1 //===- LoopPeel.cpp -------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ProfDataUtils.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
47 using namespace llvm::PatternMatch
;
49 #define DEBUG_TYPE "loop-peel"
51 STATISTIC(NumPeeled
, "Number of loops peeled");
53 static cl::opt
<unsigned> UnrollPeelCount(
54 "unroll-peel-count", cl::Hidden
,
55 cl::desc("Set the unroll peeling count, for testing purposes"));
58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden
,
59 cl::desc("Allows loops to be peeled when the dynamic "
60 "trip count is known to be low."));
63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64 cl::init(false), cl::Hidden
,
65 cl::desc("Allows loop nests to be peeled."));
67 static cl::opt
<unsigned> UnrollPeelMaxCount(
68 "unroll-peel-max-count", cl::init(7), cl::Hidden
,
69 cl::desc("Max average trip count which will cause loop peeling."));
71 static cl::opt
<unsigned> UnrollForcePeelCount(
72 "unroll-force-peel-count", cl::init(0), cl::Hidden
,
73 cl::desc("Force a peel count regardless of profiling information."));
75 static cl::opt
<bool> DisableAdvancedPeeling(
76 "disable-advanced-peeling", cl::init(false), cl::Hidden
,
78 "Disable advance peeling. Issues for convergent targets (D134803)."));
80 static const char *PeeledCountMetaData
= "llvm.loop.peeled.count";
82 // Check whether we are capable of peeling this loop.
83 bool llvm::canPeel(const Loop
*L
) {
84 // Make sure the loop is in simplified form
85 if (!L
->isLoopSimplifyForm())
87 if (!DisableAdvancedPeeling
)
90 SmallVector
<BasicBlock
*, 4> Exits
;
91 L
->getUniqueNonLatchExitBlocks(Exits
);
92 // The latch must either be the only exiting block or all non-latch exit
93 // blocks have either a deopt or unreachable terminator or compose a chain of
94 // blocks where the last one is either deopt or unreachable terminated. Both
95 // deopt and unreachable terminators are a strong indication they are not
96 // taken. Note that this is a profitability check, not a legality check. Also
97 // note that LoopPeeling currently can only update the branch weights of latch
98 // blocks and branch weights to blocks with deopt or unreachable do not need
100 return llvm::all_of(Exits
, IsBlockFollowedByDeoptOrUnreachable
);
105 // As a loop is peeled, it may be the case that Phi nodes become
106 // loop-invariant (ie, known because there is only one choice).
107 // For example, consider the following function:
113 // for(int i = 0; i <100000; ++i) {
121 // Peeling 3 iterations is beneficial because the values for x, y and a
122 // become known. The IR for this loop looks something like the following:
124 // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125 // %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126 // %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127 // %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
129 // tail call void @_Z1gi(i32 signext %x)
130 // tail call void @_Z1gi(i32 signext %a)
131 // %add = add nuw nsw i32 %a, 1
132 // %inc = add nuw nsw i32 %i, 1
133 // %exitcond = icmp eq i32 %inc, 100000
134 // br i1 %exitcond, label %for.cond.cleanup, label %for.body
136 // The arguments for the calls to g will become known after 3 iterations
137 // of the loop, because the phi nodes values become known after 3 iterations
138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139 // The first iteration has g(0), g(0); the second has g(0), g(5); the
140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141 // Now consider the phi nodes:
142 // %a is a phi with constants so it is determined after iteration 1.
143 // %y is a phi based on a constant and %a so it is determined on
144 // the iteration after %a is determined, so iteration 2.
145 // %x is a phi based on a constant and %y so it is determined on
146 // the iteration after %y, so iteration 3.
147 // %i is based on itself (and is an induction variable) so it is
149 // This means that peeling off 3 iterations will result in being able to
150 // remove the phi nodes for %a, %y, and %x. The arguments for the
151 // corresponding calls to g are determined and the code for computing
152 // x, y, and a can be removed.
154 // The PhiAnalyzer class calculates how many times a loop should be
155 // peeled based on the above analysis of the phi nodes in the loop while
156 // respecting the maximum specified.
159 PhiAnalyzer(const Loop
&L
, unsigned MaxIterations
);
161 // Calculate the sufficient minimum number of iterations of the loop to peel
162 // such that phi instructions become determined (subject to allowable limits)
163 std::optional
<unsigned> calculateIterationsToPeel();
166 using PeelCounter
= std::optional
<unsigned>;
167 const PeelCounter Unknown
= std::nullopt
;
169 // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170 PeelCounter
addOne(PeelCounter PC
) const {
173 return (*PC
+ 1 <= MaxIterations
) ? PeelCounter
{*PC
+ 1} : Unknown
;
176 // Calculate the number of iterations after which the given value
177 // becomes an invariant.
178 PeelCounter
calculate(const Value
&);
181 const unsigned MaxIterations
;
183 // Map of Values to number of iterations to invariance
184 SmallDenseMap
<const Value
*, PeelCounter
> IterationsToInvariance
;
187 PhiAnalyzer::PhiAnalyzer(const Loop
&L
, unsigned MaxIterations
)
188 : L(L
), MaxIterations(MaxIterations
) {
189 assert(canPeel(&L
) && "loop is not suitable for peeling");
190 assert(MaxIterations
> 0 && "no peeling is allowed?");
193 // This function calculates the number of iterations after which the value
194 // becomes an invariant. The pre-calculated values are memorized in a map.
