[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineCalls.cpp
blobbc43edb5e62065c213fdb219def73dcfb05ea5f0
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/AttributeMask.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <optional>
75 #include <utility>
76 #include <vector>
78 #define DEBUG_TYPE "instcombine"
79 #include "llvm/Transforms/Utils/InstructionWorklist.h"
81 using namespace llvm;
82 using namespace PatternMatch;
84 STATISTIC(NumSimplified, "Number of library calls simplified");
86 static cl::opt<unsigned> GuardWideningWindow(
87 "instcombine-guard-widening-window",
88 cl::init(3),
89 cl::desc("How wide an instruction window to bypass looking for "
90 "another guard"));
92 /// Return the specified type promoted as it would be to pass though a va_arg
93 /// area.
94 static Type *getPromotedType(Type *Ty) {
95 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
96 if (ITy->getBitWidth() < 32)
97 return Type::getInt32Ty(Ty->getContext());
99 return Ty;
102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
103 /// TODO: This should probably be integrated with visitAllocSites, but that
104 /// requires a deeper change to allow either unread or unwritten objects.
105 static bool hasUndefSource(AnyMemTransferInst *MI) {
106 auto *Src = MI->getRawSource();
107 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
108 if (!Src->hasOneUse())
109 return false;
110 Src = cast<Instruction>(Src)->getOperand(0);
112 return isa<AllocaInst>(Src) && Src->hasOneUse();
115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
116 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
117 MaybeAlign CopyDstAlign = MI->getDestAlign();
118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
119 MI->setDestAlignment(DstAlign);
120 return MI;
123 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
124 MaybeAlign CopySrcAlign = MI->getSourceAlign();
125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
126 MI->setSourceAlignment(SrcAlign);
127 return MI;
130 // If we have a store to a location which is known constant, we can conclude
131 // that the store must be storing the constant value (else the memory
132 // wouldn't be constant), and this must be a noop.
133 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
134 // Set the size of the copy to 0, it will be deleted on the next iteration.
135 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
136 return MI;
139 // If the source is provably undef, the memcpy/memmove doesn't do anything
140 // (unless the transfer is volatile).
141 if (hasUndefSource(MI) && !MI->isVolatile()) {
142 // Set the size of the copy to 0, it will be deleted on the next iteration.
143 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
144 return MI;
147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
148 // load/store.
149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
150 if (!MemOpLength) return nullptr;
152 // Source and destination pointer types are always "i8*" for intrinsic. See
153 // if the size is something we can handle with a single primitive load/store.
154 // A single load+store correctly handles overlapping memory in the memmove
155 // case.
156 uint64_t Size = MemOpLength->getLimitedValue();
157 assert(Size && "0-sized memory transferring should be removed already.");
159 if (Size > 8 || (Size&(Size-1)))
160 return nullptr; // If not 1/2/4/8 bytes, exit.
162 // If it is an atomic and alignment is less than the size then we will
163 // introduce the unaligned memory access which will be later transformed
164 // into libcall in CodeGen. This is not evident performance gain so disable
165 // it now.
166 if (isa<AtomicMemTransferInst>(MI))
167 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
168 return nullptr;
170 // Use an integer load+store unless we can find something better.
171 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
173 // If the memcpy has metadata describing the members, see if we can get the
174 // TBAA tag describing our copy.
175 AAMDNodes AACopyMD = MI->getAAMetadata();
177 if (MDNode *M = AACopyMD.TBAAStruct) {
178 AACopyMD.TBAAStruct = nullptr;
179 if (M->getNumOperands() == 3 && M->getOperand(0) &&
180 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
181 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
182 M->getOperand(1) &&
183 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
184 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
185 Size &&
186 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
187 AACopyMD.TBAA = cast<MDNode>(M->getOperand(2));
190 Value *Src = MI->getArgOperand(1);
191 Value *Dest = MI->getArgOperand(0);
192 LoadInst *L = Builder.CreateLoad(IntType, Src);
193 // Alignment from the mem intrinsic will be better, so use it.
194 L->setAlignment(*CopySrcAlign);
195 L->setAAMetadata(AACopyMD);
196 MDNode *LoopMemParallelMD =
197 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
198 if (LoopMemParallelMD)
199 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
201 if (AccessGroupMD)
202 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
204 StoreInst *S = Builder.CreateStore(L, Dest);
205 // Alignment from the mem intrinsic will be better, so use it.
206 S->setAlignment(*CopyDstAlign);
207 S->setAAMetadata(AACopyMD);
208 if (LoopMemParallelMD)
209 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
210 if (AccessGroupMD)
211 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
212 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
214 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
215 // non-atomics can be volatile
216 L->setVolatile(MT->isVolatile());
217 S->setVolatile(MT->isVolatile());
219 if (isa<AtomicMemTransferInst>(MI)) {
220 // atomics have to be unordered
221 L->setOrdering(AtomicOrdering::Unordered);
222 S->setOrdering(AtomicOrdering::Unordered);
225 // Set the size of the copy to 0, it will be deleted on the next iteration.
226 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
227 return MI;
230 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
231 const Align KnownAlignment =
232 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
233 MaybeAlign MemSetAlign = MI->getDestAlign();
234 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
235 MI->setDestAlignment(KnownAlignment);
236 return MI;
239 // If we have a store to a location which is known constant, we can conclude
240 // that the store must be storing the constant value (else the memory
241 // wouldn't be constant), and this must be a noop.
242 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
243 // Set the size of the copy to 0, it will be deleted on the next iteration.
244 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
245 return MI;
248 // Remove memset with an undef value.
249 // FIXME: This is technically incorrect because it might overwrite a poison
250 // value. Change to PoisonValue once #52930 is resolved.
251 if (isa<UndefValue>(MI->getValue())) {
252 // Set the size of the copy to 0, it will be deleted on the next iteration.
253 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
254 return MI;
257 // Extract the length and alignment and fill if they are constant.
258 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
259 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
260 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
261 return nullptr;
262 const uint64_t Len = LenC->getLimitedValue();
263 assert(Len && "0-sized memory setting should be removed already.");
264 const Align Alignment = MI->getDestAlign().valueOrOne();
266 // If it is an atomic and alignment is less than the size then we will
267 // introduce the unaligned memory access which will be later transformed
268 // into libcall in CodeGen. This is not evident performance gain so disable
269 // it now.
270 if (isa<AtomicMemSetInst>(MI))
271 if (Alignment < Len)
272 return nullptr;
274 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
275 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
276 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
278 Value *Dest = MI->getDest();
280 // Extract the fill value and store.
281 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
282 Constant *FillVal = ConstantInt::get(ITy, Fill);
283 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
284 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
285 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) {
286 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
287 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
289 for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers);
290 for_each(at::getDPVAssignmentMarkers(S), replaceOpForAssignmentMarkers);
292 S->setAlignment(Alignment);
293 if (isa<AtomicMemSetInst>(MI))
294 S->setOrdering(AtomicOrdering::Unordered);
296 // Set the size of the copy to 0, it will be deleted on the next iteration.
297 MI->setLength(Constant::getNullValue(LenC->getType()));
298 return MI;
301 return nullptr;
304 // TODO, Obvious Missing Transforms:
305 // * Narrow width by halfs excluding zero/undef lanes
306 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
307 Value *LoadPtr = II.getArgOperand(0);
308 const Align Alignment =
309 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
311 // If the mask is all ones or undefs, this is a plain vector load of the 1st
312 // argument.
313 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
314 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
315 "unmaskedload");
316 L->copyMetadata(II);
317 return L;
320 // If we can unconditionally load from this address, replace with a
321 // load/select idiom. TODO: use DT for context sensitive query
322 if (isDereferenceablePointer(LoadPtr, II.getType(),
323 II.getModule()->getDataLayout(), &II, &AC)) {
324 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
325 "unmaskedload");
326 LI->copyMetadata(II);
327 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
330 return nullptr;
333 // TODO, Obvious Missing Transforms:
334 // * Single constant active lane -> store
335 // * Narrow width by halfs excluding zero/undef lanes
336 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
337 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
338 if (!ConstMask)
339 return nullptr;
341 // If the mask is all zeros, this instruction does nothing.
342 if (ConstMask->isNullValue())
343 return eraseInstFromFunction(II);
345 // If the mask is all ones, this is a plain vector store of the 1st argument.
346 if (ConstMask->isAllOnesValue()) {
347 Value *StorePtr = II.getArgOperand(1);
348 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
349 StoreInst *S =
350 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
351 S->copyMetadata(II);
352 return S;
355 if (isa<ScalableVectorType>(ConstMask->getType()))
356 return nullptr;
358 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
359 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
360 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
361 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
362 PoisonElts))
363 return replaceOperand(II, 0, V);
365 return nullptr;
368 // TODO, Obvious Missing Transforms:
369 // * Single constant active lane load -> load
370 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
371 // * Adjacent vector addresses -> masked.load
372 // * Narrow width by halfs excluding zero/undef lanes
373 // * Vector incrementing address -> vector masked load
374 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
375 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
376 if (!ConstMask)
377 return nullptr;
379 // Vector splat address w/known mask -> scalar load
380 // Fold the gather to load the source vector first lane
381 // because it is reloading the same value each time
382 if (ConstMask->isAllOnesValue())
383 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
384 auto *VecTy = cast<VectorType>(II.getType());
385 const Align Alignment =
386 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
387 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
388 Alignment, "load.scalar");
389 Value *Shuf =
390 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
391 return replaceInstUsesWith(II, cast<Instruction>(Shuf));
394 return nullptr;
397 // TODO, Obvious Missing Transforms:
398 // * Single constant active lane -> store
399 // * Adjacent vector addresses -> masked.store
400 // * Narrow store width by halfs excluding zero/undef lanes
401 // * Vector incrementing address -> vector masked store
402 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
403 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
404 if (!ConstMask)
405 return nullptr;
407 // If the mask is all zeros, a scatter does nothing.
408 if (ConstMask->isNullValue())
409 return eraseInstFromFunction(II);
411 // Vector splat address -> scalar store
412 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
413 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
414 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
415 if (maskContainsAllOneOrUndef(ConstMask)) {
416 Align Alignment =
417 cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
418 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
419 Alignment);
420 S->copyMetadata(II);
421 return S;
424 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
425 // lastlane), ptr
426 if (ConstMask->isAllOnesValue()) {
427 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
428 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
429 ElementCount VF = WideLoadTy->getElementCount();
430 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
431 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
432 Value *Extract =
433 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
434 StoreInst *S =
435 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
436 S->copyMetadata(II);
437 return S;
440 if (isa<ScalableVectorType>(ConstMask->getType()))
441 return nullptr;
443 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
444 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
445 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
446 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
447 PoisonElts))
448 return replaceOperand(II, 0, V);
449 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
450 PoisonElts))
451 return replaceOperand(II, 1, V);
453 return nullptr;
456 /// This function transforms launder.invariant.group and strip.invariant.group
457 /// like:
458 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
459 /// launder(strip(%x)) -> launder(%x)
460 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
461 /// strip(launder(%x)) -> strip(%x)
462 /// This is legal because it preserves the most recent information about
463 /// the presence or absence of invariant.group.
464 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
465 InstCombinerImpl &IC) {
466 auto *Arg = II.getArgOperand(0);
467 auto *StrippedArg = Arg->stripPointerCasts();
468 auto *StrippedInvariantGroupsArg = StrippedArg;
469 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
470 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
471 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
472 break;
473 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
475 if (StrippedArg == StrippedInvariantGroupsArg)
476 return nullptr; // No launders/strips to remove.
478 Value *Result = nullptr;
480 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
481 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
482 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
483 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
484 else
485 llvm_unreachable(
486 "simplifyInvariantGroupIntrinsic only handles launder and strip");
487 if (Result->getType()->getPointerAddressSpace() !=
488 II.getType()->getPointerAddressSpace())
489 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
491 return cast<Instruction>(Result);
494 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
495 assert((II.getIntrinsicID() == Intrinsic::cttz ||
496 II.getIntrinsicID() == Intrinsic::ctlz) &&
497 "Expected cttz or ctlz intrinsic");
498 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
499 Value *Op0 = II.getArgOperand(0);
500 Value *Op1 = II.getArgOperand(1);
501 Value *X;
502 // ctlz(bitreverse(x)) -> cttz(x)
503 // cttz(bitreverse(x)) -> ctlz(x)
504 if (match(Op0, m_BitReverse(m_Value(X)))) {
505 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
506 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
507 return CallInst::Create(F, {X, II.getArgOperand(1)});
510 if (II.getType()->isIntOrIntVectorTy(1)) {
511 // ctlz/cttz i1 Op0 --> not Op0
512 if (match(Op1, m_Zero()))
513 return BinaryOperator::CreateNot(Op0);
514 // If zero is poison, then the input can be assumed to be "true", so the
515 // instruction simplifies to "false".
516 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
517 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
520 Constant *C;
522 if (IsTZ) {
523 // cttz(-x) -> cttz(x)
524 if (match(Op0, m_Neg(m_Value(X))))
525 return IC.replaceOperand(II, 0, X);
527 // cttz(-x & x) -> cttz(x)
528 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
529 return IC.replaceOperand(II, 0, X);
531 // cttz(sext(x)) -> cttz(zext(x))
532 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
533 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
534 auto *CttzZext =
535 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
536 return IC.replaceInstUsesWith(II, CttzZext);
539 // Zext doesn't change the number of trailing zeros, so narrow:
540 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
541 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
542 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
543 IC.Builder.getTrue());
544 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
545 return IC.replaceInstUsesWith(II, ZextCttz);
548 // cttz(abs(x)) -> cttz(x)
549 // cttz(nabs(x)) -> cttz(x)
550 Value *Y;
551 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
552 if (SPF == SPF_ABS || SPF == SPF_NABS)
553 return IC.replaceOperand(II, 0, X);
555 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
556 return IC.replaceOperand(II, 0, X);
558 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
559 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
560 match(Op1, m_One())) {
561 Value *ConstCttz =
562 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
563 return BinaryOperator::CreateAdd(ConstCttz, X);
566 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
567 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
568 match(Op1, m_One())) {
569 Value *ConstCttz =
570 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
571 return BinaryOperator::CreateSub(ConstCttz, X);
573 } else {
574 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
575 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
576 match(Op1, m_One())) {
577 Value *ConstCtlz =
578 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
579 return BinaryOperator::CreateAdd(ConstCtlz, X);
582 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
583 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
584 match(Op1, m_One())) {
585 Value *ConstCtlz =
586 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
587 return BinaryOperator::CreateSub(ConstCtlz, X);
591 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
593 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
594 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
595 : Known.countMaxLeadingZeros();
596 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
597 : Known.countMinLeadingZeros();
599 // If all bits above (ctlz) or below (cttz) the first known one are known
600 // zero, this value is constant.
601 // FIXME: This should be in InstSimplify because we're replacing an
602 // instruction with a constant.
603 if (PossibleZeros == DefiniteZeros) {
604 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
605 return IC.replaceInstUsesWith(II, C);
608 // If the input to cttz/ctlz is known to be non-zero,
609 // then change the 'ZeroIsPoison' parameter to 'true'
610 // because we know the zero behavior can't affect the result.
611 if (!Known.One.isZero() ||
612 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
613 &IC.getDominatorTree())) {
614 if (!match(II.getArgOperand(1), m_One()))
615 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
618 // Add range metadata since known bits can't completely reflect what we know.
