[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Utils / SSAUpdater.cpp
blobfc21fb552137d70aff94c2a07f5d336710577e8f
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
33 #include <cassert>
34 #include <utility>
36 using namespace llvm;
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
42 static AvailableValsTy &getAvailableVals(void *AV) {
43 return *static_cast<AvailableValsTy*>(AV);
46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
47 : InsertedPHIs(NewPHI) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy*>(AV);
53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
54 if (!AV)
55 AV = new AvailableValsTy();
56 else
57 getAvailableVals(AV).clear();
58 ProtoType = Ty;
59 ProtoName = std::string(Name);
62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
63 return getAvailableVals(AV).count(BB);
66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
67 return getAvailableVals(AV).lookup(BB);
70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
71 assert(ProtoType && "Need to initialize SSAUpdater");
72 assert(ProtoType == V->getType() &&
73 "All rewritten values must have the same type");
74 getAvailableVals(AV)[BB] = V;
77 static bool IsEquivalentPHI(PHINode *PHI,
78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
79 unsigned PHINumValues = PHI->getNumIncomingValues();
80 if (PHINumValues != ValueMapping.size())
81 return false;
83 // Scan the phi to see if it matches.
84 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
85 if (ValueMapping[PHI->getIncomingBlock(i)] !=
86 PHI->getIncomingValue(i)) {
87 return false;
90 return true;
93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
94 Value *Res = GetValueAtEndOfBlockInternal(BB);
95 return Res;
98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
99 // If there is no definition of the renamed variable in this block, just use
100 // GetValueAtEndOfBlock to do our work.
101 if (!HasValueForBlock(BB))
102 return GetValueAtEndOfBlock(BB);
104 // Otherwise, we have the hard case. Get the live-in values for each
105 // predecessor.
106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
107 Value *SingularValue = nullptr;
109 // We can get our predecessor info by walking the pred_iterator list, but it
110 // is relatively slow. If we already have PHI nodes in this block, walk one
111 // of them to get the predecessor list instead.
112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
115 Value *PredVal = GetValueAtEndOfBlock(PredBB);
116 PredValues.push_back(std::make_pair(PredBB, PredVal));
118 // Compute SingularValue.
119 if (i == 0)
120 SingularValue = PredVal;
121 else if (PredVal != SingularValue)
122 SingularValue = nullptr;
124 } else {
125 bool isFirstPred = true;
126 for (BasicBlock *PredBB : predecessors(BB)) {
127 Value *PredVal = GetValueAtEndOfBlock(PredBB);
128 PredValues.push_back(std::make_pair(PredBB, PredVal));
130 // Compute SingularValue.
131 if (isFirstPred) {
132 SingularValue = PredVal;
133 isFirstPred = false;
134 } else if (PredVal != SingularValue)
135 SingularValue = nullptr;
139 // If there are no predecessors, just return undef.
140 if (PredValues.empty())
141 return UndefValue::get(ProtoType);
143 // Otherwise, if all the merged values are the same, just use it.
144 if (SingularValue)
145 return SingularValue;
147 // Otherwise, we do need a PHI: check to see if we already have one available
148 // in this block that produces the right value.
149 if (isa<PHINode>(BB->begin())) {
150 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
151 PredValues.end());
152 for (PHINode &SomePHI : BB->phis()) {
153 if (IsEquivalentPHI(&SomePHI, ValueMapping))
154 return &SomePHI;
158 // Ok, we have no way out, insert a new one now.
159 PHINode *InsertedPHI =
160 PHINode::Create(ProtoType, PredValues.size(), ProtoName);
161 InsertedPHI->insertBefore(BB->begin());
163 // Fill in all the predecessors of the PHI.
164 for (const auto &PredValue : PredValues)
165 InsertedPHI->addIncoming(PredValue.second, PredValue.first);
167 // See if the PHI node can be merged to a single value. This can happen in
168 // loop cases when we get a PHI of itself and one other value.
169 if (Value *V =
170 simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
171 InsertedPHI->eraseFromParent();
172 return V;
175 // Set the DebugLoc of the inserted PHI, if available.
176 DebugLoc DL;
177 if (const Instruction *I = BB->getFirstNonPHI())
178 DL = I->getDebugLoc();
179 InsertedPHI->setDebugLoc(DL);
181 // If the client wants to know about all new instructions, tell it.