195 // N.B. This number will be Unknown or <= MaxIterations.
196 // The function is calculated according to the following definition:
197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198 // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199 // G(%y) = 0 if %y is a loop invariant
200 // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201 // G(%y) = TODO: if %y is an expression based on phis and loop invariants
202 // The example looks like:
203 // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
206 // G(%y) = Unknown otherwise (including phi not in header block)
207 PhiAnalyzer::PeelCounter
PhiAnalyzer::calculate(const Value
&V
) {
208 // If we already know the answer, take it from the map.
209 auto I
= IterationsToInvariance
.find(&V
);
210 if (I
!= IterationsToInvariance
.end())
213 // Place Unknown to map to avoid infinite recursion. Such
214 // cycles can never stop on an invariant.
215 IterationsToInvariance
[&V
] = Unknown
;
217 if (L
.isLoopInvariant(&V
))
218 // Loop invariant so known at start.
219 return (IterationsToInvariance
[&V
] = 0);
220 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(&V
)) {
221 if (Phi
->getParent() != L
.getHeader()) {
222 // Phi is not in header block so Unknown.
223 assert(IterationsToInvariance
[&V
] == Unknown
&& "unexpected value saved");
226 // We need to analyze the input from the back edge and add 1.
227 Value
*Input
= Phi
->getIncomingValueForBlock(L
.getLoopLatch());
228 PeelCounter Iterations
= calculate(*Input
);
229 assert(IterationsToInvariance
[Input
] == Iterations
&&
230 "unexpected value saved");
231 return (IterationsToInvariance
[Phi
] = addOne(Iterations
));
233 if (const Instruction
*I
= dyn_cast
<Instruction
>(&V
)) {
234 if (isa
<CmpInst
>(I
) || I
->isBinaryOp()) {
235 // Binary instructions get the max of the operands.
236 PeelCounter LHS
= calculate(*I
->getOperand(0));
239 PeelCounter RHS
= calculate(*I
->getOperand(1));
242 return (IterationsToInvariance
[I
] = {std::max(*LHS
, *RHS
)});
245 // Cast instructions get the value of the operand.
246 return (IterationsToInvariance
[I
] = calculate(*I
->getOperand(0)));
248 // TODO: handle more expressions
250 // Everything else is Unknown.
251 assert(IterationsToInvariance
[&V
] == Unknown
&& "unexpected value saved");
255 std::optional
<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256 unsigned Iterations
= 0;
257 for (auto &PHI
: L
.getHeader()->phis()) {
258 PeelCounter ToInvariance
= calculate(PHI
);
259 if (ToInvariance
!= Unknown
) {
260 assert(*ToInvariance
<= MaxIterations
&& "bad result in phi analysis");
261 Iterations
= std::max(Iterations
, *ToInvariance
);
262 if (Iterations
== MaxIterations
)
266 assert((Iterations
<= MaxIterations
) && "bad result in phi analysis");
267 return Iterations
? std::optional
<unsigned>(Iterations
) : std::nullopt
;
270 } // unnamed namespace
272 // Try to find any invariant memory reads that will become dereferenceable in
273 // the remainder loop after peeling. The load must also be used (transitively)
274 // by an exit condition. Returns the number of iterations to peel off (at the
275 // moment either 0 or 1).
276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop
&L
,
278 AssumptionCache
*AC
) {
279 // Skip loops with a single exiting block, because there should be no benefit
280 // for the heuristic below.
281 if (L
.getExitingBlock())
284 // All non-latch exit blocks must have an UnreachableInst terminator.
285 // Otherwise the heuristic below may not be profitable.
286 SmallVector
<BasicBlock
*, 4> Exits
;
287 L
.getUniqueNonLatchExitBlocks(Exits
);
288 if (any_of(Exits
, [](const BasicBlock
*BB
) {
289 return !isa
<UnreachableInst
>(BB
->getTerminator());
293 // Now look for invariant loads that dominate the latch and are not known to
294 // be dereferenceable. If there are such loads and no writes, they will become
295 // dereferenceable in the loop if the first iteration is peeled off. Also
296 // collect the set of instructions controlled by such loads. Only peel if an
297 // exit condition uses (transitively) such a load.
298 BasicBlock
*Header
= L
.getHeader();
299 BasicBlock
*Latch
= L
.getLoopLatch();
300 SmallPtrSet
<Value
*, 8> LoadUsers
;
301 const DataLayout
&DL
= L
.getHeader()->getModule()->getDataLayout();
302 for (BasicBlock
*BB
: L
.blocks()) {
303 for (Instruction
&I
: *BB
) {
304 if (I
.mayWriteToMemory())
307 auto Iter
= LoadUsers
.find(&I
);
308 if (Iter
!= LoadUsers
.end()) {
309 for (Value
*U
: I
.users())
312 // Do not look for reads in the header; they can already be hoisted
316 if (auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
317 Value
*Ptr
= LI
->getPointerOperand();
318 if (DT
.dominates(BB
, Latch
) && L
.isLoopInvariant(Ptr
) &&
319 !isDereferenceablePointer(Ptr
, LI
->getType(), DL
, LI
, AC
, &DT
))
320 for (Value
*U
: I
.users())
325 SmallVector
<BasicBlock
*> ExitingBlocks
;
326 L
.getExitingBlocks(ExitingBlocks
);
327 if (any_of(ExitingBlocks
, [&LoadUsers
](BasicBlock
*Exiting
) {
328 return LoadUsers
.contains(Exiting
->getTerminator());
334 // Return the number of iterations to peel off that make conditions in the
335 // body true/false. For example, if we peel 2 iterations off the loop below,
336 // the condition i < 2 can be evaluated at compile time.
