[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Utils / CallPromotionUtils.cpp
blobe42cdab64446e2ba3055d8e2ecfc25c5e8e0811a
1 //===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities useful for promoting indirect call sites to
10 // direct call sites.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
15 #include "llvm/Analysis/Loads.h"
16 #include "llvm/Analysis/TypeMetadataUtils.h"
17 #include "llvm/IR/AttributeMask.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 using namespace llvm;
24 #define DEBUG_TYPE "call-promotion-utils"
26 /// Fix-up phi nodes in an invoke instruction's normal destination.
27 ///
28 /// After versioning an invoke instruction, values coming from the original
29 /// block will now be coming from the "merge" block. For example, in the code
30 /// below:
31 ///
32 /// then_bb:
33 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
34 ///
35 /// else_bb:
36 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
37 ///
38 /// merge_bb:
39 /// %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
40 /// br %normal_dst
41 ///
42 /// normal_dst:
43 /// %t3 = phi i32 [ %x, %orig_bb ], ...
44 ///
45 /// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
46 /// "normal_dst" must be fixed to refer to "merge_bb":
47 ///
48 /// normal_dst:
49 /// %t3 = phi i32 [ %x, %merge_bb ], ...
50 ///
51 static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
52 BasicBlock *MergeBlock) {
53 for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
54 int Idx = Phi.getBasicBlockIndex(OrigBlock);
55 if (Idx == -1)
56 continue;
57 Phi.setIncomingBlock(Idx, MergeBlock);
61 /// Fix-up phi nodes in an invoke instruction's unwind destination.
62 ///
63 /// After versioning an invoke instruction, values coming from the original
64 /// block will now be coming from either the "then" block or the "else" block.
65 /// For example, in the code below:
66 ///
67 /// then_bb:
68 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
69 ///
70 /// else_bb:
71 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
72 ///
73 /// unwind_dst:
74 /// %t3 = phi i32 [ %x, %orig_bb ], ...
75 ///
76 /// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
77 /// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
78 ///
79 /// unwind_dst:
80 /// %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
81 ///
82 static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
83 BasicBlock *ThenBlock,
84 BasicBlock *ElseBlock) {
85 for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
86 int Idx = Phi.getBasicBlockIndex(OrigBlock);
87 if (Idx == -1)
88 continue;
89 auto *V = Phi.getIncomingValue(Idx);
90 Phi.setIncomingBlock(Idx, ThenBlock);
91 Phi.addIncoming(V, ElseBlock);
95 /// Create a phi node for the returned value of a call or invoke instruction.
96 ///
97 /// After versioning a call or invoke instruction that returns a value, we have
98 /// to merge the value of the original and new instructions. We do this by
99 /// creating a phi node and replacing uses of the original instruction with this
100 /// phi node.
102 /// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
103 /// defined in "then_bb", we create the following phi node:
105 /// ; Uses of the original instruction are replaced by uses of the phi node.
106 /// %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
108 static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
109 BasicBlock *MergeBlock, IRBuilder<> &Builder) {
111 if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
112 return;
114 Builder.SetInsertPoint(MergeBlock, MergeBlock->begin());
115 PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
116 SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
117 for (User *U : UsersToUpdate)
118 U->replaceUsesOfWith(OrigInst, Phi);
119 Phi->addIncoming(OrigInst, OrigInst->getParent());
120 Phi->addIncoming(NewInst, NewInst->getParent());
123 /// Cast a call or invoke instruction to the given type.
125 /// When promoting a call site, the return type of the call site might not match
126 /// that of the callee. If this is the case, we have to cast the returned value
127 /// to the correct type. The location of the cast depends on if we have a call
128 /// or invoke instruction.
130 /// For example, if the call instruction below requires a bitcast after
131 /// promotion:
133 /// orig_bb:
134 /// %t0 = call i32 @func()
135 /// ...
137 /// The bitcast is placed after the call instruction:
139 /// orig_bb:
140 /// ; Uses of the original return value are replaced by uses of the bitcast.
