[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Utils / InlineFunction.cpp
blobd4d4bf5ebdf36e17fe50064432bb81d92c7a2e5f
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
29 #include "llvm/Analysis/ObjCARCUtil.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/AttributeMask.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfo.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/EHPersonalities.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <optional>
74 #include <string>
75 #include <utility>
76 #include <vector>
78 #define DEBUG_TYPE "inline-function"
80 using namespace llvm;
81 using namespace llvm::memprof;
82 using ProfileCount = Function::ProfileCount;
84 static cl::opt<bool>
85 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
86 cl::Hidden,
87 cl::desc("Convert noalias attributes to metadata during inlining."));
89 static cl::opt<bool>
90 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
91 cl::init(true),
92 cl::desc("Use the llvm.experimental.noalias.scope.decl "
93 "intrinsic during inlining."));
95 // Disabled by default, because the added alignment assumptions may increase
96 // compile-time and block optimizations. This option is not suitable for use
97 // with frontends that emit comprehensive parameter alignment annotations.
98 static cl::opt<bool>
99 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
100 cl::init(false), cl::Hidden,
101 cl::desc("Convert align attributes to assumptions during inlining."));
103 static cl::opt<unsigned> InlinerAttributeWindow(
104 "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105 cl::desc("the maximum number of instructions analyzed for may throw during "
106 "attribute inference in inlined body"),
107 cl::init(4));
109 namespace {
111 /// A class for recording information about inlining a landing pad.
112 class LandingPadInliningInfo {
113 /// Destination of the invoke's unwind.
114 BasicBlock *OuterResumeDest;
116 /// Destination for the callee's resume.
117 BasicBlock *InnerResumeDest = nullptr;
119 /// LandingPadInst associated with the invoke.
120 LandingPadInst *CallerLPad = nullptr;
122 /// PHI for EH values from landingpad insts.
123 PHINode *InnerEHValuesPHI = nullptr;
125 SmallVector<Value*, 8> UnwindDestPHIValues;
127 public:
128 LandingPadInliningInfo(InvokeInst *II)
129 : OuterResumeDest(II->getUnwindDest()) {
130 // If there are PHI nodes in the unwind destination block, we need to keep
131 // track of which values came into them from the invoke before removing
132 // the edge from this block.
133 BasicBlock *InvokeBB = II->getParent();
134 BasicBlock::iterator I = OuterResumeDest->begin();
135 for (; isa<PHINode>(I); ++I) {
136 // Save the value to use for this edge.
137 PHINode *PHI = cast<PHINode>(I);
138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
141 CallerLPad = cast<LandingPadInst>(I);
144 /// The outer unwind destination is the target of
145 /// unwind edges introduced for calls within the inlined function.
146 BasicBlock *getOuterResumeDest() const {
147 return OuterResumeDest;
150 BasicBlock *getInnerResumeDest();
152 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
154 /// Forward the 'resume' instruction to the caller's landing pad block.
155 /// When the landing pad block has only one predecessor, this is
156 /// a simple branch. When there is more than one predecessor, we need to
157 /// split the landing pad block after the landingpad instruction and jump
158 /// to there.
159 void forwardResume(ResumeInst *RI,
160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
162 /// Add incoming-PHI values to the unwind destination block for the given
163 /// basic block, using the values for the original invoke's source block.
164 void addIncomingPHIValuesFor(BasicBlock *BB) const {
165 addIncomingPHIValuesForInto(BB, OuterResumeDest);
168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169 BasicBlock::iterator I = dest->begin();
170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171 PHINode *phi = cast<PHINode>(I);
172 phi->addIncoming(UnwindDestPHIValues[i], src);
177 } // end anonymous namespace
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181 if (InnerResumeDest) return InnerResumeDest;
183 // Split the landing pad.
184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185 InnerResumeDest =
186 OuterResumeDest->splitBasicBlock(SplitPoint,
187 OuterResumeDest->getName() + ".body");
189 // The number of incoming edges we expect to the inner landing pad.
190 const unsigned PHICapacity = 2;
192 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193 BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
194 BasicBlock::iterator I = OuterResumeDest->begin();
195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196 PHINode *OuterPHI = cast<PHINode>(I);
197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198 OuterPHI->getName() + ".lpad-body");
199 InnerPHI->insertBefore(InsertPoint);
200 OuterPHI->replaceAllUsesWith(InnerPHI);
201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
204 // Create a PHI for the exception values.
205 InnerEHValuesPHI =
206 PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body");
207 InnerEHValuesPHI->insertBefore(InsertPoint);
208 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
209 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
211 // All done.
212 return InnerResumeDest;
215 /// Forward the 'resume' instruction to the caller's landing pad block.
216 /// When the landing pad block has only one predecessor, this is a simple
217 /// branch. When there is more than one predecessor, we need to split the
218 /// landing pad block after the landingpad instruction and jump to there.
219 void LandingPadInliningInfo::forwardResume(
220 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
221 BasicBlock *Dest = getInnerResumeDest();
222 BasicBlock *Src = RI->getParent();
224 BranchInst::Create(Dest, Src);
226 // Update the PHIs in the destination. They were inserted in an order which
227 // makes this work.
228 addIncomingPHIValuesForInto(Src, Dest);
230 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
231 RI->eraseFromParent();
234 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
235 static Value *getParentPad(Value *EHPad) {
236 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
237 return FPI->getParentPad();
238 return cast<CatchSwitchInst>(EHPad)->getParentPad();
241 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
243 /// Helper for getUnwindDestToken that does the descendant-ward part of
244 /// the search.
245 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
246 UnwindDestMemoTy &MemoMap) {
247 SmallVector<Instruction *, 8> Worklist(1, EHPad);
249 while (!Worklist.empty()) {
250 Instruction *CurrentPad = Worklist.pop_back_val();
251 // We only put pads on the worklist that aren't in the MemoMap. When
252 // we find an unwind dest for a pad we may update its ancestors, but
253 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
254 // so they should never get updated while queued on the worklist.
255 assert(!MemoMap.count(CurrentPad));
256 Value *UnwindDestToken = nullptr;
257 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
258 if (CatchSwitch->hasUnwindDest()) {
259 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
260 } else {
261 // Catchswitch doesn't have a 'nounwind' variant, and one might be
262 // annotated as "unwinds to caller" when really it's nounwind (see
263 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
264 // parent's unwind dest from this. We can check its catchpads'
265 // descendants, since they might include a cleanuppad with an
266 // "unwinds to caller" cleanupret, which can be trusted.
267 for (auto HI = CatchSwitch->handler_begin(),
268 HE = CatchSwitch->handler_end();
269 HI != HE && !UnwindDestToken; ++HI) {
270 BasicBlock *HandlerBlock = *HI;
271 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
272 for (User *Child : CatchPad->users()) {
273 // Intentionally ignore invokes here -- since the catchswitch is
274 // marked "unwind to caller", it would be a verifier error if it
275 // contained an invoke which unwinds out of it, so any invoke we'd
276 // encounter must unwind to some child of the catch.
277 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
278 continue;
280 Instruction *ChildPad = cast<Instruction>(Child);
281 auto Memo = MemoMap.find(ChildPad);
282 if (Memo == MemoMap.end()) {
283 // Haven't figured out this child pad yet; queue it.
284 Worklist.push_back(ChildPad);
285 continue;
287 // We've already checked this child, but might have found that
288 // it offers no proof either way.
289 Value *ChildUnwindDestToken = Memo->second;
290 if (!ChildUnwindDestToken)
291 continue;
292 // We already know the child's unwind dest, which can either
293 // be ConstantTokenNone to indicate unwind to caller, or can
294 // be another child of the catchpad. Only the former indicates
295 // the unwind dest of the catchswitch.
296 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
297 UnwindDestToken = ChildUnwindDestToken;
298 break;
300 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
304 } else {
305 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
306 for (User *U : CleanupPad->users()) {
307 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
308 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
309 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
310 else
311 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
312 break;
314 Value *ChildUnwindDestToken;
315 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
316 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
317 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
318 Instruction *ChildPad = cast<Instruction>(U);
319 auto Memo = MemoMap.find(ChildPad);
320 if (Memo == MemoMap.end()) {
321 // Haven't resolved this child yet; queue it and keep searching.
322 Worklist.push_back(ChildPad);
323 continue;
325 // We've checked this child, but still need to ignore it if it
326 // had no proof either way.
327 ChildUnwindDestToken = Memo->second;
328 if (!ChildUnwindDestToken)
329 continue;
330 } else {
331 // Not a relevant user of the cleanuppad
332 continue;
334 // In a well-formed program, the child/invoke must either unwind to
335 // an(other) child of the cleanup, or exit the cleanup. In the
336 // first case, continue searching.
337 if (isa<Instruction>(ChildUnwindDestToken) &&
338 getParentPad(ChildUnwindDestToken) == CleanupPad)
339 continue;
340 UnwindDestToken = ChildUnwindDestToken;
341 break;
344 // If we haven't found an unwind dest for CurrentPad, we may have queued its
345 // children, so move on to the next in the worklist.
346 if (!UnwindDestToken)
347 continue;
349 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
350 // any ancestors of CurrentPad up to but not including UnwindDestToken's
351 // parent pad. Record this in the memo map, and check to see if the
352 // original EHPad being queried is one of the ones exited.
353 Value *UnwindParent;
354 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
355 UnwindParent = getParentPad(UnwindPad);
356 else
357 UnwindParent = nullptr;
358 bool ExitedOriginalPad = false;
359 for (Instruction *ExitedPad = CurrentPad;
360 ExitedPad && ExitedPad != UnwindParent;
361 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
362 // Skip over catchpads since they just follow their catchswitches.
363 if (isa<CatchPadInst>(ExitedPad))
364 continue;
365 MemoMap[ExitedPad] = UnwindDestToken;
366 ExitedOriginalPad |= (ExitedPad == EHPad);
369 if (ExitedOriginalPad)
370 return UnwindDestToken;
372 // Continue the search.
375 // No definitive information is contained within this funclet.
376 return nullptr;
379 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
380 /// return that pad instruction. If it unwinds to caller, return
381 /// ConstantTokenNone. If it does not have a definitive unwind destination,
382 /// return nullptr.
384 /// This routine gets invoked for calls in funclets in inlinees when inlining
385 /// an invoke. Since many funclets don't have calls inside them, it's queried
386 /// on-demand rather than building a map of pads to unwind dests up front.
387 /// Determining a funclet's unwind dest may require recursively searching its
388 /// descendants, and also ancestors and cousins if the descendants don't provide
389 /// an answer. Since most funclets will have their unwind dest immediately
390 /// available as the unwind dest of a catchswitch or cleanupret, this routine
391 /// searches top-down from the given pad and then up. To avoid worst-case
392 /// quadratic run-time given that approach, it uses a memo map to avoid
393 /// re-processing funclet trees. The callers that rewrite the IR as they go
394 /// take advantage of this, for correctness, by checking/forcing rewritten
395 /// pads' entries to match the original callee view.
396 static Value *getUnwindDestToken(Instruction *EHPad,
397 UnwindDestMemoTy &MemoMap) {
398 // Catchpads unwind to the same place as their catchswitch;
399 // redirct any queries on catchpads so the code below can
400 // deal with just catchswitches and cleanuppads.
401 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
402 EHPad = CPI->getCatchSwitch();
404 // Check if we've already determined the unwind dest for this pad.
405 auto Memo = MemoMap.find(EHPad);
406 if (Memo != MemoMap.end())
407 return Memo->second;
409 // Search EHPad and, if necessary, its descendants.
410 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
411 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
412 if (UnwindDestToken)
413 return UnwindDestToken;
415 // No information is available for this EHPad from itself or any of its
416 // descendants. An unwind all the way out to a pad in the caller would
417 // need also to agree with the unwind dest of the parent funclet, so
418 // search up the chain to try to find a funclet with information. Put
419 // null entries in the memo map to avoid re-processing as we go up.
420 MemoMap[EHPad] = nullptr;
421 #ifndef NDEBUG
422 SmallPtrSet<Instruction *, 4> TempMemos;
423 TempMemos.insert(EHPad);
424 #endif
425 Instruction *LastUselessPad = EHPad;
426 Value *AncestorToken;
427 for (AncestorToken = getParentPad(EHPad);
428 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
429 AncestorToken = getParentPad(AncestorToken)) {
430 // Skip over catchpads since they just follow their catchswitches.
431 if (isa<CatchPadInst>(AncestorPad))
432 continue;
433 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
434 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
435 // call to getUnwindDestToken, that would mean that AncestorPad had no
436 // information in itself, its descendants, or its ancestors. If that
437 // were the case, then we should also have recorded the lack of information
438 // for the descendant that we're coming from. So assert that we don't
439 // find a null entry in the MemoMap for AncestorPad.