619 auto *IT = cast<IntegerType>(Op0->getType()->getScalarType());
620 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
621 Metadata *LowAndHigh[] = {
622 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
623 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
624 II.setMetadata(LLVMContext::MD_range,
625 MDNode::get(II.getContext(), LowAndHigh));
626 return &II;
629 return nullptr;
632 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
633 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
634 "Expected ctpop intrinsic");
635 Type *Ty = II.getType();
636 unsigned BitWidth = Ty->getScalarSizeInBits();
637 Value *Op0 = II.getArgOperand(0);
638 Value *X, *Y;
640 // ctpop(bitreverse(x)) -> ctpop(x)
641 // ctpop(bswap(x)) -> ctpop(x)
642 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
643 return IC.replaceOperand(II, 0, X);
645 // ctpop(rot(x)) -> ctpop(x)
646 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
647 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
648 X == Y)
649 return IC.replaceOperand(II, 0, X);
651 // ctpop(x | -x) -> bitwidth - cttz(x, false)
652 if (Op0->hasOneUse() &&
653 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
654 Function *F =
655 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
656 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
657 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
658 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
661 // ctpop(~x & (x - 1)) -> cttz(x, false)
662 if (match(Op0,
663 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
664 Function *F =
665 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
666 return CallInst::Create(F, {X, IC.Builder.getFalse()});
669 // Zext doesn't change the number of set bits, so narrow:
670 // ctpop (zext X) --> zext (ctpop X)
671 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
672 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
673 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
676 KnownBits Known(BitWidth);
677 IC.computeKnownBits(Op0, Known, 0, &II);
679 // If all bits are zero except for exactly one fixed bit, then the result
680 // must be 0 or 1, and we can get that answer by shifting to LSB:
681 // ctpop (X & 32) --> (X & 32) >> 5
682 // TODO: Investigate removing this as its likely unnecessary given the below
683 // `isKnownToBeAPowerOfTwo` check.
684 if ((~Known.Zero).isPowerOf2())
685 return BinaryOperator::CreateLShr(
686 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
688 // More generally we can also handle non-constant power of 2 patterns such as
689 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
690 // ctpop(Pow2OrZero) --> icmp ne X, 0
691 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
692 return CastInst::Create(Instruction::ZExt,
693 IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
694 Constant::getNullValue(Ty)),
695 Ty);
697 // Add range metadata since known bits can't completely reflect what we know.
698 auto *IT = cast<IntegerType>(Ty->getScalarType());
699 unsigned MinCount = Known.countMinPopulation();
700 unsigned MaxCount = Known.countMaxPopulation();
701 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
702 Metadata *LowAndHigh[] = {
703 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
704 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
705 II.setMetadata(LLVMContext::MD_range,
706 MDNode::get(II.getContext(), LowAndHigh));
707 return &II;
710 return nullptr;
713 /// Convert a table lookup to shufflevector if the mask is constant.
714 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
715 /// which case we could lower the shufflevector with rev64 instructions
716 /// as it's actually a byte reverse.
717 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
718 InstCombiner::BuilderTy &Builder) {
719 // Bail out if the mask is not a constant.
720 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
721 if (!C)
722 return nullptr;
724 auto *VecTy = cast<FixedVectorType>(II.getType());
725 unsigned NumElts = VecTy->getNumElements();
727 // Only perform this transformation for <8 x i8> vector types.
728 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
729 return nullptr;
731 int Indexes[8];
733 for (unsigned I = 0; I < NumElts; ++I) {
734 Constant *COp = C->getAggregateElement(I);
736 if (!COp || !isa<ConstantInt>(COp))
737 return nullptr;
739 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
741 // Make sure the mask indices are in range.
742 if ((unsigned)Indexes[I] >= NumElts)
743 return nullptr;
746 auto *V1 = II.getArgOperand(0);
747 auto *V2 = Constant::getNullValue(V1->getType());
748 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
751 // Returns true iff the 2 intrinsics have the same operands, limiting the
752 // comparison to the first NumOperands.
753 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
754 unsigned NumOperands) {
755 assert(I.arg_size() >= NumOperands && "Not enough operands");
756 assert(E.arg_size() >= NumOperands && "Not enough operands");
757 for (unsigned i = 0; i < NumOperands; i++)
758 if (I.getArgOperand(i) != E.getArgOperand(i))
759 return false;
760 return true;
763 // Remove trivially empty start/end intrinsic ranges, i.e. a start
764 // immediately followed by an end (ignoring debuginfo or other
765 // start/end intrinsics in between). As this handles only the most trivial
766 // cases, tracking the nesting level is not needed:
768 // call @llvm.foo.start(i1 0)
769 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
770 // call @llvm.foo.end(i1 0)
771 // call @llvm.foo.end(i1 0) ; &I
772 static bool
773 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
774 std::function<bool(const IntrinsicInst &)> IsStart) {
775 // We start from the end intrinsic and scan backwards, so that InstCombine
776 // has already processed (and potentially removed) all the instructions
777 // before the end intrinsic.
778 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
779 for (; BI != BE; ++BI) {
780 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
781 if (I->isDebugOrPseudoInst() ||
782 I->getIntrinsicID() == EndI.getIntrinsicID())
783 continue;
784 if (IsStart(*I)) {
785 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
786 IC.eraseInstFromFunction(*I);
787 IC.eraseInstFromFunction(EndI);
788 return true;
790 // Skip start intrinsics that don't pair with this end intrinsic.
791 continue;
794 break;
797 return false;
800 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
801 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
802 return I.getIntrinsicID() == Intrinsic::vastart ||
803 I.getIntrinsicID() == Intrinsic::vacopy;
805 return nullptr;
808 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
809 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
810 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
811 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
812 Call.setArgOperand(0, Arg1);
813 Call.setArgOperand(1, Arg0);
814 return &Call;
816 return nullptr;
819 /// Creates a result tuple for an overflow intrinsic \p II with a given
820 /// \p Result and a constant \p Overflow value.
821 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
822 Constant *Overflow) {
823 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
824 StructType *ST = cast<StructType>(II->getType());
825 Constant *Struct = ConstantStruct::get(ST, V);
826 return InsertValueInst::Create(Struct, Result, 0);
829 Instruction *
830 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
831 WithOverflowInst *WO = cast<WithOverflowInst>(II);
832 Value *OperationResult = nullptr;
833 Constant *OverflowResult = nullptr;
834 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
835 WO->getRHS(), *WO, OperationResult, OverflowResult))
836 return createOverflowTuple(WO, OperationResult, OverflowResult);
837 return nullptr;
840 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
841 Ty = Ty->getScalarType();
842 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
845 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
846 Ty = Ty->getScalarType();
847 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
850 /// \returns the compare predicate type if the test performed by
851 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
852 /// floating-point environment assumed for \p F for type \p Ty
853 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
854 const Function &F, Type *Ty) {
855 switch (static_cast<unsigned>(Mask)) {
856 case fcZero:
857 if (inputDenormalIsIEEE(F, Ty))
858 return FCmpInst::FCMP_OEQ;
859 break;
860 case fcZero | fcSubnormal:
861 if (inputDenormalIsDAZ(F, Ty))
862 return FCmpInst::FCMP_OEQ;
863 break;
864 case fcPositive | fcNegZero:
865 if (inputDenormalIsIEEE(F, Ty))
866 return FCmpInst::FCMP_OGE;
867 break;
868 case fcPositive | fcNegZero | fcNegSubnormal:
869 if (inputDenormalIsDAZ(F, Ty))
870 return FCmpInst::FCMP_OGE;
871 break;
872 case fcPosSubnormal | fcPosNormal | fcPosInf:
873 if (inputDenormalIsIEEE(F, Ty))
874 return FCmpInst::FCMP_OGT;
875 break;
876 case fcNegative | fcPosZero:
877 if (inputDenormalIsIEEE(F, Ty))
878 return FCmpInst::FCMP_OLE;
879 break;
880 case fcNegative | fcPosZero | fcPosSubnormal:
881 if (inputDenormalIsDAZ(F, Ty))
882 return FCmpInst::FCMP_OLE;
883 break;
884 case fcNegSubnormal | fcNegNormal | fcNegInf:
885 if (inputDenormalIsIEEE(F, Ty))
886 return FCmpInst::FCMP_OLT;
887 break;
888 case fcPosNormal | fcPosInf:
889 if (inputDenormalIsDAZ(F, Ty))
890 return FCmpInst::FCMP_OGT;
891 break;
892 case fcNegNormal | fcNegInf:
893 if (inputDenormalIsDAZ(F, Ty))
894 return FCmpInst::FCMP_OLT;
895 break;
896 case ~fcZero & ~fcNan:
897 if (inputDenormalIsIEEE(F, Ty))
898 return FCmpInst::FCMP_ONE;
899 break;
900 case ~(fcZero | fcSubnormal) & ~fcNan:
901 if (inputDenormalIsDAZ(F, Ty))
902 return FCmpInst::FCMP_ONE;
903 break;
904 default:
905 break;
908 return FCmpInst::BAD_FCMP_PREDICATE;
911 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
912 Value *Src0 = II.getArgOperand(0);
913 Value *Src1 = II.getArgOperand(1);
914 const ConstantInt *CMask = cast<ConstantInt>(Src1);
915 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
916 const bool IsUnordered = (Mask & fcNan) == fcNan;
917 const bool IsOrdered = (Mask & fcNan) == fcNone;
918 const FPClassTest OrderedMask = Mask & ~fcNan;
919 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
921 const bool IsStrict = II.isStrictFP();
923 Value *FNegSrc;
924 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
925 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
927 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
928 return replaceOperand(II, 0, FNegSrc);
931 Value *FAbsSrc;
932 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
933 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
934 return replaceOperand(II, 0, FAbsSrc);
937 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
938 (IsOrdered || IsUnordered) && !IsStrict) {
939 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
940 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
941 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
942 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
943 Constant *Inf = ConstantFP::getInfinity(Src0->getType());
944 FCmpInst::Predicate Pred =
945 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
946 if (OrderedInvertedMask == fcInf)
947 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
949 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
950 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
951 CmpInf->takeName(&II);
952 return replaceInstUsesWith(II, CmpInf);
955 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
956 (IsOrdered || IsUnordered) && !IsStrict) {
957 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
958 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
959 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
960 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
961 Constant *Inf =
962 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
963 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
964 : Builder.CreateFCmpOEQ(Src0, Inf);
966 EqInf->takeName(&II);
967 return replaceInstUsesWith(II, EqInf);
970 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
971 (IsOrdered || IsUnordered) && !IsStrict) {
972 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
973 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
974 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
975 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
976 Constant *Inf = ConstantFP::getInfinity(Src0->getType(),
977 OrderedInvertedMask == fcNegInf);
978 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
979 : Builder.CreateFCmpONE(Src0, Inf);
980 NeInf->takeName(&II);
981 return replaceInstUsesWith(II, NeInf);
984 if (Mask == fcNan && !IsStrict) {
985 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
986 // exceptions.
987 Value *IsNan =
988 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
989 IsNan->takeName(&II);
990 return replaceInstUsesWith(II, IsNan);
993 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
994 // Equivalent of !isnan. Replace with standard fcmp.
995 Value *FCmp =
996 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
997 FCmp->takeName(&II);
998 return replaceInstUsesWith(II, FCmp);
1001 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
1003 // Try to replace with an fcmp with 0
1005 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1006 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1007 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1008 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1010 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1011 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1013 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1014 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1016 if (!IsStrict && (IsOrdered || IsUnordered) &&
1017 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1018 Src0->getType())) !=
1019 FCmpInst::BAD_FCMP_PREDICATE) {
1020 Constant *Zero = ConstantFP::getZero(Src0->getType());
1021 // Equivalent of == 0.
1022 Value *FCmp = Builder.CreateFCmp(
1023 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1024 Src0, Zero);
1026 FCmp->takeName(&II);
1027 return replaceInstUsesWith(II, FCmp);
1030 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1032 // Clear test bits we know must be false from the source value.
1033 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1034 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1035 if ((Mask & Known.KnownFPClasses) != Mask) {
1036 II.setArgOperand(
1037 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1038 return &II;
1041 // If none of the tests which can return false are possible, fold to true.
1042 // fp_class (nnan x), ~(qnan|snan) -> true
1043 // fp_class (ninf x), ~(ninf|pinf) -> true
1044 if (Mask == Known.KnownFPClasses)
1045 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1047 return nullptr;
1050 static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
1051 const DataLayout &DL, AssumptionCache *AC,
1052 DominatorTree *DT) {
1053 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
1054 if (Known.isNonNegative())
1055 return false;
1056 if (Known.isNegative())
1057 return true;
1059 Value *X, *Y;
1060 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1061 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
1063 return isImpliedByDomCondition(
1064 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
1067 static std::optional<bool> getKnownSignOrZero(Value *Op, Instruction *CxtI,
1068 const DataLayout &DL,
1069 AssumptionCache *AC,
1070 DominatorTree *DT) {
1071 if (std::optional<bool> Sign = getKnownSign(Op, CxtI, DL, AC, DT))
1072 return Sign;
1074 Value *X, *Y;
1075 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1076 return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, CxtI, DL);
1078 return std::nullopt;
1081 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1082 static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI,
1083 const DataLayout &DL, AssumptionCache *AC,
1084 DominatorTree *DT) {
1085 std::optional<bool> Known1 = getKnownSign(Op1, CxtI, DL, AC, DT);
1086 if (!Known1)
1087 return false;
1088 std::optional<bool> Known0 = getKnownSign(Op0, CxtI, DL, AC, DT);
1089 if (!Known0)
1090 return false;
1091 return *Known0 == *Known1;
1094 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1095 /// can trigger other combines.
1096 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
1097 InstCombiner::BuilderTy &Builder) {
1098 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1099 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1100 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1101 "Expected a min or max intrinsic");
1103 // TODO: Match vectors with undef elements, but undef may not propagate.
1104 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1105 Value *X;
1106 const APInt *C0, *C1;
1107 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1108 !match(Op1, m_APInt(C1)))
1109 return nullptr;
1111 // Check for necessary no-wrap and overflow constraints.
1112 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1113 auto *Add = cast<BinaryOperator>(Op0);
1114 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1115 (!IsSigned && !Add->hasNoUnsignedWrap()))
1116 return nullptr;
1118 // If the constant difference overflows, then instsimplify should reduce the
1119 // min/max to the add or C1.
1120 bool Overflow;
1121 APInt CDiff =
1122 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1123 assert(!Overflow && "Expected simplify of min/max");
1125 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1126 // Note: the "mismatched" no-overflow setting does not propagate.
1127 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1128 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1129 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1130 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1132 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1133 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1134 Type *Ty = MinMax1.getType();
1136 // We are looking for a tree of:
1137 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1138 // Where the min and max could be reversed
1139 Instruction *MinMax2;
1140 BinaryOperator *AddSub;
1141 const APInt *MinValue, *MaxValue;
1142 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1143 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1144 return nullptr;
1145 } else if (match(&MinMax1,
1146 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1147 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1148 return nullptr;
1149 } else
1150 return nullptr;
1152 // Check that the constants clamp a saturate, and that the new type would be
1153 // sensible to convert to.
1154 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1155 return nullptr;
1156 // In what bitwidth can this be treated as saturating arithmetics?
1157 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1158 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1159 // good first approximation for what should be done there.
1160 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1161 return nullptr;
1163 // Also make sure that the inner min/max and the add/sub have one use.
1164 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1165 return nullptr;
1167 // Create the new type (which can be a vector type)
1168 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1170 Intrinsic::ID IntrinsicID;
1171 if (AddSub->getOpcode() == Instruction::Add)
1172 IntrinsicID = Intrinsic::sadd_sat;
1173 else if (AddSub->getOpcode() == Instruction::Sub)
1174 IntrinsicID = Intrinsic::ssub_sat;
1175 else
1176 return nullptr;
1178 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1179 // is usually achieved via a sext from a smaller type.
1180 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
1181 NewBitWidth ||
1182 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
1183 return nullptr;
1185 // Finally create and return the sat intrinsic, truncated to the new type
1186 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
1187 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1188 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1189 Value *Sat = Builder.CreateCall(F, {AT, BT});
1190 return CastInst::Create(Instruction::SExt, Sat, Ty);
1194 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1195 /// can only be one of two possible constant values -- turn that into a select
1196 /// of constants.
