[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Vectorize / SLPVectorizer.cpp
blob0a9e2c7f49f55f87f06323e68658f26d3a2e5cf0
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/PriorityQueue.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetOperations.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #ifdef EXPENSIVE_CHECKS
73 #include "llvm/IR/Verifier.h"
74 #endif
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/InstructionCost.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <optional>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 static cl::opt<bool>
111 RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112 cl::desc("Run the SLP vectorization passes"));
114 static cl::opt<int>
115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116 cl::desc("Only vectorize if you gain more than this "
117 "number "));
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121 cl::desc("Attempt to vectorize horizontal reductions"));
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125 cl::desc(
126 "Attempt to vectorize horizontal reductions feeding into a store"));
128 // NOTE: If AllowHorRdxIdenityOptimization is true, the optimization will run
129 // even if we match a reduction but do not vectorize in the end.
130 static cl::opt<bool> AllowHorRdxIdenityOptimization(
131 "slp-optimize-identity-hor-reduction-ops", cl::init(true), cl::Hidden,
132 cl::desc("Allow optimization of original scalar identity operations on "
133 "matched horizontal reductions."));
135 static cl::opt<int>
136 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
137 cl::desc("Attempt to vectorize for this register size in bits"));
139 static cl::opt<unsigned>
140 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
141 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
143 /// Limits the size of scheduling regions in a block.
144 /// It avoid long compile times for _very_ large blocks where vector
145 /// instructions are spread over a wide range.
146 /// This limit is way higher than needed by real-world functions.
147 static cl::opt<int>
148 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
149 cl::desc("Limit the size of the SLP scheduling region per block"));
151 static cl::opt<int> MinVectorRegSizeOption(
152 "slp-min-reg-size", cl::init(128), cl::Hidden,
153 cl::desc("Attempt to vectorize for this register size in bits"));
155 static cl::opt<unsigned> RecursionMaxDepth(
156 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
157 cl::desc("Limit the recursion depth when building a vectorizable tree"));
159 static cl::opt<unsigned> MinTreeSize(
160 "slp-min-tree-size", cl::init(3), cl::Hidden,
161 cl::desc("Only vectorize small trees if they are fully vectorizable"));
163 // The maximum depth that the look-ahead score heuristic will explore.
164 // The higher this value, the higher the compilation time overhead.
165 static cl::opt<int> LookAheadMaxDepth(
166 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
167 cl::desc("The maximum look-ahead depth for operand reordering scores"));
169 // The maximum depth that the look-ahead score heuristic will explore
170 // when it probing among candidates for vectorization tree roots.
171 // The higher this value, the higher the compilation time overhead but unlike
172 // similar limit for operands ordering this is less frequently used, hence
173 // impact of higher value is less noticeable.
174 static cl::opt<int> RootLookAheadMaxDepth(
175 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
176 cl::desc("The maximum look-ahead depth for searching best rooting option"));
178 static cl::opt<bool>
179 ViewSLPTree("view-slp-tree", cl::Hidden,
180 cl::desc("Display the SLP trees with Graphviz"));
182 // Limit the number of alias checks. The limit is chosen so that
183 // it has no negative effect on the llvm benchmarks.
184 static const unsigned AliasedCheckLimit = 10;
186 // Another limit for the alias checks: The maximum distance between load/store
187 // instructions where alias checks are done.
188 // This limit is useful for very large basic blocks.
189 static const unsigned MaxMemDepDistance = 160;
191 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
192 /// regions to be handled.
193 static const int MinScheduleRegionSize = 16;
195 /// Predicate for the element types that the SLP vectorizer supports.
197 /// The most important thing to filter here are types which are invalid in LLVM
198 /// vectors. We also filter target specific types which have absolutely no
199 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
200 /// avoids spending time checking the cost model and realizing that they will
201 /// be inevitably scalarized.
202 static bool isValidElementType(Type *Ty) {
203 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
204 !Ty->isPPC_FP128Ty();
207 /// \returns True if the value is a constant (but not globals/constant
208 /// expressions).
209 static bool isConstant(Value *V) {
210 return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V);
213 /// Checks if \p V is one of vector-like instructions, i.e. undef,
214 /// insertelement/extractelement with constant indices for fixed vector type or
215 /// extractvalue instruction.
216 static bool isVectorLikeInstWithConstOps(Value *V) {
217 if (!isa<InsertElementInst, ExtractElementInst>(V) &&
218 !isa<ExtractValueInst, UndefValue>(V))
219 return false;
220 auto *I = dyn_cast<Instruction>(V);
221 if (!I || isa<ExtractValueInst>(I))
222 return true;
223 if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
224 return false;
225 if (isa<ExtractElementInst>(I))
226 return isConstant(I->getOperand(1));
227 assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
228 return isConstant(I->getOperand(2));
231 #if !defined(NDEBUG)
232 /// Print a short descriptor of the instruction bundle suitable for debug output.
233 static std::string shortBundleName(ArrayRef<Value *> VL) {
234 std::string Result;
235 raw_string_ostream OS(Result);
236 OS << "n=" << VL.size() << " [" << *VL.front() << ", ..]";
237 OS.flush();
238 return Result;
240 #endif
242 /// \returns true if all of the instructions in \p VL are in the same block or
243 /// false otherwise.
244 static bool allSameBlock(ArrayRef<Value *> VL) {
245 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
246 if (!I0)
247 return false;
248 if (all_of(VL, isVectorLikeInstWithConstOps))
249 return true;
251 BasicBlock *BB = I0->getParent();
252 for (int I = 1, E = VL.size(); I < E; I++) {
253 auto *II = dyn_cast<Instruction>(VL[I]);
254 if (!II)
255 return false;
257 if (BB != II->getParent())
258 return false;
260 return true;
263 /// \returns True if all of the values in \p VL are constants (but not
264 /// globals/constant expressions).
265 static bool allConstant(ArrayRef<Value *> VL) {
266 // Constant expressions and globals can't be vectorized like normal integer/FP
267 // constants.
268 return all_of(VL, isConstant);
271 /// \returns True if all of the values in \p VL are identical or some of them
272 /// are UndefValue.
273 static bool isSplat(ArrayRef<Value *> VL) {
274 Value *FirstNonUndef = nullptr;
275 for (Value *V : VL) {
276 if (isa<UndefValue>(V))
277 continue;
278 if (!FirstNonUndef) {
279 FirstNonUndef = V;
280 continue;
282 if (V != FirstNonUndef)
283 return false;
285 return FirstNonUndef != nullptr;
288 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
289 static bool isCommutative(Instruction *I) {
290 if (auto *Cmp = dyn_cast<CmpInst>(I))
291 return Cmp->isCommutative();
292 if (auto *BO = dyn_cast<BinaryOperator>(I))
293 return BO->isCommutative();
294 // TODO: This should check for generic Instruction::isCommutative(), but
295 // we need to confirm that the caller code correctly handles Intrinsics
296 // for example (does not have 2 operands).
297 return false;
300 /// \returns inserting index of InsertElement or InsertValue instruction,
301 /// using Offset as base offset for index.
302 static std::optional<unsigned> getInsertIndex(const Value *InsertInst,
303 unsigned Offset = 0) {
304 int Index = Offset;
305 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
306 const auto *VT = dyn_cast<FixedVectorType>(IE->getType());
307 if (!VT)
308 return std::nullopt;
309 const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
310 if (!CI)
311 return std::nullopt;
312 if (CI->getValue().uge(VT->getNumElements()))
313 return std::nullopt;
314 Index *= VT->getNumElements();
315 Index += CI->getZExtValue();
316 return Index;
319 const auto *IV = cast<InsertValueInst>(InsertInst);
320 Type *CurrentType = IV->getType();
321 for (unsigned I : IV->indices()) {
322 if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
323 Index *= ST->getNumElements();
324 CurrentType = ST->getElementType(I);
325 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
326 Index *= AT->getNumElements();
327 CurrentType = AT->getElementType();
328 } else {
329 return std::nullopt;
331 Index += I;
333 return Index;
336 namespace {
337 /// Specifies the way the mask should be analyzed for undefs/poisonous elements
338 /// in the shuffle mask.
339 enum class UseMask {
340 FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors,
341 ///< check for the mask elements for the first argument (mask
342 ///< indices are in range [0:VF)).
343 SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check
344 ///< for the mask elements for the second argument (mask indices
345 ///< are in range [VF:2*VF))
346 UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for
347 ///< future shuffle elements and mark them as ones as being used
348 ///< in future. Non-undef elements are considered as unused since
349 ///< they're already marked as used in the mask.
351 } // namespace
353 /// Prepares a use bitset for the given mask either for the first argument or
354 /// for the second.
355 static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask,
356 UseMask MaskArg) {
357 SmallBitVector UseMask(VF, true);
358 for (auto [Idx, Value] : enumerate(Mask)) {
359 if (Value == PoisonMaskElem) {
360 if (MaskArg == UseMask::UndefsAsMask)
361 UseMask.reset(Idx);
362 continue;
364 if (MaskArg == UseMask::FirstArg && Value < VF)
365 UseMask.reset(Value);
366 else if (MaskArg == UseMask::SecondArg && Value >= VF)
367 UseMask.reset(Value - VF);
369 return UseMask;
372 /// Checks if the given value is actually an undefined constant vector.
373 /// Also, if the \p UseMask is not empty, tries to check if the non-masked
374 /// elements actually mask the insertelement buildvector, if any.
375 template <bool IsPoisonOnly = false>
376 static SmallBitVector isUndefVector(const Value *V,
377 const SmallBitVector &UseMask = {}) {
378 SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true);
379 using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>;
380 if (isa<T>(V))
381 return Res;
382 auto *VecTy = dyn_cast<FixedVectorType>(V->getType());
383 if (!VecTy)
384 return Res.reset();
385 auto *C = dyn_cast<Constant>(V);
386 if (!C) {
387 if (!UseMask.empty()) {
388 const Value *Base = V;
389 while (auto *II = dyn_cast<InsertElementInst>(Base)) {
390 Base = II->getOperand(0);
391 if (isa<T>(II->getOperand(1)))
392 continue;
393 std::optional<unsigned> Idx = getInsertIndex(II);
394 if (!Idx) {
395 Res.reset();
396 return Res;
398 if (*Idx < UseMask.size() && !UseMask.test(*Idx))
399 Res.reset(*Idx);
401 // TODO: Add analysis for shuffles here too.
402 if (V == Base) {
403 Res.reset();
404 } else {
405 SmallBitVector SubMask(UseMask.size(), false);
406 Res &= isUndefVector<IsPoisonOnly>(Base, SubMask);
408 } else {
409 Res.reset();
411 return Res;
413 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
414 if (Constant *Elem = C->getAggregateElement(I))
415 if (!isa<T>(Elem) &&
416 (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I))))
417 Res.reset(I);
419 return Res;
422 /// Checks if the vector of instructions can be represented as a shuffle, like:
423 /// %x0 = extractelement <4 x i8> %x, i32 0
424 /// %x3 = extractelement <4 x i8> %x, i32 3
425 /// %y1 = extractelement <4 x i8> %y, i32 1
426 /// %y2 = extractelement <4 x i8> %y, i32 2
427 /// %x0x0 = mul i8 %x0, %x0
428 /// %x3x3 = mul i8 %x3, %x3
429 /// %y1y1 = mul i8 %y1, %y1
430 /// %y2y2 = mul i8 %y2, %y2
431 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
432 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
433 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
434 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
435 /// ret <4 x i8> %ins4
436 /// can be transformed into:
437 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
438 /// i32 6>
439 /// %2 = mul <4 x i8> %1, %1
440 /// ret <4 x i8> %2
441 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
442 /// TODO: Can we split off and reuse the shuffle mask detection from
443 /// ShuffleVectorInst/getShuffleCost?
444 static std::optional<TargetTransformInfo::ShuffleKind>
445 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
446 const auto *It =
447 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
448 if (It == VL.end())
449 return std::nullopt;
450 auto *EI0 = cast<ExtractElementInst>(*It);
451 if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
452 return std::nullopt;
453 unsigned Size =
454 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
455 Value *Vec1 = nullptr;
456 Value *Vec2 = nullptr;
457 enum ShuffleMode { Unknown, Select, Permute };
458 ShuffleMode CommonShuffleMode = Unknown;
459 Mask.assign(VL.size(), PoisonMaskElem);
460 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
461 // Undef can be represented as an undef element in a vector.
462 if (isa<UndefValue>(VL[I]))
463 continue;
464 auto *EI = cast<ExtractElementInst>(VL[I]);
465 if (isa<ScalableVectorType>(EI->getVectorOperandType()))
466 return std::nullopt;
467 auto *Vec = EI->getVectorOperand();
468 // We can extractelement from undef or poison vector.
469 if (isUndefVector(Vec).all())
470 continue;
471 // All vector operands must have the same number of vector elements.
472 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
473 return std::nullopt;
474 if (isa<UndefValue>(EI->getIndexOperand()))
475 continue;
476 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
477 if (!Idx)
478 return std::nullopt;
479 // Undefined behavior if Idx is negative or >= Size.
480 if (Idx->getValue().uge(Size))
481 continue;
482 unsigned IntIdx = Idx->getValue().getZExtValue();
483 Mask[I] = IntIdx;
484 // For correct shuffling we have to have at most 2 different vector operands
485 // in all extractelement instructions.
486 if (!Vec1 || Vec1 == Vec) {
487 Vec1 = Vec;
488 } else if (!Vec2 || Vec2 == Vec) {
489 Vec2 = Vec;
490 Mask[I] += Size;
491 } else {
492 return std::nullopt;
494 if (CommonShuffleMode == Permute)
495 continue;
496 // If the extract index is not the same as the operation number, it is a
497 // permutation.
498 if (IntIdx != I) {
499 CommonShuffleMode = Permute;
500 continue;
502 CommonShuffleMode = Select;
504 // If we're not crossing lanes in different vectors, consider it as blending.
505 if (CommonShuffleMode == Select && Vec2)
506 return TargetTransformInfo::SK_Select;
507 // If Vec2 was never used, we have a permutation of a single vector, otherwise
508 // we have permutation of 2 vectors.
509 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
510 : TargetTransformInfo::SK_PermuteSingleSrc;
513 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
514 static std::optional<unsigned> getExtractIndex(Instruction *E) {
515 unsigned Opcode = E->getOpcode();
516 assert((Opcode == Instruction::ExtractElement ||
517 Opcode == Instruction::ExtractValue) &&
518 "Expected extractelement or extractvalue instruction.");
519 if (Opcode == Instruction::ExtractElement) {
520 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
521 if (!CI)
522 return std::nullopt;
523 return CI->getZExtValue();
525 auto *EI = cast<ExtractValueInst>(E);
526 if (EI->getNumIndices() != 1)
527 return std::nullopt;
528 return *EI->idx_begin();
531 namespace {
533 /// Main data required for vectorization of instructions.
534 struct InstructionsState {
535 /// The very first instruction in the list with the main opcode.
536 Value *OpValue = nullptr;
538 /// The main/alternate instruction.
539 Instruction *MainOp = nullptr;
540 Instruction *AltOp = nullptr;
542 /// The main/alternate opcodes for the list of instructions.
543 unsigned getOpcode() const {
544 return MainOp ? MainOp->getOpcode() : 0;
547 unsigned getAltOpcode() const {
548 return AltOp ? AltOp->getOpcode() : 0;
551 /// Some of the instructions in the list have alternate opcodes.
552 bool isAltShuffle() const { return AltOp != MainOp; }
554 bool isOpcodeOrAlt(Instruction *I) const {
555 unsigned CheckedOpcode = I->getOpcode();
556 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
559 InstructionsState() = delete;
560 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
561 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
564 } // end anonymous namespace
566 /// Chooses the correct key for scheduling data. If \p Op has the same (or
567 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
568 /// OpValue.
