[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Utils / FunctionComparator.cpp
blob09e19be0d293baa09912368034df3ae9234a3b7f
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
49 using namespace llvm;
51 #define DEBUG_TYPE "functioncomparator"
53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54 if (L < R)
55 return -1;
56 if (L > R)
57 return 1;
58 return 0;
61 int FunctionComparator::cmpAligns(Align L, Align R) const {
62 if (L.value() < R.value())
63 return -1;
64 if (L.value() > R.value())
65 return 1;
66 return 0;
69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70 if ((int)L < (int)R)
71 return -1;
72 if ((int)L > (int)R)
73 return 1;
74 return 0;
77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79 return Res;
80 if (L.ugt(R))
81 return 1;
82 if (R.ugt(L))
83 return -1;
84 return 0;
87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89 // then by value interpreted as a bitstring (aka APInt).
90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92 APFloat::semanticsPrecision(SR)))
93 return Res;
94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95 APFloat::semanticsMaxExponent(SR)))
96 return Res;
97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98 APFloat::semanticsMinExponent(SR)))
99 return Res;
100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101 APFloat::semanticsSizeInBits(SR)))
102 return Res;
103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107 // Prevent heavy comparison, compare sizes first.
108 if (int Res = cmpNumbers(L.size(), R.size()))
109 return Res;
111 // Compare strings lexicographically only when it is necessary: only when
112 // strings are equal in size.
113 return std::clamp(L.compare(R), -1, 1);
116 int FunctionComparator::cmpAttrs(const AttributeList L,
117 const AttributeList R) const {
118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119 return Res;
121 for (unsigned i : L.indexes()) {
122 AttributeSet LAS = L.getAttributes(i);
123 AttributeSet RAS = R.getAttributes(i);
124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126 for (; LI != LE && RI != RE; ++LI, ++RI) {
127 Attribute LA = *LI;
128 Attribute RA = *RI;
129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130 if (LA.getKindAsEnum() != RA.getKindAsEnum())
131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
133 Type *TyL = LA.getValueAsType();
134 Type *TyR = RA.getValueAsType();
135 if (TyL && TyR) {
136 if (int Res = cmpTypes(TyL, TyR))
137 return Res;
138 continue;
141 // Two pointers, at least one null, so the comparison result is
142 // independent of the value of a real pointer.
143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144 return Res;
145 continue;
147 if (LA < RA)
148 return -1;
149 if (RA < LA)
150 return 1;
152 if (LI != LE)
153 return 1;
154 if (RI != RE)
155 return -1;
157 return 0;
160 int FunctionComparator::cmpMetadata(const Metadata *L,
161 const Metadata *R) const {
162 // TODO: the following routine coerce the metadata contents into constants
163 // or MDStrings before comparison.
164 // It ignores any other cases, so that the metadata nodes are considered
165 // equal even though this is not correct.
166 // We should structurally compare the metadata nodes to be perfect here.
168 auto *MDStringL = dyn_cast<MDString>(L);
169 auto *MDStringR = dyn_cast<MDString>(R);
170 if (MDStringL && MDStringR) {
171 if (MDStringL == MDStringR)
172 return 0;
173 return MDStringL->getString().compare(MDStringR->getString());
175 if (MDStringR)
176 return -1;
177 if (MDStringL)
178 return 1;
180 auto *CL = dyn_cast<ConstantAsMetadata>(L);
181 auto *CR = dyn_cast<ConstantAsMetadata>(R);
182 if (CL == CR)
183 return 0;
184 if (!CL)
185 return -1;
186 if (!CR)
187 return 1;
188 return cmpConstants(CL->getValue(), CR->getValue());
191 int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const {
192 if (L == R)
193 return 0;
194 if (!L)
195 return -1;
196 if (!R)
197 return 1;
198 // TODO: Note that as this is metadata, it is possible to drop and/or merge
199 // this data when considering functions to merge. Thus this comparison would
200 // return 0 (i.e. equivalent), but merging would become more complicated
201 // because the ranges would need to be unioned. It is not likely that
202 // functions differ ONLY in this metadata if they are actually the same
203 // function semantically.