1197 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
1198 InstCombiner::BuilderTy &Builder) {
1199 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1200 Value *X;
1201 const APInt *C0, *C1;
1202 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1203 return nullptr;
1205 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
1206 switch (II->getIntrinsicID()) {
1207 case Intrinsic::smax:
1208 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1209 Pred = ICmpInst::ICMP_SGT;
1210 break;
1211 case Intrinsic::smin:
1212 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1213 Pred = ICmpInst::ICMP_SLT;
1214 break;
1215 case Intrinsic::umax:
1216 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1217 Pred = ICmpInst::ICMP_UGT;
1218 break;
1219 case Intrinsic::umin:
1220 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1221 Pred = ICmpInst::ICMP_ULT;
1222 break;
1223 default:
1224 llvm_unreachable("Expected min/max intrinsic");
1226 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1227 return nullptr;
1229 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1230 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1231 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1232 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1235 /// If this min/max has a constant operand and an operand that is a matching
1236 /// min/max with a constant operand, constant-fold the 2 constant operands.
1237 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
1238 IRBuilderBase &Builder) {
1239 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1240 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1241 if (!LHS || LHS->getIntrinsicID() != MinMaxID)
1242 return nullptr;
1244 Constant *C0, *C1;
1245 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1246 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1247 return nullptr;
1249 // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
1250 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
1251 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1252 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1253 return Builder.CreateIntrinsic(MinMaxID, II->getType(),
1254 {LHS->getArgOperand(0), NewC});
1257 /// If this min/max has a matching min/max operand with a constant, try to push
1258 /// the constant operand into this instruction. This can enable more folds.
1259 static Instruction *
1260 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1261 InstCombiner::BuilderTy &Builder) {
1262 // Match and capture a min/max operand candidate.
1263 Value *X, *Y;
1264 Constant *C;
1265 Instruction *Inner;
1266 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1267 m_Instruction(Inner),
1268 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1269 m_Value(Y))))
1270 return nullptr;
1272 // The inner op must match. Check for constants to avoid infinite loops.
1273 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1274 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1275 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1276 match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1277 return nullptr;
1279 // max (max X, C), Y --> max (max X, Y), C
1280 Function *MinMax =
1281 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1282 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1283 NewInner->takeName(Inner);
1284 return CallInst::Create(MinMax, {NewInner, C});
1287 /// Reduce a sequence of min/max intrinsics with a common operand.
1288 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1289 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1290 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1291 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1292 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1293 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1294 RHS->getIntrinsicID() != MinMaxID ||
1295 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1296 return nullptr;
1298 Value *A = LHS->getArgOperand(0);
1299 Value *B = LHS->getArgOperand(1);
1300 Value *C = RHS->getArgOperand(0);
1301 Value *D = RHS->getArgOperand(1);
1303 // Look for a common operand.
1304 Value *MinMaxOp = nullptr;
1305 Value *ThirdOp = nullptr;
1306 if (LHS->hasOneUse()) {
1307 // If the LHS is only used in this chain and the RHS is used outside of it,
1308 // reuse the RHS min/max because that will eliminate the LHS.
1309 if (D == A || C == A) {
1310 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1311 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1312 MinMaxOp = RHS;
1313 ThirdOp = B;
1314 } else if (D == B || C == B) {
1315 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1316 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1317 MinMaxOp = RHS;
1318 ThirdOp = A;
1320 } else {
1321 assert(RHS->hasOneUse() && "Expected one-use operand");
1322 // Reuse the LHS. This will eliminate the RHS.
1323 if (D == A || D == B) {
1324 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1325 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1326 MinMaxOp = LHS;
1327 ThirdOp = C;
1328 } else if (C == A || C == B) {
1329 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1330 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1331 MinMaxOp = LHS;
1332 ThirdOp = D;
1336 if (!MinMaxOp || !ThirdOp)
1337 return nullptr;
1339 Module *Mod = II->getModule();
1340 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1341 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1344 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1345 /// try to shuffle after the intrinsic.
1346 static Instruction *
1347 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1348 InstCombiner::BuilderTy &Builder) {
1349 // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1350 // etc. Use llvm::isTriviallyVectorizable() and related to determine
1351 // which intrinsics are safe to shuffle?
1352 switch (II->getIntrinsicID()) {
1353 case Intrinsic::smax:
1354 case Intrinsic::smin:
1355 case Intrinsic::umax:
1356 case Intrinsic::umin:
1357 case Intrinsic::fma:
1358 case Intrinsic::fshl:
1359 case Intrinsic::fshr:
1360 break;
1361 default:
1362 return nullptr;
1365 Value *X;
1366 ArrayRef<int> Mask;
1367 if (!match(II->getArgOperand(0),
1368 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1369 return nullptr;
1371 // At least 1 operand must have 1 use because we are creating 2 instructions.
1372 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1373 return nullptr;
1375 // See if all arguments are shuffled with the same mask.
1376 SmallVector<Value *, 4> NewArgs(II->arg_size());
1377 NewArgs[0] = X;
1378 Type *SrcTy = X->getType();
1379 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1380 if (!match(II->getArgOperand(i),
1381 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1382 X->getType() != SrcTy)
1383 return nullptr;
1384 NewArgs[i] = X;
1387 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1388 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1389 Value *NewIntrinsic =
1390 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1391 return new ShuffleVectorInst(NewIntrinsic, Mask);
1394 /// Fold the following cases and accepts bswap and bitreverse intrinsics:
1395 /// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1396 /// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1397 template <Intrinsic::ID IntrID>
1398 static Instruction *foldBitOrderCrossLogicOp(Value *V,
1399 InstCombiner::BuilderTy &Builder) {
1400 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1401 "This helper only supports BSWAP and BITREVERSE intrinsics");
1403 Value *X, *Y;
1404 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1405 // don't match ConstantExpr that aren't meaningful for this transform.
1406 if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) &&
1407 isa<BinaryOperator>(V)) {
1408 Value *OldReorderX, *OldReorderY;
1409 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
1411 // If both X and Y are bswap/bitreverse, the transform reduces the number
1412 // of instructions even if there's multiuse.
1413 // If only one operand is bswap/bitreverse, we need to ensure the operand
1414 // have only one use.
1415 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1416 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1417 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1420 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1421 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1422 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1425 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1426 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1427 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1430 return nullptr;
1433 /// CallInst simplification. This mostly only handles folding of intrinsic
1434 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1435 /// lifting.
1436 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1437 // Don't try to simplify calls without uses. It will not do anything useful,
1438 // but will result in the following folds being skipped.
1439 if (!CI.use_empty()) {
1440 SmallVector<Value *, 4> Args;
1441 Args.reserve(CI.arg_size());
1442 for (Value *Op : CI.args())
1443 Args.push_back(Op);
1444 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1445 SQ.getWithInstruction(&CI)))
1446 return replaceInstUsesWith(CI, V);
1449 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1450 return visitFree(CI, FreedOp);
1452 // If the caller function (i.e. us, the function that contains this CallInst)
1453 // is nounwind, mark the call as nounwind, even if the callee isn't.
1454 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1455 CI.setDoesNotThrow();
1456 return &CI;
1459 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1460 if (!II) return visitCallBase(CI);
1462 // For atomic unordered mem intrinsics if len is not a positive or
1463 // not a multiple of element size then behavior is undefined.
1464 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1465 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1466 if (NumBytes->isNegative() ||
1467 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1468 CreateNonTerminatorUnreachable(AMI);
1469 assert(AMI->getType()->isVoidTy() &&
1470 "non void atomic unordered mem intrinsic");
1471 return eraseInstFromFunction(*AMI);
1474 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1475 // instead of in visitCallBase.
1476 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1477 bool Changed = false;
1479 // memmove/cpy/set of zero bytes is a noop.
1480 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1481 if (NumBytes->isNullValue())
1482 return eraseInstFromFunction(CI);
1485 // No other transformations apply to volatile transfers.
1486 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1487 if (M->isVolatile())
1488 return nullptr;
1490 // If we have a memmove and the source operation is a constant global,
1491 // then the source and dest pointers can't alias, so we can change this
1492 // into a call to memcpy.
1493 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1494 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1495 if (GVSrc->isConstant()) {
1496 Module *M = CI.getModule();
1497 Intrinsic::ID MemCpyID =
1498 isa<AtomicMemMoveInst>(MMI)
1499 ? Intrinsic::memcpy_element_unordered_atomic
1500 : Intrinsic::memcpy;
1501 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1502 CI.getArgOperand(1)->getType(),
1503 CI.getArgOperand(2)->getType() };
1504 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1505 Changed = true;
1509 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1510 // memmove(x,x,size) -> noop.
1511 if (MTI->getSource() == MTI->getDest())
1512 return eraseInstFromFunction(CI);
1515 // If we can determine a pointer alignment that is bigger than currently
1516 // set, update the alignment.
1517 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1518 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1519 return I;
1520 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1521 if (Instruction *I = SimplifyAnyMemSet(MSI))
1522 return I;
1525 if (Changed) return II;
1528 // For fixed width vector result intrinsics, use the generic demanded vector
1529 // support.
1530 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1531 auto VWidth = IIFVTy->getNumElements();
1532 APInt PoisonElts(VWidth, 0);
1533 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1534 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1535 if (V != II)
1536 return replaceInstUsesWith(*II, V);
1537 return II;
1541 if (II->isCommutative()) {
1542 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1543 replaceOperand(*II, 0, Pair->first);
1544 replaceOperand(*II, 1, Pair->second);
1545 return II;
1548 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1549 return NewCall;
1552 // Unused constrained FP intrinsic calls may have declared side effect, which
1553 // prevents it from being removed. In some cases however the side effect is
1554 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1555 // returns a replacement, the call may be removed.
1556 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1557 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1558 return eraseInstFromFunction(CI);
1561 Intrinsic::ID IID = II->getIntrinsicID();
1562 switch (IID) {
1563 case Intrinsic::objectsize: {
1564 SmallVector<Instruction *> InsertedInstructions;
1565 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1566 &InsertedInstructions)) {
1567 for (Instruction *Inserted : InsertedInstructions)
1568 Worklist.add(Inserted);
1569 return replaceInstUsesWith(CI, V);
1571 return nullptr;
1573 case Intrinsic::abs: {
1574 Value *IIOperand = II->getArgOperand(0);
1575 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1577 // abs(-x) -> abs(x)
1578 // TODO: Copy nsw if it was present on the neg?
1579 Value *X;
1580 if (match(IIOperand, m_Neg(m_Value(X))))
1581 return replaceOperand(*II, 0, X);
1582 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1583 return replaceOperand(*II, 0, X);
1584 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1585 return replaceOperand(*II, 0, X);
1587 if (std::optional<bool> Known =
1588 getKnownSignOrZero(IIOperand, II, DL, &AC, &DT)) {
1589 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1590 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1591 if (!*Known)
1592 return replaceInstUsesWith(*II, IIOperand);
1594 // abs(x) -> -x if x < 0
1595 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1596 if (IntMinIsPoison)
1597 return BinaryOperator::CreateNSWNeg(IIOperand);
1598 return BinaryOperator::CreateNeg(IIOperand);
1601 // abs (sext X) --> zext (abs X*)
1602 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1603 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1604 Value *NarrowAbs =
1605 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1606 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1609 // Match a complicated way to check if a number is odd/even:
1610 // abs (srem X, 2) --> and X, 1
1611 const APInt *C;
1612 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1613 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1615 break;
1617 case Intrinsic::umin: {
1618 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1619 // umin(x, 1) == zext(x != 0)
1620 if (match(I1, m_One())) {
1621 assert(II->getType()->getScalarSizeInBits() != 1 &&
1622 "Expected simplify of umin with max constant");
1623 Value *Zero = Constant::getNullValue(I0->getType());
1624 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1625 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1627 [[fallthrough]];
1629 case Intrinsic::umax: {
1630 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1631 Value *X, *Y;
1632 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1633 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1634 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1635 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1637 Constant *C;
1638 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1639 I0->hasOneUse()) {
1640 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) {
1641 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1642 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1645 // If both operands of unsigned min/max are sign-extended, it is still ok
1646 // to narrow the operation.
1647 [[fallthrough]];
1649 case Intrinsic::smax:
1650 case Intrinsic::smin: {
1651 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1652 Value *X, *Y;
1653 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1654 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1655 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1656 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1659 Constant *C;
1660 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1661 I0->hasOneUse()) {
1662 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) {
1663 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1664 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1668 // umin(i1 X, i1 Y) -> and i1 X, Y
1669 // smax(i1 X, i1 Y) -> and i1 X, Y
1670 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1671 II->getType()->isIntOrIntVectorTy(1)) {
1672 return BinaryOperator::CreateAnd(I0, I1);
1675 // umax(i1 X, i1 Y) -> or i1 X, Y
1676 // smin(i1 X, i1 Y) -> or i1 X, Y
1677 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1678 II->getType()->isIntOrIntVectorTy(1)) {
1679 return BinaryOperator::CreateOr(I0, I1);
1682 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1683 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1684 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1685 // TODO: Canonicalize neg after min/max if I1 is constant.
1686 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1687 (I0->hasOneUse() || I1->hasOneUse())) {
1688 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1689 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1690 return BinaryOperator::CreateNSWNeg(InvMaxMin);
1694 // (umax X, (xor X, Pow2))
1695 // -> (or X, Pow2)
1696 // (umin X, (xor X, Pow2))
1697 // -> (and X, ~Pow2)
1698 // (smax X, (xor X, Pos_Pow2))
1699 // -> (or X, Pos_Pow2)
1700 // (smin X, (xor X, Pos_Pow2))
1701 // -> (and X, ~Pos_Pow2)
1702 // (smax X, (xor X, Neg_Pow2))
1703 // -> (and X, ~Neg_Pow2)
1704 // (smin X, (xor X, Neg_Pow2))
1705 // -> (or X, Neg_Pow2)
1706 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
1707 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
1708 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
1709 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1710 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1712 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1713 auto KnownSign = getKnownSign(X, II, DL, &AC, &DT);
1714 if (KnownSign == std::nullopt) {
1715 UseOr = false;
1716 UseAndN = false;
1717 } else if (*KnownSign /* true is Signed. */) {
1718 UseOr ^= true;
1719 UseAndN ^= true;
1720 Type *Ty = I0->getType();
1721 // Negative power of 2 must be IntMin. It's possible to be able to
1722 // prove negative / power of 2 without actually having known bits, so
1723 // just get the value by hand.
1724 X = Constant::getIntegerValue(
1725 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
1728 if (UseOr)
1729 return BinaryOperator::CreateOr(I0, X);
1730 else if (UseAndN)
1731 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
1734 // If we can eliminate ~A and Y is free to invert:
1735 // max ~A, Y --> ~(min A, ~Y)
1737 // Examples:
1738 // max ~A, ~Y --> ~(min A, Y)
1739 // max ~A, C --> ~(min A, ~C)
1740 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1741 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1742 Value *A;
1743 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1744 !isFreeToInvert(A, A->hasOneUse())) {
1745 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
1746 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1747 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1748 return BinaryOperator::CreateNot(InvMaxMin);
1751 return nullptr;
1754 if (Instruction *I = moveNotAfterMinMax(I0, I1))
1755 return I;
1756 if (Instruction *I = moveNotAfterMinMax(I1, I0))
1757 return I;
1759 if (Instruction *I = moveAddAfterMinMax(II, Builder))
1760 return I;
1762 // smax(X, -X) --> abs(X)
1763 // smin(X, -X) --> -abs(X)
1764 // umax(X, -X) --> -abs(X)
1765 // umin(X, -X) --> abs(X)
1766 if (isKnownNegation(I0, I1)) {
1767 // We can choose either operand as the input to abs(), but if we can
1768 // eliminate the only use of a value, that's better for subsequent
1769 // transforms/analysis.
