[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineCompares.cpp
blob9973a80a7db9464457e1fe6da447d224005cb3b9
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/CaptureTracking.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/Utils/Local.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 #include <bitset>
32 using namespace llvm;
33 using namespace PatternMatch;
35 #define DEBUG_TYPE "instcombine"
37 // How many times is a select replaced by one of its operands?
38 STATISTIC(NumSel, "Number of select opts");
41 /// Compute Result = In1+In2, returning true if the result overflowed for this
42 /// type.
43 static bool addWithOverflow(APInt &Result, const APInt &In1,
44 const APInt &In2, bool IsSigned = false) {
45 bool Overflow;
46 if (IsSigned)
47 Result = In1.sadd_ov(In2, Overflow);
48 else
49 Result = In1.uadd_ov(In2, Overflow);
51 return Overflow;
54 /// Compute Result = In1-In2, returning true if the result overflowed for this
55 /// type.
56 static bool subWithOverflow(APInt &Result, const APInt &In1,
57 const APInt &In2, bool IsSigned = false) {
58 bool Overflow;
59 if (IsSigned)
60 Result = In1.ssub_ov(In2, Overflow);
61 else
62 Result = In1.usub_ov(In2, Overflow);
64 return Overflow;
67 /// Given an icmp instruction, return true if any use of this comparison is a
68 /// branch on sign bit comparison.
69 static bool hasBranchUse(ICmpInst &I) {
70 for (auto *U : I.users())
71 if (isa<BranchInst>(U))
72 return true;
73 return false;
76 /// Returns true if the exploded icmp can be expressed as a signed comparison
77 /// to zero and updates the predicate accordingly.
78 /// The signedness of the comparison is preserved.
79 /// TODO: Refactor with decomposeBitTestICmp()?
80 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
81 if (!ICmpInst::isSigned(Pred))
82 return false;
84 if (C.isZero())
85 return ICmpInst::isRelational(Pred);
87 if (C.isOne()) {
88 if (Pred == ICmpInst::ICMP_SLT) {
89 Pred = ICmpInst::ICMP_SLE;
90 return true;
92 } else if (C.isAllOnes()) {
93 if (Pred == ICmpInst::ICMP_SGT) {
94 Pred = ICmpInst::ICMP_SGE;
95 return true;
99 return false;
102 /// This is called when we see this pattern:
103 /// cmp pred (load (gep GV, ...)), cmpcst
104 /// where GV is a global variable with a constant initializer. Try to simplify
105 /// this into some simple computation that does not need the load. For example
106 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
108 /// If AndCst is non-null, then the loaded value is masked with that constant
109 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
110 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
111 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
112 ConstantInt *AndCst) {
113 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
114 GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() ||
115 !GV->hasDefinitiveInitializer())
116 return nullptr;
118 Constant *Init = GV->getInitializer();
119 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
120 return nullptr;
122 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
123 // Don't blow up on huge arrays.
124 if (ArrayElementCount > MaxArraySizeForCombine)
125 return nullptr;
127 // There are many forms of this optimization we can handle, for now, just do
128 // the simple index into a single-dimensional array.
130 // Require: GEP GV, 0, i {{, constant indices}}
131 if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) ||
132 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
133 isa<Constant>(GEP->getOperand(2)))
134 return nullptr;
136 // Check that indices after the variable are constants and in-range for the
137 // type they index. Collect the indices. This is typically for arrays of
138 // structs.
139 SmallVector<unsigned, 4> LaterIndices;
141 Type *EltTy = Init->getType()->getArrayElementType();
142 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
143 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
144 if (!Idx)
145 return nullptr; // Variable index.
147 uint64_t IdxVal = Idx->getZExtValue();
148 if ((unsigned)IdxVal != IdxVal)
149 return nullptr; // Too large array index.
151 if (StructType *STy = dyn_cast<StructType>(EltTy))
152 EltTy = STy->getElementType(IdxVal);
153 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
154 if (IdxVal >= ATy->getNumElements())
155 return nullptr;
156 EltTy = ATy->getElementType();
157 } else {
158 return nullptr; // Unknown type.
161 LaterIndices.push_back(IdxVal);
164 enum { Overdefined = -3, Undefined = -2 };
166 // Variables for our state machines.
168 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
169 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
170 // and 87 is the second (and last) index. FirstTrueElement is -2 when
171 // undefined, otherwise set to the first true element. SecondTrueElement is
172 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
173 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
175 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
176 // form "i != 47 & i != 87". Same state transitions as for true elements.
177 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
179 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
180 /// define a state machine that triggers for ranges of values that the index
181 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
182 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
183 /// index in the range (inclusive). We use -2 for undefined here because we
184 /// use relative comparisons and don't want 0-1 to match -1.
185 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
187 // MagicBitvector - This is a magic bitvector where we set a bit if the
188 // comparison is true for element 'i'. If there are 64 elements or less in
189 // the array, this will fully represent all the comparison results.
190 uint64_t MagicBitvector = 0;
192 // Scan the array and see if one of our patterns matches.
193 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
194 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
195 Constant *Elt = Init->getAggregateElement(i);
196 if (!Elt)
197 return nullptr;
199 // If this is indexing an array of structures, get the structure element.
200 if (!LaterIndices.empty()) {
201 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
202 if (!Elt)
203 return nullptr;
206 // If the element is masked, handle it.
207 if (AndCst) {
208 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL);
209 if (!Elt)
210 return nullptr;
213 // Find out if the comparison would be true or false for the i'th element.
214 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
215 CompareRHS, DL, &TLI);
216 // If the result is undef for this element, ignore it.
217 if (isa<UndefValue>(C)) {
218 // Extend range state machines to cover this element in case there is an
219 // undef in the middle of the range.
220 if (TrueRangeEnd == (int)i - 1)
221 TrueRangeEnd = i;
222 if (FalseRangeEnd == (int)i - 1)
223 FalseRangeEnd = i;
224 continue;
227 // If we can't compute the result for any of the elements, we have to give
228 // up evaluating the entire conditional.
229 if (!isa<ConstantInt>(C))
230 return nullptr;
232 // Otherwise, we know if the comparison is true or false for this element,
233 // update our state machines.
234 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
236 // State machine for single/double/range index comparison.
237 if (IsTrueForElt) {
238 // Update the TrueElement state machine.
239 if (FirstTrueElement == Undefined)
240 FirstTrueElement = TrueRangeEnd = i; // First true element.
241 else {
242 // Update double-compare state machine.
243 if (SecondTrueElement == Undefined)
244 SecondTrueElement = i;
245 else
246 SecondTrueElement = Overdefined;
248 // Update range state machine.
249 if (TrueRangeEnd == (int)i - 1)
250 TrueRangeEnd = i;
251 else
252 TrueRangeEnd = Overdefined;
254 } else {
255 // Update the FalseElement state machine.
256 if (FirstFalseElement == Undefined)
257 FirstFalseElement = FalseRangeEnd = i; // First false element.
258 else {
259 // Update double-compare state machine.
260 if (SecondFalseElement == Undefined)
261 SecondFalseElement = i;
262 else
263 SecondFalseElement = Overdefined;
265 // Update range state machine.
266 if (FalseRangeEnd == (int)i - 1)
267 FalseRangeEnd = i;
268 else
269 FalseRangeEnd = Overdefined;
273 // If this element is in range, update our magic bitvector.
274 if (i < 64 && IsTrueForElt)
275 MagicBitvector |= 1ULL << i;
277 // If all of our states become overdefined, bail out early. Since the
278 // predicate is expensive, only check it every 8 elements. This is only
279 // really useful for really huge arrays.
280 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
281 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
282 FalseRangeEnd == Overdefined)
283 return nullptr;
286 // Now that we've scanned the entire array, emit our new comparison(s). We
287 // order the state machines in complexity of the generated code.
288 Value *Idx = GEP->getOperand(2);
290 // If the index is larger than the pointer offset size of the target, truncate
291 // the index down like the GEP would do implicitly. We don't have to do this
292 // for an inbounds GEP because the index can't be out of range.
293 if (!GEP->isInBounds()) {
294 Type *PtrIdxTy = DL.getIndexType(GEP->getType());
295 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth();
296 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize)
297 Idx = Builder.CreateTrunc(Idx, PtrIdxTy);
300 // If inbounds keyword is not present, Idx * ElementSize can overflow.
301 // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
302 // Then, there are two possible values for Idx to match offset 0:
303 // 0x00..00, 0x80..00.
304 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
305 // comparison is false if Idx was 0x80..00.
306 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
307 unsigned ElementSize =
308 DL.getTypeAllocSize(Init->getType()->getArrayElementType());
309 auto MaskIdx = [&](Value *Idx) {
310 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) {
311 Value *Mask = ConstantInt::get(Idx->getType(), -1);
312 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize));
313 Idx = Builder.CreateAnd(Idx, Mask);
315 return Idx;
318 // If the comparison is only true for one or two elements, emit direct
319 // comparisons.
320 if (SecondTrueElement != Overdefined) {
321 Idx = MaskIdx(Idx);
322 // None true -> false.
323 if (FirstTrueElement == Undefined)
324 return replaceInstUsesWith(ICI, Builder.getFalse());
326 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 // True for one element -> 'i == 47'.
329 if (SecondTrueElement == Undefined)
330 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 // True for two elements -> 'i == 47 | i == 72'.
333 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
334 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
335 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
336 return BinaryOperator::CreateOr(C1, C2);
339 // If the comparison is only false for one or two elements, emit direct
340 // comparisons.
341 if (SecondFalseElement != Overdefined) {
342 Idx = MaskIdx(Idx);
343 // None false -> true.
344 if (FirstFalseElement == Undefined)
345 return replaceInstUsesWith(ICI, Builder.getTrue());
347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
349 // False for one element -> 'i != 47'.
350 if (SecondFalseElement == Undefined)
351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
353 // False for two elements -> 'i != 47 & i != 72'.
354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355 Value *SecondFalseIdx =
356 ConstantInt::get(Idx->getType(), SecondFalseElement);
357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
358 return BinaryOperator::CreateAnd(C1, C2);
361 // If the comparison can be replaced with a range comparison for the elements
362 // where it is true, emit the range check.
363 if (TrueRangeEnd != Overdefined) {
364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
365 Idx = MaskIdx(Idx);
367 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
368 if (FirstTrueElement) {
369 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
370 Idx = Builder.CreateAdd(Idx, Offs);
373 Value *End =
374 ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1);
375 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
378 // False range check.
379 if (FalseRangeEnd != Overdefined) {
380 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
381 Idx = MaskIdx(Idx);
382 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
383 if (FirstFalseElement) {
384 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
385 Idx = Builder.CreateAdd(Idx, Offs);
388 Value *End =
389 ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement);
390 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
393 // If a magic bitvector captures the entire comparison state
394 // of this load, replace it with computation that does:
395 // ((magic_cst >> i) & 1) != 0
397 Type *Ty = nullptr;
399 // Look for an appropriate type:
400 // - The type of Idx if the magic fits
401 // - The smallest fitting legal type
402 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
403 Ty = Idx->getType();
404 else
405 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
407 if (Ty) {
408 Idx = MaskIdx(Idx);
409 Value *V = Builder.CreateIntCast(Idx, Ty, false);
410 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
411 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
412 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
416 return nullptr;
419 /// Returns true if we can rewrite Start as a GEP with pointer Base
420 /// and some integer offset. The nodes that need to be re-written
421 /// for this transformation will be added to Explored.
422 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
423 const DataLayout &DL,
424 SetVector<Value *> &Explored) {
425 SmallVector<Value *, 16> WorkList(1, Start);
426 Explored.insert(Base);
428 // The following traversal gives us an order which can be used
429 // when doing the final transformation. Since in the final
430 // transformation we create the PHI replacement instructions first,
431 // we don't have to get them in any particular order.
433 // However, for other instructions we will have to traverse the
434 // operands of an instruction first, which means that we have to
435 // do a post-order traversal.
436 while (!WorkList.empty()) {
437 SetVector<PHINode *> PHIs;
439 while (!WorkList.empty()) {
440 if (Explored.size() >= 100)
441 return false;
443 Value *V = WorkList.back();
445 if (Explored.contains(V)) {
446 WorkList.pop_back();
447 continue;
450 if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
451 // We've found some value that we can't explore which is different from
452 // the base. Therefore we can't do this transformation.
453 return false;
455 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
456 // Only allow inbounds GEPs with at most one variable offset.
457 auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); };
458 if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1)
459 return false;
461 if (!Explored.contains(GEP->getOperand(0)))
462 WorkList.push_back(GEP->getOperand(0));
465 if (WorkList.back() == V) {
466 WorkList.pop_back();
467 // We've finished visiting this node, mark it as such.
468 Explored.insert(V);
471 if (auto *PN = dyn_cast<PHINode>(V)) {
472 // We cannot transform PHIs on unsplittable basic blocks.
473 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
474 return false;
475 Explored.insert(PN);
476 PHIs.insert(PN);
480 // Explore the PHI nodes further.
481 for (auto *PN : PHIs)
482 for (Value *Op : PN->incoming_values())
483 if (!Explored.contains(Op))
484 WorkList.push_back(Op);
487 // Make sure that we can do this. Since we can't insert GEPs in a basic
488 // block before a PHI node, we can't easily do this transformation if
489 // we have PHI node users of transformed instructions.
490 for (Value *Val : Explored) {
491 for (Value *Use : Val->uses()) {
493 auto *PHI = dyn_cast<PHINode>(Use);
494 auto *Inst = dyn_cast<Instruction>(Val);
496 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
497 !Explored.contains(PHI))
498 continue;
500 if (PHI->getParent() == Inst->getParent())
501 return false;
504 return true;
507 // Sets the appropriate insert point on Builder where we can add
508 // a replacement Instruction for V (if that is possible).
509 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
510 bool Before = true) {
511 if (auto *PHI = dyn_cast<PHINode>(V)) {
512 BasicBlock *Parent = PHI->getParent();
513 Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt());
514 return;
516 if (auto *I = dyn_cast<Instruction>(V)) {
517 if (!Before)
518 I = &*std::next(I->getIterator());
519 Builder.SetInsertPoint(I);
520 return;
522 if (auto *A = dyn_cast<Argument>(V)) {
523 // Set the insertion point in the entry block.
524 BasicBlock &Entry = A->getParent()->getEntryBlock();
525 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt());
526 return;
528 // Otherwise, this is a constant and we don't need to set a new
529 // insertion point.
530 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
533 /// Returns a re-written value of Start as an indexed GEP using Base as a
534 /// pointer.
535 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
536 const DataLayout &DL,
537 SetVector<Value *> &Explored,
538 InstCombiner &IC) {
539 // Perform all the substitutions. This is a bit tricky because we can
540 // have cycles in our use-def chains.
541 // 1. Create the PHI nodes without any incoming values.
542 // 2. Create all the other values.
543 // 3. Add the edges for the PHI nodes.
544 // 4. Emit GEPs to get the original pointers.
545 // 5. Remove the original instructions.
546 Type *IndexType = IntegerType::get(
547 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
549 DenseMap<Value *, Value *> NewInsts;
550 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
552 // Create the new PHI nodes, without adding any incoming values.
553 for (Value *Val : Explored) {
554 if (Val == Base)
555 continue;
556 // Create empty phi nodes. This avoids cyclic dependencies when creating
557 // the remaining instructions.
558 if (auto *PHI = dyn_cast<PHINode>(Val))
559 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
560 PHI->getName() + ".idx", PHI);
562 IRBuilder<> Builder(Base->getContext());
564 // Create all the other instructions.
565 for (Value *Val : Explored) {
566 if (NewInsts.contains(Val))
567 continue;
569 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
570 setInsertionPoint(Builder, GEP);
571 Value *Op = NewInsts[GEP->getOperand(0)];
572 Value *OffsetV = emitGEPOffset(&Builder, DL, GEP);
573 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
574 NewInsts[GEP] = OffsetV;
575 else
576 NewInsts[GEP] = Builder.CreateNSWAdd(
577 Op, OffsetV, GEP->getOperand(0)->getName() + ".add");
578 continue;
580 if (isa<PHINode>(Val))
581 continue;
583 llvm_unreachable("Unexpected instruction type");
586 // Add the incoming values to the PHI nodes.
587 for (Value *Val : Explored) {
588 if (Val == Base)
589 continue;
590 // All the instructions have been created, we can now add edges to the
591 // phi nodes.
592 if (auto *PHI = dyn_cast<PHINode>(Val)) {
593 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
594 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
595 Value *NewIncoming = PHI->getIncomingValue(I);
597 if (NewInsts.contains(NewIncoming))
598 NewIncoming = NewInsts[NewIncoming];
600 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
605 for (Value *Val : Explored) {
606 if (Val == Base)
607 continue;
609 setInsertionPoint(Builder, Val, false);
610 // Create GEP for external users.
611 Value *NewVal = Builder.CreateInBoundsGEP(
612 Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr");
613 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal);
614 // Add old instruction to worklist for DCE. We don't directly remove it
615 // here because the original compare is one of the users.
616 IC.addToWorklist(cast<Instruction>(Val));
619 return NewInsts[Start];
622 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
623 /// We can look through PHIs, GEPs and casts in order to determine a common base
624 /// between GEPLHS and RHS.
625 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
626 ICmpInst::Predicate Cond,
627 const DataLayout &DL,
628 InstCombiner &IC) {
629 // FIXME: Support vector of pointers.
630 if (GEPLHS->getType()->isVectorTy())
631 return nullptr;
633 if (!GEPLHS->hasAllConstantIndices())
634 return nullptr;
636 APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0);
637 Value *PtrBase =
638 GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset,
639 /*AllowNonInbounds*/ false);
641 // Bail if we looked through addrspacecast.
642 if (PtrBase->getType() != GEPLHS->getType())
643 return nullptr;
645 // The set of nodes that will take part in this transformation.
646 SetVector<Value *> Nodes;
648 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
649 return nullptr;
651 // We know we can re-write this as
652 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
653 // Since we've only looked through inbouds GEPs we know that we
654 // can't have overflow on either side. We can therefore re-write
655 // this as:
656 // OFFSET1 cmp OFFSET2
657 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC);
659 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
660 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
661 // offset. Since Index is the offset of LHS to the base pointer, we will now
662 // compare the offsets instead of comparing the pointers.
663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
664 IC.Builder.getInt(Offset), NewRHS);
667 /// Fold comparisons between a GEP instruction and something else. At this point
668 /// we know that the GEP is on the LHS of the comparison.
669 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
670 ICmpInst::Predicate Cond,
671 Instruction &I) {
672 // Don't transform signed compares of GEPs into index compares. Even if the
673 // GEP is inbounds, the final add of the base pointer can have signed overflow
674 // and would change the result of the icmp.
675 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
676 // the maximum signed value for the pointer type.
677 if (ICmpInst::isSigned(Cond))
678 return nullptr;
680 // Look through bitcasts and addrspacecasts. We do not however want to remove
681 // 0 GEPs.
682 if (!isa<GetElementPtrInst>(RHS))
683 RHS = RHS->stripPointerCasts();
685 Value *PtrBase = GEPLHS->getOperand(0);
686 if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) {
687 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
688 Value *Offset = EmitGEPOffset(GEPLHS);
689 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
690 Constant::getNullValue(Offset->getType()));
693 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
694 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
695 !NullPointerIsDefined(I.getFunction(),
696 RHS->getType()->getPointerAddressSpace())) {
697 // For most address spaces, an allocation can't be placed at null, but null
698 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
699 // the only valid inbounds address derived from null, is null itself.
700 // Thus, we have four cases to consider:
701 // 1) Base == nullptr, Offset == 0 -> inbounds, null
702 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
703 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
704 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
706 // (Note if we're indexing a type of size 0, that simply collapses into one
707 // of the buckets above.)
709 // In general, we're allowed to make values less poison (i.e. remove
710 // sources of full UB), so in this case, we just select between the two
711 // non-poison cases (1 and 4 above).
713 // For vectors, we apply the same reasoning on a per-lane basis.
714 auto *Base = GEPLHS->getPointerOperand();
715 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
716 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
717 Base = Builder.CreateVectorSplat(EC, Base);
719 return new ICmpInst(Cond, Base,
720 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
721 cast<Constant>(RHS), Base->getType()));
722 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
723 // If the base pointers are different, but the indices are the same, just
724 // compare the base pointer.
725 if (PtrBase != GEPRHS->getOperand(0)) {
726 bool IndicesTheSame =
727 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
728 GEPLHS->getPointerOperand()->getType() ==
729 GEPRHS->getPointerOperand()->getType() &&
730 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
731 if (IndicesTheSame)
732 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
733 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
734 IndicesTheSame = false;
735 break;
738 // If all indices are the same, just compare the base pointers.
739 Type *BaseType = GEPLHS->getOperand(0)->getType();
740 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
741 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
743 // If we're comparing GEPs with two base pointers that only differ in type
744 // and both GEPs have only constant indices or just one use, then fold
745 // the compare with the adjusted indices.
746 // FIXME: Support vector of pointers.
747 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
748 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
749 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
750 PtrBase->stripPointerCasts() ==
751 GEPRHS->getOperand(0)->stripPointerCasts() &&
752 !GEPLHS->getType()->isVectorTy()) {
753 Value *LOffset = EmitGEPOffset(GEPLHS);
754 Value *ROffset = EmitGEPOffset(GEPRHS);
756 // If we looked through an addrspacecast between different sized address
757 // spaces, the LHS and RHS pointers are different sized
758 // integers. Truncate to the smaller one.
759 Type *LHSIndexTy = LOffset->getType();
760 Type *RHSIndexTy = ROffset->getType();
761 if (LHSIndexTy != RHSIndexTy) {
762 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() <
763 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) {
764 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
765 } else
766 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
769 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
770 LOffset, ROffset);
771 return replaceInstUsesWith(I, Cmp);
774 // Otherwise, the base pointers are different and the indices are
775 // different. Try convert this to an indexed compare by looking through
776 // PHIs/casts.
777 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
780 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
781 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
782 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
783 // If the GEPs only differ by one index, compare it.
784 unsigned NumDifferences = 0; // Keep track of # differences.
785 unsigned DiffOperand = 0; // The operand that differs.
786 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
787 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
788 Type *LHSType = GEPLHS->getOperand(i)->getType();
789 Type *RHSType = GEPRHS->getOperand(i)->getType();
790 // FIXME: Better support for vector of pointers.
791 if (LHSType->getPrimitiveSizeInBits() !=
792 RHSType->getPrimitiveSizeInBits() ||
793 (GEPLHS->getType()->isVectorTy() &&
794 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
795 // Irreconcilable differences.
796 NumDifferences = 2;
797 break;
800 if (NumDifferences++) break;
801 DiffOperand = i;
804 if (NumDifferences == 0) // SAME GEP?
805 return replaceInstUsesWith(I, // No comparison is needed here.
806 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
808 else if (NumDifferences == 1 && GEPsInBounds) {
809 Value *LHSV = GEPLHS->getOperand(DiffOperand);
810 Value *RHSV = GEPRHS->getOperand(DiffOperand);
811 // Make sure we do a signed comparison here.
812 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
816 // Only lower this if the icmp is the only user of the GEP or if we expect
817 // the result to fold to a constant!
818 if ((GEPsInBounds || CmpInst::isEquality(Cond)) &&
819 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
820 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse())) {
821 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
822 Value *L = EmitGEPOffset(GEPLHS);
823 Value *R = EmitGEPOffset(GEPRHS);
824 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
828 // Try convert this to an indexed compare by looking through PHIs/casts as a
829 // last resort.
830 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
833 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) {
834 // It would be tempting to fold away comparisons between allocas and any
835 // pointer not based on that alloca (e.g. an argument). However, even
836 // though such pointers cannot alias, they can still compare equal.
838 // But LLVM doesn't specify where allocas get their memory, so if the alloca
839 // doesn't escape we can argue that it's impossible to guess its value, and we
840 // can therefore act as if any such guesses are wrong.
842 // However, we need to ensure that this folding is consistent: We can't fold
843 // one comparison to false, and then leave a different comparison against the
844 // same value alone (as it might evaluate to true at runtime, leading to a
845 // contradiction). As such, this code ensures that all comparisons are folded
846 // at the same time, and there are no other escapes.
848 struct CmpCaptureTracker : public CaptureTracker {
849 AllocaInst *Alloca;
850 bool Captured = false;
851 /// The value of the map is a bit mask of which icmp operands the alloca is
852 /// used in.
853 SmallMapVector<ICmpInst *, unsigned, 4> ICmps;
855 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {}
857 void tooManyUses() override { Captured = true; }
859 bool captured(const Use *U) override {
860 auto *ICmp = dyn_cast<ICmpInst>(U->getUser());
861 // We need to check that U is based *only* on the alloca, and doesn't
862 // have other contributions from a select/phi operand.
863 // TODO: We could check whether getUnderlyingObjects() reduces to one
864 // object, which would allow looking through phi nodes.
865 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) {
866 // Collect equality icmps of the alloca, and don't treat them as
867 // captures.
868 auto Res = ICmps.insert({ICmp, 0});
869 Res.first->second |= 1u << U->getOperandNo();
870 return false;
873 Captured = true;
874 return true;
878 CmpCaptureTracker Tracker(Alloca);
879 PointerMayBeCaptured(Alloca, &Tracker);
880 if (Tracker.Captured)
881 return false;
883 bool Changed = false;
884 for (auto [ICmp, Operands] : Tracker.ICmps) {
885 switch (Operands) {
886 case 1:
887 case 2: {
888 // The alloca is only used in one icmp operand. Assume that the
889 // equality is false.
890 auto *Res = ConstantInt::get(
891 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE);
892 replaceInstUsesWith(*ICmp, Res);
893 eraseInstFromFunction(*ICmp);
894 Changed = true;
895 break;
897 case 3:
898 // Both icmp operands are based on the alloca, so this is comparing
899 // pointer offsets, without leaking any information about the address
900 // of the alloca. Ignore such comparisons.
901 break;
902 default:
903 llvm_unreachable("Cannot happen");
907 return Changed;
910 /// Fold "icmp pred (X+C), X".
911 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
912 ICmpInst::Predicate Pred) {
913 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
914 // so the values can never be equal. Similarly for all other "or equals"
915 // operators.
916 assert(!!C && "C should not be zero!");
918 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
919 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
920 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
921 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
922 Constant *R = ConstantInt::get(X->getType(),
923 APInt::getMaxValue(C.getBitWidth()) - C);
924 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
927 // (X+1) >u X --> X <u (0-1) --> X != 255
928 // (X+2) >u X --> X <u (0-2) --> X <u 254
929 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
930 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
931 return new ICmpInst(ICmpInst::ICMP_ULT, X,
932 ConstantInt::get(X->getType(), -C));
934 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
936 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
937 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
938 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
939 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
940 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
941 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
942 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
943 return new ICmpInst(ICmpInst::ICMP_SGT, X,
944 ConstantInt::get(X->getType(), SMax - C));
946 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
947 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
948 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
949 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
950 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
951 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
953 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
954 return new ICmpInst(ICmpInst::ICMP_SLT, X,
955 ConstantInt::get(X->getType(), SMax - (C - 1)));
958 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
959 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
960 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
961 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
962 const APInt &AP1,
963 const APInt &AP2) {
964 assert(I.isEquality() && "Cannot fold icmp gt/lt");
966 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
967 if (I.getPredicate() == I.ICMP_NE)
968 Pred = CmpInst::getInversePredicate(Pred);
969 return new ICmpInst(Pred, LHS, RHS);
972 // Don't bother doing any work for cases which InstSimplify handles.
973 if (AP2.isZero())
974 return nullptr;
976 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
977 if (IsAShr) {
978 if (AP2.isAllOnes())
979 return nullptr;
980 if (AP2.isNegative() != AP1.isNegative())
981 return nullptr;
982 if (AP2.sgt(AP1))
983 return nullptr;
986 if (!AP1)
987 // 'A' must be large enough to shift out the highest set bit.
988 return getICmp(I.ICMP_UGT, A,
989 ConstantInt::get(A->getType(), AP2.logBase2()));
991 if (AP1 == AP2)
992 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
994 int Shift;
995 if (IsAShr && AP1.isNegative())
996 Shift = AP1.countl_one() - AP2.countl_one();
997 else
998 Shift = AP1.countl_zero() - AP2.countl_zero();
1000 if (Shift > 0) {
1001 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1002 // There are multiple solutions if we are comparing against -1 and the LHS
1003 // of the ashr is not a power of two.
1004 if (AP1.isAllOnes() && !AP2.isPowerOf2())
1005 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1006 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1007 } else if (AP1 == AP2.lshr(Shift)) {
1008 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1012 // Shifting const2 will never be equal to const1.
1013 // FIXME: This should always be handled by InstSimplify?
1014 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1015 return replaceInstUsesWith(I, TorF);
1018 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1019 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1020 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1021 const APInt &AP1,
1022 const APInt &AP2) {
1023 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1025 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1026 if (I.getPredicate() == I.ICMP_NE)
1027 Pred = CmpInst::getInversePredicate(Pred);
1028 return new ICmpInst(Pred, LHS, RHS);
1031 // Don't bother doing any work for cases which InstSimplify handles.
1032 if (AP2.isZero())
1033 return nullptr;
1035 unsigned AP2TrailingZeros = AP2.countr_zero();
1037 if (!AP1 && AP2TrailingZeros != 0)
1038 return getICmp(
1039 I.ICMP_UGE, A,
1040 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1042 if (AP1 == AP2)
1043 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1045 // Get the distance between the lowest bits that are set.
1046 int Shift = AP1.countr_zero() - AP2TrailingZeros;
1048 if (Shift > 0 && AP2.shl(Shift) == AP1)
1049 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1051 // Shifting const2 will never be equal to const1.
1052 // FIXME: This should always be handled by InstSimplify?