204 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
205 return Res;
206 for (size_t I = 0; I < L->getNumOperands(); ++I)
207 if (int Res = cmpMetadata(L->getOperand(I), R->getOperand(I)))
208 return Res;
209 return 0;
212 int FunctionComparator::cmpInstMetadata(Instruction const *L,
213 Instruction const *R) const {
214 /// These metadata affects the other optimization passes by making assertions
215 /// or constraints.
216 /// Values that carry different expectations should be considered different.
217 SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR;
218 L->getAllMetadataOtherThanDebugLoc(MDL);
219 R->getAllMetadataOtherThanDebugLoc(MDR);
220 if (MDL.size() > MDR.size())
221 return 1;
222 else if (MDL.size() < MDR.size())
223 return -1;
224 for (size_t I = 0, N = MDL.size(); I < N; ++I) {
225 auto const [KeyL, ML] = MDL[I];
226 auto const [KeyR, MR] = MDR[I];
227 if (int Res = cmpNumbers(KeyL, KeyR))
228 return Res;
229 if (int Res = cmpMDNode(ML, MR))
230 return Res;
232 return 0;
235 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
236 const CallBase &RCS) const {
237 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
239 if (int Res =
240 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
241 return Res;
243 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
244 auto OBL = LCS.getOperandBundleAt(I);
245 auto OBR = RCS.getOperandBundleAt(I);
247 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
248 return Res;
250 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
251 return Res;
254 return 0;
257 /// Constants comparison:
258 /// 1. Check whether type of L constant could be losslessly bitcasted to R
259 /// type.
260 /// 2. Compare constant contents.
261 /// For more details see declaration comments.
262 int FunctionComparator::cmpConstants(const Constant *L,
263 const Constant *R) const {
264 Type *TyL = L->getType();
265 Type *TyR = R->getType();
267 // Check whether types are bitcastable. This part is just re-factored
268 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
269 // we also pack into result which type is "less" for us.
270 int TypesRes = cmpTypes(TyL, TyR);
271 if (TypesRes != 0) {
272 // Types are different, but check whether we can bitcast them.
273 if (!TyL->isFirstClassType()) {
274 if (TyR->isFirstClassType())
275 return -1;
276 // Neither TyL nor TyR are values of first class type. Return the result
277 // of comparing the types
278 return TypesRes;
280 if (!TyR->isFirstClassType()) {
281 if (TyL->isFirstClassType())
282 return 1;
283 return TypesRes;
286 // Vector -> Vector conversions are always lossless if the two vector types
287 // have the same size, otherwise not.
288 unsigned TyLWidth = 0;
289 unsigned TyRWidth = 0;
291 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
292 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
293 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
294 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
296 if (TyLWidth != TyRWidth)
297 return cmpNumbers(TyLWidth, TyRWidth);
299 // Zero bit-width means neither TyL nor TyR are vectors.
300 if (!TyLWidth) {
301 PointerType *PTyL = dyn_cast<PointerType>(TyL);
302 PointerType *PTyR = dyn_cast<PointerType>(TyR);
303 if (PTyL && PTyR) {
304 unsigned AddrSpaceL = PTyL->getAddressSpace();
305 unsigned AddrSpaceR = PTyR->getAddressSpace();
306 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
307 return Res;
309 if (PTyL)
310 return 1;
311 if (PTyR)
312 return -1;
314 // TyL and TyR aren't vectors, nor pointers. We don't know how to
315 // bitcast them.
316 return TypesRes;
320 // OK, types are bitcastable, now check constant contents.