1770 if (I0->hasOneUse() && !I1->hasOneUse())
1771 std::swap(I0, I1);
1773 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1774 // operation and potentially its negation.
1775 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1776 Value *Abs = Builder.CreateBinaryIntrinsic(
1777 Intrinsic::abs, I0,
1778 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1780 // We don't have a "nabs" intrinsic, so negate if needed based on the
1781 // max/min operation.
1782 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1783 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1784 return replaceInstUsesWith(CI, Abs);
1787 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1788 return Sel;
1790 if (Instruction *SAdd = matchSAddSubSat(*II))
1791 return SAdd;
1793 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder))
1794 return replaceInstUsesWith(*II, NewMinMax);
1796 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1797 return R;
1799 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1800 return NewMinMax;
1802 // Try to fold minmax with constant RHS based on range information
1803 const APInt *RHSC;
1804 if (match(I1, m_APIntAllowUndef(RHSC))) {
1805 ICmpInst::Predicate Pred =
1806 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
1807 bool IsSigned = MinMaxIntrinsic::isSigned(IID);
1808 ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits(
1809 I0, IsSigned, SQ.getWithInstruction(II));
1810 if (!LHS_CR.isFullSet()) {
1811 if (LHS_CR.icmp(Pred, *RHSC))
1812 return replaceInstUsesWith(*II, I0);
1813 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
1814 return replaceInstUsesWith(*II,
1815 ConstantInt::get(II->getType(), *RHSC));
1819 break;
1821 case Intrinsic::bitreverse: {
1822 Value *IIOperand = II->getArgOperand(0);
1823 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1824 Value *X;
1825 if (match(IIOperand, m_ZExt(m_Value(X))) &&
1826 X->getType()->isIntOrIntVectorTy(1)) {
1827 Type *Ty = II->getType();
1828 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
1829 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
1830 ConstantInt::getNullValue(Ty));
1833 if (Instruction *crossLogicOpFold =
1834 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
1835 return crossLogicOpFold;
1837 break;
1839 case Intrinsic::bswap: {
1840 Value *IIOperand = II->getArgOperand(0);
1842 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1843 // inverse-shift-of-bswap:
1844 // bswap (shl X, Y) --> lshr (bswap X), Y
1845 // bswap (lshr X, Y) --> shl (bswap X), Y
1846 Value *X, *Y;
1847 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1848 // The transform allows undef vector elements, so try a constant match
1849 // first. If knownbits can handle that case, that clause could be removed.
1850 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1851 const APInt *C;
1852 if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1853 MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1854 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1855 BinaryOperator::BinaryOps InverseShift =
1856 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1857 ? Instruction::LShr
1858 : Instruction::Shl;
1859 return BinaryOperator::Create(InverseShift, NewSwap, Y);
1863 KnownBits Known = computeKnownBits(IIOperand, 0, II);
1864 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1865 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1866 unsigned BW = Known.getBitWidth();
1868 // bswap(x) -> shift(x) if x has exactly one "active byte"
1869 if (BW - LZ - TZ == 8) {
1870 assert(LZ != TZ && "active byte cannot be in the middle");
1871 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
1872 return BinaryOperator::CreateNUWShl(
1873 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1874 // -> lshr(x) if the "active byte" is in the high part of x
1875 return BinaryOperator::CreateExactLShr(
1876 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1879 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1880 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1881 unsigned C = X->getType()->getScalarSizeInBits() - BW;
1882 Value *CV = ConstantInt::get(X->getType(), C);
1883 Value *V = Builder.CreateLShr(X, CV);
1884 return new TruncInst(V, IIOperand->getType());
1887 if (Instruction *crossLogicOpFold =
1888 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
1889 return crossLogicOpFold;
1892 // Try to fold into bitreverse if bswap is the root of the expression tree.
1893 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
1894 /*MatchBitReversals*/ true))
1895 return BitOp;
1896 break;
1898 case Intrinsic::masked_load:
1899 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1900 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1901 break;
1902 case Intrinsic::masked_store:
1903 return simplifyMaskedStore(*II);
1904 case Intrinsic::masked_gather:
1905 return simplifyMaskedGather(*II);
1906 case Intrinsic::masked_scatter:
1907 return simplifyMaskedScatter(*II);
1908 case Intrinsic::launder_invariant_group:
1909 case Intrinsic::strip_invariant_group:
1910 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1911 return replaceInstUsesWith(*II, SkippedBarrier);
1912 break;
1913 case Intrinsic::powi:
1914 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1915 // 0 and 1 are handled in instsimplify
1916 // powi(x, -1) -> 1/x
1917 if (Power->isMinusOne())
1918 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1919 II->getArgOperand(0), II);
1920 // powi(x, 2) -> x*x
1921 if (Power->equalsInt(2))
1922 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1923 II->getArgOperand(0), II);
1925 if (!Power->getValue()[0]) {
1926 Value *X;
1927 // If power is even:
1928 // powi(-x, p) -> powi(x, p)
1929 // powi(fabs(x), p) -> powi(x, p)
1930 // powi(copysign(x, y), p) -> powi(x, p)
1931 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1932 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1933 match(II->getArgOperand(0),
1934 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1935 return replaceOperand(*II, 0, X);
1938 break;
1940 case Intrinsic::cttz:
1941 case Intrinsic::ctlz:
1942 if (auto *I = foldCttzCtlz(*II, *this))
1943 return I;
1944 break;
1946 case Intrinsic::ctpop:
1947 if (auto *I = foldCtpop(*II, *this))
1948 return I;
1949 break;
1951 case Intrinsic::fshl:
1952 case Intrinsic::fshr: {
1953 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1954 Type *Ty = II->getType();
1955 unsigned BitWidth = Ty->getScalarSizeInBits();
1956 Constant *ShAmtC;
1957 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
1958 // Canonicalize a shift amount constant operand to modulo the bit-width.
1959 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1960 Constant *ModuloC =
1961 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
1962 if (!ModuloC)
1963 return nullptr;
1964 if (ModuloC != ShAmtC)
1965 return replaceOperand(*II, 2, ModuloC);
1967 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1968 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1969 "Shift amount expected to be modulo bitwidth");
1971 // Canonicalize funnel shift right by constant to funnel shift left. This
1972 // is not entirely arbitrary. For historical reasons, the backend may
1973 // recognize rotate left patterns but miss rotate right patterns.
1974 if (IID == Intrinsic::fshr) {
1975 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1976 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1977 Module *Mod = II->getModule();
1978 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1979 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1981 assert(IID == Intrinsic::fshl &&
1982 "All funnel shifts by simple constants should go left");
1984 // fshl(X, 0, C) --> shl X, C
1985 // fshl(X, undef, C) --> shl X, C
1986 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1987 return BinaryOperator::CreateShl(Op0, ShAmtC);
1989 // fshl(0, X, C) --> lshr X, (BW-C)
1990 // fshl(undef, X, C) --> lshr X, (BW-C)
1991 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1992 return BinaryOperator::CreateLShr(Op1,
1993 ConstantExpr::getSub(WidthC, ShAmtC));
1995 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1996 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1997 Module *Mod = II->getModule();
1998 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1999 return CallInst::Create(Bswap, { Op0 });
2001 if (Instruction *BitOp =
2002 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2003 /*MatchBitReversals*/ true))
2004 return BitOp;
2007 // Left or right might be masked.
2008 if (SimplifyDemandedInstructionBits(*II))
2009 return &CI;
2011 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2012 // so only the low bits of the shift amount are demanded if the bitwidth is
2013 // a power-of-2.
2014 if (!isPowerOf2_32(BitWidth))
2015 break;
2016 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2017 KnownBits Op2Known(BitWidth);
2018 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2019 return &CI;
2020 break;
2022 case Intrinsic::ptrmask: {
2023 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2024 KnownBits Known(BitWidth);
2025 if (SimplifyDemandedInstructionBits(*II, Known))
2026 return II;
2028 Value *InnerPtr, *InnerMask;
2029 bool Changed = false;
2030 // Combine:
2031 // (ptrmask (ptrmask p, A), B)
2032 // -> (ptrmask p, (and A, B))
2033 if (match(II->getArgOperand(0),
2034 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
2035 m_Value(InnerMask))))) {
2036 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2037 "Mask types must match");
2038 // TODO: If InnerMask == Op1, we could copy attributes from inner
2039 // callsite -> outer callsite.
2040 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2041 replaceOperand(CI, 0, InnerPtr);
2042 replaceOperand(CI, 1, NewMask);
2043 Changed = true;
2046 // See if we can deduce non-null.
2047 if (!CI.hasRetAttr(Attribute::NonNull) &&
2048 (Known.isNonZero() ||
2049 isKnownNonZero(II, DL, /*Depth*/ 0, &AC, II, &DT))) {
2050 CI.addRetAttr(Attribute::NonNull);
2051 Changed = true;
2054 unsigned NewAlignmentLog =
2055 std::min(Value::MaxAlignmentExponent,
2056 std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2057 // Known bits will capture if we had alignment information associated with
2058 // the pointer argument.
2059 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2060 CI.addRetAttr(Attribute::getWithAlignment(
2061 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2062 Changed = true;
2064 if (Changed)
2065 return &CI;
2066 break;
2068 case Intrinsic::uadd_with_overflow:
2069 case Intrinsic::sadd_with_overflow: {
2070 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2071 return I;
2073 // Given 2 constant operands whose sum does not overflow:
2074 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2075 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2076 Value *X;
2077 const APInt *C0, *C1;
2078 Value *Arg0 = II->getArgOperand(0);
2079 Value *Arg1 = II->getArgOperand(1);
2080 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2081 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
2082 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
2083 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2084 bool Overflow;
2085 APInt NewC =
2086 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2087 if (!Overflow)
2088 return replaceInstUsesWith(
2089 *II, Builder.CreateBinaryIntrinsic(
2090 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2092 break;
2095 case Intrinsic::umul_with_overflow:
2096 case Intrinsic::smul_with_overflow:
2097 case Intrinsic::usub_with_overflow:
2098 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2099 return I;
2100 break;
2102 case Intrinsic::ssub_with_overflow: {
2103 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2104 return I;
2106 Constant *C;
2107 Value *Arg0 = II->getArgOperand(0);
2108 Value *Arg1 = II->getArgOperand(1);
2109 // Given a constant C that is not the minimum signed value
2110 // for an integer of a given bit width:
2112 // ssubo X, C -> saddo X, -C
2113 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2114 Value *NegVal = ConstantExpr::getNeg(C);
2115 // Build a saddo call that is equivalent to the discovered
2116 // ssubo call.
2117 return replaceInstUsesWith(
2118 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2119 Arg0, NegVal));
2122 break;
2125 case Intrinsic::uadd_sat:
2126 case Intrinsic::sadd_sat:
2127 case Intrinsic::usub_sat:
2128 case Intrinsic::ssub_sat: {
2129 SaturatingInst *SI = cast<SaturatingInst>(II);
2130 Type *Ty = SI->getType();
2131 Value *Arg0 = SI->getLHS();
2132 Value *Arg1 = SI->getRHS();
2134 // Make use of known overflow information.
2135 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2136 Arg0, Arg1, SI);
2137 switch (OR) {
2138 case OverflowResult::MayOverflow:
2139 break;
2140 case OverflowResult::NeverOverflows:
2141 if (SI->isSigned())
2142 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2143 else
2144 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2145 case OverflowResult::AlwaysOverflowsLow: {
2146 unsigned BitWidth = Ty->getScalarSizeInBits();
2147 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2148 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2150 case OverflowResult::AlwaysOverflowsHigh: {
2151 unsigned BitWidth = Ty->getScalarSizeInBits();
2152 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2153 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2157 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2158 Constant *C;
2159 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2160 C->isNotMinSignedValue()) {
2161 Value *NegVal = ConstantExpr::getNeg(C);
2162 return replaceInstUsesWith(
2163 *II, Builder.CreateBinaryIntrinsic(
2164 Intrinsic::sadd_sat, Arg0, NegVal));
2167 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2168 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2169 // if Val and Val2 have the same sign
2170 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2171 Value *X;
2172 const APInt *Val, *Val2;
2173 APInt NewVal;
2174 bool IsUnsigned =
2175 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2176 if (Other->getIntrinsicID() == IID &&
2177 match(Arg1, m_APInt(Val)) &&
2178 match(Other->getArgOperand(0), m_Value(X)) &&
2179 match(Other->getArgOperand(1), m_APInt(Val2))) {
2180 if (IsUnsigned)
2181 NewVal = Val->uadd_sat(*Val2);
2182 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2183 bool Overflow;
2184 NewVal = Val->sadd_ov(*Val2, Overflow);
2185 if (Overflow) {
2186 // Both adds together may add more than SignedMaxValue
2187 // without saturating the final result.
2188 break;
2190 } else {
2191 // Cannot fold saturated addition with different signs.
2192 break;
2195 return replaceInstUsesWith(
2196 *II, Builder.CreateBinaryIntrinsic(
2197 IID, X, ConstantInt::get(II->getType(), NewVal)));
2200 break;
2203 case Intrinsic::minnum:
2204 case Intrinsic::maxnum:
2205 case Intrinsic::minimum:
2206 case Intrinsic::maximum: {
2207 Value *Arg0 = II->getArgOperand(0);
2208 Value *Arg1 = II->getArgOperand(1);
2209 Value *X, *Y;
2210 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2211 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2212 // If both operands are negated, invert the call and negate the result:
2213 // min(-X, -Y) --> -(max(X, Y))
2214 // max(-X, -Y) --> -(min(X, Y))
2215 Intrinsic::ID NewIID;
2216 switch (IID) {
2217 case Intrinsic::maxnum:
2218 NewIID = Intrinsic::minnum;
2219 break;
2220 case Intrinsic::minnum:
2221 NewIID = Intrinsic::maxnum;
2222 break;
2223 case Intrinsic::maximum:
2224 NewIID = Intrinsic::minimum;
2225 break;
2226 case Intrinsic::minimum:
2227 NewIID = Intrinsic::maximum;
2228 break;
2229 default:
2230 llvm_unreachable("unexpected intrinsic ID");
2232 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2233 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2234 FNeg->copyIRFlags(II);
2235 return FNeg;
2238 // m(m(X, C2), C1) -> m(X, C)
2239 const APFloat *C1, *C2;
2240 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2241 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2242 ((match(M->getArgOperand(0), m_Value(X)) &&
2243 match(M->getArgOperand(1), m_APFloat(C2))) ||
2244 (match(M->getArgOperand(1), m_Value(X)) &&
2245 match(M->getArgOperand(0), m_APFloat(C2))))) {
2246 APFloat Res(0.0);
2247 switch (IID) {
2248 case Intrinsic::maxnum:
2249 Res = maxnum(*C1, *C2);
2250 break;
2251 case Intrinsic::minnum:
2252 Res = minnum(*C1, *C2);
2253 break;
2254 case Intrinsic::maximum:
2255 Res = maximum(*C1, *C2);
2256 break;
2257 case Intrinsic::minimum:
2258 Res = minimum(*C1, *C2);
2259 break;
2260 default:
2261 llvm_unreachable("unexpected intrinsic ID");
2263 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2264 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
2265 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2266 // was a simplification (so Arg0 and its original flags could
2267 // propagate?)
2268 NewCall->andIRFlags(M);
2269 return replaceInstUsesWith(*II, NewCall);
2273 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2274 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2275 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2276 X->getType() == Y->getType()) {
2277 Value *NewCall =
2278 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2279 return new FPExtInst(NewCall, II->getType());
2282 // max X, -X --> fabs X
2283 // min X, -X --> -(fabs X)
2284 // TODO: Remove one-use limitation? That is obviously better for max.
2285 // It would be an extra instruction for min (fnabs), but that is
2286 // still likely better for analysis and codegen.