440 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
441 auto AncestorMemo = MemoMap.find(AncestorPad);
442 if (AncestorMemo == MemoMap.end()) {
443 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
444 } else {
445 UnwindDestToken = AncestorMemo->second;
447 if (UnwindDestToken)
448 break;
449 LastUselessPad = AncestorPad;
450 MemoMap[LastUselessPad] = nullptr;
451 #ifndef NDEBUG
452 TempMemos.insert(LastUselessPad);
453 #endif
456 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
457 // returned nullptr (and likewise for EHPad and any of its ancestors up to
458 // LastUselessPad), so LastUselessPad has no information from below. Since
459 // getUnwindDestTokenHelper must investigate all downward paths through
460 // no-information nodes to prove that a node has no information like this,
461 // and since any time it finds information it records it in the MemoMap for
462 // not just the immediately-containing funclet but also any ancestors also
463 // exited, it must be the case that, walking downward from LastUselessPad,
464 // visiting just those nodes which have not been mapped to an unwind dest
465 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
466 // they are just used to keep getUnwindDestTokenHelper from repeating work),
467 // any node visited must have been exhaustively searched with no information
468 // for it found.
469 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
470 while (!Worklist.empty()) {
471 Instruction *UselessPad = Worklist.pop_back_val();
472 auto Memo = MemoMap.find(UselessPad);
473 if (Memo != MemoMap.end() && Memo->second) {
474 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
475 // that it is a funclet that does have information about unwinding to
476 // a particular destination; its parent was a useless pad.
477 // Since its parent has no information, the unwind edge must not escape
478 // the parent, and must target a sibling of this pad. This local unwind
479 // gives us no information about EHPad. Leave it and the subtree rooted
480 // at it alone.
481 assert(getParentPad(Memo->second) == getParentPad(UselessPad));
482 continue;
484 // We know we don't have information for UselesPad. If it has an entry in
485 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
486 // added on this invocation of getUnwindDestToken; if a previous invocation
487 // recorded nullptr, it would have had to prove that the ancestors of
488 // UselessPad, which include LastUselessPad, had no information, and that
489 // in turn would have required proving that the descendants of
490 // LastUselesPad, which include EHPad, have no information about
491 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
492 // the MemoMap on that invocation, which isn't the case if we got here.
493 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
494 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
495 // information that we'd be contradicting by making a map entry for it
496 // (which is something that getUnwindDestTokenHelper must have proved for
497 // us to get here). Just assert on is direct users here; the checks in
498 // this downward walk at its descendants will verify that they don't have
499 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
500 // unwind edges or unwind to a sibling).
501 MemoMap[UselessPad] = UnwindDestToken;
502 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
503 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
504 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
505 auto *CatchPad = HandlerBlock->getFirstNonPHI();
506 for (User *U : CatchPad->users()) {
507 assert(
508 (!isa<InvokeInst>(U) ||
509 (getParentPad(
510 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
511 CatchPad)) &&
512 "Expected useless pad");
513 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
514 Worklist.push_back(cast<Instruction>(U));
517 } else {
518 assert(isa<CleanupPadInst>(UselessPad));
519 for (User *U : UselessPad->users()) {
520 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
521 assert((!isa<InvokeInst>(U) ||
522 (getParentPad(
523 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
524 UselessPad)) &&
525 "Expected useless pad");
526 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
527 Worklist.push_back(cast<Instruction>(U));
532 return UnwindDestToken;
535 /// When we inline a basic block into an invoke,
536 /// we have to turn all of the calls that can throw into invokes.
537 /// This function analyze BB to see if there are any calls, and if so,
538 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
539 /// nodes in that block with the values specified in InvokeDestPHIValues.
540 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
541 BasicBlock *BB, BasicBlock *UnwindEdge,
542 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
543 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
544 // We only need to check for function calls: inlined invoke
545 // instructions require no special handling.
546 CallInst *CI = dyn_cast<CallInst>(&I);
548 if (!CI || CI->doesNotThrow())
549 continue;
551 // We do not need to (and in fact, cannot) convert possibly throwing calls
552 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
553 // invokes. The caller's "segment" of the deoptimization continuation
554 // attached to the newly inlined @llvm.experimental_deoptimize
555 // (resp. @llvm.experimental.guard) call should contain the exception
556 // handling logic, if any.
557 if (auto *F = CI->getCalledFunction())
558 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
559 F->getIntrinsicID() == Intrinsic::experimental_guard)
560 continue;
562 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
563 // This call is nested inside a funclet. If that funclet has an unwind
564 // destination within the inlinee, then unwinding out of this call would
565 // be UB. Rewriting this call to an invoke which targets the inlined
566 // invoke's unwind dest would give the call's parent funclet multiple
567 // unwind destinations, which is something that subsequent EH table
568 // generation can't handle and that the veirifer rejects. So when we
569 // see such a call, leave it as a call.
570 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
571 Value *UnwindDestToken =
572 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
573 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
574 continue;
575 #ifndef NDEBUG
576 Instruction *MemoKey;
577 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
578 MemoKey = CatchPad->getCatchSwitch();
579 else
580 MemoKey = FuncletPad;
581 assert(FuncletUnwindMap->count(MemoKey) &&
582 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
583 "must get memoized to avoid confusing later searches");
584 #endif // NDEBUG
587 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
588 return BB;
590 return nullptr;
593 /// If we inlined an invoke site, we need to convert calls
594 /// in the body of the inlined function into invokes.
596 /// II is the invoke instruction being inlined. FirstNewBlock is the first
597 /// block of the inlined code (the last block is the end of the function),
598 /// and InlineCodeInfo is information about the code that got inlined.
599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
600 ClonedCodeInfo &InlinedCodeInfo) {
601 BasicBlock *InvokeDest = II->getUnwindDest();
603 Function *Caller = FirstNewBlock->getParent();
605 // The inlined code is currently at the end of the function, scan from the
606 // start of the inlined code to its end, checking for stuff we need to
607 // rewrite.
608 LandingPadInliningInfo Invoke(II);
610 // Get all of the inlined landing pad instructions.
611 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
612 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
613 I != E; ++I)
614 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
615 InlinedLPads.insert(II->getLandingPadInst());
617 // Append the clauses from the outer landing pad instruction into the inlined
618 // landing pad instructions.
619 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
620 for (LandingPadInst *InlinedLPad : InlinedLPads) {
621 unsigned OuterNum = OuterLPad->getNumClauses();
622 InlinedLPad->reserveClauses(OuterNum);
623 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
624 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
625 if (OuterLPad->isCleanup())
626 InlinedLPad->setCleanup(true);
629 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
630 BB != E; ++BB) {
631 if (InlinedCodeInfo.ContainsCalls)
632 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
633 &*BB, Invoke.getOuterResumeDest()))
634 // Update any PHI nodes in the exceptional block to indicate that there
635 // is now a new entry in them.
636 Invoke.addIncomingPHIValuesFor(NewBB);
638 // Forward any resumes that are remaining here.
639 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
640 Invoke.forwardResume(RI, InlinedLPads);
643 // Now that everything is happy, we have one final detail. The PHI nodes in
644 // the exception destination block still have entries due to the original
645 // invoke instruction. Eliminate these entries (which might even delete the
646 // PHI node) now.
647 InvokeDest->removePredecessor(II->getParent());
650 /// If we inlined an invoke site, we need to convert calls
651 /// in the body of the inlined function into invokes.
653 /// II is the invoke instruction being inlined. FirstNewBlock is the first
654 /// block of the inlined code (the last block is the end of the function),
655 /// and InlineCodeInfo is information about the code that got inlined.
656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
657 ClonedCodeInfo &InlinedCodeInfo) {
658 BasicBlock *UnwindDest = II->getUnwindDest();
659 Function *Caller = FirstNewBlock->getParent();
661 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
663 // If there are PHI nodes in the unwind destination block, we need to keep
664 // track of which values came into them from the invoke before removing the
665 // edge from this block.
666 SmallVector<Value *, 8> UnwindDestPHIValues;
667 BasicBlock *InvokeBB = II->getParent();
668 for (PHINode &PHI : UnwindDest->phis()) {
669 // Save the value to use for this edge.
670 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
673 // Add incoming-PHI values to the unwind destination block for the given basic
674 // block, using the values for the original invoke's source block.
675 auto UpdatePHINodes = [&](BasicBlock *Src) {
676 BasicBlock::iterator I = UnwindDest->begin();
677 for (Value *V : UnwindDestPHIValues) {
678 PHINode *PHI = cast<PHINode>(I);
679 PHI->addIncoming(V, Src);
680 ++I;
684 // This connects all the instructions which 'unwind to caller' to the invoke
685 // destination.
686 UnwindDestMemoTy FuncletUnwindMap;
687 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
688 BB != E; ++BB) {
689 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
690 if (CRI->unwindsToCaller()) {
691 auto *CleanupPad = CRI->getCleanupPad();
692 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
693 CRI->eraseFromParent();
694 UpdatePHINodes(&*BB);
695 // Finding a cleanupret with an unwind destination would confuse
696 // subsequent calls to getUnwindDestToken, so map the cleanuppad
697 // to short-circuit any such calls and recognize this as an "unwind
698 // to caller" cleanup.
699 assert(!FuncletUnwindMap.count(CleanupPad) ||
700 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
701 FuncletUnwindMap[CleanupPad] =
702 ConstantTokenNone::get(Caller->getContext());
706 Instruction *I = BB->getFirstNonPHI();
707 if (!I->isEHPad())
708 continue;
710 Instruction *Replacement = nullptr;
711 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
712 if (CatchSwitch->unwindsToCaller()) {
713 Value *UnwindDestToken;
714 if (auto *ParentPad =
715 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
716 // This catchswitch is nested inside another funclet. If that
717 // funclet has an unwind destination within the inlinee, then
718 // unwinding out of this catchswitch would be UB. Rewriting this
719 // catchswitch to unwind to the inlined invoke's unwind dest would
720 // give the parent funclet multiple unwind destinations, which is
721 // something that subsequent EH table generation can't handle and
722 // that the veirifer rejects. So when we see such a call, leave it
723 // as "unwind to caller".
724 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
725 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
726 continue;
727 } else {
728 // This catchswitch has no parent to inherit constraints from, and
729 // none of its descendants can have an unwind edge that exits it and
730 // targets another funclet in the inlinee. It may or may not have a
731 // descendant that definitively has an unwind to caller. In either
732 // case, we'll have to assume that any unwinds out of it may need to
733 // be routed to the caller, so treat it as though it has a definitive
734 // unwind to caller.
735 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
737 auto *NewCatchSwitch = CatchSwitchInst::Create(
738 CatchSwitch->getParentPad(), UnwindDest,
739 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
740 CatchSwitch);
741 for (BasicBlock *PadBB : CatchSwitch->handlers())
742 NewCatchSwitch->addHandler(PadBB);
743 // Propagate info for the old catchswitch over to the new one in
744 // the unwind map. This also serves to short-circuit any subsequent
745 // checks for the unwind dest of this catchswitch, which would get
746 // confused if they found the outer handler in the callee.
747 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
748 Replacement = NewCatchSwitch;
750 } else if (!isa<FuncletPadInst>(I)) {
751 llvm_unreachable("unexpected EHPad!");
754 if (Replacement) {
755 Replacement->takeName(I);
756 I->replaceAllUsesWith(Replacement);
757 I->eraseFromParent();
758 UpdatePHINodes(&*BB);
762 if (InlinedCodeInfo.ContainsCalls)
763 for (Function::iterator BB = FirstNewBlock->getIterator(),
764 E = Caller->end();
765 BB != E; ++BB)
766 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
767 &*BB, UnwindDest, &FuncletUnwindMap))
768 // Update any PHI nodes in the exceptional block to indicate that there
769 // is now a new entry in them.
770 UpdatePHINodes(NewBB);
772 // Now that everything is happy, we have one final detail. The PHI nodes in
773 // the exception destination block still have entries due to the original
774 // invoke instruction. Eliminate these entries (which might even delete the
775 // PHI node) now.
776 UnwindDest->removePredecessor(InvokeBB);
779 static bool haveCommonPrefix(MDNode *MIBStackContext,
780 MDNode *CallsiteStackContext) {
781 assert(MIBStackContext->getNumOperands() > 0 &&
782 CallsiteStackContext->getNumOperands() > 0);
783 // Because of the context trimming performed during matching, the callsite
784 // context could have more stack ids than the MIB. We match up to the end of
785 // the shortest stack context.