322 if (L->isNullValue() && R->isNullValue())
323 return TypesRes;
324 if (L->isNullValue() && !R->isNullValue())
325 return 1;
326 if (!L->isNullValue() && R->isNullValue())
327 return -1;
329 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
330 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
331 if (GlobalValueL && GlobalValueR) {
332 return cmpGlobalValues(GlobalValueL, GlobalValueR);
335 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
336 return Res;
338 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
339 const auto *SeqR = cast<ConstantDataSequential>(R);
340 // This handles ConstantDataArray and ConstantDataVector. Note that we
341 // compare the two raw data arrays, which might differ depending on the host
342 // endianness. This isn't a problem though, because the endiness of a module
343 // will affect the order of the constants, but this order is the same
344 // for a given input module and host platform.
345 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
348 switch (L->getValueID()) {
349 case Value::UndefValueVal:
350 case Value::PoisonValueVal:
351 case Value::ConstantTokenNoneVal:
352 return TypesRes;
353 case Value::ConstantIntVal: {
354 const APInt &LInt = cast<ConstantInt>(L)->getValue();
355 const APInt &RInt = cast<ConstantInt>(R)->getValue();
356 return cmpAPInts(LInt, RInt);
358 case Value::ConstantFPVal: {
359 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
360 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
361 return cmpAPFloats(LAPF, RAPF);
363 case Value::ConstantArrayVal: {
364 const ConstantArray *LA = cast<ConstantArray>(L);
365 const ConstantArray *RA = cast<ConstantArray>(R);
366 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
367 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
368 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
369 return Res;
370 for (uint64_t i = 0; i < NumElementsL; ++i) {
371 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
372 cast<Constant>(RA->getOperand(i))))
373 return Res;
375 return 0;
377 case Value::ConstantStructVal: {
378 const ConstantStruct *LS = cast<ConstantStruct>(L);
379 const ConstantStruct *RS = cast<ConstantStruct>(R);
380 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
381 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
382 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
383 return Res;
384 for (unsigned i = 0; i != NumElementsL; ++i) {
385 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
386 cast<Constant>(RS->getOperand(i))))
387 return Res;
389 return 0;
391 case Value::ConstantVectorVal: {
392 const ConstantVector *LV = cast<ConstantVector>(L);
393 const ConstantVector *RV = cast<ConstantVector>(R);
394 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
395 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
396 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
397 return Res;
398 for (uint64_t i = 0; i < NumElementsL; ++i) {
399 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
400 cast<Constant>(RV->getOperand(i))))
401 return Res;
403 return 0;
405 case Value::ConstantExprVal: {
406 const ConstantExpr *LE = cast<ConstantExpr>(L);
407 const ConstantExpr *RE = cast<ConstantExpr>(R);
408 if (int Res = cmpNumbers(LE->getOpcode(), RE->getOpcode()))
409 return Res;
410 unsigned NumOperandsL = LE->getNumOperands();
411 unsigned NumOperandsR = RE->getNumOperands();
412 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
413 return Res;
414 for (unsigned i = 0; i < NumOperandsL; ++i) {
415 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
416 cast<Constant>(RE->getOperand(i))))
417 return Res;
419 if (LE->isCompare())
420 if (int Res = cmpNumbers(LE->getPredicate(), RE->getPredicate()))
421 return Res;
422 if (auto *GEPL = dyn_cast<GEPOperator>(LE)) {
423 auto *GEPR = cast<GEPOperator>(RE);
424 if (int Res = cmpTypes(GEPL->getSourceElementType(),
425 GEPR->getSourceElementType()))
426 return Res;
427 if (int Res = cmpNumbers(GEPL->isInBounds(), GEPR->isInBounds()))
428 return Res;
429 if (int Res = cmpNumbers(GEPL->getInRangeIndex().value_or(unsigned(-1)),
430 GEPR->getInRangeIndex().value_or(unsigned(-1))))
431 return Res;
433 if (auto *OBOL = dyn_cast<OverflowingBinaryOperator>(LE)) {
434 auto *OBOR = cast<OverflowingBinaryOperator>(RE);
435 if (int Res =
436 cmpNumbers(OBOL->hasNoUnsignedWrap(), OBOR->hasNoUnsignedWrap()))
437 return Res;
438 if (int Res =
439 cmpNumbers(OBOL->hasNoSignedWrap(), OBOR->hasNoSignedWrap()))
440 return Res;
442 return 0;
444 case Value::BlockAddressVal: {
445 const BlockAddress *LBA = cast<BlockAddress>(L);
446 const BlockAddress *RBA = cast<BlockAddress>(R);
447 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
448 return Res;
449 if (LBA->getFunction() == RBA->getFunction()) {
450 // They are BBs in the same function. Order by which comes first in the
451 // BB order of the function. This order is deterministic.