569 static Value *isOneOf(const InstructionsState &S, Value *Op) {
570 auto *I = dyn_cast<Instruction>(Op);
571 if (I && S.isOpcodeOrAlt(I))
572 return Op;
573 return S.OpValue;
576 /// \returns true if \p Opcode is allowed as part of the main/alternate
577 /// instruction for SLP vectorization.
579 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
580 /// "shuffled out" lane would result in division by zero.
581 static bool isValidForAlternation(unsigned Opcode) {
582 if (Instruction::isIntDivRem(Opcode))
583 return false;
585 return true;
588 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
589 const TargetLibraryInfo &TLI,
590 unsigned BaseIndex = 0);
592 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
593 /// compatible instructions or constants, or just some other regular values.
594 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
595 Value *Op1, const TargetLibraryInfo &TLI) {
596 return (isConstant(BaseOp0) && isConstant(Op0)) ||
597 (isConstant(BaseOp1) && isConstant(Op1)) ||
598 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
599 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
600 BaseOp0 == Op0 || BaseOp1 == Op1 ||
601 getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() ||
602 getSameOpcode({BaseOp1, Op1}, TLI).getOpcode();
605 /// \returns true if a compare instruction \p CI has similar "look" and
606 /// same predicate as \p BaseCI, "as is" or with its operands and predicate
607 /// swapped, false otherwise.
608 static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI,
609 const TargetLibraryInfo &TLI) {
610 assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() &&
611 "Assessing comparisons of different types?");
612 CmpInst::Predicate BasePred = BaseCI->getPredicate();
613 CmpInst::Predicate Pred = CI->getPredicate();
614 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred);
616 Value *BaseOp0 = BaseCI->getOperand(0);
617 Value *BaseOp1 = BaseCI->getOperand(1);
618 Value *Op0 = CI->getOperand(0);
619 Value *Op1 = CI->getOperand(1);
621 return (BasePred == Pred &&
622 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) ||
623 (BasePred == SwappedPred &&
624 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI));
627 /// \returns analysis of the Instructions in \p VL described in
628 /// InstructionsState, the Opcode that we suppose the whole list
629 /// could be vectorized even if its structure is diverse.
630 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
631 const TargetLibraryInfo &TLI,
632 unsigned BaseIndex) {
633 // Make sure these are all Instructions.
634 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
635 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
637 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
638 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
639 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
640 CmpInst::Predicate BasePred =
641 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
642 : CmpInst::BAD_ICMP_PREDICATE;
643 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
644 unsigned AltOpcode = Opcode;
645 unsigned AltIndex = BaseIndex;
647 // Check for one alternate opcode from another BinaryOperator.
648 // TODO - generalize to support all operators (types, calls etc.).
649 auto *IBase = cast<Instruction>(VL[BaseIndex]);
650 Intrinsic::ID BaseID = 0;
651 SmallVector<VFInfo> BaseMappings;
652 if (auto *CallBase = dyn_cast<CallInst>(IBase)) {
653 BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI);
654 BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase);
655 if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty())
656 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
658 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
659 auto *I = cast<Instruction>(VL[Cnt]);
660 unsigned InstOpcode = I->getOpcode();
661 if (IsBinOp && isa<BinaryOperator>(I)) {
662 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
663 continue;
664 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
665 isValidForAlternation(Opcode)) {
666 AltOpcode = InstOpcode;
667 AltIndex = Cnt;
668 continue;
670 } else if (IsCastOp && isa<CastInst>(I)) {
671 Value *Op0 = IBase->getOperand(0);
672 Type *Ty0 = Op0->getType();
673 Value *Op1 = I->getOperand(0);
674 Type *Ty1 = Op1->getType();
675 if (Ty0 == Ty1) {
676 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
677 continue;
678 if (Opcode == AltOpcode) {
679 assert(isValidForAlternation(Opcode) &&
680 isValidForAlternation(InstOpcode) &&
681 "Cast isn't safe for alternation, logic needs to be updated!");
682 AltOpcode = InstOpcode;
683 AltIndex = Cnt;
684 continue;
687 } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) {
688 auto *BaseInst = cast<CmpInst>(VL[BaseIndex]);
689 Type *Ty0 = BaseInst->getOperand(0)->getType();
690 Type *Ty1 = Inst->getOperand(0)->getType();
691 if (Ty0 == Ty1) {
692 assert(InstOpcode == Opcode && "Expected same CmpInst opcode.");
693 // Check for compatible operands. If the corresponding operands are not
694 // compatible - need to perform alternate vectorization.
695 CmpInst::Predicate CurrentPred = Inst->getPredicate();
696 CmpInst::Predicate SwappedCurrentPred =
697 CmpInst::getSwappedPredicate(CurrentPred);
699 if (E == 2 &&
700 (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
701 continue;
703 if (isCmpSameOrSwapped(BaseInst, Inst, TLI))
704 continue;
705 auto *AltInst = cast<CmpInst>(VL[AltIndex]);
706 if (AltIndex != BaseIndex) {
707 if (isCmpSameOrSwapped(AltInst, Inst, TLI))
708 continue;
709 } else if (BasePred != CurrentPred) {
710 assert(
711 isValidForAlternation(InstOpcode) &&
712 "CmpInst isn't safe for alternation, logic needs to be updated!");
713 AltIndex = Cnt;
714 continue;
716 CmpInst::Predicate AltPred = AltInst->getPredicate();
717 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
718 AltPred == CurrentPred || AltPred == SwappedCurrentPred)
719 continue;
721 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) {
722 if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
723 if (Gep->getNumOperands() != 2 ||
724 Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType())
725 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
726 } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) {
727 if (!isVectorLikeInstWithConstOps(EI))
728 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
729 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
730 auto *BaseLI = cast<LoadInst>(IBase);
731 if (!LI->isSimple() || !BaseLI->isSimple())
732 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
733 } else if (auto *Call = dyn_cast<CallInst>(I)) {
734 auto *CallBase = cast<CallInst>(IBase);
735 if (Call->getCalledFunction() != CallBase->getCalledFunction())
736 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
737 if (Call->hasOperandBundles() &&
738 !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(),
739 Call->op_begin() + Call->getBundleOperandsEndIndex(),
740 CallBase->op_begin() +
741 CallBase->getBundleOperandsStartIndex()))
742 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
743 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI);
744 if (ID != BaseID)
745 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
746 if (!ID) {
747 SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call);
748 if (Mappings.size() != BaseMappings.size() ||
749 Mappings.front().ISA != BaseMappings.front().ISA ||
750 Mappings.front().ScalarName != BaseMappings.front().ScalarName ||
751 Mappings.front().VectorName != BaseMappings.front().VectorName ||
752 Mappings.front().Shape.VF != BaseMappings.front().Shape.VF ||
753 Mappings.front().Shape.Parameters !=
754 BaseMappings.front().Shape.Parameters)
755 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
758 continue;
760 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
763 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
764 cast<Instruction>(VL[AltIndex]));
767 /// \returns true if all of the values in \p VL have the same type or false
768 /// otherwise.
769 static bool allSameType(ArrayRef<Value *> VL) {
770 Type *Ty = VL.front()->getType();
771 return all_of(VL.drop_front(), [&](Value *V) { return V->getType() == Ty; });
774 /// \returns True if in-tree use also needs extract. This refers to
775 /// possible scalar operand in vectorized instruction.
776 static bool doesInTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
777 TargetLibraryInfo *TLI) {
778 unsigned Opcode = UserInst->getOpcode();
779 switch (Opcode) {
780 case Instruction::Load: {
781 LoadInst *LI = cast<LoadInst>(UserInst);
782 return (LI->getPointerOperand() == Scalar);
784 case Instruction::Store: {
785 StoreInst *SI = cast<StoreInst>(UserInst);
786 return (SI->getPointerOperand() == Scalar);
788 case Instruction::Call: {
789 CallInst *CI = cast<CallInst>(UserInst);
790 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
791 return any_of(enumerate(CI->args()), [&](auto &&Arg) {
792 return isVectorIntrinsicWithScalarOpAtArg(ID, Arg.index()) &&
793 Arg.value().get() == Scalar;
796 default:
797 return false;
801 /// \returns the AA location that is being access by the instruction.
802 static MemoryLocation getLocation(Instruction *I) {
803 if (StoreInst *SI = dyn_cast<StoreInst>(I))
804 return MemoryLocation::get(SI);
805 if (LoadInst *LI = dyn_cast<LoadInst>(I))
806 return MemoryLocation::get(LI);
807 return MemoryLocation();
810 /// \returns True if the instruction is not a volatile or atomic load/store.
811 static bool isSimple(Instruction *I) {
812 if (LoadInst *LI = dyn_cast<LoadInst>(I))
813 return LI->isSimple();
814 if (StoreInst *SI = dyn_cast<StoreInst>(I))
815 return SI->isSimple();
816 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
817 return !MI->isVolatile();
818 return true;
821 /// Shuffles \p Mask in accordance with the given \p SubMask.
822 /// \param ExtendingManyInputs Supports reshuffling of the mask with not only
823 /// one but two input vectors.
824 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask,
825 bool ExtendingManyInputs = false) {
826 if (SubMask.empty())
827 return;
828 assert(
829 (!ExtendingManyInputs || SubMask.size() > Mask.size() ||
830 // Check if input scalars were extended to match the size of other node.
831 (SubMask.size() == Mask.size() &&
832 std::all_of(std::next(Mask.begin(), Mask.size() / 2), Mask.end(),
833 [](int Idx) { return Idx == PoisonMaskElem; }))) &&
834 "SubMask with many inputs support must be larger than the mask.");
835 if (Mask.empty()) {
836 Mask.append(SubMask.begin(), SubMask.end());
837 return;
839 SmallVector<int> NewMask(SubMask.size(), PoisonMaskElem);
840 int TermValue = std::min(Mask.size(), SubMask.size());
841 for (int I = 0, E = SubMask.size(); I < E; ++I) {
842 if (SubMask[I] == PoisonMaskElem ||
843 (!ExtendingManyInputs &&
844 (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue)))
845 continue;
846 NewMask[I] = Mask[SubMask[I]];
848 Mask.swap(NewMask);
851 /// Order may have elements assigned special value (size) which is out of
852 /// bounds. Such indices only appear on places which correspond to undef values
853 /// (see canReuseExtract for details) and used in order to avoid undef values
854 /// have effect on operands ordering.
855 /// The first loop below simply finds all unused indices and then the next loop
856 /// nest assigns these indices for undef values positions.
857 /// As an example below Order has two undef positions and they have assigned
858 /// values 3 and 7 respectively:
859 /// before: 6 9 5 4 9 2 1 0
860 /// after: 6 3 5 4 7 2 1 0
861 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
862 const unsigned Sz = Order.size();
863 SmallBitVector UnusedIndices(Sz, /*t=*/true);
864 SmallBitVector MaskedIndices(Sz);
865 for (unsigned I = 0; I < Sz; ++I) {
866 if (Order[I] < Sz)
867 UnusedIndices.reset(Order[I]);
868 else
869 MaskedIndices.set(I);
871 if (MaskedIndices.none())
872 return;
873 assert(UnusedIndices.count() == MaskedIndices.count() &&
874 "Non-synced masked/available indices.");
875 int Idx = UnusedIndices.find_first();
876 int MIdx = MaskedIndices.find_first();
877 while (MIdx >= 0) {
878 assert(Idx >= 0 && "Indices must be synced.");
879 Order[MIdx] = Idx;
880 Idx = UnusedIndices.find_next(Idx);
881 MIdx = MaskedIndices.find_next(MIdx);
885 namespace llvm {
887 static void inversePermutation(ArrayRef<unsigned> Indices,
888 SmallVectorImpl<int> &Mask) {
889 Mask.clear();
890 const unsigned E = Indices.size();
891 Mask.resize(E, PoisonMaskElem);
892 for (unsigned I = 0; I < E; ++I)
893 Mask[Indices[I]] = I;
896 /// Reorders the list of scalars in accordance with the given \p Mask.
897 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
898 ArrayRef<int> Mask) {
899 assert(!Mask.empty() && "Expected non-empty mask.");
900 SmallVector<Value *> Prev(Scalars.size(),
901 UndefValue::get(Scalars.front()->getType()));
902 Prev.swap(Scalars);
903 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
904 if (Mask[I] != PoisonMaskElem)
905 Scalars[Mask[I]] = Prev[I];
908 /// Checks if the provided value does not require scheduling. It does not
909 /// require scheduling if this is not an instruction or it is an instruction
910 /// that does not read/write memory and all operands are either not instructions
911 /// or phi nodes or instructions from different blocks.
912 static bool areAllOperandsNonInsts(Value *V) {
913 auto *I = dyn_cast<Instruction>(V);
914 if (!I)
915 return true;
916 return !mayHaveNonDefUseDependency(*I) &&
917 all_of(I->operands(), [I](Value *V) {
918 auto *IO = dyn_cast<Instruction>(V);
919 if (!IO)
920 return true;
921 return isa<PHINode>(IO) || IO->getParent() != I->getParent();
925 /// Checks if the provided value does not require scheduling. It does not
926 /// require scheduling if this is not an instruction or it is an instruction
927 /// that does not read/write memory and all users are phi nodes or instructions
928 /// from the different blocks.
929 static bool isUsedOutsideBlock(Value *V) {
930 auto *I = dyn_cast<Instruction>(V);
931 if (!I)
932 return true;
933 // Limits the number of uses to save compile time.
934 constexpr int UsesLimit = 8;
935 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
936 all_of(I->users(), [I](User *U) {
937 auto *IU = dyn_cast<Instruction>(U);
938 if (!IU)
939 return true;
940 return IU->getParent() != I->getParent() || isa<PHINode>(IU);
944 /// Checks if the specified value does not require scheduling. It does not
945 /// require scheduling if all operands and all users do not need to be scheduled
946 /// in the current basic block.
947 static bool doesNotNeedToBeScheduled(Value *V) {
948 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
951 /// Checks if the specified array of instructions does not require scheduling.
952 /// It is so if all either instructions have operands that do not require
953 /// scheduling or their users do not require scheduling since they are phis or
954 /// in other basic blocks.
955 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
956 return !VL.empty() &&
957 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
960 namespace slpvectorizer {
962 /// Bottom Up SLP Vectorizer.
963 class BoUpSLP {
964 struct TreeEntry;
965 struct ScheduleData;
966 class ShuffleCostEstimator;
967 class ShuffleInstructionBuilder;
969 public:
970 using ValueList = SmallVector<Value *, 8>;
971 using InstrList = SmallVector<Instruction *, 16>;
972 using ValueSet = SmallPtrSet<Value *, 16>;
973 using StoreList = SmallVector<StoreInst *, 8>;
974 using ExtraValueToDebugLocsMap =
975 MapVector<Value *, SmallVector<Instruction *, 2>>;
976 using OrdersType = SmallVector<unsigned, 4>;
978 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
979 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
980 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
981 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
982 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
983 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
984 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
985 // Use the vector register size specified by the target unless overridden
986 // by a command-line option.
987 // TODO: It would be better to limit the vectorization factor based on
988 // data type rather than just register size. For example, x86 AVX has
989 // 256-bit registers, but it does not support integer operations
990 // at that width (that requires AVX2).
991 if (MaxVectorRegSizeOption.getNumOccurrences())
992 MaxVecRegSize = MaxVectorRegSizeOption;
993 else
994 MaxVecRegSize =
995 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
996 .getFixedValue();
998 if (MinVectorRegSizeOption.getNumOccurrences())
999 MinVecRegSize = MinVectorRegSizeOption;
1000 else
1001 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
1004 /// Vectorize the tree that starts with the elements in \p VL.