2287 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
2288 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
2289 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2290 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2291 R = Builder.CreateFNegFMF(R, II);
2292 return replaceInstUsesWith(*II, R);
2295 break;
2297 case Intrinsic::matrix_multiply: {
2298 // Optimize negation in matrix multiplication.
2300 // -A * -B -> A * B
2301 Value *A, *B;
2302 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2303 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2304 replaceOperand(*II, 0, A);
2305 replaceOperand(*II, 1, B);
2306 return II;
2309 Value *Op0 = II->getOperand(0);
2310 Value *Op1 = II->getOperand(1);
2311 Value *OpNotNeg, *NegatedOp;
2312 unsigned NegatedOpArg, OtherOpArg;
2313 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2314 NegatedOp = Op0;
2315 NegatedOpArg = 0;
2316 OtherOpArg = 1;
2317 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2318 NegatedOp = Op1;
2319 NegatedOpArg = 1;
2320 OtherOpArg = 0;
2321 } else
2322 // Multiplication doesn't have a negated operand.
2323 break;
2325 // Only optimize if the negated operand has only one use.
2326 if (!NegatedOp->hasOneUse())
2327 break;
2329 Value *OtherOp = II->getOperand(OtherOpArg);
2330 VectorType *RetTy = cast<VectorType>(II->getType());
2331 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2332 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2333 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2334 ElementCount OtherCount = OtherOpTy->getElementCount();
2335 ElementCount RetCount = RetTy->getElementCount();
2336 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2337 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2338 ElementCount::isKnownLT(OtherCount, RetCount)) {
2339 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2340 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2341 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2342 return II;
2344 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2345 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2346 SmallVector<Value *, 5> NewArgs(II->args());
2347 NewArgs[NegatedOpArg] = OpNotNeg;
2348 Instruction *NewMul =
2349 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2350 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2352 break;
2354 case Intrinsic::fmuladd: {
2355 // Canonicalize fast fmuladd to the separate fmul + fadd.
2356 if (II->isFast()) {
2357 BuilderTy::FastMathFlagGuard Guard(Builder);
2358 Builder.setFastMathFlags(II->getFastMathFlags());
2359 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2360 II->getArgOperand(1));
2361 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2362 Add->takeName(II);
2363 return replaceInstUsesWith(*II, Add);
2366 // Try to simplify the underlying FMul.
2367 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2368 II->getFastMathFlags(),
2369 SQ.getWithInstruction(II))) {
2370 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2371 FAdd->copyFastMathFlags(II);
2372 return FAdd;
2375 [[fallthrough]];
2377 case Intrinsic::fma: {
2378 // fma fneg(x), fneg(y), z -> fma x, y, z
2379 Value *Src0 = II->getArgOperand(0);
2380 Value *Src1 = II->getArgOperand(1);
2381 Value *X, *Y;
2382 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2383 replaceOperand(*II, 0, X);
2384 replaceOperand(*II, 1, Y);
2385 return II;
2388 // fma fabs(x), fabs(x), z -> fma x, x, z
2389 if (match(Src0, m_FAbs(m_Value(X))) &&
2390 match(Src1, m_FAbs(m_Specific(X)))) {
2391 replaceOperand(*II, 0, X);
2392 replaceOperand(*II, 1, X);
2393 return II;
2396 // Try to simplify the underlying FMul. We can only apply simplifications
2397 // that do not require rounding.
2398 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2399 II->getFastMathFlags(),
2400 SQ.getWithInstruction(II))) {
2401 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2402 FAdd->copyFastMathFlags(II);
2403 return FAdd;
2406 // fma x, y, 0 -> fmul x, y
2407 // This is always valid for -0.0, but requires nsz for +0.0 as
2408 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2409 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
2410 (match(II->getArgOperand(2), m_PosZeroFP()) &&
2411 II->getFastMathFlags().noSignedZeros()))
2412 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2414 break;
2416 case Intrinsic::copysign: {
2417 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2418 if (SignBitMustBeZero(Sign, DL, &TLI)) {
2419 // If we know that the sign argument is positive, reduce to FABS:
2420 // copysign Mag, +Sign --> fabs Mag
2421 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2422 return replaceInstUsesWith(*II, Fabs);
2424 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
2425 const APFloat *C;
2426 if (match(Sign, m_APFloat(C)) && C->isNegative()) {
2427 // If we know that the sign argument is negative, reduce to FNABS:
2428 // copysign Mag, -Sign --> fneg (fabs Mag)
2429 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2430 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2433 // Propagate sign argument through nested calls:
2434 // copysign Mag, (copysign ?, X) --> copysign Mag, X
2435 Value *X;
2436 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2437 return replaceOperand(*II, 1, X);
2439 // Peek through changes of magnitude's sign-bit. This call rewrites those:
2440 // copysign (fabs X), Sign --> copysign X, Sign
2441 // copysign (fneg X), Sign --> copysign X, Sign
2442 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2443 return replaceOperand(*II, 0, X);
2445 break;
2447 case Intrinsic::fabs: {
2448 Value *Cond, *TVal, *FVal;
2449 if (match(II->getArgOperand(0),
2450 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2451 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2452 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
2453 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2454 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2455 return SelectInst::Create(Cond, AbsT, AbsF);
2457 // fabs (select Cond, -FVal, FVal) --> fabs FVal
2458 if (match(TVal, m_FNeg(m_Specific(FVal))))
2459 return replaceOperand(*II, 0, FVal);
2460 // fabs (select Cond, TVal, -TVal) --> fabs TVal
2461 if (match(FVal, m_FNeg(m_Specific(TVal))))
2462 return replaceOperand(*II, 0, TVal);
2465 Value *Magnitude, *Sign;
2466 if (match(II->getArgOperand(0),
2467 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2468 // fabs (copysign x, y) -> (fabs x)
2469 CallInst *AbsSign =
2470 Builder.CreateCall(II->getCalledFunction(), {Magnitude});
2471 AbsSign->copyFastMathFlags(II);
2472 return replaceInstUsesWith(*II, AbsSign);
2475 [[fallthrough]];
2477 case Intrinsic::ceil:
2478 case Intrinsic::floor:
2479 case Intrinsic::round:
2480 case Intrinsic::roundeven:
2481 case Intrinsic::nearbyint:
2482 case Intrinsic::rint:
2483 case Intrinsic::trunc: {
2484 Value *ExtSrc;
2485 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2486 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2487 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2488 return new FPExtInst(NarrowII, II->getType());
2490 break;
2492 case Intrinsic::cos:
2493 case Intrinsic::amdgcn_cos: {
2494 Value *X;
2495 Value *Src = II->getArgOperand(0);
2496 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2497 // cos(-x) -> cos(x)
2498 // cos(fabs(x)) -> cos(x)
2499 return replaceOperand(*II, 0, X);
2501 break;
2503 case Intrinsic::sin: {
2504 Value *X;
2505 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2506 // sin(-x) --> -sin(x)
2507 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2508 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
2509 FNeg->copyFastMathFlags(II);
2510 return FNeg;
2512 break;
2514 case Intrinsic::ldexp: {
2515 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2517 // The danger is if the first ldexp would overflow to infinity or underflow
2518 // to zero, but the combined exponent avoids it. We ignore this with
2519 // reassoc.
2521 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2522 // it would just double down on the overflow/underflow which would occur
2523 // anyway.
2525 // TODO: Could do better if we had range tracking for the input value
2526 // exponent. Also could broaden sign check to cover == 0 case.
2527 Value *Src = II->getArgOperand(0);
2528 Value *Exp = II->getArgOperand(1);
2529 Value *InnerSrc;
2530 Value *InnerExp;
2531 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2532 m_Value(InnerSrc), m_Value(InnerExp)))) &&
2533 Exp->getType() == InnerExp->getType()) {
2534 FastMathFlags FMF = II->getFastMathFlags();
2535 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
2537 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2538 signBitMustBeTheSame(Exp, InnerExp, II, DL, &AC, &DT)) {
2539 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2540 // width.
2541 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
2542 II->setArgOperand(1, NewExp);
2543 II->setFastMathFlags(InnerFlags); // Or the inner flags.
2544 return replaceOperand(*II, 0, InnerSrc);
2548 break;
2550 case Intrinsic::ptrauth_auth:
2551 case Intrinsic::ptrauth_resign: {
2552 // (sign|resign) + (auth|resign) can be folded by omitting the middle
2553 // sign+auth component if the key and discriminator match.
2554 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2555 Value *Key = II->getArgOperand(1);
2556 Value *Disc = II->getArgOperand(2);
2558 // AuthKey will be the key we need to end up authenticating against in
2559 // whatever we replace this sequence with.
2560 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2561 if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) {
2562 BasePtr = CI->getArgOperand(0);
2563 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2564 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2565 break;
2566 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2567 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2568 break;
2569 AuthKey = CI->getArgOperand(1);
2570 AuthDisc = CI->getArgOperand(2);
2571 } else
2572 break;
2573 } else
2574 break;
2576 unsigned NewIntrin;
2577 if (AuthKey && NeedSign) {
2578 // resign(0,1) + resign(1,2) = resign(0, 2)
2579 NewIntrin = Intrinsic::ptrauth_resign;
2580 } else if (AuthKey) {
2581 // resign(0,1) + auth(1) = auth(0)
2582 NewIntrin = Intrinsic::ptrauth_auth;
2583 } else if (NeedSign) {
2584 // sign(0) + resign(0, 1) = sign(1)
2585 NewIntrin = Intrinsic::ptrauth_sign;
2586 } else {
2587 // sign(0) + auth(0) = nop
2588 replaceInstUsesWith(*II, BasePtr);
2589 eraseInstFromFunction(*II);
2590 return nullptr;
2593 SmallVector<Value *, 4> CallArgs;
2594 CallArgs.push_back(BasePtr);
2595 if (AuthKey) {
2596 CallArgs.push_back(AuthKey);
2597 CallArgs.push_back(AuthDisc);
2600 if (NeedSign) {
2601 CallArgs.push_back(II->getArgOperand(3));
2602 CallArgs.push_back(II->getArgOperand(4));
2605 Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
2606 return CallInst::Create(NewFn, CallArgs);
2608 case Intrinsic::arm_neon_vtbl1:
2609 case Intrinsic::aarch64_neon_tbl1:
2610 if (Value *V = simplifyNeonTbl1(*II, Builder))
2611 return replaceInstUsesWith(*II, V);
2612 break;
2614 case Intrinsic::arm_neon_vmulls:
2615 case Intrinsic::arm_neon_vmullu:
2616 case Intrinsic::aarch64_neon_smull:
2617 case Intrinsic::aarch64_neon_umull: {
2618 Value *Arg0 = II->getArgOperand(0);
2619 Value *Arg1 = II->getArgOperand(1);
2621 // Handle mul by zero first:
2622 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2623 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2626 // Check for constant LHS & RHS - in this case we just simplify.
2627 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2628 IID == Intrinsic::aarch64_neon_umull);
2629 VectorType *NewVT = cast<VectorType>(II->getType());
2630 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2631 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2632 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
2633 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
2634 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
2637 // Couldn't simplify - canonicalize constant to the RHS.
2638 std::swap(Arg0, Arg1);
2641 // Handle mul by one:
2642 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2643 if (ConstantInt *Splat =
2644 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2645 if (Splat->isOne())
2646 return CastInst::CreateIntegerCast(Arg0, II->getType(),
2647 /*isSigned=*/!Zext);
2649 break;
2651 case Intrinsic::arm_neon_aesd:
2652 case Intrinsic::arm_neon_aese:
2653 case Intrinsic::aarch64_crypto_aesd:
2654 case Intrinsic::aarch64_crypto_aese: {
2655 Value *DataArg = II->getArgOperand(0);
2656 Value *KeyArg = II->getArgOperand(1);
2658 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2659 Value *Data, *Key;
2660 if (match(KeyArg, m_ZeroInt()) &&
2661 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2662 replaceOperand(*II, 0, Data);
2663 replaceOperand(*II, 1, Key);
2664 return II;
2666 break;
2668 case Intrinsic::hexagon_V6_vandvrt:
2669 case Intrinsic::hexagon_V6_vandvrt_128B: {
2670 // Simplify Q -> V -> Q conversion.
2671 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2672 Intrinsic::ID ID0 = Op0->getIntrinsicID();
2673 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2674 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2675 break;
2676 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2677 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2678 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2679 // Check if every byte has common bits in Bytes and Mask.
2680 uint64_t C = Bytes1 & Mask1;
2681 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2682 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2684 break;
2686 case Intrinsic::stackrestore: {
2687 enum class ClassifyResult {
2688 None,
2689 Alloca,
2690 StackRestore,
2691 CallWithSideEffects,
2693 auto Classify = [](const Instruction *I) {
2694 if (isa<AllocaInst>(I))
2695 return ClassifyResult::Alloca;
2697 if (auto *CI = dyn_cast<CallInst>(I)) {
2698 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2699 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2700 return ClassifyResult::StackRestore;
2702 if (II->mayHaveSideEffects())
2703 return ClassifyResult::CallWithSideEffects;
2704 } else {
2705 // Consider all non-intrinsic calls to be side effects
2706 return ClassifyResult::CallWithSideEffects;
2710 return ClassifyResult::None;
2713 // If the stacksave and the stackrestore are in the same BB, and there is
2714 // no intervening call, alloca, or stackrestore of a different stacksave,
2715 // remove the restore. This can happen when variable allocas are DCE'd.
2716 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2717 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2718 SS->getParent() == II->getParent()) {
2719 BasicBlock::iterator BI(SS);
2720 bool CannotRemove = false;
2721 for (++BI; &*BI != II; ++BI) {
2722 switch (Classify(&*BI)) {
2723 case ClassifyResult::None:
2724 // So far so good, look at next instructions.
2725 break;
2727 case ClassifyResult::StackRestore:
2728 // If we found an intervening stackrestore for a different
2729 // stacksave, we can't remove the stackrestore. Otherwise, continue.
2730 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2731 CannotRemove = true;
2732 break;
2734 case ClassifyResult::Alloca:
2735 case ClassifyResult::CallWithSideEffects:
2736 // If we found an alloca, a non-intrinsic call, or an intrinsic
2737 // call with side effects, we can't remove the stackrestore.
2738 CannotRemove = true;
2739 break;
2741 if (CannotRemove)
2742 break;
2745 if (!CannotRemove)
2746 return eraseInstFromFunction(CI);
2750 // Scan down this block to see if there is another stack restore in the
2751 // same block without an intervening call/alloca.
2752 BasicBlock::iterator BI(II);
2753 Instruction *TI = II->getParent()->getTerminator();
2754 bool CannotRemove = false;
2755 for (++BI; &*BI != TI; ++BI) {
2756 switch (Classify(&*BI)) {
2757 case ClassifyResult::None:
2758 // So far so good, look at next instructions.
2759 break;
2761 case ClassifyResult::StackRestore:
2762 // If there is a stackrestore below this one, remove this one.
2763 return eraseInstFromFunction(CI);
2765 case ClassifyResult::Alloca:
2766 case ClassifyResult::CallWithSideEffects:
2767 // If we found an alloca, a non-intrinsic call, or an intrinsic call
2768 // with side effects (such as llvm.stacksave and llvm.read_register),
2769 // we can't remove the stack restore.
2770 CannotRemove = true;
2771 break;
2773 if (CannotRemove)
2774 break;
2777 // If the stack restore is in a return, resume, or unwind block and if there
2778 // are no allocas or calls between the restore and the return, nuke the
2779 // restore.
2780 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2781 return eraseInstFromFunction(CI);
2782 break;
2784 case Intrinsic::lifetime_end:
2785 // Asan needs to poison memory to detect invalid access which is possible
2786 // even for empty lifetime range.