1053 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1054 return replaceInstUsesWith(I, TorF);
1057 /// The caller has matched a pattern of the form:
1058 /// I = icmp ugt (add (add A, B), CI2), CI1
1059 /// If this is of the form:
1060 /// sum = a + b
1061 /// if (sum+128 >u 255)
1062 /// Then replace it with llvm.sadd.with.overflow.i8.
1064 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1065 ConstantInt *CI2, ConstantInt *CI1,
1066 InstCombinerImpl &IC) {
1067 // The transformation we're trying to do here is to transform this into an
1068 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1069 // with a narrower add, and discard the add-with-constant that is part of the
1070 // range check (if we can't eliminate it, this isn't profitable).
1072 // In order to eliminate the add-with-constant, the compare can be its only
1073 // use.
1074 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1075 if (!AddWithCst->hasOneUse())
1076 return nullptr;
1078 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1079 if (!CI2->getValue().isPowerOf2())
1080 return nullptr;
1081 unsigned NewWidth = CI2->getValue().countr_zero();
1082 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1083 return nullptr;
1085 // The width of the new add formed is 1 more than the bias.
1086 ++NewWidth;
1088 // Check to see that CI1 is an all-ones value with NewWidth bits.
1089 if (CI1->getBitWidth() == NewWidth ||
1090 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1091 return nullptr;
1093 // This is only really a signed overflow check if the inputs have been
1094 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1095 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1096 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1097 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1098 return nullptr;
1100 // In order to replace the original add with a narrower
1101 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1102 // and truncates that discard the high bits of the add. Verify that this is
1103 // the case.
1104 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1105 for (User *U : OrigAdd->users()) {
1106 if (U == AddWithCst)
1107 continue;
1109 // Only accept truncates for now. We would really like a nice recursive
1110 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1111 // chain to see which bits of a value are actually demanded. If the
1112 // original add had another add which was then immediately truncated, we
1113 // could still do the transformation.
1114 TruncInst *TI = dyn_cast<TruncInst>(U);
1115 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1116 return nullptr;
1119 // If the pattern matches, truncate the inputs to the narrower type and
1120 // use the sadd_with_overflow intrinsic to efficiently compute both the
1121 // result and the overflow bit.
1122 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1123 Function *F = Intrinsic::getDeclaration(
1124 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1126 InstCombiner::BuilderTy &Builder = IC.Builder;
1128 // Put the new code above the original add, in case there are any uses of the
1129 // add between the add and the compare.
1130 Builder.SetInsertPoint(OrigAdd);
1132 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1133 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1134 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1135 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1136 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1138 // The inner add was the result of the narrow add, zero extended to the
1139 // wider type. Replace it with the result computed by the intrinsic.
1140 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1141 IC.eraseInstFromFunction(*OrigAdd);
1143 // The original icmp gets replaced with the overflow value.
1144 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1147 /// If we have:
1148 /// icmp eq/ne (urem/srem %x, %y), 0
1149 /// iff %y is a power-of-two, we can replace this with a bit test:
1150 /// icmp eq/ne (and %x, (add %y, -1)), 0
1151 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1152 // This fold is only valid for equality predicates.
1153 if (!I.isEquality())
1154 return nullptr;
1155 ICmpInst::Predicate Pred;
1156 Value *X, *Y, *Zero;
1157 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1158 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1159 return nullptr;
1160 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1161 return nullptr;
1162 // This may increase instruction count, we don't enforce that Y is a constant.
1163 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1164 Value *Masked = Builder.CreateAnd(X, Mask);
1165 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1168 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1169 /// by one-less-than-bitwidth into a sign test on the original value.
1170 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1171 Instruction *Val;
1172 ICmpInst::Predicate Pred;
1173 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1174 return nullptr;
1176 Value *X;
1177 Type *XTy;
1179 Constant *C;
1180 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1181 XTy = X->getType();
1182 unsigned XBitWidth = XTy->getScalarSizeInBits();
1183 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1184 APInt(XBitWidth, XBitWidth - 1))))
1185 return nullptr;
1186 } else if (isa<BinaryOperator>(Val) &&
1187 (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1188 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1189 /*AnalyzeForSignBitExtraction=*/true))) {
1190 XTy = X->getType();
1191 } else
1192 return nullptr;
1194 return ICmpInst::Create(Instruction::ICmp,
1195 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1196 : ICmpInst::ICMP_SLT,
1197 X, ConstantInt::getNullValue(XTy));
1200 // Handle icmp pred X, 0
1201 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1202 CmpInst::Predicate Pred = Cmp.getPredicate();
1203 if (!match(Cmp.getOperand(1), m_Zero()))
1204 return nullptr;
1206 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1207 if (Pred == ICmpInst::ICMP_SGT) {
1208 Value *A, *B;
1209 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1210 if (isKnownPositive(A, SQ.getWithInstruction(&Cmp)))
1211 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1212 if (isKnownPositive(B, SQ.getWithInstruction(&Cmp)))
1213 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1217 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1218 return New;
1220 // Given:
1221 // icmp eq/ne (urem %x, %y), 0
1222 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1223 // icmp eq/ne %x, 0
1224 Value *X, *Y;
1225 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1226 ICmpInst::isEquality(Pred)) {
1227 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1228 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1229 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1230 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1233 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1234 // odd/non-zero/there is no overflow.
1235 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) &&
1236 ICmpInst::isEquality(Pred)) {
1238 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1239 // if X % 2 != 0
1240 // (icmp eq/ne Y)
1241 if (XKnown.countMaxTrailingZeros() == 0)
1242 return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1244 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1245 // if Y % 2 != 0
1246 // (icmp eq/ne X)
1247 if (YKnown.countMaxTrailingZeros() == 0)
1248 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1250 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0));
1251 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) {
1252 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
1253 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1254 // but to avoid unnecessary work, first just if this is an obvious case.
1256 // if X non-zero and NoOverflow(X * Y)
1257 // (icmp eq/ne Y)
1258 if (!XKnown.One.isZero() || isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT))
1259 return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1261 // if Y non-zero and NoOverflow(X * Y)
1262 // (icmp eq/ne X)
1263 if (!YKnown.One.isZero() || isKnownNonZero(Y, DL, 0, Q.AC, Q.CxtI, Q.DT))
1264 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1266 // Note, we are skipping cases:
1267 // if Y % 2 != 0 AND X % 2 != 0
1268 // (false/true)
1269 // if X non-zero and Y non-zero and NoOverflow(X * Y)
1270 // (false/true)
1271 // Those can be simplified later as we would have already replaced the (icmp
1272 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1273 // will fold to a constant elsewhere.
1275 return nullptr;
1278 /// Fold icmp Pred X, C.
1279 /// TODO: This code structure does not make sense. The saturating add fold
1280 /// should be moved to some other helper and extended as noted below (it is also
1281 /// possible that code has been made unnecessary - do we canonicalize IR to
1282 /// overflow/saturating intrinsics or not?).
1283 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1284 // Match the following pattern, which is a common idiom when writing
1285 // overflow-safe integer arithmetic functions. The source performs an addition
1286 // in wider type and explicitly checks for overflow using comparisons against
1287 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1289 // TODO: This could probably be generalized to handle other overflow-safe
1290 // operations if we worked out the formulas to compute the appropriate magic
1291 // constants.
1293 // sum = a + b
1294 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1295 CmpInst::Predicate Pred = Cmp.getPredicate();
1296 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1297 Value *A, *B;
1298 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1299 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1300 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1301 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1302 return Res;
1304 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1305 Constant *C = dyn_cast<Constant>(Op1);
1306 if (!C)
1307 return nullptr;
1309 if (auto *Phi = dyn_cast<PHINode>(Op0))
1310 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1311 SmallVector<Constant *> Ops;
1312 for (Value *V : Phi->incoming_values()) {
1313 Constant *Res =
1314 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL);
1315 if (!Res)
1316 return nullptr;
1317 Ops.push_back(Res);
1319 Builder.SetInsertPoint(Phi);
1320 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands());
1321 for (auto [V, Pred] : zip(Ops, Phi->blocks()))
1322 NewPhi->addIncoming(V, Pred);
1323 return replaceInstUsesWith(Cmp, NewPhi);
1326 if (Instruction *R = tryFoldInstWithCtpopWithNot(&Cmp))
1327 return R;
1329 return nullptr;
1332 /// Canonicalize icmp instructions based on dominating conditions.
1333 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1334 // We already checked simple implication in InstSimplify, only handle complex
1335 // cases here.
1336 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1337 ICmpInst::Predicate DomPred;
1338 const APInt *C;
1339 if (!match(Y, m_APInt(C)))
1340 return nullptr;
1342 CmpInst::Predicate Pred = Cmp.getPredicate();
1343 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1345 auto handleDomCond = [&](Value *DomCond, bool CondIsTrue) -> Instruction * {
1346 const APInt *DomC;
1347 if (!match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))))
1348 return nullptr;
1349 // We have 2 compares of a variable with constants. Calculate the constant
1350 // ranges of those compares to see if we can transform the 2nd compare:
1351 // DomBB:
1352 // DomCond = icmp DomPred X, DomC
1353 // br DomCond, CmpBB, FalseBB
1354 // CmpBB:
1355 // Cmp = icmp Pred X, C
1356 if (!CondIsTrue)
1357 DomPred = CmpInst::getInversePredicate(DomPred);
1358 ConstantRange DominatingCR =
1359 ConstantRange::makeExactICmpRegion(DomPred, *DomC);
1360 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1361 ConstantRange Difference = DominatingCR.difference(CR);
1362 if (Intersection.isEmptySet())
1363 return replaceInstUsesWith(Cmp, Builder.getFalse());
1364 if (Difference.isEmptySet())
1365 return replaceInstUsesWith(Cmp, Builder.getTrue());
1367 // Canonicalizing a sign bit comparison that gets used in a branch,
1368 // pessimizes codegen by generating branch on zero instruction instead
1369 // of a test and branch. So we avoid canonicalizing in such situations
1370 // because test and branch instruction has better branch displacement
1371 // than compare and branch instruction.
1372 bool UnusedBit;
1373 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1374 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1375 return nullptr;
1377 // Avoid an infinite loop with min/max canonicalization.
1378 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1379 if (Cmp.hasOneUse() &&
1380 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1381 return nullptr;
1383 if (const APInt *EqC = Intersection.getSingleElement())
1384 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1385 if (const APInt *NeC = Difference.getSingleElement())
1386 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1387 return nullptr;
1390 for (BranchInst *BI : DC.conditionsFor(X)) {
1391 auto *Cond = BI->getCondition();
1392 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1393 if (DT.dominates(Edge0, Cmp.getParent())) {
1394 if (auto *V = handleDomCond(Cond, true))
1395 return V;
1396 } else {
1397 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1398 if (DT.dominates(Edge1, Cmp.getParent()))
1399 if (auto *V = handleDomCond(Cond, false))
1400 return V;
1404 return nullptr;
1407 /// Fold icmp (trunc X), C.
1408 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1409 TruncInst *Trunc,
1410 const APInt &C) {
1411 ICmpInst::Predicate Pred = Cmp.getPredicate();
1412 Value *X = Trunc->getOperand(0);
1413 if (C.isOne() && C.getBitWidth() > 1) {
1414 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1415 Value *V = nullptr;
1416 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1417 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1418 ConstantInt::get(V->getType(), 1));
1421 Type *SrcTy = X->getType();
1422 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1423 SrcBits = SrcTy->getScalarSizeInBits();
1425 // TODO: Handle any shifted constant by subtracting trailing zeros.
1426 // TODO: Handle non-equality predicates.
1427 Value *Y;
1428 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) {
1429 // (trunc (1 << Y) to iN) == 0 --> Y u>= N
1430 // (trunc (1 << Y) to iN) != 0 --> Y u< N
1431 if (C.isZero()) {
1432 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
1433 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits));
1435 // (trunc (1 << Y) to iN) == 2**C --> Y == C
1436 // (trunc (1 << Y) to iN) != 2**C --> Y != C
1437 if (C.isPowerOf2())
1438 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2()));
1441 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1442 // Canonicalize to a mask and wider compare if the wide type is suitable:
1443 // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1444 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1445 Constant *Mask =
1446 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits));
1447 Value *And = Builder.CreateAnd(X, Mask);
1448 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits));
1449 return new ICmpInst(Pred, And, WideC);
1452 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1453 // of the high bits truncated out of x are known.
1454 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1456 // If all the high bits are known, we can do this xform.
1457 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) {
1458 // Pull in the high bits from known-ones set.
1459 APInt NewRHS = C.zext(SrcBits);
1460 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1461 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS));
1465 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1466 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1467 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1468 Value *ShOp;
1469 const APInt *ShAmtC;
1470 bool TrueIfSigned;
1471 if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1472 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1473 DstBits == SrcBits - ShAmtC->getZExtValue()) {
1474 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1475 ConstantInt::getNullValue(SrcTy))
1476 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1477 ConstantInt::getAllOnesValue(SrcTy));
1480 return nullptr;
1483 /// Fold icmp (trunc X), (trunc Y).
1484 /// Fold icmp (trunc X), (zext Y).
1485 Instruction *
1486 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
1487 const SimplifyQuery &Q) {
1488 if (Cmp.isSigned())
1489 return nullptr;
1491 Value *X, *Y;
1492 ICmpInst::Predicate Pred;
1493 bool YIsZext = false;
1494 // Try to match icmp (trunc X), (trunc Y)
1495 if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) {
1496 if (X->getType() != Y->getType() &&
1497 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse()))
1498 return nullptr;
1499 if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) &&
1500 isDesirableIntType(Y->getType()->getScalarSizeInBits())) {
1501 std::swap(X, Y);
1502 Pred = Cmp.getSwappedPredicate(Pred);
1505 // Try to match icmp (trunc X), (zext Y)
1506 else if (match(&Cmp, m_c_ICmp(Pred, m_Trunc(m_Value(X)),
1507 m_OneUse(m_ZExt(m_Value(Y))))))
1509 YIsZext = true;
1510 else
1511 return nullptr;
1513 Type *TruncTy = Cmp.getOperand(0)->getType();
1514 unsigned TruncBits = TruncTy->getScalarSizeInBits();
1516 // If this transform will end up changing from desirable types -> undesirable
1517 // types skip it.
1518 if (isDesirableIntType(TruncBits) &&
1519 !isDesirableIntType(X->getType()->getScalarSizeInBits()))
1520 return nullptr;
1522 // Check if the trunc is unneeded.
1523 KnownBits KnownX = llvm::computeKnownBits(X, /*Depth*/ 0, Q);
1524 if (KnownX.countMaxActiveBits() > TruncBits)
1525 return nullptr;
1527 if (!YIsZext) {
1528 // If Y is also a trunc, make sure it is unneeded.
1529 KnownBits KnownY = llvm::computeKnownBits(Y, /*Depth*/ 0, Q);
1530 if (KnownY.countMaxActiveBits() > TruncBits)
1531 return nullptr;
1534 Value *NewY = Builder.CreateZExtOrTrunc(Y, X->getType());
1535 return new ICmpInst(Pred, X, NewY);
1538 /// Fold icmp (xor X, Y), C.
1539 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1540 BinaryOperator *Xor,
1541 const APInt &C) {
1542 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C))
1543 return I;
1545 Value *X = Xor->getOperand(0);
1546 Value *Y = Xor->getOperand(1);
1547 const APInt *XorC;
1548 if (!match(Y, m_APInt(XorC)))
1549 return nullptr;
1551 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1552 // fold the xor.
1553 ICmpInst::Predicate Pred = Cmp.getPredicate();
1554 bool TrueIfSigned = false;
1555 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1557 // If the sign bit of the XorCst is not set, there is no change to
1558 // the operation, just stop using the Xor.
1559 if (!XorC->isNegative())
1560 return replaceOperand(Cmp, 0, X);
1562 // Emit the opposite comparison.
1563 if (TrueIfSigned)
1564 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1565 ConstantInt::getAllOnesValue(X->getType()));
1566 else
1567 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1568 ConstantInt::getNullValue(X->getType()));
1571 if (Xor->hasOneUse()) {
1572 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1573 if (!Cmp.isEquality() && XorC->isSignMask()) {
1574 Pred = Cmp.getFlippedSignednessPredicate();
1575 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1578 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1579 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1580 Pred = Cmp.getFlippedSignednessPredicate();
1581 Pred = Cmp.getSwappedPredicate(Pred);
1582 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1586 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1587 if (Pred == ICmpInst::ICMP_UGT) {
1588 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1589 if (*XorC == ~C && (C + 1).isPowerOf2())
1590 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1591 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1592 if (*XorC == C && (C + 1).isPowerOf2())
1593 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1595 if (Pred == ICmpInst::ICMP_ULT) {
1596 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1597 if (*XorC == -C && C.isPowerOf2())
1598 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1599 ConstantInt::get(X->getType(), ~C));
1600 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1601 if (*XorC == C && (-C).isPowerOf2())
1602 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1603 ConstantInt::get(X->getType(), ~C));
1605 return nullptr;
1608 /// For power-of-2 C:
1609 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1610 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1611 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp,
1612 BinaryOperator *Xor,
1613 const APInt &C) {
1614 CmpInst::Predicate Pred = Cmp.getPredicate();
1615 APInt PowerOf2;
1616 if (Pred == ICmpInst::ICMP_ULT)
1617 PowerOf2 = C;
1618 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue())
1619 PowerOf2 = C + 1;
1620 else
1621 return nullptr;
1622 if (!PowerOf2.isPowerOf2())
1623 return nullptr;
1624 Value *X;
1625 const APInt *ShiftC;
1626 if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X),
1627 m_AShr(m_Deferred(X), m_APInt(ShiftC))))))
1628 return nullptr;
1629 uint64_t Shift = ShiftC->getLimitedValue();
1630 Type *XType = X->getType();
1631 if (Shift == 0 || PowerOf2.isMinSignedValue())
1632 return nullptr;
1633 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2));
1634 APInt Bound =
1635 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1);
1636 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound));
1639 /// Fold icmp (and (sh X, Y), C2), C1.
1640 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1641 BinaryOperator *And,
1642 const APInt &C1,
1643 const APInt &C2) {
1644 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1645 if (!Shift || !Shift->isShift())
1646 return nullptr;
1648 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1649 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1650 // code produced by the clang front-end, for bitfield access.
1651 // This seemingly simple opportunity to fold away a shift turns out to be
1652 // rather complicated. See PR17827 for details.
1653 unsigned ShiftOpcode = Shift->getOpcode();
1654 bool IsShl = ShiftOpcode == Instruction::Shl;
1655 const APInt *C3;
1656 if (match(Shift->getOperand(1), m_APInt(C3))) {
1657 APInt NewAndCst, NewCmpCst;
1658 bool AnyCmpCstBitsShiftedOut;
1659 if (ShiftOpcode == Instruction::Shl) {
1660 // For a left shift, we can fold if the comparison is not signed. We can
1661 // also fold a signed comparison if the mask value and comparison value
1662 // are not negative. These constraints may not be obvious, but we can
1663 // prove that they are correct using an SMT solver.
1664 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1665 return nullptr;
1667 NewCmpCst = C1.lshr(*C3);
1668 NewAndCst = C2.lshr(*C3);
1669 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1670 } else if (ShiftOpcode == Instruction::LShr) {
1671 // For a logical right shift, we can fold if the comparison is not signed.
1672 // We can also fold a signed comparison if the shifted mask value and the
1673 // shifted comparison value are not negative. These constraints may not be
1674 // obvious, but we can prove that they are correct using an SMT solver.
1675 NewCmpCst = C1.shl(*C3);
1676 NewAndCst = C2.shl(*C3);
1677 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1678 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1679 return nullptr;
1680 } else {
1681 // For an arithmetic shift, check that both constants don't use (in a
1682 // signed sense) the top bits being shifted out.
1683 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1684 NewCmpCst = C1.shl(*C3);
1685 NewAndCst = C2.shl(*C3);
1686 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1687 if (NewAndCst.ashr(*C3) != C2)
1688 return nullptr;
1691 if (AnyCmpCstBitsShiftedOut) {
1692 // If we shifted bits out, the fold is not going to work out. As a
1693 // special case, check to see if this means that the result is always
1694 // true or false now.
1695 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1696 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1697 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1698 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1699 } else {
1700 Value *NewAnd = Builder.CreateAnd(
1701 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1702 return new ICmpInst(Cmp.getPredicate(),
1703 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1707 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1708 // preferable because it allows the C2 << Y expression to be hoisted out of a
1709 // loop if Y is invariant and X is not.
1710 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1711 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1712 // Compute C2 << Y.
1713 Value *NewShift =
1714 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1715 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1717 // Compute X & (C2 << Y).
1718 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1719 return replaceOperand(Cmp, 0, NewAnd);
1722 return nullptr;
1725 /// Fold icmp (and X, C2), C1.
1726 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1727 BinaryOperator *And,
1728 const APInt &C1) {
1729 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1731 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1732 // TODO: We canonicalize to the longer form for scalars because we have
1733 // better analysis/folds for icmp, and codegen may be better with icmp.
1734 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1735 match(And->getOperand(1), m_One()))
1736 return new TruncInst(And->getOperand(0), Cmp.getType());
1738 const APInt *C2;
1739 Value *X;
1740 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1741 return nullptr;
1743 // Don't perform the following transforms if the AND has multiple uses
1744 if (!And->hasOneUse())
1745 return nullptr;
1747 if (Cmp.isEquality() && C1.isZero()) {
1748 // Restrict this fold to single-use 'and' (PR10267).
1749 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1750 if (C2->isSignMask()) {
1751 Constant *Zero = Constant::getNullValue(X->getType());
1752 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1753 return new ICmpInst(NewPred, X, Zero);
1756 APInt NewC2 = *C2;
1757 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1758 // Set high zeros of C2 to allow matching negated power-of-2.
1759 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(),
1760 Know.countMinLeadingZeros());
1762 // Restrict this fold only for single-use 'and' (PR10267).
1763 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1764 if (NewC2.isNegatedPowerOf2()) {
1765 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1766 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1767 return new ICmpInst(NewPred, X, NegBOC);
1771 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1772 // the input width without changing the value produced, eliminate the cast:
1774 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1776 // We can do this transformation if the constants do not have their sign bits
1777 // set or if it is an equality comparison. Extending a relational comparison
1778 // when we're checking the sign bit would not work.
1779 Value *W;
1780 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1781 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1782 // TODO: Is this a good transform for vectors? Wider types may reduce
1783 // throughput. Should this transform be limited (even for scalars) by using
1784 // shouldChangeType()?
1785 if (!Cmp.getType()->isVectorTy()) {
1786 Type *WideType = W->getType();
1787 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1788 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1789 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1790 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1791 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1795 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1796 return I;
1798 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1799 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1801 // iff pred isn't signed
1802 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1803 match(And->getOperand(1), m_One())) {
1804 Constant *One = cast<Constant>(And->getOperand(1));
1805 Value *Or = And->getOperand(0);
1806 Value *A, *B, *LShr;
1807 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1808 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1809 unsigned UsesRemoved = 0;
1810 if (And->hasOneUse())
1811 ++UsesRemoved;
1812 if (Or->hasOneUse())
1813 ++UsesRemoved;
1814 if (LShr->hasOneUse())
1815 ++UsesRemoved;
1817 // Compute A & ((1 << B) | 1)
1818 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3;
1819 if (UsesRemoved >= RequireUsesRemoved) {
1820 Value *NewOr =
1821 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1822 /*HasNUW=*/true),
1823 One, Or->getName());
1824 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1825 return replaceOperand(Cmp, 0, NewAnd);
1830 return nullptr;
1833 /// Fold icmp (and X, Y), C.
1834 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1835 BinaryOperator *And,
1836 const APInt &C) {
1837 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1838 return I;
1840 const ICmpInst::Predicate Pred = Cmp.getPredicate();
1841 bool TrueIfNeg;
1842 if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1843 // ((X - 1) & ~X) < 0 --> X == 0
1844 // ((X - 1) & ~X) >= 0 --> X != 0
1845 Value *X;
1846 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1847 match(And->getOperand(1), m_Not(m_Specific(X)))) {
1848 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1849 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1851 // (X & X) < 0 --> X == MinSignedC
1852 // (X & X) > -1 --> X != MinSignedC
1853 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) {
1854 Constant *MinSignedC = ConstantInt::get(
1855 X->getType(),
1856 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()));
1857 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1858 return new ICmpInst(NewPred, X, MinSignedC);
1862 // TODO: These all require that Y is constant too, so refactor with the above.
1864 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1865 Value *X = And->getOperand(0);
1866 Value *Y = And->getOperand(1);
1867 if (auto *C2 = dyn_cast<ConstantInt>(Y))
1868 if (auto *LI = dyn_cast<LoadInst>(X))
1869 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1870 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1871 if (Instruction *Res =
1872 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1873 return Res;
1875 if (!Cmp.isEquality())
1876 return nullptr;
1878 // X & -C == -C -> X > u ~C
1879 // X & -C != -C -> X <= u ~C
1880 // iff C is a power of 2
1881 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1882 auto NewPred =
1883 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1884 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1887 // If we are testing the intersection of 2 select-of-nonzero-constants with no
1888 // common bits set, it's the same as checking if exactly one select condition
1889 // is set:
1890 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1891 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1892 // TODO: Generalize for non-constant values.
1893 // TODO: Handle signed/unsigned predicates.
1894 // TODO: Handle other bitwise logic connectors.
1895 // TODO: Extend to handle a non-zero compare constant.
1896 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) {
1897 assert(Cmp.isEquality() && "Not expecting non-equality predicates");
1898 Value *A, *B;
1899 const APInt *TC, *FC;
1900 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) &&
1901 match(Y,
1902 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) &&
1903 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) {
1904 Value *R = Builder.CreateXor(A, B);
1905 if (Pred == CmpInst::ICMP_NE)
1906 R = Builder.CreateNot(R);
1907 return replaceInstUsesWith(Cmp, R);
1911 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1912 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
1913 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
1914 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1915 if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) &&
1916 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) {
1917 Value *TruncY = Builder.CreateTrunc(Y, X->getType());
1918 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) {
1919 Value *And = Builder.CreateAnd(TruncY, X);
1920 return BinaryOperator::CreateNot(And);
1922 return BinaryOperator::CreateAnd(TruncY, X);
1925 return nullptr;
1928 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
1929 static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or,
1930 InstCombiner::BuilderTy &Builder) {
1931 // Are we using xors or subs to bitwise check for a pair or pairs of
1932 // (in)equalities? Convert to a shorter form that has more potential to be
1933 // folded even further.
1934 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
1935 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
1936 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
1937 // (X1 == X2) && (X3 == X4) && (X5 == X6)
1938 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
1939 // (X1 != X2) || (X3 != X4) || (X5 != X6)
1940 SmallVector<std::pair<Value *, Value *>, 2> CmpValues;
1941 SmallVector<Value *, 16> WorkList(1, Or);
1943 while (!WorkList.empty()) {
1944 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) {
1945 Value *Lhs, *Rhs;
1947 if (match(OrOperatorArgument,
1948 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) {
1949 CmpValues.emplace_back(Lhs, Rhs);
1950 return;
1953 if (match(OrOperatorArgument,
1954 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) {
1955 CmpValues.emplace_back(Lhs, Rhs);
1956 return;
1959 WorkList.push_back(OrOperatorArgument);
1962 Value *CurrentValue = WorkList.pop_back_val();
1963 Value *OrOperatorLhs, *OrOperatorRhs;
1965 if (!match(CurrentValue,
1966 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) {
1967 return nullptr;
1970 MatchOrOperatorArgument(OrOperatorRhs);
1971 MatchOrOperatorArgument(OrOperatorLhs);
1974 ICmpInst::Predicate Pred = Cmp.getPredicate();
1975 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1976 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first,
1977 CmpValues.rbegin()->second);
1979 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) {
1980 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second);
1981 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp);
1984 return LhsCmp;
1987 /// Fold icmp (or X, Y), C.
1988 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1989 BinaryOperator *Or,
1990 const APInt &C) {
1991 ICmpInst::Predicate Pred = Cmp.getPredicate();
1992 if (C.isOne()) {
1993 // icmp slt signum(V) 1 --> icmp slt V, 1
1994 Value *V = nullptr;
1995 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1996 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1997 ConstantInt::get(V->getType(), 1));
2000 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
2001 const APInt *MaskC;
2002 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
2003 if (*MaskC == C && (C + 1).isPowerOf2()) {
2004 // X | C == C --> X <=u C
2005 // X | C != C --> X >u C
2006 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
2007 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
2008 return new ICmpInst(Pred, OrOp0, OrOp1);
2011 // More general: canonicalize 'equality with set bits mask' to
2012 // 'equality with clear bits mask'.
2013 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2014 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2015 if (Or->hasOneUse()) {
2016 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
2017 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
2018 return new ICmpInst(Pred, And, NewC);
2022 // (X | (X-1)) s< 0 --> X s< 1
2023 // (X | (X-1)) s> -1 --> X s> 0
2024 Value *X;
2025 bool TrueIfSigned;
2026 if (isSignBitCheck(Pred, C, TrueIfSigned) &&
2027 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
2028 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
2029 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
2030 return new ICmpInst(NewPred, X, NewC);
2033 const APInt *OrC;
2034 // icmp(X | OrC, C) --> icmp(X, 0)
2035 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) {
2036 switch (Pred) {
2037 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2038 case ICmpInst::ICMP_SLT:
2039 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2040 case ICmpInst::ICMP_SGE:
2041 if (OrC->sge(C))
2042 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2043 break;
2044 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2045 case ICmpInst::ICMP_SLE:
2046 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2047 case ICmpInst::ICMP_SGT:
2048 if (OrC->sgt(C))
2049 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X,
2050 ConstantInt::getNullValue(X->getType()));
2051 break;
2052 default:
2053 break;
2057 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
2058 return nullptr;
2060 Value *P, *Q;
2061 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
2062 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2063 // -> and (icmp eq P, null), (icmp eq Q, null).