1005 /// Returns the vectorized root.
1006 Value *vectorizeTree();
1008 /// Vectorize the tree but with the list of externally used values \p
1009 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
1010 /// generated extractvalue instructions.
1011 /// \param ReplacedExternals containd list of replaced external values
1012 /// {scalar, replace} after emitting extractelement for external uses.
1013 Value *
1014 vectorizeTree(const ExtraValueToDebugLocsMap &ExternallyUsedValues,
1015 SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals,
1016 Instruction *ReductionRoot = nullptr);
1018 /// \returns the cost incurred by unwanted spills and fills, caused by
1019 /// holding live values over call sites.
1020 InstructionCost getSpillCost() const;
1022 /// \returns the vectorization cost of the subtree that starts at \p VL.
1023 /// A negative number means that this is profitable.
1024 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt);
1026 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
1027 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
1028 void buildTree(ArrayRef<Value *> Roots,
1029 const SmallDenseSet<Value *> &UserIgnoreLst);
1031 /// Construct a vectorizable tree that starts at \p Roots.
1032 void buildTree(ArrayRef<Value *> Roots);
1034 /// Returns whether the root node has in-tree uses.
1035 bool doesRootHaveInTreeUses() const {
1036 return !VectorizableTree.empty() &&
1037 !VectorizableTree.front()->UserTreeIndices.empty();
1040 /// Return the scalars of the root node.
1041 ArrayRef<Value *> getRootNodeScalars() const {
1042 assert(!VectorizableTree.empty() && "No graph to get the first node from");
1043 return VectorizableTree.front()->Scalars;
1046 /// Builds external uses of the vectorized scalars, i.e. the list of
1047 /// vectorized scalars to be extracted, their lanes and their scalar users. \p
1048 /// ExternallyUsedValues contains additional list of external uses to handle
1049 /// vectorization of reductions.
1050 void
1051 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
1053 /// Clear the internal data structures that are created by 'buildTree'.
1054 void deleteTree() {
1055 VectorizableTree.clear();
1056 ScalarToTreeEntry.clear();
1057 MultiNodeScalars.clear();
1058 MustGather.clear();
1059 EntryToLastInstruction.clear();
1060 ExternalUses.clear();
1061 for (auto &Iter : BlocksSchedules) {
1062 BlockScheduling *BS = Iter.second.get();
1063 BS->clear();
1065 MinBWs.clear();
1066 InstrElementSize.clear();
1067 UserIgnoreList = nullptr;
1068 PostponedGathers.clear();
1069 ValueToGatherNodes.clear();
1072 unsigned getTreeSize() const { return VectorizableTree.size(); }
1074 /// Perform LICM and CSE on the newly generated gather sequences.
1075 void optimizeGatherSequence();
1077 /// Checks if the specified gather tree entry \p TE can be represented as a
1078 /// shuffled vector entry + (possibly) permutation with other gathers. It
1079 /// implements the checks only for possibly ordered scalars (Loads,
1080 /// ExtractElement, ExtractValue), which can be part of the graph.
1081 std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
1083 /// Sort loads into increasing pointers offsets to allow greater clustering.
1084 std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
1086 /// Gets reordering data for the given tree entry. If the entry is vectorized
1087 /// - just return ReorderIndices, otherwise check if the scalars can be
1088 /// reordered and return the most optimal order.
1089 /// \return std::nullopt if ordering is not important, empty order, if
1090 /// identity order is important, or the actual order.
1091 /// \param TopToBottom If true, include the order of vectorized stores and
1092 /// insertelement nodes, otherwise skip them.
1093 std::optional<OrdersType> getReorderingData(const TreeEntry &TE,
1094 bool TopToBottom);
1096 /// Reorders the current graph to the most profitable order starting from the
1097 /// root node to the leaf nodes. The best order is chosen only from the nodes
1098 /// of the same size (vectorization factor). Smaller nodes are considered
1099 /// parts of subgraph with smaller VF and they are reordered independently. We
1100 /// can make it because we still need to extend smaller nodes to the wider VF
1101 /// and we can merge reordering shuffles with the widening shuffles.
1102 void reorderTopToBottom();
1104 /// Reorders the current graph to the most profitable order starting from
1105 /// leaves to the root. It allows to rotate small subgraphs and reduce the
1106 /// number of reshuffles if the leaf nodes use the same order. In this case we
1107 /// can merge the orders and just shuffle user node instead of shuffling its
1108 /// operands. Plus, even the leaf nodes have different orders, it allows to
1109 /// sink reordering in the graph closer to the root node and merge it later
1110 /// during analysis.
1111 void reorderBottomToTop(bool IgnoreReorder = false);
1113 /// \return The vector element size in bits to use when vectorizing the
1114 /// expression tree ending at \p V. If V is a store, the size is the width of
1115 /// the stored value. Otherwise, the size is the width of the largest loaded
1116 /// value reaching V. This method is used by the vectorizer to calculate
1117 /// vectorization factors.
1118 unsigned getVectorElementSize(Value *V);
1120 /// Compute the minimum type sizes required to represent the entries in a
1121 /// vectorizable tree.
1122 void computeMinimumValueSizes();
1124 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
1125 unsigned getMaxVecRegSize() const {
1126 return MaxVecRegSize;
1129 // \returns minimum vector register size as set by cl::opt.
1130 unsigned getMinVecRegSize() const {
1131 return MinVecRegSize;
1134 unsigned getMinVF(unsigned Sz) const {
1135 return std::max(2U, getMinVecRegSize() / Sz);
1138 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
1139 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
1140 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
1141 return MaxVF ? MaxVF : UINT_MAX;
1144 /// Check if homogeneous aggregate is isomorphic to some VectorType.
1145 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
1146 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
1147 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
1149 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1150 unsigned canMapToVector(Type *T) const;
1152 /// \returns True if the VectorizableTree is both tiny and not fully
1153 /// vectorizable. We do not vectorize such trees.
1154 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1156 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1157 /// can be load combined in the backend. Load combining may not be allowed in
1158 /// the IR optimizer, so we do not want to alter the pattern. For example,
1159 /// partially transforming a scalar bswap() pattern into vector code is
1160 /// effectively impossible for the backend to undo.
1161 /// TODO: If load combining is allowed in the IR optimizer, this analysis
1162 /// may not be necessary.
1163 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1165 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1166 /// can be load combined in the backend. Load combining may not be allowed in
1167 /// the IR optimizer, so we do not want to alter the pattern. For example,
1168 /// partially transforming a scalar bswap() pattern into vector code is
1169 /// effectively impossible for the backend to undo.
1170 /// TODO: If load combining is allowed in the IR optimizer, this analysis
1171 /// may not be necessary.
1172 bool isLoadCombineCandidate() const;
1174 OptimizationRemarkEmitter *getORE() { return ORE; }
1176 /// This structure holds any data we need about the edges being traversed
1177 /// during buildTree_rec(). We keep track of:
1178 /// (i) the user TreeEntry index, and
1179 /// (ii) the index of the edge.
1180 struct EdgeInfo {
1181 EdgeInfo() = default;
1182 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1183 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1184 /// The user TreeEntry.
1185 TreeEntry *UserTE = nullptr;
1186 /// The operand index of the use.
1187 unsigned EdgeIdx = UINT_MAX;
1188 #ifndef NDEBUG
1189 friend inline raw_ostream &operator<<(raw_ostream &OS,
1190 const BoUpSLP::EdgeInfo &EI) {
1191 EI.dump(OS);
1192 return OS;
1194 /// Debug print.
1195 void dump(raw_ostream &OS) const {
1196 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1197 << " EdgeIdx:" << EdgeIdx << "}";
1199 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1200 #endif
1201 bool operator == (const EdgeInfo &Other) const {
1202 return UserTE == Other.UserTE && EdgeIdx == Other.EdgeIdx;
1206 /// A helper class used for scoring candidates for two consecutive lanes.
1207 class LookAheadHeuristics {
1208 const TargetLibraryInfo &TLI;
1209 const DataLayout &DL;
1210 ScalarEvolution &SE;
1211 const BoUpSLP &R;
1212 int NumLanes; // Total number of lanes (aka vectorization factor).
1213 int MaxLevel; // The maximum recursion depth for accumulating score.
1215 public:
1216 LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL,
1217 ScalarEvolution &SE, const BoUpSLP &R, int NumLanes,
1218 int MaxLevel)
1219 : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes),
1220 MaxLevel(MaxLevel) {}
1222 // The hard-coded scores listed here are not very important, though it shall
1223 // be higher for better matches to improve the resulting cost. When
1224 // computing the scores of matching one sub-tree with another, we are
1225 // basically counting the number of values that are matching. So even if all
1226 // scores are set to 1, we would still get a decent matching result.
1227 // However, sometimes we have to break ties. For example we may have to
1228 // choose between matching loads vs matching opcodes. This is what these
1229 // scores are helping us with: they provide the order of preference. Also,
1230 // this is important if the scalar is externally used or used in another
1231 // tree entry node in the different lane.
1233 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1234 static const int ScoreConsecutiveLoads = 4;
1235 /// The same load multiple times. This should have a better score than
1236 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1237 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1238 /// a vector load and 1.0 for a broadcast.
1239 static const int ScoreSplatLoads = 3;
1240 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1241 static const int ScoreReversedLoads = 3;
1242 /// A load candidate for masked gather.
1243 static const int ScoreMaskedGatherCandidate = 1;
1244 /// ExtractElementInst from same vector and consecutive indexes.
1245 static const int ScoreConsecutiveExtracts = 4;
1246 /// ExtractElementInst from same vector and reversed indices.
1247 static const int ScoreReversedExtracts = 3;
1248 /// Constants.
1249 static const int ScoreConstants = 2;
1250 /// Instructions with the same opcode.
1251 static const int ScoreSameOpcode = 2;
1252 /// Instructions with alt opcodes (e.g, add + sub).
1253 static const int ScoreAltOpcodes = 1;
1254 /// Identical instructions (a.k.a. splat or broadcast).
1255 static const int ScoreSplat = 1;
1256 /// Matching with an undef is preferable to failing.
1257 static const int ScoreUndef = 1;
1258 /// Score for failing to find a decent match.
1259 static const int ScoreFail = 0;
1260 /// Score if all users are vectorized.
1261 static const int ScoreAllUserVectorized = 1;
1263 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1264 /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1265 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1266 /// MainAltOps.
1267 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1268 ArrayRef<Value *> MainAltOps) const {
1269 if (!isValidElementType(V1->getType()) ||
1270 !isValidElementType(V2->getType()))
1271 return LookAheadHeuristics::ScoreFail;
1273 if (V1 == V2) {
1274 if (isa<LoadInst>(V1)) {
1275 // Retruns true if the users of V1 and V2 won't need to be extracted.
1276 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1277 // Bail out if we have too many uses to save compilation time.
1278 static constexpr unsigned Limit = 8;
1279 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1280 return false;
1282 auto AllUsersVectorized = [U1, U2, this](Value *V) {
1283 return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1284 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1287 return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1289 // A broadcast of a load can be cheaper on some targets.
1290 if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1291 ElementCount::getFixed(NumLanes)) &&
1292 ((int)V1->getNumUses() == NumLanes ||
1293 AllUsersAreInternal(V1, V2)))
1294 return LookAheadHeuristics::ScoreSplatLoads;
1296 return LookAheadHeuristics::ScoreSplat;
1299 auto *LI1 = dyn_cast<LoadInst>(V1);
1300 auto *LI2 = dyn_cast<LoadInst>(V2);
1301 if (LI1 && LI2) {
1302 if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() ||
1303 !LI2->isSimple())
1304 return LookAheadHeuristics::ScoreFail;
1306 std::optional<int> Dist = getPointersDiff(
1307 LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1308 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1309 if (!Dist || *Dist == 0) {
1310 if (getUnderlyingObject(LI1->getPointerOperand()) ==
1311 getUnderlyingObject(LI2->getPointerOperand()) &&
1312 R.TTI->isLegalMaskedGather(
1313 FixedVectorType::get(LI1->getType(), NumLanes),
1314 LI1->getAlign()))
1315 return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1316 return LookAheadHeuristics::ScoreFail;
1318 // The distance is too large - still may be profitable to use masked
1319 // loads/gathers.
1320 if (std::abs(*Dist) > NumLanes / 2)
1321 return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1322 // This still will detect consecutive loads, but we might have "holes"
1323 // in some cases. It is ok for non-power-2 vectorization and may produce
1324 // better results. It should not affect current vectorization.
1325 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1326 : LookAheadHeuristics::ScoreReversedLoads;
1329 auto *C1 = dyn_cast<Constant>(V1);
1330 auto *C2 = dyn_cast<Constant>(V2);
1331 if (C1 && C2)
1332 return LookAheadHeuristics::ScoreConstants;
1334 // Extracts from consecutive indexes of the same vector better score as
1335 // the extracts could be optimized away.
1336 Value *EV1;
1337 ConstantInt *Ex1Idx;
1338 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1339 // Undefs are always profitable for extractelements.
1340 // Compiler can easily combine poison and extractelement <non-poison> or
1341 // undef and extractelement <poison>. But combining undef +
1342 // extractelement <non-poison-but-may-produce-poison> requires some
1343 // extra operations.
1344 if (isa<UndefValue>(V2))
1345 return (isa<PoisonValue>(V2) || isUndefVector(EV1).all())
1346 ? LookAheadHeuristics::ScoreConsecutiveExtracts
1347 : LookAheadHeuristics::ScoreSameOpcode;
1348 Value *EV2 = nullptr;
1349 ConstantInt *Ex2Idx = nullptr;
1350 if (match(V2,
1351 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1352 m_Undef())))) {
1353 // Undefs are always profitable for extractelements.
1354 if (!Ex2Idx)
1355 return LookAheadHeuristics::ScoreConsecutiveExtracts;
1356 if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType())
1357 return LookAheadHeuristics::ScoreConsecutiveExtracts;
1358 if (EV2 == EV1) {
1359 int Idx1 = Ex1Idx->getZExtValue();
1360 int Idx2 = Ex2Idx->getZExtValue();
1361 int Dist = Idx2 - Idx1;
1362 // The distance is too large - still may be profitable to use
1363 // shuffles.
1364 if (std::abs(Dist) == 0)
1365 return LookAheadHeuristics::ScoreSplat;
1366 if (std::abs(Dist) > NumLanes / 2)
1367 return LookAheadHeuristics::ScoreSameOpcode;
1368 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1369 : LookAheadHeuristics::ScoreReversedExtracts;
1371 return LookAheadHeuristics::ScoreAltOpcodes;
1373 return LookAheadHeuristics::ScoreFail;
1376 auto *I1 = dyn_cast<Instruction>(V1);
1377 auto *I2 = dyn_cast<Instruction>(V2);
1378 if (I1 && I2) {
1379 if (I1->getParent() != I2->getParent())
1380 return LookAheadHeuristics::ScoreFail;
1381 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1382 Ops.push_back(I1);
1383 Ops.push_back(I2);
1384 InstructionsState S = getSameOpcode(Ops, TLI);
1385 // Note: Only consider instructions with <= 2 operands to avoid
1386 // complexity explosion.
1387 if (S.getOpcode() &&
1388 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1389 !S.isAltShuffle()) &&
1390 all_of(Ops, [&S](Value *V) {
1391 return cast<Instruction>(V)->getNumOperands() ==
1392 S.MainOp->getNumOperands();
1394 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1395 : LookAheadHeuristics::ScoreSameOpcode;
1398 if (isa<UndefValue>(V2))
1399 return LookAheadHeuristics::ScoreUndef;
1401 return LookAheadHeuristics::ScoreFail;
1404 /// Go through the operands of \p LHS and \p RHS recursively until
1405 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1406 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1407 /// of \p U1 and \p U2), except at the beginning of the recursion where
1408 /// these are set to nullptr.
