 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
242 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
243 A = R11;
244 D = R12;
245 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
246 A = R12;
247 D = R11;
248 } else {
249 return std::nullopt;
251 E = R2;
252 R1 = nullptr;
253 Ok = true;
254 } else {
255 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
256 // As before, model no mask as a trivial mask if it'll let us do an
257 // optimization.
258 R11 = R1;
259 R12 = Constant::getAllOnesValue(R1->getType());
262 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
263 A = R11;
264 D = R12;
265 E = R2;
266 Ok = true;
267 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
268 A = R12;
269 D = R11;
270 E = R2;
271 Ok = true;
275 // Bail if RHS was a icmp that can't be decomposed into an equality.
276 if (!ICmpInst::isEquality(PredR))
277 return std::nullopt;
279 // Look for ANDs on the right side of the RHS icmp.
280 if (!Ok) {
281 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
282 R11 = R2;
283 R12 = Constant::getAllOnesValue(R2->getType());
286 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
287 A = R11;
288 D = R12;
289 E = R1;
290 Ok = true;
291 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
292 A = R12;
293 D = R11;
294 E = R1;
295 Ok = true;
296 } else {
297 return std::nullopt;
300 assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
303 if (L11 == A) {
304 B = L12;
305 C = L2;
306 } else if (L12 == A) {
307 B = L11;
308 C = L2;
309 } else if (L21 == A) {
310 B = L22;
311 C = L1;
312 } else if (L22 == A) {
313 B = L21;
314 C = L1;
317 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
318 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
319 return std::optional<std::pair<unsigned, unsigned>>(
320 std::make_pair(LeftType, RightType));
323 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
324 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
325 /// and the right hand side is of type BMask_Mixed. For example,
326 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
327 /// Also used for logical and/or, must be poison safe.
328 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
329 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
330 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
331 InstCombiner::BuilderTy &Builder) {
332 // We are given the canonical form:
333 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
334 // where D & E == E.
336 // If IsAnd is false, we get it in negated form:
337 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
338 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
340 // We currently handle the case of B, C, D, E are constant.
342 const APInt *BCst, *CCst, *DCst, *OrigECst;
343 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
344 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
345 return nullptr;
347 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
349 // Update E to the canonical form when D is a power of two and RHS is
350 // canonicalized as,
351 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
352 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
353 APInt ECst = *OrigECst;
354 if (PredR != NewCC)
355 ECst ^= *DCst;
357 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
358 // other folding rules and this pattern won't apply any more.
359 if (*BCst == 0 || *DCst == 0)
360 return nullptr;
362 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
363 // deduce anything from it.
364 // For example,
365 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
366 if ((*BCst & *DCst) == 0)
367 return nullptr;
369 // If the following two conditions are met:
371 // 1. mask B covers only a single bit that's not covered by mask D, that is,
372 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
373 // B and D has only one bit set) and,
375 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
376 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
378 // then that single bit in B must be one and thus the whole expression can be
379 // folded to
380 // (A & (B | D)) == (B & (B ^ D)) | E.
382 // For example,
383 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
384 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
385 if ((((*BCst & *DCst) & ECst) == 0) &&
386 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
387 APInt BorD = *BCst | *DCst;
388 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
389 Value *NewMask = ConstantInt::get(A->getType(), BorD);
390 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
391 Value *NewAnd = Builder.CreateAnd(A, NewMask);
392 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
395 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
396 return (*C1 & *C2) == *C1;
398 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
399 return (*C1 & *C2) == *C2;
402 // In the following, we consider only the cases where B is a superset of D, B
403 // is a subset of D, or B == D because otherwise there's at least one bit
404 // covered by B but not D, in which case we can't deduce much from it, so
405 // no folding (aside from the single must-be-one bit case right above.)
406 // For example,
407 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
408 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
409 return nullptr;
411 // At this point, either B is a superset of D, B is a subset of D or B == D.
413 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
414 // and the whole expression becomes false (or true if negated), otherwise, no
415 // folding.
416 // For example,
417 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
418 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
419 if (ECst.isZero()) {
420 if (IsSubSetOrEqual(BCst, DCst))
421 return ConstantInt::get(LHS->getType(), !IsAnd);
422 return nullptr;
425 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
426 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
427 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
428 // RHS. For example,
429 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
430 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
431 if (IsSuperSetOrEqual(BCst, DCst))
432 return RHS;
433 // Otherwise, B is a subset of D. If B and E have a common bit set,
434 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
435 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
436 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
437 if ((*BCst & ECst) != 0)
438 return RHS;
439 // Otherwise, LHS and RHS contradict and the whole expression becomes false
440 // (or true if negated.) For example,
441 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
442 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
443 return ConstantInt::get(LHS->getType(), !IsAnd);
446 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
447 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
448 /// aren't of the common mask pattern type.
449 /// Also used for logical and/or, must be poison safe.
450 static Value *foldLogOpOfMaskedICmpsAsymmetric(
451 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
452 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
453 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
454 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
455 "Expected equality predicates for masked type of icmps.");
456 // Handle Mask_NotAllZeros-BMask_Mixed cases.
457 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
458 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
459 // which gets swapped to
460 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
461 if (!IsAnd) {
462 LHSMask = conjugateICmpMask(LHSMask);
463 RHSMask = conjugateICmpMask(RHSMask);
465 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
466 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
467 LHS, RHS, IsAnd, A, B, C, D, E,
468 PredL, PredR, Builder)) {
469 return V;
471 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
472 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
473 RHS, LHS, IsAnd, A, D, E, B, C,
474 PredR, PredL, Builder)) {
475 return V;
478 return nullptr;
481 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
482 /// into a single (icmp(A & X) ==/!= Y).
483 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
484 bool IsLogical,
485 InstCombiner::BuilderTy &Builder) {
486 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
487 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
488 std::optional<std::pair<unsigned, unsigned>> MaskPair =
489 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
490 if (!MaskPair)
491 return nullptr;
492 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
493 "Expected equality predicates for masked type of icmps.");
494 unsigned LHSMask = MaskPair->first;
495 unsigned RHSMask = MaskPair->second;
496 unsigned Mask = LHSMask & RHSMask;
497 if (Mask == 0) {
498 // Even if the two sides don't share a common pattern, check if folding can
499 // still happen.
500 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
501 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
502 Builder))
503 return V;
504 return nullptr;
507 // In full generality:
508 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
509 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
511 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
512 // equivalent to (icmp (A & X) !Op Y).
514 // Therefore, we can pretend for the rest of this function that we're dealing
515 // with the conjunction, provided we flip the sense of any comparisons (both
516 // input and output).
518 // In most cases we're going to produce an EQ for the "&&" case.
519 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
520 if (!IsAnd) {
521 // Convert the masking analysis into its equivalent with negated
522 // comparisons.
523 Mask = conjugateICmpMask(Mask);
526 if (Mask & Mask_AllZeros) {
527 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
528 // -> (icmp eq (A & (B|D)), 0)
529 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
530 return nullptr; // TODO: Use freeze?
531 Value *NewOr = Builder.CreateOr(B, D);
532 Value *NewAnd = Builder.CreateAnd(A, NewOr);
533 // We can't use C as zero because we might actually handle
534 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
535 // with B and D, having a single bit set.
536 Value *Zero = Constant::getNullValue(A->getType());
537 return Builder.CreateICmp(NewCC, NewAnd, Zero);
539 if (Mask & BMask_AllOnes) {
540 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
541 // -> (icmp eq (A & (B|D)), (B|D))
542 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
543 return nullptr; // TODO: Use freeze?
544 Value *NewOr = Builder.CreateOr(B, D);
545 Value *NewAnd = Builder.CreateAnd(A, NewOr);
546 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
548 if (Mask & AMask_AllOnes) {
549 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
550 // -> (icmp eq (A & (B&D)), A)
551 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
552 return nullptr; // TODO: Use freeze?
553 Value *NewAnd1 = Builder.CreateAnd(B, D);
554 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
555 return Builder.CreateICmp(NewCC, NewAnd2, A);
558 // Remaining cases assume at least that B and D are constant, and depend on
559 // their actual values. This isn't strictly necessary, just a "handle the
560 // easy cases for now" decision.
561 const APInt *ConstB, *ConstD;
562 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
563 return nullptr;
565 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
566 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
567 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
568 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
569 // Only valid if one of the masks is a superset of the other (check "B&D" is
570 // the same as either B or D).
571 APInt NewMask = *ConstB & *ConstD;
572 if (NewMask == *ConstB)
573 return LHS;
574 else if (NewMask == *ConstD)
575 return RHS;
578 if (Mask & AMask_NotAllOnes) {
579 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
580 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
581 // Only valid if one of the masks is a superset of the other (check "B|D" is
582 // the same as either B or D).
583 APInt NewMask = *ConstB | *ConstD;
584 if (NewMask == *ConstB)
585 return LHS;
586 else if (NewMask == *ConstD)
587 return RHS;
590 if (Mask & (BMask_Mixed | BMask_NotMixed)) {
591 // Mixed:
592 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
593 // We already know that B & C == C && D & E == E.
594 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
595 // C and E, which are shared by both the mask B and the mask D, don't
596 // contradict, then we can transform to
597 // -> (icmp eq (A & (B|D)), (C|E))
598 // Currently, we only handle the case of B, C, D, and E being constant.
599 // We can't simply use C and E because we might actually handle
600 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
601 // with B and D, having a single bit set.
603 // NotMixed:
604 // (icmp ne (A & B), C) & (icmp ne (A & D), E)
605 // -> (icmp ne (A & (B & D)), (C & E))
606 // Check the intersection (B & D) for inequality.
607 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
608 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the
609 // B and the D, don't contradict.
610 // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous
611 // operation should delete these icmps if it hadn't been met.
613 const APInt *OldConstC, *OldConstE;
614 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
615 return nullptr;
617 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
618 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
619 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
620 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
622 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
623 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
625 if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB))
626 return nullptr;
628 APInt BD, CE;
629 if (IsNot) {
630 BD = *ConstB & *ConstD;
631 CE = ConstC & ConstE;
632 } else {
633 BD = *ConstB | *ConstD;
634 CE = ConstC | ConstE;
636 Value *NewAnd = Builder.CreateAnd(A, BD);
637 Value *CEVal = ConstantInt::get(A->getType(), CE);
638 return Builder.CreateICmp(CC, CEVal, NewAnd);
641 if (Mask & BMask_Mixed)
642 return FoldBMixed(NewCC, false);
643 if (Mask & BMask_NotMixed) // can be else also
644 return FoldBMixed(NewCC, true);
646 return nullptr;
649 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
650 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
651 /// If \p Inverted is true then the check is for the inverted range, e.g.
652 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
653 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
654 bool Inverted) {
655 // Check the lower range comparison, e.g. x >= 0
656 // InstCombine already ensured that if there is a constant it's on the RHS.
657 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
658 if (!RangeStart)
659 return nullptr;
661 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
662 Cmp0->getPredicate());
664 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
665 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
666 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
667 return nullptr;
669 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
670 Cmp1->getPredicate());
672 Value *Input = Cmp0->getOperand(0);
673 Value *RangeEnd;
674 if (Cmp1->getOperand(0) == Input) {
675 // For the upper range compare we have: icmp x, n
676 RangeEnd = Cmp1->getOperand(1);
677 } else if (Cmp1->getOperand(1) == Input) {
678 // For the upper range compare we have: icmp n, x
679 RangeEnd = Cmp1->getOperand(0);
680 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
681 } else {
682 return nullptr;
685 // Check the upper range comparison, e.g. x < n
686 ICmpInst::Predicate NewPred;
687 switch (Pred1) {
688 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
689 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
690 default: return nullptr;
693 // This simplification is only valid if the upper range is not negative.
694 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
695 if (!Known.isNonNegative())
696 return nullptr;
698 if (Inverted)
699 NewPred = ICmpInst::getInversePredicate(NewPred);
701 return Builder.CreateICmp(NewPred, Input, RangeEnd);
704 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
705 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
706 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
707 ICmpInst *RHS,
708 Instruction *CxtI,
709 bool IsAnd,
710 bool IsLogical) {
711 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
712 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
713 return nullptr;
715 if (!match(LHS->getOperand(1), m_Zero()) ||
716 !match(RHS->getOperand(1), m_Zero()))
717 return nullptr;
719 Value *L1, *L2, *R1, *R2;
720 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
721 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
722 if (L1 == R2 || L2 == R2)
723 std::swap(R1, R2);
724 if (L2 == R1)
725 std::swap(L1, L2);
727 if (L1 == R1 &&
728 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
729 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
730 // If this is a logical and/or, then we must prevent propagation of a
731 // poison value from the RHS by inserting freeze.
732 if (IsLogical)
733 R2 = Builder.CreateFreeze(R2);
734 Value *Mask = Builder.CreateOr(L2, R2);
735 Value *Masked = Builder.CreateAnd(L1, Mask);
736 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
737 return Builder.CreateICmp(NewPred, Masked, Mask);
741 return nullptr;
744 /// General pattern:
745 /// X & Y
747 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
748 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
749 /// Pattern can be one of:
750 /// %t = add i32 %arg, 128
751 /// %r = icmp ult i32 %t, 256
752 /// Or
753 /// %t0 = shl i32 %arg, 24
754 /// %t1 = ashr i32 %t0, 24
755 /// %r = icmp eq i32 %t1, %arg
756 /// Or
757 /// %t0 = trunc i32 %arg to i8
758 /// %t1 = sext i8 %t0 to i32
759 /// %r = icmp eq i32 %t1, %arg
760 /// This pattern is a signed truncation check.
762 /// And X is checking that some bit in that same mask is zero.
763 /// I.e. can be one of:
764 /// %r = icmp sgt i32 %arg, -1
765 /// Or
766 /// %t = and i32 %arg, 2147483648
767 /// %r = icmp eq i32 %t, 0
769 /// Since we are checking that all the bits in that mask are the same,
770 /// and a particular bit is zero, what we are really checking is that all the
771 /// masked bits are zero.
772 /// So this should be transformed to:
773 /// %r = icmp ult i32 %arg, 128
774 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
775 Instruction &CxtI,
776 InstCombiner::BuilderTy &Builder) {
777 assert(CxtI.getOpcode() == Instruction::And);
779 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
780 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
781 APInt &SignBitMask) -> bool {
782 CmpInst::Predicate Pred;
783 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
784 if (!(match(ICmp,
785 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
786 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
787 return false;
788 // Which bit is the new sign bit as per the 'signed truncation' pattern?
789 SignBitMask = *I01;
790 return true;
793 // One icmp needs to be 'signed truncation check'.
794 // We need to match this first, else we will mismatch commutative cases.
795 Value *X1;
796 APInt HighestBit;
797 ICmpInst *OtherICmp;
798 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
799 OtherICmp = ICmp0;
800 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
801 OtherICmp = ICmp1;
802 else
803 return nullptr;
805 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
807 // Try to match/decompose into: icmp eq (X & Mask), 0
808 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
809 APInt &UnsetBitsMask) -> bool {
810 CmpInst::Predicate Pred = ICmp->getPredicate();
811 // Can it be decomposed into icmp eq (X & Mask), 0 ?
812 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
813 Pred, X, UnsetBitsMask,
814 /*LookThroughTrunc=*/false) &&
815 Pred == ICmpInst::ICMP_EQ)
816 return true;
817 // Is it icmp eq (X & Mask), 0 already?
818 const APInt *Mask;
819 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
820 Pred == ICmpInst::ICMP_EQ) {
821 UnsetBitsMask = *Mask;
822 return true;
824 return false;
827 // And the other icmp needs to be decomposable into a bit test.
828 Value *X0;
829 APInt UnsetBitsMask;
830 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
831 return nullptr;
833 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
835 // Are they working on the same value?
836 Value *X;
837 if (X1 == X0) {
838 // Ok as is.
839 X = X1;
840 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
841 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
842 X = X1;
843 } else
844 return nullptr;
846 // So which bits should be uniform as per the 'signed truncation check'?
847 // (all the bits starting with (i.e. including) HighestBit)
848 APInt SignBitsMask = ~(HighestBit - 1U);
850 // UnsetBitsMask must have some common bits with SignBitsMask,
851 if (!UnsetBitsMask.intersects(SignBitsMask))
852 return nullptr;
854 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
855 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
856 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
857 if (!OtherHighestBit.isPowerOf2())
858 return nullptr;
859 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
861 // Else, if it does not, then all is ok as-is.