2064 Value *CmpP =
2065 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
2066 Value *CmpQ =
2067 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
2068 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2069 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
2072 if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder))
2073 return replaceInstUsesWith(Cmp, V);
2075 return nullptr;
2078 /// Fold icmp (mul X, Y), C.
2079 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
2080 BinaryOperator *Mul,
2081 const APInt &C) {
2082 ICmpInst::Predicate Pred = Cmp.getPredicate();
2083 Type *MulTy = Mul->getType();
2084 Value *X = Mul->getOperand(0);
2086 // If there's no overflow:
2087 // X * X == 0 --> X == 0
2088 // X * X != 0 --> X != 0
2089 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) &&
2090 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap()))
2091 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2093 const APInt *MulC;
2094 if (!match(Mul->getOperand(1), m_APInt(MulC)))
2095 return nullptr;
2097 // If this is a test of the sign bit and the multiply is sign-preserving with
2098 // a constant operand, use the multiply LHS operand instead:
2099 // (X * +MulC) < 0 --> X < 0
2100 // (X * -MulC) < 0 --> X > 0
2101 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
2102 if (MulC->isNegative())
2103 Pred = ICmpInst::getSwappedPredicate(Pred);
2104 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2107 if (MulC->isZero())
2108 return nullptr;
2110 // If the multiply does not wrap or the constant is odd, try to divide the
2111 // compare constant by the multiplication factor.
2112 if (Cmp.isEquality()) {
2113 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2114 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2115 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC));
2116 return new ICmpInst(Pred, X, NewC);
2119 // C % MulC == 0 is weaker than we could use if MulC is odd because it
2120 // correct to transform if MulC * N == C including overflow. I.e with i8
2121 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2122 // miss that case.
2123 if (C.urem(*MulC).isZero()) {
2124 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2125 // (mul X, OddC) eq/ne N * C --> X eq/ne N
2126 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) {
2127 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC));
2128 return new ICmpInst(Pred, X, NewC);
2133 // With a matching no-overflow guarantee, fold the constants:
2134 // (X * MulC) < C --> X < (C / MulC)
2135 // (X * MulC) > C --> X > (C / MulC)
2136 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2137 Constant *NewC = nullptr;
2138 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) {
2139 // MININT / -1 --> overflow.
2140 if (C.isMinSignedValue() && MulC->isAllOnes())
2141 return nullptr;
2142 if (MulC->isNegative())
2143 Pred = ICmpInst::getSwappedPredicate(Pred);
2145 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2146 NewC = ConstantInt::get(
2147 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP));
2148 } else {
2149 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) &&
2150 "Unexpected predicate");
2151 NewC = ConstantInt::get(
2152 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN));
2154 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) {
2155 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) {
2156 NewC = ConstantInt::get(
2157 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP));
2158 } else {
2159 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
2160 "Unexpected predicate");
2161 NewC = ConstantInt::get(
2162 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN));
2166 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr;
2169 /// Fold icmp (shl 1, Y), C.
2170 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2171 const APInt &C) {
2172 Value *Y;
2173 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2174 return nullptr;
2176 Type *ShiftType = Shl->getType();
2177 unsigned TypeBits = C.getBitWidth();
2178 bool CIsPowerOf2 = C.isPowerOf2();
2179 ICmpInst::Predicate Pred = Cmp.getPredicate();
2180 if (Cmp.isUnsigned()) {
2181 // (1 << Y) pred C -> Y pred Log2(C)
2182 if (!CIsPowerOf2) {
2183 // (1 << Y) < 30 -> Y <= 4
2184 // (1 << Y) <= 30 -> Y <= 4
2185 // (1 << Y) >= 30 -> Y > 4
2186 // (1 << Y) > 30 -> Y > 4
2187 if (Pred == ICmpInst::ICMP_ULT)
2188 Pred = ICmpInst::ICMP_ULE;
2189 else if (Pred == ICmpInst::ICMP_UGE)
2190 Pred = ICmpInst::ICMP_UGT;
2193 unsigned CLog2 = C.logBase2();
2194 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2195 } else if (Cmp.isSigned()) {
2196 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2197 // (1 << Y) > 0 -> Y != 31
2198 // (1 << Y) > C -> Y != 31 if C is negative.
2199 if (Pred == ICmpInst::ICMP_SGT && C.sle(0))
2200 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2202 // (1 << Y) < 0 -> Y == 31
2203 // (1 << Y) < 1 -> Y == 31
2204 // (1 << Y) < C -> Y == 31 if C is negative and not signed min.
2205 // Exclude signed min by subtracting 1 and lower the upper bound to 0.
2206 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0))
2207 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2210 return nullptr;
2213 /// Fold icmp (shl X, Y), C.
2214 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2215 BinaryOperator *Shl,
2216 const APInt &C) {
2217 const APInt *ShiftVal;
2218 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2219 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2221 ICmpInst::Predicate Pred = Cmp.getPredicate();
2222 // (icmp pred (shl nuw&nsw X, Y), Csle0)
2223 // -> (icmp pred X, Csle0)
2225 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2226 // so X's must be what is used.
2227 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap())
2228 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2230 // (icmp eq/ne (shl nuw|nsw X, Y), 0)
2231 // -> (icmp eq/ne X, 0)
2232 if (ICmpInst::isEquality(Pred) && C.isZero() &&
2233 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap()))
2234 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2236 // (icmp slt (shl nsw X, Y), 0/1)
2237 // -> (icmp slt X, 0/1)
2238 // (icmp sgt (shl nsw X, Y), 0/-1)
2239 // -> (icmp sgt X, 0/-1)
2241 // NB: sge/sle with a constant will canonicalize to sgt/slt.
2242 if (Shl->hasNoSignedWrap() &&
2243 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT))
2244 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne()))
2245 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2247 const APInt *ShiftAmt;
2248 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2249 return foldICmpShlOne(Cmp, Shl, C);
2251 // Check that the shift amount is in range. If not, don't perform undefined
2252 // shifts. When the shift is visited, it will be simplified.
2253 unsigned TypeBits = C.getBitWidth();
2254 if (ShiftAmt->uge(TypeBits))
2255 return nullptr;
2257 Value *X = Shl->getOperand(0);
2258 Type *ShType = Shl->getType();
2260 // NSW guarantees that we are only shifting out sign bits from the high bits,
2261 // so we can ASHR the compare constant without needing a mask and eliminate
2262 // the shift.
2263 if (Shl->hasNoSignedWrap()) {
2264 if (Pred == ICmpInst::ICMP_SGT) {
2265 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2266 APInt ShiftedC = C.ashr(*ShiftAmt);
2267 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2269 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2270 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2271 APInt ShiftedC = C.ashr(*ShiftAmt);
2272 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2274 if (Pred == ICmpInst::ICMP_SLT) {
2275 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2276 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2277 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2278 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2279 assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2280 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2281 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2285 // NUW guarantees that we are only shifting out zero bits from the high bits,
2286 // so we can LSHR the compare constant without needing a mask and eliminate
2287 // the shift.
2288 if (Shl->hasNoUnsignedWrap()) {
2289 if (Pred == ICmpInst::ICMP_UGT) {
2290 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2291 APInt ShiftedC = C.lshr(*ShiftAmt);
2292 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2294 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2295 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2296 APInt ShiftedC = C.lshr(*ShiftAmt);
2297 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2299 if (Pred == ICmpInst::ICMP_ULT) {
2300 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2301 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2302 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2303 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2304 assert(C.ugt(0) && "ult 0 should have been eliminated");
2305 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2306 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2310 if (Cmp.isEquality() && Shl->hasOneUse()) {
2311 // Strength-reduce the shift into an 'and'.
2312 Constant *Mask = ConstantInt::get(
2313 ShType,
2314 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2315 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2316 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2317 return new ICmpInst(Pred, And, LShrC);
2320 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2321 bool TrueIfSigned = false;
2322 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2323 // (X << 31) <s 0 --> (X & 1) != 0
2324 Constant *Mask = ConstantInt::get(
2325 ShType,
2326 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2327 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2328 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2329 And, Constant::getNullValue(ShType));
2332 // Simplify 'shl' inequality test into 'and' equality test.
2333 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2334 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2335 if ((C + 1).isPowerOf2() &&
2336 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2337 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2338 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2339 : ICmpInst::ICMP_NE,
2340 And, Constant::getNullValue(ShType));
2342 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2343 if (C.isPowerOf2() &&
2344 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2345 Value *And =
2346 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2347 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2348 : ICmpInst::ICMP_NE,
2349 And, Constant::getNullValue(ShType));
2353 // Transform (icmp pred iM (shl iM %v, N), C)
2354 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2355 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2356 // This enables us to get rid of the shift in favor of a trunc that may be
2357 // free on the target. It has the additional benefit of comparing to a
2358 // smaller constant that may be more target-friendly.
2359 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2360 if (Shl->hasOneUse() && Amt != 0 && C.countr_zero() >= Amt &&
2361 DL.isLegalInteger(TypeBits - Amt)) {
2362 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2363 if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2364 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2365 Constant *NewC =
2366 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2367 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2370 return nullptr;
2373 /// Fold icmp ({al}shr X, Y), C.
2374 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2375 BinaryOperator *Shr,
2376 const APInt &C) {
2377 // An exact shr only shifts out zero bits, so:
2378 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2379 Value *X = Shr->getOperand(0);
2380 CmpInst::Predicate Pred = Cmp.getPredicate();
2381 if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2382 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2384 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2385 const APInt *ShiftValC;
2386 if (match(X, m_APInt(ShiftValC))) {
2387 if (Cmp.isEquality())
2388 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2390 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2391 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
2392 bool TrueIfSigned;
2393 if (!IsAShr && ShiftValC->isNegative() &&
2394 isSignBitCheck(Pred, C, TrueIfSigned))
2395 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
2396 Shr->getOperand(1),
2397 ConstantInt::getNullValue(X->getType()));
2399 // If the shifted constant is a power-of-2, test the shift amount directly:
2400 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2401 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2402 if (!IsAShr && ShiftValC->isPowerOf2() &&
2403 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2404 bool IsUGT = Pred == CmpInst::ICMP_UGT;
2405 assert(ShiftValC->uge(C) && "Expected simplify of compare");
2406 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2408 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero();
2409 unsigned ShiftLZ = ShiftValC->countl_zero();
2410 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2411 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2412 return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2416 const APInt *ShiftAmtC;
2417 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2418 return nullptr;
2420 // Check that the shift amount is in range. If not, don't perform undefined
2421 // shifts. When the shift is visited it will be simplified.
2422 unsigned TypeBits = C.getBitWidth();
2423 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2424 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2425 return nullptr;
2427 bool IsExact = Shr->isExact();
2428 Type *ShrTy = Shr->getType();
2429 // TODO: If we could guarantee that InstSimplify would handle all of the
2430 // constant-value-based preconditions in the folds below, then we could assert
2431 // those conditions rather than checking them. This is difficult because of
2432 // undef/poison (PR34838).
2433 if (IsAShr && Shr->hasOneUse()) {
2434 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2435 // When ShAmtC can be shifted losslessly:
2436 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2437 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2438 APInt ShiftedC = C.shl(ShAmtVal);
2439 if (ShiftedC.ashr(ShAmtVal) == C)
2440 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2442 if (Pred == CmpInst::ICMP_SGT) {
2443 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2444 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2445 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2446 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2447 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2449 if (Pred == CmpInst::ICMP_UGT) {
2450 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2451 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2452 // clause accounts for that pattern.
2453 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2454 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2455 (C + 1).shl(ShAmtVal).isMinSignedValue())
2456 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2459 // If the compare constant has significant bits above the lowest sign-bit,
2460 // then convert an unsigned cmp to a test of the sign-bit:
2461 // (ashr X, ShiftC) u> C --> X s< 0
2462 // (ashr X, ShiftC) u< C --> X s> -1
2463 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2464 if (Pred == CmpInst::ICMP_UGT) {
2465 return new ICmpInst(CmpInst::ICMP_SLT, X,
2466 ConstantInt::getNullValue(ShrTy));
2468 if (Pred == CmpInst::ICMP_ULT) {
2469 return new ICmpInst(CmpInst::ICMP_SGT, X,
2470 ConstantInt::getAllOnesValue(ShrTy));
2473 } else if (!IsAShr) {
2474 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2475 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2476 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2477 APInt ShiftedC = C.shl(ShAmtVal);
2478 if (ShiftedC.lshr(ShAmtVal) == C)
2479 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2481 if (Pred == CmpInst::ICMP_UGT) {
2482 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2483 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2484 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2485 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2489 if (!Cmp.isEquality())
2490 return nullptr;
2492 // Handle equality comparisons of shift-by-constant.
2494 // If the comparison constant changes with the shift, the comparison cannot
2495 // succeed (bits of the comparison constant cannot match the shifted value).
2496 // This should be known by InstSimplify and already be folded to true/false.
2497 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2498 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2499 "Expected icmp+shr simplify did not occur.");
2501 // If the bits shifted out are known zero, compare the unshifted value:
2502 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2503 if (Shr->isExact())
2504 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2506 if (C.isZero()) {
2507 // == 0 is u< 1.
2508 if (Pred == CmpInst::ICMP_EQ)
2509 return new ICmpInst(CmpInst::ICMP_ULT, X,
2510 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2511 else
2512 return new ICmpInst(CmpInst::ICMP_UGT, X,
2513 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2516 if (Shr->hasOneUse()) {
2517 // Canonicalize the shift into an 'and':
2518 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2519 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2520 Constant *Mask = ConstantInt::get(ShrTy, Val);
2521 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2522 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2525 return nullptr;
2528 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2529 BinaryOperator *SRem,
2530 const APInt &C) {
2531 // Match an 'is positive' or 'is negative' comparison of remainder by a
2532 // constant power-of-2 value:
2533 // (X % pow2C) sgt/slt 0
2534 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2535 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2536 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2537 return nullptr;
2539 // TODO: The one-use check is standard because we do not typically want to
2540 // create longer instruction sequences, but this might be a special-case
2541 // because srem is not good for analysis or codegen.
2542 if (!SRem->hasOneUse())
2543 return nullptr;
2545 const APInt *DivisorC;
2546 if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2547 return nullptr;
2549 // For cmp_sgt/cmp_slt only zero valued C is handled.
2550 // For cmp_eq/cmp_ne only positive valued C is handled.
2551 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2552 !C.isZero()) ||
2553 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2554 !C.isStrictlyPositive()))
2555 return nullptr;
2557 // Mask off the sign bit and the modulo bits (low-bits).
2558 Type *Ty = SRem->getType();
2559 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2560 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2561 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2563 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2564 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2566 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2567 // bit is set. Example:
2568 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2569 if (Pred == ICmpInst::ICMP_SGT)
2570 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2572 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2573 // bit is set. Example:
2574 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2575 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2578 /// Fold icmp (udiv X, Y), C.
2579 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2580 BinaryOperator *UDiv,
2581 const APInt &C) {
2582 ICmpInst::Predicate Pred = Cmp.getPredicate();
2583 Value *X = UDiv->getOperand(0);
2584 Value *Y = UDiv->getOperand(1);
2585 Type *Ty = UDiv->getType();
2587 const APInt *C2;
2588 if (!match(X, m_APInt(C2)))
2589 return nullptr;
2591 assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2593 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2594 if (Pred == ICmpInst::ICMP_UGT) {
2595 assert(!C.isMaxValue() &&
2596 "icmp ugt X, UINT_MAX should have been simplified already.");
2597 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2598 ConstantInt::get(Ty, C2->udiv(C + 1)));
2601 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2602 if (Pred == ICmpInst::ICMP_ULT) {
2603 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2604 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2605 ConstantInt::get(Ty, C2->udiv(C)));
2608 return nullptr;
2611 /// Fold icmp ({su}div X, Y), C.
2612 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2613 BinaryOperator *Div,
2614 const APInt &C) {
2615 ICmpInst::Predicate Pred = Cmp.getPredicate();
2616 Value *X = Div->getOperand(0);
2617 Value *Y = Div->getOperand(1);
2618 Type *Ty = Div->getType();
2619 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2621 // If unsigned division and the compare constant is bigger than
2622 // UMAX/2 (negative), there's only one pair of values that satisfies an
2623 // equality check, so eliminate the division:
2624 // (X u/ Y) == C --> (X == C) && (Y == 1)
2625 // (X u/ Y) != C --> (X != C) || (Y != 1)
2626 // Similarly, if signed division and the compare constant is exactly SMIN:
2627 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2628 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2629 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2630 (!DivIsSigned || C.isMinSignedValue())) {
2631 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2632 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2633 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2634 return BinaryOperator::Create(Logic, XBig, YOne);
2637 // Fold: icmp pred ([us]div X, C2), C -> range test
2638 // Fold this div into the comparison, producing a range check.
2639 // Determine, based on the divide type, what the range is being
2640 // checked. If there is an overflow on the low or high side, remember
2641 // it, otherwise compute the range [low, hi) bounding the new value.
2642 // See: InsertRangeTest above for the kinds of replacements possible.
2643 const APInt *C2;
2644 if (!match(Y, m_APInt(C2)))
2645 return nullptr;
2647 // FIXME: If the operand types don't match the type of the divide
2648 // then don't attempt this transform. The code below doesn't have the
2649 // logic to deal with a signed divide and an unsigned compare (and
2650 // vice versa). This is because (x /s C2) <s C produces different
2651 // results than (x /s C2) <u C or (x /u C2) <s C or even
2652 // (x /u C2) <u C. Simply casting the operands and result won't
2653 // work. :( The if statement below tests that condition and bails
2654 // if it finds it.
2655 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2656 return nullptr;
2658 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2659 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2660 // division-by-constant cases should be present, we can not assert that they
2661 // have happened before we reach this icmp instruction.
2662 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2663 return nullptr;
2665 // Compute Prod = C * C2. We are essentially solving an equation of
2666 // form X / C2 = C. We solve for X by multiplying C2 and C.
2667 // By solving for X, we can turn this into a range check instead of computing
2668 // a divide.
2669 APInt Prod = C * *C2;
2671 // Determine if the product overflows by seeing if the product is not equal to
2672 // the divide. Make sure we do the same kind of divide as in the LHS
2673 // instruction that we're folding.
2674 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2676 // If the division is known to be exact, then there is no remainder from the
2677 // divide, so the covered range size is unit, otherwise it is the divisor.
2678 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2680 // Figure out the interval that is being checked. For example, a comparison
2681 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2682 // Compute this interval based on the constants involved and the signedness of
2683 // the compare/divide. This computes a half-open interval, keeping track of
2684 // whether either value in the interval overflows. After analysis each
2685 // overflow variable is set to 0 if it's corresponding bound variable is valid
2686 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2687 int LoOverflow = 0, HiOverflow = 0;
2688 APInt LoBound, HiBound;
2690 if (!DivIsSigned) { // udiv
2691 // e.g. X/5 op 3 --> [15, 20)
2692 LoBound = Prod;
2693 HiOverflow = LoOverflow = ProdOV;
2694 if (!HiOverflow) {
2695 // If this is not an exact divide, then many values in the range collapse
2696 // to the same result value.
2697 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2699 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2700 if (C.isZero()) { // (X / pos) op 0
2701 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2702 LoBound = -(RangeSize - 1);
2703 HiBound = RangeSize;
2704 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2705 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2706 HiOverflow = LoOverflow = ProdOV;
2707 if (!HiOverflow)
2708 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2709 } else { // (X / pos) op neg
2710 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2711 HiBound = Prod + 1;
2712 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2713 if (!LoOverflow) {
2714 APInt DivNeg = -RangeSize;
2715 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2718 } else if (C2->isNegative()) { // Divisor is < 0.
2719 if (Div->isExact())
2720 RangeSize.negate();
2721 if (C.isZero()) { // (X / neg) op 0
2722 // e.g. X/-5 op 0 --> [-4, 5)
2723 LoBound = RangeSize + 1;
2724 HiBound = -RangeSize;
2725 if (HiBound == *C2) { // -INTMIN = INTMIN
2726 HiOverflow = 1; // [INTMIN+1, overflow)
2727 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2729 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2730 // e.g. X/-5 op 3 --> [-19, -14)
2731 HiBound = Prod + 1;
2732 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2733 if (!LoOverflow)
2734 LoOverflow =
2735 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2736 } else { // (X / neg) op neg
2737 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2738 LoOverflow = HiOverflow = ProdOV;
2739 if (!HiOverflow)
2740 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2743 // Dividing by a negative swaps the condition. LT <-> GT
2744 Pred = ICmpInst::getSwappedPredicate(Pred);
2747 switch (Pred) {
2748 default:
2749 llvm_unreachable("Unhandled icmp predicate!");
2750 case ICmpInst::ICMP_EQ:
2751 if (LoOverflow && HiOverflow)
2752 return replaceInstUsesWith(Cmp, Builder.getFalse());
2753 if (HiOverflow)
2754 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2755 X, ConstantInt::get(Ty, LoBound));
2756 if (LoOverflow)
2757 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2758 X, ConstantInt::get(Ty, HiBound));
2759 return replaceInstUsesWith(
2760 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2761 case ICmpInst::ICMP_NE:
2762 if (LoOverflow && HiOverflow)
2763 return replaceInstUsesWith(Cmp, Builder.getTrue());
2764 if (HiOverflow)
2765 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2766 X, ConstantInt::get(Ty, LoBound));
2767 if (LoOverflow)
2768 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2769 X, ConstantInt::get(Ty, HiBound));
2770 return replaceInstUsesWith(
2771 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2772 case ICmpInst::ICMP_ULT:
2773 case ICmpInst::ICMP_SLT:
2774 if (LoOverflow == +1) // Low bound is greater than input range.
2775 return replaceInstUsesWith(Cmp, Builder.getTrue());
2776 if (LoOverflow == -1) // Low bound is less than input range.
2777 return replaceInstUsesWith(Cmp, Builder.getFalse());
2778 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2779 case ICmpInst::ICMP_UGT:
2780 case ICmpInst::ICMP_SGT:
2781 if (HiOverflow == +1) // High bound greater than input range.
2782 return replaceInstUsesWith(Cmp, Builder.getFalse());
2783 if (HiOverflow == -1) // High bound less than input range.
2784 return replaceInstUsesWith(Cmp, Builder.getTrue());
2785 if (Pred == ICmpInst::ICMP_UGT)
2786 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2787 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2790 return nullptr;
2793 /// Fold icmp (sub X, Y), C.
2794 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2795 BinaryOperator *Sub,
2796 const APInt &C) {
2797 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2798 ICmpInst::Predicate Pred = Cmp.getPredicate();
2799 Type *Ty = Sub->getType();
2801 // (SubC - Y) == C) --> Y == (SubC - C)
2802 // (SubC - Y) != C) --> Y != (SubC - C)
2803 Constant *SubC;
2804 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2805 return new ICmpInst(Pred, Y,
2806 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2809 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2810 const APInt *C2;
2811 APInt SubResult;
2812 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2813 bool HasNSW = Sub->hasNoSignedWrap();
2814 bool HasNUW = Sub->hasNoUnsignedWrap();
2815 if (match(X, m_APInt(C2)) &&
2816 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2817 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2818 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2820 // X - Y == 0 --> X == Y.
2821 // X - Y != 0 --> X != Y.
2822 // TODO: We allow this with multiple uses as long as the other uses are not
2823 // in phis. The phi use check is guarding against a codegen regression
2824 // for a loop test. If the backend could undo this (and possibly
2825 // subsequent transforms), we would not need this hack.
2826 if (Cmp.isEquality() && C.isZero() &&
2827 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2828 return new ICmpInst(Pred, X, Y);
2830 // The following transforms are only worth it if the only user of the subtract
2831 // is the icmp.
2832 // TODO: This is an artificial restriction for all of the transforms below
2833 // that only need a single replacement icmp. Can these use the phi test
2834 // like the transform above here?
2835 if (!Sub->hasOneUse())
2836 return nullptr;
2838 if (Sub->hasNoSignedWrap()) {
2839 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2840 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2841 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2843 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2844 if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2845 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2847 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2848 if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2849 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2851 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2852 if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2853 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2856 if (!match(X, m_APInt(C2)))
2857 return nullptr;
2859 // C2 - Y <u C -> (Y | (C - 1)) == C2
2860 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2861 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2862 (*C2 & (C - 1)) == (C - 1))
2863 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2865 // C2 - Y >u C -> (Y | C) != C2
2866 // iff C2 & C == C and C + 1 is a power of 2
2867 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2868 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2870 // We have handled special cases that reduce.
2871 // Canonicalize any remaining sub to add as:
2872 // (C2 - Y) > C --> (Y + ~C2) < ~C
2873 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2874 HasNUW, HasNSW);
2875 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2878 static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0,
2879 Value *Op1, IRBuilderBase &Builder,
2880 bool HasOneUse) {
2881 auto FoldConstant = [&](bool Val) {
2882 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse();
2883 if (Op0->getType()->isVectorTy())
2884 Res = ConstantVector::getSplat(
2885 cast<VectorType>(Op0->getType())->getElementCount(), Res);
2886 return Res;
2889 switch (Table.to_ulong()) {
2890 case 0: // 0 0 0 0
2891 return FoldConstant(false);
2892 case 1: // 0 0 0 1
2893 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr;
2894 case 2: // 0 0 1 0
2895 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr;
2896 case 3: // 0 0 1 1
2897 return Builder.CreateNot(Op0);
2898 case 4: // 0 1 0 0
2899 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr;
2900 case 5: // 0 1 0 1
2901 return Builder.CreateNot(Op1);
2902 case 6: // 0 1 1 0
2903 return Builder.CreateXor(Op0, Op1);
2904 case 7: // 0 1 1 1
2905 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr;
2906 case 8: // 1 0 0 0
2907 return Builder.CreateAnd(Op0, Op1);
2908 case 9: // 1 0 0 1
2909 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr;
2910 case 10: // 1 0 1 0
2911 return Op1;
2912 case 11: // 1 0 1 1
2913 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr;
2914 case 12: // 1 1 0 0
2915 return Op0;
2916 case 13: // 1 1 0 1
2917 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr;
2918 case 14: // 1 1 1 0
2919 return Builder.CreateOr(Op0, Op1);
2920 case 15: // 1 1 1 1
2921 return FoldConstant(true);
2922 default:
2923 llvm_unreachable("Invalid Operation");
2925 return nullptr;
2928 /// Fold icmp (add X, Y), C.
2929 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2930 BinaryOperator *Add,
2931 const APInt &C) {
2932 Value *Y = Add->getOperand(1);
2933 Value *X = Add->getOperand(0);
2935 Value *Op0, *Op1;
2936 Instruction *Ext0, *Ext1;
2937 const CmpInst::Predicate Pred = Cmp.getPredicate();
2938 if (match(Add,
2939 m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))),
2940 m_CombineAnd(m_Instruction(Ext1),
2941 m_ZExtOrSExt(m_Value(Op1))))) &&
2942 Op0->getType()->isIntOrIntVectorTy(1) &&
2943 Op1->getType()->isIntOrIntVectorTy(1)) {
2944 unsigned BW = C.getBitWidth();
2945 std::bitset<4> Table;
2946 auto ComputeTable = [&](bool Op0Val, bool Op1Val) {
2947 int Res = 0;
2948 if (Op0Val)
2949 Res += isa<ZExtInst>(Ext0) ? 1 : -1;
2950 if (Op1Val)
2951 Res += isa<ZExtInst>(Ext1) ? 1 : -1;
2952 return ICmpInst::compare(APInt(BW, Res, true), C, Pred);
2955 Table[0] = ComputeTable(false, false);
2956 Table[1] = ComputeTable(false, true);
2957 Table[2] = ComputeTable(true, false);
2958 Table[3] = ComputeTable(true, true);
2959 if (auto *Cond =
2960 createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse()))
2961 return replaceInstUsesWith(Cmp, Cond);
2963 const APInt *C2;
2964 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2965 return nullptr;
2967 // Fold icmp pred (add X, C2), C.
2968 Type *Ty = Add->getType();
2970 // If the add does not wrap, we can always adjust the compare by subtracting
2971 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2972 // are canonicalized to SGT/SLT/UGT/ULT.
2973 if ((Add->hasNoSignedWrap() &&
2974 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2975 (Add->hasNoUnsignedWrap() &&
2976 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2977 bool Overflow;
2978 APInt NewC =
2979 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2980 // If there is overflow, the result must be true or false.
2981 // TODO: Can we assert there is no overflow because InstSimplify always
2982 // handles those cases?
2983 if (!Overflow)
2984 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2985 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2988 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2989 const APInt &Upper = CR.getUpper();
2990 const APInt &Lower = CR.getLower();
2991 if (Cmp.isSigned()) {
2992 if (Lower.isSignMask())
2993 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2994 if (Upper.isSignMask())
2995 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2996 } else {
2997 if (Lower.isMinValue())
2998 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2999 if (Upper.isMinValue())
3000 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
3003 // This set of folds is intentionally placed after folds that use no-wrapping
3004 // flags because those folds are likely better for later analysis/codegen.
3005 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
3006 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
3008 // Fold compare with offset to opposite sign compare if it eliminates offset:
3009 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3010 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
3011 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
3013 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3014 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
3015 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
3017 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3018 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
3019 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
3021 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3022 if (Pred == CmpInst::ICMP_SLT && C == *C2)
3023 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
3025 // (X + -1) <u C --> X <=u C (if X is never null)
3026 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) {
3027 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3028 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT))
3029 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C));
3032 if (!Add->hasOneUse())
3033 return nullptr;
3035 // X+C <u C2 -> (X & -C2) == C
3036 // iff C & (C2-1) == 0
3037 // C2 is a power of 2
3038 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
3039 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
3040 ConstantExpr::getNeg(cast<Constant>(Y)));
3042 // X+C >u C2 -> (X & ~C2) != C
3043 // iff C & C2 == 0
3044 // C2+1 is a power of 2
3045 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
3046 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
3047 ConstantExpr::getNeg(cast<Constant>(Y)));
3049 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3050 // to the ult form.