1410 /// For example:
1411 /// \verbatim
1412 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1413 /// \ / \ / \ / \ /
1414 /// + + + +
1415 /// G1 G2 G3 G4
1416 /// \endverbatim
1417 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1418 /// each level recursively, accumulating the score. It starts from matching
1419 /// the additions at level 0, then moves on to the loads (level 1). The
1420 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1421 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1422 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1423 /// Please note that the order of the operands does not matter, as we
1424 /// evaluate the score of all profitable combinations of operands. In
1425 /// other words the score of G1 and G4 is the same as G1 and G2. This
1426 /// heuristic is based on ideas described in:
1427 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1428 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1429 /// Luís F. W. Góes
1430 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1431 Instruction *U2, int CurrLevel,
1432 ArrayRef<Value *> MainAltOps) const {
1434 // Get the shallow score of V1 and V2.
1435 int ShallowScoreAtThisLevel =
1436 getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1438 // If reached MaxLevel,
1439 // or if V1 and V2 are not instructions,
1440 // or if they are SPLAT,
1441 // or if they are not consecutive,
1442 // or if profitable to vectorize loads or extractelements, early return
1443 // the current cost.
1444 auto *I1 = dyn_cast<Instruction>(LHS);
1445 auto *I2 = dyn_cast<Instruction>(RHS);
1446 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1447 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1448 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1449 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1450 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1451 ShallowScoreAtThisLevel))
1452 return ShallowScoreAtThisLevel;
1453 assert(I1 && I2 && "Should have early exited.");
1455 // Contains the I2 operand indexes that got matched with I1 operands.
1456 SmallSet<unsigned, 4> Op2Used;
1458 // Recursion towards the operands of I1 and I2. We are trying all possible
1459 // operand pairs, and keeping track of the best score.
1460 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1461 OpIdx1 != NumOperands1; ++OpIdx1) {
1462 // Try to pair op1I with the best operand of I2.
1463 int MaxTmpScore = 0;
1464 unsigned MaxOpIdx2 = 0;
1465 bool FoundBest = false;
1466 // If I2 is commutative try all combinations.
1467 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1468 unsigned ToIdx = isCommutative(I2)
1469 ? I2->getNumOperands()
1470 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1471 assert(FromIdx <= ToIdx && "Bad index");
1472 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1473 // Skip operands already paired with OpIdx1.
1474 if (Op2Used.count(OpIdx2))
1475 continue;
1476 // Recursively calculate the cost at each level
1477 int TmpScore =
1478 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1479 I1, I2, CurrLevel + 1, std::nullopt);
1480 // Look for the best score.
1481 if (TmpScore > LookAheadHeuristics::ScoreFail &&
1482 TmpScore > MaxTmpScore) {
1483 MaxTmpScore = TmpScore;
1484 MaxOpIdx2 = OpIdx2;
1485 FoundBest = true;
1488 if (FoundBest) {
1489 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1490 Op2Used.insert(MaxOpIdx2);
1491 ShallowScoreAtThisLevel += MaxTmpScore;
1494 return ShallowScoreAtThisLevel;
1497 /// A helper data structure to hold the operands of a vector of instructions.
1498 /// This supports a fixed vector length for all operand vectors.
1499 class VLOperands {
1500 /// For each operand we need (i) the value, and (ii) the opcode that it
1501 /// would be attached to if the expression was in a left-linearized form.
1502 /// This is required to avoid illegal operand reordering.
1503 /// For example:
1504 /// \verbatim
1505 /// 0 Op1
1506 /// |/
1507 /// Op1 Op2 Linearized + Op2
1508 /// \ / ----------> |/
1509 /// - -
1511 /// Op1 - Op2 (0 + Op1) - Op2
1512 /// \endverbatim
1514 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1516 /// Another way to think of this is to track all the operations across the
1517 /// path from the operand all the way to the root of the tree and to
1518 /// calculate the operation that corresponds to this path. For example, the
1519 /// path from Op2 to the root crosses the RHS of the '-', therefore the
1520 /// corresponding operation is a '-' (which matches the one in the
1521 /// linearized tree, as shown above).
1523 /// For lack of a better term, we refer to this operation as Accumulated
1524 /// Path Operation (APO).
1525 struct OperandData {
1526 OperandData() = default;
1527 OperandData(Value *V, bool APO, bool IsUsed)
1528 : V(V), APO(APO), IsUsed(IsUsed) {}
1529 /// The operand value.
1530 Value *V = nullptr;
1531 /// TreeEntries only allow a single opcode, or an alternate sequence of
1532 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1533 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1534 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1535 /// (e.g., Add/Mul)
1536 bool APO = false;
1537 /// Helper data for the reordering function.
1538 bool IsUsed = false;
1541 /// During operand reordering, we are trying to select the operand at lane
1542 /// that matches best with the operand at the neighboring lane. Our
1543 /// selection is based on the type of value we are looking for. For example,
1544 /// if the neighboring lane has a load, we need to look for a load that is
1545 /// accessing a consecutive address. These strategies are summarized in the
1546 /// 'ReorderingMode' enumerator.
1547 enum class ReorderingMode {
1548 Load, ///< Matching loads to consecutive memory addresses
1549 Opcode, ///< Matching instructions based on opcode (same or alternate)
1550 Constant, ///< Matching constants
1551 Splat, ///< Matching the same instruction multiple times (broadcast)
1552 Failed, ///< We failed to create a vectorizable group
1555 using OperandDataVec = SmallVector<OperandData, 2>;
1557 /// A vector of operand vectors.
1558 SmallVector<OperandDataVec, 4> OpsVec;
1560 const TargetLibraryInfo &TLI;
1561 const DataLayout &DL;
1562 ScalarEvolution &SE;
1563 const BoUpSLP &R;
1565 /// \returns the operand data at \p OpIdx and \p Lane.
1566 OperandData &getData(unsigned OpIdx, unsigned Lane) {
1567 return OpsVec[OpIdx][Lane];
1570 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1571 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1572 return OpsVec[OpIdx][Lane];
1575 /// Clears the used flag for all entries.
1576 void clearUsed() {
1577 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1578 OpIdx != NumOperands; ++OpIdx)
1579 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1580 ++Lane)
1581 OpsVec[OpIdx][Lane].IsUsed = false;
1584 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1585 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1586 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1589 /// \param Lane lane of the operands under analysis.
1590 /// \param OpIdx operand index in \p Lane lane we're looking the best
1591 /// candidate for.
1592 /// \param Idx operand index of the current candidate value.
1593 /// \returns The additional score due to possible broadcasting of the
1594 /// elements in the lane. It is more profitable to have power-of-2 unique
1595 /// elements in the lane, it will be vectorized with higher probability
1596 /// after removing duplicates. Currently the SLP vectorizer supports only
1597 /// vectorization of the power-of-2 number of unique scalars.
1598 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1599 Value *IdxLaneV = getData(Idx, Lane).V;
1600 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1601 return 0;
1602 SmallPtrSet<Value *, 4> Uniques;
1603 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1604 if (Ln == Lane)
1605 continue;
1606 Value *OpIdxLnV = getData(OpIdx, Ln).V;
1607 if (!isa<Instruction>(OpIdxLnV))
1608 return 0;
1609 Uniques.insert(OpIdxLnV);
1611 int UniquesCount = Uniques.size();
1612 int UniquesCntWithIdxLaneV =
1613 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1614 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1615 int UniquesCntWithOpIdxLaneV =
1616 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1617 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1618 return 0;
1619 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1620 UniquesCntWithOpIdxLaneV) -
1621 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1624 /// \param Lane lane of the operands under analysis.
1625 /// \param OpIdx operand index in \p Lane lane we're looking the best
1626 /// candidate for.
1627 /// \param Idx operand index of the current candidate value.
1628 /// \returns The additional score for the scalar which users are all
1629 /// vectorized.
1630 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1631 Value *IdxLaneV = getData(Idx, Lane).V;
1632 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1633 // Do not care about number of uses for vector-like instructions
1634 // (extractelement/extractvalue with constant indices), they are extracts
1635 // themselves and already externally used. Vectorization of such
1636 // instructions does not add extra extractelement instruction, just may
1637 // remove it.
1638 if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1639 isVectorLikeInstWithConstOps(OpIdxLaneV))
1640 return LookAheadHeuristics::ScoreAllUserVectorized;
1641 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1642 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1643 return 0;
1644 return R.areAllUsersVectorized(IdxLaneI)
1645 ? LookAheadHeuristics::ScoreAllUserVectorized
1646 : 0;
1649 /// Score scaling factor for fully compatible instructions but with
1650 /// different number of external uses. Allows better selection of the
1651 /// instructions with less external uses.
1652 static const int ScoreScaleFactor = 10;
1654 /// \Returns the look-ahead score, which tells us how much the sub-trees
1655 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1656 /// score. This helps break ties in an informed way when we cannot decide on
1657 /// the order of the operands by just considering the immediate
1658 /// predecessors.
1659 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1660 int Lane, unsigned OpIdx, unsigned Idx,
1661 bool &IsUsed) {
1662 LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(),
1663 LookAheadMaxDepth);
1664 // Keep track of the instruction stack as we recurse into the operands
1665 // during the look-ahead score exploration.
1666 int Score =
1667 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1668 /*CurrLevel=*/1, MainAltOps);
1669 if (Score) {
1670 int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1671 if (Score <= -SplatScore) {
1672 // Set the minimum score for splat-like sequence to avoid setting
1673 // failed state.
1674 Score = 1;
1675 } else {
1676 Score += SplatScore;
1677 // Scale score to see the difference between different operands
1678 // and similar operands but all vectorized/not all vectorized
1679 // uses. It does not affect actual selection of the best
1680 // compatible operand in general, just allows to select the
1681 // operand with all vectorized uses.
1682 Score *= ScoreScaleFactor;
1683 Score += getExternalUseScore(Lane, OpIdx, Idx);
1684 IsUsed = true;
1687 return Score;
1690 /// Best defined scores per lanes between the passes. Used to choose the
1691 /// best operand (with the highest score) between the passes.
1692 /// The key - {Operand Index, Lane}.
1693 /// The value - the best score between the passes for the lane and the
1694 /// operand.
1695 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1696 BestScoresPerLanes;
1698 // Search all operands in Ops[*][Lane] for the one that matches best
1699 // Ops[OpIdx][LastLane] and return its opreand index.
1700 // If no good match can be found, return std::nullopt.
1701 std::optional<unsigned>
1702 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1703 ArrayRef<ReorderingMode> ReorderingModes,
1704 ArrayRef<Value *> MainAltOps) {
1705 unsigned NumOperands = getNumOperands();
1707 // The operand of the previous lane at OpIdx.
1708 Value *OpLastLane = getData(OpIdx, LastLane).V;
1710 // Our strategy mode for OpIdx.
1711 ReorderingMode RMode = ReorderingModes[OpIdx];
1712 if (RMode == ReorderingMode::Failed)
1713 return std::nullopt;
1715 // The linearized opcode of the operand at OpIdx, Lane.
1716 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1718 // The best operand index and its score.
1719 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1720 // are using the score to differentiate between the two.
1721 struct BestOpData {
1722 std::optional<unsigned> Idx;
1723 unsigned Score = 0;
1724 } BestOp;
1725 BestOp.Score =
1726 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1727 .first->second;
1729 // Track if the operand must be marked as used. If the operand is set to
1730 // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1731 // want to reestimate the operands again on the following iterations).
1732 bool IsUsed =
1733 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1734 // Iterate through all unused operands and look for the best.
1735 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1736 // Get the operand at Idx and Lane.
1737 OperandData &OpData = getData(Idx, Lane);
1738 Value *Op = OpData.V;
1739 bool OpAPO = OpData.APO;
1741 // Skip already selected operands.
1742 if (OpData.IsUsed)
1743 continue;
1745 // Skip if we are trying to move the operand to a position with a
1746 // different opcode in the linearized tree form. This would break the
1747 // semantics.
1748 if (OpAPO != OpIdxAPO)
1749 continue;
1751 // Look for an operand that matches the current mode.
1752 switch (RMode) {
1753 case ReorderingMode::Load:
1754 case ReorderingMode::Constant:
1755 case ReorderingMode::Opcode: {
1756 bool LeftToRight = Lane > LastLane;
1757 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1758 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1759 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1760 OpIdx, Idx, IsUsed);
1761 if (Score > static_cast<int>(BestOp.Score)) {
1762 BestOp.Idx = Idx;
1763 BestOp.Score = Score;
1764 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1766 break;
1768 case ReorderingMode::Splat:
1769 if (Op == OpLastLane)
1770 BestOp.Idx = Idx;
1771 break;
1772 case ReorderingMode::Failed:
1773 llvm_unreachable("Not expected Failed reordering mode.");
1777 if (BestOp.Idx) {
1778 getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1779 return BestOp.Idx;
1781 // If we could not find a good match return std::nullopt.
1782 return std::nullopt;
1785 /// Helper for reorderOperandVecs.
1786 /// \returns the lane that we should start reordering from. This is the one
1787 /// which has the least number of operands that can freely move about or
1788 /// less profitable because it already has the most optimal set of operands.
1789 unsigned getBestLaneToStartReordering() const {
1790 unsigned Min = UINT_MAX;
1791 unsigned SameOpNumber = 0;
1792 // std::pair<unsigned, unsigned> is used to implement a simple voting
1793 // algorithm and choose the lane with the least number of operands that
1794 // can freely move about or less profitable because it already has the
1795 // most optimal set of operands. The first unsigned is a counter for
1796 // voting, the second unsigned is the counter of lanes with instructions
1797 // with same/alternate opcodes and same parent basic block.
1798 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1799 // Try to be closer to the original results, if we have multiple lanes
1800 // with same cost. If 2 lanes have the same cost, use the one with the
1801 // lowest index.
1802 for (int I = getNumLanes(); I > 0; --I) {
1803 unsigned Lane = I - 1;
1804 OperandsOrderData NumFreeOpsHash =
1805 getMaxNumOperandsThatCanBeReordered(Lane);
1806 // Compare the number of operands that can move and choose the one with
1807 // the least number.
1808 if (NumFreeOpsHash.NumOfAPOs < Min) {
1809 Min = NumFreeOpsHash.NumOfAPOs;
1810 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1811 HashMap.clear();
1812 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1813 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1814 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1815 // Select the most optimal lane in terms of number of operands that
1816 // should be moved around.
1817 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1818 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1819 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1820 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1821 auto *It = HashMap.find(NumFreeOpsHash.Hash);
1822 if (It == HashMap.end())
1823 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1824 else
1825 ++It->second.first;
1828 // Select the lane with the minimum counter.
1829 unsigned BestLane = 0;
1830 unsigned CntMin = UINT_MAX;
1831 for (const auto &Data : reverse(HashMap)) {
1832 if (Data.second.first < CntMin) {
1833 CntMin = Data.second.first;
1834 BestLane = Data.second.second;
1837 return BestLane;
1840 /// Data structure that helps to reorder operands.
1841 struct OperandsOrderData {
1842 /// The best number of operands with the same APOs, which can be
1843 /// reordered.
1844 unsigned NumOfAPOs = UINT_MAX;
1845 /// Number of operands with the same/alternate instruction opcode and
1846 /// parent.
1847 unsigned NumOpsWithSameOpcodeParent = 0;
1848 /// Hash for the actual operands ordering.