863 // %r = icmp ult %X, SignBit
864 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
865 CxtI.getName() + ".simplified");
868 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
869 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
870 /// Also used for logical and/or, must be poison safe.
871 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
872 InstCombiner::BuilderTy &Builder) {
873 CmpInst::Predicate Pred0, Pred1;
874 Value *X;
875 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
876 m_SpecificInt(1))) ||
877 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
878 return nullptr;
880 Value *CtPop = Cmp0->getOperand(0);
881 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
882 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
883 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
884 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
886 return nullptr;
889 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
890 /// Also used for logical and/or, must be poison safe.
891 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
892 InstCombiner::BuilderTy &Builder) {
893 // Handle 'and' / 'or' commutation: make the equality check the first operand.
894 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
895 std::swap(Cmp0, Cmp1);
896 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
897 std::swap(Cmp0, Cmp1);
899 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
900 CmpInst::Predicate Pred0, Pred1;
901 Value *X;
902 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
903 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
904 m_SpecificInt(2))) &&
905 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
906 Value *CtPop = Cmp1->getOperand(0);
907 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
909 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
910 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
911 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
912 m_SpecificInt(1))) &&
913 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
914 Value *CtPop = Cmp1->getOperand(0);
915 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
917 return nullptr;
920 /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
921 /// B is a contiguous set of ones starting from the most significant bit
922 /// (negative power of 2), D and E are equal, and D is a contiguous set of ones
923 /// starting at the most significant zero bit in B. Parameter B supports masking
924 /// using undef/poison in either scalar or vector values.
925 static Value *foldNegativePower2AndShiftedMask(
926 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
927 ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) {
928 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
929 "Expected equality predicates for masked type of icmps.");
930 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
931 return nullptr;
933 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
934 !match(E, m_ShiftedMask()))
935 return nullptr;
937 // Test scalar arguments for conversion. B has been validated earlier to be a
938 // negative power of two and thus is guaranteed to have one or more contiguous
939 // ones starting from the MSB followed by zero or more contiguous zeros. D has
940 // been validated earlier to be a shifted set of one or more contiguous ones.
941 // In order to match, B leading ones and D leading zeros should be equal. The
942 // predicate that B be a negative power of 2 prevents the condition of there
943 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
944 // D always be a shifted mask prevents the condition of D equaling 0. This
945 // prevents matching the condition where B contains the maximum number of
946 // leading one bits (-1) and D contains the maximum number of leading zero
947 // bits (0).
948 auto isReducible = [](const Value *B, const Value *D, const Value *E) {
949 const APInt *BCst, *DCst, *ECst;
950 return match(B, m_APIntAllowUndef(BCst)) && match(D, m_APInt(DCst)) &&
951 match(E, m_APInt(ECst)) && *DCst == *ECst &&
952 (isa<UndefValue>(B) ||
953 (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
956 // Test vector type arguments for conversion.
957 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
958 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
959 const auto *BConst = dyn_cast<Constant>(B);
960 const auto *DConst = dyn_cast<Constant>(D);
961 const auto *EConst = dyn_cast<Constant>(E);
963 if (!BFVTy || !BConst || !DConst || !EConst)
964 return nullptr;
966 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
967 const auto *BElt = BConst->getAggregateElement(I);
968 const auto *DElt = DConst->getAggregateElement(I);
969 const auto *EElt = EConst->getAggregateElement(I);
971 if (!BElt || !DElt || !EElt)
972 return nullptr;
973 if (!isReducible(BElt, DElt, EElt))
974 return nullptr;
976 } else {
977 // Test scalar type arguments for conversion.
978 if (!isReducible(B, D, E))
979 return nullptr;
981 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
984 /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
985 /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
986 /// M is a contiguous shifted mask starting at the right most significant zero
987 /// bit in P. SGT is supported as when P is the largest representable power of
988 /// 2, an earlier optimization converts the expression into (icmp X s> -1).
989 /// Parameter P supports masking using undef/poison in either scalar or vector
990 /// values.
991 static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1,
992 bool JoinedByAnd,
993 InstCombiner::BuilderTy &Builder) {
994 if (!JoinedByAnd)
995 return nullptr;
996 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
997 ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(),
998 CmpPred1 = Cmp1->getPredicate();
999 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
1000 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
1001 // SignMask) == 0).
1002 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1003 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
1004 if (!MaskPair)
1005 return nullptr;
1007 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
1008 unsigned CmpMask0 = MaskPair->first;
1009 unsigned CmpMask1 = MaskPair->second;
1010 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1011 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
1012 CmpPred1, Builder))
1013 return V;
1014 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
1015 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
1016 CmpPred0, Builder))
1017 return V;
1019 return nullptr;
1022 /// Commuted variants are assumed to be handled by calling this function again
1023 /// with the parameters swapped.
1024 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
1025 ICmpInst *UnsignedICmp, bool IsAnd,
1026 const SimplifyQuery &Q,
1027 InstCombiner::BuilderTy &Builder) {
1028 Value *ZeroCmpOp;
1029 ICmpInst::Predicate EqPred;
1030 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1031 !ICmpInst::isEquality(EqPred))
1032 return nullptr;
1034 auto IsKnownNonZero = [&](Value *V) {
1035 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1038 ICmpInst::Predicate UnsignedPred;
1040 Value *A, *B;
1041 if (match(UnsignedICmp,
1042 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1043 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1044 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1045 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1046 if (!IsKnownNonZero(NonZero))
1047 std::swap(NonZero, Other);
1048 return IsKnownNonZero(NonZero);
1051 // Given ZeroCmpOp = (A + B)
1052 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1053 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1054 // with X being the value (A/B) that is known to be non-zero,
1055 // and Y being remaining value.
1056 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1057 IsAnd && GetKnownNonZeroAndOther(B, A))
1058 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1059 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1060 !IsAnd && GetKnownNonZeroAndOther(B, A))
1061 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1064 return nullptr;
1067 struct IntPart {
1068 Value *From;
1069 unsigned StartBit;
1070 unsigned NumBits;
1073 /// Match an extraction of bits from an integer.
1074 static std::optional<IntPart> matchIntPart(Value *V) {
1075 Value *X;
1076 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1077 return std::nullopt;
1079 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1080 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1081 Value *Y;
1082 const APInt *Shift;
1083 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1084 // from Y, not any shifted-in zeroes.
1085 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1086 Shift->ule(NumOriginalBits - NumExtractedBits))
1087 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1088 return {{X, 0, NumExtractedBits}};
1091 /// Materialize an extraction of bits from an integer in IR.
1092 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1093 Value *V = P.From;
1094 if (P.StartBit)
1095 V = Builder.CreateLShr(V, P.StartBit);
1096 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1097 if (TruncTy != V->getType())
1098 V = Builder.CreateTrunc(V, TruncTy);
1099 return V;
1102 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1103 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1104 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1105 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1106 bool IsAnd) {
1107 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1108 return nullptr;
1110 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1111 auto GetMatchPart = [&](ICmpInst *Cmp,
1112 unsigned OpNo) -> std::optional<IntPart> {
1113 if (Pred == Cmp->getPredicate())
1114 return matchIntPart(Cmp->getOperand(OpNo));
1116 const APInt *C;
1117 // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to:
1118 // (icmp ult (xor x, y), 1 << C) so also look for that.
1119 if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) {
1120 if (!match(Cmp->getOperand(1), m_Power2(C)) ||
1121 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1122 return std::nullopt;
1125 // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to:
1126 // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that.
1127 else if (Pred == CmpInst::ICMP_NE &&
1128 Cmp->getPredicate() == CmpInst::ICMP_UGT) {
1129 if (!match(Cmp->getOperand(1), m_LowBitMask(C)) ||
1130 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1131 return std::nullopt;
1132 } else {
1133 return std::nullopt;
1136 unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero();
1137 Instruction *I = cast<Instruction>(Cmp->getOperand(0));
1138 return {{I->getOperand(OpNo), From, C->getBitWidth() - From}};
1141 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1142 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1143 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1144 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1145 if (!L0 || !R0 || !L1 || !R1)
1146 return nullptr;
1148 // Make sure the LHS/RHS compare a part of the same value, possibly after
1149 // an operand swap.
1150 if (L0->From != L1->From || R0->From != R1->From) {
1151 if (L0->From != R1->From || R0->From != L1->From)
1152 return nullptr;
1153 std::swap(L1, R1);
1156 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1157 // the low part and L1/R1 being the high part.
1158 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1159 R0->StartBit + R0->NumBits != R1->StartBit) {
1160 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1161 R1->StartBit + R1->NumBits != R0->StartBit)
1162 return nullptr;
1163 std::swap(L0, L1);
1164 std::swap(R0, R1);
1167 // We can simplify to a comparison of these larger parts of the integers.
1168 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1169 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1170 Value *LValue = extractIntPart(L, Builder);
1171 Value *RValue = extractIntPart(R, Builder);
1172 return Builder.CreateICmp(Pred, LValue, RValue);
1175 /// Reduce logic-of-compares with equality to a constant by substituting a
1176 /// common operand with the constant. Callers are expected to call this with
1177 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1178 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1179 bool IsAnd, bool IsLogical,
1180 InstCombiner::BuilderTy &Builder,
1181 const SimplifyQuery &Q) {
1182 // Match an equality compare with a non-poison constant as Cmp0.
1183 // Also, give up if the compare can be constant-folded to avoid looping.
1184 ICmpInst::Predicate Pred0;
1185 Value *X;
1186 Constant *C;
1187 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1188 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1189 return nullptr;
1190 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1191 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1192 return nullptr;
1194 // The other compare must include a common operand (X). Canonicalize the
1195 // common operand as operand 1 (Pred1 is swapped if the common operand was
1196 // operand 0).
1197 Value *Y;
1198 ICmpInst::Predicate Pred1;
1199 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1200 return nullptr;
1202 // Replace variable with constant value equivalence to remove a variable use:
1203 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1204 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1205 // Can think of the 'or' substitution with the 'and' bool equivalent:
1206 // A || B --> A || (!A && B)
1207 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1208 if (!SubstituteCmp) {
1209 // If we need to create a new instruction, require that the old compare can
1210 // be removed.
1211 if (!Cmp1->hasOneUse())
1212 return nullptr;
1213 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1215 if (IsLogical)
1216 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1217 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1218 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1219 SubstituteCmp);
1222 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1223 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1224 /// into a single comparison using range-based reasoning.
1225 /// NOTE: This is also used for logical and/or, must be poison-safe!
1226 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1227 ICmpInst *ICmp2,
1228 bool IsAnd) {
1229 ICmpInst::Predicate Pred1, Pred2;
1230 Value *V1, *V2;
1231 const APInt *C1, *C2;
1232 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1233 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1234 return nullptr;
1236 // Look through add of a constant offset on V1, V2, or both operands. This
1237 // allows us to interpret the V + C' < C'' range idiom into a proper range.
1238 const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1239 if (V1 != V2) {
1240 Value *X;
1241 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1242 V1 = X;
1243 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1244 V2 = X;
1247 if (V1 != V2)
1248 return nullptr;
1250 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1251 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1252 if (Offset1)
1253 CR1 = CR1.subtract(*Offset1);
1255 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1256 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1257 if (Offset2)
1258 CR2 = CR2.subtract(*Offset2);
1260 Type *Ty = V1->getType();
1261 Value *NewV = V1;
1262 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1263 if (!CR) {
1264 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1265 CR2.isWrappedSet())
1266 return nullptr;
1268 // Check whether we have equal-size ranges that only differ by one bit.
1269 // In that case we can apply a mask to map one range onto the other.
1270 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1271 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1272 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1273 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1274 CR1Size != CR2.getUpper() - CR2.getLower())
1275 return nullptr;
1277 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1278 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1281 if (IsAnd)
1282 CR = CR->inverse();
1284 CmpInst::Predicate NewPred;
1285 APInt NewC, Offset;
1286 CR->getEquivalentICmp(NewPred, NewC, Offset);
1288 if (Offset != 0)
1289 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1290 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1293 /// Ignore all operations which only change the sign of a value, returning the
1294 /// underlying magnitude value.
1295 static Value *stripSignOnlyFPOps(Value *Val) {
1296 match(Val, m_FNeg(m_Value(Val)));
1297 match(Val, m_FAbs(m_Value(Val)));
1298 match(Val, m_CopySign(m_Value(Val), m_Value()));
1299 return Val;
1302 /// Matches canonical form of isnan, fcmp ord x, 0
1303 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
1304 return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
1307 /// Matches fcmp u__ x, +/-inf
1308 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
1309 Value *RHS) {
1310 return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
1313 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1315 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1316 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
1317 FCmpInst *RHS) {
1318 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1319 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1320 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1322 if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1323 !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1324 return nullptr;
1326 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1327 FastMathFlags FMF = LHS->getFastMathFlags();
1328 FMF &= RHS->getFastMathFlags();
1329 Builder.setFastMathFlags(FMF);
1331 return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1);
1334 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1335 bool IsAnd, bool IsLogicalSelect) {
1336 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1337 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1338 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1340 if (LHS0 == RHS1 && RHS0 == LHS1) {
1341 // Swap RHS operands to match LHS.
1342 PredR = FCmpInst::getSwappedPredicate(PredR);
1343 std::swap(RHS0, RHS1);
1346 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1347 // Suppose the relation between x and y is R, where R is one of
1348 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1349 // testing the desired relations.
1351 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1352 // bool(R & CC0) && bool(R & CC1)
1353 // = bool((R & CC0) & (R & CC1))
1354 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1356 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1357 // bool(R & CC0) || bool(R & CC1)
1358 // = bool((R & CC0) | (R & CC1))
1359 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1360 if (LHS0 == RHS0 && LHS1 == RHS1) {
1361 unsigned FCmpCodeL = getFCmpCode(PredL);
1362 unsigned FCmpCodeR = getFCmpCode(PredR);
1363 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1365 // Intersect the fast math flags.
1366 // TODO: We can union the fast math flags unless this is a logical select.
1367 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1368 FastMathFlags FMF = LHS->getFastMathFlags();
1369 FMF &= RHS->getFastMathFlags();
1370 Builder.setFastMathFlags(FMF);
1372 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1375 // This transform is not valid for a logical select.
1376 if (!IsLogicalSelect &&
1377 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1378 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1379 !IsAnd))) {
1380 if (LHS0->getType() != RHS0->getType())
1381 return nullptr;
1383 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1384 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1385 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1386 // Ignore the constants because they are obviously not NANs:
1387 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1388 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1389 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1392 if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1393 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1394 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1395 if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
1396 return Left;
1397 if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
1398 return Right;
1401 // Turn at least two fcmps with constants into llvm.is.fpclass.
1403 // If we can represent a combined value test with one class call, we can
1404 // potentially eliminate 4-6 instructions. If we can represent a test with a
1405 // single fcmp with fneg and fabs, that's likely a better canonical form.
1406 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1407 auto [ClassValRHS, ClassMaskRHS] =
1408 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
1409 if (ClassValRHS) {
1410 auto [ClassValLHS, ClassMaskLHS] =
1411 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
1412 if (ClassValLHS == ClassValRHS) {
1413 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1414 : (ClassMaskLHS | ClassMaskRHS);
1415 return Builder.CreateIntrinsic(
1416 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1417 {ClassValLHS, Builder.getInt32(CombinedMask)});
1422 return nullptr;
1425 /// Match an fcmp against a special value that performs a test possible by
1426 /// llvm.is.fpclass.
1427 static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
1428 uint64_t &ClassMask) {
1429 auto *FCmp = dyn_cast<FCmpInst>(Op);
1430 if (!FCmp || !FCmp->hasOneUse())
1431 return false;
1433 std::tie(ClassVal, ClassMask) =
1434 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1435 FCmp->getOperand(0), FCmp->getOperand(1));
1436 return ClassVal != nullptr;
1439 /// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1440 /// -> is_fpclass x, (mask0 | mask1)
1441 /// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1442 /// -> is_fpclass x, (mask0 & mask1)
1443 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1444 /// -> is_fpclass x, (mask0 ^ mask1)
1445 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1446 Value *Op0, Value *Op1) {
1447 Value *ClassVal0 = nullptr;
1448 Value *ClassVal1 = nullptr;
1449 uint64_t ClassMask0, ClassMask1;
1451 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
1452 // new class.
1454 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
1455 // better.