2787 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2788 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2789 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2790 break;
2792 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2793 return I.getIntrinsicID() == Intrinsic::lifetime_start;
2795 return nullptr;
2796 break;
2797 case Intrinsic::assume: {
2798 Value *IIOperand = II->getArgOperand(0);
2799 SmallVector<OperandBundleDef, 4> OpBundles;
2800 II->getOperandBundlesAsDefs(OpBundles);
2802 /// This will remove the boolean Condition from the assume given as
2803 /// argument and remove the assume if it becomes useless.
2804 /// always returns nullptr for use as a return values.
2805 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2806 assert(isa<AssumeInst>(Assume));
2807 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2808 return eraseInstFromFunction(CI);
2809 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
2810 return nullptr;
2812 // Remove an assume if it is followed by an identical assume.
2813 // TODO: Do we need this? Unless there are conflicting assumptions, the
2814 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2815 Instruction *Next = II->getNextNonDebugInstruction();
2816 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2817 return RemoveConditionFromAssume(Next);
2819 // Canonicalize assume(a && b) -> assume(a); assume(b);
2820 // Note: New assumption intrinsics created here are registered by
2821 // the InstCombineIRInserter object.
2822 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2823 Value *AssumeIntrinsic = II->getCalledOperand();
2824 Value *A, *B;
2825 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2826 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2827 II->getName());
2828 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2829 return eraseInstFromFunction(*II);
2831 // assume(!(a || b)) -> assume(!a); assume(!b);
2832 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2833 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2834 Builder.CreateNot(A), OpBundles, II->getName());
2835 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2836 Builder.CreateNot(B), II->getName());
2837 return eraseInstFromFunction(*II);
2840 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2841 // (if assume is valid at the load)
2842 CmpInst::Predicate Pred;
2843 Instruction *LHS;
2844 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2845 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2846 LHS->getType()->isPointerTy() &&
2847 isValidAssumeForContext(II, LHS, &DT)) {
2848 MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
2849 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2850 LHS->setMetadata(LLVMContext::MD_noundef, MD);
2851 return RemoveConditionFromAssume(II);
2853 // TODO: apply nonnull return attributes to calls and invokes
2854 // TODO: apply range metadata for range check patterns?
2857 // Separate storage assumptions apply to the underlying allocations, not any
2858 // particular pointer within them. When evaluating the hints for AA purposes
2859 // we getUnderlyingObject them; by precomputing the answers here we can
2860 // avoid having to do so repeatedly there.
2861 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2862 OperandBundleUse OBU = II->getOperandBundleAt(Idx);
2863 if (OBU.getTagName() == "separate_storage") {
2864 assert(OBU.Inputs.size() == 2);
2865 auto MaybeSimplifyHint = [&](const Use &U) {
2866 Value *Hint = U.get();
2867 // Not having a limit is safe because InstCombine removes unreachable
2868 // code.
2869 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
2870 if (Hint != UnderlyingObject)
2871 replaceUse(const_cast<Use &>(U), UnderlyingObject);
2873 MaybeSimplifyHint(OBU.Inputs[0]);
2874 MaybeSimplifyHint(OBU.Inputs[1]);
2878 // Convert nonnull assume like:
2879 // %A = icmp ne i32* %PTR, null
2880 // call void @llvm.assume(i1 %A)
2881 // into
2882 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2883 if (EnableKnowledgeRetention &&
2884 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2885 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2886 if (auto *Replacement = buildAssumeFromKnowledge(
2887 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2889 Replacement->insertBefore(Next);
2890 AC.registerAssumption(Replacement);
2891 return RemoveConditionFromAssume(II);
2895 // Convert alignment assume like:
2896 // %B = ptrtoint i32* %A to i64
2897 // %C = and i64 %B, Constant
2898 // %D = icmp eq i64 %C, 0
2899 // call void @llvm.assume(i1 %D)
2900 // into
2901 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
2902 uint64_t AlignMask;
2903 if (EnableKnowledgeRetention &&
2904 match(IIOperand,
2905 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2906 m_Zero())) &&
2907 Pred == CmpInst::ICMP_EQ) {
2908 if (isPowerOf2_64(AlignMask + 1)) {
2909 uint64_t Offset = 0;
2910 match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2911 if (match(A, m_PtrToInt(m_Value(A)))) {
2912 /// Note: this doesn't preserve the offset information but merges
2913 /// offset and alignment.
2914 /// TODO: we can generate a GEP instead of merging the alignment with
2915 /// the offset.
2916 RetainedKnowledge RK{Attribute::Alignment,
2917 (unsigned)MinAlign(Offset, AlignMask + 1), A};
2918 if (auto *Replacement =
2919 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2921 Replacement->insertAfter(II);
2922 AC.registerAssumption(Replacement);
2924 return RemoveConditionFromAssume(II);
2929 /// Canonicalize Knowledge in operand bundles.
2930 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2931 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2932 auto &BOI = II->bundle_op_info_begin()[Idx];
2933 RetainedKnowledge RK =
2934 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2935 if (BOI.End - BOI.Begin > 2)
2936 continue; // Prevent reducing knowledge in an align with offset since
2937 // extracting a RetainedKnowledge from them looses offset
2938 // information
2939 RetainedKnowledge CanonRK =
2940 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2941 &getAssumptionCache(),
2942 &getDominatorTree());
2943 if (CanonRK == RK)
2944 continue;
2945 if (!CanonRK) {
2946 if (BOI.End - BOI.Begin > 0) {
2947 Worklist.pushValue(II->op_begin()[BOI.Begin]);
2948 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2950 continue;
2952 assert(RK.AttrKind == CanonRK.AttrKind);
2953 if (BOI.End - BOI.Begin > 0)
2954 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2955 if (BOI.End - BOI.Begin > 1)
2956 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2957 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2958 if (RK.WasOn)
2959 Worklist.pushValue(RK.WasOn);
2960 return II;
2964 // If there is a dominating assume with the same condition as this one,
2965 // then this one is redundant, and should be removed.
2966 KnownBits Known(1);
2967 computeKnownBits(IIOperand, Known, 0, II);
2968 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2969 return eraseInstFromFunction(*II);
2971 // assume(false) is unreachable.
2972 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
2973 CreateNonTerminatorUnreachable(II);
2974 return eraseInstFromFunction(*II);
2977 // Update the cache of affected values for this assumption (we might be
2978 // here because we just simplified the condition).
2979 AC.updateAffectedValues(cast<AssumeInst>(II));
2980 break;
2982 case Intrinsic::experimental_guard: {
2983 // Is this guard followed by another guard? We scan forward over a small
2984 // fixed window of instructions to handle common cases with conditions
2985 // computed between guards.
2986 Instruction *NextInst = II->getNextNonDebugInstruction();
2987 for (unsigned i = 0; i < GuardWideningWindow; i++) {
2988 // Note: Using context-free form to avoid compile time blow up
2989 if (!isSafeToSpeculativelyExecute(NextInst))
2990 break;
2991 NextInst = NextInst->getNextNonDebugInstruction();
2993 Value *NextCond = nullptr;
2994 if (match(NextInst,
2995 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2996 Value *CurrCond = II->getArgOperand(0);
2998 // Remove a guard that it is immediately preceded by an identical guard.
2999 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3000 if (CurrCond != NextCond) {
3001 Instruction *MoveI = II->getNextNonDebugInstruction();
3002 while (MoveI != NextInst) {
3003 auto *Temp = MoveI;
3004 MoveI = MoveI->getNextNonDebugInstruction();
3005 Temp->moveBefore(II);
3007 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3009 eraseInstFromFunction(*NextInst);
3010 return II;
3012 break;
3014 case Intrinsic::vector_insert: {
3015 Value *Vec = II->getArgOperand(0);
3016 Value *SubVec = II->getArgOperand(1);
3017 Value *Idx = II->getArgOperand(2);
3018 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3019 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3020 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3022 // Only canonicalize if the destination vector, Vec, and SubVec are all
3023 // fixed vectors.
3024 if (DstTy && VecTy && SubVecTy) {
3025 unsigned DstNumElts = DstTy->getNumElements();
3026 unsigned VecNumElts = VecTy->getNumElements();
3027 unsigned SubVecNumElts = SubVecTy->getNumElements();
3028 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3030 // An insert that entirely overwrites Vec with SubVec is a nop.
3031 if (VecNumElts == SubVecNumElts)
3032 return replaceInstUsesWith(CI, SubVec);
3034 // Widen SubVec into a vector of the same width as Vec, since
3035 // shufflevector requires the two input vectors to be the same width.
3036 // Elements beyond the bounds of SubVec within the widened vector are
3037 // undefined.
3038 SmallVector<int, 8> WidenMask;
3039 unsigned i;
3040 for (i = 0; i != SubVecNumElts; ++i)
3041 WidenMask.push_back(i);
3042 for (; i != VecNumElts; ++i)
3043 WidenMask.push_back(PoisonMaskElem);
3045 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3047 SmallVector<int, 8> Mask;
3048 for (unsigned i = 0; i != IdxN; ++i)
3049 Mask.push_back(i);
3050 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3051 Mask.push_back(i);
3052 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3053 Mask.push_back(i);
3055 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3056 return replaceInstUsesWith(CI, Shuffle);
3058 break;
3060 case Intrinsic::vector_extract: {
3061 Value *Vec = II->getArgOperand(0);
3062 Value *Idx = II->getArgOperand(1);
3064 Type *ReturnType = II->getType();
3065 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3066 // ExtractIdx)
3067 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3068 Value *InsertTuple, *InsertIdx, *InsertValue;
3069 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
3070 m_Value(InsertValue),
3071 m_Value(InsertIdx))) &&
3072 InsertValue->getType() == ReturnType) {
3073 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3074 // Case where we get the same index right after setting it.
3075 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3076 // InsertValue
3077 if (ExtractIdx == Index)
3078 return replaceInstUsesWith(CI, InsertValue);
3079 // If we are getting a different index than what was set in the
3080 // insert.vector intrinsic. We can just set the input tuple to the one up
3081 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3082 // InsertIndex), ExtractIndex)
3083 // --> extract.vector(InsertTuple, ExtractIndex)
3084 else
3085 return replaceOperand(CI, 0, InsertTuple);
3088 auto *DstTy = dyn_cast<VectorType>(ReturnType);
3089 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3091 if (DstTy && VecTy) {
3092 auto DstEltCnt = DstTy->getElementCount();
3093 auto VecEltCnt = VecTy->getElementCount();
3094 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3096 // Extracting the entirety of Vec is a nop.
3097 if (DstEltCnt == VecTy->getElementCount()) {
3098 replaceInstUsesWith(CI, Vec);
3099 return eraseInstFromFunction(CI);
3102 // Only canonicalize to shufflevector if the destination vector and
3103 // Vec are fixed vectors.
3104 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3105 break;
3107 SmallVector<int, 8> Mask;
3108 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3109 Mask.push_back(IdxN + i);
3111 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3112 return replaceInstUsesWith(CI, Shuffle);
3114 break;
3116 case Intrinsic::experimental_vector_reverse: {
3117 Value *BO0, *BO1, *X, *Y;
3118 Value *Vec = II->getArgOperand(0);
3119 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
3120 auto *OldBinOp = cast<BinaryOperator>(Vec);
3121 if (match(BO0, m_VecReverse(m_Value(X)))) {
3122 // rev(binop rev(X), rev(Y)) --> binop X, Y
3123 if (match(BO1, m_VecReverse(m_Value(Y))))
3124 return replaceInstUsesWith(CI,
3125 BinaryOperator::CreateWithCopiedFlags(
3126 OldBinOp->getOpcode(), X, Y, OldBinOp,
3127 OldBinOp->getName(), II));
3128 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3129 if (isSplatValue(BO1))
3130 return replaceInstUsesWith(CI,
3131 BinaryOperator::CreateWithCopiedFlags(
3132 OldBinOp->getOpcode(), X, BO1,
3133 OldBinOp, OldBinOp->getName(), II));
3135 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3136 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
3137 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3138 OldBinOp->getOpcode(), BO0, Y,
3139 OldBinOp, OldBinOp->getName(), II));
3141 // rev(unop rev(X)) --> unop X
3142 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
3143 auto *OldUnOp = cast<UnaryOperator>(Vec);
3144 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
3145 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
3146 return replaceInstUsesWith(CI, NewUnOp);
3148 break;
3150 case Intrinsic::vector_reduce_or:
3151 case Intrinsic::vector_reduce_and: {
3152 // Canonicalize logical or/and reductions:
3153 // Or reduction for i1 is represented as:
3154 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3155 // %res = cmp ne iReduxWidth %val, 0
3156 // And reduction for i1 is represented as:
3157 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3158 // %res = cmp eq iReduxWidth %val, 11111
3159 Value *Arg = II->getArgOperand(0);
3160 Value *Vect;
3161 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3162 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3163 if (FTy->getElementType() == Builder.getInt1Ty()) {
3164 Value *Res = Builder.CreateBitCast(
3165 Vect, Builder.getIntNTy(FTy->getNumElements()));
3166 if (IID == Intrinsic::vector_reduce_and) {
3167 Res = Builder.CreateICmpEQ(
3168 Res, ConstantInt::getAllOnesValue(Res->getType()));
3169 } else {
3170 assert(IID == Intrinsic::vector_reduce_or &&
3171 "Expected or reduction.");
3172 Res = Builder.CreateIsNotNull(Res);
3174 if (Arg != Vect)
3175 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3176 II->getType());
3177 return replaceInstUsesWith(CI, Res);
3180 [[fallthrough]];
3182 case Intrinsic::vector_reduce_add: {
3183 if (IID == Intrinsic::vector_reduce_add) {
3184 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3185 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3186 // Convert vector_reduce_add(SExt(<n x i1>)) to
3187 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3188 // Convert vector_reduce_add(<n x i1>) to
3189 // Trunc(ctpop(bitcast <n x i1> to in)).