1849 /// Used to count operands, actually their position id and opcode
1850 /// value. It is used in the voting mechanism to find the lane with the
1851 /// least number of operands that can freely move about or less profitable
1852 /// because it already has the most optimal set of operands. Can be
1853 /// replaced with SmallVector<unsigned> instead but hash code is faster
1854 /// and requires less memory.
1855 unsigned Hash = 0;
1857 /// \returns the maximum number of operands that are allowed to be reordered
1858 /// for \p Lane and the number of compatible instructions(with the same
1859 /// parent/opcode). This is used as a heuristic for selecting the first lane
1860 /// to start operand reordering.
1861 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1862 unsigned CntTrue = 0;
1863 unsigned NumOperands = getNumOperands();
1864 // Operands with the same APO can be reordered. We therefore need to count
1865 // how many of them we have for each APO, like this: Cnt[APO] = x.
1866 // Since we only have two APOs, namely true and false, we can avoid using
1867 // a map. Instead we can simply count the number of operands that
1868 // correspond to one of them (in this case the 'true' APO), and calculate
1869 // the other by subtracting it from the total number of operands.
1870 // Operands with the same instruction opcode and parent are more
1871 // profitable since we don't need to move them in many cases, with a high
1872 // probability such lane already can be vectorized effectively.
1873 bool AllUndefs = true;
1874 unsigned NumOpsWithSameOpcodeParent = 0;
1875 Instruction *OpcodeI = nullptr;
1876 BasicBlock *Parent = nullptr;
1877 unsigned Hash = 0;
1878 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1879 const OperandData &OpData = getData(OpIdx, Lane);
1880 if (OpData.APO)
1881 ++CntTrue;
1882 // Use Boyer-Moore majority voting for finding the majority opcode and
1883 // the number of times it occurs.
1884 if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1885 if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() ||
1886 I->getParent() != Parent) {
1887 if (NumOpsWithSameOpcodeParent == 0) {
1888 NumOpsWithSameOpcodeParent = 1;
1889 OpcodeI = I;
1890 Parent = I->getParent();
1891 } else {
1892 --NumOpsWithSameOpcodeParent;
1894 } else {
1895 ++NumOpsWithSameOpcodeParent;
1898 Hash = hash_combine(
1899 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1900 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1902 if (AllUndefs)
1903 return {};
1904 OperandsOrderData Data;
1905 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1906 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1907 Data.Hash = Hash;
1908 return Data;
1911 /// Go through the instructions in VL and append their operands.
1912 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1913 assert(!VL.empty() && "Bad VL");
1914 assert((empty() || VL.size() == getNumLanes()) &&
1915 "Expected same number of lanes");
1916 assert(isa<Instruction>(VL[0]) && "Expected instruction");
1917 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1918 OpsVec.resize(NumOperands);
1919 unsigned NumLanes = VL.size();
1920 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1921 OpsVec[OpIdx].resize(NumLanes);
1922 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1923 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1924 // Our tree has just 3 nodes: the root and two operands.
1925 // It is therefore trivial to get the APO. We only need to check the
1926 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1927 // RHS operand. The LHS operand of both add and sub is never attached
1928 // to an inversese operation in the linearized form, therefore its APO
1929 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1931 // Since operand reordering is performed on groups of commutative
1932 // operations or alternating sequences (e.g., +, -), we can safely
1933 // tell the inverse operations by checking commutativity.
1934 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1935 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1936 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1937 APO, false};
1942 /// \returns the number of operands.
1943 unsigned getNumOperands() const { return OpsVec.size(); }
1945 /// \returns the number of lanes.
1946 unsigned getNumLanes() const { return OpsVec[0].size(); }
1948 /// \returns the operand value at \p OpIdx and \p Lane.
1949 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1950 return getData(OpIdx, Lane).V;
1953 /// \returns true if the data structure is empty.
1954 bool empty() const { return OpsVec.empty(); }
1956 /// Clears the data.
1957 void clear() { OpsVec.clear(); }
1959 /// \Returns true if there are enough operands identical to \p Op to fill
1960 /// the whole vector.
1961 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1962 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1963 bool OpAPO = getData(OpIdx, Lane).APO;
1964 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1965 if (Ln == Lane)
1966 continue;
1967 // This is set to true if we found a candidate for broadcast at Lane.
1968 bool FoundCandidate = false;
1969 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1970 OperandData &Data = getData(OpI, Ln);
1971 if (Data.APO != OpAPO || Data.IsUsed)
1972 continue;
1973 if (Data.V == Op) {
1974 FoundCandidate = true;
1975 Data.IsUsed = true;
1976 break;
1979 if (!FoundCandidate)
1980 return false;
1982 return true;
1985 public:
1986 /// Initialize with all the operands of the instruction vector \p RootVL.
1987 VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI,
1988 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R)
1989 : TLI(TLI), DL(DL), SE(SE), R(R) {
1990 // Append all the operands of RootVL.
1991 appendOperandsOfVL(RootVL);
1994 /// \Returns a value vector with the operands across all lanes for the
1995 /// opearnd at \p OpIdx.
1996 ValueList getVL(unsigned OpIdx) const {
1997 ValueList OpVL(OpsVec[OpIdx].size());
1998 assert(OpsVec[OpIdx].size() == getNumLanes() &&
1999 "Expected same num of lanes across all operands");
2000 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
2001 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
2002 return OpVL;
2005 // Performs operand reordering for 2 or more operands.
2006 // The original operands are in OrigOps[OpIdx][Lane].
2007 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
2008 void reorder() {
2009 unsigned NumOperands = getNumOperands();
2010 unsigned NumLanes = getNumLanes();
2011 // Each operand has its own mode. We are using this mode to help us select
2012 // the instructions for each lane, so that they match best with the ones
2013 // we have selected so far.
2014 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
2016 // This is a greedy single-pass algorithm. We are going over each lane
2017 // once and deciding on the best order right away with no back-tracking.
2018 // However, in order to increase its effectiveness, we start with the lane
2019 // that has operands that can move the least. For example, given the
2020 // following lanes:
2021 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
2022 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
2023 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
2024 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
2025 // we will start at Lane 1, since the operands of the subtraction cannot
2026 // be reordered. Then we will visit the rest of the lanes in a circular
2027 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
2029 // Find the first lane that we will start our search from.
2030 unsigned FirstLane = getBestLaneToStartReordering();
2032 // Initialize the modes.
2033 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
2034 Value *OpLane0 = getValue(OpIdx, FirstLane);
2035 // Keep track if we have instructions with all the same opcode on one
2036 // side.
2037 if (isa<LoadInst>(OpLane0))
2038 ReorderingModes[OpIdx] = ReorderingMode::Load;
2039 else if (isa<Instruction>(OpLane0)) {
2040 // Check if OpLane0 should be broadcast.
2041 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
2042 ReorderingModes[OpIdx] = ReorderingMode::Splat;
2043 else
2044 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
2046 else if (isa<Constant>(OpLane0))
2047 ReorderingModes[OpIdx] = ReorderingMode::Constant;
2048 else if (isa<Argument>(OpLane0))
2049 // Our best hope is a Splat. It may save some cost in some cases.
2050 ReorderingModes[OpIdx] = ReorderingMode::Splat;
2051 else
2052 // NOTE: This should be unreachable.
2053 ReorderingModes[OpIdx] = ReorderingMode::Failed;
2056 // Check that we don't have same operands. No need to reorder if operands
2057 // are just perfect diamond or shuffled diamond match. Do not do it only
2058 // for possible broadcasts or non-power of 2 number of scalars (just for
2059 // now).
2060 auto &&SkipReordering = [this]() {
2061 SmallPtrSet<Value *, 4> UniqueValues;
2062 ArrayRef<OperandData> Op0 = OpsVec.front();
2063 for (const OperandData &Data : Op0)
2064 UniqueValues.insert(Data.V);
2065 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
2066 if (any_of(Op, [&UniqueValues](const OperandData &Data) {
2067 return !UniqueValues.contains(Data.V);
2069 return false;
2071 // TODO: Check if we can remove a check for non-power-2 number of
2072 // scalars after full support of non-power-2 vectorization.
2073 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
2076 // If the initial strategy fails for any of the operand indexes, then we
2077 // perform reordering again in a second pass. This helps avoid assigning
2078 // high priority to the failed strategy, and should improve reordering for
2079 // the non-failed operand indexes.
2080 for (int Pass = 0; Pass != 2; ++Pass) {
2081 // Check if no need to reorder operands since they're are perfect or
2082 // shuffled diamond match.
2083 // Need to do it to avoid extra external use cost counting for
2084 // shuffled matches, which may cause regressions.
2085 if (SkipReordering())
2086 break;
2087 // Skip the second pass if the first pass did not fail.
2088 bool StrategyFailed = false;
2089 // Mark all operand data as free to use.
2090 clearUsed();
2091 // We keep the original operand order for the FirstLane, so reorder the
2092 // rest of the lanes. We are visiting the nodes in a circular fashion,
2093 // using FirstLane as the center point and increasing the radius
2094 // distance.
2095 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
2096 for (unsigned I = 0; I < NumOperands; ++I)
2097 MainAltOps[I].push_back(getData(I, FirstLane).V);
2099 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
2100 // Visit the lane on the right and then the lane on the left.
2101 for (int Direction : {+1, -1}) {
2102 int Lane = FirstLane + Direction * Distance;
2103 if (Lane < 0 || Lane >= (int)NumLanes)
2104 continue;
2105 int LastLane = Lane - Direction;
2106 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
2107 "Out of bounds");
2108 // Look for a good match for each operand.
2109 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
2110 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
2111 std::optional<unsigned> BestIdx = getBestOperand(
2112 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
2113 // By not selecting a value, we allow the operands that follow to
2114 // select a better matching value. We will get a non-null value in
2115 // the next run of getBestOperand().
2116 if (BestIdx) {
2117 // Swap the current operand with the one returned by
2118 // getBestOperand().
2119 swap(OpIdx, *BestIdx, Lane);
2120 } else {
2121 // We failed to find a best operand, set mode to 'Failed'.
2122 ReorderingModes[OpIdx] = ReorderingMode::Failed;
2123 // Enable the second pass.
2124 StrategyFailed = true;
2126 // Try to get the alternate opcode and follow it during analysis.
2127 if (MainAltOps[OpIdx].size() != 2) {
2128 OperandData &AltOp = getData(OpIdx, Lane);
2129 InstructionsState OpS =
2130 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI);
2131 if (OpS.getOpcode() && OpS.isAltShuffle())
2132 MainAltOps[OpIdx].push_back(AltOp.V);
2137 // Skip second pass if the strategy did not fail.
2138 if (!StrategyFailed)
2139 break;
2143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2144 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
2145 switch (RMode) {
2146 case ReorderingMode::Load:
2147 return "Load";
2148 case ReorderingMode::Opcode:
2149 return "Opcode";
2150 case ReorderingMode::Constant:
2151 return "Constant";
2152 case ReorderingMode::Splat:
2153 return "Splat";
2154 case ReorderingMode::Failed:
2155 return "Failed";
2157 llvm_unreachable("Unimplemented Reordering Type");
2160 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
2161 raw_ostream &OS) {
2162 return OS << getModeStr(RMode);
2165 /// Debug print.
2166 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
2167 printMode(RMode, dbgs());
2170 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
2171 return printMode(RMode, OS);
2174 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
2175 const unsigned Indent = 2;
2176 unsigned Cnt = 0;
2177 for (const OperandDataVec &OpDataVec : OpsVec) {
2178 OS << "Operand " << Cnt++ << "\n";
2179 for (const OperandData &OpData : OpDataVec) {
2180 OS.indent(Indent) << "{";
2181 if (Value *V = OpData.V)
2182 OS << *V;
2183 else
2184 OS << "null";
2185 OS << ", APO:" << OpData.APO << "}\n";
2187 OS << "\n";
2189 return OS;
2192 /// Debug print.
2193 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2194 #endif
2197 /// Evaluate each pair in \p Candidates and return index into \p Candidates
2198 /// for a pair which have highest score deemed to have best chance to form
2199 /// root of profitable tree to vectorize. Return std::nullopt if no candidate
2200 /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit
2201 /// of the cost, considered to be good enough score.
2202 std::optional<int>
2203 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2204 int Limit = LookAheadHeuristics::ScoreFail) {
2205 LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2,
2206 RootLookAheadMaxDepth);
2207 int BestScore = Limit;
2208 std::optional<int> Index;
2209 for (int I : seq<int>(0, Candidates.size())) {
2210 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2211 Candidates[I].second,
2212 /*U1=*/nullptr, /*U2=*/nullptr,
2213 /*Level=*/1, std::nullopt);
2214 if (Score > BestScore) {
2215 BestScore = Score;
2216 Index = I;
2219 return Index;
2222 /// Checks if the instruction is marked for deletion.
2223 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2225 /// Removes an instruction from its block and eventually deletes it.
2226 /// It's like Instruction::eraseFromParent() except that the actual deletion
2227 /// is delayed until BoUpSLP is destructed.
2228 void eraseInstruction(Instruction *I) {
2229 DeletedInstructions.insert(I);
2232 /// Checks if the instruction was already analyzed for being possible
2233 /// reduction root.
2234 bool isAnalyzedReductionRoot(Instruction *I) const {
2235 return AnalyzedReductionsRoots.count(I);
2237 /// Register given instruction as already analyzed for being possible
2238 /// reduction root.
2239 void analyzedReductionRoot(Instruction *I) {
2240 AnalyzedReductionsRoots.insert(I);
2242 /// Checks if the provided list of reduced values was checked already for
2243 /// vectorization.
2244 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const {
2245 return AnalyzedReductionVals.contains(hash_value(VL));
2247 /// Adds the list of reduced values to list of already checked values for the
2248 /// vectorization.
2249 void analyzedReductionVals(ArrayRef<Value *> VL) {
2250 AnalyzedReductionVals.insert(hash_value(VL));
2252 /// Clear the list of the analyzed reduction root instructions.
2253 void clearReductionData() {
2254 AnalyzedReductionsRoots.clear();
2255 AnalyzedReductionVals.clear();
2257 /// Checks if the given value is gathered in one of the nodes.
2258 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2259 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2262 /// Check if the value is vectorized in the tree.
2263 bool isVectorized(Value *V) const { return getTreeEntry(V); }
2265 ~BoUpSLP();
2267 private:
2268 /// Determine if a vectorized value \p V in can be demoted to
2269 /// a smaller type with a truncation. We collect the values that will be
2270 /// demoted in ToDemote and additional roots that require investigating in
2271 /// Roots.
2272 /// \param DemotedConsts list of Instruction/OperandIndex pairs that are
2273 /// constant and to be demoted. Required to correctly identify constant nodes
2274 /// to be demoted.
2275 bool collectValuesToDemote(
2276 Value *V, SmallVectorImpl<Value *> &ToDemote,
2277 DenseMap<Instruction *, SmallVector<unsigned>> &DemotedConsts,
2278 SmallVectorImpl<Value *> &Roots, DenseSet<Value *> &Visited) const;
2280 /// Check if the operands on the edges \p Edges of the \p UserTE allows
2281 /// reordering (i.e. the operands can be reordered because they have only one
2282 /// user and reordarable).
2283 /// \param ReorderableGathers List of all gather nodes that require reordering
2284 /// (e.g., gather of extractlements or partially vectorizable loads).
2285 /// \param GatherOps List of gather operand nodes for \p UserTE that require
2286 /// reordering, subset of \p NonVectorized.
2287 bool
2288 canReorderOperands(TreeEntry *UserTE,
2289 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2290 ArrayRef<TreeEntry *> ReorderableGathers,
2291 SmallVectorImpl<TreeEntry *> &GatherOps);
2293 /// Checks if the given \p TE is a gather node with clustered reused scalars
2294 /// and reorders it per given \p Mask.