786 for (auto MIBStackIter = MIBStackContext->op_begin(),
787 CallsiteStackIter = CallsiteStackContext->op_begin();
788 MIBStackIter != MIBStackContext->op_end() &&
789 CallsiteStackIter != CallsiteStackContext->op_end();
790 MIBStackIter++, CallsiteStackIter++) {
791 auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
792 auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
793 assert(Val1 && Val2);
794 if (Val1->getZExtValue() != Val2->getZExtValue())
795 return false;
797 return true;
800 static void removeMemProfMetadata(CallBase *Call) {
801 Call->setMetadata(LLVMContext::MD_memprof, nullptr);
804 static void removeCallsiteMetadata(CallBase *Call) {
805 Call->setMetadata(LLVMContext::MD_callsite, nullptr);
808 static void updateMemprofMetadata(CallBase *CI,
809 const std::vector<Metadata *> &MIBList) {
810 assert(!MIBList.empty());
811 // Remove existing memprof, which will either be replaced or may not be needed
812 // if we are able to use a single allocation type function attribute.
813 removeMemProfMetadata(CI);
814 CallStackTrie CallStack;
815 for (Metadata *MIB : MIBList)
816 CallStack.addCallStack(cast<MDNode>(MIB));
817 bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
818 assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
819 if (!MemprofMDAttached)
820 // If we used a function attribute remove the callsite metadata as well.
821 removeCallsiteMetadata(CI);
824 // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
825 // inlined callee body, based on the callsite metadata InlinedCallsiteMD from
826 // the call that was inlined.
827 static void propagateMemProfHelper(const CallBase *OrigCall,
828 CallBase *ClonedCall,
829 MDNode *InlinedCallsiteMD) {
830 MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
831 MDNode *ClonedCallsiteMD = nullptr;
832 // Check if the call originally had callsite metadata, and update it for the
833 // new call in the inlined body.
834 if (OrigCallsiteMD) {
835 // The cloned call's context is now the concatenation of the original call's
836 // callsite metadata and the callsite metadata on the call where it was
837 // inlined.
838 ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
839 ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
842 // Update any memprof metadata on the cloned call.
843 MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
844 if (!OrigMemProfMD)
845 return;
846 // We currently expect that allocations with memprof metadata also have
847 // callsite metadata for the allocation's part of the context.
848 assert(OrigCallsiteMD);
850 // New call's MIB list.
851 std::vector<Metadata *> NewMIBList;
853 // For each MIB metadata, check if its call stack context starts with the
854 // new clone's callsite metadata. If so, that MIB goes onto the cloned call in
855 // the inlined body. If not, it stays on the out-of-line original call.
856 for (auto &MIBOp : OrigMemProfMD->operands()) {
857 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
858 // Stack is first operand of MIB.
859 MDNode *StackMD = getMIBStackNode(MIB);
860 assert(StackMD);
861 // See if the new cloned callsite context matches this profiled context.
862 if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
863 // Add it to the cloned call's MIB list.
864 NewMIBList.push_back(MIB);
866 if (NewMIBList.empty()) {
867 removeMemProfMetadata(ClonedCall);
868 removeCallsiteMetadata(ClonedCall);
869 return;
871 if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
872 updateMemprofMetadata(ClonedCall, NewMIBList);
875 // Update memprof related metadata (!memprof and !callsite) based on the
876 // inlining of Callee into the callsite at CB. The updates include merging the
877 // inlined callee's callsite metadata with that of the inlined call,
878 // and moving the subset of any memprof contexts to the inlined callee
879 // allocations if they match the new inlined call stack.
880 static void
881 propagateMemProfMetadata(Function *Callee, CallBase &CB,
882 bool ContainsMemProfMetadata,
883 const ValueMap<const Value *, WeakTrackingVH> &VMap) {
884 MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
885 // Only need to update if the inlined callsite had callsite metadata, or if
886 // there was any memprof metadata inlined.
887 if (!CallsiteMD && !ContainsMemProfMetadata)
888 return;
890 // Propagate metadata onto the cloned calls in the inlined callee.
891 for (const auto &Entry : VMap) {
892 // See if this is a call that has been inlined and remapped, and not
893 // simplified away in the process.
894 auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
895 auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
896 if (!OrigCall || !ClonedCall)
897 continue;
898 // If the inlined callsite did not have any callsite metadata, then it isn't
899 // involved in any profiled call contexts, and we can remove any memprof
900 // metadata on the cloned call.
901 if (!CallsiteMD) {
902 removeMemProfMetadata(ClonedCall);
903 removeCallsiteMetadata(ClonedCall);
904 continue;
906 propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD);
910 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
911 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
912 /// be propagated to all memory-accessing cloned instructions.
913 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
914 Function::iterator FEnd) {
915 MDNode *MemParallelLoopAccess =
916 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
917 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
918 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
919 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
920 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
921 return;
923 for (BasicBlock &BB : make_range(FStart, FEnd)) {
924 for (Instruction &I : BB) {
925 // This metadata is only relevant for instructions that access memory.
926 if (!I.mayReadOrWriteMemory())
927 continue;
929 if (MemParallelLoopAccess) {
930 // TODO: This probably should not overwrite MemParalleLoopAccess.
931 MemParallelLoopAccess = MDNode::concatenate(
932 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
933 MemParallelLoopAccess);
934 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
935 MemParallelLoopAccess);
938 if (AccessGroup)
939 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
940 I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
942 if (AliasScope)
943 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
944 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
946 if (NoAlias)
947 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
948 I.getMetadata(LLVMContext::MD_noalias), NoAlias));
953 /// Bundle operands of the inlined function must be added to inlined call sites.
954 static void PropagateOperandBundles(Function::iterator InlinedBB,
955 Instruction *CallSiteEHPad) {
956 for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
957 CallBase *I = dyn_cast<CallBase>(&II);
958 if (!I)
959 continue;
960 // Skip call sites which already have a "funclet" bundle.
961 if (I->getOperandBundle(LLVMContext::OB_funclet))
962 continue;
963 // Skip call sites which are nounwind intrinsics (as long as they don't
964 // lower into regular function calls in the course of IR transformations).
965 auto *CalledFn =
966 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
967 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
968 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
969 continue;
971 SmallVector<OperandBundleDef, 1> OpBundles;
972 I->getOperandBundlesAsDefs(OpBundles);
973 OpBundles.emplace_back("funclet", CallSiteEHPad);
975 Instruction *NewInst = CallBase::Create(I, OpBundles, I);
976 NewInst->takeName(I);
977 I->replaceAllUsesWith(NewInst);
978 I->eraseFromParent();
982 namespace {
983 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
984 /// using scoped alias metadata is inlined, the aliasing relationships may not
985 /// hold between the two version. It is necessary to create a deep clone of the
986 /// metadata, putting the two versions in separate scope domains.
987 class ScopedAliasMetadataDeepCloner {
988 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
989 SetVector<const MDNode *> MD;
990 MetadataMap MDMap;
991 void addRecursiveMetadataUses();
993 public:
994 ScopedAliasMetadataDeepCloner(const Function *F);
996 /// Create a new clone of the scoped alias metadata, which will be used by
997 /// subsequent remap() calls.
998 void clone();
1000 /// Remap instructions in the given range from the original to the cloned
1001 /// metadata.
1002 void remap(Function::iterator FStart, Function::iterator FEnd);
1004 } // namespace
1006 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
1007 const Function *F) {
1008 for (const BasicBlock &BB : *F) {
1009 for (const Instruction &I : BB) {
1010 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1011 MD.insert(M);
1012 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1013 MD.insert(M);
1015 // We also need to clone the metadata in noalias intrinsics.
1016 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1017 MD.insert(Decl->getScopeList());
1020 addRecursiveMetadataUses();
1023 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
1024 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
1025 while (!Queue.empty()) {
1026 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
1027 for (const Metadata *Op : M->operands())
1028 if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
1029 if (MD.insert(OpMD))
1030 Queue.push_back(OpMD);
1034 void ScopedAliasMetadataDeepCloner::clone() {
1035 assert(MDMap.empty() && "clone() already called ?");
1037 SmallVector<TempMDTuple, 16> DummyNodes;
1038 for (const MDNode *I : MD) {
1039 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt));
1040 MDMap[I].reset(DummyNodes.back().get());
1043 // Create new metadata nodes to replace the dummy nodes, replacing old
1044 // metadata references with either a dummy node or an already-created new
1045 // node.
1046 SmallVector<Metadata *, 4> NewOps;
1047 for (const MDNode *I : MD) {
1048 for (const Metadata *Op : I->operands()) {
1049 if (const MDNode *M = dyn_cast<MDNode>(Op))
1050 NewOps.push_back(MDMap[M]);
1051 else
1052 NewOps.push_back(const_cast<Metadata *>(Op));
1055 MDNode *NewM = MDNode::get(I->getContext(), NewOps);
1056 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
1057 assert(TempM->isTemporary() && "Expected temporary node");
1059 TempM->replaceAllUsesWith(NewM);
1060 NewOps.clear();
1064 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
1065 Function::iterator FEnd) {
1066 if (MDMap.empty())
1067 return; // Nothing to do.
1069 for (BasicBlock &BB : make_range(FStart, FEnd)) {
1070 for (Instruction &I : BB) {
1071 // TODO: The null checks for the MDMap.lookup() results should no longer
1072 // be necessary.
1073 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1074 if (MDNode *MNew = MDMap.lookup(M))
1075 I.setMetadata(LLVMContext::MD_alias_scope, MNew);
1077 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1078 if (MDNode *MNew = MDMap.lookup(M))
1079 I.setMetadata(LLVMContext::MD_noalias, MNew);
1081 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1082 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
1083 Decl->setScopeList(MNew);
1088 /// If the inlined function has noalias arguments,
1089 /// then add new alias scopes for each noalias argument, tag the mapped noalias
1090 /// parameters with noalias metadata specifying the new scope, and tag all
1091 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
1092 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
1093 const DataLayout &DL, AAResults *CalleeAAR,
1094 ClonedCodeInfo &InlinedFunctionInfo) {
1095 if (!EnableNoAliasConversion)
1096 return;
1098 const Function *CalledFunc = CB.getCalledFunction();
1099 SmallVector<const Argument *, 4> NoAliasArgs;
1101 for (const Argument &Arg : CalledFunc->args())
1102 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
1103 NoAliasArgs.push_back(&Arg);
1105 if (NoAliasArgs.empty())
1106 return;
1108 // To do a good job, if a noalias variable is captured, we need to know if
1109 // the capture point dominates the particular use we're considering.
1110 DominatorTree DT;
1111 DT.recalculate(const_cast<Function&>(*CalledFunc));
1113 // noalias indicates that pointer values based on the argument do not alias
1114 // pointer values which are not based on it. So we add a new "scope" for each
1115 // noalias function argument. Accesses using pointers based on that argument
1116 // become part of that alias scope, accesses using pointers not based on that
1117 // argument are tagged as noalias with that scope.
1119 DenseMap<const Argument *, MDNode *> NewScopes;
1120 MDBuilder MDB(CalledFunc->getContext());
1122 // Create a new scope domain for this function.
1123 MDNode *NewDomain =
1124 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
1125 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
1126 const Argument *A = NoAliasArgs[i];
1128 std::string Name = std::string(CalledFunc->getName());
1129 if (A->hasName()) {
1130 Name += ": %";
1131 Name += A->getName();
1132 } else {
1133 Name += ": argument ";
1134 Name += utostr(i);
1137 // Note: We always create a new anonymous root here. This is true regardless
1138 // of the linkage of the callee because the aliasing "scope" is not just a
1139 // property of the callee, but also all control dependencies in the caller.
1140 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
1141 NewScopes.insert(std::make_pair(A, NewScope));
1143 if (UseNoAliasIntrinsic) {
1144 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1145 // argument.
1146 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1147 auto *NoAliasDecl =
1148 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1149 // Ignore the result for now. The result will be used when the
1150 // llvm.noalias intrinsic is introduced.
1151 (void)NoAliasDecl;
1155 // Iterate over all new instructions in the map; for all memory-access
1156 // instructions, add the alias scope metadata.
1157 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1158 VMI != VMIE; ++VMI) {
1159 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1160 if (!VMI->second)
1161 continue;
1163 Instruction *NI = dyn_cast<Instruction>(VMI->second);
1164 if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1165 continue;
1167 bool IsArgMemOnlyCall = false, IsFuncCall = false;
1168 SmallVector<const Value *, 2> PtrArgs;
1170 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1171 PtrArgs.push_back(LI->getPointerOperand());
1172 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1173 PtrArgs.push_back(SI->getPointerOperand());
1174 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1175 PtrArgs.push_back(VAAI->getPointerOperand());
1176 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1177 PtrArgs.push_back(CXI->getPointerOperand());
1178 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1179 PtrArgs.push_back(RMWI->getPointerOperand());
1180 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1181 // If we know that the call does not access memory, then we'll still
1182 // know that about the inlined clone of this call site, and we don't
1183 // need to add metadata.