1457 bool IsLHSClass =
1458 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1459 m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
1460 bool IsRHSClass =
1461 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1462 m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
1463 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
1464 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
1465 ClassVal0 == ClassVal1) {
1466 unsigned NewClassMask;
1467 switch (BO.getOpcode()) {
1468 case Instruction::And:
1469 NewClassMask = ClassMask0 & ClassMask1;
1470 break;
1471 case Instruction::Or:
1472 NewClassMask = ClassMask0 | ClassMask1;
1473 break;
1474 case Instruction::Xor:
1475 NewClassMask = ClassMask0 ^ ClassMask1;
1476 break;
1477 default:
1478 llvm_unreachable("not a binary logic operator");
1481 if (IsLHSClass) {
1482 auto *II = cast<IntrinsicInst>(Op0);
1483 II->setArgOperand(
1484 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1485 return replaceInstUsesWith(BO, II);
1488 if (IsRHSClass) {
1489 auto *II = cast<IntrinsicInst>(Op1);
1490 II->setArgOperand(
1491 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1492 return replaceInstUsesWith(BO, II);
1495 CallInst *NewClass =
1496 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
1497 {ClassVal0, Builder.getInt32(NewClassMask)});
1498 return replaceInstUsesWith(BO, NewClass);
1501 return nullptr;
1504 /// Look for the pattern that conditionally negates a value via math operations:
1505 /// cond.splat = sext i1 cond
1506 /// sub = add cond.splat, x
1507 /// xor = xor sub, cond.splat
1508 /// and rewrite it to do the same, but via logical operations:
1509 /// value.neg = sub 0, value
1510 /// cond = select i1 neg, value.neg, value
1511 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1512 BinaryOperator &I) {
1513 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1514 Value *Cond, *X;
1515 // As per complexity ordering, `xor` is not commutative here.
1516 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1517 !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1518 !Cond->getType()->isIntOrIntVectorTy(1) ||
1519 !match(I.getOperand(0), m_c_Add(m_SExt(m_Deferred(Cond)), m_Value(X))))
1520 return nullptr;
1521 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1525 /// This a limited reassociation for a special case (see above) where we are
1526 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1527 /// This could be handled more generally in '-reassociation', but it seems like
1528 /// an unlikely pattern for a large number of logic ops and fcmps.
1529 static Instruction *reassociateFCmps(BinaryOperator &BO,
1530 InstCombiner::BuilderTy &Builder) {
1531 Instruction::BinaryOps Opcode = BO.getOpcode();
1532 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1533 "Expecting and/or op for fcmp transform");
1535 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1536 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1537 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1538 FCmpInst::Predicate Pred;
1539 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1540 std::swap(Op0, Op1);
1542 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1543 Value *BO10, *BO11;
1544 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1545 : FCmpInst::FCMP_UNO;
1546 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1547 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1548 return nullptr;
1550 // The inner logic op must have a matching fcmp operand.
1551 Value *Y;
1552 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1553 Pred != NanPred || X->getType() != Y->getType())
1554 std::swap(BO10, BO11);
1556 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1557 Pred != NanPred || X->getType() != Y->getType())
1558 return nullptr;
1560 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1561 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1562 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1563 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1564 // Intersect FMF from the 2 source fcmps.
1565 NewFCmpInst->copyIRFlags(Op0);
1566 NewFCmpInst->andIRFlags(BO10);
1568 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1571 /// Match variations of De Morgan's Laws:
1572 /// (~A & ~B) == (~(A | B))
1573 /// (~A | ~B) == (~(A & B))
1574 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1575 InstCombiner &IC) {
1576 const Instruction::BinaryOps Opcode = I.getOpcode();
1577 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1578 "Trying to match De Morgan's Laws with something other than and/or");
1580 // Flip the logic operation.
1581 const Instruction::BinaryOps FlippedOpcode =
1582 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1584 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1585 Value *A, *B;
1586 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1587 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1588 !IC.isFreeToInvert(A, A->hasOneUse()) &&
1589 !IC.isFreeToInvert(B, B->hasOneUse())) {
1590 Value *AndOr =
1591 IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1592 return BinaryOperator::CreateNot(AndOr);
1595 // The 'not' ops may require reassociation.
1596 // (A & ~B) & ~C --> A & ~(B | C)
1597 // (~B & A) & ~C --> A & ~(B | C)
1598 // (A | ~B) | ~C --> A | ~(B & C)
1599 // (~B | A) | ~C --> A | ~(B & C)
1600 Value *C;
1601 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1602 match(Op1, m_Not(m_Value(C)))) {
1603 Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C);
1604 return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO));
1607 return nullptr;
1610 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1611 Value *CastSrc = CI->getOperand(0);
1613 // Noop casts and casts of constants should be eliminated trivially.
1614 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1615 return false;
1617 // If this cast is paired with another cast that can be eliminated, we prefer
1618 // to have it eliminated.
1619 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1620 if (isEliminableCastPair(PrecedingCI, CI))
1621 return false;
1623 return true;
1626 /// Fold {and,or,xor} (cast X), C.
1627 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1628 InstCombinerImpl &IC) {
1629 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1630 if (!C)
1631 return nullptr;
1633 auto LogicOpc = Logic.getOpcode();
1634 Type *DestTy = Logic.getType();
1635 Type *SrcTy = Cast->getSrcTy();
1637 // Move the logic operation ahead of a zext or sext if the constant is
1638 // unchanged in the smaller source type. Performing the logic in a smaller
1639 // type may provide more information to later folds, and the smaller logic
1640 // instruction may be cheaper (particularly in the case of vectors).
1641 Value *X;
1642 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1643 if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) {
1644 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1645 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1646 return new ZExtInst(NewOp, DestTy);
1650 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1651 if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) {
1652 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1653 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1654 return new SExtInst(NewOp, DestTy);
1658 return nullptr;
1661 /// Fold {and,or,xor} (cast X), Y.
1662 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1663 auto LogicOpc = I.getOpcode();
1664 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1666 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1668 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the
1669 // type of A)
1670 // -> bitwise(zext(A < 0), zext(icmp))
1671 // -> zext(bitwise(A < 0, icmp))
1672 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
1673 Value *Op1) -> Instruction * {
1674 ICmpInst::Predicate Pred;
1675 Value *A;
1676 bool IsMatched =
1677 match(Op0,
1678 m_OneUse(m_LShr(
1679 m_Value(A),
1680 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
1681 match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value()))));
1683 if (!IsMatched)
1684 return nullptr;
1686 auto *ICmpL =
1687 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
1688 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
1689 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1691 return new ZExtInst(BitwiseOp, Op0->getType());
1694 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1695 return Ret;
1697 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1698 return Ret;
1700 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1701 if (!Cast0)
1702 return nullptr;
1704 // This must be a cast from an integer or integer vector source type to allow
1705 // transformation of the logic operation to the source type.
1706 Type *DestTy = I.getType();
1707 Type *SrcTy = Cast0->getSrcTy();
1708 if (!SrcTy->isIntOrIntVectorTy())
1709 return nullptr;
1711 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this))
1712 return Ret;
1714 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1715 if (!Cast1)
1716 return nullptr;
1718 // Both operands of the logic operation are casts. The casts must be the
1719 // same kind for reduction.
1720 Instruction::CastOps CastOpcode = Cast0->getOpcode();
1721 if (CastOpcode != Cast1->getOpcode())
1722 return nullptr;
1724 // If the source types do not match, but the casts are matching extends, we
1725 // can still narrow the logic op.
1726 if (SrcTy != Cast1->getSrcTy()) {
1727 Value *X, *Y;
1728 if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
1729 match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
1730 // Cast the narrower source to the wider source type.
1731 unsigned XNumBits = X->getType()->getScalarSizeInBits();
1732 unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1733 if (XNumBits < YNumBits)
1734 X = Builder.CreateCast(CastOpcode, X, Y->getType());
1735 else
1736 Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1737 // Do the logic op in the intermediate width, then widen more.
1738 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
1739 return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1742 // Give up for other cast opcodes.
1743 return nullptr;
1746 Value *Cast0Src = Cast0->getOperand(0);
1747 Value *Cast1Src = Cast1->getOperand(0);
1749 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1750 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1751 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1752 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1753 I.getName());
1754 return CastInst::Create(CastOpcode, NewOp, DestTy);
1757 return nullptr;
1760 static Instruction *foldAndToXor(BinaryOperator &I,
1761 InstCombiner::BuilderTy &Builder) {
1762 assert(I.getOpcode() == Instruction::And);
1763 Value *Op0 = I.getOperand(0);
1764 Value *Op1 = I.getOperand(1);
1765 Value *A, *B;
1767 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1768 // (A | B) & ~(A & B) --> A ^ B
1769 // (A | B) & ~(B & A) --> A ^ B
1770 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1771 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1772 return BinaryOperator::CreateXor(A, B);
1774 // (A | ~B) & (~A | B) --> ~(A ^ B)
1775 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1776 // (~B | A) & (~A | B) --> ~(A ^ B)
1777 // (~B | A) & (B | ~A) --> ~(A ^ B)
1778 if (Op0->hasOneUse() || Op1->hasOneUse())
1779 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1780 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1781 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1783 return nullptr;
1786 static Instruction *foldOrToXor(BinaryOperator &I,
1787 InstCombiner::BuilderTy &Builder) {
1788 assert(I.getOpcode() == Instruction::Or);
1789 Value *Op0 = I.getOperand(0);
1790 Value *Op1 = I.getOperand(1);
1791 Value *A, *B;
1793 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1794 // (A & B) | ~(A | B) --> ~(A ^ B)
1795 // (A & B) | ~(B | A) --> ~(A ^ B)
1796 if (Op0->hasOneUse() || Op1->hasOneUse())
1797 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1798 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1799 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1801 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1802 // (A ^ B) | ~(A | B) --> ~(A & B)
1803 // (A ^ B) | ~(B | A) --> ~(A & B)
1804 if (Op0->hasOneUse() || Op1->hasOneUse())
1805 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1806 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1807 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1809 // (A & ~B) | (~A & B) --> A ^ B
1810 // (A & ~B) | (B & ~A) --> A ^ B
1811 // (~B & A) | (~A & B) --> A ^ B
1812 // (~B & A) | (B & ~A) --> A ^ B
1813 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1814 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1815 return BinaryOperator::CreateXor(A, B);
1817 return nullptr;
1820 /// Return true if a constant shift amount is always less than the specified
1821 /// bit-width. If not, the shift could create poison in the narrower type.
1822 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1823 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1824 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1827 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1828 /// a common zext operand: and (binop (zext X), C), (zext X).
1829 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1830 // This transform could also apply to {or, and, xor}, but there are better
1831 // folds for those cases, so we don't expect those patterns here. AShr is not
1832 // handled because it should always be transformed to LShr in this sequence.
1833 // The subtract transform is different because it has a constant on the left.
1834 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1835 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1836 Constant *C;
1837 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1838 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1839 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1840 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1841 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1842 return nullptr;
1844 Value *X;
1845 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1846 return nullptr;
1848 Type *Ty = And.getType();
1849 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1850 return nullptr;
1852 // If we're narrowing a shift, the shift amount must be safe (less than the
1853 // width) in the narrower type. If the shift amount is greater, instsimplify
1854 // usually handles that case, but we can't guarantee/assert it.
1855 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1856 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1857 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1858 return nullptr;
1860 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1861 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1862 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1863 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1864 : Builder.CreateBinOp(Opc, X, NewC);
1865 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1868 /// Try folding relatively complex patterns for both And and Or operations
1869 /// with all And and Or swapped.
1870 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1871 InstCombiner::BuilderTy &Builder) {
1872 const Instruction::BinaryOps Opcode = I.getOpcode();
1873 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1875 // Flip the logic operation.
1876 const Instruction::BinaryOps FlippedOpcode =
1877 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1879 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1880 Value *A, *B, *C, *X, *Y, *Dummy;
1882 // Match following expressions:
1883 // (~(A | B) & C)
1884 // (~(A & B) | C)
1885 // Captures X = ~(A | B) or ~(A & B)
1886 const auto matchNotOrAnd =
1887 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1888 Value *&X, bool CountUses = false) -> bool {
1889 if (CountUses && !Op->hasOneUse())
1890 return false;
1892 if (match(Op, m_c_BinOp(FlippedOpcode,
1893 m_CombineAnd(m_Value(X),
1894 m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1895 m_C)))
1896 return !CountUses || X->hasOneUse();
1898 return false;
1901 // (~(A | B) & C) | ... --> ...
1902 // (~(A & B) | C) & ... --> ...
1903 // TODO: One use checks are conservative. We just need to check that a total
1904 // number of multiple used values does not exceed reduction
1905 // in operations.
1906 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1907 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1908 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1909 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1910 true)) {
1911 Value *Xor = Builder.CreateXor(B, C);
1912 return (Opcode == Instruction::Or)
1913 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1914 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1917 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1918 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1919 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
1920 true)) {
1921 Value *Xor = Builder.CreateXor(A, C);
1922 return (Opcode == Instruction::Or)
1923 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1924 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1927 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1928 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
1929 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1930 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1931 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1932 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
1934 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
1935 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
1936 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1937 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
1938 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1939 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
1941 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
1942 // Note, the pattern with swapped and/or is not handled because the
1943 // result is more undefined than a source:
1944 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
1945 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
1946 match(Op1, m_OneUse(m_Not(m_CombineAnd(
1947 m_Value(Y),
1948 m_c_BinOp(Opcode, m_Specific(C),
1949 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
1950 // X = ~(A | B)
1951 // Y = (C | (A ^ B)
1952 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
1953 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
1957 // (~A & B & C) | ... --> ...
1958 // (~A | B | C) | ... --> ...
1959 // TODO: One use checks are conservative. We just need to check that a total
1960 // number of multiple used values does not exceed reduction
1961 // in operations.
1962 if (match(Op0,
1963 m_OneUse(m_c_BinOp(FlippedOpcode,
1964 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
1965 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
1966 match(Op0, m_OneUse(m_c_BinOp(
1967 FlippedOpcode,
1968 m_c_BinOp(FlippedOpcode, m_Value(C),
1969 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
1970 m_Value(B))))) {
1971 // X = ~A
1972 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
1973 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
1974 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
1975 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
1976 m_Specific(C))))) ||
1977 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1978 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
1979 m_Specific(A))))) ||
1980 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1981 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
1982 m_Specific(B)))))) {
1983 Value *Xor = Builder.CreateXor(B, C);
1984 return (Opcode == Instruction::Or)
1985 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
1986 : BinaryOperator::CreateOr(Xor, X);
1989 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
1990 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
1991 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1992 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
1993 return BinaryOperator::Create(
1994 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
1997 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
1998 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
1999 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2000 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2001 return BinaryOperator::Create(
2002 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
2006 return nullptr;
2009 /// Try to reassociate a pair of binops so that values with one use only are
2010 /// part of the same instruction. This may enable folds that are limited with
2011 /// multi-use restrictions and makes it more likely to match other patterns that
2012 /// are looking for a common operand.
2013 static Instruction *reassociateForUses(BinaryOperator &BO,
2014 InstCombinerImpl::BuilderTy &Builder) {
2015 Instruction::BinaryOps Opcode = BO.getOpcode();
2016 Value *X, *Y, *Z;
2017 if (match(&BO,
2018 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
2019 m_OneUse(m_Value(Z))))) {
2020 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
2021 // (X op Y) op Z --> (Y op Z) op X
2022 if (!X->hasOneUse()) {
2023 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
2024 return BinaryOperator::Create(Opcode, YZ, X);
2026 // (X op Y) op Z --> (X op Z) op Y
2027 if (!Y->hasOneUse()) {
2028 Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
2029 return BinaryOperator::Create(Opcode, XZ, Y);
2034 return nullptr;
2037 // Match
2038 // (X + C2) | C
2039 // (X + C2) ^ C
2040 // (X + C2) & C
2041 // and convert to do the bitwise logic first:
2042 // (X | C) + C2
2043 // (X ^ C) + C2
2044 // (X & C) + C2
2045 // iff bits affected by logic op are lower than last bit affected by math op
2046 static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
2047 InstCombiner::BuilderTy &Builder) {
2048 Type *Ty = I.getType();
2049 Instruction::BinaryOps OpC = I.getOpcode();
2050 Value *Op0 = I.getOperand(0);
2051 Value *Op1 = I.getOperand(1);
2052 Value *X;
2053 const APInt *C, *C2;
2055 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
2056 match(Op1, m_APInt(C))))
2057 return nullptr;
2059 unsigned Width = Ty->getScalarSizeInBits();
2060 unsigned LastOneMath = Width - C2->countr_zero();
2062 switch (OpC) {
2063 case Instruction::And:
2064 if (C->countl_one() < LastOneMath)
2065 return nullptr;
2066 break;
2067 case Instruction::Xor:
2068 case Instruction::Or:
2069 if (C->countl_zero() < LastOneMath)
2070 return nullptr;
2071 break;
2072 default:
2073 llvm_unreachable("Unexpected BinaryOp!");
2076 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
2077 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
2078 ConstantInt::get(Ty, *C2), Op0);
2081 // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
2082 // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
2083 // where both shifts are the same and AddC is a valid shift amount.