3051 // X+C2 >u C -> X+(C2-C-1) <u ~C
3052 if (Pred == ICmpInst::ICMP_UGT)
3053 return new ICmpInst(ICmpInst::ICMP_ULT,
3054 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
3055 ConstantInt::get(Ty, ~C));
3057 return nullptr;
3060 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
3061 Value *&RHS, ConstantInt *&Less,
3062 ConstantInt *&Equal,
3063 ConstantInt *&Greater) {
3064 // TODO: Generalize this to work with other comparison idioms or ensure
3065 // they get canonicalized into this form.
3067 // select i1 (a == b),
3068 // i32 Equal,
3069 // i32 (select i1 (a < b), i32 Less, i32 Greater)
3070 // where Equal, Less and Greater are placeholders for any three constants.
3071 ICmpInst::Predicate PredA;
3072 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
3073 !ICmpInst::isEquality(PredA))
3074 return false;
3075 Value *EqualVal = SI->getTrueValue();
3076 Value *UnequalVal = SI->getFalseValue();
3077 // We still can get non-canonical predicate here, so canonicalize.
3078 if (PredA == ICmpInst::ICMP_NE)
3079 std::swap(EqualVal, UnequalVal);
3080 if (!match(EqualVal, m_ConstantInt(Equal)))
3081 return false;
3082 ICmpInst::Predicate PredB;
3083 Value *LHS2, *RHS2;
3084 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
3085 m_ConstantInt(Less), m_ConstantInt(Greater))))
3086 return false;
3087 // We can get predicate mismatch here, so canonicalize if possible:
3088 // First, ensure that 'LHS' match.
3089 if (LHS2 != LHS) {
3090 // x sgt y <--> y slt x
3091 std::swap(LHS2, RHS2);
3092 PredB = ICmpInst::getSwappedPredicate(PredB);
3094 if (LHS2 != LHS)
3095 return false;
3096 // We also need to canonicalize 'RHS'.
3097 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
3098 // x sgt C-1 <--> x sge C <--> not(x slt C)
3099 auto FlippedStrictness =
3100 InstCombiner::getFlippedStrictnessPredicateAndConstant(
3101 PredB, cast<Constant>(RHS2));
3102 if (!FlippedStrictness)
3103 return false;
3104 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
3105 "basic correctness failure");
3106 RHS2 = FlippedStrictness->second;
3107 // And kind-of perform the result swap.
3108 std::swap(Less, Greater);
3109 PredB = ICmpInst::ICMP_SLT;
3111 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
3114 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
3115 SelectInst *Select,
3116 ConstantInt *C) {
3118 assert(C && "Cmp RHS should be a constant int!");
3119 // If we're testing a constant value against the result of a three way
3120 // comparison, the result can be expressed directly in terms of the
3121 // original values being compared. Note: We could possibly be more
3122 // aggressive here and remove the hasOneUse test. The original select is
3123 // really likely to simplify or sink when we remove a test of the result.
3124 Value *OrigLHS, *OrigRHS;
3125 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
3126 if (Cmp.hasOneUse() &&
3127 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
3128 C3GreaterThan)) {
3129 assert(C1LessThan && C2Equal && C3GreaterThan);
3131 bool TrueWhenLessThan =
3132 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
3133 ->isAllOnesValue();
3134 bool TrueWhenEqual =
3135 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
3136 ->isAllOnesValue();
3137 bool TrueWhenGreaterThan =
3138 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
3139 ->isAllOnesValue();
3141 // This generates the new instruction that will replace the original Cmp
3142 // Instruction. Instead of enumerating the various combinations when
3143 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3144 // false, we rely on chaining of ORs and future passes of InstCombine to
3145 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3147 // When none of the three constants satisfy the predicate for the RHS (C),
3148 // the entire original Cmp can be simplified to a false.
3149 Value *Cond = Builder.getFalse();
3150 if (TrueWhenLessThan)
3151 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
3152 OrigLHS, OrigRHS));
3153 if (TrueWhenEqual)
3154 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
3155 OrigLHS, OrigRHS));
3156 if (TrueWhenGreaterThan)
3157 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
3158 OrigLHS, OrigRHS));
3160 return replaceInstUsesWith(Cmp, Cond);
3162 return nullptr;
3165 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
3166 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
3167 if (!Bitcast)
3168 return nullptr;
3170 ICmpInst::Predicate Pred = Cmp.getPredicate();
3171 Value *Op1 = Cmp.getOperand(1);
3172 Value *BCSrcOp = Bitcast->getOperand(0);
3173 Type *SrcType = Bitcast->getSrcTy();
3174 Type *DstType = Bitcast->getType();
3176 // Make sure the bitcast doesn't change between scalar and vector and
3177 // doesn't change the number of vector elements.
3178 if (SrcType->isVectorTy() == DstType->isVectorTy() &&
3179 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
3180 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3181 Value *X;
3182 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
3183 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
3184 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
3185 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3186 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3187 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
3188 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
3189 match(Op1, m_Zero()))
3190 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3192 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3193 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
3194 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
3196 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3197 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
3198 return new ICmpInst(Pred, X,
3199 ConstantInt::getAllOnesValue(X->getType()));
3202 // Zero-equality checks are preserved through unsigned floating-point casts:
3203 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3204 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3205 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
3206 if (Cmp.isEquality() && match(Op1, m_Zero()))
3207 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3209 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3210 // the FP extend/truncate because that cast does not change the sign-bit.
3211 // This is true for all standard IEEE-754 types and the X86 80-bit type.
3212 // The sign-bit is always the most significant bit in those types.
3213 const APInt *C;
3214 bool TrueIfSigned;
3215 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
3216 isSignBitCheck(Pred, *C, TrueIfSigned)) {
3217 if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
3218 match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
3219 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3220 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3221 Type *XType = X->getType();
3223 // We can't currently handle Power style floating point operations here.
3224 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
3225 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
3226 if (auto *XVTy = dyn_cast<VectorType>(XType))
3227 NewType = VectorType::get(NewType, XVTy->getElementCount());
3228 Value *NewBitcast = Builder.CreateBitCast(X, NewType);
3229 if (TrueIfSigned)
3230 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
3231 ConstantInt::getNullValue(NewType));
3232 else
3233 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
3234 ConstantInt::getAllOnesValue(NewType));
3240 const APInt *C;
3241 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3242 !SrcType->isIntOrIntVectorTy())
3243 return nullptr;
3245 // If this is checking if all elements of a vector compare are set or not,
3246 // invert the casted vector equality compare and test if all compare
3247 // elements are clear or not. Compare against zero is generally easier for
3248 // analysis and codegen.
3249 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3250 // Example: are all elements equal? --> are zero elements not equal?
3251 // TODO: Try harder to reduce compare of 2 freely invertible operands?
3252 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) {
3253 if (Value *NotBCSrcOp =
3254 getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) {
3255 Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType);
3256 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3260 // If this is checking if all elements of an extended vector are clear or not,
3261 // compare in a narrow type to eliminate the extend:
3262 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3263 Value *X;
3264 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3265 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3266 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3267 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3268 Value *NewCast = Builder.CreateBitCast(X, NewType);
3269 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3273 // Folding: icmp <pred> iN X, C
3274 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3275 // and C is a splat of a K-bit pattern
3276 // and SC is a constant vector = <C', C', C', ..., C'>
3277 // Into:
3278 // %E = extractelement <M x iK> %vec, i32 C'
3279 // icmp <pred> iK %E, trunc(C)
3280 Value *Vec;
3281 ArrayRef<int> Mask;
3282 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3283 // Check whether every element of Mask is the same constant
3284 if (all_equal(Mask)) {
3285 auto *VecTy = cast<VectorType>(SrcType);
3286 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3287 if (C->isSplat(EltTy->getBitWidth())) {
3288 // Fold the icmp based on the value of C
3289 // If C is M copies of an iK sized bit pattern,
3290 // then:
3291 // => %E = extractelement <N x iK> %vec, i32 Elem
3292 // icmp <pred> iK %SplatVal, <pattern>
3293 Value *Elem = Builder.getInt32(Mask[0]);
3294 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3295 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3296 return new ICmpInst(Pred, Extract, NewC);
3300 return nullptr;
3303 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3304 /// where X is some kind of instruction.
3305 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3306 const APInt *C;
3308 if (match(Cmp.getOperand(1), m_APInt(C))) {
3309 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3310 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3311 return I;
3313 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3314 // For now, we only support constant integers while folding the
3315 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3316 // similar to the cases handled by binary ops above.
3317 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3318 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3319 return I;
3321 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3322 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3323 return I;
3325 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3326 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3327 return I;
3329 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3330 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3331 // TODO: This checks one-use, but that is not strictly necessary.
3332 Value *Cmp0 = Cmp.getOperand(0);
3333 Value *X, *Y;
3334 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() &&
3335 (match(Cmp0,
3336 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>(
3337 m_Value(X), m_Value(Y)))) ||
3338 match(Cmp0,
3339 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
3340 m_Value(X), m_Value(Y))))))
3341 return new ICmpInst(Cmp.getPredicate(), X, Y);
3344 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
3345 return foldICmpInstWithConstantAllowUndef(Cmp, *C);
3347 return nullptr;
3350 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3351 /// icmp eq/ne BO, C.
3352 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3353 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3354 // TODO: Some of these folds could work with arbitrary constants, but this
3355 // function is limited to scalar and vector splat constants.
3356 if (!Cmp.isEquality())
3357 return nullptr;
3359 ICmpInst::Predicate Pred = Cmp.getPredicate();
3360 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3361 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3362 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3364 switch (BO->getOpcode()) {
3365 case Instruction::SRem:
3366 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3367 if (C.isZero() && BO->hasOneUse()) {
3368 const APInt *BOC;
3369 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3370 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3371 return new ICmpInst(Pred, NewRem,
3372 Constant::getNullValue(BO->getType()));
3375 break;
3376 case Instruction::Add: {
3377 // (A + C2) == C --> A == (C - C2)
3378 // (A + C2) != C --> A != (C - C2)
3379 // TODO: Remove the one-use limitation? See discussion in D58633.
3380 if (Constant *C2 = dyn_cast<Constant>(BOp1)) {
3381 if (BO->hasOneUse())
3382 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2));
3383 } else if (C.isZero()) {
3384 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3385 // efficiently invertible, or if the add has just this one use.
3386 if (Value *NegVal = dyn_castNegVal(BOp1))
3387 return new ICmpInst(Pred, BOp0, NegVal);
3388 if (Value *NegVal = dyn_castNegVal(BOp0))
3389 return new ICmpInst(Pred, NegVal, BOp1);
3390 if (BO->hasOneUse()) {
3391 Value *Neg = Builder.CreateNeg(BOp1);
3392 Neg->takeName(BO);
3393 return new ICmpInst(Pred, BOp0, Neg);
3396 break;
3398 case Instruction::Xor:
3399 if (BO->hasOneUse()) {
3400 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3401 // For the xor case, we can xor two constants together, eliminating
3402 // the explicit xor.
3403 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3404 } else if (C.isZero()) {
3405 // Replace ((xor A, B) != 0) with (A != B)
3406 return new ICmpInst(Pred, BOp0, BOp1);
3409 break;
3410 case Instruction::Or: {
3411 const APInt *BOC;
3412 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3413 // Comparing if all bits outside of a constant mask are set?
3414 // Replace (X | C) == -1 with (X & ~C) == ~C.
3415 // This removes the -1 constant.
3416 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3417 Value *And = Builder.CreateAnd(BOp0, NotBOC);
3418 return new ICmpInst(Pred, And, NotBOC);
3420 break;
3422 case Instruction::UDiv:
3423 case Instruction::SDiv:
3424 if (BO->isExact()) {
3425 // div exact X, Y eq/ne 0 -> X eq/ne 0
3426 // div exact X, Y eq/ne 1 -> X eq/ne Y
3427 // div exact X, Y eq/ne C ->
3428 // if Y * C never-overflow && OneUse:
3429 // -> Y * C eq/ne X
3430 if (C.isZero())
3431 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType()));
3432 else if (C.isOne())
3433 return new ICmpInst(Pred, BOp0, BOp1);
3434 else if (BO->hasOneUse()) {
3435 OverflowResult OR = computeOverflow(
3436 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1,
3437 Cmp.getOperand(1), BO);
3438 if (OR == OverflowResult::NeverOverflows) {
3439 Value *YC =
3440 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C));
3441 return new ICmpInst(Pred, YC, BOp0);
3445 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) {
3446 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3447 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3448 return new ICmpInst(NewPred, BOp1, BOp0);
3450 break;
3451 default:
3452 break;
3454 return nullptr;
3457 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs,
3458 const APInt &CRhs,
3459 InstCombiner::BuilderTy &Builder,
3460 const SimplifyQuery &Q) {
3461 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop &&
3462 "Non-ctpop intrin in ctpop fold");
3463 if (!CtpopLhs->hasOneUse())
3464 return nullptr;
3466 // Power of 2 test:
3467 // isPow2OrZero : ctpop(X) u< 2
3468 // isPow2 : ctpop(X) == 1
3469 // NotPow2OrZero: ctpop(X) u> 1
3470 // NotPow2 : ctpop(X) != 1
3471 // If we know any bit of X can be folded to:
3472 // IsPow2 : X & (~Bit) == 0
3473 // NotPow2 : X & (~Bit) != 0
3474 const ICmpInst::Predicate Pred = I.getPredicate();
3475 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) ||
3476 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) {
3477 Value *Op = CtpopLhs->getArgOperand(0);
3478 KnownBits OpKnown = computeKnownBits(Op, Q.DL,
3479 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT);
3480 // No need to check for count > 1, that should be already constant folded.
3481 if (OpKnown.countMinPopulation() == 1) {
3482 Value *And = Builder.CreateAnd(
3483 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One)));
3484 return new ICmpInst(
3485 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT)
3486 ? ICmpInst::ICMP_EQ
3487 : ICmpInst::ICMP_NE,
3488 And, Constant::getNullValue(Op->getType()));
3492 return nullptr;
3495 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3496 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3497 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3498 Type *Ty = II->getType();
3499 unsigned BitWidth = C.getBitWidth();
3500 const ICmpInst::Predicate Pred = Cmp.getPredicate();
3502 switch (II->getIntrinsicID()) {
3503 case Intrinsic::abs:
3504 // abs(A) == 0 -> A == 0
3505 // abs(A) == INT_MIN -> A == INT_MIN
3506 if (C.isZero() || C.isMinSignedValue())
3507 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3508 break;
3510 case Intrinsic::bswap:
3511 // bswap(A) == C -> A == bswap(C)
3512 return new ICmpInst(Pred, II->getArgOperand(0),
3513 ConstantInt::get(Ty, C.byteSwap()));
3515 case Intrinsic::bitreverse:
3516 // bitreverse(A) == C -> A == bitreverse(C)
3517 return new ICmpInst(Pred, II->getArgOperand(0),
3518 ConstantInt::get(Ty, C.reverseBits()));
3520 case Intrinsic::ctlz:
3521 case Intrinsic::cttz: {
3522 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3523 if (C == BitWidth)
3524 return new ICmpInst(Pred, II->getArgOperand(0),
3525 ConstantInt::getNullValue(Ty));
3527 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3528 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3529 // Limit to one use to ensure we don't increase instruction count.
3530 unsigned Num = C.getLimitedValue(BitWidth);
3531 if (Num != BitWidth && II->hasOneUse()) {
3532 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3533 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3534 : APInt::getHighBitsSet(BitWidth, Num + 1);
3535 APInt Mask2 = IsTrailing
3536 ? APInt::getOneBitSet(BitWidth, Num)
3537 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3538 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3539 ConstantInt::get(Ty, Mask2));
3541 break;
3544 case Intrinsic::ctpop: {
3545 // popcount(A) == 0 -> A == 0 and likewise for !=
3546 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3547 bool IsZero = C.isZero();
3548 if (IsZero || C == BitWidth)
3549 return new ICmpInst(Pred, II->getArgOperand(0),
3550 IsZero ? Constant::getNullValue(Ty)
3551 : Constant::getAllOnesValue(Ty));
3553 break;
3556 case Intrinsic::fshl:
3557 case Intrinsic::fshr:
3558 if (II->getArgOperand(0) == II->getArgOperand(1)) {
3559 const APInt *RotAmtC;
3560 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3561 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3562 if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3563 return new ICmpInst(Pred, II->getArgOperand(0),
3564 II->getIntrinsicID() == Intrinsic::fshl
3565 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3566 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3568 break;
3570 case Intrinsic::umax:
3571 case Intrinsic::uadd_sat: {
3572 // uadd.sat(a, b) == 0 -> (a | b) == 0
3573 // umax(a, b) == 0 -> (a | b) == 0
3574 if (C.isZero() && II->hasOneUse()) {
3575 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3576 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3578 break;
3581 case Intrinsic::ssub_sat:
3582 // ssub.sat(a, b) == 0 -> a == b
3583 if (C.isZero())
3584 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
3585 break;
3586 case Intrinsic::usub_sat: {
3587 // usub.sat(a, b) == 0 -> a <= b
3588 if (C.isZero()) {
3589 ICmpInst::Predicate NewPred =
3590 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3591 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3593 break;
3595 default:
3596 break;
3599 return nullptr;
3602 /// Fold an icmp with LLVM intrinsics
3603 static Instruction *
3604 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp,
3605 InstCombiner::BuilderTy &Builder) {
3606 assert(Cmp.isEquality());
3608 ICmpInst::Predicate Pred = Cmp.getPredicate();
3609 Value *Op0 = Cmp.getOperand(0);
3610 Value *Op1 = Cmp.getOperand(1);
3611 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3612 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3613 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3614 return nullptr;
3616 switch (IIOp0->getIntrinsicID()) {
3617 case Intrinsic::bswap:
3618 case Intrinsic::bitreverse:
3619 // If both operands are byte-swapped or bit-reversed, just compare the
3620 // original values.
3621 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3622 case Intrinsic::fshl:
3623 case Intrinsic::fshr: {
3624 // If both operands are rotated by same amount, just compare the
3625 // original values.
3626 if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3627 break;
3628 if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3629 break;
3630 if (IIOp0->getOperand(2) == IIOp1->getOperand(2))
3631 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3633 // rotate(X, AmtX) == rotate(Y, AmtY)
3634 // -> rotate(X, AmtX - AmtY) == Y
3635 // Do this if either both rotates have one use or if only one has one use
3636 // and AmtX/AmtY are constants.
3637 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse();
3638 if (OneUses == 2 ||
3639 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) &&
3640 match(IIOp1->getOperand(2), m_ImmConstant()))) {
3641 Value *SubAmt =
3642 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2));
3643 Value *CombinedRotate = Builder.CreateIntrinsic(
3644 Op0->getType(), IIOp0->getIntrinsicID(),
3645 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt});
3646 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate);
3648 } break;
3649 default:
3650 break;
3653 return nullptr;
3656 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3657 /// where X is some kind of instruction and C is AllowUndef.
3658 /// TODO: Move more folds which allow undef to this function.
3659 Instruction *
3660 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
3661 const APInt &C) {
3662 const ICmpInst::Predicate Pred = Cmp.getPredicate();
3663 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3664 switch (II->getIntrinsicID()) {
3665 default:
3666 break;
3667 case Intrinsic::fshl:
3668 case Intrinsic::fshr:
3669 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3670 // (rot X, ?) == 0/-1 --> X == 0/-1
3671 if (C.isZero() || C.isAllOnes())
3672 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3674 break;
3678 return nullptr;
3681 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3682 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3683 BinaryOperator *BO,
3684 const APInt &C) {
3685 switch (BO->getOpcode()) {
3686 case Instruction::Xor:
3687 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3688 return I;
3689 break;
3690 case Instruction::And:
3691 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3692 return I;
3693 break;
3694 case Instruction::Or:
3695 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3696 return I;
3697 break;
3698 case Instruction::Mul:
3699 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3700 return I;
3701 break;
3702 case Instruction::Shl:
3703 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3704 return I;
3705 break;
3706 case Instruction::LShr:
3707 case Instruction::AShr:
3708 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3709 return I;
3710 break;
3711 case Instruction::SRem:
3712 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3713 return I;
3714 break;
3715 case Instruction::UDiv:
3716 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3717 return I;
3718 [[fallthrough]];
3719 case Instruction::SDiv:
3720 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3721 return I;
3722 break;
3723 case Instruction::Sub:
3724 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3725 return I;
3726 break;
3727 case Instruction::Add:
3728 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3729 return I;
3730 break;
3731 default:
3732 break;
3735 // TODO: These folds could be refactored to be part of the above calls.
3736 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3739 static Instruction *
3740 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred,
3741 SaturatingInst *II, const APInt &C,
3742 InstCombiner::BuilderTy &Builder) {
3743 // This transform may end up producing more than one instruction for the
3744 // intrinsic, so limit it to one user of the intrinsic.
3745 if (!II->hasOneUse())
3746 return nullptr;
3748 // Let Y = [add/sub]_sat(X, C) pred C2
3749 // SatVal = The saturating value for the operation
3750 // WillWrap = Whether or not the operation will underflow / overflow
3751 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2
3752 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
3754 // When (SatVal pred C2) is true, then
3755 // Y = WillWrap ? true : ((X binop C) pred C2)
3756 // => Y = WillWrap || ((X binop C) pred C2)
3757 // else
3758 // Y = WillWrap ? false : ((X binop C) pred C2)
3759 // => Y = !WillWrap ? ((X binop C) pred C2) : false
3760 // => Y = !WillWrap && ((X binop C) pred C2)
3761 Value *Op0 = II->getOperand(0);
3762 Value *Op1 = II->getOperand(1);
3764 const APInt *COp1;
3765 // This transform only works when the intrinsic has an integral constant or
3766 // splat vector as the second operand.
3767 if (!match(Op1, m_APInt(COp1)))
3768 return nullptr;
3770 APInt SatVal;
3771 switch (II->getIntrinsicID()) {
3772 default:
3773 llvm_unreachable(
3774 "This function only works with usub_sat and uadd_sat for now!");
3775 case Intrinsic::uadd_sat:
3776 SatVal = APInt::getAllOnes(C.getBitWidth());
3777 break;
3778 case Intrinsic::usub_sat:
3779 SatVal = APInt::getZero(C.getBitWidth());
3780 break;
3783 // Check (SatVal pred C2)
3784 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred);
3786 // !WillWrap.
3787 ConstantRange C1 = ConstantRange::makeExactNoWrapRegion(
3788 II->getBinaryOp(), *COp1, II->getNoWrapKind());
3790 // WillWrap.
3791 if (SatValCheck)
3792 C1 = C1.inverse();
3794 ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C);
3795 if (II->getBinaryOp() == Instruction::Add)
3796 C2 = C2.sub(*COp1);
3797 else
3798 C2 = C2.add(*COp1);
3800 Instruction::BinaryOps CombiningOp =
3801 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And;
3803 std::optional<ConstantRange> Combination;
3804 if (CombiningOp == Instruction::BinaryOps::Or)
3805 Combination = C1.exactUnionWith(C2);
3806 else /* CombiningOp == Instruction::BinaryOps::And */
3807 Combination = C1.exactIntersectWith(C2);
3809 if (!Combination)
3810 return nullptr;
3812 CmpInst::Predicate EquivPred;
3813 APInt EquivInt;
3814 APInt EquivOffset;
3816 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
3818 return new ICmpInst(
3819 EquivPred,
3820 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)),
3821 ConstantInt::get(Op1->getType(), EquivInt));
3824 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3825 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3826 IntrinsicInst *II,
3827 const APInt &C) {
3828 ICmpInst::Predicate Pred = Cmp.getPredicate();
3830 // Handle folds that apply for any kind of icmp.
3831 switch (II->getIntrinsicID()) {
3832 default:
3833 break;
3834 case Intrinsic::uadd_sat:
3835 case Intrinsic::usub_sat:
3836 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant(
3837 Pred, cast<SaturatingInst>(II), C, Builder))
3838 return Folded;
3839 break;
3840 case Intrinsic::ctpop: {
3841 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3842 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q))
3843 return R;
3844 } break;
3847 if (Cmp.isEquality())
3848 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3850 Type *Ty = II->getType();
3851 unsigned BitWidth = C.getBitWidth();
3852 switch (II->getIntrinsicID()) {
3853 case Intrinsic::ctpop: {
3854 // (ctpop X > BitWidth - 1) --> X == -1
3855 Value *X = II->getArgOperand(0);
3856 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3857 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3858 ConstantInt::getAllOnesValue(Ty));
3859 // (ctpop X < BitWidth) --> X != -1
3860 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3861 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3862 ConstantInt::getAllOnesValue(Ty));
3863 break;
3865 case Intrinsic::ctlz: {
3866 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3867 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3868 unsigned Num = C.getLimitedValue();
3869 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3870 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3871 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3874 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3875 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3876 unsigned Num = C.getLimitedValue();
3877 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3878 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3879 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3881 break;
3883 case Intrinsic::cttz: {
3884 // Limit to one use to ensure we don't increase instruction count.
3885 if (!II->hasOneUse())
3886 return nullptr;
3888 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3889 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3890 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3891 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3892 Builder.CreateAnd(II->getArgOperand(0), Mask),
3893 ConstantInt::getNullValue(Ty));
3896 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3897 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3898 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3899 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3900 Builder.CreateAnd(II->getArgOperand(0), Mask),
3901 ConstantInt::getNullValue(Ty));
3903 break;
3905 case Intrinsic::ssub_sat:
3906 // ssub.sat(a, b) spred 0 -> a spred b
3907 if (ICmpInst::isSigned(Pred)) {
3908 if (C.isZero())
3909 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
3910 // X s<= 0 is cannonicalized to X s< 1
3911 if (Pred == ICmpInst::ICMP_SLT && C.isOne())
3912 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0),
3913 II->getArgOperand(1));
3914 // X s>= 0 is cannonicalized to X s> -1
3915 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
3916 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0),
3917 II->getArgOperand(1));
3919 break;
3920 default:
3921 break;
3924 return nullptr;
3927 /// Handle icmp with constant (but not simple integer constant) RHS.
3928 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3929 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3930 Constant *RHSC = dyn_cast<Constant>(Op1);
3931 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3932 if (!RHSC || !LHSI)
3933 return nullptr;
3935 switch (LHSI->getOpcode()) {
3936 case Instruction::PHI:
3937 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3938 return NV;
3939 break;
3940 case Instruction::IntToPtr:
3941 // icmp pred inttoptr(X), null -> icmp pred X, 0
3942 if (RHSC->isNullValue() &&
3943 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3944 return new ICmpInst(
3945 I.getPredicate(), LHSI->getOperand(0),
3946 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3947 break;
3949 case Instruction::Load:
3950 // Try to optimize things like "A[i] > 4" to index computations.
3951 if (GetElementPtrInst *GEP =
3952 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
3953 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3954 if (Instruction *Res =
3955 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
3956 return Res;
3957 break;
3960 return nullptr;
3963 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
3964 SelectInst *SI, Value *RHS,
3965 const ICmpInst &I) {
3966 // Try to fold the comparison into the select arms, which will cause the
3967 // select to be converted into a logical and/or.
3968 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
3969 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
3970 return Res;
3971 if (std::optional<bool> Impl = isImpliedCondition(
3972 SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue))
3973 return ConstantInt::get(I.getType(), *Impl);
3974 return nullptr;
3977 ConstantInt *CI = nullptr;
3978 Value *Op1 = SimplifyOp(SI->getOperand(1), true);
3979 if (Op1)
3980 CI = dyn_cast<ConstantInt>(Op1);
3982 Value *Op2 = SimplifyOp(SI->getOperand(2), false);
3983 if (Op2)
3984 CI = dyn_cast<ConstantInt>(Op2);
3986 // We only want to perform this transformation if it will not lead to
3987 // additional code. This is true if either both sides of the select
3988 // fold to a constant (in which case the icmp is replaced with a select
3989 // which will usually simplify) or this is the only user of the
3990 // select (in which case we are trading a select+icmp for a simpler
3991 // select+icmp) or all uses of the select can be replaced based on
3992 // dominance information ("Global cases").
3993 bool Transform = false;
3994 if (Op1 && Op2)
3995 Transform = true;
3996 else if (Op1 || Op2) {
3997 // Local case
3998 if (SI->hasOneUse())
3999 Transform = true;
4000 // Global cases
4001 else if (CI && !CI->isZero())
4002 // When Op1 is constant try replacing select with second operand.
4003 // Otherwise Op2 is constant and try replacing select with first
4004 // operand.
4005 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
4007 if (Transform) {
4008 if (!Op1)
4009 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
4010 if (!Op2)
4011 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
4012 return SelectInst::Create(SI->getOperand(0), Op1, Op2);
4015 return nullptr;
4018 /// Some comparisons can be simplified.
4019 /// In this case, we are looking for comparisons that look like
4020 /// a check for a lossy truncation.
4021 /// Folds:
4022 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
4023 /// Where Mask is some pattern that produces all-ones in low bits:
4024 /// (-1 >> y)
4025 /// ((-1 << y) >> y) <- non-canonical, has extra uses
4026 /// ~(-1 << y)
4027 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
4028 /// The Mask can be a constant, too.
4029 /// For some predicates, the operands are commutative.
4030 /// For others, x can only be on a specific side.