3190 Value *Arg = II->getArgOperand(0);
3191 Value *Vect;
3192 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3193 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3194 if (FTy->getElementType() == Builder.getInt1Ty()) {
3195 Value *V = Builder.CreateBitCast(
3196 Vect, Builder.getIntNTy(FTy->getNumElements()));
3197 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3198 if (Res->getType() != II->getType())
3199 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3200 if (Arg != Vect &&
3201 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3202 Res = Builder.CreateNeg(Res);
3203 return replaceInstUsesWith(CI, Res);
3207 [[fallthrough]];
3209 case Intrinsic::vector_reduce_xor: {
3210 if (IID == Intrinsic::vector_reduce_xor) {
3211 // Exclusive disjunction reduction over the vector with
3212 // (potentially-extended) i1 element type is actually a
3213 // (potentially-extended) arithmetic `add` reduction over the original
3214 // non-extended value:
3215 // vector_reduce_xor(?ext(<n x i1>))
3216 // -->
3217 // ?ext(vector_reduce_add(<n x i1>))
3218 Value *Arg = II->getArgOperand(0);
3219 Value *Vect;
3220 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3221 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3222 if (FTy->getElementType() == Builder.getInt1Ty()) {
3223 Value *Res = Builder.CreateAddReduce(Vect);
3224 if (Arg != Vect)
3225 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3226 II->getType());
3227 return replaceInstUsesWith(CI, Res);
3231 [[fallthrough]];
3233 case Intrinsic::vector_reduce_mul: {
3234 if (IID == Intrinsic::vector_reduce_mul) {
3235 // Multiplicative reduction over the vector with (potentially-extended)
3236 // i1 element type is actually a (potentially zero-extended)
3237 // logical `and` reduction over the original non-extended value:
3238 // vector_reduce_mul(?ext(<n x i1>))
3239 // -->
3240 // zext(vector_reduce_and(<n x i1>))
3241 Value *Arg = II->getArgOperand(0);
3242 Value *Vect;
3243 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3244 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3245 if (FTy->getElementType() == Builder.getInt1Ty()) {
3246 Value *Res = Builder.CreateAndReduce(Vect);
3247 if (Res->getType() != II->getType())
3248 Res = Builder.CreateZExt(Res, II->getType());
3249 return replaceInstUsesWith(CI, Res);
3253 [[fallthrough]];
3255 case Intrinsic::vector_reduce_umin:
3256 case Intrinsic::vector_reduce_umax: {
3257 if (IID == Intrinsic::vector_reduce_umin ||
3258 IID == Intrinsic::vector_reduce_umax) {
3259 // UMin/UMax reduction over the vector with (potentially-extended)
3260 // i1 element type is actually a (potentially-extended)
3261 // logical `and`/`or` reduction over the original non-extended value:
3262 // vector_reduce_u{min,max}(?ext(<n x i1>))
3263 // -->
3264 // ?ext(vector_reduce_{and,or}(<n x i1>))
3265 Value *Arg = II->getArgOperand(0);
3266 Value *Vect;
3267 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3268 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3269 if (FTy->getElementType() == Builder.getInt1Ty()) {
3270 Value *Res = IID == Intrinsic::vector_reduce_umin
3271 ? Builder.CreateAndReduce(Vect)
3272 : Builder.CreateOrReduce(Vect);
3273 if (Arg != Vect)
3274 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3275 II->getType());
3276 return replaceInstUsesWith(CI, Res);
3280 [[fallthrough]];
3282 case Intrinsic::vector_reduce_smin:
3283 case Intrinsic::vector_reduce_smax: {
3284 if (IID == Intrinsic::vector_reduce_smin ||
3285 IID == Intrinsic::vector_reduce_smax) {
3286 // SMin/SMax reduction over the vector with (potentially-extended)
3287 // i1 element type is actually a (potentially-extended)
3288 // logical `and`/`or` reduction over the original non-extended value:
3289 // vector_reduce_s{min,max}(<n x i1>)
3290 // -->
3291 // vector_reduce_{or,and}(<n x i1>)
3292 // and
3293 // vector_reduce_s{min,max}(sext(<n x i1>))
3294 // -->
3295 // sext(vector_reduce_{or,and}(<n x i1>))
3296 // and
3297 // vector_reduce_s{min,max}(zext(<n x i1>))
3298 // -->
3299 // zext(vector_reduce_{and,or}(<n x i1>))
3300 Value *Arg = II->getArgOperand(0);
3301 Value *Vect;
3302 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3303 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3304 if (FTy->getElementType() == Builder.getInt1Ty()) {
3305 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3306 if (Arg != Vect)
3307 ExtOpc = cast<CastInst>(Arg)->getOpcode();
3308 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3309 (ExtOpc == Instruction::CastOps::ZExt))
3310 ? Builder.CreateAndReduce(Vect)
3311 : Builder.CreateOrReduce(Vect);
3312 if (Arg != Vect)
3313 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3314 return replaceInstUsesWith(CI, Res);
3318 [[fallthrough]];
3320 case Intrinsic::vector_reduce_fmax:
3321 case Intrinsic::vector_reduce_fmin:
3322 case Intrinsic::vector_reduce_fadd:
3323 case Intrinsic::vector_reduce_fmul: {
3324 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
3325 IID != Intrinsic::vector_reduce_fmul) ||
3326 II->hasAllowReassoc();
3327 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3328 IID == Intrinsic::vector_reduce_fmul)
3330 : 0;
3331 Value *Arg = II->getArgOperand(ArgIdx);
3332 Value *V;
3333 ArrayRef<int> Mask;
3334 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
3335 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
3336 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
3337 break;
3338 int Sz = Mask.size();
3339 SmallBitVector UsedIndices(Sz);
3340 for (int Idx : Mask) {
3341 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
3342 break;
3343 UsedIndices.set(Idx);
3345 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
3346 // other changes.
3347 if (UsedIndices.all()) {
3348 replaceUse(II->getOperandUse(ArgIdx), V);
3349 return nullptr;
3351 break;
3353 case Intrinsic::is_fpclass: {
3354 if (Instruction *I = foldIntrinsicIsFPClass(*II))
3355 return I;
3356 break;
3358 default: {
3359 // Handle target specific intrinsics
3360 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
3361 if (V)
3362 return *V;
3363 break;
3367 // Try to fold intrinsic into select operands. This is legal if:
3368 // * The intrinsic is speculatable.
3369 // * The select condition is not a vector, or the intrinsic does not
3370 // perform cross-lane operations.
3371 switch (IID) {
3372 case Intrinsic::ctlz:
3373 case Intrinsic::cttz:
3374 case Intrinsic::ctpop:
3375 case Intrinsic::umin:
3376 case Intrinsic::umax:
3377 case Intrinsic::smin:
3378 case Intrinsic::smax:
3379 case Intrinsic::usub_sat:
3380 case Intrinsic::uadd_sat:
3381 case Intrinsic::ssub_sat:
3382 case Intrinsic::sadd_sat:
3383 for (Value *Op : II->args())
3384 if (auto *Sel = dyn_cast<SelectInst>(Op))
3385 if (Instruction *R = FoldOpIntoSelect(*II, Sel))
3386 return R;
3387 [[fallthrough]];
3388 default:
3389 break;
3392 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
3393 return Shuf;
3395 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3396 // context, so it is handled in visitCallBase and we should trigger it.
3397 return visitCallBase(*II);
3400 // Fence instruction simplification
3401 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
3402 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
3403 // This check is solely here to handle arbitrary target-dependent syncscopes.
3404 // TODO: Can remove if does not matter in practice.
3405 if (NFI && FI.isIdenticalTo(NFI))
3406 return eraseInstFromFunction(FI);
3408 // Returns true if FI1 is identical or stronger fence than FI2.
3409 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3410 auto FI1SyncScope = FI1->getSyncScopeID();
3411 // Consider same scope, where scope is global or single-thread.
3412 if (FI1SyncScope != FI2->getSyncScopeID() ||
3413 (FI1SyncScope != SyncScope::System &&
3414 FI1SyncScope != SyncScope::SingleThread))
3415 return false;
3417 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
3419 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3420 return eraseInstFromFunction(FI);
3422 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
3423 if (isIdenticalOrStrongerFence(PFI, &FI))
3424 return eraseInstFromFunction(FI);
3425 return nullptr;
3428 // InvokeInst simplification
3429 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
3430 return visitCallBase(II);
3433 // CallBrInst simplification
3434 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
3435 return visitCallBase(CBI);
3438 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3439 if (!CI->getCalledFunction()) return nullptr;
3441 // Skip optimizing notail and musttail calls so
3442 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3443 // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
3444 if (CI->isMustTailCall() || CI->isNoTailCall())
3445 return nullptr;
3447 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3448 replaceInstUsesWith(*From, With);
3450 auto InstCombineErase = [this](Instruction *I) {
3451 eraseInstFromFunction(*I);
3453 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
3454 InstCombineErase);
3455 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
3456 ++NumSimplified;
3457 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3460 return nullptr;
3463 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3464 // Strip off at most one level of pointer casts, looking for an alloca. This
3465 // is good enough in practice and simpler than handling any number of casts.
3466 Value *Underlying = TrampMem->stripPointerCasts();
3467 if (Underlying != TrampMem &&
3468 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3469 return nullptr;
3470 if (!isa<AllocaInst>(Underlying))
3471 return nullptr;
3473 IntrinsicInst *InitTrampoline = nullptr;
3474 for (User *U : TrampMem->users()) {
3475 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3476 if (!II)
3477 return nullptr;
3478 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3479 if (InitTrampoline)
3480 // More than one init_trampoline writes to this value. Give up.
3481 return nullptr;
3482 InitTrampoline = II;
3483 continue;
3485 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3486 // Allow any number of calls to adjust.trampoline.
3487 continue;
3488 return nullptr;
3491 // No call to init.trampoline found.
3492 if (!InitTrampoline)
3493 return nullptr;
3495 // Check that the alloca is being used in the expected way.
3496 if (InitTrampoline->getOperand(0) != TrampMem)
3497 return nullptr;
3499 return InitTrampoline;
3502 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3503 Value *TrampMem) {
3504 // Visit all the previous instructions in the basic block, and try to find a
3505 // init.trampoline which has a direct path to the adjust.trampoline.
3506 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3507 E = AdjustTramp->getParent()->begin();
3508 I != E;) {
3509 Instruction *Inst = &*--I;
3510 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3511 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3512 II->getOperand(0) == TrampMem)
3513 return II;
3514 if (Inst->mayWriteToMemory())
3515 return nullptr;
3517 return nullptr;
3520 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3521 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3522 // to a direct call to a function. Otherwise return NULL.
3523 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3524 Callee = Callee->stripPointerCasts();
3525 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3526 if (!AdjustTramp ||
3527 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3528 return nullptr;
3530 Value *TrampMem = AdjustTramp->getOperand(0);
3532 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3533 return IT;
3534 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3535 return IT;
3536 return nullptr;
3539 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3540 const TargetLibraryInfo *TLI) {
3541 // Note: We only handle cases which can't be driven from generic attributes
3542 // here. So, for example, nonnull and noalias (which are common properties
3543 // of some allocation functions) are expected to be handled via annotation
3544 // of the respective allocator declaration with generic attributes.
3545 bool Changed = false;
3547 if (!Call.getType()->isPointerTy())
3548 return Changed;
3550 std::optional<APInt> Size = getAllocSize(&Call, TLI);
3551 if (Size && *Size != 0) {
3552 // TODO: We really should just emit deref_or_null here and then
3553 // let the generic inference code combine that with nonnull.
3554 if (Call.hasRetAttr(Attribute::NonNull)) {
3555 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3556 Call.addRetAttr(Attribute::getWithDereferenceableBytes(
3557 Call.getContext(), Size->getLimitedValue()));
3558 } else {
3559 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3560 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
3561 Call.getContext(), Size->getLimitedValue()));
3565 // Add alignment attribute if alignment is a power of two constant.
3566 Value *Alignment = getAllocAlignment(&Call, TLI);
3567 if (!Alignment)
3568 return Changed;
3570 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3571 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3572 uint64_t AlignmentVal = AlignOpC->getZExtValue();
3573 if (llvm::isPowerOf2_64(AlignmentVal)) {
3574 Align ExistingAlign = Call.getRetAlign().valueOrOne();
3575 Align NewAlign = Align(AlignmentVal);
3576 if (NewAlign > ExistingAlign) {
3577 Call.addRetAttr(
3578 Attribute::getWithAlignment(Call.getContext(), NewAlign));
3579 Changed = true;
3583 return Changed;
3586 /// Improvements for call, callbr and invoke instructions.
3587 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3588 bool Changed = annotateAnyAllocSite(Call, &TLI);
3590 // Mark any parameters that are known to be non-null with the nonnull
3591 // attribute. This is helpful for inlining calls to functions with null
3592 // checks on their arguments.
3593 SmallVector<unsigned, 4> ArgNos;
3594 unsigned ArgNo = 0;
3596 for (Value *V : Call.args()) {
3597 if (V->getType()->isPointerTy() &&
3598 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3599 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
3600 ArgNos.push_back(ArgNo);
3601 ArgNo++;
3604 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3606 if (!ArgNos.empty()) {
3607 AttributeList AS = Call.getAttributes();
3608 LLVMContext &Ctx = Call.getContext();
3609 AS = AS.addParamAttribute(Ctx, ArgNos,
3610 Attribute::get(Ctx, Attribute::NonNull));
3611 Call.setAttributes(AS);
3612 Changed = true;
3615 // If the callee is a pointer to a function, attempt to move any casts to the
3616 // arguments of the call/callbr/invoke.
3617 Value *Callee = Call.getCalledOperand();
3618 Function *CalleeF = dyn_cast<Function>(Callee);
3619 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3620 transformConstExprCastCall(Call))
3621 return nullptr;
3623 if (CalleeF) {
3624 // Remove the convergent attr on calls when the callee is not convergent.
3625 if (Call.isConvergent() && !CalleeF->isConvergent() &&
3626 !CalleeF->isIntrinsic()) {
3627 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3628 << "\n");
3629 Call.setNotConvergent();
3630 return &Call;
3633 // If the call and callee calling conventions don't match, and neither one
3634 // of the calling conventions is compatible with C calling convention
3635 // this call must be unreachable, as the call is undefined.
3636 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3637 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3638 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
3639 !(Call.getCallingConv() == llvm::CallingConv::C &&
3640 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
3641 // Only do this for calls to a function with a body. A prototype may
3642 // not actually end up matching the implementation's calling conv for a
3643 // variety of reasons (e.g. it may be written in assembly).
3644 !CalleeF->isDeclaration()) {
3645 Instruction *OldCall = &Call;
3646 CreateNonTerminatorUnreachable(OldCall);
3647 // If OldCall does not return void then replaceInstUsesWith poison.
3648 // This allows ValueHandlers and custom metadata to adjust itself.
3649 if (!OldCall->getType()->isVoidTy())
3650 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
3651 if (isa<CallInst>(OldCall))
3652 return eraseInstFromFunction(*OldCall);
3654 // We cannot remove an invoke or a callbr, because it would change thexi
3655 // CFG, just change the callee to a null pointer.
3656 cast<CallBase>(OldCall)->setCalledFunction(
3657 CalleeF->getFunctionType(),
3658 Constant::getNullValue(CalleeF->getType()));
3659 return nullptr;
3663 // Calling a null function pointer is undefined if a null address isn't
3664 // dereferenceable.
3665 if ((isa<ConstantPointerNull>(Callee) &&
3666 !NullPointerIsDefined(Call.getFunction())) ||
3667 isa<UndefValue>(Callee)) {
3668 // If Call does not return void then replaceInstUsesWith poison.
3669 // This allows ValueHandlers and custom metadata to adjust itself.
3670 if (!Call.getType()->isVoidTy())
3671 replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3673 if (Call.isTerminator()) {
3674 // Can't remove an invoke or callbr because we cannot change the CFG.
3675 return nullptr;
3678 // This instruction is not reachable, just remove it.
3679 CreateNonTerminatorUnreachable(&Call);
3680 return eraseInstFromFunction(Call);
3683 if (IntrinsicInst *II = findInitTrampoline(Callee))
3684 return transformCallThroughTrampoline(Call, *II);
3686 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3687 InlineAsm *IA = cast<InlineAsm>(Callee);
3688 if (!IA->canThrow()) {
3689 // Normal inline asm calls cannot throw - mark them
3690 // 'nounwind'.
3691 Call.setDoesNotThrow();
3692 Changed = true;
3696 // Try to optimize the call if possible, we require DataLayout for most of
3697 // this. None of these calls are seen as possibly dead so go ahead and
3698 // delete the instruction now.
3699 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3700 Instruction *I = tryOptimizeCall(CI);
3701 // If we changed something return the result, etc. Otherwise let
3702 // the fallthrough check.
3703 if (I) return eraseInstFromFunction(*I);
3706 if (!Call.use_empty() && !Call.isMustTailCall())
3707 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3708 Type *CallTy = Call.getType();
3709 Type *RetArgTy = ReturnedArg->getType();
3710 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3711 return replaceInstUsesWith(
3712 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3715 // Drop unnecessary kcfi operand bundles from calls that were converted
3716 // into direct calls.
3717 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
3718 if (Bundle && !Call.isIndirectCall()) {
3719 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3720 if (CalleeF) {
3721 ConstantInt *FunctionType = nullptr;
3722 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3724 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3725 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3727 if (FunctionType &&
3728 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3729 dbgs() << Call.getModule()->getName()
3730 << ": warning: kcfi: " << Call.getCaller()->getName()
3731 << ": call to " << CalleeF->getName()
3732 << " using a mismatching function pointer type\n";
3736 return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
3739 if (isRemovableAlloc(&Call, &TLI))
3740 return visitAllocSite(Call);
3742 // Handle intrinsics which can be used in both call and invoke context.
3743 switch (Call.getIntrinsicID()) {
3744 case Intrinsic::experimental_gc_statepoint: {
3745 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3746 SmallPtrSet<Value *, 32> LiveGcValues;
3747 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3748 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3750 // Remove the relocation if unused.