1184 if (Call->doesNotAccessMemory())
1185 continue;
1187 IsFuncCall = true;
1188 if (CalleeAAR) {
1189 MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
1191 // We'll retain this knowledge without additional metadata.
1192 if (ME.onlyAccessesInaccessibleMem())
1193 continue;
1195 if (ME.onlyAccessesArgPointees())
1196 IsArgMemOnlyCall = true;
1199 for (Value *Arg : Call->args()) {
1200 // Only care about pointer arguments. If a noalias argument is
1201 // accessed through a non-pointer argument, it must be captured
1202 // first (e.g. via ptrtoint), and we protect against captures below.
1203 if (!Arg->getType()->isPointerTy())
1204 continue;
1206 PtrArgs.push_back(Arg);
1210 // If we found no pointers, then this instruction is not suitable for
1211 // pairing with an instruction to receive aliasing metadata.
1212 // However, if this is a call, this we might just alias with none of the
1213 // noalias arguments.
1214 if (PtrArgs.empty() && !IsFuncCall)
1215 continue;
1217 // It is possible that there is only one underlying object, but you
1218 // need to go through several PHIs to see it, and thus could be
1219 // repeated in the Objects list.
1220 SmallPtrSet<const Value *, 4> ObjSet;
1221 SmallVector<Metadata *, 4> Scopes, NoAliases;
1223 SmallSetVector<const Argument *, 4> NAPtrArgs;
1224 for (const Value *V : PtrArgs) {
1225 SmallVector<const Value *, 4> Objects;
1226 getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1228 for (const Value *O : Objects)
1229 ObjSet.insert(O);
1232 // Figure out if we're derived from anything that is not a noalias
1233 // argument.
1234 bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
1235 UsesUnknownObject = false;
1236 for (const Value *V : ObjSet) {
1237 // Is this value a constant that cannot be derived from any pointer
1238 // value (we need to exclude constant expressions, for example, that
1239 // are formed from arithmetic on global symbols).
1240 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1241 isa<ConstantPointerNull>(V) ||
1242 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1243 if (IsNonPtrConst)
1244 continue;
1246 // If this is anything other than a noalias argument, then we cannot
1247 // completely describe the aliasing properties using alias.scope
1248 // metadata (and, thus, won't add any).
1249 if (const Argument *A = dyn_cast<Argument>(V)) {
1250 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1251 UsesAliasingPtr = true;
1252 } else {
1253 UsesAliasingPtr = true;
1256 if (isEscapeSource(V)) {
1257 // An escape source can only alias with a noalias argument if it has
1258 // been captured beforehand.
1259 RequiresNoCaptureBefore = true;
1260 } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
1261 // If this is neither an escape source, nor some identified object
1262 // (which cannot directly alias a noalias argument), nor some other
1263 // argument (which, by definition, also cannot alias a noalias
1264 // argument), conservatively do not make any assumptions.
1265 UsesUnknownObject = true;
1269 // Nothing we can do if the used underlying object cannot be reliably
1270 // determined.
1271 if (UsesUnknownObject)
1272 continue;
1274 // A function call can always get captured noalias pointers (via other
1275 // parameters, globals, etc.).
1276 if (IsFuncCall && !IsArgMemOnlyCall)
1277 RequiresNoCaptureBefore = true;
1279 // First, we want to figure out all of the sets with which we definitely
1280 // don't alias. Iterate over all noalias set, and add those for which:
1281 // 1. The noalias argument is not in the set of objects from which we
1282 // definitely derive.
1283 // 2. The noalias argument has not yet been captured.
1284 // An arbitrary function that might load pointers could see captured
1285 // noalias arguments via other noalias arguments or globals, and so we
1286 // must always check for prior capture.
1287 for (const Argument *A : NoAliasArgs) {
1288 if (ObjSet.contains(A))
1289 continue; // May be based on a noalias argument.
1291 // It might be tempting to skip the PointerMayBeCapturedBefore check if
1292 // A->hasNoCaptureAttr() is true, but this is incorrect because
1293 // nocapture only guarantees that no copies outlive the function, not
1294 // that the value cannot be locally captured.
1295 if (!RequiresNoCaptureBefore ||
1296 !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
1297 /* StoreCaptures */ false, I, &DT))
1298 NoAliases.push_back(NewScopes[A]);
1301 if (!NoAliases.empty())
1302 NI->setMetadata(LLVMContext::MD_noalias,
1303 MDNode::concatenate(
1304 NI->getMetadata(LLVMContext::MD_noalias),
1305 MDNode::get(CalledFunc->getContext(), NoAliases)));
1307 // Next, we want to figure out all of the sets to which we might belong.
1308 // We might belong to a set if the noalias argument is in the set of
1309 // underlying objects. If there is some non-noalias argument in our list
1310 // of underlying objects, then we cannot add a scope because the fact
1311 // that some access does not alias with any set of our noalias arguments
1312 // cannot itself guarantee that it does not alias with this access
1313 // (because there is some pointer of unknown origin involved and the
1314 // other access might also depend on this pointer). We also cannot add
1315 // scopes to arbitrary functions unless we know they don't access any
1316 // non-parameter pointer-values.
1317 bool CanAddScopes = !UsesAliasingPtr;
1318 if (CanAddScopes && IsFuncCall)
1319 CanAddScopes = IsArgMemOnlyCall;
1321 if (CanAddScopes)
1322 for (const Argument *A : NoAliasArgs) {
1323 if (ObjSet.count(A))
1324 Scopes.push_back(NewScopes[A]);
1327 if (!Scopes.empty())
1328 NI->setMetadata(
1329 LLVMContext::MD_alias_scope,
1330 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1331 MDNode::get(CalledFunc->getContext(), Scopes)));
1336 static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin,
1337 ReturnInst *End) {
1339 assert(Begin->getParent() == End->getParent() &&
1340 "Expected to be in same basic block!");
1341 auto BeginIt = Begin->getIterator();
1342 assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator");
1343 return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1344 ++BeginIt, End->getIterator(), InlinerAttributeWindow + 1);
1347 // Only allow these white listed attributes to be propagated back to the
1348 // callee. This is because other attributes may only be valid on the call
1349 // itself, i.e. attributes such as signext and zeroext.
1351 // Attributes that are always okay to propagate as if they are violated its
1352 // immediate UB.
1353 static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) {
1354 AttrBuilder Valid(CB.getContext());
1355 if (auto DerefBytes = CB.getRetDereferenceableBytes())
1356 Valid.addDereferenceableAttr(DerefBytes);
1357 if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes())
1358 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1359 if (CB.hasRetAttr(Attribute::NoAlias))
1360 Valid.addAttribute(Attribute::NoAlias);
1361 if (CB.hasRetAttr(Attribute::NoUndef))
1362 Valid.addAttribute(Attribute::NoUndef);
1363 return Valid;
1366 // Attributes that need additional checks as propagating them may change
1367 // behavior or cause new UB.
1368 static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) {
1369 AttrBuilder Valid(CB.getContext());
1370 if (CB.hasRetAttr(Attribute::NonNull))
1371 Valid.addAttribute(Attribute::NonNull);
1372 if (CB.hasRetAttr(Attribute::Alignment))
1373 Valid.addAlignmentAttr(CB.getRetAlign());
1374 return Valid;
1377 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1378 AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB);
1379 AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB);
1380 if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes())
1381 return;
1382 auto *CalledFunction = CB.getCalledFunction();
1383 auto &Context = CalledFunction->getContext();
1385 for (auto &BB : *CalledFunction) {
1386 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1387 if (!RI || !isa<CallBase>(RI->getOperand(0)))
1388 continue;
1389 auto *RetVal = cast<CallBase>(RI->getOperand(0));
1390 // Check that the cloned RetVal exists and is a call, otherwise we cannot
1391 // add the attributes on the cloned RetVal. Simplification during inlining
1392 // could have transformed the cloned instruction.
1393 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1394 if (!NewRetVal)
1395 continue;
1396 // Backward propagation of attributes to the returned value may be incorrect
1397 // if it is control flow dependent.
1398 // Consider:
1399 // @callee {
1400 // %rv = call @foo()
1401 // %rv2 = call @bar()
1402 // if (%rv2 != null)
1403 // return %rv2
1404 // if (%rv == null)
1405 // exit()
1406 // return %rv
1407 // }
1408 // caller() {
1409 // %val = call nonnull @callee()
1410 // }
1411 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1412 // limit the check to both RetVal and RI are in the same basic block and
1413 // there are no throwing/exiting instructions between these instructions.
1414 if (RI->getParent() != RetVal->getParent() ||
1415 MayContainThrowingOrExitingCallAfterCB(RetVal, RI))
1416 continue;
1417 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1418 // instruction.
1419 // NB! When we have the same attribute already existing on NewRetVal, but
1420 // with a differing value, the AttributeList's merge API honours the already
1421 // existing attribute value (i.e. attributes such as dereferenceable,
1422 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1423 AttributeList AL = NewRetVal->getAttributes();
1424 if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes())
1425 ValidUB.removeAttribute(Attribute::Dereferenceable);
1426 if (ValidUB.getDereferenceableOrNullBytes() <
1427 AL.getRetDereferenceableOrNullBytes())
1428 ValidUB.removeAttribute(Attribute::DereferenceableOrNull);
1429 AttributeList NewAL = AL.addRetAttributes(Context, ValidUB);
1430 // Attributes that may generate poison returns are a bit tricky. If we
1431 // propagate them, other uses of the callsite might have their behavior
1432 // change or cause UB (if they have noundef) b.c of the new potential
1433 // poison.
1434 // Take the following three cases:
1436 // 1)
1437 // define nonnull ptr @foo() {
1438 // %p = call ptr @bar()
1439 // call void @use(ptr %p) willreturn nounwind
1440 // ret ptr %p
1441 // }
1443 // 2)
1444 // define noundef nonnull ptr @foo() {
1445 // %p = call ptr @bar()
1446 // call void @use(ptr %p) willreturn nounwind
1447 // ret ptr %p
1448 // }
1450 // 3)
1451 // define nonnull ptr @foo() {
1452 // %p = call noundef ptr @bar()
1453 // ret ptr %p
1454 // }
1456 // In case 1, we can't propagate nonnull because poison value in @use may
1457 // change behavior or trigger UB.
1458 // In case 2, we don't need to be concerned about propagating nonnull, as
1459 // any new poison at @use will trigger UB anyways.
1460 // In case 3, we can never propagate nonnull because it may create UB due to
1461 // the noundef on @bar.
1462 if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne())
1463 ValidPG.removeAttribute(Attribute::Alignment);
1464 if (ValidPG.hasAttributes()) {
1465 // Three checks.
1466 // If the callsite has `noundef`, then a poison due to violating the
1467 // return attribute will create UB anyways so we can always propagate.
1468 // Otherwise, if the return value (callee to be inlined) has `noundef`, we
1469 // can't propagate as a new poison return will cause UB.
1470 // Finally, check if the return value has no uses whose behavior may
1471 // change/may cause UB if we potentially return poison. At the moment this
1472 // is implemented overly conservatively with a single-use check.
1473 // TODO: Update the single-use check to iterate through uses and only bail
1474 // if we have a potentially dangerous use.
1476 if (CB.hasRetAttr(Attribute::NoUndef) ||
1477 (RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef)))
1478 NewAL = NewAL.addRetAttributes(Context, ValidPG);
1480 NewRetVal->setAttributes(NewAL);
1484 /// If the inlined function has non-byval align arguments, then
1485 /// add @llvm.assume-based alignment assumptions to preserve this information.
1486 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1487 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1488 return;
1490 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1491 auto &DL = CB.getCaller()->getParent()->getDataLayout();
1493 // To avoid inserting redundant assumptions, we should check for assumptions
1494 // already in the caller. To do this, we might need a DT of the caller.
1495 DominatorTree DT;
1496 bool DTCalculated = false;
1498 Function *CalledFunc = CB.getCalledFunction();
1499 for (Argument &Arg : CalledFunc->args()) {
1500 if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
1501 Arg.hasNUses(0))
1502 continue;
1503 MaybeAlign Alignment = Arg.getParamAlign();
1504 if (!Alignment)
1505 continue;
1507 if (!DTCalculated) {
1508 DT.recalculate(*CB.getCaller());
1509 DTCalculated = true;
1511 // If we can already prove the asserted alignment in the context of the
1512 // caller, then don't bother inserting the assumption.