141 /// %t0 = call i32 @func()
142 /// %t1 = bitcast i32 %t0 to ...
143 /// ...
145 /// A similar transformation is performed for invoke instructions. However,
146 /// since invokes are terminating, a new block is created for the bitcast. For
147 /// example, if the invoke instruction below requires a bitcast after promotion:
149 /// orig_bb:
150 /// %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
152 /// The edge between the original block and the invoke's normal destination is
153 /// split, and the bitcast is placed there:
155 /// orig_bb:
156 /// %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
158 /// split_bb:
159 /// ; Uses of the original return value are replaced by uses of the bitcast.
160 /// %t1 = bitcast i32 %t0 to ...
161 /// br label %normal_dst
163 static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {
165 // Save the users of the calling instruction. These uses will be changed to
166 // use the bitcast after we create it.
167 SmallVector<User *, 16> UsersToUpdate(CB.users());
169 // Determine an appropriate location to create the bitcast for the return
170 // value. The location depends on if we have a call or invoke instruction.
171 Instruction *InsertBefore = nullptr;
172 if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
173 InsertBefore =
174 &SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->front();
175 else
176 InsertBefore = &*std::next(CB.getIterator());
178 // Bitcast the return value to the correct type.
179 auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
180 if (RetBitCast)
181 *RetBitCast = Cast;
183 // Replace all the original uses of the calling instruction with the bitcast.
184 for (User *U : UsersToUpdate)
185 U->replaceUsesOfWith(&CB, Cast);
188 /// Predicate and clone the given call site.
190 /// This function creates an if-then-else structure at the location of the call
191 /// site. The "if" condition compares the call site's called value to the given
192 /// callee. The original call site is moved into the "else" block, and a clone
193 /// of the call site is placed in the "then" block. The cloned instruction is
194 /// returned.
196 /// For example, the call instruction below:
198 /// orig_bb:
199 /// %t0 = call i32 %ptr()
200 /// ...
202 /// Is replace by the following:
204 /// orig_bb:
205 /// %cond = icmp eq i32 ()* %ptr, @func
206 /// br i1 %cond, %then_bb, %else_bb
208 /// then_bb:
209 /// ; The clone of the original call instruction is placed in the "then"
210 /// ; block. It is not yet promoted.
211 /// %t1 = call i32 %ptr()
212 /// br merge_bb
214 /// else_bb:
215 /// ; The original call instruction is moved to the "else" block.
216 /// %t0 = call i32 %ptr()
217 /// br merge_bb
219 /// merge_bb:
220 /// ; Uses of the original call instruction are replaced by uses of the phi
221 /// ; node.
222 /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
223 /// ...
225 /// A similar transformation is performed for invoke instructions. However,
226 /// since invokes are terminating, more work is required. For example, the
227 /// invoke instruction below:
229 /// orig_bb:
230 /// %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
232 /// Is replace by the following:
234 /// orig_bb:
235 /// %cond = icmp eq i32 ()* %ptr, @func
236 /// br i1 %cond, %then_bb, %else_bb
238 /// then_bb:
239 /// ; The clone of the original invoke instruction is placed in the "then"
240 /// ; block, and its normal destination is set to the "merge" block. It is
241 /// ; not yet promoted.
242 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
244 /// else_bb:
245 /// ; The original invoke instruction is moved into the "else" block, and
246 /// ; its normal destination is set to the "merge" block.
247 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
249 /// merge_bb:
250 /// ; Uses of the original invoke instruction are replaced by uses of the
251 /// ; phi node, and the merge block branches to the normal destination.
252 /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
253 /// br %normal_dst
255 /// An indirect musttail call is processed slightly differently in that:
256 /// 1. No merge block needed for the orginal and the cloned callsite, since
257 /// either one ends the flow. No phi node is needed either.
258 /// 2. The return statement following the original call site is duplicated too
259 /// and placed immediately after the cloned call site per the IR convention.