452 Function *F = LBA->getFunction();
453 BasicBlock *LBB = LBA->getBasicBlock();
454 BasicBlock *RBB = RBA->getBasicBlock();
455 if (LBB == RBB)
456 return 0;
457 for (BasicBlock &BB : *F) {
458 if (&BB == LBB) {
459 assert(&BB != RBB);
460 return -1;
462 if (&BB == RBB)
463 return 1;
465 llvm_unreachable("Basic Block Address does not point to a basic block in "
466 "its function.");
467 return -1;
468 } else {
469 // cmpValues said the functions are the same. So because they aren't
470 // literally the same pointer, they must respectively be the left and
471 // right functions.
472 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
473 // cmpValues will tell us if these are equivalent BasicBlocks, in the
474 // context of their respective functions.
475 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
478 case Value::DSOLocalEquivalentVal: {
479 // dso_local_equivalent is functionally equivalent to whatever it points to.
480 // This means the behavior of the IR should be the exact same as if the
481 // function was referenced directly rather than through a
482 // dso_local_equivalent.
483 const auto *LEquiv = cast<DSOLocalEquivalent>(L);
484 const auto *REquiv = cast<DSOLocalEquivalent>(R);
485 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
487 default: // Unknown constant, abort.
488 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
489 llvm_unreachable("Constant ValueID not recognized.");
490 return -1;
494 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
495 uint64_t LNumber = GlobalNumbers->getNumber(L);
496 uint64_t RNumber = GlobalNumbers->getNumber(R);
497 return cmpNumbers(LNumber, RNumber);
500 /// cmpType - compares two types,
501 /// defines total ordering among the types set.
502 /// See method declaration comments for more details.
503 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
504 PointerType *PTyL = dyn_cast<PointerType>(TyL);
505 PointerType *PTyR = dyn_cast<PointerType>(TyR);
507 const DataLayout &DL = FnL->getParent()->getDataLayout();
508 if (PTyL && PTyL->getAddressSpace() == 0)
509 TyL = DL.getIntPtrType(TyL);
510 if (PTyR && PTyR->getAddressSpace() == 0)
511 TyR = DL.getIntPtrType(TyR);
513 if (TyL == TyR)
514 return 0;
516 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
517 return Res;
519 switch (TyL->getTypeID()) {
520 default:
521 llvm_unreachable("Unknown type!");
522 case Type::IntegerTyID:
523 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
524 cast<IntegerType>(TyR)->getBitWidth());
525 // TyL == TyR would have returned true earlier, because types are uniqued.