337 // for (i = 0; i < n; i++)
343 static unsigned countToEliminateCompares(Loop
&L
, unsigned MaxPeelCount
,
344 ScalarEvolution
&SE
) {
345 assert(L
.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346 unsigned DesiredPeelCount
= 0;
348 // Do not peel the entire loop.
349 const SCEV
*BE
= SE
.getConstantMaxBackedgeTakenCount(&L
);
350 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(BE
))
352 std::min((unsigned)SC
->getAPInt().getLimitedValue() - 1, MaxPeelCount
);
354 const unsigned MaxDepth
= 4;
355 std::function
<void(Value
*, unsigned)> ComputePeelCount
=
356 [&](Value
*Condition
, unsigned Depth
) -> void {
357 if (!Condition
->getType()->isIntegerTy() || Depth
>= MaxDepth
)
360 Value
*LeftVal
, *RightVal
;
361 if (match(Condition
, m_And(m_Value(LeftVal
), m_Value(RightVal
))) ||
362 match(Condition
, m_Or(m_Value(LeftVal
), m_Value(RightVal
)))) {
363 ComputePeelCount(LeftVal
, Depth
+ 1);
364 ComputePeelCount(RightVal
, Depth
+ 1);
368 CmpInst::Predicate Pred
;
369 if (!match(Condition
, m_ICmp(Pred
, m_Value(LeftVal
), m_Value(RightVal
))))
372 const SCEV
*LeftSCEV
= SE
.getSCEV(LeftVal
);
373 const SCEV
*RightSCEV
= SE
.getSCEV(RightVal
);
375 // Do not consider predicates that are known to be true or false
376 // independently of the loop iteration.
377 if (SE
.evaluatePredicate(Pred
, LeftSCEV
, RightSCEV
))
380 // Check if we have a condition with one AddRec and one non AddRec
381 // expression. Normalize LeftSCEV to be the AddRec.
382 if (!isa
<SCEVAddRecExpr
>(LeftSCEV
)) {
383 if (isa
<SCEVAddRecExpr
>(RightSCEV
)) {
384 std::swap(LeftSCEV
, RightSCEV
);
385 Pred
= ICmpInst::getSwappedPredicate(Pred
);
390 const SCEVAddRecExpr
*LeftAR
= cast
<SCEVAddRecExpr
>(LeftSCEV
);
392 // Avoid huge SCEV computations in the loop below, make sure we only
393 // consider AddRecs of the loop we are trying to peel.
394 if (!LeftAR
->isAffine() || LeftAR
->getLoop() != &L
)
396 if (!(ICmpInst::isEquality(Pred
) && LeftAR
->hasNoSelfWrap()) &&
397 !SE
.getMonotonicPredicateType(LeftAR
, Pred
))
400 // Check if extending the current DesiredPeelCount lets us evaluate Pred
401 // or !Pred in the loop body statically.
402 unsigned NewPeelCount
= DesiredPeelCount
;
404 const SCEV
*IterVal
= LeftAR
->evaluateAtIteration(
405 SE
.getConstant(LeftSCEV
->getType(), NewPeelCount
), SE
);
407 // If the original condition is not known, get the negated predicate
408 // (which holds on the else branch) and check if it is known. This allows
409 // us to peel of iterations that make the original condition false.
410 if (!SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
))
411 Pred
= ICmpInst::getInversePredicate(Pred
);
413 const SCEV
*Step
= LeftAR
->getStepRecurrence(SE
);
414 const SCEV
*NextIterVal
= SE
.getAddExpr(IterVal
, Step
);
415 auto PeelOneMoreIteration
= [&IterVal
, &NextIterVal
, &SE
, Step
,
417 IterVal
= NextIterVal
;
418 NextIterVal
= SE
.getAddExpr(IterVal
, Step
);
422 auto CanPeelOneMoreIteration
= [&NewPeelCount
, &MaxPeelCount
]() {
423 return NewPeelCount
< MaxPeelCount
;
426 while (CanPeelOneMoreIteration() &&
427 SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
))
428 PeelOneMoreIteration();
430 // With *that* peel count, does the predicate !Pred become known in the
431 // first iteration of the loop body after peeling?
432 if (!SE
.isKnownPredicate(ICmpInst::getInversePredicate(Pred
), IterVal
,
434 return; // If not, give up.
436 // However, for equality comparisons, that isn't always sufficient to
437 // eliminate the comparsion in loop body, we may need to peel one more
438 // iteration. See if that makes !Pred become unknown again.