1513 Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1514 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
1515 continue;
1517 CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
1518 DL, ArgVal, Alignment->value());
1519 AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1523 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1524 Module *M, BasicBlock *InsertBlock,
1525 InlineFunctionInfo &IFI,
1526 Function *CalledFunc) {
1527 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1529 Value *Size =
1530 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1532 // Always generate a memcpy of alignment 1 here because we don't know
1533 // the alignment of the src pointer. Other optimizations can infer
1534 // better alignment.
1535 CallInst *CI = Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1536 /*SrcAlign*/ Align(1), Size);
1538 // The verifier requires that all calls of debug-info-bearing functions
1539 // from debug-info-bearing functions have a debug location (for inlining
1540 // purposes). Assign a dummy location to satisfy the constraint.
1541 if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram())
1542 if (DISubprogram *SP = CalledFunc->getSubprogram())
1543 CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP));
1546 /// When inlining a call site that has a byval argument,
1547 /// we have to make the implicit memcpy explicit by adding it.
1548 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1549 Instruction *TheCall,
1550 const Function *CalledFunc,
1551 InlineFunctionInfo &IFI,
1552 MaybeAlign ByValAlignment) {
1553 Function *Caller = TheCall->getFunction();
1554 const DataLayout &DL = Caller->getParent()->getDataLayout();
1556 // If the called function is readonly, then it could not mutate the caller's
1557 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1558 // temporary.
1559 if (CalledFunc->onlyReadsMemory()) {
1560 // If the byval argument has a specified alignment that is greater than the
1561 // passed in pointer, then we either have to round up the input pointer or
1562 // give up on this transformation.
1563 if (ByValAlignment.valueOrOne() == 1)
1564 return Arg;
1566 AssumptionCache *AC =
1567 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1569 // If the pointer is already known to be sufficiently aligned, or if we can
1570 // round it up to a larger alignment, then we don't need a temporary.
1571 if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
1572 *ByValAlignment)
1573 return Arg;
1575 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1576 // for code quality, but rarely happens and is required for correctness.
1579 // Create the alloca. If we have DataLayout, use nice alignment.
1580 Align Alignment = DL.getPrefTypeAlign(ByValType);
1582 // If the byval had an alignment specified, we *must* use at least that
1583 // alignment, as it is required by the byval argument (and uses of the
1584 // pointer inside the callee).
1585 if (ByValAlignment)
1586 Alignment = std::max(Alignment, *ByValAlignment);
1588 AllocaInst *NewAlloca = new AllocaInst(ByValType, DL.getAllocaAddrSpace(),
1589 nullptr, Alignment, Arg->getName());
1590 NewAlloca->insertBefore(Caller->begin()->begin());
1591 IFI.StaticAllocas.push_back(NewAlloca);
1593 // Uses of the argument in the function should use our new alloca
1594 // instead.
1595 return NewAlloca;
1598 // Check whether this Value is used by a lifetime intrinsic.
1599 static bool isUsedByLifetimeMarker(Value *V) {
1600 for (User *U : V->users())
1601 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1602 if (II->isLifetimeStartOrEnd())
1603 return true;
1604 return false;
1607 // Check whether the given alloca already has
1608 // lifetime.start or lifetime.end intrinsics.
1609 static bool hasLifetimeMarkers(AllocaInst *AI) {
1610 Type *Ty = AI->getType();
1611 Type *Int8PtrTy =
1612 PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace());
1613 if (Ty == Int8PtrTy)
1614 return isUsedByLifetimeMarker(AI);
1616 // Do a scan to find all the casts to i8*.
1617 for (User *U : AI->users()) {
1618 if (U->getType() != Int8PtrTy) continue;
1619 if (U->stripPointerCasts() != AI) continue;
1620 if (isUsedByLifetimeMarker(U))
1621 return true;
1623 return false;
1626 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1627 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1628 /// cannot be static.
1629 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1630 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1633 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1634 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1635 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1636 LLVMContext &Ctx,
1637 DenseMap<const MDNode *, MDNode *> &IANodes) {
1638 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1639 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1640 OrigDL.getScope(), IA);
1643 /// Update inlined instructions' line numbers to
1644 /// to encode location where these instructions are inlined.
1645 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1646 Instruction *TheCall, bool CalleeHasDebugInfo) {
1647 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1648 if (!TheCallDL)
1649 return;
1651 auto &Ctx = Fn->getContext();
1652 DILocation *InlinedAtNode = TheCallDL;
1654 // Create a unique call site, not to be confused with any other call from the
1655 // same location.
1656 InlinedAtNode = DILocation::getDistinct(
1657 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1658 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1660 // Cache the inlined-at nodes as they're built so they are reused, without
1661 // this every instruction's inlined-at chain would become distinct from each
1662 // other.
1663 DenseMap<const MDNode *, MDNode *> IANodes;
1665 // Check if we are not generating inline line tables and want to use
1666 // the call site location instead.
1667 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1669 // Helper-util for updating the metadata attached to an instruction.
1670 auto UpdateInst = [&](Instruction &I) {
1671 // Loop metadata needs to be updated so that the start and end locs
1672 // reference inlined-at locations.
1673 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1674 &IANodes](Metadata *MD) -> Metadata * {
1675 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1676 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1677 return MD;
1679 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1681 if (!NoInlineLineTables)
1682 if (DebugLoc DL = I.getDebugLoc()) {
1683 DebugLoc IDL =
1684 inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes);
1685 I.setDebugLoc(IDL);
1686 return;
1689 if (CalleeHasDebugInfo && !NoInlineLineTables)
1690 return;
1692 // If the inlined instruction has no line number, or if inline info
1693 // is not being generated, make it look as if it originates from the call
1694 // location. This is important for ((__always_inline, __nodebug__))
1695 // functions which must use caller location for all instructions in their
1696 // function body.
1698 // Don't update static allocas, as they may get moved later.
1699 if (auto *AI = dyn_cast<AllocaInst>(&I))
1700 if (allocaWouldBeStaticInEntry(AI))
1701 return;
1703 // Do not force a debug loc for pseudo probes, since they do not need to
1704 // be debuggable, and also they are expected to have a zero/null dwarf
1705 // discriminator at this point which could be violated otherwise.
1706 if (isa<PseudoProbeInst>(I))
1707 return;
1709 I.setDebugLoc(TheCallDL);
1712 // Helper-util for updating debug-info records attached to instructions.
1713 auto UpdateDPV = [&](DPValue *DPV) {
1714 assert(DPV->getDebugLoc() && "Debug Value must have debug loc");
1715 if (NoInlineLineTables) {
1716 DPV->setDebugLoc(TheCallDL);
1717 return;
1719 DebugLoc DL = DPV->getDebugLoc();
1720 DebugLoc IDL =
1721 inlineDebugLoc(DL, InlinedAtNode,
1722 DPV->getMarker()->getParent()->getContext(), IANodes);
1723 DPV->setDebugLoc(IDL);
1726 // Iterate over all instructions, updating metadata and debug-info records.
1727 for (; FI != Fn->end(); ++FI) {
1728 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE;
1729 ++BI) {
1730 UpdateInst(*BI);
1731 for (DPValue &DPV : BI->getDbgValueRange()) {
1732 UpdateDPV(&DPV);
1736 // Remove debug info intrinsics if we're not keeping inline info.
1737 if (NoInlineLineTables) {
1738 BasicBlock::iterator BI = FI->begin();
1739 while (BI != FI->end()) {
1740 if (isa<DbgInfoIntrinsic>(BI)) {
1741 BI = BI->eraseFromParent();
1742 continue;
1743 } else {
1744 BI->dropDbgValues();
1746 ++BI;
1752 #undef DEBUG_TYPE
1753 #define DEBUG_TYPE "assignment-tracking"
1754 /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
1755 static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
1756 const CallBase &CB) {
1757 at::StorageToVarsMap EscapedLocals;
1758 SmallPtrSet<const Value *, 4> SeenBases;
1760 LLVM_DEBUG(
1761 errs() << "# Finding caller local variables escaped by callee\n");
1762 for (const Value *Arg : CB.args()) {
1763 LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
1764 if (!Arg->getType()->isPointerTy()) {
1765 LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
1766 continue;
1769 const Instruction *I = dyn_cast<Instruction>(Arg);
1770 if (!I) {
1771 LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
1772 continue;
1775 // Walk back to the base storage.
1776 assert(Arg->getType()->isPtrOrPtrVectorTy());
1777 APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
1778 const AllocaInst *Base = dyn_cast<AllocaInst>(
1779 Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
1780 if (!Base) {
1781 LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
1782 continue;
1785 assert(Base);
1786 LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
1787 // We only need to process each base address once - skip any duplicates.
1788 if (!SeenBases.insert(Base).second)
1789 continue;
1791 // Find all local variables associated with the backing storage.
1792 auto CollectAssignsForStorage = [&](auto *DbgAssign) {
1793 // Skip variables from inlined functions - they are not local variables.
1794 if (DbgAssign->getDebugLoc().getInlinedAt())
1795 return;
1796 LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n");
1797 EscapedLocals[Base].insert(at::VarRecord(DbgAssign));
1799 for_each(at::getAssignmentMarkers(Base), CollectAssignsForStorage);
1800 for_each(at::getDPVAssignmentMarkers(Base), CollectAssignsForStorage);
1802 return EscapedLocals;
1805 static void trackInlinedStores(Function::iterator Start, Function::iterator End,
1806 const CallBase &CB) {
1807 LLVM_DEBUG(errs() << "trackInlinedStores into "
1808 << Start->getParent()->getName() << " from "
1809 << CB.getCalledFunction()->getName() << "\n");
1810 std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule());
1811 at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL);
1814 /// Update inlined instructions' DIAssignID metadata. We need to do this
1815 /// otherwise a function inlined more than once into the same function
1816 /// will cause DIAssignID to be shared by many instructions.
1817 static void fixupAssignments(Function::iterator Start, Function::iterator End) {
1818 // Map {Old, New} metadata. Not used directly - use GetNewID.
1819 DenseMap<DIAssignID *, DIAssignID *> Map;
1820 auto GetNewID = [&Map](Metadata *Old) {
1821 DIAssignID *OldID = cast<DIAssignID>(Old);
1822 if (DIAssignID *NewID = Map.lookup(OldID))
1823 return NewID;
1824 DIAssignID *NewID = DIAssignID::getDistinct(OldID->getContext());
1825 Map[OldID] = NewID;
1826 return NewID;
1828 // Loop over all the inlined instructions. If we find a DIAssignID
1829 // attachment or use, replace it with a new version.
1830 for (auto BBI = Start; BBI != End; ++BBI) {
1831 for (Instruction &I : *BBI) {
1832 for (DPValue &DPV : I.getDbgValueRange()) {
1833 if (DPV.isDbgAssign())
1834 DPV.setAssignId(GetNewID(DPV.getAssignID()));
1836 if (auto *ID = I.getMetadata(LLVMContext::MD_DIAssignID))
1837 I.setMetadata(LLVMContext::MD_DIAssignID, GetNewID(ID));
1838 else if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1839 DAI->setAssignId(GetNewID(DAI->getAssignID()));
1843 #undef DEBUG_TYPE
1844 #define DEBUG_TYPE "inline-function"
1846 /// Update the block frequencies of the caller after a callee has been inlined.
1848 /// Each block cloned into the caller has its block frequency scaled by the
1849 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1850 /// callee's entry block gets the same frequency as the callsite block and the
1851 /// relative frequencies of all cloned blocks remain the same after cloning.
1852 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1853 const ValueToValueMapTy &VMap,
1854 BlockFrequencyInfo *CallerBFI,
1855 BlockFrequencyInfo *CalleeBFI,
1856 const BasicBlock &CalleeEntryBlock) {
1857 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1858 for (auto Entry : VMap) {
1859 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1860 continue;
1861 auto *OrigBB = cast<BasicBlock>(Entry.first);
1862 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1863 BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB);
1864 if (!ClonedBBs.insert(ClonedBB).second) {
1865 // Multiple blocks in the callee might get mapped to one cloned block in
1866 // the caller since we prune the callee as we clone it. When that happens,
1867 // we want to use the maximum among the original blocks' frequencies.
1868 BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB);
1869 if (NewFreq > Freq)
1870 Freq = NewFreq;
1872 CallerBFI->setBlockFreq(ClonedBB, Freq);
1874 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1875 CallerBFI->setBlockFreqAndScale(
1876 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs);
1879 /// Update the branch metadata for cloned call instructions.