526 case Type::VoidTyID:
527 case Type::FloatTyID:
528 case Type::DoubleTyID:
529 case Type::X86_FP80TyID:
530 case Type::FP128TyID:
531 case Type::PPC_FP128TyID:
532 case Type::LabelTyID:
533 case Type::MetadataTyID:
534 case Type::TokenTyID:
535 return 0;
537 case Type::PointerTyID:
538 assert(PTyL && PTyR && "Both types must be pointers here.");
539 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
541 case Type::StructTyID: {
542 StructType *STyL = cast<StructType>(TyL);
543 StructType *STyR = cast<StructType>(TyR);
544 if (STyL->getNumElements() != STyR->getNumElements())
545 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
547 if (STyL->isPacked() != STyR->isPacked())
548 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
550 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
551 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
552 return Res;
554 return 0;
557 case Type::FunctionTyID: {
558 FunctionType *FTyL = cast<FunctionType>(TyL);
559 FunctionType *FTyR = cast<FunctionType>(TyR);
560 if (FTyL->getNumParams() != FTyR->getNumParams())
561 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
563 if (FTyL->isVarArg() != FTyR->isVarArg())
564 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
566 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
567 return Res;
569 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
570 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
571 return Res;
573 return 0;
576 case Type::ArrayTyID: {
577 auto *STyL = cast<ArrayType>(TyL);
578 auto *STyR = cast<ArrayType>(TyR);
579 if (STyL->getNumElements() != STyR->getNumElements())
580 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
581 return cmpTypes(STyL->getElementType(), STyR->getElementType());
583 case Type::FixedVectorTyID:
584 case Type::ScalableVectorTyID: {
585 auto *STyL = cast<VectorType>(TyL);
586 auto *STyR = cast<VectorType>(TyR);
587 if (STyL->getElementCount().isScalable() !=
588 STyR->getElementCount().isScalable())
589 return cmpNumbers(STyL->getElementCount().isScalable(),
590 STyR->getElementCount().isScalable());
591 if (STyL->getElementCount() != STyR->getElementCount())
592 return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
593 STyR->getElementCount().getKnownMinValue());
594 return cmpTypes(STyL->getElementType(), STyR->getElementType());
599 // Determine whether the two operations are the same except that pointer-to-A
600 // and pointer-to-B are equivalent. This should be kept in sync with
601 // Instruction::isSameOperationAs.
602 // Read method declaration comments for more details.
603 int FunctionComparator::cmpOperations(const Instruction *L,
604 const Instruction *R,
605 bool &needToCmpOperands) const {
606 needToCmpOperands = true;
607 if (int Res = cmpValues(L, R))
608 return Res;
610 // Differences from Instruction::isSameOperationAs:
611 // * replace type comparison with calls to cmpTypes.
612 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
613 // * because of the above, we don't test for the tail bit on calls later on.
614 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
615 return Res;
617 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
618 needToCmpOperands = false;
619 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
620 if (int Res =
621 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
622 return Res;
623 return cmpGEPs(GEPL, GEPR);
626 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
627 return Res;
629 if (int Res = cmpTypes(L->getType(), R->getType()))
630 return Res;
632 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
633 R->getRawSubclassOptionalData()))
634 return Res;
636 // We have two instructions of identical opcode and #operands. Check to see
637 // if all operands are the same type
638 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
639 if (int Res =
640 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
641 return Res;
644 // Check special state that is a part of some instructions.
645 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
646 if (int Res = cmpTypes(AI->getAllocatedType(),
647 cast<AllocaInst>(R)->getAllocatedType()))
648 return Res;
649 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
651 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
652 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
653 return Res;
654 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
655 return Res;
656 if (int Res =
657 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
658 return Res;
659 if (int Res = cmpNumbers(LI->getSyncScopeID(),
660 cast<LoadInst>(R)->getSyncScopeID()))
661 return Res;
662 return cmpInstMetadata(L, R);
664 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
665 if (int Res =
666 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
667 return Res;
668 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
669 return Res;
670 if (int Res =
671 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
672 return Res;
673 return cmpNumbers(SI->getSyncScopeID(),
674 cast<StoreInst>(R)->getSyncScopeID());
676 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
677 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
678 if (auto *CBL = dyn_cast<CallBase>(L)) {
679 auto *CBR = cast<CallBase>(R);
680 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
681 return Res;
682 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
683 return Res;
684 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