2084 Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
2085 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
2086 "Unexpected opcode");
2088 Value *ShAmt;
2089 Constant *ShiftedC1, *ShiftedC2, *AddC;
2090 Type *Ty = I.getType();
2091 unsigned BitWidth = Ty->getScalarSizeInBits();
2092 if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
2093 m_Shift(m_ImmConstant(ShiftedC2),
2094 m_AddLike(m_Deferred(ShAmt),
2095 m_ImmConstant(AddC))))))
2096 return nullptr;
2098 // Make sure the add constant is a valid shift amount.
2099 if (!match(AddC,
2100 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth))))
2101 return nullptr;
2103 // Avoid constant expressions.
2104 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
2105 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
2106 if (!Op0Inst || !Op1Inst)
2107 return nullptr;
2109 // Both shifts must be the same.
2110 Instruction::BinaryOps ShiftOp =
2111 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
2112 if (ShiftOp != Op1Inst->getOpcode())
2113 return nullptr;
2115 // For adds, only left shifts are supported.
2116 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2117 return nullptr;
2119 Value *NewC = Builder.CreateBinOp(
2120 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2121 return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
2124 // Fold and/or/xor with two equal intrinsic IDs:
2125 // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt))
2126 // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt)
2127 // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt))
2128 // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt)
2129 // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B))
2130 // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C)))
2131 // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B))
2132 // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C)))
2133 static Instruction *
2134 foldBitwiseLogicWithIntrinsics(BinaryOperator &I,
2135 InstCombiner::BuilderTy &Builder) {
2136 assert(I.isBitwiseLogicOp() && "Should and/or/xor");
2137 if (!I.getOperand(0)->hasOneUse())
2138 return nullptr;
2139 IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0));
2140 if (!X)
2141 return nullptr;
2143 IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1));
2144 if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID()))
2145 return nullptr;
2147 Intrinsic::ID IID = X->getIntrinsicID();
2148 const APInt *RHSC;
2149 // Try to match constant RHS.
2150 if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2151 !match(I.getOperand(1), m_APInt(RHSC))))
2152 return nullptr;
2154 switch (IID) {
2155 case Intrinsic::fshl:
2156 case Intrinsic::fshr: {
2157 if (X->getOperand(2) != Y->getOperand(2))
2158 return nullptr;
2159 Value *NewOp0 =
2160 Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0));
2161 Value *NewOp1 =
2162 Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1));
2163 Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType());
2164 return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)});
2166 case Intrinsic::bswap:
2167 case Intrinsic::bitreverse: {
2168 Value *NewOp0 = Builder.CreateBinOp(
2169 I.getOpcode(), X->getOperand(0),
2170 Y ? Y->getOperand(0)
2171 : ConstantInt::get(I.getType(), IID == Intrinsic::bswap
2172 ? RHSC->byteSwap()
2173 : RHSC->reverseBits()));
2174 Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType());
2175 return CallInst::Create(F, {NewOp0});
2177 default:
2178 return nullptr;
2182 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2183 // here. We should standardize that construct where it is needed or choose some
2184 // other way to ensure that commutated variants of patterns are not missed.
2185 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
2186 Type *Ty = I.getType();
2188 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
2189 SQ.getWithInstruction(&I)))
2190 return replaceInstUsesWith(I, V);
2192 if (SimplifyAssociativeOrCommutative(I))
2193 return &I;
2195 if (Instruction *X = foldVectorBinop(I))
2196 return X;
2198 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2199 return Phi;
2201 // See if we can simplify any instructions used by the instruction whose sole
2202 // purpose is to compute bits we don't care about.
2203 if (SimplifyDemandedInstructionBits(I))
2204 return &I;
2206 // Do this before using distributive laws to catch simple and/or/not patterns.
2207 if (Instruction *Xor = foldAndToXor(I, Builder))
2208 return Xor;
2210 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2211 return X;
2213 // (A|B)&(A|C) -> A|(B&C) etc
2214 if (Value *V = foldUsingDistributiveLaws(I))
2215 return replaceInstUsesWith(I, V);
2217 if (Instruction *R = foldBinOpShiftWithShift(I))
2218 return R;
2220 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2222 Value *X, *Y;
2223 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
2224 match(Op1, m_One())) {
2225 // (1 << X) & 1 --> zext(X == 0)
2226 // (1 >> X) & 1 --> zext(X == 0)
2227 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
2228 return new ZExtInst(IsZero, Ty);
2231 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
2232 Value *Neg;
2233 if (match(&I,
2234 m_c_And(m_CombineAnd(m_Value(Neg),
2235 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
2236 m_Value(Y)))) {
2237 Value *Cmp = Builder.CreateIsNull(Neg);
2238 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
2241 // Canonicalize:
2242 // (X +/- Y) & Y --> ~X & Y when Y is a power of 2.
2243 if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr(
2244 m_c_Add(m_Value(X), m_Deferred(Y)),
2245 m_Sub(m_Value(X), m_Deferred(Y)))))) &&
2246 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I))
2247 return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y);
2249 const APInt *C;
2250 if (match(Op1, m_APInt(C))) {
2251 const APInt *XorC;
2252 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
2253 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2254 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
2255 Value *And = Builder.CreateAnd(X, Op1);
2256 And->takeName(Op0);
2257 return BinaryOperator::CreateXor(And, NewC);
2260 const APInt *OrC;
2261 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2262 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2263 // NOTE: This reduces the number of bits set in the & mask, which
2264 // can expose opportunities for store narrowing for scalars.
2265 // NOTE: SimplifyDemandedBits should have already removed bits from C1
2266 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2267 // above, but this feels safer.
2268 APInt Together = *C & *OrC;
2269 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2270 And->takeName(Op0);
2271 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2274 unsigned Width = Ty->getScalarSizeInBits();
2275 const APInt *ShiftC;
2276 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2277 ShiftC->ult(Width)) {
2278 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2279 // We are clearing high bits that were potentially set by sext+ashr:
2280 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2281 Value *Sext = Builder.CreateSExt(X, Ty);
2282 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2283 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2287 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2288 // and (ashr X, ShiftC), C --> lshr X, ShiftC
2289 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2290 C->isMask(Width - ShiftC->getZExtValue()))
2291 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2293 const APInt *AddC;
2294 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2295 // If we are masking the result of the add down to exactly one bit and
2296 // the constant we are adding has no bits set below that bit, then the
2297 // add is flipping a single bit. Example:
2298 // (X + 4) & 4 --> (X & 4) ^ 4
2299 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2300 assert((*C & *AddC) != 0 && "Expected common bit");
2301 Value *NewAnd = Builder.CreateAnd(X, Op1);
2302 return BinaryOperator::CreateXor(NewAnd, Op1);
2306 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2307 // bitwidth of X and OP behaves well when given trunc(C1) and X.
2308 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2309 switch (B->getOpcode()) {
2310 case Instruction::Xor:
2311 case Instruction::Or:
2312 case Instruction::Mul:
2313 case Instruction::Add:
2314 case Instruction::Sub:
2315 return true;
2316 default:
2317 return false;
2320 BinaryOperator *BO;
2321 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2322 Instruction::BinaryOps BOpcode = BO->getOpcode();
2323 Value *X;
2324 const APInt *C1;
2325 // TODO: The one-use restrictions could be relaxed a little if the AND
2326 // is going to be removed.
2327 // Try to narrow the 'and' and a binop with constant operand:
2328 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2329 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2330 C->isIntN(X->getType()->getScalarSizeInBits())) {
2331 unsigned XWidth = X->getType()->getScalarSizeInBits();
2332 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2333 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2334 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2335 : Builder.CreateBinOp(BOpcode, TruncC1, X);
2336 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2337 Value *And = Builder.CreateAnd(BinOp, TruncC);
2338 return new ZExtInst(And, Ty);
2341 // Similar to above: if the mask matches the zext input width, then the
2342 // 'and' can be eliminated, so we can truncate the other variable op:
2343 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2344 if (isa<Instruction>(BO->getOperand(0)) &&
2345 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2346 C->isMask(X->getType()->getScalarSizeInBits())) {
2347 Y = BO->getOperand(1);
2348 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2349 Value *NewBO =
2350 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2351 return new ZExtInst(NewBO, Ty);
2353 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2354 if (isa<Instruction>(BO->getOperand(1)) &&
2355 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2356 C->isMask(X->getType()->getScalarSizeInBits())) {
2357 Y = BO->getOperand(0);
2358 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2359 Value *NewBO =
2360 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2361 return new ZExtInst(NewBO, Ty);
2365 // This is intentionally placed after the narrowing transforms for
2366 // efficiency (transform directly to the narrow logic op if possible).
2367 // If the mask is only needed on one incoming arm, push the 'and' op up.
2368 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2369 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2370 APInt NotAndMask(~(*C));
2371 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2372 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
2373 // Not masking anything out for the LHS, move mask to RHS.
2374 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2375 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2376 return BinaryOperator::Create(BinOp, X, NewRHS);
2378 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
2379 // Not masking anything out for the RHS, move mask to LHS.
2380 // and ({x}or X, Y), C --> {x}or (and X, C), Y
2381 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2382 return BinaryOperator::Create(BinOp, NewLHS, Y);
2386 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2387 // constant, test if the shift amount equals the offset bit index:
2388 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2389 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2390 if (C->isPowerOf2() &&
2391 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2392 int Log2ShiftC = ShiftC->exactLogBase2();
2393 int Log2C = C->exactLogBase2();
2394 bool IsShiftLeft =
2395 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2396 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2397 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2398 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2399 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2400 ConstantInt::getNullValue(Ty));
2403 Constant *C1, *C2;
2404 const APInt *C3 = C;
2405 Value *X;
2406 if (C3->isPowerOf2()) {
2407 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
2408 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
2409 m_ImmConstant(C2)))) &&
2410 match(C1, m_Power2())) {
2411 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2412 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2413 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
2414 if (KnownLShrc.getMaxValue().ult(Width)) {
2415 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2416 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2417 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2418 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2419 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2420 ConstantInt::getNullValue(Ty));
2424 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
2425 m_ImmConstant(C2)))) &&
2426 match(C1, m_Power2())) {
2427 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2428 Constant *Cmp =
2429 ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
2430 if (Cmp->isZeroValue()) {
2431 // iff C1,C3 is pow2 and Log2(C3) >= C2:
2432 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2433 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2434 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2435 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2436 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2437 ConstantInt::getNullValue(Ty));
2443 // If we are clearing the sign bit of a floating-point value, convert this to
2444 // fabs, then cast back to integer.
2446 // This is a generous interpretation for noimplicitfloat, this is not a true
2447 // floating-point operation.
2449 // Assumes any IEEE-represented type has the sign bit in the high bit.
2450 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
2451 Value *CastOp;
2452 if (match(Op0, m_BitCast(m_Value(CastOp))) &&
2453 match(Op1, m_MaxSignedValue()) &&
2454 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2455 Attribute::NoImplicitFloat)) {
2456 Type *EltTy = CastOp->getType()->getScalarType();
2457 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
2458 EltTy->getPrimitiveSizeInBits() ==
2459 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
2460 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2461 return new BitCastInst(FAbs, I.getType());
2465 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2466 m_SignMask())) &&
2467 match(Y, m_SpecificInt_ICMP(
2468 ICmpInst::Predicate::ICMP_EQ,
2469 APInt(Ty->getScalarSizeInBits(),
2470 Ty->getScalarSizeInBits() -
2471 X->getType()->getScalarSizeInBits())))) {
2472 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2473 auto *SanitizedSignMask = cast<Constant>(Op1);
2474 // We must be careful with the undef elements of the sign bit mask, however:
2475 // the mask elt can be undef iff the shift amount for that lane was undef,
2476 // otherwise we need to sanitize undef masks to zero.
2477 SanitizedSignMask = Constant::replaceUndefsWith(
2478 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
2479 SanitizedSignMask =
2480 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2481 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2484 if (Instruction *Z = narrowMaskedBinOp(I))
2485 return Z;
2487 if (I.getType()->isIntOrIntVectorTy(1)) {
2488 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2489 if (auto *R =
2490 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2491 return R;
2493 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2494 if (auto *R =
2495 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2496 return R;
2500 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2501 return FoldedLogic;
2503 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
2504 return DeMorgan;
2507 Value *A, *B, *C;
2508 // A & (A ^ B) --> A & ~B
2509 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2510 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2511 // (A ^ B) & A --> A & ~B
2512 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2513 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2515 // A & ~(A ^ B) --> A & B
2516 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2517 return BinaryOperator::CreateAnd(Op0, B);
2518 // ~(A ^ B) & A --> A & B
2519 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2520 return BinaryOperator::CreateAnd(Op1, B);
2522 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2523 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2524 match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) {
2525 Value *NotC = Op1->hasOneUse()
2526 ? Builder.CreateNot(C)
2527 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2528 if (NotC != nullptr)
2529 return BinaryOperator::CreateAnd(Op0, NotC);
2532 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2533 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) &&
2534 match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) {
2535 Value *NotC = Op0->hasOneUse()
2536 ? Builder.CreateNot(C)
2537 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2538 if (NotC != nullptr)
2539 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2542 // (A | B) & (~A ^ B) -> A & B
2543 // (A | B) & (B ^ ~A) -> A & B
2544 // (B | A) & (~A ^ B) -> A & B
2545 // (B | A) & (B ^ ~A) -> A & B
2546 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2547 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2548 return BinaryOperator::CreateAnd(A, B);
2550 // (~A ^ B) & (A | B) -> A & B
2551 // (~A ^ B) & (B | A) -> A & B
2552 // (B ^ ~A) & (A | B) -> A & B
2553 // (B ^ ~A) & (B | A) -> A & B
2554 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2555 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2556 return BinaryOperator::CreateAnd(A, B);
2558 // (~A | B) & (A ^ B) -> ~A & B
2559 // (~A | B) & (B ^ A) -> ~A & B
2560 // (B | ~A) & (A ^ B) -> ~A & B
2561 // (B | ~A) & (B ^ A) -> ~A & B
2562 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2563 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2564 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2566 // (A ^ B) & (~A | B) -> ~A & B
2567 // (B ^ A) & (~A | B) -> ~A & B
2568 // (A ^ B) & (B | ~A) -> ~A & B
2569 // (B ^ A) & (B | ~A) -> ~A & B
2570 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2571 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2572 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2576 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2577 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2578 if (LHS && RHS)
2579 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2580 return replaceInstUsesWith(I, Res);
2582 // TODO: Make this recursive; it's a little tricky because an arbitrary
2583 // number of 'and' instructions might have to be created.
2584 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2585 bool IsLogical = isa<SelectInst>(Op1);
2586 // LHS & (X && Y) --> (LHS && X) && Y
2587 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2588 if (Value *Res =
2589 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2590 return replaceInstUsesWith(I, IsLogical
2591 ? Builder.CreateLogicalAnd(Res, Y)
2592 : Builder.CreateAnd(Res, Y));
2593 // LHS & (X && Y) --> X && (LHS & Y)
2594 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2595 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2596 /* IsLogical */ false))
2597 return replaceInstUsesWith(I, IsLogical
2598 ? Builder.CreateLogicalAnd(X, Res)
2599 : Builder.CreateAnd(X, Res));
2601 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2602 bool IsLogical = isa<SelectInst>(Op0);
2603 // (X && Y) & RHS --> (X && RHS) && Y
2604 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2605 if (Value *Res =
2606 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2607 return replaceInstUsesWith(I, IsLogical
2608 ? Builder.CreateLogicalAnd(Res, Y)
2609 : Builder.CreateAnd(Res, Y));
2610 // (X && Y) & RHS --> X && (Y & RHS)
2611 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2612 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2613 /* IsLogical */ false))
2614 return replaceInstUsesWith(I, IsLogical
2615 ? Builder.CreateLogicalAnd(X, Res)
2616 : Builder.CreateAnd(X, Res));
2620 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2621 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2622 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2623 return replaceInstUsesWith(I, Res);
2625 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2626 return FoldedFCmps;
2628 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2629 return CastedAnd;
2631 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2632 return Sel;
2634 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2635 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2636 // with binop identity constant. But creating a select with non-constant
2637 // arm may not be reversible due to poison semantics. Is that a good
2638 // canonicalization?