261 /// For example, the musttail call instruction below:
263 /// orig_bb:
264 /// %t0 = musttail call i32 %ptr()
265 /// ...
267 /// Is replaced by the following:
269 /// cond_bb:
270 /// %cond = icmp eq i32 ()* %ptr, @func
271 /// br i1 %cond, %then_bb, %orig_bb
273 /// then_bb:
274 /// ; The clone of the original call instruction is placed in the "then"
275 /// ; block. It is not yet promoted.
276 /// %t1 = musttail call i32 %ptr()
277 /// ret %t1
279 /// orig_bb:
280 /// ; The original call instruction stays in its original block.
281 /// %t0 = musttail call i32 %ptr()
282 /// ret %t0
283 CallBase &llvm::versionCallSite(CallBase &CB, Value *Callee,
284 MDNode *BranchWeights) {
286 IRBuilder<> Builder(&CB);
287 CallBase *OrigInst = &CB;
288 BasicBlock *OrigBlock = OrigInst->getParent();
290 // Create the compare. The called value and callee must have the same type to
291 // be compared.
292 if (CB.getCalledOperand()->getType() != Callee->getType())
293 Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
294 auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);
296 if (OrigInst->isMustTailCall()) {
297 // Create an if-then structure. The original instruction stays in its block,
298 // and a clone of the original instruction is placed in the "then" block.
299 Instruction *ThenTerm =
300 SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
301 BasicBlock *ThenBlock = ThenTerm->getParent();
302 ThenBlock->setName("if.true.direct_targ");
303 CallBase *NewInst = cast<CallBase>(OrigInst->clone());
304 NewInst->insertBefore(ThenTerm);
306 // Place a clone of the optional bitcast after the new call site.
307 Value *NewRetVal = NewInst;
308 auto Next = OrigInst->getNextNode();
309 if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
310 assert(BitCast->getOperand(0) == OrigInst &&
311 "bitcast following musttail call must use the call");
312 auto NewBitCast = BitCast->clone();
313 NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
314 NewBitCast->insertBefore(ThenTerm);
315 NewRetVal = NewBitCast;
316 Next = BitCast->getNextNode();
319 // Place a clone of the return instruction after the new call site.
320 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
321 assert(Ret && "musttail call must precede a ret with an optional bitcast");
322 auto NewRet = Ret->clone();
323 if (Ret->getReturnValue())
324 NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
325 NewRet->insertBefore(ThenTerm);
327 // A return instructions is terminating, so we don't need the terminator
328 // instruction just created.
329 ThenTerm->eraseFromParent();
331 return *NewInst;
334 // Create an if-then-else structure. The original instruction is moved into
335 // the "else" block, and a clone of the original instruction is placed in the
336 // "then" block.
337 Instruction *ThenTerm = nullptr;
338 Instruction *ElseTerm = nullptr;
339 SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
340 BasicBlock *ThenBlock = ThenTerm->getParent();
341 BasicBlock *ElseBlock = ElseTerm->getParent();
342 BasicBlock *MergeBlock = OrigInst->getParent();
344 ThenBlock->setName("if.true.direct_targ");
345 ElseBlock->setName("if.false.orig_indirect");
346 MergeBlock->setName("if.end.icp");
348 CallBase *NewInst = cast<CallBase>(OrigInst->clone());
349 OrigInst->moveBefore(ElseTerm);
350 NewInst->insertBefore(ThenTerm);
352 // If the original call site is an invoke instruction, we have extra work to
353 // do since invoke instructions are terminating. We have to fix-up phi nodes
354 // in the invoke's normal and unwind destinations.
355 if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
356 auto *NewInvoke = cast<InvokeInst>(NewInst);
358 // Invoke instructions are terminating, so we don't need the terminator
359 // instructions that were just created.
360 ThenTerm->eraseFromParent();
361 ElseTerm->eraseFromParent();
363 // Branch from the "merge" block to the original normal destination.