439 if (ICmpInst::isEquality(Pred
) &&
440 !SE
.isKnownPredicate(ICmpInst::getInversePredicate(Pred
), NextIterVal
,
442 !SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
) &&
443 SE
.isKnownPredicate(Pred
, NextIterVal
, RightSCEV
)) {
444 if (!CanPeelOneMoreIteration())
445 return; // Need to peel one more iteration, but can't. Give up.
446 PeelOneMoreIteration(); // Great!
449 DesiredPeelCount
= std::max(DesiredPeelCount
, NewPeelCount
);
452 for (BasicBlock
*BB
: L
.blocks()) {
453 for (Instruction
&I
: *BB
) {
454 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(&I
))
455 ComputePeelCount(SI
->getCondition(), 0);
458 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
459 if (!BI
|| BI
->isUnconditional())
462 // Ignore loop exit condition.
463 if (L
.getLoopLatch() == BB
)
466 ComputePeelCount(BI
->getCondition(), 0);
469 return DesiredPeelCount
;
472 /// This "heuristic" exactly matches implicit behavior which used to exist
473 /// inside getLoopEstimatedTripCount. It was added here to keep an
474 /// improvement inside that API from causing peeling to become more aggressive.
475 /// This should probably be removed.
476 static bool violatesLegacyMultiExitLoopCheck(Loop
*L
) {
477 BasicBlock
*Latch
= L
->getLoopLatch();
481 BranchInst
*LatchBR
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
482 if (!LatchBR
|| LatchBR
->getNumSuccessors() != 2 || !L
->isLoopExiting(Latch
))
485 assert((LatchBR
->getSuccessor(0) == L
->getHeader() ||
486 LatchBR
->getSuccessor(1) == L
->getHeader()) &&
487 "At least one edge out of the latch must go to the header");
489 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
490 L
->getUniqueNonLatchExitBlocks(ExitBlocks
);
491 return any_of(ExitBlocks
, [](const BasicBlock
*EB
) {
492 return !EB
->getTerminatingDeoptimizeCall();
497 // Return the number of iterations we want to peel off.
498 void llvm::computePeelCount(Loop
*L
, unsigned LoopSize
,
499 TargetTransformInfo::PeelingPreferences
&PP
,
500 unsigned TripCount
, DominatorTree
&DT
,
501 ScalarEvolution
&SE
, AssumptionCache
*AC
,
502 unsigned Threshold
) {
503 assert(LoopSize
> 0 && "Zero loop size is not allowed!");
504 // Save the PP.PeelCount value set by the target in
505 // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
506 unsigned TargetPeelCount
= PP
.PeelCount
;
511 // Only try to peel innermost loops by default.
512 // The constraint can be relaxed by the target in TTI.getPeelingPreferences
513 // or by the flag -unroll-allow-loop-nests-peeling.
514 if (!PP
.AllowLoopNestsPeeling
&& !L
->isInnermost())
517 // If the user provided a peel count, use that.
518 bool UserPeelCount
= UnrollForcePeelCount
.getNumOccurrences() > 0;
520 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
521 << " iterations.\n");
522 PP
.PeelCount
= UnrollForcePeelCount
;
523 PP
.PeelProfiledIterations
= true;
527 // Skip peeling if it's disabled.
528 if (!PP
.AllowPeeling
)
531 // Check that we can peel at least one iteration.
532 if (2 * LoopSize
> Threshold
)
535 unsigned AlreadyPeeled
= 0;
536 if (auto Peeled
= getOptionalIntLoopAttribute(L
, PeeledCountMetaData
))
537 AlreadyPeeled
= *Peeled
;
538 // Stop if we already peeled off the maximum number of iterations.
539 if (AlreadyPeeled
>= UnrollPeelMaxCount
)
542 // Pay respect to limitations implied by loop size and the max peel count.
543 unsigned MaxPeelCount
= UnrollPeelMaxCount
;
544 MaxPeelCount
= std::min(MaxPeelCount
, Threshold
/ LoopSize
- 1);
546 // Start the max computation with the PP.PeelCount value set by the target
547 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
548 unsigned DesiredPeelCount
= TargetPeelCount
;
550 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
551 // iterations of the loop. For this we compute the number for iterations after
552 // which every Phi is guaranteed to become an invariant, and try to peel the
553 // maximum number of iterations among these values, thus turning all those
554 // Phis into invariants.
555 if (MaxPeelCount
> DesiredPeelCount
) {
556 // Check how many iterations are useful for resolving Phis
557 auto NumPeels
= PhiAnalyzer(*L
, MaxPeelCount
).calculateIterationsToPeel();
559 DesiredPeelCount
= std::max(DesiredPeelCount
, *NumPeels
);
562 DesiredPeelCount
= std::max(DesiredPeelCount
,
563 countToEliminateCompares(*L
, MaxPeelCount
, SE
));
565 if (DesiredPeelCount
== 0)
566 DesiredPeelCount
= peelToTurnInvariantLoadsDerefencebale(*L
, DT
, AC
);
568 if (DesiredPeelCount
> 0) {
569 DesiredPeelCount
= std::min(DesiredPeelCount
, MaxPeelCount
);
570 // Consider max peel count limitation.