4031 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
4032 InstCombiner::BuilderTy &Builder) {
4033 ICmpInst::Predicate SrcPred;
4034 Value *X, *M, *Y;
4035 auto m_VariableMask = m_CombineOr(
4036 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
4037 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
4038 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
4039 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
4040 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
4041 if (!match(&I, m_c_ICmp(SrcPred,
4042 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
4043 m_Deferred(X))))
4044 return nullptr;
4046 ICmpInst::Predicate DstPred;
4047 switch (SrcPred) {
4048 case ICmpInst::Predicate::ICMP_EQ:
4049 // x & (-1 >> y) == x -> x u<= (-1 >> y)
4050 DstPred = ICmpInst::Predicate::ICMP_ULE;
4051 break;
4052 case ICmpInst::Predicate::ICMP_NE:
4053 // x & (-1 >> y) != x -> x u> (-1 >> y)
4054 DstPred = ICmpInst::Predicate::ICMP_UGT;
4055 break;
4056 case ICmpInst::Predicate::ICMP_ULT:
4057 // x & (-1 >> y) u< x -> x u> (-1 >> y)
4058 // x u> x & (-1 >> y) -> x u> (-1 >> y)
4059 DstPred = ICmpInst::Predicate::ICMP_UGT;
4060 break;
4061 case ICmpInst::Predicate::ICMP_UGE:
4062 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
4063 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
4064 DstPred = ICmpInst::Predicate::ICMP_ULE;
4065 break;
4066 case ICmpInst::Predicate::ICMP_SLT:
4067 // x & (-1 >> y) s< x -> x s> (-1 >> y)
4068 // x s> x & (-1 >> y) -> x s> (-1 >> y)
4069 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
4070 return nullptr;
4071 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
4072 return nullptr;
4073 DstPred = ICmpInst::Predicate::ICMP_SGT;
4074 break;
4075 case ICmpInst::Predicate::ICMP_SGE:
4076 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
4077 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
4078 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
4079 return nullptr;
4080 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
4081 return nullptr;
4082 DstPred = ICmpInst::Predicate::ICMP_SLE;
4083 break;
4084 case ICmpInst::Predicate::ICMP_SGT:
4085 case ICmpInst::Predicate::ICMP_SLE:
4086 return nullptr;
4087 case ICmpInst::Predicate::ICMP_UGT:
4088 case ICmpInst::Predicate::ICMP_ULE:
4089 llvm_unreachable("Instsimplify took care of commut. variant");
4090 break;
4091 default:
4092 llvm_unreachable("All possible folds are handled.");
4095 // The mask value may be a vector constant that has undefined elements. But it
4096 // may not be safe to propagate those undefs into the new compare, so replace
4097 // those elements by copying an existing, defined, and safe scalar constant.
4098 Type *OpTy = M->getType();
4099 auto *VecC = dyn_cast<Constant>(M);
4100 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
4101 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
4102 Constant *SafeReplacementConstant = nullptr;
4103 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
4104 if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
4105 SafeReplacementConstant = VecC->getAggregateElement(i);
4106 break;
4109 assert(SafeReplacementConstant && "Failed to find undef replacement");
4110 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
4113 return Builder.CreateICmp(DstPred, X, M);
4116 /// Some comparisons can be simplified.
4117 /// In this case, we are looking for comparisons that look like
4118 /// a check for a lossy signed truncation.
4119 /// Folds: (MaskedBits is a constant.)
4120 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
4121 /// Into:
4122 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
4123 /// Where KeptBits = bitwidth(%x) - MaskedBits
4124 static Value *
4125 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
4126 InstCombiner::BuilderTy &Builder) {
4127 ICmpInst::Predicate SrcPred;
4128 Value *X;
4129 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
4130 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
4131 if (!match(&I, m_c_ICmp(SrcPred,
4132 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
4133 m_APInt(C1))),
4134 m_Deferred(X))))
4135 return nullptr;
4137 // Potential handling of non-splats: for each element:
4138 // * if both are undef, replace with constant 0.
4139 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
4140 // * if both are not undef, and are different, bailout.
4141 // * else, only one is undef, then pick the non-undef one.
4143 // The shift amount must be equal.
4144 if (*C0 != *C1)
4145 return nullptr;
4146 const APInt &MaskedBits = *C0;
4147 assert(MaskedBits != 0 && "shift by zero should be folded away already.");
4149 ICmpInst::Predicate DstPred;
4150 switch (SrcPred) {
4151 case ICmpInst::Predicate::ICMP_EQ:
4152 // ((%x << MaskedBits) a>> MaskedBits) == %x
4153 // =>
4154 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
4155 DstPred = ICmpInst::Predicate::ICMP_ULT;
4156 break;
4157 case ICmpInst::Predicate::ICMP_NE:
4158 // ((%x << MaskedBits) a>> MaskedBits) != %x
4159 // =>
4160 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
4161 DstPred = ICmpInst::Predicate::ICMP_UGE;
4162 break;
4163 // FIXME: are more folds possible?
4164 default:
4165 return nullptr;
4168 auto *XType = X->getType();
4169 const unsigned XBitWidth = XType->getScalarSizeInBits();
4170 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
4171 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
4173 // KeptBits = bitwidth(%x) - MaskedBits
4174 const APInt KeptBits = BitWidth - MaskedBits;
4175 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
4176 // ICmpCst = (1 << KeptBits)
4177 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
4178 assert(ICmpCst.isPowerOf2());
4179 // AddCst = (1 << (KeptBits-1))
4180 const APInt AddCst = ICmpCst.lshr(1);
4181 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
4183 // T0 = add %x, AddCst
4184 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
4185 // T1 = T0 DstPred ICmpCst
4186 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
4188 return T1;
4191 // Given pattern:
4192 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4193 // we should move shifts to the same hand of 'and', i.e. rewrite as
4194 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4195 // We are only interested in opposite logical shifts here.
4196 // One of the shifts can be truncated.
4197 // If we can, we want to end up creating 'lshr' shift.
4198 static Value *
4199 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
4200 InstCombiner::BuilderTy &Builder) {
4201 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
4202 !I.getOperand(0)->hasOneUse())
4203 return nullptr;
4205 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
4207 // Look for an 'and' of two logical shifts, one of which may be truncated.
4208 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
4209 Instruction *XShift, *MaybeTruncation, *YShift;
4210 if (!match(
4211 I.getOperand(0),
4212 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
4213 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
4214 m_AnyLogicalShift, m_Instruction(YShift))),
4215 m_Instruction(MaybeTruncation)))))
4216 return nullptr;
4218 // We potentially looked past 'trunc', but only when matching YShift,
4219 // therefore YShift must have the widest type.
4220 Instruction *WidestShift = YShift;
4221 // Therefore XShift must have the shallowest type.
4222 // Or they both have identical types if there was no truncation.
4223 Instruction *NarrowestShift = XShift;
4225 Type *WidestTy = WidestShift->getType();
4226 Type *NarrowestTy = NarrowestShift->getType();
4227 assert(NarrowestTy == I.getOperand(0)->getType() &&
4228 "We did not look past any shifts while matching XShift though.");
4229 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
4231 // If YShift is a 'lshr', swap the shifts around.
4232 if (match(YShift, m_LShr(m_Value(), m_Value())))
4233 std::swap(XShift, YShift);
4235 // The shifts must be in opposite directions.
4236 auto XShiftOpcode = XShift->getOpcode();
4237 if (XShiftOpcode == YShift->getOpcode())
4238 return nullptr; // Do not care about same-direction shifts here.
4240 Value *X, *XShAmt, *Y, *YShAmt;
4241 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
4242 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
4244 // If one of the values being shifted is a constant, then we will end with
4245 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
4246 // however, we will need to ensure that we won't increase instruction count.
4247 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
4248 // At least one of the hands of the 'and' should be one-use shift.
4249 if (!match(I.getOperand(0),
4250 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
4251 return nullptr;
4252 if (HadTrunc) {
4253 // Due to the 'trunc', we will need to widen X. For that either the old
4254 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
4255 if (!MaybeTruncation->hasOneUse() &&
4256 !NarrowestShift->getOperand(1)->hasOneUse())
4257 return nullptr;
4261 // We have two shift amounts from two different shifts. The types of those
4262 // shift amounts may not match. If that's the case let's bailout now.
4263 if (XShAmt->getType() != YShAmt->getType())
4264 return nullptr;
4266 // As input, we have the following pattern:
4267 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4268 // We want to rewrite that as:
4269 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4270 // While we know that originally (Q+K) would not overflow
4271 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
4272 // shift amounts. so it may now overflow in smaller bitwidth.
4273 // To ensure that does not happen, we need to ensure that the total maximal
4274 // shift amount is still representable in that smaller bit width.
4275 unsigned MaximalPossibleTotalShiftAmount =
4276 (WidestTy->getScalarSizeInBits() - 1) +
4277 (NarrowestTy->getScalarSizeInBits() - 1);
4278 APInt MaximalRepresentableShiftAmount =
4279 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
4280 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
4281 return nullptr;
4283 // Can we fold (XShAmt+YShAmt) ?
4284 auto *NewShAmt = dyn_cast_or_null<Constant>(
4285 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
4286 /*isNUW=*/false, SQ.getWithInstruction(&I)));
4287 if (!NewShAmt)
4288 return nullptr;
4289 if (NewShAmt->getType() != WidestTy) {
4290 NewShAmt =
4291 ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL);
4292 if (!NewShAmt)
4293 return nullptr;
4295 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
4297 // Is the new shift amount smaller than the bit width?
4298 // FIXME: could also rely on ConstantRange.
4299 if (!match(NewShAmt,
4300 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
4301 APInt(WidestBitWidth, WidestBitWidth))))
4302 return nullptr;
4304 // An extra legality check is needed if we had trunc-of-lshr.
4305 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
4306 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
4307 WidestShift]() {
4308 // It isn't obvious whether it's worth it to analyze non-constants here.
4309 // Also, let's basically give up on non-splat cases, pessimizing vectors.
4310 // If *any* of these preconditions matches we can perform the fold.
4311 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
4312 ? NewShAmt->getSplatValue()
4313 : NewShAmt;
4314 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
4315 if (NewShAmtSplat &&
4316 (NewShAmtSplat->isNullValue() ||
4317 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
4318 return true;
4319 // We consider *min* leading zeros so a single outlier
4320 // blocks the transform as opposed to allowing it.
4321 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
4322 KnownBits Known = computeKnownBits(C, SQ.DL);
4323 unsigned MinLeadZero = Known.countMinLeadingZeros();
4324 // If the value being shifted has at most lowest bit set we can fold.
4325 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4326 if (MaxActiveBits <= 1)
4327 return true;
4328 // Precondition: NewShAmt u<= countLeadingZeros(C)
4329 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
4330 return true;
4332 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
4333 KnownBits Known = computeKnownBits(C, SQ.DL);
4334 unsigned MinLeadZero = Known.countMinLeadingZeros();
4335 // If the value being shifted has at most lowest bit set we can fold.
4336 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4337 if (MaxActiveBits <= 1)
4338 return true;
4339 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
4340 if (NewShAmtSplat) {
4341 APInt AdjNewShAmt =
4342 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
4343 if (AdjNewShAmt.ule(MinLeadZero))
4344 return true;
4347 return false; // Can't tell if it's ok.
4349 if (!CanFold())
4350 return nullptr;
4353 // All good, we can do this fold.
4354 X = Builder.CreateZExt(X, WidestTy);
4355 Y = Builder.CreateZExt(Y, WidestTy);
4356 // The shift is the same that was for X.
4357 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
4358 ? Builder.CreateLShr(X, NewShAmt)
4359 : Builder.CreateShl(X, NewShAmt);
4360 Value *T1 = Builder.CreateAnd(T0, Y);
4361 return Builder.CreateICmp(I.getPredicate(), T1,
4362 Constant::getNullValue(WidestTy));
4365 /// Fold
4366 /// (-1 u/ x) u< y
4367 /// ((x * y) ?/ x) != y
4368 /// to
4369 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
4370 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
4371 /// will mean that we are looking for the opposite answer.
4372 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
4373 ICmpInst::Predicate Pred;
4374 Value *X, *Y;
4375 Instruction *Mul;
4376 Instruction *Div;
4377 bool NeedNegation;
4378 // Look for: (-1 u/ x) u</u>= y
4379 if (!I.isEquality() &&
4380 match(&I, m_c_ICmp(Pred,
4381 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
4382 m_Instruction(Div)),
4383 m_Value(Y)))) {
4384 Mul = nullptr;
4386 // Are we checking that overflow does not happen, or does happen?
4387 switch (Pred) {
4388 case ICmpInst::Predicate::ICMP_ULT:
4389 NeedNegation = false;
4390 break; // OK
4391 case ICmpInst::Predicate::ICMP_UGE:
4392 NeedNegation = true;
4393 break; // OK
4394 default:
4395 return nullptr; // Wrong predicate.
4397 } else // Look for: ((x * y) / x) !=/== y
4398 if (I.isEquality() &&
4399 match(&I,
4400 m_c_ICmp(Pred, m_Value(Y),
4401 m_CombineAnd(
4402 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
4403 m_Value(X)),
4404 m_Instruction(Mul)),
4405 m_Deferred(X))),
4406 m_Instruction(Div))))) {
4407 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
4408 } else
4409 return nullptr;
4411 BuilderTy::InsertPointGuard Guard(Builder);
4412 // If the pattern included (x * y), we'll want to insert new instructions
4413 // right before that original multiplication so that we can replace it.
4414 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
4415 if (MulHadOtherUses)
4416 Builder.SetInsertPoint(Mul);
4418 Function *F = Intrinsic::getDeclaration(I.getModule(),
4419 Div->getOpcode() == Instruction::UDiv
4420 ? Intrinsic::umul_with_overflow
4421 : Intrinsic::smul_with_overflow,
4422 X->getType());
4423 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
4425 // If the multiplication was used elsewhere, to ensure that we don't leave
4426 // "duplicate" instructions, replace uses of that original multiplication
4427 // with the multiplication result from the with.overflow intrinsic.
4428 if (MulHadOtherUses)
4429 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
4431 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
4432 if (NeedNegation) // This technically increases instruction count.
4433 Res = Builder.CreateNot(Res, "mul.not.ov");
4435 // If we replaced the mul, erase it. Do this after all uses of Builder,
4436 // as the mul is used as insertion point.
4437 if (MulHadOtherUses)
4438 eraseInstFromFunction(*Mul);
4440 return Res;
4443 static Instruction *foldICmpXNegX(ICmpInst &I,
4444 InstCombiner::BuilderTy &Builder) {
4445 CmpInst::Predicate Pred;
4446 Value *X;
4447 if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) {
4449 if (ICmpInst::isSigned(Pred))
4450 Pred = ICmpInst::getSwappedPredicate(Pred);
4451 else if (ICmpInst::isUnsigned(Pred))
4452 Pred = ICmpInst::getSignedPredicate(Pred);
4453 // else for equality-comparisons just keep the predicate.
4455 return ICmpInst::Create(Instruction::ICmp, Pred, X,
4456 Constant::getNullValue(X->getType()), I.getName());
4459 // A value is not equal to its negation unless that value is 0 or
4460 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0
4461 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) &&
4462 ICmpInst::isEquality(Pred)) {
4463 Type *Ty = X->getType();
4464 uint32_t BitWidth = Ty->getScalarSizeInBits();
4465 Constant *MaxSignedVal =
4466 ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
4467 Value *And = Builder.CreateAnd(X, MaxSignedVal);
4468 Constant *Zero = Constant::getNullValue(Ty);
4469 return CmpInst::Create(Instruction::ICmp, Pred, And, Zero);
4472 return nullptr;
4475 static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q,
4476 InstCombinerImpl &IC) {
4477 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4478 // Normalize and operand as operand 0.
4479 CmpInst::Predicate Pred = I.getPredicate();
4480 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) {
4481 std::swap(Op0, Op1);
4482 Pred = ICmpInst::getSwappedPredicate(Pred);
4485 if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A))))
4486 return nullptr;
4488 // (icmp (X & Y) u< X --> (X & Y) != X
4489 if (Pred == ICmpInst::ICMP_ULT)
4490 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4492 // (icmp (X & Y) u>= X --> (X & Y) == X
4493 if (Pred == ICmpInst::ICMP_UGE)
4494 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4496 return nullptr;
4499 static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q,
4500 InstCombinerImpl &IC) {
4501 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4503 // Normalize or operand as operand 0.
4504 CmpInst::Predicate Pred = I.getPredicate();
4505 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) {
4506 std::swap(Op0, Op1);
4507 Pred = ICmpInst::getSwappedPredicate(Pred);
4508 } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) {
4509 return nullptr;
4512 // icmp (X | Y) u<= X --> (X | Y) == X
4513 if (Pred == ICmpInst::ICMP_ULE)
4514 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4516 // icmp (X | Y) u> X --> (X | Y) != X
4517 if (Pred == ICmpInst::ICMP_UGT)
4518 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4520 if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) {
4521 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible
4522 if (Value *NotOp1 =
4523 IC.getFreelyInverted(Op1, Op1->hasOneUse(), &IC.Builder))
4524 return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1),
4525 Constant::getNullValue(Op1->getType()));
4526 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible.
4527 if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder))
4528 return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA),
4529 Constant::getAllOnesValue(Op1->getType()));
4531 return nullptr;
4534 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q,
4535 InstCombinerImpl &IC) {
4536 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4537 // Normalize xor operand as operand 0.
4538 CmpInst::Predicate Pred = I.getPredicate();
4539 if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) {
4540 std::swap(Op0, Op1);
4541 Pred = ICmpInst::getSwappedPredicate(Pred);
4543 if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A))))
4544 return nullptr;
4546 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X
4547 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X
4548 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X
4549 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X
4550 CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred);
4551 if (PredOut != Pred &&
4552 isKnownNonZero(A, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4553 return new ICmpInst(PredOut, Op0, Op1);
4555 return nullptr;
4558 /// Try to fold icmp (binop), X or icmp X, (binop).
4559 /// TODO: A large part of this logic is duplicated in InstSimplify's
4560 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4561 /// duplication.
4562 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4563 const SimplifyQuery &SQ) {
4564 const SimplifyQuery Q = SQ.getWithInstruction(&I);
4565 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4567 // Special logic for binary operators.
4568 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4569 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4570 if (!BO0 && !BO1)
4571 return nullptr;
4573 if (Instruction *NewICmp = foldICmpXNegX(I, Builder))
4574 return NewICmp;
4576 const CmpInst::Predicate Pred = I.getPredicate();
4577 Value *X;
4579 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4580 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4581 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4582 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4583 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4584 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4585 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4586 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4587 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4590 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4591 Constant *C;
4592 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4593 m_ImmConstant(C)))) &&
4594 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4595 Constant *C2 = ConstantExpr::getNot(C);
4596 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4598 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4599 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4600 m_ImmConstant(C)))) &&
4601 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4602 Constant *C2 = ConstantExpr::getNot(C);
4603 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4608 // Similar to above: an unsigned overflow comparison may use offset + mask:
4609 // ((Op1 + C) & C) u< Op1 --> Op1 != 0
4610 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4611 // Op0 u> ((Op0 + C) & C) --> Op0 != 0
4612 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4613 BinaryOperator *BO;
4614 const APInt *C;
4615 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4616 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4617 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
4618 CmpInst::Predicate NewPred =
4619 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4620 Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4621 return new ICmpInst(NewPred, Op1, Zero);
4624 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4625 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4626 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
4627 CmpInst::Predicate NewPred =
4628 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4629 Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4630 return new ICmpInst(NewPred, Op0, Zero);
4634 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4635 bool Op0HasNUW = false, Op1HasNUW = false;
4636 bool Op0HasNSW = false, Op1HasNSW = false;
4637 // Analyze the case when either Op0 or Op1 is an add instruction.
4638 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4639 auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred,
4640 bool &HasNSW, bool &HasNUW) -> bool {
4641 if (isa<OverflowingBinaryOperator>(BO)) {
4642 HasNUW = BO.hasNoUnsignedWrap();
4643 HasNSW = BO.hasNoSignedWrap();
4644 return ICmpInst::isEquality(Pred) ||
4645 (CmpInst::isUnsigned(Pred) && HasNUW) ||
4646 (CmpInst::isSigned(Pred) && HasNSW);
4647 } else if (BO.getOpcode() == Instruction::Or) {
4648 HasNUW = true;
4649 HasNSW = true;
4650 return true;
4651 } else {
4652 return false;
4655 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4657 if (BO0) {
4658 match(BO0, m_AddLike(m_Value(A), m_Value(B)));
4659 NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW);
4661 if (BO1) {
4662 match(BO1, m_AddLike(m_Value(C), m_Value(D)));
4663 NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW);
4666 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4667 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4668 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4669 return new ICmpInst(Pred, A == Op1 ? B : A,
4670 Constant::getNullValue(Op1->getType()));
4672 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4673 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4674 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4675 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4676 C == Op0 ? D : C);
4678 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4679 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4680 NoOp1WrapProblem) {
4681 // Determine Y and Z in the form icmp (X+Y), (X+Z).
4682 Value *Y, *Z;
4683 if (A == C) {
4684 // C + B == C + D -> B == D
4685 Y = B;
4686 Z = D;
4687 } else if (A == D) {
4688 // D + B == C + D -> B == C
4689 Y = B;
4690 Z = C;
4691 } else if (B == C) {
4692 // A + C == C + D -> A == D
4693 Y = A;
4694 Z = D;
4695 } else {
4696 assert(B == D);
4697 // A + D == C + D -> A == C
4698 Y = A;
4699 Z = C;
4701 return new ICmpInst(Pred, Y, Z);
4704 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4705 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4706 match(B, m_AllOnes()))
4707 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4709 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4710 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4711 match(B, m_AllOnes()))
4712 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4714 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4715 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4716 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4718 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4719 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4720 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4722 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4723 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4724 match(D, m_AllOnes()))
4725 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4727 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4728 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4729 match(D, m_AllOnes()))
4730 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4732 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4733 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4734 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4736 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4737 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4738 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4740 // TODO: The subtraction-related identities shown below also hold, but
4741 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4742 // wouldn't happen even if they were implemented.
4744 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4745 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4746 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4747 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4749 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4750 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4751 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4753 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4754 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4755 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4757 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4758 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4759 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4761 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4762 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4763 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4765 // if C1 has greater magnitude than C2:
4766 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
4767 // s.t. C3 = C1 - C2
4769 // if C2 has greater magnitude than C1:
4770 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4771 // s.t. C3 = C2 - C1
4772 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4773 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
4774 const APInt *AP1, *AP2;
4775 // TODO: Support non-uniform vectors.
4776 // TODO: Allow undef passthrough if B AND D's element is undef.
4777 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
4778 AP1->isNegative() == AP2->isNegative()) {
4779 APInt AP1Abs = AP1->abs();
4780 APInt AP2Abs = AP2->abs();
4781 if (AP1Abs.uge(AP2Abs)) {
4782 APInt Diff = *AP1 - *AP2;
4783 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4784 Value *NewAdd = Builder.CreateAdd(
4785 A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW);
4786 return new ICmpInst(Pred, NewAdd, C);
4787 } else {
4788 APInt Diff = *AP2 - *AP1;
4789 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
4790 Value *NewAdd = Builder.CreateAdd(
4791 C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW);
4792 return new ICmpInst(Pred, A, NewAdd);
4795 Constant *Cst1, *Cst2;
4796 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
4797 ICmpInst::isEquality(Pred)) {
4798 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
4799 Value *NewAdd = Builder.CreateAdd(C, Diff);
4800 return new ICmpInst(Pred, A, NewAdd);
4804 // Analyze the case when either Op0 or Op1 is a sub instruction.
4805 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4806 A = nullptr;
4807 B = nullptr;
4808 C = nullptr;
4809 D = nullptr;
4810 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4811 A = BO0->getOperand(0);
4812 B = BO0->getOperand(1);
4814 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4815 C = BO1->getOperand(0);
4816 D = BO1->getOperand(1);
4819 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4820 if (A == Op1 && NoOp0WrapProblem)
4821 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4822 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4823 if (C == Op0 && NoOp1WrapProblem)
4824 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4826 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4827 // (A - B) u>/u<= A --> B u>/u<= A
4828 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4829 return new ICmpInst(Pred, B, A);
4830 // C u</u>= (C - D) --> C u</u>= D
4831 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4832 return new ICmpInst(Pred, C, D);
4833 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
4834 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4835 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4836 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4837 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
4838 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4839 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4840 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4842 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4843 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4844 return new ICmpInst(Pred, A, C);
4846 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4847 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4848 return new ICmpInst(Pred, D, B);
4850 // icmp (0-X) < cst --> x > -cst
4851 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4852 Value *X;
4853 if (match(BO0, m_Neg(m_Value(X))))
4854 if (Constant *RHSC = dyn_cast<Constant>(Op1))
4855 if (RHSC->isNotMinSignedValue())
4856 return new ICmpInst(I.getSwappedPredicate(), X,
4857 ConstantExpr::getNeg(RHSC));
4860 if (Instruction * R = foldICmpXorXX(I, Q, *this))
4861 return R;
4862 if (Instruction *R = foldICmpOrXX(I, Q, *this))
4863 return R;
4866 // Try to remove shared multiplier from comparison:
4867 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z
4868 Value *X, *Y, *Z;
4869 if (Pred == ICmpInst::getUnsignedPredicate(Pred) &&
4870 ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) &&
4871 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) ||
4872 (match(Op0, m_Mul(m_Value(Z), m_Value(X))) &&
4873 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) {
4874 bool NonZero;
4875 if (ICmpInst::isEquality(Pred)) {
4876 KnownBits ZKnown = computeKnownBits(Z, 0, &I);
4877 // if Z % 2 != 0
4878 // X * Z eq/ne Y * Z -> X eq/ne Y
4879 if (ZKnown.countMaxTrailingZeros() == 0)
4880 return new ICmpInst(Pred, X, Y);
4881 NonZero = !ZKnown.One.isZero() ||
4882 isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
4883 // if Z != 0 and nsw(X * Z) and nsw(Y * Z)
4884 // X * Z eq/ne Y * Z -> X eq/ne Y
4885 if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW)
4886 return new ICmpInst(Pred, X, Y);
4887 } else
4888 NonZero = isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
4890 // If Z != 0 and nuw(X * Z) and nuw(Y * Z)
4891 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y
4892 if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW)
4893 return new ICmpInst(Pred, X, Y);
4897 BinaryOperator *SRem = nullptr;
4898 // icmp (srem X, Y), Y
4899 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4900 SRem = BO0;
4901 // icmp Y, (srem X, Y)
4902 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4903 Op0 == BO1->getOperand(1))
4904 SRem = BO1;
4905 if (SRem) {
4906 // We don't check hasOneUse to avoid increasing register pressure because
4907 // the value we use is the same value this instruction was already using.
4908 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4909 default:
4910 break;
4911 case ICmpInst::ICMP_EQ:
4912 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4913 case ICmpInst::ICMP_NE:
4914 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4915 case ICmpInst::ICMP_SGT:
4916 case ICmpInst::ICMP_SGE:
4917 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4918 Constant::getAllOnesValue(SRem->getType()));
4919 case ICmpInst::ICMP_SLT:
4920 case ICmpInst::ICMP_SLE:
4921 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4922 Constant::getNullValue(SRem->getType()));
4926 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
4927 (BO0->hasOneUse() || BO1->hasOneUse()) &&
4928 BO0->getOperand(1) == BO1->getOperand(1)) {
4929 switch (BO0->getOpcode()) {
4930 default:
4931 break;
4932 case Instruction::Add:
4933 case Instruction::Sub:
4934 case Instruction::Xor: {
4935 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4936 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4938 const APInt *C;
4939 if (match(BO0->getOperand(1), m_APInt(C))) {
4940 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4941 if (C->isSignMask()) {
4942 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4943 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4946 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4947 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4948 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4949 NewPred = I.getSwappedPredicate(NewPred);
4950 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4953 break;
4955 case Instruction::Mul: {
4956 if (!I.isEquality())
4957 break;
4959 const APInt *C;
4960 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4961 !C->isOne()) {
4962 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4963 // Mask = -1 >> count-trailing-zeros(C).
4964 if (unsigned TZs = C->countr_zero()) {
4965 Constant *Mask = ConstantInt::get(
4966 BO0->getType(),
4967 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4968 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4969 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4970 return new ICmpInst(Pred, And1, And2);
4973 break;
4975 case Instruction::UDiv:
4976 case Instruction::LShr:
4977 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4978 break;
4979 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4981 case Instruction::SDiv:
4982 if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) ||
4983 !BO0->isExact() || !BO1->isExact())
4984 break;
4985 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4987 case Instruction::AShr:
4988 if (!BO0->isExact() || !BO1->isExact())
4989 break;
4990 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4992 case Instruction::Shl: {
4993 bool NUW = Op0HasNUW && Op1HasNUW;
4994 bool NSW = Op0HasNSW && Op1HasNSW;
4995 if (!NUW && !NSW)
4996 break;
4997 if (!NSW && I.isSigned())
4998 break;
4999 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5004 if (BO0) {
5005 // Transform A & (L - 1) `ult` L --> L != 0
5006 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
5007 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
5009 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
5010 auto *Zero = Constant::getNullValue(BO0->getType());
5011 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
5015 // For unsigned predicates / eq / ne:
5016 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
5017 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
5018 if (!ICmpInst::isSigned(Pred)) {
5019 if (match(Op0, m_Shl(m_Specific(Op1), m_One())))
5020 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1,
5021 Constant::getNullValue(Op1->getType()));
5022 else if (match(Op1, m_Shl(m_Specific(Op0), m_One())))
5023 return new ICmpInst(ICmpInst::getSignedPredicate(Pred),
5024 Constant::getNullValue(Op0->getType()), Op0);
5027 if (Value *V = foldMultiplicationOverflowCheck(I))
5028 return replaceInstUsesWith(I, V);
5030 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
5031 return replaceInstUsesWith(I, V);
5033 if (Instruction *R = foldICmpAndXX(I, Q, *this))
5034 return R;
5036 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
5037 return replaceInstUsesWith(I, V);
5039 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
5040 return replaceInstUsesWith(I, V);
5042 return nullptr;
5045 /// Fold icmp Pred min|max(X, Y), Z.