2639 Value *A, *B;
2640 if (match(&I, m_c_And(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
2641 A->getType()->isIntOrIntVectorTy(1))
2642 return SelectInst::Create(A, B, Constant::getNullValue(Ty));
2644 // Similarly, a 'not' of the bool translates to a swap of the select arms:
2645 // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
2646 if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
2647 A->getType()->isIntOrIntVectorTy(1))
2648 return SelectInst::Create(A, Constant::getNullValue(Ty), B);
2650 // and(zext(A), B) -> A ? (B & 1) : 0
2651 if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) &&
2652 A->getType()->isIntOrIntVectorTy(1))
2653 return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)),
2654 Constant::getNullValue(Ty));
2656 // (-1 + A) & B --> A ? 0 : B where A is 0/1.
2657 if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())),
2658 m_Value(B)))) {
2659 if (A->getType()->isIntOrIntVectorTy(1))
2660 return SelectInst::Create(A, Constant::getNullValue(Ty), B);
2661 if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) {
2662 return SelectInst::Create(
2663 Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B,
2664 Constant::getNullValue(Ty));
2668 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2669 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2670 m_AShr(m_Value(X), m_APIntAllowUndef(C)))),
2671 m_Value(Y))) &&
2672 *C == X->getType()->getScalarSizeInBits() - 1) {
2673 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2674 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2676 // If there's a 'not' of the shifted value, swap the select operands:
2677 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2678 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2679 m_Not(m_AShr(m_Value(X), m_APIntAllowUndef(C))))),
2680 m_Value(Y))) &&
2681 *C == X->getType()->getScalarSizeInBits() - 1) {
2682 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2683 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2686 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2687 if (sinkNotIntoOtherHandOfLogicalOp(I))
2688 return &I;
2690 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2691 PHINode *PN = nullptr;
2692 Value *Start = nullptr, *Step = nullptr;
2693 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2694 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2696 if (Instruction *R = reassociateForUses(I, Builder))
2697 return R;
2699 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2700 return Canonicalized;
2702 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2703 return Folded;
2705 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
2706 return Res;
2708 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
2709 return Res;
2711 return nullptr;
2714 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2715 bool MatchBSwaps,
2716 bool MatchBitReversals) {
2717 SmallVector<Instruction *, 4> Insts;
2718 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2719 Insts))
2720 return nullptr;
2721 Instruction *LastInst = Insts.pop_back_val();
2722 LastInst->removeFromParent();
2724 for (auto *Inst : Insts)
2725 Worklist.push(Inst);
2726 return LastInst;
2729 /// Match UB-safe variants of the funnel shift intrinsic.
2730 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC,
2731 const DominatorTree &DT) {
2732 // TODO: Can we reduce the code duplication between this and the related
2733 // rotate matching code under visitSelect and visitTrunc?
2734 unsigned Width = Or.getType()->getScalarSizeInBits();
2736 Instruction *Or0, *Or1;
2737 if (!match(Or.getOperand(0), m_Instruction(Or0)) ||
2738 !match(Or.getOperand(1), m_Instruction(Or1)))
2739 return nullptr;
2741 bool IsFshl = true; // Sub on LSHR.
2742 SmallVector<Value *, 3> FShiftArgs;
2744 // First, find an or'd pair of opposite shifts:
2745 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2746 if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) {
2747 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2748 if (!match(Or0,
2749 m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2750 !match(Or1,
2751 m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2752 Or0->getOpcode() == Or1->getOpcode())
2753 return nullptr;
2755 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2756 if (Or0->getOpcode() == BinaryOperator::LShr) {
2757 std::swap(Or0, Or1);
2758 std::swap(ShVal0, ShVal1);
2759 std::swap(ShAmt0, ShAmt1);
2761 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2762 Or1->getOpcode() == BinaryOperator::LShr &&
2763 "Illegal or(shift,shift) pair");
2765 // Match the shift amount operands for a funnel shift pattern. This always
2766 // matches a subtraction on the R operand.
2767 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2768 // Check for constant shift amounts that sum to the bitwidth.
2769 const APInt *LI, *RI;
2770 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2771 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2772 return ConstantInt::get(L->getType(), *LI);
2774 Constant *LC, *RC;
2775 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2776 match(L,
2777 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2778 match(R,
2779 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2780 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2781 return ConstantExpr::mergeUndefsWith(LC, RC);
2783 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2784 // We limit this to X < Width in case the backend re-expands the
2785 // intrinsic, and has to reintroduce a shift modulo operation (InstCombine
2786 // might remove it after this fold). This still doesn't guarantee that the
2787 // final codegen will match this original pattern.
2788 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2789 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2790 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2793 // For non-constant cases, the following patterns currently only work for
2794 // rotation patterns.
2795 // TODO: Add general funnel-shift compatible patterns.
2796 if (ShVal0 != ShVal1)
2797 return nullptr;
2799 // For non-constant cases we don't support non-pow2 shift masks.
2800 // TODO: Is it worth matching urem as well?
2801 if (!isPowerOf2_32(Width))
2802 return nullptr;
2804 // The shift amount may be masked with negation:
2805 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2806 Value *X;
2807 unsigned Mask = Width - 1;
2808 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2809 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2810 return X;
2812 // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1)))
2813 if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask))))
2814 return L;
2816 // Similar to above, but the shift amount may be extended after masking,
2817 // so return the extended value as the parameter for the intrinsic.
2818 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2819 match(R,
2820 m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2821 m_SpecificInt(Mask))))
2822 return L;
2824 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2825 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2826 return L;
2828 return nullptr;
2831 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2832 if (!ShAmt) {
2833 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2834 IsFshl = false; // Sub on SHL.
2836 if (!ShAmt)
2837 return nullptr;
2839 FShiftArgs = {ShVal0, ShVal1, ShAmt};
2840 } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
2841 // If there are two 'or' instructions concat variables in opposite order:
2843 // Slot1 and Slot2 are all zero bits.
2844 // | Slot1 | Low | Slot2 | High |
2845 // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
2846 // | Slot2 | High | Slot1 | Low |
2847 // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
2849 // the latter 'or' can be safely convert to
2850 // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
2851 // if ZextLowShlAmt + ZextHighShlAmt == Width.
2852 if (!isa<ZExtInst>(Or1))
2853 std::swap(Or0, Or1);
2855 Value *High, *ZextHigh, *Low;
2856 const APInt *ZextHighShlAmt;
2857 if (!match(Or0,
2858 m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
2859 return nullptr;
2861 if (!match(Or1, m_ZExt(m_Value(Low))) ||
2862 !match(ZextHigh, m_ZExt(m_Value(High))))
2863 return nullptr;
2865 unsigned HighSize = High->getType()->getScalarSizeInBits();
2866 unsigned LowSize = Low->getType()->getScalarSizeInBits();
2867 // Make sure High does not overlap with Low and most significant bits of
2868 // High aren't shifted out.
2869 if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
2870 return nullptr;
2872 for (User *U : ZextHigh->users()) {
2873 Value *X, *Y;
2874 if (!match(U, m_Or(m_Value(X), m_Value(Y))))
2875 continue;
2877 if (!isa<ZExtInst>(Y))
2878 std::swap(X, Y);
2880 const APInt *ZextLowShlAmt;
2881 if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
2882 !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
2883 continue;
2885 // HighLow is good concat. If sum of two shifts amount equals to Width,
2886 // LowHigh must also be a good concat.
2887 if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
2888 continue;
2890 // Low must not overlap with High and most significant bits of Low must
2891 // not be shifted out.
2892 assert(ZextLowShlAmt->uge(HighSize) &&
2893 ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
2895 FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
2896 break;
2900 if (FShiftArgs.empty())
2901 return nullptr;
2903 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2904 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2905 return CallInst::Create(F, FShiftArgs);
2908 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2909 static Instruction *matchOrConcat(Instruction &Or,
2910 InstCombiner::BuilderTy &Builder) {
2911 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2912 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2913 Type *Ty = Or.getType();
2915 unsigned Width = Ty->getScalarSizeInBits();
2916 if ((Width & 1) != 0)
2917 return nullptr;
2918 unsigned HalfWidth = Width / 2;
2920 // Canonicalize zext (lower half) to LHS.
2921 if (!isa<ZExtInst>(Op0))
2922 std::swap(Op0, Op1);
2924 // Find lower/upper half.
2925 Value *LowerSrc, *ShlVal, *UpperSrc;
2926 const APInt *C;
2927 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2928 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2929 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2930 return nullptr;
2931 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2932 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2933 return nullptr;
2935 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2936 Value *NewLower = Builder.CreateZExt(Lo, Ty);
2937 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2938 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2939 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2940 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2941 return Builder.CreateCall(F, BinOp);
2944 // BSWAP: Push the concat down, swapping the lower/upper sources.
2945 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2946 Value *LowerBSwap, *UpperBSwap;
2947 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2948 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2949 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2951 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2952 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2953 Value *LowerBRev, *UpperBRev;
2954 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2955 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2956 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2958 return nullptr;
2961 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2962 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2963 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2964 for (unsigned i = 0; i != NumElts; ++i) {
2965 Constant *EltC1 = C1->getAggregateElement(i);
2966 Constant *EltC2 = C2->getAggregateElement(i);
2967 if (!EltC1 || !EltC2)
2968 return false;
2970 // One element must be all ones, and the other must be all zeros.
2971 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2972 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2973 return false;
2975 return true;
2978 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2979 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2980 /// B, it can be used as the condition operand of a select instruction.
2981 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
2982 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
2983 bool ABIsTheSame) {
2984 // We may have peeked through bitcasts in the caller.
2985 // Exit immediately if we don't have (vector) integer types.
2986 Type *Ty = A->getType();
2987 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2988 return nullptr;
2990 // If A is the 'not' operand of B and has enough signbits, we have our answer.
2991 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
2992 // If these are scalars or vectors of i1, A can be used directly.
2993 if (Ty->isIntOrIntVectorTy(1))
2994 return A;
2996 // If we look through a vector bitcast, the caller will bitcast the operands
2997 // to match the condition's number of bits (N x i1).
2998 // To make this poison-safe, disallow bitcast from wide element to narrow
2999 // element. That could allow poison in lanes where it was not present in the
3000 // original code.
3001 A = peekThroughBitcast(A);
3002 if (A->getType()->isIntOrIntVectorTy()) {
3003 unsigned NumSignBits = ComputeNumSignBits(A);
3004 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
3005 NumSignBits <= Ty->getScalarSizeInBits())
3006 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
3008 return nullptr;
3011 // TODO: add support for sext and constant case
3012 if (ABIsTheSame)
3013 return nullptr;
3015 // If both operands are constants, see if the constants are inverse bitmasks.
3016 Constant *AConst, *BConst;
3017 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
3018 if (AConst == ConstantExpr::getNot(BConst) &&
3019 ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
3020 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
3022 // Look for more complex patterns. The 'not' op may be hidden behind various
3023 // casts. Look through sexts and bitcasts to find the booleans.
3024 Value *Cond;
3025 Value *NotB;
3026 if (match(A, m_SExt(m_Value(Cond))) &&
3027 Cond->getType()->isIntOrIntVectorTy(1)) {
3028 // A = sext i1 Cond; B = sext (not (i1 Cond))
3029 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
3030 return Cond;
3032 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
3033 // TODO: The one-use checks are unnecessary or misplaced. If the caller
3034 // checked for uses on logic ops/casts, that should be enough to
3035 // make this transform worthwhile.
3036 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
3037 NotB = peekThroughBitcast(NotB, true);
3038 if (match(NotB, m_SExt(m_Specific(Cond))))
3039 return Cond;
3043 // All scalar (and most vector) possibilities should be handled now.
3044 // Try more matches that only apply to non-splat constant vectors.
3045 if (!Ty->isVectorTy())
3046 return nullptr;
3048 // If both operands are xor'd with constants using the same sexted boolean
3049 // operand, see if the constants are inverse bitmasks.
3050 // TODO: Use ConstantExpr::getNot()?
3051 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
3052 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
3053 Cond->getType()->isIntOrIntVectorTy(1) &&
3054 areInverseVectorBitmasks(AConst, BConst)) {
3055 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
3056 return Builder.CreateXor(Cond, AConst);
3058 return nullptr;
3061 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
3062 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
3063 /// When InvertFalseVal is set to true, we try to match the pattern
3064 /// where we have peeked through a 'not' op and A and B are the same:
3065 /// (A & C) | ~(A | D) --> (A & C) | (~A & ~D) --> A' ? C : ~D
3066 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
3067 Value *D, bool InvertFalseVal) {
3068 // The potential condition of the select may be bitcasted. In that case, look
3069 // through its bitcast and the corresponding bitcast of the 'not' condition.
3070 Type *OrigType = A->getType();
3071 A = peekThroughBitcast(A, true);
3072 B = peekThroughBitcast(B, true);
3073 if (Value *Cond = getSelectCondition(A, B, InvertFalseVal)) {
3074 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
3075 // If this is a vector, we may need to cast to match the condition's length.
3076 // The bitcasts will either all exist or all not exist. The builder will
3077 // not create unnecessary casts if the types already match.
3078 Type *SelTy = A->getType();
3079 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
3080 // For a fixed or scalable vector get N from <{vscale x} N x iM>
3081 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3082 // For a fixed or scalable vector, get the size in bits of N x iM; for a
3083 // scalar this is just M.
3084 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
3085 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
3086 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
3088 Value *BitcastC = Builder.CreateBitCast(C, SelTy);
3089 if (InvertFalseVal)
3090 D = Builder.CreateNot(D);
3091 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
3092 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
3093 return Builder.CreateBitCast(Select, OrigType);
3096 return nullptr;
3099 // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
3100 // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
3101 static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS,
3102 bool IsAnd, bool IsLogical,
3103 IRBuilderBase &Builder) {
3104 Value *LHS0 = LHS->getOperand(0);
3105 Value *RHS0 = RHS->getOperand(0);
3106 Value *RHS1 = RHS->getOperand(1);
3108 ICmpInst::Predicate LPred =
3109 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
3110 ICmpInst::Predicate RPred =
3111 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
3113 const APInt *CInt;
3114 if (LPred != ICmpInst::ICMP_EQ ||
3115 !match(LHS->getOperand(1), m_APIntAllowUndef(CInt)) ||
3116 !LHS0->getType()->isIntOrIntVectorTy() ||
3117 !(LHS->hasOneUse() || RHS->hasOneUse()))
3118 return nullptr;
3120 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
3121 return match(RHSOp,
3122 m_Add(m_Specific(LHS0), m_SpecificIntAllowUndef(-*CInt))) ||
3123 (CInt->isZero() && RHSOp == LHS0);
3126 Value *Other;
3127 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
3128 Other = RHS0;
3129 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
3130 Other = RHS1;
3131 else
3132 return nullptr;
3134 if (IsLogical)
3135 Other = Builder.CreateFreeze(Other);
3137 return Builder.CreateICmp(
3138 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
3139 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
3140 Other);
3143 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
3144 /// If IsLogical is true, then the and/or is in select form and the transform
3145 /// must be poison-safe.
3146 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3147 Instruction &I, bool IsAnd,
3148 bool IsLogical) {
3149 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3151 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
3152 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
3153 // if K1 and K2 are a one-bit mask.
3154 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
3155 return V;
3157 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3158 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
3159 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
3160 const APInt *LHSC = nullptr, *RHSC = nullptr;
3161 match(LHS1, m_APInt(LHSC));
3162 match(RHS1, m_APInt(RHSC));
3164 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3165 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3166 if (predicatesFoldable(PredL, PredR)) {
3167 if (LHS0 == RHS1 && LHS1 == RHS0) {
3168 PredL = ICmpInst::getSwappedPredicate(PredL);
3169 std::swap(LHS0, LHS1);
3171 if (LHS0 == RHS0 && LHS1 == RHS1) {
3172 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
3173 : getICmpCode(PredL) | getICmpCode(PredR);
3174 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3175 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3179 // handle (roughly):
3180 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
3181 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
3182 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
3183 return V;
3185 if (Value *V =
3186 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
3187 return V;
3188 // We can treat logical like bitwise here, because both operands are used on
3189 // the LHS, and as such poison from both will propagate.