571 assert(DesiredPeelCount
> 0 && "Wrong loop size estimation?");
572 if (DesiredPeelCount
+ AlreadyPeeled
<= UnrollPeelMaxCount
) {
573 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
574 << " iteration(s) to turn"
575 << " some Phis into invariants.\n");
576 PP
.PeelCount
= DesiredPeelCount
;
577 PP
.PeelProfiledIterations
= false;
582 // Bail if we know the statically calculated trip count.
583 // In this case we rather prefer partial unrolling.
587 // Do not apply profile base peeling if it is disabled.
588 if (!PP
.PeelProfiledIterations
)
590 // If we don't know the trip count, but have reason to believe the average
591 // trip count is low, peeling should be beneficial, since we will usually
592 // hit the peeled section.
593 // We only do this in the presence of profile information, since otherwise
594 // our estimates of the trip count are not reliable enough.
595 if (L
->getHeader()->getParent()->hasProfileData()) {
596 if (violatesLegacyMultiExitLoopCheck(L
))
598 std::optional
<unsigned> EstimatedTripCount
= getLoopEstimatedTripCount(L
);
599 if (!EstimatedTripCount
)
602 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
603 << *EstimatedTripCount
<< "\n");
605 if (*EstimatedTripCount
) {
606 if (*EstimatedTripCount
+ AlreadyPeeled
<= MaxPeelCount
) {
607 unsigned PeelCount
= *EstimatedTripCount
;
608 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount
<< " iterations.\n");
609 PP
.PeelCount
= PeelCount
;
612 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled
<< "\n");
613 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount
<< "\n");
614 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize
<< "\n");
615 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold
<< "\n");
616 LLVM_DEBUG(dbgs() << "Max peel count by cost: "
617 << (Threshold
/ LoopSize
- 1) << "\n");
623 // Weights for current iteration.
624 SmallVector
<uint32_t> Weights
;
625 // Weights to subtract after each iteration.
626 const SmallVector
<uint32_t> SubWeights
;
629 /// Update the branch weights of an exiting block of a peeled-off loop
631 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
632 /// Let E is a weight of the edge to an exit.
633 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
635 /// Then, Estimated ExitCount = F / E.
636 /// For I-th (counting from 0) peeled off iteration we set the weights for
637 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
638 /// The probability to go to exit 1/(EC-I) increases. At the same time
639 /// the estimated exit count in the remainder loop reduces by I.
640 /// To avoid dealing with division rounding we can just multiple both part
641 /// of weights to E and use weight as (F - I * E, E).
642 static void updateBranchWeights(Instruction
*Term
, WeightInfo
&Info
) {
643 setBranchWeights(*Term
, Info
.Weights
);
644 for (auto [Idx
, SubWeight
] : enumerate(Info
.SubWeights
))
646 // Don't set the probability of taking the edge from latch to loop header
647 // to less than 1:1 ratio (meaning Weight should not be lower than
648 // SubWeight), as this could significantly reduce the loop's hotness,
649 // which would be incorrect in the case of underestimating the trip count.
651 Info
.Weights
[Idx
] > SubWeight
652 ? std::max(Info
.Weights
[Idx
] - SubWeight
, SubWeight
)
656 /// Initialize the weights for all exiting blocks.
657 static void initBranchWeights(DenseMap
<Instruction
*, WeightInfo
> &WeightInfos
,
659 SmallVector
<BasicBlock
*> ExitingBlocks
;
660 L
->getExitingBlocks(ExitingBlocks
);
661 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
662 Instruction
*Term
= ExitingBlock
->getTerminator();
663 SmallVector
<uint32_t> Weights
;
664 if (!extractBranchWeights(*Term
, Weights
))
667 // See the comment on updateBranchWeights() for an explanation of what we
669 uint32_t FallThroughWeights
= 0;
670 uint32_t ExitWeights
= 0;
671 for (auto [Succ
, Weight
] : zip(successors(Term
), Weights
)) {
672 if (L
->contains(Succ
))
673 FallThroughWeights
+= Weight
;
675 ExitWeights
+= Weight
;
678 // Don't try to update weights for degenerate case.
679 if (FallThroughWeights
== 0)
682 SmallVector
<uint32_t> SubWeights
;
683 for (auto [Succ
, Weight
] : zip(successors(Term
), Weights
)) {
684 if (!L
->contains(Succ
)) {
685 // Exit weights stay the same.
686 SubWeights
.push_back(0);
690 // Subtract exit weights on each iteration, distributed across all
691 // fallthrough edges.
692 double W
= (double)Weight
/ (double)FallThroughWeights
;
693 SubWeights
.push_back((uint32_t)(ExitWeights
* W
));
696 WeightInfos
.insert({Term
, {std::move(Weights
), std::move(SubWeights
)}});
700 /// Clones the body of the loop L, putting it between \p InsertTop and \p
702 /// \param IterNumber The serial number of the iteration currently being
704 /// \param ExitEdges The exit edges of the original loop.
705 /// \param[out] NewBlocks A list of the blocks in the newly created clone
706 /// \param[out] VMap The value map between the loop and the new clone.
707 /// \param LoopBlocks A helper for DFS-traversal of the loop.
708 /// \param LVMap A value-map that maps instructions from the original loop to
709 /// instructions in the last peeled-off iteration.