5046 Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I,
5047 MinMaxIntrinsic *MinMax,
5048 Value *Z,
5049 ICmpInst::Predicate Pred) {
5050 Value *X = MinMax->getLHS();
5051 Value *Y = MinMax->getRHS();
5052 if (ICmpInst::isSigned(Pred) && !MinMax->isSigned())
5053 return nullptr;
5054 if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) {
5055 // Revert the transform signed pred -> unsigned pred
5056 // TODO: We can flip the signedness of predicate if both operands of icmp
5057 // are negative.
5058 if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) &&
5059 isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) {
5060 Pred = ICmpInst::getFlippedSignednessPredicate(Pred);
5061 } else
5062 return nullptr;
5064 SimplifyQuery Q = SQ.getWithInstruction(&I);
5065 auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> {
5066 if (!Val)
5067 return std::nullopt;
5068 if (match(Val, m_One()))
5069 return true;
5070 if (match(Val, m_Zero()))
5071 return false;
5072 return std::nullopt;
5074 auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q));
5075 auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q));
5076 if (!CmpXZ.has_value() && !CmpYZ.has_value())
5077 return nullptr;
5078 if (!CmpXZ.has_value()) {
5079 std::swap(X, Y);
5080 std::swap(CmpXZ, CmpYZ);
5083 auto FoldIntoCmpYZ = [&]() -> Instruction * {
5084 if (CmpYZ.has_value())
5085 return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ));
5086 return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z);
5089 switch (Pred) {
5090 case ICmpInst::ICMP_EQ:
5091 case ICmpInst::ICMP_NE: {
5092 // If X == Z:
5093 // Expr Result
5094 // min(X, Y) == Z X <= Y
5095 // max(X, Y) == Z X >= Y
5096 // min(X, Y) != Z X > Y
5097 // max(X, Y) != Z X < Y
5098 if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) {
5099 ICmpInst::Predicate NewPred =
5100 ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
5101 if (Pred == ICmpInst::ICMP_NE)
5102 NewPred = ICmpInst::getInversePredicate(NewPred);
5103 return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y);
5105 // Otherwise (X != Z):
5106 ICmpInst::Predicate NewPred = MinMax->getPredicate();
5107 auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5108 if (!MinMaxCmpXZ.has_value()) {
5109 std::swap(X, Y);
5110 std::swap(CmpXZ, CmpYZ);
5111 // Re-check pre-condition X != Z
5112 if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ)
5113 break;
5114 MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5116 if (!MinMaxCmpXZ.has_value())
5117 break;
5118 if (*MinMaxCmpXZ) {
5119 // Expr Fact Result
5120 // min(X, Y) == Z X < Z false
5121 // max(X, Y) == Z X > Z false
5122 // min(X, Y) != Z X < Z true
5123 // max(X, Y) != Z X > Z true
5124 return replaceInstUsesWith(
5125 I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE));
5126 } else {
5127 // Expr Fact Result
5128 // min(X, Y) == Z X > Z Y == Z
5129 // max(X, Y) == Z X < Z Y == Z
5130 // min(X, Y) != Z X > Z Y != Z
5131 // max(X, Y) != Z X < Z Y != Z
5132 return FoldIntoCmpYZ();
5134 break;
5136 case ICmpInst::ICMP_SLT:
5137 case ICmpInst::ICMP_ULT:
5138 case ICmpInst::ICMP_SLE:
5139 case ICmpInst::ICMP_ULE:
5140 case ICmpInst::ICMP_SGT:
5141 case ICmpInst::ICMP_UGT:
5142 case ICmpInst::ICMP_SGE:
5143 case ICmpInst::ICMP_UGE: {
5144 bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred);
5145 if (*CmpXZ) {
5146 if (IsSame) {
5147 // Expr Fact Result
5148 // min(X, Y) < Z X < Z true
5149 // min(X, Y) <= Z X <= Z true
5150 // max(X, Y) > Z X > Z true
5151 // max(X, Y) >= Z X >= Z true
5152 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5153 } else {
5154 // Expr Fact Result
5155 // max(X, Y) < Z X < Z Y < Z
5156 // max(X, Y) <= Z X <= Z Y <= Z
5157 // min(X, Y) > Z X > Z Y > Z
5158 // min(X, Y) >= Z X >= Z Y >= Z
5159 return FoldIntoCmpYZ();
5161 } else {
5162 if (IsSame) {
5163 // Expr Fact Result
5164 // min(X, Y) < Z X >= Z Y < Z
5165 // min(X, Y) <= Z X > Z Y <= Z
5166 // max(X, Y) > Z X <= Z Y > Z
5167 // max(X, Y) >= Z X < Z Y >= Z
5168 return FoldIntoCmpYZ();
5169 } else {
5170 // Expr Fact Result
5171 // max(X, Y) < Z X >= Z false
5172 // max(X, Y) <= Z X > Z false
5173 // min(X, Y) > Z X <= Z false
5174 // min(X, Y) >= Z X < Z false
5175 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5178 break;
5180 default:
5181 break;
5184 return nullptr;
5187 // Canonicalize checking for a power-of-2-or-zero value:
5188 static Instruction *foldICmpPow2Test(ICmpInst &I,
5189 InstCombiner::BuilderTy &Builder) {
5190 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5191 const CmpInst::Predicate Pred = I.getPredicate();
5192 Value *A = nullptr;
5193 bool CheckIs;
5194 if (I.isEquality()) {
5195 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
5196 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
5197 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
5198 m_Deferred(A)))) ||
5199 !match(Op1, m_ZeroInt()))
5200 A = nullptr;
5202 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
5203 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
5204 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
5205 A = Op1;
5206 else if (match(Op1,
5207 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
5208 A = Op0;
5210 CheckIs = Pred == ICmpInst::ICMP_EQ;
5211 } else if (ICmpInst::isUnsigned(Pred)) {
5212 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants)
5213 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants)
5215 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
5216 match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()),
5217 m_Specific(Op1))))) {
5218 A = Op1;
5219 CheckIs = Pred == ICmpInst::ICMP_UGE;
5220 } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
5221 match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()),
5222 m_Specific(Op0))))) {
5223 A = Op0;
5224 CheckIs = Pred == ICmpInst::ICMP_ULE;
5228 if (A) {
5229 Type *Ty = A->getType();
5230 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
5231 return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop,
5232 ConstantInt::get(Ty, 2))
5233 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop,
5234 ConstantInt::get(Ty, 1));
5237 return nullptr;
5240 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
5241 if (!I.isEquality())
5242 return nullptr;
5244 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5245 const CmpInst::Predicate Pred = I.getPredicate();
5246 Value *A, *B, *C, *D;
5247 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5248 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5249 Value *OtherVal = A == Op1 ? B : A;
5250 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5253 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5254 // A^c1 == C^c2 --> A == C^(c1^c2)
5255 ConstantInt *C1, *C2;
5256 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
5257 Op1->hasOneUse()) {
5258 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
5259 Value *Xor = Builder.CreateXor(C, NC);
5260 return new ICmpInst(Pred, A, Xor);
5263 // A^B == A^D -> B == D
5264 if (A == C)
5265 return new ICmpInst(Pred, B, D);
5266 if (A == D)
5267 return new ICmpInst(Pred, B, C);
5268 if (B == C)
5269 return new ICmpInst(Pred, A, D);
5270 if (B == D)
5271 return new ICmpInst(Pred, A, C);
5275 // canoncalize:
5276 // (icmp eq/ne (and X, C), X)
5277 // -> (icmp eq/ne (and X, ~C), 0)
5279 Constant *CMask;
5280 A = nullptr;
5281 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_ImmConstant(CMask)))))
5282 A = Op1;
5283 else if (match(Op1, m_OneUse(m_And(m_Specific(Op0), m_ImmConstant(CMask)))))
5284 A = Op0;
5285 if (A)
5286 return new ICmpInst(Pred, Builder.CreateAnd(A, Builder.CreateNot(CMask)),
5287 Constant::getNullValue(A->getType()));
5290 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
5291 // A == (A^B) -> B == 0
5292 Value *OtherVal = A == Op0 ? B : A;
5293 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5296 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5297 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
5298 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
5299 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
5301 if (A == C) {
5302 X = B;
5303 Y = D;
5304 Z = A;
5305 } else if (A == D) {
5306 X = B;
5307 Y = C;
5308 Z = A;
5309 } else if (B == C) {
5310 X = A;
5311 Y = D;
5312 Z = B;
5313 } else if (B == D) {
5314 X = A;
5315 Y = C;
5316 Z = B;
5319 if (X) { // Build (X^Y) & Z
5320 Op1 = Builder.CreateXor(X, Y);
5321 Op1 = Builder.CreateAnd(Op1, Z);
5322 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
5327 // Similar to above, but specialized for constant because invert is needed:
5328 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
5329 Value *X, *Y;
5330 Constant *C;
5331 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
5332 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
5333 Value *Xor = Builder.CreateXor(X, Y);
5334 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
5335 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
5339 if (match(Op1, m_ZExt(m_Value(A))) &&
5340 (Op0->hasOneUse() || Op1->hasOneUse())) {
5341 // (B & (Pow2C-1)) == zext A --> A == trunc B
5342 // (B & (Pow2C-1)) != zext A --> A != trunc B
5343 const APInt *MaskC;
5344 if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) &&
5345 MaskC->countr_one() == A->getType()->getScalarSizeInBits())
5346 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
5349 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
5350 // For lshr and ashr pairs.
5351 const APInt *AP1, *AP2;
5352 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
5353 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
5354 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
5355 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
5356 if (AP1 != AP2)
5357 return nullptr;
5358 unsigned TypeBits = AP1->getBitWidth();
5359 unsigned ShAmt = AP1->getLimitedValue(TypeBits);
5360 if (ShAmt < TypeBits && ShAmt != 0) {
5361 ICmpInst::Predicate NewPred =
5362 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5363 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5364 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
5365 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
5369 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
5370 ConstantInt *Cst1;
5371 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
5372 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
5373 unsigned TypeBits = Cst1->getBitWidth();
5374 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
5375 if (ShAmt < TypeBits && ShAmt != 0) {
5376 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5377 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
5378 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
5379 I.getName() + ".mask");
5380 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
5384 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
5385 // "icmp (and X, mask), cst"
5386 uint64_t ShAmt = 0;
5387 if (Op0->hasOneUse() &&
5388 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
5389 match(Op1, m_ConstantInt(Cst1)) &&
5390 // Only do this when A has multiple uses. This is most important to do
5391 // when it exposes other optimizations.
5392 !A->hasOneUse()) {
5393 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
5395 if (ShAmt < ASize) {
5396 APInt MaskV =
5397 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
5398 MaskV <<= ShAmt;
5400 APInt CmpV = Cst1->getValue().zext(ASize);
5401 CmpV <<= ShAmt;
5403 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
5404 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
5408 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder))
5409 return ICmp;
5411 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
5412 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
5413 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
5414 // of instcombine.
5415 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5416 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
5417 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
5418 A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
5419 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
5420 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
5421 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
5422 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
5423 : ICmpInst::ICMP_UGE,
5424 Add, ConstantInt::get(A->getType(), C.shl(1)));
5427 // Canonicalize:
5428 // Assume B_Pow2 != 0
5429 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
5430 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
5431 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) &&
5432 isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I))
5433 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
5434 ConstantInt::getNullValue(Op0->getType()));
5436 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) &&
5437 isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I))
5438 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1,
5439 ConstantInt::getNullValue(Op1->getType()));
5441 // Canonicalize:
5442 // icmp eq/ne X, OneUse(rotate-right(X))
5443 // -> icmp eq/ne X, rotate-left(X)
5444 // We generally try to convert rotate-right -> rotate-left, this just
5445 // canonicalizes another case.
5446 CmpInst::Predicate PredUnused = Pred;
5447 if (match(&I, m_c_ICmp(PredUnused, m_Value(A),
5448 m_OneUse(m_Intrinsic<Intrinsic::fshr>(
5449 m_Deferred(A), m_Deferred(A), m_Value(B))))))
5450 return new ICmpInst(
5451 Pred, A,
5452 Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B}));
5454 // Canonicalize:
5455 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst
5456 Constant *Cst;
5457 if (match(&I, m_c_ICmp(PredUnused,
5458 m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))),
5459 m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant())))))
5460 return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst);
5463 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5464 auto m_Matcher =
5465 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)),
5466 m_c_Xor(m_Value(B), m_Deferred(A))),
5467 m_Sub(m_Value(B), m_Deferred(A)));
5468 std::optional<bool> IsZero = std::nullopt;
5469 if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5470 m_Deferred(A))))
5471 IsZero = false;
5472 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5473 else if (match(&I,
5474 m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5475 m_Zero())))
5476 IsZero = true;
5478 if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I))
5479 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5480 // -> (icmp eq/ne (and X, P2), 0)
5481 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5482 // -> (icmp eq/ne (and X, P2), P2)
5483 return new ICmpInst(Pred, Builder.CreateAnd(B, A),
5484 *IsZero ? A
5485 : ConstantInt::getNullValue(A->getType()));
5488 return nullptr;
5491 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) {
5492 ICmpInst::Predicate Pred = ICmp.getPredicate();
5493 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
5495 // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
5496 // The trunc masks high bits while the compare may effectively mask low bits.
5497 Value *X;
5498 const APInt *C;
5499 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
5500 return nullptr;
5502 // This matches patterns corresponding to tests of the signbit as well as:
5503 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
5504 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
5505 APInt Mask;
5506 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
5507 Value *And = Builder.CreateAnd(X, Mask);
5508 Constant *Zero = ConstantInt::getNullValue(X->getType());
5509 return new ICmpInst(Pred, And, Zero);
5512 unsigned SrcBits = X->getType()->getScalarSizeInBits();
5513 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
5514 // If C is a negative power-of-2 (high-bit mask):
5515 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
5516 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
5517 Value *And = Builder.CreateAnd(X, MaskC);
5518 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
5521 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
5522 // If C is not-of-power-of-2 (one clear bit):
5523 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
5524 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
5525 Value *And = Builder.CreateAnd(X, MaskC);
5526 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
5529 if (auto *II = dyn_cast<IntrinsicInst>(X)) {
5530 if (II->getIntrinsicID() == Intrinsic::cttz ||
5531 II->getIntrinsicID() == Intrinsic::ctlz) {
5532 unsigned MaxRet = SrcBits;
5533 // If the "is_zero_poison" argument is set, then we know at least
5534 // one bit is set in the input, so the result is always at least one
5535 // less than the full bitwidth of that input.
5536 if (match(II->getArgOperand(1), m_One()))
5537 MaxRet--;
5539 // Make sure the destination is wide enough to hold the largest output of
5540 // the intrinsic.
5541 if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits())
5542 if (Instruction *I =
5543 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits)))
5544 return I;
5548 return nullptr;
5551 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
5552 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
5553 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
5554 Value *X;
5555 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
5556 return nullptr;
5558 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
5559 bool IsSignedCmp = ICmp.isSigned();
5561 // icmp Pred (ext X), (ext Y)
5562 Value *Y;
5563 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
5564 bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0));
5565 bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1));
5567 if (IsZext0 != IsZext1) {
5568 // If X and Y and both i1
5569 // (icmp eq/ne (zext X) (sext Y))
5570 // eq -> (icmp eq (or X, Y), 0)
5571 // ne -> (icmp ne (or X, Y), 0)
5572 if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) &&
5573 Y->getType()->isIntOrIntVectorTy(1))
5574 return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y),
5575 Constant::getNullValue(X->getType()));
5577 // If we have mismatched casts and zext has the nneg flag, we can
5578 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit.
5580 auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0));
5581 auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1));
5583 bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg();
5584 bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg();
5586 if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1))
5587 IsSignedExt = true;
5588 else
5589 return nullptr;
5592 // Not an extension from the same type?
5593 Type *XTy = X->getType(), *YTy = Y->getType();
5594 if (XTy != YTy) {
5595 // One of the casts must have one use because we are creating a new cast.
5596 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
5597 return nullptr;
5598 // Extend the narrower operand to the type of the wider operand.
5599 CastInst::CastOps CastOpcode =
5600 IsSignedExt ? Instruction::SExt : Instruction::ZExt;
5601 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
5602 X = Builder.CreateCast(CastOpcode, X, YTy);
5603 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
5604 Y = Builder.CreateCast(CastOpcode, Y, XTy);
5605 else
5606 return nullptr;
5609 // (zext X) == (zext Y) --> X == Y
5610 // (sext X) == (sext Y) --> X == Y
5611 if (ICmp.isEquality())
5612 return new ICmpInst(ICmp.getPredicate(), X, Y);
5614 // A signed comparison of sign extended values simplifies into a
5615 // signed comparison.
5616 if (IsSignedCmp && IsSignedExt)
5617 return new ICmpInst(ICmp.getPredicate(), X, Y);
5619 // The other three cases all fold into an unsigned comparison.
5620 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
5623 // Below here, we are only folding a compare with constant.
5624 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
5625 if (!C)
5626 return nullptr;
5628 // If a lossless truncate is possible...
5629 Type *SrcTy = CastOp0->getSrcTy();
5630 Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode());
5631 if (Res) {
5632 if (ICmp.isEquality())
5633 return new ICmpInst(ICmp.getPredicate(), X, Res);
5635 // A signed comparison of sign extended values simplifies into a
5636 // signed comparison.
5637 if (IsSignedExt && IsSignedCmp)
5638 return new ICmpInst(ICmp.getPredicate(), X, Res);
5640 // The other three cases all fold into an unsigned comparison.
5641 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res);
5644 // The re-extended constant changed, partly changed (in the case of a vector),
5645 // or could not be determined to be equal (in the case of a constant
5646 // expression), so the constant cannot be represented in the shorter type.
5647 // All the cases that fold to true or false will have already been handled
5648 // by simplifyICmpInst, so only deal with the tricky case.
5649 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
5650 return nullptr;
5652 // Is source op positive?
5653 // icmp ult (sext X), C --> icmp sgt X, -1
5654 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
5655 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
5657 // Is source op negative?
5658 // icmp ugt (sext X), C --> icmp slt X, 0
5659 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
5660 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
5663 /// Handle icmp (cast x), (cast or constant).
5664 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
5665 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
5666 // icmp compares only pointer's value.
5667 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
5668 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
5669 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
5670 if (SimplifiedOp0 || SimplifiedOp1)
5671 return new ICmpInst(ICmp.getPredicate(),
5672 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
5673 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
5675 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
5676 if (!CastOp0)
5677 return nullptr;
5678 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
5679 return nullptr;
5681 Value *Op0Src = CastOp0->getOperand(0);
5682 Type *SrcTy = CastOp0->getSrcTy();
5683 Type *DestTy = CastOp0->getDestTy();
5685 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5686 // integer type is the same size as the pointer type.
5687 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
5688 if (isa<VectorType>(SrcTy)) {
5689 SrcTy = cast<VectorType>(SrcTy)->getElementType();
5690 DestTy = cast<VectorType>(DestTy)->getElementType();
5692 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
5694 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
5695 CompatibleSizes(SrcTy, DestTy)) {
5696 Value *NewOp1 = nullptr;
5697 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
5698 Value *PtrSrc = PtrToIntOp1->getOperand(0);
5699 if (PtrSrc->getType() == Op0Src->getType())
5700 NewOp1 = PtrToIntOp1->getOperand(0);
5701 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
5702 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
5705 if (NewOp1)
5706 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
5709 if (Instruction *R = foldICmpWithTrunc(ICmp))
5710 return R;
5712 return foldICmpWithZextOrSext(ICmp);
5715 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) {
5716 switch (BinaryOp) {
5717 default:
5718 llvm_unreachable("Unsupported binary op");
5719 case Instruction::Add:
5720 case Instruction::Sub:
5721 return match(RHS, m_Zero());
5722 case Instruction::Mul:
5723 return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) &&
5724 match(RHS, m_One());
5728 OverflowResult
5729 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
5730 bool IsSigned, Value *LHS, Value *RHS,
5731 Instruction *CxtI) const {
5732 switch (BinaryOp) {
5733 default:
5734 llvm_unreachable("Unsupported binary op");
5735 case Instruction::Add:
5736 if (IsSigned)
5737 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
5738 else
5739 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
5740 case Instruction::Sub:
5741 if (IsSigned)
5742 return computeOverflowForSignedSub(LHS, RHS, CxtI);
5743 else
5744 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
5745 case Instruction::Mul:
5746 if (IsSigned)
5747 return computeOverflowForSignedMul(LHS, RHS, CxtI);
5748 else
5749 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
5753 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
5754 bool IsSigned, Value *LHS,
5755 Value *RHS, Instruction &OrigI,
5756 Value *&Result,
5757 Constant *&Overflow) {
5758 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
5759 std::swap(LHS, RHS);
5761 // If the overflow check was an add followed by a compare, the insertion point
5762 // may be pointing to the compare. We want to insert the new instructions
5763 // before the add in case there are uses of the add between the add and the
5764 // compare.
5765 Builder.SetInsertPoint(&OrigI);
5767 Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
5768 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
5769 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
5771 if (isNeutralValue(BinaryOp, RHS, IsSigned)) {
5772 Result = LHS;
5773 Overflow = ConstantInt::getFalse(OverflowTy);
5774 return true;
5777 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
5778 case OverflowResult::MayOverflow:
5779 return false;
5780 case OverflowResult::AlwaysOverflowsLow:
5781 case OverflowResult::AlwaysOverflowsHigh:
5782 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5783 Result->takeName(&OrigI);
5784 Overflow = ConstantInt::getTrue(OverflowTy);
5785 return true;
5786 case OverflowResult::NeverOverflows:
5787 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
5788 Result->takeName(&OrigI);
5789 Overflow = ConstantInt::getFalse(OverflowTy);
5790 if (auto *Inst = dyn_cast<Instruction>(Result)) {
5791 if (IsSigned)
5792 Inst->setHasNoSignedWrap();
5793 else
5794 Inst->setHasNoUnsignedWrap();
5796 return true;
5799 llvm_unreachable("Unexpected overflow result");
5802 /// Recognize and process idiom involving test for multiplication
5803 /// overflow.
5805 /// The caller has matched a pattern of the form:
5806 /// I = cmp u (mul(zext A, zext B), V
5807 /// The function checks if this is a test for overflow and if so replaces
5808 /// multiplication with call to 'mul.with.overflow' intrinsic.
5810 /// \param I Compare instruction.
5811 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
5812 /// the compare instruction. Must be of integer type.
5813 /// \param OtherVal The other argument of compare instruction.
5814 /// \returns Instruction which must replace the compare instruction, NULL if no
5815 /// replacement required.
5816 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
5817 const APInt *OtherVal,
5818 InstCombinerImpl &IC) {
5819 // Don't bother doing this transformation for pointers, don't do it for
5820 // vectors.
5821 if (!isa<IntegerType>(MulVal->getType()))
5822 return nullptr;
5824 auto *MulInstr = dyn_cast<Instruction>(MulVal);
5825 if (!MulInstr)
5826 return nullptr;
5827 assert(MulInstr->getOpcode() == Instruction::Mul);
5829 auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)),
5830 *RHS = cast<ZExtInst>(MulInstr->getOperand(1));
5831 assert(LHS->getOpcode() == Instruction::ZExt);
5832 assert(RHS->getOpcode() == Instruction::ZExt);
5833 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
5835 // Calculate type and width of the result produced by mul.with.overflow.
5836 Type *TyA = A->getType(), *TyB = B->getType();
5837 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
5838 WidthB = TyB->getPrimitiveSizeInBits();
5839 unsigned MulWidth;
5840 Type *MulType;
5841 if (WidthB > WidthA) {
5842 MulWidth = WidthB;
5843 MulType = TyB;
5844 } else {
5845 MulWidth = WidthA;
5846 MulType = TyA;
5849 // In order to replace the original mul with a narrower mul.with.overflow,
5850 // all uses must ignore upper bits of the product. The number of used low
5851 // bits must be not greater than the width of mul.with.overflow.
5852 if (MulVal->hasNUsesOrMore(2))
5853 for (User *U : MulVal->users()) {
5854 if (U == &I)
5855 continue;
5856 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5857 // Check if truncation ignores bits above MulWidth.
5858 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
5859 if (TruncWidth > MulWidth)
5860 return nullptr;
5861 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5862 // Check if AND ignores bits above MulWidth.
5863 if (BO->getOpcode() != Instruction::And)
5864 return nullptr;
5865 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5866 const APInt &CVal = CI->getValue();
5867 if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth)
5868 return nullptr;
5869 } else {
5870 // In this case we could have the operand of the binary operation
5871 // being defined in another block, and performing the replacement
5872 // could break the dominance relation.
5873 return nullptr;
5875 } else {
5876 // Other uses prohibit this transformation.
5877 return nullptr;
5881 // Recognize patterns
5882 switch (I.getPredicate()) {
5883 case ICmpInst::ICMP_UGT: {
5884 // Recognize pattern:
5885 // mulval = mul(zext A, zext B)
5886 // cmp ugt mulval, max
5887 APInt MaxVal = APInt::getMaxValue(MulWidth);
5888 MaxVal = MaxVal.zext(OtherVal->getBitWidth());
5889 if (MaxVal.eq(*OtherVal))
5890 break; // Recognized
5891 return nullptr;
5894 case ICmpInst::ICMP_ULT: {
5895 // Recognize pattern:
5896 // mulval = mul(zext A, zext B)
5897 // cmp ule mulval, max + 1
5898 APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth);
5899 if (MaxVal.eq(*OtherVal))
5900 break; // Recognized
5901 return nullptr;
5904 default:
5905 return nullptr;
5908 InstCombiner::BuilderTy &Builder = IC.Builder;
5909 Builder.SetInsertPoint(MulInstr);
5911 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5912 Value *MulA = A, *MulB = B;
5913 if (WidthA < MulWidth)
5914 MulA = Builder.CreateZExt(A, MulType);
5915 if (WidthB < MulWidth)
5916 MulB = Builder.CreateZExt(B, MulType);
5917 Function *F = Intrinsic::getDeclaration(
5918 I.getModule(), Intrinsic::umul_with_overflow, MulType);
5919 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5920 IC.addToWorklist(MulInstr);
5922 // If there are uses of mul result other than the comparison, we know that
5923 // they are truncation or binary AND. Change them to use result of
5924 // mul.with.overflow and adjust properly mask/size.
5925 if (MulVal->hasNUsesOrMore(2)) {
5926 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5927 for (User *U : make_early_inc_range(MulVal->users())) {
5928 if (U == &I)
5929 continue;
5930 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5931 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5932 IC.replaceInstUsesWith(*TI, Mul);
5933 else
5934 TI->setOperand(0, Mul);
5935 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5936 assert(BO->getOpcode() == Instruction::And);
5937 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5938 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5939 APInt ShortMask = CI->getValue().trunc(MulWidth);
5940 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5941 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5942 IC.replaceInstUsesWith(*BO, Zext);
5943 } else {
5944 llvm_unreachable("Unexpected Binary operation");
5946 IC.addToWorklist(cast<Instruction>(U));
5950 // The original icmp gets replaced with the overflow value, maybe inverted
5951 // depending on predicate.
5952 if (I.getPredicate() == ICmpInst::ICMP_ULT) {
5953 Value *Res = Builder.CreateExtractValue(Call, 1);
5954 return BinaryOperator::CreateNot(Res);
5957 return ExtractValueInst::Create(Call, 1);
5960 /// When performing a comparison against a constant, it is possible that not all
5961 /// the bits in the LHS are demanded. This helper method computes the mask that
5962 /// IS demanded.
5963 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5964 const APInt *RHS;
5965 if (!match(I.getOperand(1), m_APInt(RHS)))
5966 return APInt::getAllOnes(BitWidth);
5968 // If this is a normal comparison, it demands all bits. If it is a sign bit
5969 // comparison, it only demands the sign bit.
5970 bool UnusedBit;
5971 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5972 return APInt::getSignMask(BitWidth);
5974 switch (I.getPredicate()) {
5975 // For a UGT comparison, we don't care about any bits that
5976 // correspond to the trailing ones of the comparand. The value of these
5977 // bits doesn't impact the outcome of the comparison, because any value
5978 // greater than the RHS must differ in a bit higher than these due to carry.
5979 case ICmpInst::ICMP_UGT:
5980 return APInt::getBitsSetFrom(BitWidth, RHS->countr_one());
5982 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5983 // Any value less than the RHS must differ in a higher bit because of carries.
5984 case ICmpInst::ICMP_ULT:
5985 return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero());
5987 default:
5988 return APInt::getAllOnes(BitWidth);
5992 /// Check that one use is in the same block as the definition and all
5993 /// other uses are in blocks dominated by a given block.
5995 /// \param DI Definition
5996 /// \param UI Use
5997 /// \param DB Block that must dominate all uses of \p DI outside
5998 /// the parent block
5999 /// \return true when \p UI is the only use of \p DI in the parent block
6000 /// and all other uses of \p DI are in blocks dominated by \p DB.
6002 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
6003 const Instruction *UI,
6004 const BasicBlock *DB) const {
6005 assert(DI && UI && "Instruction not defined\n");
6006 // Ignore incomplete definitions.
6007 if (!DI->getParent())
6008 return false;
6009 // DI and UI must be in the same block.
6010 if (DI->getParent() != UI->getParent())
6011 return false;
6012 // Protect from self-referencing blocks.
6013 if (DI->getParent() == DB)
6014 return false;
6015 for (const User *U : DI->users()) {
6016 auto *Usr = cast<Instruction>(U);
6017 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
6018 return false;
6020 return true;
6023 /// Return true when the instruction sequence within a block is select-cmp-br.