1880 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1881 const ProfileCount &CalleeEntryCount,
1882 const CallBase &TheCall, ProfileSummaryInfo *PSI,
1883 BlockFrequencyInfo *CallerBFI) {
1884 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
1885 return;
1886 auto CallSiteCount =
1887 PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
1888 int64_t CallCount =
1889 std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
1890 updateProfileCallee(Callee, -CallCount, &VMap);
1893 void llvm::updateProfileCallee(
1894 Function *Callee, int64_t EntryDelta,
1895 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1896 auto CalleeCount = Callee->getEntryCount();
1897 if (!CalleeCount)
1898 return;
1900 const uint64_t PriorEntryCount = CalleeCount->getCount();
1902 // Since CallSiteCount is an estimate, it could exceed the original callee
1903 // count and has to be set to 0 so guard against underflow.
1904 const uint64_t NewEntryCount =
1905 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1907 : PriorEntryCount + EntryDelta;
1909 // During inlining ?
1910 if (VMap) {
1911 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
1912 for (auto Entry : *VMap)
1913 if (isa<CallInst>(Entry.first))
1914 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1915 CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
1918 if (EntryDelta) {
1919 Callee->setEntryCount(NewEntryCount);
1921 for (BasicBlock &BB : *Callee)
1922 // No need to update the callsite if it is pruned during inlining.
1923 if (!VMap || VMap->count(&BB))
1924 for (Instruction &I : BB)
1925 if (CallInst *CI = dyn_cast<CallInst>(&I))
1926 CI->updateProfWeight(NewEntryCount, PriorEntryCount);
1930 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1931 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1932 /// after the call. This function inlines the retainRV/claimRV calls.
1934 /// There are three cases to consider:
1936 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1937 /// object in the callee return block, the autoreleaseRV call and the
1938 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1939 /// is a claimRV call, a call to objc_release is emitted.
1941 /// 2. If there is a call in the callee return block that doesn't have operand
1942 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1943 /// is transferred to the call in the callee.
1945 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1946 /// a retainRV call.
1947 static void
1948 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1949 const SmallVectorImpl<ReturnInst *> &Returns) {
1950 Module *Mod = CB.getModule();
1951 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1952 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
1953 IsUnsafeClaimRV = !IsRetainRV;
1955 for (auto *RI : Returns) {
1956 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1957 bool InsertRetainCall = IsRetainRV;
1958 IRBuilder<> Builder(RI->getContext());
1960 // Walk backwards through the basic block looking for either a matching
1961 // autoreleaseRV call or an unannotated call.
1962 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1963 RI->getParent()->rend());
1964 for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1965 // Ignore casts.
1966 if (isa<CastInst>(I))
1967 continue;
1969 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1970 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1971 !II->hasNUses(0) ||
1972 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1973 break;
1975 // If we've found a matching authoreleaseRV call:
1976 // - If claimRV is attached to the call, insert a call to objc_release
1977 // and erase the autoreleaseRV call.
1978 // - If retainRV is attached to the call, just erase the autoreleaseRV
1979 // call.
1980 if (IsUnsafeClaimRV) {
1981 Builder.SetInsertPoint(II);
1982 Function *IFn =
1983 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1984 Builder.CreateCall(IFn, RetOpnd, "");
1986 II->eraseFromParent();
1987 InsertRetainCall = false;
1988 break;
1991 auto *CI = dyn_cast<CallInst>(&I);
1993 if (!CI)
1994 break;
1996 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1997 objcarc::hasAttachedCallOpBundle(CI))
1998 break;
2000 // If we've found an unannotated call that defines RetOpnd, add a
2001 // "clang.arc.attachedcall" operand bundle.
2002 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
2003 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
2004 auto *NewCall = CallBase::addOperandBundle(
2005 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
2006 NewCall->copyMetadata(*CI);
2007 CI->replaceAllUsesWith(NewCall);
2008 CI->eraseFromParent();
2009 InsertRetainCall = false;
2010 break;
2013 if (InsertRetainCall) {
2014 // The retainRV is attached to the call and we've failed to find a
2015 // matching autoreleaseRV or an annotated call in the callee. Emit a call
2016 // to objc_retain.
2017 Builder.SetInsertPoint(RI);
2018 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
2019 Builder.CreateCall(IFn, RetOpnd, "");
2024 /// This function inlines the called function into the basic block of the
2025 /// caller. This returns false if it is not possible to inline this call.
2026 /// The program is still in a well defined state if this occurs though.
2028 /// Note that this only does one level of inlining. For example, if the
2029 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
2030 /// exists in the instruction stream. Similarly this will inline a recursive
2031 /// function by one level.
2032 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
2033 bool MergeAttributes,
2034 AAResults *CalleeAAR,
2035 bool InsertLifetime,
2036 Function *ForwardVarArgsTo) {
2037 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
2039 // FIXME: we don't inline callbr yet.
2040 if (isa<CallBrInst>(CB))
2041 return InlineResult::failure("We don't inline callbr yet.");
2043 // If IFI has any state in it, zap it before we fill it in.
2044 IFI.reset();
2046 Function *CalledFunc = CB.getCalledFunction();
2047 if (!CalledFunc || // Can't inline external function or indirect
2048 CalledFunc->isDeclaration()) // call!
2049 return InlineResult::failure("external or indirect");
2051 // The inliner does not know how to inline through calls with operand bundles
2052 // in general ...
2053 Value *ConvergenceControlToken = nullptr;
2054 if (CB.hasOperandBundles()) {
2055 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
2056 auto OBUse = CB.getOperandBundleAt(i);
2057 uint32_t Tag = OBUse.getTagID();
2058 // ... but it knows how to inline through "deopt" operand bundles ...
2059 if (Tag == LLVMContext::OB_deopt)
2060 continue;
2061 // ... and "funclet" operand bundles.
2062 if (Tag == LLVMContext::OB_funclet)
2063 continue;
2064 if (Tag == LLVMContext::OB_clang_arc_attachedcall)
2065 continue;
2066 if (Tag == LLVMContext::OB_kcfi)
2067 continue;
2068 if (Tag == LLVMContext::OB_convergencectrl) {
2069 ConvergenceControlToken = OBUse.Inputs[0].get();
2070 continue;
2073 return InlineResult::failure("unsupported operand bundle");
2077 // FIXME: The check below is redundant and incomplete. According to spec, if a
2078 // convergent call is missing a token, then the caller is using uncontrolled
2079 // convergence. If the callee has an entry intrinsic, then the callee is using
2080 // controlled convergence, and the call cannot be inlined. A proper
2081 // implemenation of this check requires a whole new analysis that identifies
2082 // convergence in every function. For now, we skip that and just do this one
2083 // cursory check. The underlying assumption is that in a compiler flow that
2084 // fully implements convergence control tokens, there is no mixing of
2085 // controlled and uncontrolled convergent operations in the whole program.
2086 if (CB.isConvergent()) {
2087 auto *I = CalledFunc->getEntryBlock().getFirstNonPHI();
2088 if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2089 if (IntrinsicCall->getIntrinsicID() ==
2090 Intrinsic::experimental_convergence_entry) {
2091 if (!ConvergenceControlToken) {
2092 return InlineResult::failure(
2093 "convergent call needs convergencectrl operand");
2099 // If the call to the callee cannot throw, set the 'nounwind' flag on any
2100 // calls that we inline.
2101 bool MarkNoUnwind = CB.doesNotThrow();
2103 BasicBlock *OrigBB = CB.getParent();
2104 Function *Caller = OrigBB->getParent();
2106 // Do not inline strictfp function into non-strictfp one. It would require
2107 // conversion of all FP operations in host function to constrained intrinsics.
2108 if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) &&
2109 !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) {
2110 return InlineResult::failure("incompatible strictfp attributes");
2113 // GC poses two hazards to inlining, which only occur when the callee has GC:
2114 // 1. If the caller has no GC, then the callee's GC must be propagated to the
2115 // caller.
2116 // 2. If the caller has a differing GC, it is invalid to inline.
2117 if (CalledFunc->hasGC()) {
2118 if (!Caller->hasGC())
2119 Caller->setGC(CalledFunc->getGC());
2120 else if (CalledFunc->getGC() != Caller->getGC())
2121 return InlineResult::failure("incompatible GC");
2124 // Get the personality function from the callee if it contains a landing pad.
2125 Constant *CalledPersonality =
2126 CalledFunc->hasPersonalityFn()
2127 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
2128 : nullptr;
2130 // Find the personality function used by the landing pads of the caller. If it
2131 // exists, then check to see that it matches the personality function used in
2132 // the callee.
2133 Constant *CallerPersonality =
2134 Caller->hasPersonalityFn()
2135 ? Caller->getPersonalityFn()->stripPointerCasts()
2136 : nullptr;
2137 if (CalledPersonality) {
2138 if (!CallerPersonality)
2139 Caller->setPersonalityFn(CalledPersonality);
2140 // If the personality functions match, then we can perform the
2141 // inlining. Otherwise, we can't inline.
2142 // TODO: This isn't 100% true. Some personality functions are proper
2143 // supersets of others and can be used in place of the other.
2144 else if (CalledPersonality != CallerPersonality)
2145 return InlineResult::failure("incompatible personality");
2148 // We need to figure out which funclet the callsite was in so that we may
2149 // properly nest the callee.
2150 Instruction *CallSiteEHPad = nullptr;
2151 if (CallerPersonality) {
2152 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
2153 if (isScopedEHPersonality(Personality)) {
2154 std::optional<OperandBundleUse> ParentFunclet =
2155 CB.getOperandBundle(LLVMContext::OB_funclet);
2156 if (ParentFunclet)
2157 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
2159 // OK, the inlining site is legal. What about the target function?
2161 if (CallSiteEHPad) {
2162 if (Personality == EHPersonality::MSVC_CXX) {
2163 // The MSVC personality cannot tolerate catches getting inlined into
2164 // cleanup funclets.
2165 if (isa<CleanupPadInst>(CallSiteEHPad)) {
2166 // Ok, the call site is within a cleanuppad. Let's check the callee
2167 // for catchpads.
2168 for (const BasicBlock &CalledBB : *CalledFunc) {
2169 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
2170 return InlineResult::failure("catch in cleanup funclet");
2173 } else if (isAsynchronousEHPersonality(Personality)) {
2174 // SEH is even less tolerant, there may not be any sort of exceptional
2175 // funclet in the callee.
2176 for (const BasicBlock &CalledBB : *CalledFunc) {
2177 if (CalledBB.isEHPad())
2178 return InlineResult::failure("SEH in cleanup funclet");
2185 // Determine if we are dealing with a call in an EHPad which does not unwind
2186 // to caller.
2187 bool EHPadForCallUnwindsLocally = false;
2188 if (CallSiteEHPad && isa<CallInst>(CB)) {
2189 UnwindDestMemoTy FuncletUnwindMap;
2190 Value *CallSiteUnwindDestToken =
2191 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
2193 EHPadForCallUnwindsLocally =
2194 CallSiteUnwindDestToken &&
2195 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
2198 // Get an iterator to the last basic block in the function, which will have
2199 // the new function inlined after it.
2200 Function::iterator LastBlock = --Caller->end();
2202 // Make sure to capture all of the return instructions from the cloned
2203 // function.
2204 SmallVector<ReturnInst*, 8> Returns;
2205 ClonedCodeInfo InlinedFunctionInfo;
2206 Function::iterator FirstNewBlock;
2208 { // Scope to destroy VMap after cloning.
2209 ValueToValueMapTy VMap;
2210 struct ByValInit {
2211 Value *Dst;
2212 Value *Src;
2213 Type *Ty;
2215 // Keep a list of pair (dst, src) to emit byval initializations.
2216 SmallVector<ByValInit, 4> ByValInits;
2218 // When inlining a function that contains noalias scope metadata,
2219 // this metadata needs to be cloned so that the inlined blocks
2220 // have different "unique scopes" at every call site.
2221 // Track the metadata that must be cloned. Do this before other changes to
2222 // the function, so that we do not get in trouble when inlining caller ==
2223 // callee.
2224 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
2226 auto &DL = Caller->getParent()->getDataLayout();
2228 // Calculate the vector of arguments to pass into the function cloner, which
2229 // matches up the formal to the actual argument values.
2230 auto AI = CB.arg_begin();
2231 unsigned ArgNo = 0;
2232 for (Function::arg_iterator I = CalledFunc->arg_begin(),
2233 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
2234 Value *ActualArg = *AI;
2236 // When byval arguments actually inlined, we need to make the copy implied
2237 // by them explicit. However, we don't do this if the callee is readonly
2238 // or readnone, because the copy would be unneeded: the callee doesn't
2239 // modify the struct.