710 static void cloneLoopBlocks(
711 Loop
*L
, unsigned IterNumber
, BasicBlock
*InsertTop
, BasicBlock
*InsertBot
,
712 SmallVectorImpl
<std::pair
<BasicBlock
*, BasicBlock
*>> &ExitEdges
,
713 SmallVectorImpl
<BasicBlock
*> &NewBlocks
, LoopBlocksDFS
&LoopBlocks
,
714 ValueToValueMapTy
&VMap
, ValueToValueMapTy
&LVMap
, DominatorTree
*DT
,
715 LoopInfo
*LI
, ArrayRef
<MDNode
*> LoopLocalNoAliasDeclScopes
,
716 ScalarEvolution
&SE
) {
717 BasicBlock
*Header
= L
->getHeader();
718 BasicBlock
*Latch
= L
->getLoopLatch();
719 BasicBlock
*PreHeader
= L
->getLoopPreheader();
721 Function
*F
= Header
->getParent();
722 LoopBlocksDFS::RPOIterator BlockBegin
= LoopBlocks
.beginRPO();
723 LoopBlocksDFS::RPOIterator BlockEnd
= LoopBlocks
.endRPO();
724 Loop
*ParentLoop
= L
->getParentLoop();
726 // For each block in the original loop, create a new copy,
727 // and update the value map with the newly created values.
728 for (LoopBlocksDFS::RPOIterator BB
= BlockBegin
; BB
!= BlockEnd
; ++BB
) {
729 BasicBlock
*NewBB
= CloneBasicBlock(*BB
, VMap
, ".peel", F
);
730 NewBlocks
.push_back(NewBB
);
732 // If an original block is an immediate child of the loop L, its copy
733 // is a child of a ParentLoop after peeling. If a block is a child of
734 // a nested loop, it is handled in the cloneLoop() call below.
735 if (ParentLoop
&& LI
->getLoopFor(*BB
) == L
)
736 ParentLoop
->addBasicBlockToLoop(NewBB
, *LI
);
740 // If dominator tree is available, insert nodes to represent cloned blocks.
743 DT
->addNewBlock(NewBB
, InsertTop
);
745 DomTreeNode
*IDom
= DT
->getNode(*BB
)->getIDom();
746 // VMap must contain entry for IDom, as the iteration order is RPO.
747 DT
->addNewBlock(NewBB
, cast
<BasicBlock
>(VMap
[IDom
->getBlock()]));
753 // Identify what other metadata depends on the cloned version. After
754 // cloning, replace the metadata with the corrected version for both
755 // memory instructions and noalias intrinsics.
756 std::string Ext
= (Twine("Peel") + Twine(IterNumber
)).str();
757 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes
, NewBlocks
,
758 Header
->getContext(), Ext
);
761 // Recursively create the new Loop objects for nested loops, if any,
762 // to preserve LoopInfo.
763 for (Loop
*ChildLoop
: *L
) {
764 cloneLoop(ChildLoop
, ParentLoop
, VMap
, LI
, nullptr);
767 // Hook-up the control flow for the newly inserted blocks.
768 // The new header is hooked up directly to the "top", which is either
769 // the original loop preheader (for the first iteration) or the previous
770 // iteration's exiting block (for every other iteration)
771 InsertTop
->getTerminator()->setSuccessor(0, cast
<BasicBlock
>(VMap
[Header
]));
773 // Similarly, for the latch:
774 // The original exiting edge is still hooked up to the loop exit.
775 // The backedge now goes to the "bottom", which is either the loop's real
776 // header (for the last peeled iteration) or the copied header of the next
777 // iteration (for every other iteration)
778 BasicBlock
*NewLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
779 auto *LatchTerm
= cast
<Instruction
>(NewLatch
->getTerminator());
780 for (unsigned idx
= 0, e
= LatchTerm
->getNumSuccessors(); idx
< e
; ++idx
)
781 if (LatchTerm
->getSuccessor(idx
) == Header
) {
782 LatchTerm
->setSuccessor(idx
, InsertBot
);
786 DT
->changeImmediateDominator(InsertBot
, NewLatch
);
788 // The new copy of the loop body starts with a bunch of PHI nodes
789 // that pick an incoming value from either the preheader, or the previous
790 // loop iteration. Since this copy is no longer part of the loop, we
791 // resolve this statically:
792 // For the first iteration, we use the value from the preheader directly.
793 // For any other iteration, we replace the phi with the value generated by
794 // the immediately preceding clone of the loop body (which represents
795 // the previous iteration).
796 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
797 PHINode
*NewPHI
= cast
<PHINode
>(VMap
[&*I
]);
798 if (IterNumber
== 0) {
799 VMap
[&*I
] = NewPHI
->getIncomingValueForBlock(PreHeader
);
801 Value
*LatchVal
= NewPHI
->getIncomingValueForBlock(Latch
);
802 Instruction
*LatchInst
= dyn_cast
<Instruction
>(LatchVal
);
803 if (LatchInst
&& L
->contains(LatchInst
))
804 VMap
[&*I
] = LVMap
[LatchInst
];
806 VMap
[&*I
] = LatchVal
;
808 NewPHI
->eraseFromParent();
811 // Fix up the outgoing values - we need to add a value for the iteration
812 // we've just created. Note that this must happen *after* the incoming
813 // values are adjusted, since the value going out of the latch may also be
814 // a value coming into the header.