6024 static bool isChainSelectCmpBranch(const SelectInst *SI) {
6025 const BasicBlock *BB = SI->getParent();
6026 if (!BB)
6027 return false;
6028 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
6029 if (!BI || BI->getNumSuccessors() != 2)
6030 return false;
6031 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
6032 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
6033 return false;
6034 return true;
6037 /// True when a select result is replaced by one of its operands
6038 /// in select-icmp sequence. This will eventually result in the elimination
6039 /// of the select.
6041 /// \param SI Select instruction
6042 /// \param Icmp Compare instruction
6043 /// \param SIOpd Operand that replaces the select
6045 /// Notes:
6046 /// - The replacement is global and requires dominator information
6047 /// - The caller is responsible for the actual replacement
6049 /// Example:
6051 /// entry:
6052 /// %4 = select i1 %3, %C* %0, %C* null
6053 /// %5 = icmp eq %C* %4, null
6054 /// br i1 %5, label %9, label %7
6055 /// ...
6056 /// ; <label>:7 ; preds = %entry
6057 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
6058 /// ...
6060 /// can be transformed to
6062 /// %5 = icmp eq %C* %0, null
6063 /// %6 = select i1 %3, i1 %5, i1 true
6064 /// br i1 %6, label %9, label %7
6065 /// ...
6066 /// ; <label>:7 ; preds = %entry
6067 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
6069 /// Similar when the first operand of the select is a constant or/and
6070 /// the compare is for not equal rather than equal.
6072 /// NOTE: The function is only called when the select and compare constants
6073 /// are equal, the optimization can work only for EQ predicates. This is not a
6074 /// major restriction since a NE compare should be 'normalized' to an equal
6075 /// compare, which usually happens in the combiner and test case
6076 /// select-cmp-br.ll checks for it.
6077 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
6078 const ICmpInst *Icmp,
6079 const unsigned SIOpd) {
6080 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
6081 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
6082 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
6083 // The check for the single predecessor is not the best that can be
6084 // done. But it protects efficiently against cases like when SI's
6085 // home block has two successors, Succ and Succ1, and Succ1 predecessor
6086 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
6087 // replaced can be reached on either path. So the uniqueness check
6088 // guarantees that the path all uses of SI (outside SI's parent) are on
6089 // is disjoint from all other paths out of SI. But that information
6090 // is more expensive to compute, and the trade-off here is in favor
6091 // of compile-time. It should also be noticed that we check for a single
6092 // predecessor and not only uniqueness. This to handle the situation when
6093 // Succ and Succ1 points to the same basic block.
6094 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
6095 NumSel++;
6096 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
6097 return true;
6100 return false;
6103 /// Try to fold the comparison based on range information we can get by checking
6104 /// whether bits are known to be zero or one in the inputs.
6105 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
6106 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6107 Type *Ty = Op0->getType();
6108 ICmpInst::Predicate Pred = I.getPredicate();
6110 // Get scalar or pointer size.
6111 unsigned BitWidth = Ty->isIntOrIntVectorTy()
6112 ? Ty->getScalarSizeInBits()
6113 : DL.getPointerTypeSizeInBits(Ty->getScalarType());
6115 if (!BitWidth)
6116 return nullptr;
6118 KnownBits Op0Known(BitWidth);
6119 KnownBits Op1Known(BitWidth);
6122 // Don't use dominating conditions when folding icmp using known bits. This
6123 // may convert signed into unsigned predicates in ways that other passes
6124 // (especially IndVarSimplify) may not be able to reliably undo.
6125 SQ.DC = nullptr;
6126 auto _ = make_scope_exit([&]() { SQ.DC = &DC; });
6127 if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth),
6128 Op0Known, 0))
6129 return &I;
6131 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
6132 return &I;
6135 // Given the known and unknown bits, compute a range that the LHS could be
6136 // in. Compute the Min, Max and RHS values based on the known bits. For the
6137 // EQ and NE we use unsigned values.
6138 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
6139 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
6140 if (I.isSigned()) {
6141 Op0Min = Op0Known.getSignedMinValue();
6142 Op0Max = Op0Known.getSignedMaxValue();
6143 Op1Min = Op1Known.getSignedMinValue();
6144 Op1Max = Op1Known.getSignedMaxValue();
6145 } else {
6146 Op0Min = Op0Known.getMinValue();
6147 Op0Max = Op0Known.getMaxValue();
6148 Op1Min = Op1Known.getMinValue();
6149 Op1Max = Op1Known.getMaxValue();
6152 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
6153 // out that the LHS or RHS is a constant. Constant fold this now, so that
6154 // code below can assume that Min != Max.
6155 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
6156 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
6157 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
6158 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
6160 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
6161 // min/max canonical compare with some other compare. That could lead to
6162 // conflict with select canonicalization and infinite looping.
6163 // FIXME: This constraint may go away if min/max intrinsics are canonical.
6164 auto isMinMaxCmp = [&](Instruction &Cmp) {
6165 if (!Cmp.hasOneUse())
6166 return false;
6167 Value *A, *B;
6168 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
6169 if (!SelectPatternResult::isMinOrMax(SPF))
6170 return false;
6171 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
6172 match(Op1, m_MaxOrMin(m_Value(), m_Value()));
6174 if (!isMinMaxCmp(I)) {
6175 switch (Pred) {
6176 default:
6177 break;
6178 case ICmpInst::ICMP_ULT: {
6179 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
6180 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6181 const APInt *CmpC;
6182 if (match(Op1, m_APInt(CmpC))) {
6183 // A <u C -> A == C-1 if min(A)+1 == C
6184 if (*CmpC == Op0Min + 1)
6185 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6186 ConstantInt::get(Op1->getType(), *CmpC - 1));
6187 // X <u C --> X == 0, if the number of zero bits in the bottom of X
6188 // exceeds the log2 of C.
6189 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
6190 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6191 Constant::getNullValue(Op1->getType()));
6193 break;
6195 case ICmpInst::ICMP_UGT: {
6196 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
6197 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6198 const APInt *CmpC;
6199 if (match(Op1, m_APInt(CmpC))) {
6200 // A >u C -> A == C+1 if max(a)-1 == C
6201 if (*CmpC == Op0Max - 1)
6202 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6203 ConstantInt::get(Op1->getType(), *CmpC + 1));
6204 // X >u C --> X != 0, if the number of zero bits in the bottom of X
6205 // exceeds the log2 of C.
6206 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
6207 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
6208 Constant::getNullValue(Op1->getType()));
6210 break;
6212 case ICmpInst::ICMP_SLT: {
6213 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
6214 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6215 const APInt *CmpC;
6216 if (match(Op1, m_APInt(CmpC))) {
6217 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
6218 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6219 ConstantInt::get(Op1->getType(), *CmpC - 1));
6221 break;
6223 case ICmpInst::ICMP_SGT: {
6224 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
6225 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6226 const APInt *CmpC;
6227 if (match(Op1, m_APInt(CmpC))) {
6228 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
6229 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6230 ConstantInt::get(Op1->getType(), *CmpC + 1));
6232 break;
6237 // Based on the range information we know about the LHS, see if we can
6238 // simplify this comparison. For example, (x&4) < 8 is always true.
6239 switch (Pred) {
6240 default:
6241 llvm_unreachable("Unknown icmp opcode!");
6242 case ICmpInst::ICMP_EQ:
6243 case ICmpInst::ICMP_NE: {
6244 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
6245 return replaceInstUsesWith(
6246 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
6248 // If all bits are known zero except for one, then we know at most one bit
6249 // is set. If the comparison is against zero, then this is a check to see if
6250 // *that* bit is set.
6251 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
6252 if (Op1Known.isZero()) {
6253 // If the LHS is an AND with the same constant, look through it.
6254 Value *LHS = nullptr;
6255 const APInt *LHSC;
6256 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
6257 *LHSC != Op0KnownZeroInverted)
6258 LHS = Op0;
6260 Value *X;
6261 const APInt *C1;
6262 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
6263 Type *XTy = X->getType();
6264 unsigned Log2C1 = C1->countr_zero();
6265 APInt C2 = Op0KnownZeroInverted;
6266 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
6267 if (C2Pow2.isPowerOf2()) {
6268 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
6269 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
6270 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1))
6271 unsigned Log2C2 = C2Pow2.countr_zero();
6272 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
6273 auto NewPred =
6274 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
6275 return new ICmpInst(NewPred, X, CmpC);
6280 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero.
6281 if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() &&
6282 (Op0Known & Op1Known) == Op0Known)
6283 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
6284 ConstantInt::getNullValue(Op1->getType()));
6285 break;
6287 case ICmpInst::ICMP_ULT: {
6288 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
6289 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6290 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
6291 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6292 break;
6294 case ICmpInst::ICMP_UGT: {
6295 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
6296 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6297 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
6298 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6299 break;
6301 case ICmpInst::ICMP_SLT: {
6302 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
6303 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6304 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
6305 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6306 break;
6308 case ICmpInst::ICMP_SGT: {
6309 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
6310 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6311 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
6312 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6313 break;
6315 case ICmpInst::ICMP_SGE:
6316 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
6317 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
6318 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6319 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
6320 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6321 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
6322 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6323 break;
6324 case ICmpInst::ICMP_SLE:
6325 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
6326 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
6327 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6328 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
6329 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6330 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
6331 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6332 break;
6333 case ICmpInst::ICMP_UGE:
6334 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
6335 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
6336 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6337 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
6338 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6339 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
6340 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6341 break;
6342 case ICmpInst::ICMP_ULE:
6343 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
6344 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
6345 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6346 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
6347 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6348 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
6349 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6350 break;
6353 // Turn a signed comparison into an unsigned one if both operands are known to
6354 // have the same sign.
6355 if (I.isSigned() &&
6356 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
6357 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
6358 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
6360 return nullptr;
6363 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
6364 /// then try to reduce patterns based on that limit.
6365 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) {
6366 Value *X, *Y;
6367 ICmpInst::Predicate Pred;
6369 // X must be 0 and bool must be true for "ULT":
6370 // X <u (zext i1 Y) --> (X == 0) & Y
6371 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
6372 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
6373 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
6375 // X must be 0 or bool must be true for "ULE":
6376 // X <=u (sext i1 Y) --> (X == 0) | Y
6377 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
6378 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
6379 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
6381 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C))
6382 ICmpInst::Predicate Pred1, Pred2;
6383 const APInt *C;
6384 Instruction *ExtI;
6385 if (match(&I, m_c_ICmp(Pred1, m_Value(X),
6386 m_CombineAnd(m_Instruction(ExtI),
6387 m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X),
6388 m_APInt(C)))))) &&
6389 ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) {
6390 bool IsSExt = ExtI->getOpcode() == Instruction::SExt;
6391 bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse();
6392 auto CreateRangeCheck = [&] {
6393 Value *CmpV1 =
6394 Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType()));
6395 Value *CmpV2 = Builder.CreateICmp(
6396 Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1));
6397 return BinaryOperator::Create(
6398 Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And,
6399 CmpV1, CmpV2);
6401 if (C->isZero()) {
6402 if (Pred2 == ICmpInst::ICMP_EQ) {
6403 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false
6404 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true
6405 return replaceInstUsesWith(
6406 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6407 } else if (!IsSExt || HasOneUse) {
6408 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1
6409 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1
6410 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1
6411 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1
6412 return CreateRangeCheck();
6414 } else if (IsSExt ? C->isAllOnes() : C->isOne()) {
6415 if (Pred2 == ICmpInst::ICMP_NE) {
6416 // icmp eq X, (zext (icmp ne X, 1)) --> false
6417 // icmp ne X, (zext (icmp ne X, 1)) --> true
6418 // icmp eq X, (sext (icmp ne X, -1)) --> false
6419 // icmp ne X, (sext (icmp ne X, -1)) --> true
6420 return replaceInstUsesWith(
6421 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6422 } else if (!IsSExt || HasOneUse) {
6423 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1
6424 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1
6425 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1
6426 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1
6427 return CreateRangeCheck();
6429 } else {
6430 // when C != 0 && C != 1:
6431 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0
6432 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1
6433 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0
6434 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1
6435 // when C != 0 && C != -1:
6436 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0
6437 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1
6438 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0
6439 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1
6440 return ICmpInst::Create(
6441 Instruction::ICmp, Pred1, X,
6442 ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE
6443 ? (IsSExt ? -1 : 1)
6444 : 0));
6448 return nullptr;
6451 std::optional<std::pair<CmpInst::Predicate, Constant *>>
6452 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
6453 Constant *C) {
6454 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
6455 "Only for relational integer predicates.");
6457 Type *Type = C->getType();
6458 bool IsSigned = ICmpInst::isSigned(Pred);
6460 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
6461 bool WillIncrement =
6462 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
6464 // Check if the constant operand can be safely incremented/decremented
6465 // without overflowing/underflowing.
6466 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
6467 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
6470 Constant *SafeReplacementConstant = nullptr;
6471 if (auto *CI = dyn_cast<ConstantInt>(C)) {
6472 // Bail out if the constant can't be safely incremented/decremented.
6473 if (!ConstantIsOk(CI))
6474 return std::nullopt;
6475 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
6476 unsigned NumElts = FVTy->getNumElements();
6477 for (unsigned i = 0; i != NumElts; ++i) {
6478 Constant *Elt = C->getAggregateElement(i);
6479 if (!Elt)
6480 return std::nullopt;
6482 if (isa<UndefValue>(Elt))
6483 continue;
6485 // Bail out if we can't determine if this constant is min/max or if we
6486 // know that this constant is min/max.
6487 auto *CI = dyn_cast<ConstantInt>(Elt);
6488 if (!CI || !ConstantIsOk(CI))
6489 return std::nullopt;
6491 if (!SafeReplacementConstant)
6492 SafeReplacementConstant = CI;
6494 } else if (isa<VectorType>(C->getType())) {
6495 // Handle scalable splat
6496 Value *SplatC = C->getSplatValue();
6497 auto *CI = dyn_cast_or_null<ConstantInt>(SplatC);
6498 // Bail out if the constant can't be safely incremented/decremented.
6499 if (!CI || !ConstantIsOk(CI))
6500 return std::nullopt;
6501 } else {
6502 // ConstantExpr?
6503 return std::nullopt;
6506 // It may not be safe to change a compare predicate in the presence of
6507 // undefined elements, so replace those elements with the first safe constant
6508 // that we found.
6509 // TODO: in case of poison, it is safe; let's replace undefs only.
6510 if (C->containsUndefOrPoisonElement()) {
6511 assert(SafeReplacementConstant && "Replacement constant not set");
6512 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
6515 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
6517 // Increment or decrement the constant.
6518 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
6519 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
6521 return std::make_pair(NewPred, NewC);
6524 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
6525 /// it into the appropriate icmp lt or icmp gt instruction. This transform
6526 /// allows them to be folded in visitICmpInst.
6527 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
6528 ICmpInst::Predicate Pred = I.getPredicate();
6529 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
6530 InstCombiner::isCanonicalPredicate(Pred))
6531 return nullptr;
6533 Value *Op0 = I.getOperand(0);
6534 Value *Op1 = I.getOperand(1);
6535 auto *Op1C = dyn_cast<Constant>(Op1);
6536 if (!Op1C)
6537 return nullptr;
6539 auto FlippedStrictness =
6540 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
6541 if (!FlippedStrictness)
6542 return nullptr;
6544 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
6547 /// If we have a comparison with a non-canonical predicate, if we can update
6548 /// all the users, invert the predicate and adjust all the users.
6549 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
6550 // Is the predicate already canonical?
6551 CmpInst::Predicate Pred = I.getPredicate();
6552 if (InstCombiner::isCanonicalPredicate(Pred))
6553 return nullptr;
6555 // Can all users be adjusted to predicate inversion?
6556 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
6557 return nullptr;
6559 // Ok, we can canonicalize comparison!
6560 // Let's first invert the comparison's predicate.
6561 I.setPredicate(CmpInst::getInversePredicate(Pred));
6562 I.setName(I.getName() + ".not");
6564 // And, adapt users.
6565 freelyInvertAllUsersOf(&I);
6567 return &I;
6570 /// Integer compare with boolean values can always be turned into bitwise ops.
6571 static Instruction *canonicalizeICmpBool(ICmpInst &I,
6572 InstCombiner::BuilderTy &Builder) {
6573 Value *A = I.getOperand(0), *B = I.getOperand(1);
6574 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
6576 // A boolean compared to true/false can be simplified to Op0/true/false in
6577 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
6578 // Cases not handled by InstSimplify are always 'not' of Op0.
6579 if (match(B, m_Zero())) {
6580 switch (I.getPredicate()) {
6581 case CmpInst::ICMP_EQ: // A == 0 -> !A
6582 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
6583 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
6584 return BinaryOperator::CreateNot(A);
6585 default:
6586 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6588 } else if (match(B, m_One())) {
6589 switch (I.getPredicate()) {
6590 case CmpInst::ICMP_NE: // A != 1 -> !A
6591 case CmpInst::ICMP_ULT: // A <u 1 -> !A
6592 case CmpInst::ICMP_SGT: // A >s -1 -> !A
6593 return BinaryOperator::CreateNot(A);
6594 default:
6595 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6599 switch (I.getPredicate()) {
6600 default:
6601 llvm_unreachable("Invalid icmp instruction!");
6602 case ICmpInst::ICMP_EQ:
6603 // icmp eq i1 A, B -> ~(A ^ B)
6604 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
6606 case ICmpInst::ICMP_NE:
6607 // icmp ne i1 A, B -> A ^ B
6608 return BinaryOperator::CreateXor(A, B);
6610 case ICmpInst::ICMP_UGT:
6611 // icmp ugt -> icmp ult
6612 std::swap(A, B);
6613 [[fallthrough]];
6614 case ICmpInst::ICMP_ULT:
6615 // icmp ult i1 A, B -> ~A & B
6616 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
6618 case ICmpInst::ICMP_SGT:
6619 // icmp sgt -> icmp slt
6620 std::swap(A, B);
6621 [[fallthrough]];
6622 case ICmpInst::ICMP_SLT:
6623 // icmp slt i1 A, B -> A & ~B
6624 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
6626 case ICmpInst::ICMP_UGE:
6627 // icmp uge -> icmp ule
6628 std::swap(A, B);
6629 [[fallthrough]];
6630 case ICmpInst::ICMP_ULE:
6631 // icmp ule i1 A, B -> ~A | B
6632 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
6634 case ICmpInst::ICMP_SGE:
6635 // icmp sge -> icmp sle
6636 std::swap(A, B);
6637 [[fallthrough]];
6638 case ICmpInst::ICMP_SLE:
6639 // icmp sle i1 A, B -> A | ~B
6640 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
6644 // Transform pattern like:
6645 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
6646 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
6647 // Into:
6648 // (X l>> Y) != 0
6649 // (X l>> Y) == 0
6650 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
6651 InstCombiner::BuilderTy &Builder) {
6652 ICmpInst::Predicate Pred, NewPred;
6653 Value *X, *Y;
6654 if (match(&Cmp,
6655 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
6656 switch (Pred) {
6657 case ICmpInst::ICMP_ULE:
6658 NewPred = ICmpInst::ICMP_NE;
6659 break;
6660 case ICmpInst::ICMP_UGT:
6661 NewPred = ICmpInst::ICMP_EQ;
6662 break;
6663 default:
6664 return nullptr;
6666 } else if (match(&Cmp, m_c_ICmp(Pred,
6667 m_OneUse(m_CombineOr(
6668 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
6669 m_Add(m_Shl(m_One(), m_Value(Y)),
6670 m_AllOnes()))),
6671 m_Value(X)))) {
6672 // The variant with 'add' is not canonical, (the variant with 'not' is)
6673 // we only get it because it has extra uses, and can't be canonicalized,
6675 switch (Pred) {
6676 case ICmpInst::ICMP_ULT:
6677 NewPred = ICmpInst::ICMP_NE;
6678 break;
6679 case ICmpInst::ICMP_UGE:
6680 NewPred = ICmpInst::ICMP_EQ;
6681 break;
6682 default:
6683 return nullptr;
6685 } else
6686 return nullptr;
6688 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
6689 Constant *Zero = Constant::getNullValue(NewX->getType());
6690 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
6693 static Instruction *foldVectorCmp(CmpInst &Cmp,
6694 InstCombiner::BuilderTy &Builder) {
6695 const CmpInst::Predicate Pred = Cmp.getPredicate();
6696 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
6697 Value *V1, *V2;
6699 auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) {
6700 Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName());
6701 if (auto *I = dyn_cast<Instruction>(V))
6702 I->copyIRFlags(&Cmp);
6703 Module *M = Cmp.getModule();
6704 Function *F = Intrinsic::getDeclaration(
6705 M, Intrinsic::experimental_vector_reverse, V->getType());
6706 return CallInst::Create(F, V);
6709 if (match(LHS, m_VecReverse(m_Value(V1)))) {
6710 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
6711 if (match(RHS, m_VecReverse(m_Value(V2))) &&
6712 (LHS->hasOneUse() || RHS->hasOneUse()))
6713 return createCmpReverse(Pred, V1, V2);
6715 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
6716 if (LHS->hasOneUse() && isSplatValue(RHS))
6717 return createCmpReverse(Pred, V1, RHS);
6719 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
6720 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
6721 return createCmpReverse(Pred, LHS, V2);
6723 ArrayRef<int> M;
6724 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
6725 return nullptr;
6727 // If both arguments of the cmp are shuffles that use the same mask and
6728 // shuffle within a single vector, move the shuffle after the cmp:
6729 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
6730 Type *V1Ty = V1->getType();
6731 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
6732 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
6733 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
6734 return new ShuffleVectorInst(NewCmp, M);
6737 // Try to canonicalize compare with splatted operand and splat constant.
6738 // TODO: We could generalize this for more than splats. See/use the code in
6739 // InstCombiner::foldVectorBinop().
6740 Constant *C;
6741 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
6742 return nullptr;
6744 // Length-changing splats are ok, so adjust the constants as needed:
6745 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
6746 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
6747 int MaskSplatIndex;
6748 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
6749 // We allow undefs in matching, but this transform removes those for safety.
6750 // Demanded elements analysis should be able to recover some/all of that.
6751 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
6752 ScalarC);
6753 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
6754 Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
6755 return new ShuffleVectorInst(NewCmp, NewM);
6758 return nullptr;
6761 // extract(uadd.with.overflow(A, B), 0) ult A
6762 // -> extract(uadd.with.overflow(A, B), 1)
6763 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
6764 CmpInst::Predicate Pred = I.getPredicate();
6765 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6767 Value *UAddOv;
6768 Value *A, *B;
6769 auto UAddOvResultPat = m_ExtractValue<0>(
6770 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
6771 if (match(Op0, UAddOvResultPat) &&
6772 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
6773 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
6774 (match(A, m_One()) || match(B, m_One()))) ||
6775 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
6776 (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
6777 // extract(uadd.with.overflow(A, B), 0) < A
6778 // extract(uadd.with.overflow(A, 1), 0) == 0
6779 // extract(uadd.with.overflow(A, -1), 0) != -1
6780 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
6781 else if (match(Op1, UAddOvResultPat) &&
6782 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
6783 // A > extract(uadd.with.overflow(A, B), 0)
6784 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
6785 else
6786 return nullptr;
6788 return ExtractValueInst::Create(UAddOv, 1);
6791 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
6792 if (!I.getOperand(0)->getType()->isPointerTy() ||
6793 NullPointerIsDefined(
6794 I.getParent()->getParent(),
6795 I.getOperand(0)->getType()->getPointerAddressSpace())) {
6796 return nullptr;
6798 Instruction *Op;
6799 if (match(I.getOperand(0), m_Instruction(Op)) &&
6800 match(I.getOperand(1), m_Zero()) &&
6801 Op->isLaunderOrStripInvariantGroup()) {
6802 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
6803 Op->getOperand(0), I.getOperand(1));
6805 return nullptr;
6808 /// This function folds patterns produced by lowering of reduce idioms, such as
6809 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
6810 /// attempts to generate fewer number of scalar comparisons instead of vector
6811 /// comparisons when possible.
6812 static Instruction *foldReductionIdiom(ICmpInst &I,
6813 InstCombiner::BuilderTy &Builder,
6814 const DataLayout &DL) {
6815 if (I.getType()->isVectorTy())
6816 return nullptr;
6817 ICmpInst::Predicate OuterPred, InnerPred;
6818 Value *LHS, *RHS;
6820 // Match lowering of @llvm.vector.reduce.and. Turn
6821 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs
6822 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8
6823 /// %res = icmp <pred> i8 %scalar_ne, 0
6825 /// into
6827 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64
6828 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64
6829 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
6831 /// for <pred> in {ne, eq}.
6832 if (!match(&I, m_ICmp(OuterPred,
6833 m_OneUse(m_BitCast(m_OneUse(
6834 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
6835 m_Zero())))
6836 return nullptr;
6837 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
6838 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
6839 return nullptr;
6840 unsigned NumBits =
6841 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
6842 // TODO: Relax this to "not wider than max legal integer type"?
6843 if (!DL.isLegalInteger(NumBits))
6844 return nullptr;
6846 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
6847 auto *ScalarTy = Builder.getIntNTy(NumBits);
6848 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
6849 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
6850 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
6851 I.getName());
6854 return nullptr;
6857 // This helper will be called with icmp operands in both orders.
6858 Instruction *InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred,
6859 Value *Op0, Value *Op1,
6860 ICmpInst &CxtI) {
6861 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6862 if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6863 if (Instruction *NI = foldGEPICmp(GEP, Op1, Pred, CxtI))
6864 return NI;
6866 if (auto *SI = dyn_cast<SelectInst>(Op0))
6867 if (Instruction *NI = foldSelectICmp(Pred, SI, Op1, CxtI))
6868 return NI;
6870 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op0))
6871 if (Instruction *Res = foldICmpWithMinMax(CxtI, MinMax, Op1, Pred))
6872 return Res;
6875 Value *X;
6876 const APInt *C;
6877 // icmp X+Cst, X
6878 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6879 return foldICmpAddOpConst(X, *C, Pred);
6882 // abs(X) >= X --> true
6883 // abs(X) u<= X --> true
6884 // abs(X) < X --> false
6885 // abs(X) u> X --> false
6886 // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6887 // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6888 // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
6889 // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6890 // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6891 // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
6893 Value *X;
6894 Constant *C;
6895 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X), m_Constant(C))) &&
6896 match(Op1, m_Specific(X))) {
6897 Value *NullValue = Constant::getNullValue(X->getType());
6898 Value *AllOnesValue = Constant::getAllOnesValue(X->getType());
6899 const APInt SMin =
6900 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
6901 bool IsIntMinPosion = C->isAllOnesValue();
6902 switch (Pred) {
6903 case CmpInst::ICMP_ULE:
6904 case CmpInst::ICMP_SGE:
6905 return replaceInstUsesWith(CxtI, ConstantInt::getTrue(CxtI.getType()));
6906 case CmpInst::ICMP_UGT:
6907 case CmpInst::ICMP_SLT:
6908 return replaceInstUsesWith(CxtI, ConstantInt::getFalse(CxtI.getType()));
6909 case CmpInst::ICMP_UGE:
6910 case CmpInst::ICMP_SLE:
6911 case CmpInst::ICMP_EQ: {
6912 return replaceInstUsesWith(
6913 CxtI, IsIntMinPosion
6914 ? Builder.CreateICmpSGT(X, AllOnesValue)
6915 : Builder.CreateICmpULT(
6916 X, ConstantInt::get(X->getType(), SMin + 1)));
6918 case CmpInst::ICMP_ULT:
6919 case CmpInst::ICMP_SGT:
6920 case CmpInst::ICMP_NE: {
6921 return replaceInstUsesWith(
6922 CxtI, IsIntMinPosion
6923 ? Builder.CreateICmpSLT(X, NullValue)
6924 : Builder.CreateICmpUGT(
6925 X, ConstantInt::get(X->getType(), SMin)));
6927 default:
6928 llvm_unreachable("Invalid predicate!");
6933 return nullptr;
6936 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
6937 bool Changed = false;
6938 const SimplifyQuery Q = SQ.getWithInstruction(&I);
6939 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6940 unsigned Op0Cplxity = getComplexity(Op0);
6941 unsigned Op1Cplxity = getComplexity(Op1);
6943 /// Orders the operands of the compare so that they are listed from most
6944 /// complex to least complex. This puts constants before unary operators,
6945 /// before binary operators.
6946 if (Op0Cplxity < Op1Cplxity) {
6947 I.swapOperands();
6948 std::swap(Op0, Op1);
6949 Changed = true;
6952 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
6953 return replaceInstUsesWith(I, V);
6955 // Comparing -val or val with non-zero is the same as just comparing val
6956 // ie, abs(val) != 0 -> val != 0
6957 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
6958 Value *Cond, *SelectTrue, *SelectFalse;
6959 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
6960 m_Value(SelectFalse)))) {
6961 if (Value *V = dyn_castNegVal(SelectTrue)) {
6962 if (V == SelectFalse)
6963 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6965 else if (Value *V = dyn_castNegVal(SelectFalse)) {
6966 if (V == SelectTrue)
6967 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
6972 if (Op0->getType()->isIntOrIntVectorTy(1))
6973 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
6974 return Res;
6976 if (Instruction *Res = canonicalizeCmpWithConstant(I))
6977 return Res;
6979 if (Instruction *Res = canonicalizeICmpPredicate(I))
6980 return Res;
6982 if (Instruction *Res = foldICmpWithConstant(I))
6983 return Res;
6985 if (Instruction *Res = foldICmpWithDominatingICmp(I))
6986 return Res;
6988 if (Instruction *Res = foldICmpUsingBoolRange(I))
6989 return Res;
6991 if (Instruction *Res = foldICmpUsingKnownBits(I))
6992 return Res;
6994 if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q))
6995 return Res;
6997 // Test if the ICmpInst instruction is used exclusively by a select as
6998 // part of a minimum or maximum operation. If so, refrain from doing
6999 // any other folding. This helps out other analyses which understand
7000 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7001 // and CodeGen. And in this case, at least one of the comparison
7002 // operands has at least one user besides the compare (the select),
7003 // which would often largely negate the benefit of folding anyway.