3751 if (GCR.use_empty()) {
3752 eraseInstFromFunction(GCR);
3753 continue;
3756 Value *DerivedPtr = GCR.getDerivedPtr();
3757 Value *BasePtr = GCR.getBasePtr();
3759 // Undef is undef, even after relocation.
3760 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3761 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3762 eraseInstFromFunction(GCR);
3763 continue;
3766 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3767 // The relocation of null will be null for most any collector.
3768 // TODO: provide a hook for this in GCStrategy. There might be some
3769 // weird collector this property does not hold for.
3770 if (isa<ConstantPointerNull>(DerivedPtr)) {
3771 // Use null-pointer of gc_relocate's type to replace it.
3772 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
3773 eraseInstFromFunction(GCR);
3774 continue;
3777 // isKnownNonNull -> nonnull attribute
3778 if (!GCR.hasRetAttr(Attribute::NonNull) &&
3779 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
3780 GCR.addRetAttr(Attribute::NonNull);
3781 // We discovered new fact, re-check users.
3782 Worklist.pushUsersToWorkList(GCR);
3786 // If we have two copies of the same pointer in the statepoint argument
3787 // list, canonicalize to one. This may let us common gc.relocates.
3788 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3789 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3790 auto *OpIntTy = GCR.getOperand(2)->getType();
3791 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3794 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3795 // Canonicalize on the type from the uses to the defs
3797 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3798 LiveGcValues.insert(BasePtr);
3799 LiveGcValues.insert(DerivedPtr);
3801 std::optional<OperandBundleUse> Bundle =
3802 GCSP.getOperandBundle(LLVMContext::OB_gc_live);
3803 unsigned NumOfGCLives = LiveGcValues.size();
3804 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3805 break;
3806 // We can reduce the size of gc live bundle.
3807 DenseMap<Value *, unsigned> Val2Idx;
3808 std::vector<Value *> NewLiveGc;
3809 for (Value *V : Bundle->Inputs) {
3810 if (Val2Idx.count(V))
3811 continue;
3812 if (LiveGcValues.count(V)) {
3813 Val2Idx[V] = NewLiveGc.size();
3814 NewLiveGc.push_back(V);
3815 } else
3816 Val2Idx[V] = NumOfGCLives;
3818 // Update all gc.relocates
3819 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3820 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3821 Value *BasePtr = GCR.getBasePtr();
3822 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3823 "Missed live gc for base pointer");
3824 auto *OpIntTy1 = GCR.getOperand(1)->getType();
3825 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3826 Value *DerivedPtr = GCR.getDerivedPtr();
3827 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3828 "Missed live gc for derived pointer");
3829 auto *OpIntTy2 = GCR.getOperand(2)->getType();
3830 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3832 // Create new statepoint instruction.
3833 OperandBundleDef NewBundle("gc-live", NewLiveGc);
3834 return CallBase::Create(&Call, NewBundle);
3836 default: { break; }
3839 return Changed ? &Call : nullptr;
3842 /// If the callee is a constexpr cast of a function, attempt to move the cast to
3843 /// the arguments of the call/invoke.
3844 /// CallBrInst is not supported.
3845 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3846 auto *Callee =
3847 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3848 if (!Callee)
3849 return false;
3851 assert(!isa<CallBrInst>(Call) &&
3852 "CallBr's don't have a single point after a def to insert at");
3854 // If this is a call to a thunk function, don't remove the cast. Thunks are
3855 // used to transparently forward all incoming parameters and outgoing return
3856 // values, so it's important to leave the cast in place.
3857 if (Callee->hasFnAttribute("thunk"))
3858 return false;
3860 // If this is a call to a naked function, the assembly might be
3861 // using an argument, or otherwise rely on the frame layout,
3862 // the function prototype will mismatch.
3863 if (Callee->hasFnAttribute(Attribute::Naked))
3864 return false;
3866 // If this is a musttail call, the callee's prototype must match the caller's
3867 // prototype with the exception of pointee types. The code below doesn't
3868 // implement that, so we can't do this transform.
3869 // TODO: Do the transform if it only requires adding pointer casts.
3870 if (Call.isMustTailCall())
3871 return false;
3873 Instruction *Caller = &Call;
3874 const AttributeList &CallerPAL = Call.getAttributes();
3876 // Okay, this is a cast from a function to a different type. Unless doing so
3877 // would cause a type conversion of one of our arguments, change this call to
3878 // be a direct call with arguments casted to the appropriate types.
3879 FunctionType *FT = Callee->getFunctionType();
3880 Type *OldRetTy = Caller->getType();
3881 Type *NewRetTy = FT->getReturnType();
3883 // Check to see if we are changing the return type...
3884 if (OldRetTy != NewRetTy) {
3886 if (NewRetTy->isStructTy())
3887 return false; // TODO: Handle multiple return values.
3889 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3890 if (Callee->isDeclaration())
3891 return false; // Cannot transform this return value.
3893 if (!Caller->use_empty() &&
3894 // void -> non-void is handled specially
3895 !NewRetTy->isVoidTy())
3896 return false; // Cannot transform this return value.
3899 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3900 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3901 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3902 return false; // Attribute not compatible with transformed value.
3905 // If the callbase is an invoke instruction, and the return value is
3906 // used by a PHI node in a successor, we cannot change the return type of
3907 // the call because there is no place to put the cast instruction (without
3908 // breaking the critical edge). Bail out in this case.
3909 if (!Caller->use_empty()) {
3910 BasicBlock *PhisNotSupportedBlock = nullptr;
3911 if (auto *II = dyn_cast<InvokeInst>(Caller))
3912 PhisNotSupportedBlock = II->getNormalDest();
3913 if (PhisNotSupportedBlock)
3914 for (User *U : Caller->users())
3915 if (PHINode *PN = dyn_cast<PHINode>(U))
3916 if (PN->getParent() == PhisNotSupportedBlock)
3917 return false;
3921 unsigned NumActualArgs = Call.arg_size();
3922 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3924 // Prevent us turning:
3925 // declare void @takes_i32_inalloca(i32* inalloca)
3926 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3928 // into:
3929 // call void @takes_i32_inalloca(i32* null)
3931 // Similarly, avoid folding away bitcasts of byval calls.
3932 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3933 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
3934 return false;
3936 auto AI = Call.arg_begin();
3937 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3938 Type *ParamTy = FT->getParamType(i);
3939 Type *ActTy = (*AI)->getType();
3941 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3942 return false; // Cannot transform this parameter value.
3944 // Check if there are any incompatible attributes we cannot drop safely.
3945 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3946 .overlaps(AttributeFuncs::typeIncompatible(
3947 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
3948 return false; // Attribute not compatible with transformed value.
3950 if (Call.isInAllocaArgument(i) ||
3951 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
3952 return false; // Cannot transform to and from inalloca/preallocated.
3954 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3955 return false;
3957 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
3958 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
3959 return false; // Cannot transform to or from byval.
3962 if (Callee->isDeclaration()) {
3963 // Do not delete arguments unless we have a function body.
3964 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3965 return false;
3967 // If the callee is just a declaration, don't change the varargsness of the
3968 // call. We don't want to introduce a varargs call where one doesn't
3969 // already exist.
3970 if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3971 return false;
3973 // If both the callee and the cast type are varargs, we still have to make
3974 // sure the number of fixed parameters are the same or we have the same
3975 // ABI issues as if we introduce a varargs call.
3976 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3977 FT->getNumParams() != Call.getFunctionType()->getNumParams())
3978 return false;
3981 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3982 !CallerPAL.isEmpty()) {
3983 // In this case we have more arguments than the new function type, but we
3984 // won't be dropping them. Check that these extra arguments have attributes
3985 // that are compatible with being a vararg call argument.
3986 unsigned SRetIdx;
3987 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3988 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3989 return false;
3992 // Okay, we decided that this is a safe thing to do: go ahead and start
3993 // inserting cast instructions as necessary.
3994 SmallVector<Value *, 8> Args;
3995 SmallVector<AttributeSet, 8> ArgAttrs;
3996 Args.reserve(NumActualArgs);
3997 ArgAttrs.reserve(NumActualArgs);
3999 // Get any return attributes.
4000 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4002 // If the return value is not being used, the type may not be compatible
4003 // with the existing attributes. Wipe out any problematic attributes.
4004 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4006 LLVMContext &Ctx = Call.getContext();
4007 AI = Call.arg_begin();
4008 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4009 Type *ParamTy = FT->getParamType(i);
4011 Value *NewArg = *AI;
4012 if ((*AI)->getType() != ParamTy)
4013 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4014 Args.push_back(NewArg);
4016 // Add any parameter attributes except the ones incompatible with the new
4017 // type. Note that we made sure all incompatible ones are safe to drop.
4018 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4019 ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
4020 ArgAttrs.push_back(
4021 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4024 // If the function takes more arguments than the call was taking, add them
4025 // now.
4026 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4027 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4028 ArgAttrs.push_back(AttributeSet());
4031 // If we are removing arguments to the function, emit an obnoxious warning.
4032 if (FT->getNumParams() < NumActualArgs) {
4033 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4034 if (FT->isVarArg()) {
4035 // Add all of the arguments in their promoted form to the arg list.
4036 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4037 Type *PTy = getPromotedType((*AI)->getType());
4038 Value *NewArg = *AI;
4039 if (PTy != (*AI)->getType()) {
4040 // Must promote to pass through va_arg area!
4041 Instruction::CastOps opcode =
4042 CastInst::getCastOpcode(*AI, false, PTy, false);
4043 NewArg = Builder.CreateCast(opcode, *AI, PTy);
4045 Args.push_back(NewArg);
4047 // Add any parameter attributes.
4048 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
4053 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4055 if (NewRetTy->isVoidTy())
4056 Caller->setName(""); // Void type should not have a name.
4058 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4059 "missing argument attributes");
4060 AttributeList NewCallerPAL = AttributeList::get(
4061 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4063 SmallVector<OperandBundleDef, 1> OpBundles;
4064 Call.getOperandBundlesAsDefs(OpBundles);
4066 CallBase *NewCall;
4067 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4068 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4069 II->getUnwindDest(), Args, OpBundles);
4070 } else {
4071 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4072 cast<CallInst>(NewCall)->setTailCallKind(
4073 cast<CallInst>(Caller)->getTailCallKind());
4075 NewCall->takeName(Caller);
4076 NewCall->setCallingConv(Call.getCallingConv());
4077 NewCall->setAttributes(NewCallerPAL);
4079 // Preserve prof metadata if any.
4080 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4082 // Insert a cast of the return type as necessary.
4083 Instruction *NC = NewCall;
4084 Value *NV = NC;
4085 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4086 if (!NV->getType()->isVoidTy()) {
4087 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4088 NC->setDebugLoc(Caller->getDebugLoc());
4090 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
4091 assert(OptInsertPt && "No place to insert cast");
4092 InsertNewInstBefore(NC, *OptInsertPt);
4093 Worklist.pushUsersToWorkList(*Caller);
4094 } else {
4095 NV = PoisonValue::get(Caller->getType());
4099 if (!Caller->use_empty())
4100 replaceInstUsesWith(*Caller, NV);
4101 else if (Caller->hasValueHandle()) {
4102 if (OldRetTy == NV->getType())
4103 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4104 else
4105 // We cannot call ValueIsRAUWd with a different type, and the
4106 // actual tracked value will disappear.
4107 ValueHandleBase::ValueIsDeleted(Caller);
4110 eraseInstFromFunction(*Caller);
4111 return true;
4114 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4115 /// intrinsic pair into a direct call to the underlying function.
4116 Instruction *
4117 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4118 IntrinsicInst &Tramp) {
4119 FunctionType *FTy = Call.getFunctionType();
4120 AttributeList Attrs = Call.getAttributes();
4122 // If the call already has the 'nest' attribute somewhere then give up -
4123 // otherwise 'nest' would occur twice after splicing in the chain.
4124 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4125 return nullptr;
4127 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4128 FunctionType *NestFTy = NestF->getFunctionType();
4130 AttributeList NestAttrs = NestF->getAttributes();
4131 if (!NestAttrs.isEmpty()) {
4132 unsigned NestArgNo = 0;
4133 Type *NestTy = nullptr;
4134 AttributeSet NestAttr;
4136 // Look for a parameter marked with the 'nest' attribute.
4137 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4138 E = NestFTy->param_end();
4139 I != E; ++NestArgNo, ++I) {
4140 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4141 if (AS.hasAttribute(Attribute::Nest)) {
4142 // Record the parameter type and any other attributes.
4143 NestTy = *I;
4144 NestAttr = AS;
4145 break;
4149 if (NestTy) {
4150 std::vector<Value*> NewArgs;
4151 std::vector<AttributeSet> NewArgAttrs;
4152 NewArgs.reserve(Call.arg_size() + 1);
4153 NewArgAttrs.reserve(Call.arg_size());
4155 // Insert the nest argument into the call argument list, which may
4156 // mean appending it. Likewise for attributes.
4159 unsigned ArgNo = 0;
4160 auto I = Call.arg_begin(), E = Call.arg_end();
4161 do {
4162 if (ArgNo == NestArgNo) {
4163 // Add the chain argument and attributes.
4164 Value *NestVal = Tramp.getArgOperand(2);
4165 if (NestVal->getType() != NestTy)
4166 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4167 NewArgs.push_back(NestVal);
4168 NewArgAttrs.push_back(NestAttr);
4171 if (I == E)
4172 break;
4174 // Add the original argument and attributes.
4175 NewArgs.push_back(*I);
4176 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
4178 ++ArgNo;
4179 ++I;
4180 } while (true);
4183 // The trampoline may have been bitcast to a bogus type (FTy).
4184 // Handle this by synthesizing a new function type, equal to FTy
4185 // with the chain parameter inserted.
4187 std::vector<Type*> NewTypes;
4188 NewTypes.reserve(FTy->getNumParams()+1);
4190 // Insert the chain's type into the list of parameter types, which may
4191 // mean appending it.
4193 unsigned ArgNo = 0;
4194 FunctionType::param_iterator I = FTy->param_begin(),
4195 E = FTy->param_end();
4197 do {
4198 if (ArgNo == NestArgNo)
4199 // Add the chain's type.
4200 NewTypes.push_back(NestTy);
4202 if (I == E)
4203 break;
4205 // Add the original type.
4206 NewTypes.push_back(*I);
4208 ++ArgNo;
4209 ++I;
4210 } while (true);
4213 // Replace the trampoline call with a direct call. Let the generic
4214 // code sort out any function type mismatches.
4215 FunctionType *NewFTy =
4216 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
4217 AttributeList NewPAL =
4218 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
4219 Attrs.getRetAttrs(), NewArgAttrs);
4221 SmallVector<OperandBundleDef, 1> OpBundles;
4222 Call.getOperandBundlesAsDefs(OpBundles);
4224 Instruction *NewCaller;
4225 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4226 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
4227 II->getUnwindDest(), NewArgs, OpBundles);
4228 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4229 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4230 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4231 NewCaller =
4232 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
4233 CBI->getIndirectDests(), NewArgs, OpBundles);
4234 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4235 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4236 } else {
4237 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
4238 cast<CallInst>(NewCaller)->setTailCallKind(
4239 cast<CallInst>(Call).getTailCallKind());
4240 cast<CallInst>(NewCaller)->setCallingConv(
4241 cast<CallInst>(Call).getCallingConv());
4242 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4244 NewCaller->setDebugLoc(Call.getDebugLoc());
4246 return NewCaller;
4250 // Replace the trampoline call with a direct call. Since there is no 'nest'
4251 // parameter, there is no need to adjust the argument list. Let the generic
4252 // code sort out any function type mismatches.
4253 Call.setCalledFunction(FTy, NestF);
4254 return &Call;