2295 void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const;
2297 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2298 /// if any. If it is not vectorized (gather node), returns nullptr.
2299 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2300 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2301 TreeEntry *TE = nullptr;
2302 const auto *It = find_if(VL, [&](Value *V) {
2303 TE = getTreeEntry(V);
2304 if (TE && is_contained(TE->UserTreeIndices, EdgeInfo(UserTE, OpIdx)))
2305 return true;
2306 auto It = MultiNodeScalars.find(V);
2307 if (It != MultiNodeScalars.end()) {
2308 for (TreeEntry *E : It->second) {
2309 if (is_contained(E->UserTreeIndices, EdgeInfo(UserTE, OpIdx))) {
2310 TE = E;
2311 return true;
2315 return false;
2317 if (It != VL.end()) {
2318 assert(TE->isSame(VL) && "Expected same scalars.");
2319 return TE;
2321 return nullptr;
2324 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2325 /// if any. If it is not vectorized (gather node), returns nullptr.
2326 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2327 unsigned OpIdx) const {
2328 return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2329 const_cast<TreeEntry *>(UserTE), OpIdx);
2332 /// Checks if all users of \p I are the part of the vectorization tree.
2333 bool areAllUsersVectorized(
2334 Instruction *I,
2335 const SmallDenseSet<Value *> *VectorizedVals = nullptr) const;
2337 /// Return information about the vector formed for the specified index
2338 /// of a vector of (the same) instruction.
2339 TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> Ops);
2341 /// \ returns the graph entry for the \p Idx operand of the \p E entry.
2342 const TreeEntry *getOperandEntry(const TreeEntry *E, unsigned Idx) const;
2344 /// \returns the cost of the vectorizable entry.
2345 InstructionCost getEntryCost(const TreeEntry *E,
2346 ArrayRef<Value *> VectorizedVals,
2347 SmallPtrSetImpl<Value *> &CheckedExtracts);
2349 /// This is the recursive part of buildTree.
2350 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2351 const EdgeInfo &EI);
2353 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2354 /// be vectorized to use the original vector (or aggregate "bitcast" to a
2355 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2356 /// returns false, setting \p CurrentOrder to either an empty vector or a
2357 /// non-identity permutation that allows to reuse extract instructions.
2358 /// \param ResizeAllowed indicates whether it is allowed to handle subvector
2359 /// extract order.
2360 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2361 SmallVectorImpl<unsigned> &CurrentOrder,
2362 bool ResizeAllowed = false) const;
2364 /// Vectorize a single entry in the tree.
2365 /// \param PostponedPHIs true, if need to postpone emission of phi nodes to
2366 /// avoid issues with def-use order.
2367 Value *vectorizeTree(TreeEntry *E, bool PostponedPHIs);
2369 /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry
2370 /// \p E.
2371 /// \param PostponedPHIs true, if need to postpone emission of phi nodes to
2372 /// avoid issues with def-use order.
2373 Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx, bool PostponedPHIs);
2375 /// Create a new vector from a list of scalar values. Produces a sequence
2376 /// which exploits values reused across lanes, and arranges the inserts
2377 /// for ease of later optimization.
2378 template <typename BVTy, typename ResTy, typename... Args>
2379 ResTy processBuildVector(const TreeEntry *E, Args &...Params);
2381 /// Create a new vector from a list of scalar values. Produces a sequence
2382 /// which exploits values reused across lanes, and arranges the inserts
2383 /// for ease of later optimization.
2384 Value *createBuildVector(const TreeEntry *E);
2386 /// Returns the instruction in the bundle, which can be used as a base point
2387 /// for scheduling. Usually it is the last instruction in the bundle, except
2388 /// for the case when all operands are external (in this case, it is the first
2389 /// instruction in the list).
2390 Instruction &getLastInstructionInBundle(const TreeEntry *E);
2392 /// Tries to find extractelement instructions with constant indices from fixed
2393 /// vector type and gather such instructions into a bunch, which highly likely
2394 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt
2395 /// was successful, the matched scalars are replaced by poison values in \p VL
2396 /// for future analysis.
2397 std::optional<TargetTransformInfo::ShuffleKind>
2398 tryToGatherSingleRegisterExtractElements(MutableArrayRef<Value *> VL,
2399 SmallVectorImpl<int> &Mask) const;
2401 /// Tries to find extractelement instructions with constant indices from fixed
2402 /// vector type and gather such instructions into a bunch, which highly likely
2403 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt
2404 /// was successful, the matched scalars are replaced by poison values in \p VL
2405 /// for future analysis.
2406 SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
2407 tryToGatherExtractElements(SmallVectorImpl<Value *> &VL,
2408 SmallVectorImpl<int> &Mask,
2409 unsigned NumParts) const;
2411 /// Checks if the gathered \p VL can be represented as a single register
2412 /// shuffle(s) of previous tree entries.
2413 /// \param TE Tree entry checked for permutation.
2414 /// \param VL List of scalars (a subset of the TE scalar), checked for
2415 /// permutations. Must form single-register vector.
2416 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2417 /// previous tree entries. \p Part of \p Mask is filled with the shuffle mask.
2418 std::optional<TargetTransformInfo::ShuffleKind>
2419 isGatherShuffledSingleRegisterEntry(
2420 const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask,
2421 SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part);
2423 /// Checks if the gathered \p VL can be represented as multi-register
2424 /// shuffle(s) of previous tree entries.
2425 /// \param TE Tree entry checked for permutation.
2426 /// \param VL List of scalars (a subset of the TE scalar), checked for
2427 /// permutations.
2428 /// \returns per-register series of ShuffleKind, if gathered values can be
2429 /// represented as shuffles of previous tree entries. \p Mask is filled with
2430 /// the shuffle mask (also on per-register base).
2431 SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
2432 isGatherShuffledEntry(
2433 const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask,
2434 SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries,
2435 unsigned NumParts);
2437 /// \returns the scalarization cost for this list of values. Assuming that
2438 /// this subtree gets vectorized, we may need to extract the values from the
2439 /// roots. This method calculates the cost of extracting the values.
2440 /// \param ForPoisonSrc true if initial vector is poison, false otherwise.
2441 InstructionCost getGatherCost(ArrayRef<Value *> VL, bool ForPoisonSrc) const;
2443 /// Set the Builder insert point to one after the last instruction in
2444 /// the bundle
2445 void setInsertPointAfterBundle(const TreeEntry *E);
2447 /// \returns a vector from a collection of scalars in \p VL. if \p Root is not
2448 /// specified, the starting vector value is poison.
2449 Value *gather(ArrayRef<Value *> VL, Value *Root);
2451 /// \returns whether the VectorizableTree is fully vectorizable and will
2452 /// be beneficial even the tree height is tiny.
2453 bool isFullyVectorizableTinyTree(bool ForReduction) const;
2455 /// Reorder commutative or alt operands to get better probability of
2456 /// generating vectorized code.
2457 static void reorderInputsAccordingToOpcode(
2458 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
2459 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
2460 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R);
2462 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2463 /// users of \p TE and collects the stores. It returns the map from the store
2464 /// pointers to the collected stores.
2465 DenseMap<Value *, SmallVector<StoreInst *>>
2466 collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2468 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2469 /// stores in \p StoresVec can form a vector instruction. If so it returns
2470 /// true and populates \p ReorderIndices with the shuffle indices of the
2471 /// stores when compared to the sorted vector.
2472 bool canFormVector(ArrayRef<StoreInst *> StoresVec,
2473 OrdersType &ReorderIndices) const;
2475 /// Iterates through the users of \p TE, looking for scalar stores that can be
2476 /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2477 /// their order and builds an order index vector for each store bundle. It
2478 /// returns all these order vectors found.
2479 /// We run this after the tree has formed, otherwise we may come across user
2480 /// instructions that are not yet in the tree.
2481 SmallVector<OrdersType, 1>
2482 findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2484 struct TreeEntry {
2485 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2486 TreeEntry(VecTreeTy &Container) : Container(Container) {}
2488 /// \returns Common mask for reorder indices and reused scalars.
2489 SmallVector<int> getCommonMask() const {
2490 SmallVector<int> Mask;
2491 inversePermutation(ReorderIndices, Mask);
2492 ::addMask(Mask, ReuseShuffleIndices);
2493 return Mask;
2496 /// \returns true if the scalars in VL are equal to this entry.
2497 bool isSame(ArrayRef<Value *> VL) const {
2498 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2499 if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2500 return std::equal(VL.begin(), VL.end(), Scalars.begin());
2501 return VL.size() == Mask.size() &&
2502 std::equal(VL.begin(), VL.end(), Mask.begin(),
2503 [Scalars](Value *V, int Idx) {
2504 return (isa<UndefValue>(V) &&
2505 Idx == PoisonMaskElem) ||
2506 (Idx != PoisonMaskElem && V == Scalars[Idx]);
2509 if (!ReorderIndices.empty()) {
2510 // TODO: implement matching if the nodes are just reordered, still can
2511 // treat the vector as the same if the list of scalars matches VL
2512 // directly, without reordering.
2513 SmallVector<int> Mask;
2514 inversePermutation(ReorderIndices, Mask);
2515 if (VL.size() == Scalars.size())
2516 return IsSame(Scalars, Mask);
2517 if (VL.size() == ReuseShuffleIndices.size()) {
2518 ::addMask(Mask, ReuseShuffleIndices);
2519 return IsSame(Scalars, Mask);
2521 return false;
2523 return IsSame(Scalars, ReuseShuffleIndices);
2526 bool isOperandGatherNode(const EdgeInfo &UserEI) const {
2527 return State == TreeEntry::NeedToGather &&
2528 UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx &&
2529 UserTreeIndices.front().UserTE == UserEI.UserTE;
2532 /// \returns true if current entry has same operands as \p TE.
2533 bool hasEqualOperands(const TreeEntry &TE) const {
2534 if (TE.getNumOperands() != getNumOperands())
2535 return false;
2536 SmallBitVector Used(getNumOperands());
2537 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2538 unsigned PrevCount = Used.count();
2539 for (unsigned K = 0; K < E; ++K) {
2540 if (Used.test(K))
2541 continue;
2542 if (getOperand(K) == TE.getOperand(I)) {
2543 Used.set(K);
2544 break;
2547 // Check if we actually found the matching operand.
2548 if (PrevCount == Used.count())
2549 return false;
2551 return true;
2554 /// \return Final vectorization factor for the node. Defined by the total
2555 /// number of vectorized scalars, including those, used several times in the
2556 /// entry and counted in the \a ReuseShuffleIndices, if any.
2557 unsigned getVectorFactor() const {
2558 if (!ReuseShuffleIndices.empty())
2559 return ReuseShuffleIndices.size();
2560 return Scalars.size();
2563 /// A vector of scalars.
2564 ValueList Scalars;
2566 /// The Scalars are vectorized into this value. It is initialized to Null.
2567 WeakTrackingVH VectorizedValue = nullptr;
2569 /// New vector phi instructions emitted for the vectorized phi nodes.
2570 PHINode *PHI = nullptr;
2572 /// Do we need to gather this sequence or vectorize it
2573 /// (either with vector instruction or with scatter/gather
2574 /// intrinsics for store/load)?
2575 enum EntryState {
2576 Vectorize,
2577 ScatterVectorize,
2578 PossibleStridedVectorize,
2579 NeedToGather
2581 EntryState State;
2583 /// Does this sequence require some shuffling?
2584 SmallVector<int, 4> ReuseShuffleIndices;
2586 /// Does this entry require reordering?
2587 SmallVector<unsigned, 4> ReorderIndices;
2589 /// Points back to the VectorizableTree.
2591 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
2592 /// to be a pointer and needs to be able to initialize the child iterator.
2593 /// Thus we need a reference back to the container to translate the indices
2594 /// to entries.
2595 VecTreeTy &Container;
2597 /// The TreeEntry index containing the user of this entry. We can actually
2598 /// have multiple users so the data structure is not truly a tree.
2599 SmallVector<EdgeInfo, 1> UserTreeIndices;
2601 /// The index of this treeEntry in VectorizableTree.
2602 int Idx = -1;
2604 private:
2605 /// The operands of each instruction in each lane Operands[op_index][lane].
2606 /// Note: This helps avoid the replication of the code that performs the
2607 /// reordering of operands during buildTree_rec() and vectorizeTree().
2608 SmallVector<ValueList, 2> Operands;
2610 /// The main/alternate instruction.
2611 Instruction *MainOp = nullptr;
2612 Instruction *AltOp = nullptr;
2614 public:
2615 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2616 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2617 if (Operands.size() < OpIdx + 1)
2618 Operands.resize(OpIdx + 1);
2619 assert(Operands[OpIdx].empty() && "Already resized?");
2620 assert(OpVL.size() <= Scalars.size() &&
2621 "Number of operands is greater than the number of scalars.");
2622 Operands[OpIdx].resize(OpVL.size());
2623 copy(OpVL, Operands[OpIdx].begin());
2626 /// Set the operands of this bundle in their original order.
2627 void setOperandsInOrder() {
2628 assert(Operands.empty() && "Already initialized?");
2629 auto *I0 = cast<Instruction>(Scalars[0]);
2630 Operands.resize(I0->getNumOperands());
2631 unsigned NumLanes = Scalars.size();
2632 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2633 OpIdx != NumOperands; ++OpIdx) {
2634 Operands[OpIdx].resize(NumLanes);
2635 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2636 auto *I = cast<Instruction>(Scalars[Lane]);
2637 assert(I->getNumOperands() == NumOperands &&
2638 "Expected same number of operands");
2639 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2644 /// Reorders operands of the node to the given mask \p Mask.
2645 void reorderOperands(ArrayRef<int> Mask) {
2646 for (ValueList &Operand : Operands)
2647 reorderScalars(Operand, Mask);
2650 /// \returns the \p OpIdx operand of this TreeEntry.
2651 ValueList &getOperand(unsigned OpIdx) {
2652 assert(OpIdx < Operands.size() && "Off bounds");
2653 return Operands[OpIdx];
2656 /// \returns the \p OpIdx operand of this TreeEntry.
2657 ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2658 assert(OpIdx < Operands.size() && "Off bounds");
2659 return Operands[OpIdx];
2662 /// \returns the number of operands.
2663 unsigned getNumOperands() const { return Operands.size(); }
2665 /// \return the single \p OpIdx operand.
2666 Value *getSingleOperand(unsigned OpIdx) const {
2667 assert(OpIdx < Operands.size() && "Off bounds");
2668 assert(!Operands[OpIdx].empty() && "No operand available");
2669 return Operands[OpIdx][0];
2672 /// Some of the instructions in the list have alternate opcodes.
2673 bool isAltShuffle() const { return MainOp != AltOp; }
2675 bool isOpcodeOrAlt(Instruction *I) const {
2676 unsigned CheckedOpcode = I->getOpcode();
2677 return (getOpcode() == CheckedOpcode ||
2678 getAltOpcode() == CheckedOpcode);
2681 /// Chooses the correct key for scheduling data. If \p Op has the same (or
2682 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2683 /// \p OpValue.
2684 Value *isOneOf(Value *Op) const {
2685 auto *I = dyn_cast<Instruction>(Op);
2686 if (I && isOpcodeOrAlt(I))
2687 return Op;
2688 return MainOp;
2691 void setOperations(const InstructionsState &S) {
2692 MainOp = S.MainOp;
2693 AltOp = S.AltOp;
2696 Instruction *getMainOp() const {
2697 return MainOp;
2700 Instruction *getAltOp() const {
2701 return AltOp;
2704 /// The main/alternate opcodes for the list of instructions.