364 Builder.SetInsertPoint(MergeBlock);
365 Builder.CreateBr(OrigInvoke->getNormalDest());
367 // Fix-up phi nodes in the original invoke's normal and unwind destinations.
368 fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
369 fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
371 // Now set the normal destinations of the invoke instructions to be the
372 // "merge" block.
373 OrigInvoke->setNormalDest(MergeBlock);
374 NewInvoke->setNormalDest(MergeBlock);
377 // Create a phi node for the returned value of the call site.
378 createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);
380 return *NewInst;
383 bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee,
384 const char **FailureReason) {
385 assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
387 auto &DL = Callee->getParent()->getDataLayout();
389 // Check the return type. The callee's return value type must be bitcast
390 // compatible with the call site's type.
391 Type *CallRetTy = CB.getType();
392 Type *FuncRetTy = Callee->getReturnType();
393 if (CallRetTy != FuncRetTy)
394 if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
395 if (FailureReason)
396 *FailureReason = "Return type mismatch";
397 return false;
400 // The number of formal arguments of the callee.
401 unsigned NumParams = Callee->getFunctionType()->getNumParams();
403 // The number of actual arguments in the call.
404 unsigned NumArgs = CB.arg_size();
406 // Check the number of arguments. The callee and call site must agree on the
407 // number of arguments.
408 if (NumArgs != NumParams && !Callee->isVarArg()) {
409 if (FailureReason)
410 *FailureReason = "The number of arguments mismatch";
411 return false;
414 // Check the argument types. The callee's formal argument types must be
415 // bitcast compatible with the corresponding actual argument types of the call
416 // site.
417 unsigned I = 0;
418 for (; I < NumParams; ++I) {
419 // Make sure that the callee and call agree on byval/inalloca. The types do
420 // not have to match.
421 if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
422 CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
423 if (FailureReason)
424 *FailureReason = "byval mismatch";
425 return false;
427 if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
428 CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
429 if (FailureReason)
430 *FailureReason = "inalloca mismatch";
431 return false;
434 Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
435 Type *ActualTy = CB.getArgOperand(I)->getType();
436 if (FormalTy == ActualTy)
437 continue;
438 if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
439 if (FailureReason)
440 *FailureReason = "Argument type mismatch";
441 return false;
444 // MustTail call needs stricter type match. See
445 // Verifier::verifyMustTailCall().
446 if (CB.isMustTailCall()) {
447 PointerType *PF = dyn_cast<PointerType>(FormalTy);
448 PointerType *PA = dyn_cast<PointerType>(ActualTy);
449 if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) {
450 if (FailureReason)
451 *FailureReason = "Musttail call Argument type mismatch";
452 return false;
456 for (; I < NumArgs; I++) {
457 // Vararg functions can have more arguments than parameters.
458 assert(Callee->isVarArg());
459 if (CB.paramHasAttr(I, Attribute::StructRet)) {
460 if (FailureReason)
461 *FailureReason = "SRet arg to vararg function";
462 return false;
466 return true;
469 CallBase &llvm::promoteCall(CallBase &CB, Function *Callee,
470 CastInst **RetBitCast) {
471 assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
473 // Set the called function of the call site to be the given callee (but don't
474 // change the type).
475 CB.setCalledOperand(Callee);
477 // Since the call site will no longer be direct, we must clear metadata that
478 // is only appropriate for indirect calls. This includes !prof and !callees
479 // metadata.
480 CB.setMetadata(LLVMContext::MD_prof, nullptr);
481 CB.setMetadata(LLVMContext::MD_callees, nullptr);
483 // If the function type of the call site matches that of the callee, no
484 // additional work is required.
485 if (CB.getFunctionType() == Callee->getFunctionType())
486 return CB;
488 // Save the return types of the call site and callee.
489 Type *CallSiteRetTy = CB.getType();
490 Type *CalleeRetTy = Callee->getReturnType();
492 // Change the function type of the call site the match that of the callee.