182 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
184 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
185 return InsertedPHI;
188 void SSAUpdater::RewriteUse(Use &U) {
189 Instruction *User = cast<Instruction>(U.getUser());
191 Value *V;
192 if (PHINode *UserPN = dyn_cast<PHINode>(User))
193 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
194 else
195 V = GetValueInMiddleOfBlock(User->getParent());
197 U.set(V);
200 void SSAUpdater::UpdateDebugValues(Instruction *I) {
201 SmallVector<DbgValueInst *, 4> DbgValues;
202 SmallVector<DPValue *, 4> DPValues;
203 llvm::findDbgValues(DbgValues, I, &DPValues);
204 for (auto &DbgValue : DbgValues) {
205 if (DbgValue->getParent() == I->getParent())
206 continue;
207 UpdateDebugValue(I, DbgValue);
209 for (auto &DPV : DPValues) {
210 if (DPV->getParent() == I->getParent())
211 continue;
212 UpdateDebugValue(I, DPV);
216 void SSAUpdater::UpdateDebugValues(Instruction *I,
217 SmallVectorImpl<DbgValueInst *> &DbgValues) {
218 for (auto &DbgValue : DbgValues) {
219 UpdateDebugValue(I, DbgValue);
223 void SSAUpdater::UpdateDebugValues(Instruction *I,
224 SmallVectorImpl<DPValue *> &DPValues) {
225 for (auto &DPV : DPValues) {
226 UpdateDebugValue(I, DPV);
230 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) {
231 BasicBlock *UserBB = DbgValue->getParent();
232 if (HasValueForBlock(UserBB)) {
233 Value *NewVal = GetValueAtEndOfBlock(UserBB);
234 DbgValue->replaceVariableLocationOp(I, NewVal);
235 } else
236 DbgValue->setKillLocation();
239 void SSAUpdater::UpdateDebugValue(Instruction *I, DPValue *DPV) {
240 BasicBlock *UserBB = DPV->getParent();
241 if (HasValueForBlock(UserBB)) {
242 Value *NewVal = GetValueAtEndOfBlock(UserBB);
243 DPV->replaceVariableLocationOp(I, NewVal);
244 } else
245 DPV->setKillLocation();
248 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
249 Instruction *User = cast<Instruction>(U.getUser());
251 Value *V;
252 if (PHINode *UserPN = dyn_cast<PHINode>(User))
253 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
254 else
255 V = GetValueAtEndOfBlock(User->getParent());
257 U.set(V);
260 namespace llvm {
262 template<>
263 class SSAUpdaterTraits<SSAUpdater> {
264 public:
265 using BlkT = BasicBlock;
266 using ValT = Value *;
267 using PhiT = PHINode;
268 using BlkSucc_iterator = succ_iterator;
270 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
271 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
273 class PHI_iterator {
274 private:
275 PHINode *PHI;
276 unsigned idx;
278 public:
279 explicit PHI_iterator(PHINode *P) // begin iterator
280 : PHI(P), idx(0) {}
281 PHI_iterator(PHINode *P, bool) // end iterator
282 : PHI(P), idx(PHI->getNumIncomingValues()) {}
284 PHI_iterator &operator++() { ++idx; return *this; }
285 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
286 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
288 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
289 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
292 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
293 static PHI_iterator PHI_end(PhiT *PHI) {
294 return PHI_iterator(PHI, true);
297 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
298 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
299 static void FindPredecessorBlocks(BasicBlock *BB,
300 SmallVectorImpl<BasicBlock *> *Preds) {
301 // We can get our predecessor info by walking the pred_iterator list,
302 // but it is relatively slow. If we already have PHI nodes in this
303 // block, walk one of them to get the predecessor list instead.
304 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
305 append_range(*Preds, SomePhi->blocks());
306 else
307 append_range(*Preds, predecessors(BB));
310 /// GetUndefVal - Get an undefined value of the same type as the value
311 /// being handled.
312 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
313 return UndefValue::get(Updater->ProtoType);
316 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
317 /// Reserve space for the operands but do not fill them in yet.
318 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
319 SSAUpdater *Updater) {
320 PHINode *PHI =
321 PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName);
322 PHI->insertBefore(BB->begin());
323 return PHI;
326 /// AddPHIOperand - Add the specified value as an operand of the PHI for
327 /// the specified predecessor block.
328 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
329 PHI->addIncoming(Val, Pred);
332 /// ValueIsPHI - Check if a value is a PHI.
333 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
334 return dyn_cast<PHINode>(Val);
337 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
338 /// operands, i.e., it was just added.
339 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
340 PHINode *PHI = ValueIsPHI(Val, Updater);
341 if (PHI && PHI->getNumIncomingValues() == 0)
342 return PHI;
343 return nullptr;
346 /// GetPHIValue - For the specified PHI instruction, return the value
347 /// that it defines.
348 static Value *GetPHIValue(PHINode *PHI) {
349 return PHI;
353 } // end namespace llvm
355 /// Check to see if AvailableVals has an entry for the specified BB and if so,
356 /// return it. If not, construct SSA form by first calculating the required
357 /// placement of PHIs and then inserting new PHIs where needed.
358 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
359 AvailableValsTy &AvailableVals = getAvailableVals(AV);
360 if (Value *V = AvailableVals[BB])
361 return V;
363 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
364 return Impl.GetValue(BB);
367 //===----------------------------------------------------------------------===//
368 // LoadAndStorePromoter Implementation
369 //===----------------------------------------------------------------------===//
371 LoadAndStorePromoter::
372 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
373 SSAUpdater &S, StringRef BaseName) : SSA(S) {
374 if (Insts.empty()) return;
376 const Value *SomeVal;
377 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
378 SomeVal = LI;
379 else
380 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
382 if (BaseName.empty())
383 BaseName = SomeVal->getName();
384 SSA.Initialize(SomeVal->getType(), BaseName);
387 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
388 // First step: bucket up uses of the alloca by the block they occur in.