2705 unsigned getOpcode() const {
2706 return MainOp ? MainOp->getOpcode() : 0;
2709 unsigned getAltOpcode() const {
2710 return AltOp ? AltOp->getOpcode() : 0;
2713 /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2714 /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2715 int findLaneForValue(Value *V) const {
2716 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2717 assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2718 if (!ReorderIndices.empty())
2719 FoundLane = ReorderIndices[FoundLane];
2720 assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2721 if (!ReuseShuffleIndices.empty()) {
2722 FoundLane = std::distance(ReuseShuffleIndices.begin(),
2723 find(ReuseShuffleIndices, FoundLane));
2725 return FoundLane;
2728 /// Build a shuffle mask for graph entry which represents a merge of main
2729 /// and alternate operations.
2730 void
2731 buildAltOpShuffleMask(const function_ref<bool(Instruction *)> IsAltOp,
2732 SmallVectorImpl<int> &Mask,
2733 SmallVectorImpl<Value *> *OpScalars = nullptr,
2734 SmallVectorImpl<Value *> *AltScalars = nullptr) const;
2736 #ifndef NDEBUG
2737 /// Debug printer.
2738 LLVM_DUMP_METHOD void dump() const {
2739 dbgs() << Idx << ".\n";
2740 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2741 dbgs() << "Operand " << OpI << ":\n";
2742 for (const Value *V : Operands[OpI])
2743 dbgs().indent(2) << *V << "\n";
2745 dbgs() << "Scalars: \n";
2746 for (Value *V : Scalars)
2747 dbgs().indent(2) << *V << "\n";
2748 dbgs() << "State: ";
2749 switch (State) {
2750 case Vectorize:
2751 dbgs() << "Vectorize\n";
2752 break;
2753 case ScatterVectorize:
2754 dbgs() << "ScatterVectorize\n";
2755 break;
2756 case PossibleStridedVectorize:
2757 dbgs() << "PossibleStridedVectorize\n";
2758 break;
2759 case NeedToGather:
2760 dbgs() << "NeedToGather\n";
2761 break;
2763 dbgs() << "MainOp: ";
2764 if (MainOp)
2765 dbgs() << *MainOp << "\n";
2766 else
2767 dbgs() << "NULL\n";
2768 dbgs() << "AltOp: ";
2769 if (AltOp)
2770 dbgs() << *AltOp << "\n";
2771 else
2772 dbgs() << "NULL\n";
2773 dbgs() << "VectorizedValue: ";
2774 if (VectorizedValue)
2775 dbgs() << *VectorizedValue << "\n";
2776 else
2777 dbgs() << "NULL\n";
2778 dbgs() << "ReuseShuffleIndices: ";
2779 if (ReuseShuffleIndices.empty())
2780 dbgs() << "Empty";
2781 else
2782 for (int ReuseIdx : ReuseShuffleIndices)
2783 dbgs() << ReuseIdx << ", ";
2784 dbgs() << "\n";
2785 dbgs() << "ReorderIndices: ";
2786 for (unsigned ReorderIdx : ReorderIndices)
2787 dbgs() << ReorderIdx << ", ";
2788 dbgs() << "\n";
2789 dbgs() << "UserTreeIndices: ";
2790 for (const auto &EInfo : UserTreeIndices)
2791 dbgs() << EInfo << ", ";
2792 dbgs() << "\n";
2794 #endif
2797 #ifndef NDEBUG
2798 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2799 InstructionCost VecCost, InstructionCost ScalarCost,
2800 StringRef Banner) const {
2801 dbgs() << "SLP: " << Banner << ":\n";
2802 E->dump();
2803 dbgs() << "SLP: Costs:\n";
2804 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2805 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
2806 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
2807 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = "
2808 << ReuseShuffleCost + VecCost - ScalarCost << "\n";
2810 #endif
2812 /// Create a new VectorizableTree entry.
2813 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2814 std::optional<ScheduleData *> Bundle,
2815 const InstructionsState &S,
2816 const EdgeInfo &UserTreeIdx,
2817 ArrayRef<int> ReuseShuffleIndices = std::nullopt,
2818 ArrayRef<unsigned> ReorderIndices = std::nullopt) {
2819 TreeEntry::EntryState EntryState =
2820 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2821 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2822 ReuseShuffleIndices, ReorderIndices);
2825 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2826 TreeEntry::EntryState EntryState,
2827 std::optional<ScheduleData *> Bundle,
2828 const InstructionsState &S,
2829 const EdgeInfo &UserTreeIdx,
2830 ArrayRef<int> ReuseShuffleIndices = std::nullopt,
2831 ArrayRef<unsigned> ReorderIndices = std::nullopt) {
2832 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2833 (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2834 "Need to vectorize gather entry?");
2835 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2836 TreeEntry *Last = VectorizableTree.back().get();
2837 Last->Idx = VectorizableTree.size() - 1;
2838 Last->State = EntryState;
2839 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2840 ReuseShuffleIndices.end());
2841 if (ReorderIndices.empty()) {
2842 Last->Scalars.assign(VL.begin(), VL.end());
2843 Last->setOperations(S);
2844 } else {
2845 // Reorder scalars and build final mask.
2846 Last->Scalars.assign(VL.size(), nullptr);
2847 transform(ReorderIndices, Last->Scalars.begin(),
2848 [VL](unsigned Idx) -> Value * {
2849 if (Idx >= VL.size())
2850 return UndefValue::get(VL.front()->getType());
2851 return VL[Idx];
2853 InstructionsState S = getSameOpcode(Last->Scalars, *TLI);
2854 Last->setOperations(S);
2855 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2857 if (Last->State != TreeEntry::NeedToGather) {
2858 for (Value *V : VL) {
2859 const TreeEntry *TE = getTreeEntry(V);
2860 assert((!TE || TE == Last || doesNotNeedToBeScheduled(V)) &&
2861 "Scalar already in tree!");
2862 if (TE) {
2863 if (TE != Last)
2864 MultiNodeScalars.try_emplace(V).first->getSecond().push_back(Last);
2865 continue;
2867 ScalarToTreeEntry[V] = Last;
2869 // Update the scheduler bundle to point to this TreeEntry.
2870 ScheduleData *BundleMember = *Bundle;
2871 assert((BundleMember || isa<PHINode>(S.MainOp) ||
2872 isVectorLikeInstWithConstOps(S.MainOp) ||
2873 doesNotNeedToSchedule(VL)) &&
2874 "Bundle and VL out of sync");
2875 if (BundleMember) {
2876 for (Value *V : VL) {
2877 if (doesNotNeedToBeScheduled(V))
2878 continue;
2879 if (!BundleMember)
2880 continue;
2881 BundleMember->TE = Last;
2882 BundleMember = BundleMember->NextInBundle;
2885 assert(!BundleMember && "Bundle and VL out of sync");
2886 } else {
2887 MustGather.insert(VL.begin(), VL.end());
2888 // Build a map for gathered scalars to the nodes where they are used.
2889 for (Value *V : VL)
2890 if (!isConstant(V))
2891 ValueToGatherNodes.try_emplace(V).first->getSecond().insert(Last);
2894 if (UserTreeIdx.UserTE)
2895 Last->UserTreeIndices.push_back(UserTreeIdx);
2897 return Last;
2900 /// -- Vectorization State --
2901 /// Holds all of the tree entries.
2902 TreeEntry::VecTreeTy VectorizableTree;
2904 #ifndef NDEBUG
2905 /// Debug printer.
2906 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2907 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2908 VectorizableTree[Id]->dump();
2909 dbgs() << "\n";
2912 #endif
2914 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2916 const TreeEntry *getTreeEntry(Value *V) const {
2917 return ScalarToTreeEntry.lookup(V);
2920 /// Checks if the specified list of the instructions/values can be vectorized
2921 /// and fills required data before actual scheduling of the instructions.
2922 TreeEntry::EntryState getScalarsVectorizationState(
2923 InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE,
2924 OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps) const;
2926 /// Maps a specific scalar to its tree entry.
2927 SmallDenseMap<Value *, TreeEntry *> ScalarToTreeEntry;
2929 /// List of scalars, used in several vectorize nodes, and the list of the
2930 /// nodes.
2931 SmallDenseMap<Value *, SmallVector<TreeEntry *>> MultiNodeScalars;
2933 /// Maps a value to the proposed vectorizable size.
2934 SmallDenseMap<Value *, unsigned> InstrElementSize;
2936 /// A list of scalars that we found that we need to keep as scalars.
2937 ValueSet MustGather;
2939 /// A map between the vectorized entries and the last instructions in the
2940 /// bundles. The bundles are built in use order, not in the def order of the
2941 /// instructions. So, we cannot rely directly on the last instruction in the
2942 /// bundle being the last instruction in the program order during
2943 /// vectorization process since the basic blocks are affected, need to
2944 /// pre-gather them before.
2945 DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction;
2947 /// List of gather nodes, depending on other gather/vector nodes, which should
2948 /// be emitted after the vector instruction emission process to correctly
2949 /// handle order of the vector instructions and shuffles.
2950 SetVector<const TreeEntry *> PostponedGathers;
2952 using ValueToGatherNodesMap =
2953 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>>;
2954 ValueToGatherNodesMap ValueToGatherNodes;
2956 /// This POD struct describes one external user in the vectorized tree.
2957 struct ExternalUser {
2958 ExternalUser(Value *S, llvm::User *U, int L)
2959 : Scalar(S), User(U), Lane(L) {}
2961 // Which scalar in our function.
2962 Value *Scalar;
2964 // Which user that uses the scalar.
2965 llvm::User *User;
2967 // Which lane does the scalar belong to.
2968 int Lane;
2970 using UserList = SmallVector<ExternalUser, 16>;
2972 /// Checks if two instructions may access the same memory.
2974 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2975 /// is invariant in the calling loop.
2976 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2977 Instruction *Inst2) {
2978 if (!Loc1.Ptr || !isSimple(Inst1) || !isSimple(Inst2))
2979 return true;
2980 // First check if the result is already in the cache.
2981 AliasCacheKey Key = std::make_pair(Inst1, Inst2);
2982 auto It = AliasCache.find(Key);
2983 if (It != AliasCache.end())
2984 return It->second;
2985 bool Aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2986 // Store the result in the cache.
2987 AliasCache.try_emplace(Key, Aliased);
2988 AliasCache.try_emplace(std::make_pair(Inst2, Inst1), Aliased);
2989 return Aliased;
2992 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2994 /// Cache for alias results.
2995 /// TODO: consider moving this to the AliasAnalysis itself.
2996 DenseMap<AliasCacheKey, bool> AliasCache;
2998 // Cache for pointerMayBeCaptured calls inside AA. This is preserved
2999 // globally through SLP because we don't perform any action which
3000 // invalidates capture results.
3001 BatchAAResults BatchAA;
3003 /// Temporary store for deleted instructions. Instructions will be deleted
3004 /// eventually when the BoUpSLP is destructed. The deferral is required to
3005 /// ensure that there are no incorrect collisions in the AliasCache, which
3006 /// can happen if a new instruction is allocated at the same address as a
3007 /// previously deleted instruction.
3008 DenseSet<Instruction *> DeletedInstructions;
3010 /// Set of the instruction, being analyzed already for reductions.
3011 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
3013 /// Set of hashes for the list of reduction values already being analyzed.
3014 DenseSet<size_t> AnalyzedReductionVals;
3016 /// A list of values that need to extracted out of the tree.
3017 /// This list holds pairs of (Internal Scalar : External User). External User
3018 /// can be nullptr, it means that this Internal Scalar will be used later,
3019 /// after vectorization.
3020 UserList ExternalUses;
3022 /// Values used only by @llvm.assume calls.
3023 SmallPtrSet<const Value *, 32> EphValues;
3025 /// Holds all of the instructions that we gathered, shuffle instructions and
3026 /// extractelements.
3027 SetVector<Instruction *> GatherShuffleExtractSeq;
3029 /// A list of blocks that we are going to CSE.
3030 DenseSet<BasicBlock *> CSEBlocks;
3032 /// Contains all scheduling relevant data for an instruction.
3033 /// A ScheduleData either represents a single instruction or a member of an
3034 /// instruction bundle (= a group of instructions which is combined into a
3035 /// vector instruction).
3036 struct ScheduleData {
3037 // The initial value for the dependency counters. It means that the
3038 // dependencies are not calculated yet.
3039 enum { InvalidDeps = -1 };
3041 ScheduleData() = default;
3043 void init(int BlockSchedulingRegionID, Value *OpVal) {
3044 FirstInBundle = this;
3045 NextInBundle = nullptr;
3046 NextLoadStore = nullptr;
3047 IsScheduled = false;
3048 SchedulingRegionID = BlockSchedulingRegionID;
3049 clearDependencies();
3050 OpValue = OpVal;
3051 TE = nullptr;
3054 /// Verify basic self consistency properties
3055 void verify() {
3056 if (hasValidDependencies()) {
3057 assert(UnscheduledDeps <= Dependencies && "invariant");
3058 } else {
3059 assert(UnscheduledDeps == Dependencies && "invariant");
3062 if (IsScheduled) {
3063 assert(isSchedulingEntity() &&
3064 "unexpected scheduled state");
3065 for (const ScheduleData *BundleMember = this; BundleMember;
3066 BundleMember = BundleMember->NextInBundle) {
3067 assert(BundleMember->hasValidDependencies() &&
3068 BundleMember->UnscheduledDeps == 0 &&
3069 "unexpected scheduled state");
3070 assert((BundleMember == this || !BundleMember->IsScheduled) &&
3071 "only bundle is marked scheduled");
3075 assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
3076 "all bundle members must be in same basic block");
3079 /// Returns true if the dependency information has been calculated.
3080 /// Note that depenendency validity can vary between instructions within
3081 /// a single bundle.
3082 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
3084 /// Returns true for single instructions and for bundle representatives
3085 /// (= the head of a bundle).
3086 bool isSchedulingEntity() const { return FirstInBundle == this; }
3088 /// Returns true if it represents an instruction bundle and not only a
3089 /// single instruction.
3090 bool isPartOfBundle() const {
3091 return NextInBundle != nullptr || FirstInBundle != this || TE;
3094 /// Returns true if it is ready for scheduling, i.e. it has no more
3095 /// unscheduled depending instructions/bundles.
3096 bool isReady() const {
3097 assert(isSchedulingEntity() &&
3098 "can't consider non-scheduling entity for ready list");
3099 return unscheduledDepsInBundle() == 0 && !IsScheduled;
3102 /// Modifies the number of unscheduled dependencies for this instruction,
3103 /// and returns the number of remaining dependencies for the containing
3104 /// bundle.
3105 int incrementUnscheduledDeps(int Incr) {
3106 assert(hasValidDependencies() &&
3107 "increment of unscheduled deps would be meaningless");
3108 UnscheduledDeps += Incr;
3109 return FirstInBundle->unscheduledDepsInBundle();
3112 /// Sets the number of unscheduled dependencies to the number of
3113 /// dependencies.
3114 void resetUnscheduledDeps() {
3115 UnscheduledDeps = Dependencies;
3118 /// Clears all dependency information.