493 CB.mutateFunctionType(Callee->getFunctionType());
495 // Inspect the arguments of the call site. If an argument's type doesn't
496 // match the corresponding formal argument's type in the callee, bitcast it
497 // to the correct type.
498 auto CalleeType = Callee->getFunctionType();
499 auto CalleeParamNum = CalleeType->getNumParams();
501 LLVMContext &Ctx = Callee->getContext();
502 const AttributeList &CallerPAL = CB.getAttributes();
503 // The new list of argument attributes.
504 SmallVector<AttributeSet, 4> NewArgAttrs;
505 bool AttributeChanged = false;
507 for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
508 auto *Arg = CB.getArgOperand(ArgNo);
509 Type *FormalTy = CalleeType->getParamType(ArgNo);
510 Type *ActualTy = Arg->getType();
511 if (FormalTy != ActualTy) {
512 auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", &CB);
513 CB.setArgOperand(ArgNo, Cast);
515 // Remove any incompatible attributes for the argument.
516 AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
517 ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));
519 // We may have a different byval/inalloca type.
520 if (ArgAttrs.getByValType())
521 ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
522 if (ArgAttrs.getInAllocaType())
523 ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));
525 NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
526 AttributeChanged = true;
527 } else
528 NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
531 // If the return type of the call site doesn't match that of the callee, cast
532 // the returned value to the appropriate type.
533 // Remove any incompatible return value attribute.
534 AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
535 if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
536 createRetBitCast(CB, CallSiteRetTy, RetBitCast);
537 RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
538 AttributeChanged = true;
541 // Set the new callsite attribute.
542 if (AttributeChanged)
543 CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
544 AttributeSet::get(Ctx, RAttrs),
545 NewArgAttrs));
547 return CB;
550 CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee,
551 MDNode *BranchWeights) {
553 // Version the indirect call site. If the called value is equal to the given
554 // callee, 'NewInst' will be executed, otherwise the original call site will
555 // be executed.
556 CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);
558 // Promote 'NewInst' so that it directly calls the desired function.
559 return promoteCall(NewInst, Callee);
562 bool llvm::tryPromoteCall(CallBase &CB) {
563 assert(!CB.getCalledFunction());
564 Module *M = CB.getCaller()->getParent();
565 const DataLayout &DL = M->getDataLayout();
566 Value *Callee = CB.getCalledOperand();
568 LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
569 if (!VTableEntryLoad)
570 return false; // Not a vtable entry load.
571 Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
572 APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
573 Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
574 DL, VTableOffset, /* AllowNonInbounds */ true);
575 LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
576 if (!VTablePtrLoad)
577 return false; // Not a vtable load.
578 Value *Object = VTablePtrLoad->getPointerOperand();
579 APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
580 Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
581 DL, ObjectOffset, /* AllowNonInbounds */ true);
582 if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
583 // Not an Alloca or the offset isn't zero.
584 return false;
586 // Look for the vtable pointer store into the object by the ctor.
587 BasicBlock::iterator BBI(VTablePtrLoad);
588 Value *VTablePtr = FindAvailableLoadedValue(
589 VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
590 if (!VTablePtr)
591 return false; // No vtable found.
592 APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
593 Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
594 DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
595 GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
596 if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
597 // Not in the form of a global constant variable with an initializer.
598 return false;
600 Constant *VTableGVInitializer = GV->getInitializer();
601 APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
602 if (!(VTableGVOffset.getActiveBits() <= 64))
603 return false; // Out of range.
604 Constant *Ptr = getPointerAtOffset(VTableGVInitializer,
605 VTableGVOffset.getZExtValue(),
606 *M);
607 if (!Ptr)
608 return false; // No constant (function) pointer found.
609 Function *DirectCallee = dyn_cast<Function>(Ptr->stripPointerCasts());
610 if (!DirectCallee)
611 return false; // No function pointer found.
613 if (!isLegalToPromote(CB, DirectCallee))
614 return false;
616 // Success.
617 promoteCall(CB, DirectCallee);
618 return true;
621 #undef DEBUG_TYPE