389 // This is important because we have to handle multiple defs/uses in a block
390 // ourselves: SSAUpdater is purely for cross-block references.
391 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
393 for (Instruction *User : Insts)
394 UsesByBlock[User->getParent()].push_back(User);
396 // Okay, now we can iterate over all the blocks in the function with uses,
397 // processing them. Keep track of which loads are loading a live-in value.
398 // Walk the uses in the use-list order to be determinstic.
399 SmallVector<LoadInst *, 32> LiveInLoads;
400 DenseMap<Value *, Value *> ReplacedLoads;
402 for (Instruction *User : Insts) {
403 BasicBlock *BB = User->getParent();
404 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
406 // If this block has already been processed, ignore this repeat use.
407 if (BlockUses.empty()) continue;
409 // Okay, this is the first use in the block. If this block just has a
410 // single user in it, we can rewrite it trivially.
411 if (BlockUses.size() == 1) {
412 // If it is a store, it is a trivial def of the value in the block.
413 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
414 updateDebugInfo(SI);
415 SSA.AddAvailableValue(BB, SI->getOperand(0));
416 } else
417 // Otherwise it is a load, queue it to rewrite as a live-in load.
418 LiveInLoads.push_back(cast<LoadInst>(User));
419 BlockUses.clear();
420 continue;
423 // Otherwise, check to see if this block is all loads.
424 bool HasStore = false;
425 for (Instruction *I : BlockUses) {
426 if (isa<StoreInst>(I)) {
427 HasStore = true;
428 break;
432 // If so, we can queue them all as live in loads. We don't have an
433 // efficient way to tell which on is first in the block and don't want to
434 // scan large blocks, so just add all loads as live ins.
435 if (!HasStore) {
436 for (Instruction *I : BlockUses)
437 LiveInLoads.push_back(cast<LoadInst>(I));
438 BlockUses.clear();
439 continue;
442 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
443 // Since SSAUpdater is purely for cross-block values, we need to determine
444 // the order of these instructions in the block. If the first use in the
445 // block is a load, then it uses the live in value. The last store defines
446 // the live out value. We handle this by doing a linear scan of the block.
447 Value *StoredValue = nullptr;
448 for (Instruction &I : *BB) {
449 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
450 // If this is a load from an unrelated pointer, ignore it.
451 if (!isInstInList(L, Insts)) continue;
453 // If we haven't seen a store yet, this is a live in use, otherwise
454 // use the stored value.
455 if (StoredValue) {
456 replaceLoadWithValue(L, StoredValue);
457 L->replaceAllUsesWith(StoredValue);
458 ReplacedLoads[L] = StoredValue;
459 } else {
460 LiveInLoads.push_back(L);
462 continue;
465 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
466 // If this is a store to an unrelated pointer, ignore it.
467 if (!isInstInList(SI, Insts)) continue;
468 updateDebugInfo(SI);
470 // Remember that this is the active value in the block.
471 StoredValue = SI->getOperand(0);
475 // The last stored value that happened is the live-out for the block.
476 assert(StoredValue && "Already checked that there is a store in block");
477 SSA.AddAvailableValue(BB, StoredValue);
478 BlockUses.clear();
481 // Okay, now we rewrite all loads that use live-in values in the loop,
482 // inserting PHI nodes as necessary.
483 for (LoadInst *ALoad : LiveInLoads) {
484 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
485 replaceLoadWithValue(ALoad, NewVal);
487 // Avoid assertions in unreachable code.
488 if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
489 ALoad->replaceAllUsesWith(NewVal);
490 ReplacedLoads[ALoad] = NewVal;
493 // Allow the client to do stuff before we start nuking things.
494 doExtraRewritesBeforeFinalDeletion();
496 // Now that everything is rewritten, delete the old instructions from the
497 // function. They should all be dead now.
498 for (Instruction *User : Insts) {
499 if (!shouldDelete(User))
500 continue;
502 // If this is a load that still has uses, then the load must have been added
503 // as a live value in the SSAUpdate data structure for a block (e.g. because
504 // the loaded value was stored later). In this case, we need to recursively
505 // propagate the updates until we get to the real value.
506 if (!User->use_empty()) {
507 Value *NewVal = ReplacedLoads[User];
508 assert(NewVal && "not a replaced load?");
510 // Propagate down to the ultimate replacee. The intermediately loads
511 // could theoretically already have been deleted, so we don't want to
512 // dereference the Value*'s.
513 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
514 while (RLI != ReplacedLoads.end()) {
515 NewVal = RLI->second;
516 RLI = ReplacedLoads.find(NewVal);
519 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
520 User->replaceAllUsesWith(NewVal);
523 instructionDeleted(User);
524 User->eraseFromParent();
528 bool
529 LoadAndStorePromoter::isInstInList(Instruction *I,
530 const SmallVectorImpl<Instruction *> &Insts)
531 const {
532 return is_contained(Insts, I);