815 for (auto Edge
: ExitEdges
)
816 for (PHINode
&PHI
: Edge
.second
->phis()) {
817 Value
*LatchVal
= PHI
.getIncomingValueForBlock(Edge
.first
);
818 Instruction
*LatchInst
= dyn_cast
<Instruction
>(LatchVal
);
819 if (LatchInst
&& L
->contains(LatchInst
))
820 LatchVal
= VMap
[LatchVal
];
821 PHI
.addIncoming(LatchVal
, cast
<BasicBlock
>(VMap
[Edge
.first
]));
822 SE
.forgetValue(&PHI
);
825 // LastValueMap is updated with the values for the current loop
826 // which are used the next time this function is called.
828 LVMap
[KV
.first
] = KV
.second
;
831 TargetTransformInfo::PeelingPreferences
832 llvm::gatherPeelingPreferences(Loop
*L
, ScalarEvolution
&SE
,
833 const TargetTransformInfo
&TTI
,
834 std::optional
<bool> UserAllowPeeling
,
835 std::optional
<bool> UserAllowProfileBasedPeeling
,
836 bool UnrollingSpecficValues
) {
837 TargetTransformInfo::PeelingPreferences PP
;
839 // Set the default values.
841 PP
.AllowPeeling
= true;
842 PP
.AllowLoopNestsPeeling
= false;
843 PP
.PeelProfiledIterations
= true;
845 // Get the target specifc values.
846 TTI
.getPeelingPreferences(L
, SE
, PP
);
848 // User specified values using cl::opt.
849 if (UnrollingSpecficValues
) {
850 if (UnrollPeelCount
.getNumOccurrences() > 0)
851 PP
.PeelCount
= UnrollPeelCount
;
852 if (UnrollAllowPeeling
.getNumOccurrences() > 0)
853 PP
.AllowPeeling
= UnrollAllowPeeling
;
854 if (UnrollAllowLoopNestsPeeling
.getNumOccurrences() > 0)
855 PP
.AllowLoopNestsPeeling
= UnrollAllowLoopNestsPeeling
;
858 // User specifed values provided by argument.
859 if (UserAllowPeeling
)
860 PP
.AllowPeeling
= *UserAllowPeeling
;
861 if (UserAllowProfileBasedPeeling
)
862 PP
.PeelProfiledIterations
= *UserAllowProfileBasedPeeling
;
867 /// Peel off the first \p PeelCount iterations of loop \p L.
869 /// Note that this does not peel them off as a single straight-line block.
870 /// Rather, each iteration is peeled off separately, and needs to check the
872 /// For loops that dynamically execute \p PeelCount iterations or less
873 /// this provides a benefit, since the peeled off iterations, which account
874 /// for the bulk of dynamic execution, can be further simplified by scalar
876 bool llvm::peelLoop(Loop
*L
, unsigned PeelCount
, LoopInfo
*LI
,
877 ScalarEvolution
*SE
, DominatorTree
&DT
, AssumptionCache
*AC
,
878 bool PreserveLCSSA
, ValueToValueMapTy
&LVMap
) {
879 assert(PeelCount
> 0 && "Attempt to peel out zero iterations?");
880 assert(canPeel(L
) && "Attempt to peel a loop which is not peelable?");
882 LoopBlocksDFS
LoopBlocks(L
);
883 LoopBlocks
.perform(LI
);
885 BasicBlock
*Header
= L
->getHeader();
886 BasicBlock
*PreHeader
= L
->getLoopPreheader();
887 BasicBlock
*Latch
= L
->getLoopLatch();
888 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitEdges
;
889 L
->getExitEdges(ExitEdges
);
891 // Remember dominators of blocks we might reach through exits to change them
892 // later. Immediate dominator of such block might change, because we add more
893 // routes which can lead to the exit: we can reach it from the peeled
895 DenseMap
<BasicBlock
*, BasicBlock
*> NonLoopBlocksIDom
;
896 for (auto *BB
: L
->blocks()) {
897 auto *BBDomNode
= DT
.getNode(BB
);
898 SmallVector
<BasicBlock
*, 16> ChildrenToUpdate
;
899 for (auto *ChildDomNode
: BBDomNode
->children()) {
900 auto *ChildBB
= ChildDomNode
->getBlock();
901 if (!L
->contains(ChildBB
))
902 ChildrenToUpdate
.push_back(ChildBB
);
904 // The new idom of the block will be the nearest common dominator
905 // of all copies of the previous idom. This is equivalent to the
906 // nearest common dominator of the previous idom and the first latch,
907 // which dominates all copies of the previous idom.
908 BasicBlock
*NewIDom
= DT
.findNearestCommonDominator(BB
, Latch
);
909 for (auto *ChildBB
: ChildrenToUpdate
)
910 NonLoopBlocksIDom
[ChildBB
] = NewIDom
;
913 Function
*F
= Header
->getParent();
915 // Set up all the necessary basic blocks. It is convenient to split the
916 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
917 // body, and a new preheader for the "real" loop.
919 // Peeling the first iteration transforms.