3190 if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd,
3191 /*IsLogical*/ false, Builder))
3192 return V;
3194 if (Value *V =
3195 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
3196 return V;
3197 // We can convert this case to bitwise and, because both operands are used
3198 // on the LHS, and as such poison from both will propagate.
3199 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
3200 /*IsLogical*/ false, Builder, Q))
3201 return V;
3203 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
3204 return V;
3205 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
3206 return V;
3208 // TODO: One of these directions is fine with logical and/or, the other could
3209 // be supported by inserting freeze.
3210 if (!IsLogical) {
3211 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
3212 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
3213 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
3214 return V;
3216 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
3217 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
3218 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
3219 return V;
3222 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
3223 if (IsAnd && !IsLogical)
3224 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
3225 return V;
3227 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
3228 return V;
3230 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
3231 return V;
3233 // TODO: Verify whether this is safe for logical and/or.
3234 if (!IsLogical) {
3235 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
3236 return X;
3237 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
3238 return X;
3241 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
3242 return X;
3244 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
3245 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
3246 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
3247 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3248 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
3249 LHS0->getType() == RHS0->getType()) {
3250 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
3251 return Builder.CreateICmp(PredL, NewOr,
3252 Constant::getNullValue(NewOr->getType()));
3255 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
3256 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
3257 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3258 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
3259 LHS0->getType() == RHS0->getType()) {
3260 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
3261 return Builder.CreateICmp(PredL, NewAnd,
3262 Constant::getAllOnesValue(LHS0->getType()));
3265 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
3266 if (!LHSC || !RHSC)
3267 return nullptr;
3269 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
3270 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
3271 // where CMAX is the all ones value for the truncated type,
3272 // iff the lower bits of C2 and CA are zero.
3273 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3274 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
3275 Value *V;
3276 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
3278 // (trunc x) == C1 & (and x, CA) == C2
3279 // (and x, CA) == C2 & (trunc x) == C1
3280 if (match(RHS0, m_Trunc(m_Value(V))) &&
3281 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3282 SmallC = RHSC;
3283 BigC = LHSC;
3284 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
3285 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3286 SmallC = LHSC;
3287 BigC = RHSC;
3290 if (SmallC && BigC) {
3291 unsigned BigBitSize = BigC->getBitWidth();
3292 unsigned SmallBitSize = SmallC->getBitWidth();
3294 // Check that the low bits are zero.
3295 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
3296 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
3297 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
3298 APInt N = SmallC->zext(BigBitSize) | *BigC;
3299 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
3300 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3305 // Match naive pattern (and its inverted form) for checking if two values
3306 // share same sign. An example of the pattern:
3307 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
3308 // Inverted form (example):
3309 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
3310 bool TrueIfSignedL, TrueIfSignedR;
3311 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
3312 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
3313 (RHS->hasOneUse() || LHS->hasOneUse())) {
3314 Value *X, *Y;
3315 if (IsAnd) {
3316 if ((TrueIfSignedL && !TrueIfSignedR &&
3317 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3318 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
3319 (!TrueIfSignedL && TrueIfSignedR &&
3320 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3321 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
3322 Value *NewXor = Builder.CreateXor(X, Y);
3323 return Builder.CreateIsNeg(NewXor);
3325 } else {
3326 if ((TrueIfSignedL && !TrueIfSignedR &&
3327 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3328 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
3329 (!TrueIfSignedL && TrueIfSignedR &&
3330 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3331 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
3332 Value *NewXor = Builder.CreateXor(X, Y);
3333 return Builder.CreateIsNotNeg(NewXor);
3338 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
3341 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3342 // here. We should standardize that construct where it is needed or choose some
3343 // other way to ensure that commutated variants of patterns are not missed.
3344 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
3345 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
3346 SQ.getWithInstruction(&I)))
3347 return replaceInstUsesWith(I, V);
3349 if (SimplifyAssociativeOrCommutative(I))
3350 return &I;
3352 if (Instruction *X = foldVectorBinop(I))
3353 return X;
3355 if (Instruction *Phi = foldBinopWithPhiOperands(I))
3356 return Phi;
3358 // See if we can simplify any instructions used by the instruction whose sole
3359 // purpose is to compute bits we don't care about.
3360 if (SimplifyDemandedInstructionBits(I))
3361 return &I;
3363 // Do this before using distributive laws to catch simple and/or/not patterns.
3364 if (Instruction *Xor = foldOrToXor(I, Builder))
3365 return Xor;
3367 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
3368 return X;
3370 // (A&B)|(A&C) -> A&(B|C) etc
3371 if (Value *V = foldUsingDistributiveLaws(I))
3372 return replaceInstUsesWith(I, V);
3374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3375 Type *Ty = I.getType();
3376 if (Ty->isIntOrIntVectorTy(1)) {
3377 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
3378 if (auto *R =
3379 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
3380 return R;
3382 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
3383 if (auto *R =
3384 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
3385 return R;
3389 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3390 return FoldedLogic;
3392 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
3393 /*MatchBitReversals*/ true))
3394 return BitOp;
3396 if (Instruction *Funnel = matchFunnelShift(I, *this, DT))
3397 return Funnel;
3399 if (Instruction *Concat = matchOrConcat(I, Builder))
3400 return replaceInstUsesWith(I, Concat);
3402 if (Instruction *R = foldBinOpShiftWithShift(I))
3403 return R;
3405 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
3406 return R;
3408 Value *X, *Y;
3409 const APInt *CV;
3410 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
3411 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
3412 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
3413 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
3414 Value *Or = Builder.CreateOr(X, Y);
3415 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
3418 // If the operands have no common bits set:
3419 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
3420 if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))),
3421 m_Deferred(X)))) {
3422 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
3423 return BinaryOperator::CreateMul(X, IncrementY);
3426 // X | (X ^ Y) --> X | Y (4 commuted patterns)
3427 if (match(&I, m_c_Or(m_Value(X), m_c_Xor(m_Deferred(X), m_Value(Y)))))
3428 return BinaryOperator::CreateOr(X, Y);
3430 // (A & C) | (B & D)
3431 Value *A, *B, *C, *D;
3432 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3433 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3435 // (A & C0) | (B & C1)
3436 const APInt *C0, *C1;
3437 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
3438 Value *X;
3439 if (*C0 == ~*C1) {
3440 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
3441 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
3442 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
3443 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
3444 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
3445 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
3447 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
3448 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
3449 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
3450 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
3451 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
3452 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
3455 if ((*C0 & *C1).isZero()) {
3456 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
3457 // iff (C0 & C1) == 0 and (X & ~C0) == 0
3458 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
3459 MaskedValueIsZero(X, ~*C0, 0, &I)) {
3460 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3461 return BinaryOperator::CreateAnd(A, C01);
3463 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
3464 // iff (C0 & C1) == 0 and (X & ~C1) == 0
3465 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
3466 MaskedValueIsZero(X, ~*C1, 0, &I)) {
3467 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3468 return BinaryOperator::CreateAnd(B, C01);
3470 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
3471 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
3472 const APInt *C2, *C3;
3473 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
3474 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
3475 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
3476 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
3477 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3478 return BinaryOperator::CreateAnd(Or, C01);
3483 // Don't try to form a select if it's unlikely that we'll get rid of at
3484 // least one of the operands. A select is generally more expensive than the
3485 // 'or' that it is replacing.
3486 if (Op0->hasOneUse() || Op1->hasOneUse()) {
3487 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
3488 if (Value *V = matchSelectFromAndOr(A, C, B, D))
3489 return replaceInstUsesWith(I, V);
3490 if (Value *V = matchSelectFromAndOr(A, C, D, B))
3491 return replaceInstUsesWith(I, V);
3492 if (Value *V = matchSelectFromAndOr(C, A, B, D))
3493 return replaceInstUsesWith(I, V);
3494 if (Value *V = matchSelectFromAndOr(C, A, D, B))
3495 return replaceInstUsesWith(I, V);
3496 if (Value *V = matchSelectFromAndOr(B, D, A, C))
3497 return replaceInstUsesWith(I, V);
3498 if (Value *V = matchSelectFromAndOr(B, D, C, A))
3499 return replaceInstUsesWith(I, V);
3500 if (Value *V = matchSelectFromAndOr(D, B, A, C))
3501 return replaceInstUsesWith(I, V);
3502 if (Value *V = matchSelectFromAndOr(D, B, C, A))
3503 return replaceInstUsesWith(I, V);
3507 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3508 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
3509 (Op0->hasOneUse() || Op1->hasOneUse())) {
3510 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
3511 if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
3512 return replaceInstUsesWith(I, V);
3513 if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
3514 return replaceInstUsesWith(I, V);
3515 if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
3516 return replaceInstUsesWith(I, V);
3517 if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
3518 return replaceInstUsesWith(I, V);
3521 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
3522 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
3523 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
3524 return BinaryOperator::CreateOr(Op0, C);
3526 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
3527 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
3528 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
3529 return BinaryOperator::CreateOr(Op1, C);
3531 // ((A & B) ^ C) | B -> C | B
3532 if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
3533 return BinaryOperator::CreateOr(C, Op1);
3535 // B | ((A & B) ^ C) -> B | C
3536 if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
3537 return BinaryOperator::CreateOr(Op0, C);
3539 // ((B | C) & A) | B -> B | (A & C)
3540 if (match(Op0, m_c_And(m_c_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
3541 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
3543 // B | ((B | C) & A) -> B | (A & C)
3544 if (match(Op1, m_c_And(m_c_Or(m_Specific(Op0), m_Value(C)), m_Value(A))))
3545 return BinaryOperator::CreateOr(Op0, Builder.CreateAnd(A, C));
3547 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
3548 return DeMorgan;
3550 // Canonicalize xor to the RHS.
3551 bool SwappedForXor = false;
3552 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
3553 std::swap(Op0, Op1);
3554 SwappedForXor = true;
3557 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3558 // (A | ?) | (A ^ B) --> (A | ?) | B
3559 // (B | ?) | (A ^ B) --> (B | ?) | A
3560 if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
3561 return BinaryOperator::CreateOr(Op0, B);
3562 if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
3563 return BinaryOperator::CreateOr(Op0, A);
3565 // (A & B) | (A ^ B) --> A | B
3566 // (B & A) | (A ^ B) --> A | B
3567 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
3568 match(Op0, m_And(m_Specific(B), m_Specific(A))))
3569 return BinaryOperator::CreateOr(A, B);
3571 // ~A | (A ^ B) --> ~(A & B)
3572 // ~B | (A ^ B) --> ~(A & B)
3573 // The swap above should always make Op0 the 'not'.
3574 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3575 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
3576 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3578 // Same as above, but peek through an 'and' to the common operand:
3579 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
3580 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
3581 Instruction *And;
3582 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3583 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3584 m_c_And(m_Specific(A), m_Value())))))
3585 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
3586 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3587 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3588 m_c_And(m_Specific(B), m_Value())))))
3589 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
3591 // (~A | C) | (A ^ B) --> ~(A & B) | C
3592 // (~B | C) | (A ^ B) --> ~(A & B) | C
3593 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3594 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
3595 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
3596 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
3597 return BinaryOperator::CreateOr(Nand, C);
3600 // A | (~A ^ B) --> ~B | A
3601 // B | (A ^ ~B) --> ~A | B
3602 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
3603 Value *NotB = Builder.CreateNot(B, B->getName() + ".not");
3604 return BinaryOperator::CreateOr(NotB, Op0);
3606 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
3607 Value *NotA = Builder.CreateNot(A, A->getName() + ".not");
3608 return BinaryOperator::CreateOr(NotA, Op0);
3612 // A | ~(A | B) -> A | ~B
3613 // A | ~(A ^ B) -> A | ~B
3614 if (match(Op1, m_Not(m_Value(A))))
3615 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
3616 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
3617 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
3618 B->getOpcode() == Instruction::Xor)) {
3619 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
3620 B->getOperand(0);
3621 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
3622 return BinaryOperator::CreateOr(Not, Op0);
3625 if (SwappedForXor)
3626 std::swap(Op0, Op1);
3629 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
3630 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
3631 if (LHS && RHS)
3632 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
3633 return replaceInstUsesWith(I, Res);
3635 // TODO: Make this recursive; it's a little tricky because an arbitrary
3636 // number of 'or' instructions might have to be created.
3637 Value *X, *Y;
3638 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3639 bool IsLogical = isa<SelectInst>(Op1);
3640 // LHS | (X || Y) --> (LHS || X) || Y
3641 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3642 if (Value *Res =
3643 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
3644 return replaceInstUsesWith(I, IsLogical
3645 ? Builder.CreateLogicalOr(Res, Y)
3646 : Builder.CreateOr(Res, Y));
3647 // LHS | (X || Y) --> X || (LHS | Y)
3648 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3649 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
3650 /* IsLogical */ false))
3651 return replaceInstUsesWith(I, IsLogical
3652 ? Builder.CreateLogicalOr(X, Res)
3653 : Builder.CreateOr(X, Res));
3655 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3656 bool IsLogical = isa<SelectInst>(Op0);
3657 // (X || Y) | RHS --> (X || RHS) || Y
3658 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3659 if (Value *Res =
3660 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
3661 return replaceInstUsesWith(I, IsLogical
3662 ? Builder.CreateLogicalOr(Res, Y)
3663 : Builder.CreateOr(Res, Y));
3664 // (X || Y) | RHS --> X || (Y | RHS)
3665 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3666 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
3667 /* IsLogical */ false))
3668 return replaceInstUsesWith(I, IsLogical
3669 ? Builder.CreateLogicalOr(X, Res)
3670 : Builder.CreateOr(X, Res));
3674 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
3675 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
3676 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
3677 return replaceInstUsesWith(I, Res);
3679 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
3680 return FoldedFCmps;
3682 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
3683 return CastedOr;
3685 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
3686 return Sel;
3688 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
3689 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
3690 // with binop identity constant. But creating a select with non-constant
3691 // arm may not be reversible due to poison semantics. Is that a good
3692 // canonicalization?
3693 if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
3694 A->getType()->isIntOrIntVectorTy(1))
3695 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B);
3697 // Note: If we've gotten to the point of visiting the outer OR, then the
3698 // inner one couldn't be simplified. If it was a constant, then it won't
3699 // be simplified by a later pass either, so we try swapping the inner/outer
3700 // ORs in the hopes that we'll be able to simplify it this way.
3701 // (X|C) | V --> (X|V) | C
3702 ConstantInt *CI;
3703 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3704 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3705 Value *Inner = Builder.CreateOr(A, Op1);
3706 Inner->takeName(Op0);
3707 return BinaryOperator::CreateOr(Inner, CI);
3710 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3711 // Since this OR statement hasn't been optimized further yet, we hope
3712 // that this transformation will allow the new ORs to be optimized.
3714 Value *X = nullptr, *Y = nullptr;
3715 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3716 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3717 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3718 Value *orTrue = Builder.CreateOr(A, C);
3719 Value *orFalse = Builder.CreateOr(B, D);
3720 return SelectInst::Create(X, orTrue, orFalse);
3724 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
3726 Value *X, *Y;
3727 if (match(&I, m_c_Or(m_OneUse(m_AShr(
3728 m_NSWSub(m_Value(Y), m_Value(X)),
3729 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3730 m_Deferred(X)))) {
3731 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3732 Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3733 return SelectInst::Create(NewICmpInst, AllOnes, X);
3738 // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
3739 // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
3740 // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
3741 // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
3742 const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
3743 if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) &&
3744 match(Rhs,
3745 m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Deferred(B)))) {
3746 return BinaryOperator::CreateXor(A, B);
3748 return nullptr;
3751 if (Instruction *Result = TryXorOpt(Op0, Op1))
3752 return Result;
3753 if (Instruction *Result = TryXorOpt(Op1, Op0))
3754 return Result;
3757 if (Instruction *V =
3758 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3759 return V;
3761 CmpInst::Predicate Pred;
3762 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3763 // Check if the OR weakens the overflow condition for umul.with.overflow by
3764 // treating any non-zero result as overflow. In that case, we overflow if both
3765 // umul.with.overflow operands are != 0, as in that case the result can only
3766 // be 0, iff the multiplication overflows.