685 return Res;
686 if (const CallInst *CI = dyn_cast<CallInst>(L))
687 if (int Res = cmpNumbers(CI->getTailCallKind(),
688 cast<CallInst>(R)->getTailCallKind()))
689 return Res;
690 return cmpMDNode(L->getMetadata(LLVMContext::MD_range),
691 R->getMetadata(LLVMContext::MD_range));
693 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
694 ArrayRef<unsigned> LIndices = IVI->getIndices();
695 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
696 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
697 return Res;
698 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
699 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
700 return Res;
702 return 0;
704 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
705 ArrayRef<unsigned> LIndices = EVI->getIndices();
706 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
707 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
708 return Res;
709 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
710 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
711 return Res;
714 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
715 if (int Res =
716 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
717 return Res;
718 return cmpNumbers(FI->getSyncScopeID(),
719 cast<FenceInst>(R)->getSyncScopeID());
721 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
722 if (int Res = cmpNumbers(CXI->isVolatile(),
723 cast<AtomicCmpXchgInst>(R)->isVolatile()))
724 return Res;
725 if (int Res =
726 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
727 return Res;
728 if (int Res =
729 cmpOrderings(CXI->getSuccessOrdering(),
730 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
731 return Res;
732 if (int Res =
733 cmpOrderings(CXI->getFailureOrdering(),
734 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
735 return Res;
736 return cmpNumbers(CXI->getSyncScopeID(),
737 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
739 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
740 if (int Res = cmpNumbers(RMWI->getOperation(),
741 cast<AtomicRMWInst>(R)->getOperation()))
742 return Res;
743 if (int Res = cmpNumbers(RMWI->isVolatile(),
744 cast<AtomicRMWInst>(R)->isVolatile()))
745 return Res;
746 if (int Res = cmpOrderings(RMWI->getOrdering(),
747 cast<AtomicRMWInst>(R)->getOrdering()))
748 return Res;
749 return cmpNumbers(RMWI->getSyncScopeID(),
750 cast<AtomicRMWInst>(R)->getSyncScopeID());
752 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
753 ArrayRef<int> LMask = SVI->getShuffleMask();
754 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
755 if (int Res = cmpNumbers(LMask.size(), RMask.size()))
756 return Res;
757 for (size_t i = 0, e = LMask.size(); i != e; ++i) {
758 if (int Res = cmpNumbers(LMask[i], RMask[i]))
759 return Res;
762 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
763 const PHINode *PNR = cast<PHINode>(R);
764 // Ensure that in addition to the incoming values being identical
765 // (checked by the caller of this function), the incoming blocks
766 // are also identical.
767 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
768 if (int Res =
769 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
770 return Res;
773 return 0;
776 // Determine whether two GEP operations perform the same underlying arithmetic.
777 // Read method declaration comments for more details.
778 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
779 const GEPOperator *GEPR) const {
780 unsigned int ASL = GEPL->getPointerAddressSpace();
781 unsigned int ASR = GEPR->getPointerAddressSpace();
783 if (int Res = cmpNumbers(ASL, ASR))
784 return Res;
786 // When we have target data, we can reduce the GEP down to the value in bytes
787 // added to the address.
788 const DataLayout &DL = FnL->getParent()->getDataLayout();
789 unsigned OffsetBitWidth = DL.getIndexSizeInBits(ASL);
790 APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0);
791 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
792 GEPR->accumulateConstantOffset(DL, OffsetR))
793 return cmpAPInts(OffsetL, OffsetR);
794 if (int Res =
795 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
796 return Res;
798 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
799 return Res;
801 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
802 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
803 return Res;
806 return 0;
809 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
810 const InlineAsm *R) const {
811 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
812 // the same, otherwise compare the fields.
813 if (L == R)
814 return 0;
815 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
816 return Res;
817 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
818 return Res;
819 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
820 return Res;
821 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
822 return Res;
823 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
824 return Res;
825 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
826 return Res;
827 assert(L->getFunctionType() != R->getFunctionType());
828 return 0;
831 /// Compare two values used by the two functions under pair-wise comparison. If
832 /// this is the first time the values are seen, they're added to the mapping so
833 /// that we will detect mismatches on next use.
834 /// See comments in declaration for more details.
835 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
836 // Catch self-reference case.