925 // If (cond) goto Header
932 // If (!cond) goto Exit
938 // If (cond) goto Header
941 // Each following iteration will split the current bottom anchor in two,
942 // and put the new copy of the loop body between these two blocks. That is,
943 // after peeling another iteration from the example above, we'll split
944 // InsertBot, and get:
948 // If (!cond) goto Exit
951 // If (!cond) goto Exit
957 // If (cond) goto Header
960 BasicBlock
*InsertTop
= SplitEdge(PreHeader
, Header
, &DT
, LI
);
961 BasicBlock
*InsertBot
=
962 SplitBlock(InsertTop
, InsertTop
->getTerminator(), &DT
, LI
);
963 BasicBlock
*NewPreHeader
=
964 SplitBlock(InsertBot
, InsertBot
->getTerminator(), &DT
, LI
);
966 InsertTop
->setName(Header
->getName() + ".peel.begin");
967 InsertBot
->setName(Header
->getName() + ".peel.next");
968 NewPreHeader
->setName(PreHeader
->getName() + ".peel.newph");
970 Instruction
*LatchTerm
=
971 cast
<Instruction
>(cast
<BasicBlock
>(Latch
)->getTerminator());
973 // If we have branch weight information, we'll want to update it for the
974 // newly created branches.
975 DenseMap
<Instruction
*, WeightInfo
> Weights
;
976 initBranchWeights(Weights
, L
);
978 // Identify what noalias metadata is inside the loop: if it is inside the
979 // loop, the associated metadata must be cloned for each iteration.
980 SmallVector
<MDNode
*, 6> LoopLocalNoAliasDeclScopes
;
981 identifyNoAliasScopesToClone(L
->getBlocks(), LoopLocalNoAliasDeclScopes
);
983 // For each peeled-off iteration, make a copy of the loop.
984 for (unsigned Iter
= 0; Iter
< PeelCount
; ++Iter
) {
985 SmallVector
<BasicBlock
*, 8> NewBlocks
;
986 ValueToValueMapTy VMap
;
988 cloneLoopBlocks(L
, Iter
, InsertTop
, InsertBot
, ExitEdges
, NewBlocks
,
989 LoopBlocks
, VMap
, LVMap
, &DT
, LI
,
990 LoopLocalNoAliasDeclScopes
, *SE
);
992 // Remap to use values from the current iteration instead of the
994 remapInstructionsInBlocks(NewBlocks
, VMap
);
996 // Update IDoms of the blocks reachable through exits.
998 for (auto BBIDom
: NonLoopBlocksIDom
)
999 DT
.changeImmediateDominator(BBIDom
.first
,
1000 cast
<BasicBlock
>(LVMap
[BBIDom
.second
]));
1001 #ifdef EXPENSIVE_CHECKS
1002 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
1005 for (auto &[Term
, Info
] : Weights
) {
1006 auto *TermCopy
= cast
<Instruction
>(VMap
[Term
]);
1007 updateBranchWeights(TermCopy
, Info
);
1010 // Remove Loop metadata from the latch branch instruction
1011 // because it is not the Loop's latch branch anymore.
1012 auto *LatchTermCopy
= cast
<Instruction
>(VMap
[LatchTerm
]);
1013 LatchTermCopy
->setMetadata(LLVMContext::MD_loop
, nullptr);
1015 InsertTop
= InsertBot
;
1016 InsertBot
= SplitBlock(InsertBot
, InsertBot
->getTerminator(), &DT
, LI
);
1017 InsertBot
->setName(Header
->getName() + ".peel.next");
1019 F
->splice(InsertTop
->getIterator(), F
, NewBlocks
[0]->getIterator(),
1023 // Now adjust the phi nodes in the loop header to get their initial values
1024 // from the last peeled-off iteration instead of the preheader.
1025 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
1026 PHINode
*PHI
= cast
<PHINode
>(I
);
1027 Value
*NewVal
= PHI
->getIncomingValueForBlock(Latch
);
1028 Instruction
*LatchInst
= dyn_cast
<Instruction
>(NewVal
);
1029 if (LatchInst
&& L
->contains(LatchInst
))
1030 NewVal
= LVMap
[LatchInst
];
1032 PHI
->setIncomingValueForBlock(NewPreHeader
, NewVal
);
1035 for (const auto &[Term
, Info
] : Weights
) {
1036 setBranchWeights(*Term
, Info
.Weights
);
1039 // Update Metadata for count of peeled off iterations.
1040 unsigned AlreadyPeeled
= 0;
1041 if (auto Peeled
= getOptionalIntLoopAttribute(L
, PeeledCountMetaData
))
1042 AlreadyPeeled
= *Peeled
;
1043 addStringMetadataToLoop(L
, PeeledCountMetaData
, AlreadyPeeled
+ PeelCount
);
1045 if (Loop
*ParentLoop
= L
->getParentLoop())
1048 // We modified the loop, update SE.
1049 SE
->forgetTopmostLoop(L
);
1050 SE
->forgetBlockAndLoopDispositions();
1052 #ifdef EXPENSIVE_CHECKS
1053 // Finally DomtTree must be correct.
1054 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
1057 // FIXME: Incrementally update loop-simplify
1058 simplifyLoop(L
, &DT
, LI
, SE
, AC
, nullptr, PreserveLCSSA
);