3767 if (match(&I,
3768 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3769 m_Value(Ov)),
3770 m_CombineAnd(m_ICmp(Pred,
3771 m_CombineAnd(m_ExtractValue<0>(
3772 m_Deferred(UMulWithOv)),
3773 m_Value(Mul)),
3774 m_ZeroInt()),
3775 m_Value(MulIsNotZero)))) &&
3776 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3777 Pred == CmpInst::ICMP_NE) {
3778 Value *A, *B;
3779 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3780 m_Value(A), m_Value(B)))) {
3781 Value *NotNullA = Builder.CreateIsNotNull(A);
3782 Value *NotNullB = Builder.CreateIsNotNull(B);
3783 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3787 /// Res, Overflow = xxx_with_overflow X, C1
3788 /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into
3789 /// "Overflow | icmp pred X, C2 +/- C1".
3790 const WithOverflowInst *WO;
3791 const Value *WOV;
3792 const APInt *C1, *C2;
3793 if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd(
3794 m_WithOverflowInst(WO), m_Value(WOV))),
3795 m_Value(Ov)),
3796 m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)),
3797 m_APInt(C2))))) &&
3798 (WO->getBinaryOp() == Instruction::Add ||
3799 WO->getBinaryOp() == Instruction::Sub) &&
3800 (ICmpInst::isEquality(Pred) ||
3801 WO->isSigned() == ICmpInst::isSigned(Pred)) &&
3802 match(WO->getRHS(), m_APInt(C1))) {
3803 bool Overflow;
3804 APInt NewC = WO->getBinaryOp() == Instruction::Add
3805 ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow)
3806 : C2->usub_ov(*C1, Overflow))
3807 : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow)
3808 : C2->uadd_ov(*C1, Overflow));
3809 if (!Overflow || ICmpInst::isEquality(Pred)) {
3810 Value *NewCmp = Builder.CreateICmp(
3811 Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC));
3812 return BinaryOperator::CreateOr(Ov, NewCmp);
3816 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
3817 if (sinkNotIntoOtherHandOfLogicalOp(I))
3818 return &I;
3820 // Improve "get low bit mask up to and including bit X" pattern:
3821 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
3822 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3823 m_Shl(m_One(), m_Deferred(X)))) &&
3824 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3825 Value *Sub = Builder.CreateSub(
3826 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3827 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3830 // An or recurrence w/loop invariant step is equivelent to (or start, step)
3831 PHINode *PN = nullptr;
3832 Value *Start = nullptr, *Step = nullptr;
3833 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3834 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3836 // (A & B) | (C | D) or (C | D) | (A & B)
3837 // Can be combined if C or D is of type (A/B & X)
3838 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3839 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3840 // (A & B) | (C | ?) -> C | (? | (A & B))
3841 // (A & B) | (C | ?) -> C | (? | (A & B))
3842 // (A & B) | (C | ?) -> C | (? | (A & B))
3843 // (A & B) | (C | ?) -> C | (? | (A & B))
3844 // (C | ?) | (A & B) -> C | (? | (A & B))
3845 // (C | ?) | (A & B) -> C | (? | (A & B))
3846 // (C | ?) | (A & B) -> C | (? | (A & B))
3847 // (C | ?) | (A & B) -> C | (? | (A & B))
3848 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3849 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3850 return BinaryOperator::CreateOr(
3851 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3852 // (A & B) | (? | D) -> (? | (A & B)) | D
3853 // (A & B) | (? | D) -> (? | (A & B)) | D
3854 // (A & B) | (? | D) -> (? | (A & B)) | D
3855 // (A & B) | (? | D) -> (? | (A & B)) | D
3856 // (? | D) | (A & B) -> (? | (A & B)) | D
3857 // (? | D) | (A & B) -> (? | (A & B)) | D
3858 // (? | D) | (A & B) -> (? | (A & B)) | D
3859 // (? | D) | (A & B) -> (? | (A & B)) | D
3860 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3861 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3862 return BinaryOperator::CreateOr(
3863 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3866 if (Instruction *R = reassociateForUses(I, Builder))
3867 return R;
3869 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
3870 return Canonicalized;
3872 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
3873 return Folded;
3875 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
3876 return Res;
3878 // If we are setting the sign bit of a floating-point value, convert
3879 // this to fneg(fabs), then cast back to integer.
3881 // If the result isn't immediately cast back to a float, this will increase
3882 // the number of instructions. This is still probably a better canonical form
3883 // as it enables FP value tracking.
3885 // Assumes any IEEE-represented type has the sign bit in the high bit.
3887 // This is generous interpretation of noimplicitfloat, this is not a true
3888 // floating-point operation.
3889 Value *CastOp;
3890 if (match(Op0, m_BitCast(m_Value(CastOp))) && match(Op1, m_SignMask()) &&
3891 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
3892 Attribute::NoImplicitFloat)) {
3893 Type *EltTy = CastOp->getType()->getScalarType();
3894 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
3895 EltTy->getPrimitiveSizeInBits() ==
3896 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
3897 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
3898 Value *FNegFAbs = Builder.CreateFNeg(FAbs);
3899 return new BitCastInst(FNegFAbs, I.getType());
3903 // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2
3904 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) &&
3905 match(Op1, m_APInt(C2))) {
3906 KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I);
3907 if ((KnownX.One & *C2) == *C2)
3908 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2));
3911 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
3912 return Res;
3914 return nullptr;
3917 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3918 /// can fold these early and efficiently by morphing an existing instruction.
3919 static Instruction *foldXorToXor(BinaryOperator &I,
3920 InstCombiner::BuilderTy &Builder) {
3921 assert(I.getOpcode() == Instruction::Xor);
3922 Value *Op0 = I.getOperand(0);
3923 Value *Op1 = I.getOperand(1);
3924 Value *A, *B;
3926 // There are 4 commuted variants for each of the basic patterns.
3928 // (A & B) ^ (A | B) -> A ^ B
3929 // (A & B) ^ (B | A) -> A ^ B
3930 // (A | B) ^ (A & B) -> A ^ B
3931 // (A | B) ^ (B & A) -> A ^ B
3932 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3933 m_c_Or(m_Deferred(A), m_Deferred(B)))))
3934 return BinaryOperator::CreateXor(A, B);
3936 // (A | ~B) ^ (~A | B) -> A ^ B
3937 // (~B | A) ^ (~A | B) -> A ^ B
3938 // (~A | B) ^ (A | ~B) -> A ^ B
3939 // (B | ~A) ^ (A | ~B) -> A ^ B
3940 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3941 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3942 return BinaryOperator::CreateXor(A, B);
3944 // (A & ~B) ^ (~A & B) -> A ^ B
3945 // (~B & A) ^ (~A & B) -> A ^ B
3946 // (~A & B) ^ (A & ~B) -> A ^ B
3947 // (B & ~A) ^ (A & ~B) -> A ^ B
3948 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3949 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3950 return BinaryOperator::CreateXor(A, B);
3952 // For the remaining cases we need to get rid of one of the operands.
3953 if (!Op0->hasOneUse() && !Op1->hasOneUse())
3954 return nullptr;
3956 // (A | B) ^ ~(A & B) -> ~(A ^ B)
3957 // (A | B) ^ ~(B & A) -> ~(A ^ B)
3958 // (A & B) ^ ~(A | B) -> ~(A ^ B)
3959 // (A & B) ^ ~(B | A) -> ~(A ^ B)
3960 // Complexity sorting ensures the not will be on the right side.
3961 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3962 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3963 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3964 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3965 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3967 return nullptr;
3970 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3971 BinaryOperator &I) {
3972 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3973 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3975 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3976 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3977 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3979 if (predicatesFoldable(PredL, PredR)) {
3980 if (LHS0 == RHS1 && LHS1 == RHS0) {
3981 std::swap(LHS0, LHS1);
3982 PredL = ICmpInst::getSwappedPredicate(PredL);
3984 if (LHS0 == RHS0 && LHS1 == RHS1) {
3985 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3986 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
3987 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3988 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3992 // TODO: This can be generalized to compares of non-signbits using
3993 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3994 // foldLogOpOfMaskedICmps().
3995 const APInt *LC, *RC;
3996 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
3997 LHS0->getType() == RHS0->getType() &&
3998 LHS0->getType()->isIntOrIntVectorTy()) {
3999 // Convert xor of signbit tests to signbit test of xor'd values:
4000 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
4001 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
4002 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
4003 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
4004 bool TrueIfSignedL, TrueIfSignedR;
4005 if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
4006 isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
4007 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
4008 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
4009 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
4010 Builder.CreateIsNotNeg(XorLR);
4013 // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2)
4014 // into a single comparison using range-based reasoning.
4015 if (LHS0 == RHS0) {
4016 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC);
4017 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC);
4018 auto CRUnion = CR1.exactUnionWith(CR2);
4019 auto CRIntersect = CR1.exactIntersectWith(CR2);
4020 if (CRUnion && CRIntersect)
4021 if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4022 if (CR->isFullSet())
4023 return ConstantInt::getTrue(I.getType());
4024 if (CR->isEmptySet())
4025 return ConstantInt::getFalse(I.getType());
4027 CmpInst::Predicate NewPred;
4028 APInt NewC, Offset;
4029 CR->getEquivalentICmp(NewPred, NewC, Offset);
4031 if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) ||
4032 (LHS->hasOneUse() && RHS->hasOneUse())) {
4033 Value *NewV = LHS0;
4034 Type *Ty = LHS0->getType();
4035 if (!Offset.isZero())
4036 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
4037 return Builder.CreateICmp(NewPred, NewV,
4038 ConstantInt::get(Ty, NewC));
4044 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
4045 // into those logic ops. That is, try to turn this into an and-of-icmps
4046 // because we have many folds for that pattern.
4048 // This is based on a truth table definition of xor:
4049 // X ^ Y --> (X | Y) & !(X & Y)
4050 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
4051 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
4052 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
4053 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
4054 // TODO: Independently handle cases where the 'and' side is a constant.
4055 ICmpInst *X = nullptr, *Y = nullptr;
4056 if (OrICmp == LHS && AndICmp == RHS) {
4057 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
4058 X = LHS;
4059 Y = RHS;
4061 if (OrICmp == RHS && AndICmp == LHS) {
4062 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
4063 X = RHS;
4064 Y = LHS;
4066 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
4067 // Invert the predicate of 'Y', thus inverting its output.
4068 Y->setPredicate(Y->getInversePredicate());
4069 // So, are there other uses of Y?
4070 if (!Y->hasOneUse()) {
4071 // We need to adapt other uses of Y though. Get a value that matches
4072 // the original value of Y before inversion. While this increases
4073 // immediate instruction count, we have just ensured that all the
4074 // users are freely-invertible, so that 'not' *will* get folded away.
4075 BuilderTy::InsertPointGuard Guard(Builder);
4076 // Set insertion point to right after the Y.
4077 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
4078 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4079 // Replace all uses of Y (excluding the one in NotY!) with NotY.
4080 Worklist.pushUsersToWorkList(*Y);
4081 Y->replaceUsesWithIf(NotY,
4082 [NotY](Use &U) { return U.getUser() != NotY; });
4084 // All done.
4085 return Builder.CreateAnd(LHS, RHS);
4090 return nullptr;
4093 /// If we have a masked merge, in the canonical form of:
4094 /// (assuming that A only has one use.)
4095 /// | A | |B|
4096 /// ((x ^ y) & M) ^ y
4097 /// | D |
4098 /// * If M is inverted:
4099 /// | D |
4100 /// ((x ^ y) & ~M) ^ y
4101 /// We can canonicalize by swapping the final xor operand
4102 /// to eliminate the 'not' of the mask.
4103 /// ((x ^ y) & M) ^ x
4104 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
4105 /// because that shortens the dependency chain and improves analysis:
4106 /// (x & M) | (y & ~M)
4107 static Instruction *visitMaskedMerge(BinaryOperator &I,
4108 InstCombiner::BuilderTy &Builder) {
4109 Value *B, *X, *D;
4110 Value *M;
4111 if (!match(&I, m_c_Xor(m_Value(B),
4112 m_OneUse(m_c_And(
4113 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
4114 m_Value(D)),
4115 m_Value(M))))))
4116 return nullptr;
4118 Value *NotM;
4119 if (match(M, m_Not(m_Value(NotM)))) {
4120 // De-invert the mask and swap the value in B part.
4121 Value *NewA = Builder.CreateAnd(D, NotM);
4122 return BinaryOperator::CreateXor(NewA, X);
4125 Constant *C;
4126 if (D->hasOneUse() && match(M, m_Constant(C))) {
4127 // Propagating undef is unsafe. Clamp undef elements to -1.
4128 Type *EltTy = C->getType()->getScalarType();
4129 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
4130 // Unfold.
4131 Value *LHS = Builder.CreateAnd(X, C);
4132 Value *NotC = Builder.CreateNot(C);
4133 Value *RHS = Builder.CreateAnd(B, NotC);
4134 return BinaryOperator::CreateOr(LHS, RHS);
4137 return nullptr;
4140 static Instruction *foldNotXor(BinaryOperator &I,
4141 InstCombiner::BuilderTy &Builder) {
4142 Value *X, *Y;
4143 // FIXME: one-use check is not needed in general, but currently we are unable
4144 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
4145 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
4146 return nullptr;
4148 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
4149 return A == C || A == D || B == C || B == D;
4152 Value *A, *B, *C, *D;
4153 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
4154 // 4 commuted variants
4155 if (match(X, m_And(m_Value(A), m_Value(B))) &&
4156 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4157 Value *NotY = Builder.CreateNot(Y);
4158 return BinaryOperator::CreateOr(X, NotY);
4161 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
4162 // 4 commuted variants
4163 if (match(Y, m_And(m_Value(A), m_Value(B))) &&
4164 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4165 Value *NotX = Builder.CreateNot(X);
4166 return BinaryOperator::CreateOr(Y, NotX);
4169 return nullptr;
4172 /// Canonicalize a shifty way to code absolute value to the more common pattern
4173 /// that uses negation and select.
4174 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
4175 InstCombiner::BuilderTy &Builder) {
4176 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
4178 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
4179 // We're relying on the fact that we only do this transform when the shift has
4180 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
4181 // instructions).
4182 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
4183 if (Op0->hasNUses(2))
4184 std::swap(Op0, Op1);
4186 Type *Ty = Xor.getType();
4187 Value *A;
4188 const APInt *ShAmt;
4189 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
4190 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4191 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
4192 // Op1 = ashr i32 A, 31 ; smear the sign bit
4193 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
4194 // --> (A < 0) ? -A : A
4195 Value *IsNeg = Builder.CreateIsNeg(A);
4196 // Copy the nuw/nsw flags from the add to the negate.
4197 auto *Add = cast<BinaryOperator>(Op0);
4198 Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
4199 Add->hasNoSignedWrap());
4200 return SelectInst::Create(IsNeg, NegA, A);
4202 return nullptr;
4205 static bool canFreelyInvert(InstCombiner &IC, Value *Op,
4206 Instruction *IgnoredUser) {
4207 auto *I = dyn_cast<Instruction>(Op);
4208 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
4209 IC.canFreelyInvertAllUsersOf(I, IgnoredUser);
4212 static Value *freelyInvert(InstCombinerImpl &IC, Value *Op,
4213 Instruction *IgnoredUser) {
4214 auto *I = cast<Instruction>(Op);
4215 IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef());
4216 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
4217 Op->replaceUsesWithIf(NotOp,
4218 [NotOp](Use &U) { return U.getUser() != NotOp; });
4219 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
4220 return NotOp;
4223 // Transform
4224 // z = ~(x &/| y)
4225 // into:
4226 // z = ((~x) |/& (~y))
4227 // iff both x and y are free to invert and all uses of z can be freely updated.
4228 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
4229 Value *Op0, *Op1;
4230 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4231 return false;
4233 // If this logic op has not been simplified yet, just bail out and let that
4234 // happen first. Otherwise, the code below may wrongly invert.
4235 if (Op0 == Op1)
4236 return false;
4238 Instruction::BinaryOps NewOpc =
4239 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4240 bool IsBinaryOp = isa<BinaryOperator>(I);
4242 // Can our users be adapted?
4243 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4244 return false;
4246 // And can the operands be adapted?
4247 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
4248 return false;
4250 Op0 = freelyInvert(*this, Op0, &I);
4251 Op1 = freelyInvert(*this, Op1, &I);
4253 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4254 Value *NewLogicOp;
4255 if (IsBinaryOp)
4256 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4257 else
4258 NewLogicOp =
4259 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4261 replaceInstUsesWith(I, NewLogicOp);
4262 // We can not just create an outer `not`, it will most likely be immediately
4263 // folded back, reconstructing our initial pattern, and causing an
4264 // infinite combine loop, so immediately manually fold it away.