837 if (L == FnL) {
838 if (R == FnR)
839 return 0;
840 return -1;
842 if (R == FnR) {
843 if (L == FnL)
844 return 0;
845 return 1;
848 const Constant *ConstL = dyn_cast<Constant>(L);
849 const Constant *ConstR = dyn_cast<Constant>(R);
850 if (ConstL && ConstR) {
851 if (L == R)
852 return 0;
853 return cmpConstants(ConstL, ConstR);
856 if (ConstL)
857 return 1;
858 if (ConstR)
859 return -1;
861 const MetadataAsValue *MetadataValueL = dyn_cast<MetadataAsValue>(L);
862 const MetadataAsValue *MetadataValueR = dyn_cast<MetadataAsValue>(R);
863 if (MetadataValueL && MetadataValueR) {
864 if (MetadataValueL == MetadataValueR)
865 return 0;
867 return cmpMetadata(MetadataValueL->getMetadata(),
868 MetadataValueR->getMetadata());
871 if (MetadataValueL)
872 return 1;
873 if (MetadataValueR)
874 return -1;
876 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
877 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
879 if (InlineAsmL && InlineAsmR)
880 return cmpInlineAsm(InlineAsmL, InlineAsmR);
881 if (InlineAsmL)
882 return 1;
883 if (InlineAsmR)
884 return -1;
886 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
887 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
889 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
892 // Test whether two basic blocks have equivalent behaviour.
893 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
894 const BasicBlock *BBR) const {
895 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
896 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
898 do {
899 bool needToCmpOperands = true;
900 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
901 return Res;
902 if (needToCmpOperands) {
903 assert(InstL->getNumOperands() == InstR->getNumOperands());
905 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
906 Value *OpL = InstL->getOperand(i);
907 Value *OpR = InstR->getOperand(i);
908 if (int Res = cmpValues(OpL, OpR))
909 return Res;
910 // cmpValues should ensure this is true.
911 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
915 ++InstL;
916 ++InstR;
917 } while (InstL != InstLE && InstR != InstRE);
919 if (InstL != InstLE && InstR == InstRE)
920 return 1;
921 if (InstL == InstLE && InstR != InstRE)
922 return -1;
923 return 0;
926 int FunctionComparator::compareSignature() const {
927 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
928 return Res;
930 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
931 return Res;
933 if (FnL->hasGC()) {
934 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
935 return Res;
938 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
939 return Res;
941 if (FnL->hasSection()) {
942 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
943 return Res;
946 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
947 return Res;
949 // TODO: if it's internal and only used in direct calls, we could handle this
950 // case too.
951 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
952 return Res;
954 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
955 return Res;
957 assert(FnL->arg_size() == FnR->arg_size() &&
958 "Identically typed functions have different numbers of args!");
960 // Visit the arguments so that they get enumerated in the order they're
961 // passed in.
962 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
963 ArgRI = FnR->arg_begin(),
964 ArgLE = FnL->arg_end();
965 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
966 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
967 llvm_unreachable("Arguments repeat!");
969 return 0;
972 // Test whether the two functions have equivalent behaviour.
973 int FunctionComparator::compare() {
974 beginCompare();
976 if (int Res = compareSignature())
977 return Res;
979 // We do a CFG-ordered walk since the actual ordering of the blocks in the
980 // linked list is immaterial. Our walk starts at the entry block for both
981 // functions, then takes each block from each terminator in order. As an
982 // artifact, this also means that unreachable blocks are ignored.
983 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
984 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
986 FnLBBs.push_back(&FnL->getEntryBlock());
987 FnRBBs.push_back(&FnR->getEntryBlock());
989 VisitedBBs.insert(FnLBBs[0]);
990 while (!FnLBBs.empty()) {
991 const BasicBlock *BBL = FnLBBs.pop_back_val();
992 const BasicBlock *BBR = FnRBBs.pop_back_val();
994 if (int Res = cmpValues(BBL, BBR))
995 return Res;
997 if (int Res = cmpBasicBlocks(BBL, BBR))
998 return Res;
1000 const Instruction *TermL = BBL->getTerminator();
1001 const Instruction *TermR = BBR->getTerminator();
1003 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1004 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1005 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1006 continue;
1008 FnLBBs.push_back(TermL->getSuccessor(i));
1009 FnRBBs.push_back(TermR->getSuccessor(i));
1012 return 0;