2240 if (CB.isByValArgument(ArgNo)) {
2241 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
2242 &CB, CalledFunc, IFI,
2243 CalledFunc->getParamAlign(ArgNo));
2244 if (ActualArg != *AI)
2245 ByValInits.push_back(
2246 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
2249 VMap[&*I] = ActualArg;
2252 // TODO: Remove this when users have been updated to the assume bundles.
2253 // Add alignment assumptions if necessary. We do this before the inlined
2254 // instructions are actually cloned into the caller so that we can easily
2255 // check what will be known at the start of the inlined code.
2256 AddAlignmentAssumptions(CB, IFI);
2258 AssumptionCache *AC =
2259 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2261 /// Preserve all attributes on of the call and its parameters.
2262 salvageKnowledge(&CB, AC);
2264 // We want the inliner to prune the code as it copies. We would LOVE to
2265 // have no dead or constant instructions leftover after inlining occurs
2266 // (which can happen, e.g., because an argument was constant), but we'll be
2267 // happy with whatever the cloner can do.
2268 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
2269 /*ModuleLevelChanges=*/false, Returns, ".i",
2270 &InlinedFunctionInfo);
2271 // Remember the first block that is newly cloned over.
2272 FirstNewBlock = LastBlock; ++FirstNewBlock;
2274 // Insert retainRV/clainRV runtime calls.
2275 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
2276 if (RVCallKind != objcarc::ARCInstKind::None)
2277 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2279 // Updated caller/callee profiles only when requested. For sample loader
2280 // inlining, the context-sensitive inlinee profile doesn't need to be
2281 // subtracted from callee profile, and the inlined clone also doesn't need
2282 // to be scaled based on call site count.
2283 if (IFI.UpdateProfile) {
2284 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
2285 // Update the BFI of blocks cloned into the caller.
2286 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
2287 CalledFunc->front());
2289 if (auto Profile = CalledFunc->getEntryCount())
2290 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2291 IFI.CallerBFI);
2294 // Inject byval arguments initialization.
2295 for (ByValInit &Init : ByValInits)
2296 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
2297 &*FirstNewBlock, IFI, CalledFunc);
2299 std::optional<OperandBundleUse> ParentDeopt =
2300 CB.getOperandBundle(LLVMContext::OB_deopt);
2301 if (ParentDeopt) {
2302 SmallVector<OperandBundleDef, 2> OpDefs;
2304 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
2305 CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
2306 if (!ICS)
2307 continue; // instruction was DCE'd or RAUW'ed to undef
2309 OpDefs.clear();
2311 OpDefs.reserve(ICS->getNumOperandBundles());
2313 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
2314 ++COBi) {
2315 auto ChildOB = ICS->getOperandBundleAt(COBi);
2316 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
2317 // If the inlined call has other operand bundles, let them be
2318 OpDefs.emplace_back(ChildOB);
2319 continue;
2322 // It may be useful to separate this logic (of handling operand
2323 // bundles) out to a separate "policy" component if this gets crowded.
2324 // Prepend the parent's deoptimization continuation to the newly
2325 // inlined call's deoptimization continuation.
2326 std::vector<Value *> MergedDeoptArgs;
2327 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2328 ChildOB.Inputs.size());
2330 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2331 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2333 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2336 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2338 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2339 // this even if the call returns void.
2340 ICS->replaceAllUsesWith(NewI);
2342 VH = nullptr;
2343 ICS->eraseFromParent();
2347 // For 'nodebug' functions, the associated DISubprogram is always null.
2348 // Conservatively avoid propagating the callsite debug location to
2349 // instructions inlined from a function whose DISubprogram is not null.
2350 fixupLineNumbers(Caller, FirstNewBlock, &CB,
2351 CalledFunc->getSubprogram() != nullptr);
2353 if (isAssignmentTrackingEnabled(*Caller->getParent())) {
2354 // Interpret inlined stores to caller-local variables as assignments.
2355 trackInlinedStores(FirstNewBlock, Caller->end(), CB);
2357 // Update DIAssignID metadata attachments and uses so that they are
2358 // unique to this inlined instance.
2359 fixupAssignments(FirstNewBlock, Caller->end());
2362 // Now clone the inlined noalias scope metadata.
2363 SAMetadataCloner.clone();
2364 SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2366 // Add noalias metadata if necessary.
2367 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2369 // Clone return attributes on the callsite into the calls within the inlined
2370 // function which feed into its return value.
2371 AddReturnAttributes(CB, VMap);
2373 propagateMemProfMetadata(CalledFunc, CB,
2374 InlinedFunctionInfo.ContainsMemProfMetadata, VMap);
2376 // Propagate metadata on the callsite if necessary.
2377 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2379 // Register any cloned assumptions.
2380 if (IFI.GetAssumptionCache)
2381 for (BasicBlock &NewBlock :
2382 make_range(FirstNewBlock->getIterator(), Caller->end()))
2383 for (Instruction &I : NewBlock)
2384 if (auto *II = dyn_cast<AssumeInst>(&I))
2385 IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2388 if (ConvergenceControlToken) {
2389 auto *I = FirstNewBlock->getFirstNonPHI();
2390 if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2391 if (IntrinsicCall->getIntrinsicID() ==
2392 Intrinsic::experimental_convergence_entry) {
2393 IntrinsicCall->replaceAllUsesWith(ConvergenceControlToken);
2394 IntrinsicCall->eraseFromParent();
2399 // If there are any alloca instructions in the block that used to be the entry
2400 // block for the callee, move them to the entry block of the caller. First
2401 // calculate which instruction they should be inserted before. We insert the
2402 // instructions at the end of the current alloca list.
2404 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2405 for (BasicBlock::iterator I = FirstNewBlock->begin(),
2406 E = FirstNewBlock->end(); I != E; ) {
2407 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2408 if (!AI) continue;
2410 // If the alloca is now dead, remove it. This often occurs due to code
2411 // specialization.
2412 if (AI->use_empty()) {
2413 AI->eraseFromParent();
2414 continue;
2417 if (!allocaWouldBeStaticInEntry(AI))
2418 continue;
2420 // Keep track of the static allocas that we inline into the caller.
2421 IFI.StaticAllocas.push_back(AI);
2423 // Scan for the block of allocas that we can move over, and move them
2424 // all at once.
2425 while (isa<AllocaInst>(I) &&
2426 !cast<AllocaInst>(I)->use_empty() &&
2427 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2428 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2429 ++I;
2432 // Transfer all of the allocas over in a block. Using splice means
2433 // that the instructions aren't removed from the symbol table, then
2434 // reinserted.
2435 I.setTailBit(true);
2436 Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
2437 AI->getIterator(), I);
2441 SmallVector<Value*,4> VarArgsToForward;
2442 SmallVector<AttributeSet, 4> VarArgsAttrs;
2443 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2444 i < CB.arg_size(); i++) {
2445 VarArgsToForward.push_back(CB.getArgOperand(i));
2446 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2449 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2450 if (InlinedFunctionInfo.ContainsCalls) {
2451 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2452 if (CallInst *CI = dyn_cast<CallInst>(&CB))
2453 CallSiteTailKind = CI->getTailCallKind();
2455 // For inlining purposes, the "notail" marker is the same as no marker.
2456 if (CallSiteTailKind == CallInst::TCK_NoTail)
2457 CallSiteTailKind = CallInst::TCK_None;
2459 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2460 ++BB) {
2461 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2462 CallInst *CI = dyn_cast<CallInst>(&I);
2463 if (!CI)
2464 continue;
2466 // Forward varargs from inlined call site to calls to the
2467 // ForwardVarArgsTo function, if requested, and to musttail calls.
2468 if (!VarArgsToForward.empty() &&
2469 ((ForwardVarArgsTo &&
2470 CI->getCalledFunction() == ForwardVarArgsTo) ||
2471 CI->isMustTailCall())) {
2472 // Collect attributes for non-vararg parameters.
2473 AttributeList Attrs = CI->getAttributes();
2474 SmallVector<AttributeSet, 8> ArgAttrs;
2475 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2476 for (unsigned ArgNo = 0;
2477 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2478 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2481 // Add VarArg attributes.
2482 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2483 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2484 Attrs.getRetAttrs(), ArgAttrs);
2485 // Add VarArgs to existing parameters.
2486 SmallVector<Value *, 6> Params(CI->args());
2487 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2488 CallInst *NewCI = CallInst::Create(
2489 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2490 NewCI->setDebugLoc(CI->getDebugLoc());
2491 NewCI->setAttributes(Attrs);
2492 NewCI->setCallingConv(CI->getCallingConv());
2493 CI->replaceAllUsesWith(NewCI);
2494 CI->eraseFromParent();
2495 CI = NewCI;
2498 if (Function *F = CI->getCalledFunction())
2499 InlinedDeoptimizeCalls |=
2500 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2502 // We need to reduce the strength of any inlined tail calls. For
2503 // musttail, we have to avoid introducing potential unbounded stack
2504 // growth. For example, if functions 'f' and 'g' are mutually recursive
2505 // with musttail, we can inline 'g' into 'f' so long as we preserve
2506 // musttail on the cloned call to 'f'. If either the inlined call site
2507 // or the cloned call site is *not* musttail, the program already has
2508 // one frame of stack growth, so it's safe to remove musttail. Here is
2509 // a table of example transformations:
2511 // f -> musttail g -> musttail f ==> f -> musttail f
2512 // f -> musttail g -> tail f ==> f -> tail f
2513 // f -> g -> musttail f ==> f -> f
2514 // f -> g -> tail f ==> f -> f
2516 // Inlined notail calls should remain notail calls.
2517 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2518 if (ChildTCK != CallInst::TCK_NoTail)
2519 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2520 CI->setTailCallKind(ChildTCK);
2521 InlinedMustTailCalls |= CI->isMustTailCall();
2523 // Call sites inlined through a 'nounwind' call site should be
2524 // 'nounwind' as well. However, avoid marking call sites explicitly
2525 // where possible. This helps expose more opportunities for CSE after
2526 // inlining, commonly when the callee is an intrinsic.
2527 if (MarkNoUnwind && !CI->doesNotThrow())
2528 CI->setDoesNotThrow();
2533 // Leave lifetime markers for the static alloca's, scoping them to the
2534 // function we just inlined.
2535 // We need to insert lifetime intrinsics even at O0 to avoid invalid
2536 // access caused by multithreaded coroutines. The check
2537 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2538 if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2539 !IFI.StaticAllocas.empty()) {
2540 IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin());
2541 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2542 AllocaInst *AI = IFI.StaticAllocas[ai];
2543 // Don't mark swifterror allocas. They can't have bitcast uses.
2544 if (AI->isSwiftError())
2545 continue;
2547 // If the alloca is already scoped to something smaller than the whole
2548 // function then there's no need to add redundant, less accurate markers.
2549 if (hasLifetimeMarkers(AI))
2550 continue;
2552 // Try to determine the size of the allocation.
2553 ConstantInt *AllocaSize = nullptr;
2554 if (ConstantInt *AIArraySize =
2555 dyn_cast<ConstantInt>(AI->getArraySize())) {
2556 auto &DL = Caller->getParent()->getDataLayout();
2557 Type *AllocaType = AI->getAllocatedType();
2558 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2559 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2561 // Don't add markers for zero-sized allocas.
2562 if (AllocaArraySize == 0)
2563 continue;
2565 // Check that array size doesn't saturate uint64_t and doesn't
2566 // overflow when it's multiplied by type size.
2567 if (!AllocaTypeSize.isScalable() &&
2568 AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2569 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2570 AllocaTypeSize.getFixedValue()) {
2571 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2572 AllocaArraySize * AllocaTypeSize);
2576 builder.CreateLifetimeStart(AI, AllocaSize);
2577 for (ReturnInst *RI : Returns) {
2578 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2579 // call and a return. The return kills all local allocas.
2580 if (InlinedMustTailCalls &&
2581 RI->getParent()->getTerminatingMustTailCall())
2582 continue;
2583 if (InlinedDeoptimizeCalls &&
2584 RI->getParent()->getTerminatingDeoptimizeCall())
2585 continue;
2586 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2591 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2592 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2593 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2594 // Insert the llvm.stacksave.
2595 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2596 .CreateStackSave("savedstack");
2598 // Insert a call to llvm.stackrestore before any return instructions in the
2599 // inlined function.
2600 for (ReturnInst *RI : Returns) {
2601 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2602 // call and a return. The return will restore the stack pointer.