4265 freelyInvertAllUsersOf(NewLogicOp);
4266 return true;
4269 // Transform
4270 // z = (~x) &/| y
4271 // into:
4272 // z = ~(x |/& (~y))
4273 // iff y is free to invert and all uses of z can be freely updated.
4274 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
4275 Value *Op0, *Op1;
4276 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4277 return false;
4278 Instruction::BinaryOps NewOpc =
4279 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4280 bool IsBinaryOp = isa<BinaryOperator>(I);
4282 Value *NotOp0 = nullptr;
4283 Value *NotOp1 = nullptr;
4284 Value **OpToInvert = nullptr;
4285 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
4286 Op0 = NotOp0;
4287 OpToInvert = &Op1;
4288 } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
4289 canFreelyInvert(*this, Op0, &I)) {
4290 Op1 = NotOp1;
4291 OpToInvert = &Op0;
4292 } else
4293 return false;
4295 // And can our users be adapted?
4296 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4297 return false;
4299 *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
4301 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4302 Value *NewBinOp;
4303 if (IsBinaryOp)
4304 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4305 else
4306 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4307 replaceInstUsesWith(I, NewBinOp);
4308 // We can not just create an outer `not`, it will most likely be immediately
4309 // folded back, reconstructing our initial pattern, and causing an
4310 // infinite combine loop, so immediately manually fold it away.
4311 freelyInvertAllUsersOf(NewBinOp);
4312 return true;
4315 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
4316 Value *NotOp;
4317 if (!match(&I, m_Not(m_Value(NotOp))))
4318 return nullptr;
4320 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
4321 // We must eliminate the and/or (one-use) for these transforms to not increase
4322 // the instruction count.
4324 // ~(~X & Y) --> (X | ~Y)
4325 // ~(Y & ~X) --> (X | ~Y)
4327 // Note: The logical matches do not check for the commuted patterns because
4328 // those are handled via SimplifySelectsFeedingBinaryOp().
4329 Type *Ty = I.getType();
4330 Value *X, *Y;
4331 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
4332 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4333 return BinaryOperator::CreateOr(X, NotY);
4335 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
4336 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4337 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
4340 // ~(~X | Y) --> (X & ~Y)
4341 // ~(Y | ~X) --> (X & ~Y)
4342 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
4343 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4344 return BinaryOperator::CreateAnd(X, NotY);
4346 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
4347 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4348 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
4351 // Is this a 'not' (~) fed by a binary operator?
4352 BinaryOperator *NotVal;
4353 if (match(NotOp, m_BinOp(NotVal))) {
4354 // ~((-X) | Y) --> (X - 1) & (~Y)
4355 if (match(NotVal,
4356 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
4357 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
4358 Value *NotY = Builder.CreateNot(Y);
4359 return BinaryOperator::CreateAnd(DecX, NotY);
4362 // ~(~X >>s Y) --> (X >>s Y)
4363 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
4364 return BinaryOperator::CreateAShr(X, Y);
4366 // Treat lshr with non-negative operand as ashr.
4367 // ~(~X >>u Y) --> (X >>s Y) iff X is known negative
4368 if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) &&
4369 isKnownNegative(X, SQ.getWithInstruction(NotVal)))
4370 return BinaryOperator::CreateAShr(X, Y);
4372 // Bit-hack form of a signbit test for iN type:
4373 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
4374 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
4375 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
4376 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
4377 return new SExtInst(IsNotNeg, Ty);
4380 // If we are inverting a right-shifted constant, we may be able to eliminate
4381 // the 'not' by inverting the constant and using the opposite shift type.
4382 // Canonicalization rules ensure that only a negative constant uses 'ashr',
4383 // but we must check that in case that transform has not fired yet.
4385 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
4386 Constant *C;
4387 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
4388 match(C, m_Negative())) {
4389 // We matched a negative constant, so propagating undef is unsafe.
4390 // Clamp undef elements to -1.
4391 Type *EltTy = Ty->getScalarType();
4392 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
4393 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
4396 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
4397 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
4398 match(C, m_NonNegative())) {
4399 // We matched a non-negative constant, so propagating undef is unsafe.
4400 // Clamp undef elements to 0.
4401 Type *EltTy = Ty->getScalarType();
4402 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
4403 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
4406 // ~(X + C) --> ~C - X
4407 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
4408 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
4410 // ~(X - Y) --> ~X + Y
4411 // FIXME: is it really beneficial to sink the `not` here?
4412 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
4413 if (isa<Constant>(X) || NotVal->hasOneUse())
4414 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
4416 // ~(~X + Y) --> X - Y
4417 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
4418 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
4419 NotVal);
4422 // not (cmp A, B) = !cmp A, B
4423 CmpInst::Predicate Pred;
4424 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
4425 (NotOp->hasOneUse() ||
4426 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
4427 /*IgnoredUser=*/nullptr))) {
4428 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
4429 freelyInvertAllUsersOf(NotOp);
4430 return &I;
4433 // Move a 'not' ahead of casts of a bool to enable logic reduction:
4434 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
4435 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
4436 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
4437 Value *NotX = Builder.CreateNot(X);
4438 Value *Sext = Builder.CreateSExt(NotX, SextTy);
4439 return CastInst::CreateBitOrPointerCast(Sext, Ty);
4442 if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
4443 if (sinkNotIntoLogicalOp(*NotOpI))
4444 return &I;
4446 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
4447 // ~min(~X, ~Y) --> max(X, Y)
4448 // ~max(~X, Y) --> min(X, ~Y)
4449 auto *II = dyn_cast<IntrinsicInst>(NotOp);
4450 if (II && II->hasOneUse()) {
4451 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
4452 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
4453 Value *NotY = Builder.CreateNot(Y);
4454 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
4455 return replaceInstUsesWith(I, InvMaxMin);
4458 if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
4459 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
4460 II->setArgOperand(
4461 1, ConstantInt::get(ClassMask->getType(),
4462 ~ClassMask->getZExtValue() & fcAllFlags));
4463 return replaceInstUsesWith(I, II);
4467 if (NotOp->hasOneUse()) {
4468 // Pull 'not' into operands of select if both operands are one-use compares
4469 // or one is one-use compare and the other one is a constant.
4470 // Inverting the predicates eliminates the 'not' operation.
4471 // Example:
4472 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
4473 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
4474 // not (select ?, (cmp TPred, ?, ?), true -->
4475 // select ?, (cmp InvTPred, ?, ?), false
4476 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
4477 Value *TV = Sel->getTrueValue();
4478 Value *FV = Sel->getFalseValue();
4479 auto *CmpT = dyn_cast<CmpInst>(TV);
4480 auto *CmpF = dyn_cast<CmpInst>(FV);
4481 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
4482 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
4483 if (InvertibleT && InvertibleF) {
4484 if (CmpT)
4485 CmpT->setPredicate(CmpT->getInversePredicate());
4486 else
4487 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
4488 if (CmpF)
4489 CmpF->setPredicate(CmpF->getInversePredicate());
4490 else
4491 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
4492 return replaceInstUsesWith(I, Sel);
4497 if (Instruction *NewXor = foldNotXor(I, Builder))
4498 return NewXor;
4500 // TODO: Could handle multi-use better by checking if all uses of NotOp (other
4501 // than I) can be inverted.
4502 if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder))
4503 return replaceInstUsesWith(I, R);
4505 return nullptr;
4508 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4509 // here. We should standardize that construct where it is needed or choose some
4510 // other way to ensure that commutated variants of patterns are not missed.
4511 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
4512 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
4513 SQ.getWithInstruction(&I)))
4514 return replaceInstUsesWith(I, V);
4516 if (SimplifyAssociativeOrCommutative(I))
4517 return &I;
4519 if (Instruction *X = foldVectorBinop(I))
4520 return X;
4522 if (Instruction *Phi = foldBinopWithPhiOperands(I))
4523 return Phi;
4525 if (Instruction *NewXor = foldXorToXor(I, Builder))
4526 return NewXor;
4528 // (A&B)^(A&C) -> A&(B^C) etc
4529 if (Value *V = foldUsingDistributiveLaws(I))
4530 return replaceInstUsesWith(I, V);
4532 // See if we can simplify any instructions used by the instruction whose sole
4533 // purpose is to compute bits we don't care about.
4534 if (SimplifyDemandedInstructionBits(I))
4535 return &I;
4537 if (Instruction *R = foldNot(I))
4538 return R;
4540 if (Instruction *R = foldBinOpShiftWithShift(I))
4541 return R;
4543 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
4544 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
4545 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
4546 // have already taken care of those cases.
4547 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4548 Value *M;
4549 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
4550 m_c_And(m_Deferred(M), m_Value()))))
4551 return BinaryOperator::CreateDisjointOr(Op0, Op1);
4553 if (Instruction *Xor = visitMaskedMerge(I, Builder))
4554 return Xor;
4556 Value *X, *Y;
4557 Constant *C1;
4558 if (match(Op1, m_Constant(C1))) {
4559 Constant *C2;
4561 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
4562 match(C1, m_ImmConstant())) {
4563 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
4564 C2 = Constant::replaceUndefsWith(
4565 C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
4566 Value *And = Builder.CreateAnd(
4567 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
4568 return BinaryOperator::CreateXor(
4569 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
4572 // Use DeMorgan and reassociation to eliminate a 'not' op.
4573 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
4574 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
4575 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
4576 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
4578 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
4579 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
4580 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
4581 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
4584 // Convert xor ([trunc] (ashr X, BW-1)), C =>
4585 // select(X >s -1, C, ~C)
4586 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
4587 // constant depending on whether this input is less than 0.
4588 const APInt *CA;
4589 if (match(Op0, m_OneUse(m_TruncOrSelf(
4590 m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
4591 *CA == X->getType()->getScalarSizeInBits() - 1 &&
4592 !match(C1, m_AllOnes())) {
4593 assert(!C1->isZeroValue() && "Unexpected xor with 0");
4594 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
4595 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
4599 Type *Ty = I.getType();
4601 const APInt *RHSC;
4602 if (match(Op1, m_APInt(RHSC))) {
4603 Value *X;
4604 const APInt *C;
4605 // (C - X) ^ signmaskC --> (C + signmaskC) - X
4606 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
4607 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
4609 // (X + C) ^ signmaskC --> X + (C + signmaskC)
4610 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
4611 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
4613 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
4614 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
4615 MaskedValueIsZero(X, *C, 0, &I))
4616 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
4618 // When X is a power-of-two or zero and zero input is poison:
4619 // ctlz(i32 X) ^ 31 --> cttz(X)
4620 // cttz(i32 X) ^ 31 --> ctlz(X)
4621 auto *II = dyn_cast<IntrinsicInst>(Op0);
4622 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
4623 Intrinsic::ID IID = II->getIntrinsicID();
4624 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
4625 match(II->getArgOperand(1), m_One()) &&
4626 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
4627 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
4628 Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty);
4629 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
4633 // If RHSC is inverting the remaining bits of shifted X,
4634 // canonicalize to a 'not' before the shift to help SCEV and codegen:
4635 // (X << C) ^ RHSC --> ~X << C
4636 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
4637 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
4638 Value *NotX = Builder.CreateNot(X);
4639 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
4641 // (X >>u C) ^ RHSC --> ~X >>u C
4642 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
4643 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
4644 Value *NotX = Builder.CreateNot(X);
4645 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
4647 // TODO: We could handle 'ashr' here as well. That would be matching
4648 // a 'not' op and moving it before the shift. Doing that requires
4649 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
4652 // If we are XORing the sign bit of a floating-point value, convert
4653 // this to fneg, then cast back to integer.
4655 // This is generous interpretation of noimplicitfloat, this is not a true
4656 // floating-point operation.
4658 // Assumes any IEEE-represented type has the sign bit in the high bit.
4659 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
4660 Value *CastOp;
4661 if (match(Op0, m_BitCast(m_Value(CastOp))) && match(Op1, m_SignMask()) &&
4662 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4663 Attribute::NoImplicitFloat)) {
4664 Type *EltTy = CastOp->getType()->getScalarType();
4665 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
4666 EltTy->getPrimitiveSizeInBits() ==
4667 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
4668 Value *FNeg = Builder.CreateFNeg(CastOp);
4669 return new BitCastInst(FNeg, I.getType());
4674 // FIXME: This should not be limited to scalar (pull into APInt match above).
4676 Value *X;
4677 ConstantInt *C1, *C2, *C3;
4678 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
4679 if (match(Op1, m_ConstantInt(C3)) &&
4680 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
4681 m_ConstantInt(C2))) &&
4682 Op0->hasOneUse()) {
4683 // fold (C1 >> C2) ^ C3
4684 APInt FoldConst = C1->getValue().lshr(C2->getValue());
4685 FoldConst ^= C3->getValue();
4686 // Prepare the two operands.
4687 auto *Opnd0 = Builder.CreateLShr(X, C2);
4688 Opnd0->takeName(Op0);
4689 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
4693 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4694 return FoldedLogic;
4696 // Y ^ (X | Y) --> X & ~Y
4697 // Y ^ (Y | X) --> X & ~Y
4698 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
4699 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
4700 // (X | Y) ^ Y --> X & ~Y
4701 // (Y | X) ^ Y --> X & ~Y
4702 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
4703 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
4705 // Y ^ (X & Y) --> ~X & Y
4706 // Y ^ (Y & X) --> ~X & Y
4707 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
4708 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
4709 // (X & Y) ^ Y --> ~X & Y
4710 // (Y & X) ^ Y --> ~X & Y
4711 // Canonical form is (X & C) ^ C; don't touch that.
4712 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
4713 // be fixed to prefer that (otherwise we get infinite looping).
4714 if (!match(Op1, m_Constant()) &&
4715 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
4716 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
4718 Value *A, *B, *C;
4719 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
4720 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4721 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
4722 return BinaryOperator::CreateXor(
4723 Builder.CreateAnd(Builder.CreateNot(A), C), B);
4725 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
4726 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4727 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
4728 return BinaryOperator::CreateXor(
4729 Builder.CreateAnd(Builder.CreateNot(B), C), A);
4731 // (A & B) ^ (A ^ B) -> (A | B)
4732 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4733 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
4734 return BinaryOperator::CreateOr(A, B);
4735 // (A ^ B) ^ (A & B) -> (A | B)
4736 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
4737 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
4738 return BinaryOperator::CreateOr(A, B);
4740 // (A & ~B) ^ ~A -> ~(A & B)
4741 // (~B & A) ^ ~A -> ~(A & B)
4742 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
4743 match(Op1, m_Not(m_Specific(A))))
4744 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4746 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
4747 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
4748 return BinaryOperator::CreateOr(A, B);
4750 // (~A | B) ^ A --> ~(A & B)
4751 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
4752 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
4754 // A ^ (~A | B) --> ~(A & B)
4755 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
4756 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
4758 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
4759 // TODO: Loosen one-use restriction if common operand is a constant.
4760 Value *D;
4761 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
4762 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
4763 if (B == C || B == D)
4764 std::swap(A, B);
4765 if (A == C)
4766 std::swap(C, D);
4767 if (A == D) {
4768 Value *NotA = Builder.CreateNot(A);
4769 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
4773 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
4774 if (I.getType()->isIntOrIntVectorTy(1) &&
4775 match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) &&
4776 match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) {
4777 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
4778 if (B == C || B == D)
4779 std::swap(A, B);
4780 if (A == C)
4781 std::swap(C, D);
4782 if (A == D) {
4783 if (NeedFreeze)
4784 A = Builder.CreateFreeze(A);
4785 Value *NotB = Builder.CreateNot(B);
4786 return SelectInst::Create(A, NotB, C);
4790 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4791 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4792 if (Value *V = foldXorOfICmps(LHS, RHS, I))
4793 return replaceInstUsesWith(I, V);
4795 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
4796 return CastedXor;
4798 if (Instruction *Abs = canonicalizeAbs(I, Builder))
4799 return Abs;
4801 // Otherwise, if all else failed, try to hoist the xor-by-constant:
4802 // (X ^ C) ^ Y --> (X ^ Y) ^ C
4803 // Just like we do in other places, we completely avoid the fold
4804 // for constantexprs, at least to avoid endless combine loop.
4805 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
4806 m_Unless(m_ConstantExpr())),
4807 m_ImmConstant(C1))),
4808 m_Value(Y))))
4809 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
4811 if (Instruction *R = reassociateForUses(I, Builder))
4812 return R;
4814 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4815 return Canonicalized;
4817 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4818 return Folded;
4820 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
4821 return Folded;
4823 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
4824 return Res;
4826 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
4827 return Res;
4829 return nullptr;