7005 // Do the same for the other patterns recognized by matchSelectPattern.
7006 if (I.hasOneUse())
7007 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
7008 Value *A, *B;
7009 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
7010 if (SPR.Flavor != SPF_UNKNOWN)
7011 return nullptr;
7014 // Do this after checking for min/max to prevent infinite looping.
7015 if (Instruction *Res = foldICmpWithZero(I))
7016 return Res;
7018 // FIXME: We only do this after checking for min/max to prevent infinite
7019 // looping caused by a reverse canonicalization of these patterns for min/max.
7020 // FIXME: The organization of folds is a mess. These would naturally go into
7021 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
7022 // down here after the min/max restriction.
7023 ICmpInst::Predicate Pred = I.getPredicate();
7024 const APInt *C;
7025 if (match(Op1, m_APInt(C))) {
7026 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
7027 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
7028 Constant *Zero = Constant::getNullValue(Op0->getType());
7029 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
7032 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
7033 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
7034 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
7035 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
7039 // The folds in here may rely on wrapping flags and special constants, so
7040 // they can break up min/max idioms in some cases but not seemingly similar
7041 // patterns.
7042 // FIXME: It may be possible to enhance select folding to make this
7043 // unnecessary. It may also be moot if we canonicalize to min/max
7044 // intrinsics.
7045 if (Instruction *Res = foldICmpBinOp(I, Q))
7046 return Res;
7048 if (Instruction *Res = foldICmpInstWithConstant(I))
7049 return Res;
7051 // Try to match comparison as a sign bit test. Intentionally do this after
7052 // foldICmpInstWithConstant() to potentially let other folds to happen first.
7053 if (Instruction *New = foldSignBitTest(I))
7054 return New;
7056 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
7057 return Res;
7059 if (Instruction *Res = foldICmpCommutative(I.getPredicate(), Op0, Op1, I))
7060 return Res;
7061 if (Instruction *Res =
7062 foldICmpCommutative(I.getSwappedPredicate(), Op1, Op0, I))
7063 return Res;
7065 // In case of a comparison with two select instructions having the same
7066 // condition, check whether one of the resulting branches can be simplified.
7067 // If so, just compare the other branch and select the appropriate result.
7068 // For example:
7069 // %tmp1 = select i1 %cmp, i32 %y, i32 %x
7070 // %tmp2 = select i1 %cmp, i32 %z, i32 %x
7071 // %cmp2 = icmp slt i32 %tmp2, %tmp1
7072 // The icmp will result false for the false value of selects and the result
7073 // will depend upon the comparison of true values of selects if %cmp is
7074 // true. Thus, transform this into:
7075 // %cmp = icmp slt i32 %y, %z
7076 // %sel = select i1 %cond, i1 %cmp, i1 false
7077 // This handles similar cases to transform.
7079 Value *Cond, *A, *B, *C, *D;
7080 if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
7081 match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) &&
7082 (Op0->hasOneUse() || Op1->hasOneUse())) {
7083 // Check whether comparison of TrueValues can be simplified
7084 if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) {
7085 Value *NewICMP = Builder.CreateICmp(Pred, B, D);
7086 return SelectInst::Create(Cond, Res, NewICMP);
7088 // Check whether comparison of FalseValues can be simplified
7089 if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) {
7090 Value *NewICMP = Builder.CreateICmp(Pred, A, C);
7091 return SelectInst::Create(Cond, NewICMP, Res);
7096 // Try to optimize equality comparisons against alloca-based pointers.
7097 if (Op0->getType()->isPointerTy() && I.isEquality()) {
7098 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
7099 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
7100 if (foldAllocaCmp(Alloca))
7101 return nullptr;
7102 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
7103 if (foldAllocaCmp(Alloca))
7104 return nullptr;
7107 if (Instruction *Res = foldICmpBitCast(I))
7108 return Res;
7110 // TODO: Hoist this above the min/max bailout.
7111 if (Instruction *R = foldICmpWithCastOp(I))
7112 return R;
7115 Value *X, *Y;
7116 // Transform (X & ~Y) == 0 --> (X & Y) != 0
7117 // and (X & ~Y) != 0 --> (X & Y) == 0
7118 // if A is a power of 2.
7119 if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) &&
7120 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) &&
7121 I.isEquality())
7122 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y),
7123 Op1);
7125 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction.
7126 if (Op0->getType()->isIntOrIntVectorTy()) {
7127 bool ConsumesOp0, ConsumesOp1;
7128 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
7129 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
7130 (ConsumesOp0 || ConsumesOp1)) {
7131 Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
7132 Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
7133 assert(InvOp0 && InvOp1 &&
7134 "Mismatch between isFreeToInvert and getFreelyInverted");
7135 return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1);
7139 Instruction *AddI = nullptr;
7140 if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y),
7141 m_Instruction(AddI))) &&
7142 isa<IntegerType>(X->getType())) {
7143 Value *Result;
7144 Constant *Overflow;
7145 // m_UAddWithOverflow can match patterns that do not include an explicit
7146 // "add" instruction, so check the opcode of the matched op.
7147 if (AddI->getOpcode() == Instruction::Add &&
7148 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI,
7149 Result, Overflow)) {
7150 replaceInstUsesWith(*AddI, Result);
7151 eraseInstFromFunction(*AddI);
7152 return replaceInstUsesWith(I, Overflow);
7156 // (zext X) * (zext Y) --> llvm.umul.with.overflow.
7157 if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
7158 match(Op1, m_APInt(C))) {
7159 if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this))
7160 return R;
7163 // Signbit test folds
7164 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1
7165 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1
7166 Instruction *ExtI;
7167 if ((I.isUnsigned() || I.isEquality()) &&
7168 match(Op1,
7169 m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) &&
7170 Y->getType()->getScalarSizeInBits() == 1 &&
7171 (Op0->hasOneUse() || Op1->hasOneUse())) {
7172 unsigned OpWidth = Op0->getType()->getScalarSizeInBits();
7173 Instruction *ShiftI;
7174 if (match(Op0, m_CombineAnd(m_Instruction(ShiftI),
7175 m_Shr(m_Value(X), m_SpecificIntAllowUndef(
7176 OpWidth - 1))))) {
7177 unsigned ExtOpc = ExtI->getOpcode();
7178 unsigned ShiftOpc = ShiftI->getOpcode();
7179 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) ||
7180 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) {
7181 Value *SLTZero =
7182 Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
7183 Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName());
7184 return replaceInstUsesWith(I, Cmp);
7190 if (Instruction *Res = foldICmpEquality(I))
7191 return Res;
7193 if (Instruction *Res = foldICmpPow2Test(I, Builder))
7194 return Res;
7196 if (Instruction *Res = foldICmpOfUAddOv(I))
7197 return Res;
7199 // The 'cmpxchg' instruction returns an aggregate containing the old value and
7200 // an i1 which indicates whether or not we successfully did the swap.
7202 // Replace comparisons between the old value and the expected value with the
7203 // indicator that 'cmpxchg' returns.
7205 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
7206 // spuriously fail. In those cases, the old value may equal the expected
7207 // value but it is possible for the swap to not occur.
7208 if (I.getPredicate() == ICmpInst::ICMP_EQ)
7209 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
7210 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
7211 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
7212 !ACXI->isWeak())
7213 return ExtractValueInst::Create(ACXI, 1);
7215 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
7216 return Res;
7218 if (I.getType()->isVectorTy())
7219 if (Instruction *Res = foldVectorCmp(I, Builder))
7220 return Res;
7222 if (Instruction *Res = foldICmpInvariantGroup(I))
7223 return Res;
7225 if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
7226 return Res;
7228 return Changed ? &I : nullptr;
7231 /// Fold fcmp ([us]itofp x, cst) if possible.
7232 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
7233 Instruction *LHSI,
7234 Constant *RHSC) {
7235 if (!isa<ConstantFP>(RHSC)) return nullptr;
7236 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
7238 // Get the width of the mantissa. We don't want to hack on conversions that
7239 // might lose information from the integer, e.g. "i64 -> float"
7240 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
7241 if (MantissaWidth == -1) return nullptr; // Unknown.
7243 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
7245 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
7247 if (I.isEquality()) {
7248 FCmpInst::Predicate P = I.getPredicate();
7249 bool IsExact = false;
7250 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
7251 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
7253 // If the floating point constant isn't an integer value, we know if we will
7254 // ever compare equal / not equal to it.
7255 if (!IsExact) {
7256 // TODO: Can never be -0.0 and other non-representable values
7257 APFloat RHSRoundInt(RHS);
7258 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
7259 if (RHS != RHSRoundInt) {
7260 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
7261 return replaceInstUsesWith(I, Builder.getFalse());
7263 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
7264 return replaceInstUsesWith(I, Builder.getTrue());
7268 // TODO: If the constant is exactly representable, is it always OK to do
7269 // equality compares as integer?
7272 // Check to see that the input is converted from an integer type that is small
7273 // enough that preserves all bits. TODO: check here for "known" sign bits.
7274 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
7275 unsigned InputSize = IntTy->getScalarSizeInBits();
7277 // Following test does NOT adjust InputSize downwards for signed inputs,
7278 // because the most negative value still requires all the mantissa bits
7279 // to distinguish it from one less than that value.
7280 if ((int)InputSize > MantissaWidth) {
7281 // Conversion would lose accuracy. Check if loss can impact comparison.
7282 int Exp = ilogb(RHS);
7283 if (Exp == APFloat::IEK_Inf) {
7284 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
7285 if (MaxExponent < (int)InputSize - !LHSUnsigned)
7286 // Conversion could create infinity.
7287 return nullptr;
7288 } else {
7289 // Note that if RHS is zero or NaN, then Exp is negative
7290 // and first condition is trivially false.
7291 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
7292 // Conversion could affect comparison.
7293 return nullptr;
7297 // Otherwise, we can potentially simplify the comparison. We know that it
7298 // will always come through as an integer value and we know the constant is
7299 // not a NAN (it would have been previously simplified).
7300 assert(!RHS.isNaN() && "NaN comparison not already folded!");
7302 ICmpInst::Predicate Pred;
7303 switch (I.getPredicate()) {
7304 default: llvm_unreachable("Unexpected predicate!");
7305 case FCmpInst::FCMP_UEQ:
7306 case FCmpInst::FCMP_OEQ:
7307 Pred = ICmpInst::ICMP_EQ;
7308 break;
7309 case FCmpInst::FCMP_UGT:
7310 case FCmpInst::FCMP_OGT:
7311 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
7312 break;
7313 case FCmpInst::FCMP_UGE:
7314 case FCmpInst::FCMP_OGE:
7315 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
7316 break;
7317 case FCmpInst::FCMP_ULT:
7318 case FCmpInst::FCMP_OLT:
7319 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
7320 break;
7321 case FCmpInst::FCMP_ULE:
7322 case FCmpInst::FCMP_OLE:
7323 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
7324 break;
7325 case FCmpInst::FCMP_UNE:
7326 case FCmpInst::FCMP_ONE:
7327 Pred = ICmpInst::ICMP_NE;
7328 break;
7329 case FCmpInst::FCMP_ORD:
7330 return replaceInstUsesWith(I, Builder.getTrue());
7331 case FCmpInst::FCMP_UNO:
7332 return replaceInstUsesWith(I, Builder.getFalse());
7335 // Now we know that the APFloat is a normal number, zero or inf.
7337 // See if the FP constant is too large for the integer. For example,
7338 // comparing an i8 to 300.0.
7339 unsigned IntWidth = IntTy->getScalarSizeInBits();
7341 if (!LHSUnsigned) {
7342 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
7343 // and large values.
7344 APFloat SMax(RHS.getSemantics());
7345 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
7346 APFloat::rmNearestTiesToEven);
7347 if (SMax < RHS) { // smax < 13123.0
7348 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
7349 Pred == ICmpInst::ICMP_SLE)
7350 return replaceInstUsesWith(I, Builder.getTrue());
7351 return replaceInstUsesWith(I, Builder.getFalse());
7353 } else {
7354 // If the RHS value is > UnsignedMax, fold the comparison. This handles
7355 // +INF and large values.
7356 APFloat UMax(RHS.getSemantics());
7357 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
7358 APFloat::rmNearestTiesToEven);
7359 if (UMax < RHS) { // umax < 13123.0
7360 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
7361 Pred == ICmpInst::ICMP_ULE)
7362 return replaceInstUsesWith(I, Builder.getTrue());
7363 return replaceInstUsesWith(I, Builder.getFalse());
7367 if (!LHSUnsigned) {
7368 // See if the RHS value is < SignedMin.
7369 APFloat SMin(RHS.getSemantics());
7370 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
7371 APFloat::rmNearestTiesToEven);
7372 if (SMin > RHS) { // smin > 12312.0
7373 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
7374 Pred == ICmpInst::ICMP_SGE)
7375 return replaceInstUsesWith(I, Builder.getTrue());
7376 return replaceInstUsesWith(I, Builder.getFalse());
7378 } else {
7379 // See if the RHS value is < UnsignedMin.
7380 APFloat UMin(RHS.getSemantics());
7381 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
7382 APFloat::rmNearestTiesToEven);
7383 if (UMin > RHS) { // umin > 12312.0
7384 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
7385 Pred == ICmpInst::ICMP_UGE)
7386 return replaceInstUsesWith(I, Builder.getTrue());
7387 return replaceInstUsesWith(I, Builder.getFalse());
7391 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
7392 // [0, UMAX], but it may still be fractional. Check whether this is the case
7393 // using the IsExact flag.
7394 // Don't do this for zero, because -0.0 is not fractional.
7395 APSInt RHSInt(IntWidth, LHSUnsigned);
7396 bool IsExact;
7397 RHS.convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact);
7398 if (!RHS.isZero()) {
7399 if (!IsExact) {
7400 // If we had a comparison against a fractional value, we have to adjust
7401 // the compare predicate and sometimes the value. RHSC is rounded towards
7402 // zero at this point.
7403 switch (Pred) {
7404 default: llvm_unreachable("Unexpected integer comparison!");
7405 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
7406 return replaceInstUsesWith(I, Builder.getTrue());
7407 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
7408 return replaceInstUsesWith(I, Builder.getFalse());
7409 case ICmpInst::ICMP_ULE:
7410 // (float)int <= 4.4 --> int <= 4
7411 // (float)int <= -4.4 --> false
7412 if (RHS.isNegative())
7413 return replaceInstUsesWith(I, Builder.getFalse());
7414 break;
7415 case ICmpInst::ICMP_SLE:
7416 // (float)int <= 4.4 --> int <= 4
7417 // (float)int <= -4.4 --> int < -4
7418 if (RHS.isNegative())
7419 Pred = ICmpInst::ICMP_SLT;
7420 break;
7421 case ICmpInst::ICMP_ULT:
7422 // (float)int < -4.4 --> false
7423 // (float)int < 4.4 --> int <= 4
7424 if (RHS.isNegative())
7425 return replaceInstUsesWith(I, Builder.getFalse());
7426 Pred = ICmpInst::ICMP_ULE;
7427 break;
7428 case ICmpInst::ICMP_SLT:
7429 // (float)int < -4.4 --> int < -4
7430 // (float)int < 4.4 --> int <= 4
7431 if (!RHS.isNegative())
7432 Pred = ICmpInst::ICMP_SLE;
7433 break;
7434 case ICmpInst::ICMP_UGT:
7435 // (float)int > 4.4 --> int > 4
7436 // (float)int > -4.4 --> true
7437 if (RHS.isNegative())
7438 return replaceInstUsesWith(I, Builder.getTrue());
7439 break;
7440 case ICmpInst::ICMP_SGT:
7441 // (float)int > 4.4 --> int > 4
7442 // (float)int > -4.4 --> int >= -4
7443 if (RHS.isNegative())
7444 Pred = ICmpInst::ICMP_SGE;
7445 break;
7446 case ICmpInst::ICMP_UGE:
7447 // (float)int >= -4.4 --> true
7448 // (float)int >= 4.4 --> int > 4
7449 if (RHS.isNegative())
7450 return replaceInstUsesWith(I, Builder.getTrue());
7451 Pred = ICmpInst::ICMP_UGT;
7452 break;
7453 case ICmpInst::ICMP_SGE:
7454 // (float)int >= -4.4 --> int >= -4
7455 // (float)int >= 4.4 --> int > 4
7456 if (!RHS.isNegative())
7457 Pred = ICmpInst::ICMP_SGT;
7458 break;
7463 // Lower this FP comparison into an appropriate integer version of the
7464 // comparison.
7465 return new ICmpInst(Pred, LHSI->getOperand(0), Builder.getInt(RHSInt));
7468 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
7469 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
7470 Constant *RHSC) {
7471 // When C is not 0.0 and infinities are not allowed:
7472 // (C / X) < 0.0 is a sign-bit test of X
7473 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
7474 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
7476 // Proof:
7477 // Multiply (C / X) < 0.0 by X * X / C.
7478 // - X is non zero, if it is the flag 'ninf' is violated.
7479 // - C defines the sign of X * X * C. Thus it also defines whether to swap
7480 // the predicate. C is also non zero by definition.
7482 // Thus X * X / C is non zero and the transformation is valid. [qed]
7484 FCmpInst::Predicate Pred = I.getPredicate();
7486 // Check that predicates are valid.
7487 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
7488 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
7489 return nullptr;
7491 // Check that RHS operand is zero.
7492 if (!match(RHSC, m_AnyZeroFP()))
7493 return nullptr;
7495 // Check fastmath flags ('ninf').
7496 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
7497 return nullptr;
7499 // Check the properties of the dividend. It must not be zero to avoid a
7500 // division by zero (see Proof).
7501 const APFloat *C;
7502 if (!match(LHSI->getOperand(0), m_APFloat(C)))
7503 return nullptr;
7505 if (C->isZero())
7506 return nullptr;
7508 // Get swapped predicate if necessary.
7509 if (C->isNegative())
7510 Pred = I.getSwappedPredicate();
7512 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
7515 /// Optimize fabs(X) compared with zero.
7516 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
7517 Value *X;
7518 if (!match(I.getOperand(0), m_FAbs(m_Value(X))))
7519 return nullptr;
7521 const APFloat *C;
7522 if (!match(I.getOperand(1), m_APFloat(C)))
7523 return nullptr;
7525 if (!C->isPosZero()) {
7526 if (!C->isSmallestNormalized())
7527 return nullptr;
7529 const Function *F = I.getFunction();
7530 DenormalMode Mode = F->getDenormalMode(C->getSemantics());
7531 if (Mode.Input == DenormalMode::PreserveSign ||
7532 Mode.Input == DenormalMode::PositiveZero) {
7534 auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7535 Constant *Zero = ConstantFP::getZero(X->getType());
7536 return new FCmpInst(P, X, Zero, "", I);
7539 switch (I.getPredicate()) {
7540 case FCmpInst::FCMP_OLT:
7541 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
7542 return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X);
7543 case FCmpInst::FCMP_UGE:
7544 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
7545 return replaceFCmp(&I, FCmpInst::FCMP_UNE, X);
7546 case FCmpInst::FCMP_OGE:
7547 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
7548 return replaceFCmp(&I, FCmpInst::FCMP_ONE, X);
7549 case FCmpInst::FCMP_ULT:
7550 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
7551 return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X);
7552 default:
7553 break;
7557 return nullptr;
7560 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7561 I->setPredicate(P);
7562 return IC.replaceOperand(*I, 0, X);
7565 switch (I.getPredicate()) {
7566 case FCmpInst::FCMP_UGE:
7567 case FCmpInst::FCMP_OLT:
7568 // fabs(X) >= 0.0 --> true
7569 // fabs(X) < 0.0 --> false
7570 llvm_unreachable("fcmp should have simplified");
7572 case FCmpInst::FCMP_OGT:
7573 // fabs(X) > 0.0 --> X != 0.0
7574 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
7576 case FCmpInst::FCMP_UGT:
7577 // fabs(X) u> 0.0 --> X u!= 0.0
7578 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
7580 case FCmpInst::FCMP_OLE:
7581 // fabs(X) <= 0.0 --> X == 0.0
7582 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
7584 case FCmpInst::FCMP_ULE:
7585 // fabs(X) u<= 0.0 --> X u== 0.0
7586 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
7588 case FCmpInst::FCMP_OGE:
7589 // fabs(X) >= 0.0 --> !isnan(X)
7590 assert(!I.hasNoNaNs() && "fcmp should have simplified");
7591 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
7593 case FCmpInst::FCMP_ULT:
7594 // fabs(X) u< 0.0 --> isnan(X)
7595 assert(!I.hasNoNaNs() && "fcmp should have simplified");
7596 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
7598 case FCmpInst::FCMP_OEQ:
7599 case FCmpInst::FCMP_UEQ:
7600 case FCmpInst::FCMP_ONE:
7601 case FCmpInst::FCMP_UNE:
7602 case FCmpInst::FCMP_ORD:
7603 case FCmpInst::FCMP_UNO:
7604 // Look through the fabs() because it doesn't change anything but the sign.
7605 // fabs(X) == 0.0 --> X == 0.0,
7606 // fabs(X) != 0.0 --> X != 0.0
7607 // isnan(fabs(X)) --> isnan(X)
7608 // !isnan(fabs(X) --> !isnan(X)
7609 return replacePredAndOp0(&I, I.getPredicate(), X);
7611 default:
7612 return nullptr;
7616 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
7617 CmpInst::Predicate Pred = I.getPredicate();
7618 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7620 // Canonicalize fneg as Op1.
7621 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
7622 std::swap(Op0, Op1);
7623 Pred = I.getSwappedPredicate();
7626 if (!match(Op1, m_FNeg(m_Specific(Op0))))
7627 return nullptr;
7629 // Replace the negated operand with 0.0:
7630 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
7631 Constant *Zero = ConstantFP::getZero(Op0->getType());
7632 return new FCmpInst(Pred, Op0, Zero, "", &I);
7635 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
7636 bool Changed = false;
7638 /// Orders the operands of the compare so that they are listed from most
7639 /// complex to least complex. This puts constants before unary operators,
7640 /// before binary operators.
7641 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
7642 I.swapOperands();
7643 Changed = true;
7646 const CmpInst::Predicate Pred = I.getPredicate();
7647 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7648 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
7649 SQ.getWithInstruction(&I)))
7650 return replaceInstUsesWith(I, V);
7652 // Simplify 'fcmp pred X, X'
7653 Type *OpType = Op0->getType();
7654 assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
7655 if (Op0 == Op1) {
7656 switch (Pred) {
7657 default: break;
7658 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
7659 case FCmpInst::FCMP_ULT: // True if unordered or less than
7660 case FCmpInst::FCMP_UGT: // True if unordered or greater than
7661 case FCmpInst::FCMP_UNE: // True if unordered or not equal
7662 // Canonicalize these to be 'fcmp uno %X, 0.0'.
7663 I.setPredicate(FCmpInst::FCMP_UNO);
7664 I.setOperand(1, Constant::getNullValue(OpType));
7665 return &I;
7667 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
7668 case FCmpInst::FCMP_OEQ: // True if ordered and equal
7669 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
7670 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
7671 // Canonicalize these to be 'fcmp ord %X, 0.0'.
7672 I.setPredicate(FCmpInst::FCMP_ORD);
7673 I.setOperand(1, Constant::getNullValue(OpType));
7674 return &I;
7678 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
7679 // then canonicalize the operand to 0.0.
7680 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
7681 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, DL, &TLI, 0,
7682 &AC, &I, &DT))
7683 return replaceOperand(I, 0, ConstantFP::getZero(OpType));
7685 if (!match(Op1, m_PosZeroFP()) &&
7686 isKnownNeverNaN(Op1, DL, &TLI, 0, &AC, &I, &DT))
7687 return replaceOperand(I, 1, ConstantFP::getZero(OpType));
7690 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
7691 Value *X, *Y;
7692 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
7693 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
7695 if (Instruction *R = foldFCmpFNegCommonOp(I))
7696 return R;
7698 // Test if the FCmpInst instruction is used exclusively by a select as
7699 // part of a minimum or maximum operation. If so, refrain from doing
7700 // any other folding. This helps out other analyses which understand
7701 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7702 // and CodeGen. And in this case, at least one of the comparison
7703 // operands has at least one user besides the compare (the select),
7704 // which would often largely negate the benefit of folding anyway.
7705 if (I.hasOneUse())
7706 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
7707 Value *A, *B;
7708 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
7709 if (SPR.Flavor != SPF_UNKNOWN)
7710 return nullptr;
7713 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
7714 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
7715 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
7716 return replaceOperand(I, 1, ConstantFP::getZero(OpType));
7718 // Ignore signbit of bitcasted int when comparing equality to FP 0.0:
7719 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
7720 if (match(Op1, m_PosZeroFP()) &&
7721 match(Op0, m_OneUse(m_BitCast(m_Value(X)))) &&
7722 X->getType()->isVectorTy() == OpType->isVectorTy() &&
7723 X->getType()->getScalarSizeInBits() == OpType->getScalarSizeInBits()) {
7724 ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE;
7725 if (Pred == FCmpInst::FCMP_OEQ)
7726 IntPred = ICmpInst::ICMP_EQ;
7727 else if (Pred == FCmpInst::FCMP_UNE)
7728 IntPred = ICmpInst::ICMP_NE;
7730 if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) {
7731 Type *IntTy = X->getType();
7732 const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits());
7733 Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask));
7734 return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy));
7738 // Handle fcmp with instruction LHS and constant RHS.
7739 Instruction *LHSI;
7740 Constant *RHSC;
7741 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
7742 switch (LHSI->getOpcode()) {
7743 case Instruction::PHI:
7744 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
7745 return NV;
7746 break;
7747 case Instruction::SIToFP:
7748 case Instruction::UIToFP:
7749 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
7750 return NV;
7751 break;
7752 case Instruction::FDiv:
7753 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
7754 return NV;
7755 break;
7756 case Instruction::Load:
7757 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
7758 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
7759 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
7760 cast<LoadInst>(LHSI), GEP, GV, I))
7761 return Res;
7762 break;
7766 if (Instruction *R = foldFabsWithFcmpZero(I, *this))
7767 return R;
7769 if (match(Op0, m_FNeg(m_Value(X)))) {
7770 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
7771 Constant *C;
7772 if (match(Op1, m_Constant(C)))
7773 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
7774 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
7777 if (match(Op0, m_FPExt(m_Value(X)))) {
7778 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
7779 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
7780 return new FCmpInst(Pred, X, Y, "", &I);
7782 const APFloat *C;
7783 if (match(Op1, m_APFloat(C))) {
7784 const fltSemantics &FPSem =
7785 X->getType()->getScalarType()->getFltSemantics();
7786 bool Lossy;
7787 APFloat TruncC = *C;
7788 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
7790 if (Lossy) {
7791 // X can't possibly equal the higher-precision constant, so reduce any
7792 // equality comparison.
7793 // TODO: Other predicates can be handled via getFCmpCode().
7794 switch (Pred) {
7795 case FCmpInst::FCMP_OEQ:
7796 // X is ordered and equal to an impossible constant --> false
7797 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7798 case FCmpInst::FCMP_ONE:
7799 // X is ordered and not equal to an impossible constant --> ordered
7800 return new FCmpInst(FCmpInst::FCMP_ORD, X,
7801 ConstantFP::getZero(X->getType()));
7802 case FCmpInst::FCMP_UEQ:
7803 // X is unordered or equal to an impossible constant --> unordered
7804 return new FCmpInst(FCmpInst::FCMP_UNO, X,
7805 ConstantFP::getZero(X->getType()));
7806 case FCmpInst::FCMP_UNE:
7807 // X is unordered or not equal to an impossible constant --> true
7808 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7809 default:
7810 break;
7814 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
7815 // Avoid lossy conversions and denormals.
7816 // Zero is a special case that's OK to convert.
7817 APFloat Fabs = TruncC;
7818 Fabs.clearSign();
7819 if (!Lossy &&
7820 (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) {
7821 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
7822 return new FCmpInst(Pred, X, NewC, "", &I);
7827 // Convert a sign-bit test of an FP value into a cast and integer compare.
7828 // TODO: Simplify if the copysign constant is 0.0 or NaN.
7829 // TODO: Handle non-zero compare constants.
7830 // TODO: Handle other predicates.
7831 const APFloat *C;
7832 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
7833 m_Value(X)))) &&
7834 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
7835 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
7836 if (auto *VecTy = dyn_cast<VectorType>(OpType))
7837 IntType = VectorType::get(IntType, VecTy->getElementCount());
7839 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
7840 if (Pred == FCmpInst::FCMP_OLT) {
7841 Value *IntX = Builder.CreateBitCast(X, IntType);
7842 return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
7843 ConstantInt::getNullValue(IntType));
7848 Value *CanonLHS = nullptr, *CanonRHS = nullptr;
7849 match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS)));
7850 match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS)));
7852 // (canonicalize(x) == x) => (x == x)
7853 if (CanonLHS == Op1)
7854 return new FCmpInst(Pred, Op1, Op1, "", &I);
7856 // (x == canonicalize(x)) => (x == x)
7857 if (CanonRHS == Op0)
7858 return new FCmpInst(Pred, Op0, Op0, "", &I);
7860 // (canonicalize(x) == canonicalize(y)) => (x == y)
7861 if (CanonLHS && CanonRHS)
7862 return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I);
7865 if (I.getType()->isVectorTy())
7866 if (Instruction *Res = foldVectorCmp(I, Builder))
7867 return Res;
7869 return Changed ? &I : nullptr;