2603 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2604 continue;
2605 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2606 continue;
2607 IRBuilder<>(RI).CreateStackRestore(SavedPtr);
2611 // If we are inlining for an invoke instruction, we must make sure to rewrite
2612 // any call instructions into invoke instructions. This is sensitive to which
2613 // funclet pads were top-level in the inlinee, so must be done before
2614 // rewriting the "parent pad" links.
2615 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2616 BasicBlock *UnwindDest = II->getUnwindDest();
2617 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2618 if (isa<LandingPadInst>(FirstNonPHI)) {
2619 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2620 } else {
2621 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2625 // Update the lexical scopes of the new funclets and callsites.
2626 // Anything that had 'none' as its parent is now nested inside the callsite's
2627 // EHPad.
2628 if (CallSiteEHPad) {
2629 for (Function::iterator BB = FirstNewBlock->getIterator(),
2630 E = Caller->end();
2631 BB != E; ++BB) {
2632 // Add bundle operands to inlined call sites.
2633 PropagateOperandBundles(BB, CallSiteEHPad);
2635 // It is problematic if the inlinee has a cleanupret which unwinds to
2636 // caller and we inline it into a call site which doesn't unwind but into
2637 // an EH pad that does. Such an edge must be dynamically unreachable.
2638 // As such, we replace the cleanupret with unreachable.
2639 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2640 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2641 changeToUnreachable(CleanupRet);
2643 Instruction *I = BB->getFirstNonPHI();
2644 if (!I->isEHPad())
2645 continue;
2647 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2648 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2649 CatchSwitch->setParentPad(CallSiteEHPad);
2650 } else {
2651 auto *FPI = cast<FuncletPadInst>(I);
2652 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2653 FPI->setParentPad(CallSiteEHPad);
2658 if (InlinedDeoptimizeCalls) {
2659 // We need to at least remove the deoptimizing returns from the Return set,
2660 // so that the control flow from those returns does not get merged into the
2661 // caller (but terminate it instead). If the caller's return type does not
2662 // match the callee's return type, we also need to change the return type of
2663 // the intrinsic.
2664 if (Caller->getReturnType() == CB.getType()) {
2665 llvm::erase_if(Returns, [](ReturnInst *RI) {
2666 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2668 } else {
2669 SmallVector<ReturnInst *, 8> NormalReturns;
2670 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2671 Caller->getParent(), Intrinsic::experimental_deoptimize,
2672 {Caller->getReturnType()});
2674 for (ReturnInst *RI : Returns) {
2675 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2676 if (!DeoptCall) {
2677 NormalReturns.push_back(RI);
2678 continue;
2681 // The calling convention on the deoptimize call itself may be bogus,
2682 // since the code we're inlining may have undefined behavior (and may
2683 // never actually execute at runtime); but all
2684 // @llvm.experimental.deoptimize declarations have to have the same
2685 // calling convention in a well-formed module.
2686 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2687 NewDeoptIntrinsic->setCallingConv(CallingConv);
2688 auto *CurBB = RI->getParent();
2689 RI->eraseFromParent();
2691 SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2693 SmallVector<OperandBundleDef, 1> OpBundles;
2694 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2695 auto DeoptAttributes = DeoptCall->getAttributes();
2696 DeoptCall->eraseFromParent();
2697 assert(!OpBundles.empty() &&
2698 "Expected at least the deopt operand bundle");
2700 IRBuilder<> Builder(CurBB);
2701 CallInst *NewDeoptCall =
2702 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2703 NewDeoptCall->setCallingConv(CallingConv);
2704 NewDeoptCall->setAttributes(DeoptAttributes);
2705 if (NewDeoptCall->getType()->isVoidTy())
2706 Builder.CreateRetVoid();
2707 else
2708 Builder.CreateRet(NewDeoptCall);
2709 // Since the ret type is changed, remove the incompatible attributes.
2710 NewDeoptCall->removeRetAttrs(
2711 AttributeFuncs::typeIncompatible(NewDeoptCall->getType()));
2714 // Leave behind the normal returns so we can merge control flow.
2715 std::swap(Returns, NormalReturns);
2719 // Handle any inlined musttail call sites. In order for a new call site to be
2720 // musttail, the source of the clone and the inlined call site must have been
2721 // musttail. Therefore it's safe to return without merging control into the
2722 // phi below.
2723 if (InlinedMustTailCalls) {
2724 // Check if we need to bitcast the result of any musttail calls.
2725 Type *NewRetTy = Caller->getReturnType();
2726 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2728 // Handle the returns preceded by musttail calls separately.
2729 SmallVector<ReturnInst *, 8> NormalReturns;
2730 for (ReturnInst *RI : Returns) {
2731 CallInst *ReturnedMustTail =
2732 RI->getParent()->getTerminatingMustTailCall();
2733 if (!ReturnedMustTail) {
2734 NormalReturns.push_back(RI);
2735 continue;
2737 if (!NeedBitCast)
2738 continue;
2740 // Delete the old return and any preceding bitcast.
2741 BasicBlock *CurBB = RI->getParent();
2742 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2743 RI->eraseFromParent();
2744 if (OldCast)
2745 OldCast->eraseFromParent();
2747 // Insert a new bitcast and return with the right type.
2748 IRBuilder<> Builder(CurBB);
2749 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2752 // Leave behind the normal returns so we can merge control flow.
2753 std::swap(Returns, NormalReturns);
2756 // Now that all of the transforms on the inlined code have taken place but
2757 // before we splice the inlined code into the CFG and lose track of which
2758 // blocks were actually inlined, collect the call sites. We only do this if
2759 // call graph updates weren't requested, as those provide value handle based
2760 // tracking of inlined call sites instead. Calls to intrinsics are not
2761 // collected because they are not inlineable.
2762 if (InlinedFunctionInfo.ContainsCalls) {
2763 // Otherwise just collect the raw call sites that were inlined.
2764 for (BasicBlock &NewBB :
2765 make_range(FirstNewBlock->getIterator(), Caller->end()))
2766 for (Instruction &I : NewBB)
2767 if (auto *CB = dyn_cast<CallBase>(&I))
2768 if (!(CB->getCalledFunction() &&
2769 CB->getCalledFunction()->isIntrinsic()))
2770 IFI.InlinedCallSites.push_back(CB);
2773 // If we cloned in _exactly one_ basic block, and if that block ends in a
2774 // return instruction, we splice the body of the inlined callee directly into
2775 // the calling basic block.
2776 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2777 // Move all of the instructions right before the call.
2778 OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
2779 FirstNewBlock->end());
2780 // Remove the cloned basic block.
2781 Caller->back().eraseFromParent();
2783 // If the call site was an invoke instruction, add a branch to the normal
2784 // destination.
2785 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2786 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2787 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2790 // If the return instruction returned a value, replace uses of the call with
2791 // uses of the returned value.
2792 if (!CB.use_empty()) {
2793 ReturnInst *R = Returns[0];
2794 if (&CB == R->getReturnValue())
2795 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2796 else
2797 CB.replaceAllUsesWith(R->getReturnValue());
2799 // Since we are now done with the Call/Invoke, we can delete it.
2800 CB.eraseFromParent();
2802 // Since we are now done with the return instruction, delete it also.
2803 Returns[0]->eraseFromParent();
2805 if (MergeAttributes)
2806 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2808 // We are now done with the inlining.
2809 return InlineResult::success();
2812 // Otherwise, we have the normal case, of more than one block to inline or
2813 // multiple return sites.
2815 // We want to clone the entire callee function into the hole between the
2816 // "starter" and "ender" blocks. How we accomplish this depends on whether
2817 // this is an invoke instruction or a call instruction.
2818 BasicBlock *AfterCallBB;
2819 BranchInst *CreatedBranchToNormalDest = nullptr;
2820 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2822 // Add an unconditional branch to make this look like the CallInst case...
2823 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2825 // Split the basic block. This guarantees that no PHI nodes will have to be
2826 // updated due to new incoming edges, and make the invoke case more
2827 // symmetric to the call case.
2828 AfterCallBB =
2829 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2830 CalledFunc->getName() + ".exit");
2832 } else { // It's a call
2833 // If this is a call instruction, we need to split the basic block that
2834 // the call lives in.
2836 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2837 CalledFunc->getName() + ".exit");
2840 if (IFI.CallerBFI) {
2841 // Copy original BB's block frequency to AfterCallBB
2842 IFI.CallerBFI->setBlockFreq(AfterCallBB,
2843 IFI.CallerBFI->getBlockFreq(OrigBB));
2846 // Change the branch that used to go to AfterCallBB to branch to the first
2847 // basic block of the inlined function.
2849 Instruction *Br = OrigBB->getTerminator();
2850 assert(Br && Br->getOpcode() == Instruction::Br &&
2851 "splitBasicBlock broken!");
2852 Br->setOperand(0, &*FirstNewBlock);
2854 // Now that the function is correct, make it a little bit nicer. In
2855 // particular, move the basic blocks inserted from the end of the function
2856 // into the space made by splitting the source basic block.
2857 Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
2858 Caller->end());
2860 // Handle all of the return instructions that we just cloned in, and eliminate
2861 // any users of the original call/invoke instruction.
2862 Type *RTy = CalledFunc->getReturnType();
2864 PHINode *PHI = nullptr;
2865 if (Returns.size() > 1) {
2866 // The PHI node should go at the front of the new basic block to merge all
2867 // possible incoming values.
2868 if (!CB.use_empty()) {
2869 PHI = PHINode::Create(RTy, Returns.size(), CB.getName());
2870 PHI->insertBefore(AfterCallBB->begin());
2871 // Anything that used the result of the function call should now use the
2872 // PHI node as their operand.
2873 CB.replaceAllUsesWith(PHI);
2876 // Loop over all of the return instructions adding entries to the PHI node
2877 // as appropriate.
2878 if (PHI) {
2879 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2880 ReturnInst *RI = Returns[i];
2881 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2882 "Ret value not consistent in function!");
2883 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2887 // Add a branch to the merge points and remove return instructions.
2888 DebugLoc Loc;
2889 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2890 ReturnInst *RI = Returns[i];
2891 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2892 Loc = RI->getDebugLoc();
2893 BI->setDebugLoc(Loc);
2894 RI->eraseFromParent();
2896 // We need to set the debug location to *somewhere* inside the
2897 // inlined function. The line number may be nonsensical, but the
2898 // instruction will at least be associated with the right
2899 // function.
2900 if (CreatedBranchToNormalDest)
2901 CreatedBranchToNormalDest->setDebugLoc(Loc);
2902 } else if (!Returns.empty()) {
2903 // Otherwise, if there is exactly one return value, just replace anything
2904 // using the return value of the call with the computed value.
2905 if (!CB.use_empty()) {
2906 if (&CB == Returns[0]->getReturnValue())
2907 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2908 else
2909 CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2912 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2913 BasicBlock *ReturnBB = Returns[0]->getParent();
2914 ReturnBB->replaceAllUsesWith(AfterCallBB);
2916 // Splice the code from the return block into the block that it will return
2917 // to, which contains the code that was after the call.
2918 AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
2920 if (CreatedBranchToNormalDest)
2921 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2923 // Delete the return instruction now and empty ReturnBB now.
2924 Returns[0]->eraseFromParent();
2925 ReturnBB->eraseFromParent();
2926 } else if (!CB.use_empty()) {
2927 // No returns, but something is using the return value of the call. Just
2928 // nuke the result.
2929 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2932 // Since we are now done with the Call/Invoke, we can delete it.
2933 CB.eraseFromParent();
2935 // If we inlined any musttail calls and the original return is now
2936 // unreachable, delete it. It can only contain a bitcast and ret.
2937 if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2938 AfterCallBB->eraseFromParent();
2940 // We should always be able to fold the entry block of the function into the
2941 // single predecessor of the block...
2942 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2943 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2945 // Splice the code entry block into calling block, right before the
2946 // unconditional branch.
2947 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2948 OrigBB->splice(Br->getIterator(), CalleeEntry);
2950 // Remove the unconditional branch.
2951 Br->eraseFromParent();
2953 // Now we can remove the CalleeEntry block, which is now empty.
2954 CalleeEntry->eraseFromParent();
2956 // If we inserted a phi node, check to see if it has a single value (e.g. all
2957 // the entries are the same or undef). If so, remove the PHI so it doesn't
2958 // block other optimizations.
2959 if (PHI) {
2960 AssumptionCache *AC =
2961 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2962 auto &DL = Caller->getParent()->getDataLayout();
2963 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2964 PHI->replaceAllUsesWith(V);
2965 PHI->eraseFromParent();
2969 if (MergeAttributes)
2970 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2972 return InlineResult::success();