3119 void clearDependencies() {
3120 Dependencies = InvalidDeps;
3121 resetUnscheduledDeps();
3122 MemoryDependencies.clear();
3123 ControlDependencies.clear();
3126 int unscheduledDepsInBundle() const {
3127 assert(isSchedulingEntity() && "only meaningful on the bundle");
3128 int Sum = 0;
3129 for (const ScheduleData *BundleMember = this; BundleMember;
3130 BundleMember = BundleMember->NextInBundle) {
3131 if (BundleMember->UnscheduledDeps == InvalidDeps)
3132 return InvalidDeps;
3133 Sum += BundleMember->UnscheduledDeps;
3135 return Sum;
3138 void dump(raw_ostream &os) const {
3139 if (!isSchedulingEntity()) {
3140 os << "/ " << *Inst;
3141 } else if (NextInBundle) {
3142 os << '[' << *Inst;
3143 ScheduleData *SD = NextInBundle;
3144 while (SD) {
3145 os << ';' << *SD->Inst;
3146 SD = SD->NextInBundle;
3148 os << ']';
3149 } else {
3150 os << *Inst;
3154 Instruction *Inst = nullptr;
3156 /// Opcode of the current instruction in the schedule data.
3157 Value *OpValue = nullptr;
3159 /// The TreeEntry that this instruction corresponds to.
3160 TreeEntry *TE = nullptr;
3162 /// Points to the head in an instruction bundle (and always to this for
3163 /// single instructions).
3164 ScheduleData *FirstInBundle = nullptr;
3166 /// Single linked list of all instructions in a bundle. Null if it is a
3167 /// single instruction.
3168 ScheduleData *NextInBundle = nullptr;
3170 /// Single linked list of all memory instructions (e.g. load, store, call)
3171 /// in the block - until the end of the scheduling region.
3172 ScheduleData *NextLoadStore = nullptr;
3174 /// The dependent memory instructions.
3175 /// This list is derived on demand in calculateDependencies().
3176 SmallVector<ScheduleData *, 4> MemoryDependencies;
3178 /// List of instructions which this instruction could be control dependent
3179 /// on. Allowing such nodes to be scheduled below this one could introduce
3180 /// a runtime fault which didn't exist in the original program.
3181 /// ex: this is a load or udiv following a readonly call which inf loops
3182 SmallVector<ScheduleData *, 4> ControlDependencies;
3184 /// This ScheduleData is in the current scheduling region if this matches
3185 /// the current SchedulingRegionID of BlockScheduling.
3186 int SchedulingRegionID = 0;
3188 /// Used for getting a "good" final ordering of instructions.
3189 int SchedulingPriority = 0;
3191 /// The number of dependencies. Constitutes of the number of users of the
3192 /// instruction plus the number of dependent memory instructions (if any).
3193 /// This value is calculated on demand.
3194 /// If InvalidDeps, the number of dependencies is not calculated yet.
3195 int Dependencies = InvalidDeps;
3197 /// The number of dependencies minus the number of dependencies of scheduled
3198 /// instructions. As soon as this is zero, the instruction/bundle gets ready
3199 /// for scheduling.
3200 /// Note that this is negative as long as Dependencies is not calculated.
3201 int UnscheduledDeps = InvalidDeps;
3203 /// True if this instruction is scheduled (or considered as scheduled in the
3204 /// dry-run).
3205 bool IsScheduled = false;
3208 #ifndef NDEBUG
3209 friend inline raw_ostream &operator<<(raw_ostream &os,
3210 const BoUpSLP::ScheduleData &SD) {
3211 SD.dump(os);
3212 return os;
3214 #endif
3216 friend struct GraphTraits<BoUpSLP *>;
3217 friend struct DOTGraphTraits<BoUpSLP *>;
3219 /// Contains all scheduling data for a basic block.
3220 /// It does not schedules instructions, which are not memory read/write
3221 /// instructions and their operands are either constants, or arguments, or
3222 /// phis, or instructions from others blocks, or their users are phis or from
3223 /// the other blocks. The resulting vector instructions can be placed at the
3224 /// beginning of the basic block without scheduling (if operands does not need
3225 /// to be scheduled) or at the end of the block (if users are outside of the
3226 /// block). It allows to save some compile time and memory used by the
3227 /// compiler.
3228 /// ScheduleData is assigned for each instruction in between the boundaries of
3229 /// the tree entry, even for those, which are not part of the graph. It is
3230 /// required to correctly follow the dependencies between the instructions and
3231 /// their correct scheduling. The ScheduleData is not allocated for the
3232 /// instructions, which do not require scheduling, like phis, nodes with
3233 /// extractelements/insertelements only or nodes with instructions, with
3234 /// uses/operands outside of the block.
3235 struct BlockScheduling {
3236 BlockScheduling(BasicBlock *BB)
3237 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
3239 void clear() {
3240 ReadyInsts.clear();
3241 ScheduleStart = nullptr;
3242 ScheduleEnd = nullptr;
3243 FirstLoadStoreInRegion = nullptr;
3244 LastLoadStoreInRegion = nullptr;
3245 RegionHasStackSave = false;
3247 // Reduce the maximum schedule region size by the size of the
3248 // previous scheduling run.
3249 ScheduleRegionSizeLimit -= ScheduleRegionSize;
3250 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
3251 ScheduleRegionSizeLimit = MinScheduleRegionSize;
3252 ScheduleRegionSize = 0;
3254 // Make a new scheduling region, i.e. all existing ScheduleData is not
3255 // in the new region yet.
3256 ++SchedulingRegionID;
3259 ScheduleData *getScheduleData(Instruction *I) {
3260 if (BB != I->getParent())
3261 // Avoid lookup if can't possibly be in map.
3262 return nullptr;
3263 ScheduleData *SD = ScheduleDataMap.lookup(I);
3264 if (SD && isInSchedulingRegion(SD))
3265 return SD;
3266 return nullptr;
3269 ScheduleData *getScheduleData(Value *V) {
3270 if (auto *I = dyn_cast<Instruction>(V))
3271 return getScheduleData(I);
3272 return nullptr;
3275 ScheduleData *getScheduleData(Value *V, Value *Key) {
3276 if (V == Key)
3277 return getScheduleData(V);
3278 auto I = ExtraScheduleDataMap.find(V);
3279 if (I != ExtraScheduleDataMap.end()) {
3280 ScheduleData *SD = I->second.lookup(Key);
3281 if (SD && isInSchedulingRegion(SD))
3282 return SD;
3284 return nullptr;
3287 bool isInSchedulingRegion(ScheduleData *SD) const {
3288 return SD->SchedulingRegionID == SchedulingRegionID;
3291 /// Marks an instruction as scheduled and puts all dependent ready
3292 /// instructions into the ready-list.
3293 template <typename ReadyListType>
3294 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
3295 SD->IsScheduled = true;
3296 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
3298 for (ScheduleData *BundleMember = SD; BundleMember;
3299 BundleMember = BundleMember->NextInBundle) {
3300 if (BundleMember->Inst != BundleMember->OpValue)
3301 continue;
3303 // Handle the def-use chain dependencies.
3305 // Decrement the unscheduled counter and insert to ready list if ready.
3306 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
3307 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
3308 if (OpDef && OpDef->hasValidDependencies() &&
3309 OpDef->incrementUnscheduledDeps(-1) == 0) {
3310 // There are no more unscheduled dependencies after
3311 // decrementing, so we can put the dependent instruction
3312 // into the ready list.
3313 ScheduleData *DepBundle = OpDef->FirstInBundle;
3314 assert(!DepBundle->IsScheduled &&
3315 "already scheduled bundle gets ready");
3316 ReadyList.insert(DepBundle);
3317 LLVM_DEBUG(dbgs()
3318 << "SLP: gets ready (def): " << *DepBundle << "\n");
3323 // If BundleMember is a vector bundle, its operands may have been
3324 // reordered during buildTree(). We therefore need to get its operands
3325 // through the TreeEntry.
3326 if (TreeEntry *TE = BundleMember->TE) {
3327 // Need to search for the lane since the tree entry can be reordered.
3328 int Lane = std::distance(TE->Scalars.begin(),
3329 find(TE->Scalars, BundleMember->Inst));
3330 assert(Lane >= 0 && "Lane not set");
3332 // Since vectorization tree is being built recursively this assertion
3333 // ensures that the tree entry has all operands set before reaching
3334 // this code. Couple of exceptions known at the moment are extracts
3335 // where their second (immediate) operand is not added. Since
3336 // immediates do not affect scheduler behavior this is considered
3337 // okay.
3338 auto *In = BundleMember->Inst;
3339 assert(In &&
3340 (isa<ExtractValueInst, ExtractElementInst>(In) ||
3341 In->getNumOperands() == TE->getNumOperands()) &&
3342 "Missed TreeEntry operands?");
3343 (void)In; // fake use to avoid build failure when assertions disabled
3345 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3346 OpIdx != NumOperands; ++OpIdx)
3347 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3348 DecrUnsched(I);
3349 } else {
3350 // If BundleMember is a stand-alone instruction, no operand reordering
3351 // has taken place, so we directly access its operands.
3352 for (Use &U : BundleMember->Inst->operands())
3353 if (auto *I = dyn_cast<Instruction>(U.get()))
3354 DecrUnsched(I);
3356 // Handle the memory dependencies.
3357 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3358 if (MemoryDepSD->hasValidDependencies() &&
3359 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3360 // There are no more unscheduled dependencies after decrementing,
3361 // so we can put the dependent instruction into the ready list.
3362 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3363 assert(!DepBundle->IsScheduled &&
3364 "already scheduled bundle gets ready");
3365 ReadyList.insert(DepBundle);
3366 LLVM_DEBUG(dbgs()
3367 << "SLP: gets ready (mem): " << *DepBundle << "\n");
3370 // Handle the control dependencies.
3371 for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3372 if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3373 // There are no more unscheduled dependencies after decrementing,
3374 // so we can put the dependent instruction into the ready list.
3375 ScheduleData *DepBundle = DepSD->FirstInBundle;
3376 assert(!DepBundle->IsScheduled &&
3377 "already scheduled bundle gets ready");
3378 ReadyList.insert(DepBundle);
3379 LLVM_DEBUG(dbgs()
3380 << "SLP: gets ready (ctl): " << *DepBundle << "\n");
3386 /// Verify basic self consistency properties of the data structure.
3387 void verify() {
3388 if (!ScheduleStart)
3389 return;
3391 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3392 ScheduleStart->comesBefore(ScheduleEnd) &&
3393 "Not a valid scheduling region?");
3395 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3396 auto *SD = getScheduleData(I);
3397 if (!SD)
3398 continue;
3399 assert(isInSchedulingRegion(SD) &&
3400 "primary schedule data not in window?");
3401 assert(isInSchedulingRegion(SD->FirstInBundle) &&
3402 "entire bundle in window!");
3403 (void)SD;
3404 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3407 for (auto *SD : ReadyInsts) {
3408 assert(SD->isSchedulingEntity() && SD->isReady() &&
3409 "item in ready list not ready?");
3410 (void)SD;
3414 void doForAllOpcodes(Value *V,
3415 function_ref<void(ScheduleData *SD)> Action) {
3416 if (ScheduleData *SD = getScheduleData(V))
3417 Action(SD);
3418 auto I = ExtraScheduleDataMap.find(V);
3419 if (I != ExtraScheduleDataMap.end())
3420 for (auto &P : I->second)
3421 if (isInSchedulingRegion(P.second))
3422 Action(P.second);
3425 /// Put all instructions into the ReadyList which are ready for scheduling.
3426 template <typename ReadyListType>
3427 void initialFillReadyList(ReadyListType &ReadyList) {
3428 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3429 doForAllOpcodes(I, [&](ScheduleData *SD) {
3430 if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3431 SD->isReady()) {
3432 ReadyList.insert(SD);
3433 LLVM_DEBUG(dbgs()
3434 << "SLP: initially in ready list: " << *SD << "\n");
3440 /// Build a bundle from the ScheduleData nodes corresponding to the
3441 /// scalar instruction for each lane.
3442 ScheduleData *buildBundle(ArrayRef<Value *> VL);
3444 /// Checks if a bundle of instructions can be scheduled, i.e. has no
3445 /// cyclic dependencies. This is only a dry-run, no instructions are
3446 /// actually moved at this stage.
3447 /// \returns the scheduling bundle. The returned Optional value is not
3448 /// std::nullopt if \p VL is allowed to be scheduled.
3449 std::optional<ScheduleData *>
3450 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3451 const InstructionsState &S);
3453 /// Un-bundles a group of instructions.
3454 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3456 /// Allocates schedule data chunk.
3457 ScheduleData *allocateScheduleDataChunks();
3459 /// Extends the scheduling region so that V is inside the region.
3460 /// \returns true if the region size is within the limit.
3461 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3463 /// Initialize the ScheduleData structures for new instructions in the
3464 /// scheduling region.
3465 void initScheduleData(Instruction *FromI, Instruction *ToI,
3466 ScheduleData *PrevLoadStore,
3467 ScheduleData *NextLoadStore);
3469 /// Updates the dependency information of a bundle and of all instructions/
3470 /// bundles which depend on the original bundle.
3471 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3472 BoUpSLP *SLP);
3474 /// Sets all instruction in the scheduling region to un-scheduled.
3475 void resetSchedule();
3477 BasicBlock *BB;
3479 /// Simple memory allocation for ScheduleData.
3480 SmallVector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3482 /// The size of a ScheduleData array in ScheduleDataChunks.
3483 int ChunkSize;
3485 /// The allocator position in the current chunk, which is the last entry
3486 /// of ScheduleDataChunks.
3487 int ChunkPos;
3489 /// Attaches ScheduleData to Instruction.
3490 /// Note that the mapping survives during all vectorization iterations, i.e.
3491 /// ScheduleData structures are recycled.
3492 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3494 /// Attaches ScheduleData to Instruction with the leading key.
3495 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3496 ExtraScheduleDataMap;
3498 /// The ready-list for scheduling (only used for the dry-run).
3499 SetVector<ScheduleData *> ReadyInsts;
3501 /// The first instruction of the scheduling region.
3502 Instruction *ScheduleStart = nullptr;
3504 /// The first instruction _after_ the scheduling region.
3505 Instruction *ScheduleEnd = nullptr;
3507 /// The first memory accessing instruction in the scheduling region
3508 /// (can be null).
3509 ScheduleData *FirstLoadStoreInRegion = nullptr;
3511 /// The last memory accessing instruction in the scheduling region
3512 /// (can be null).
3513 ScheduleData *LastLoadStoreInRegion = nullptr;
3515 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3516 /// region? Used to optimize the dependence calculation for the
3517 /// common case where there isn't.
3518 bool RegionHasStackSave = false;
3520 /// The current size of the scheduling region.
3521 int ScheduleRegionSize = 0;
3523 /// The maximum size allowed for the scheduling region.
3524 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3526 /// The ID of the scheduling region. For a new vectorization iteration this
3527 /// is incremented which "removes" all ScheduleData from the region.
3528 /// Make sure that the initial SchedulingRegionID is greater than the
3529 /// initial SchedulingRegionID in ScheduleData (which is 0).
3530 int SchedulingRegionID = 1;
3533 /// Attaches the BlockScheduling structures to basic blocks.
3534 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3536 /// Performs the "real" scheduling. Done before vectorization is actually
3537 /// performed in a basic block.
3538 void scheduleBlock(BlockScheduling *BS);
3540 /// List of users to ignore during scheduling and that don't need extracting.
3541 const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3543 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3544 /// sorted SmallVectors of unsigned.
3545 struct OrdersTypeDenseMapInfo {
3546 static OrdersType getEmptyKey() {
3547 OrdersType V;
3548 V.push_back(~1U);
3549 return V;
3552 static OrdersType getTombstoneKey() {
3553 OrdersType V;
3554 V.push_back(~2U);
3555 return V;
3558 static unsigned getHashValue(const OrdersType &V) {
3559 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3562 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3563 return LHS == RHS;
3567 // Analysis and block reference.
3568 Function *F;
3569 ScalarEvolution *SE;
3570 TargetTransformInfo *TTI;
3571 TargetLibraryInfo *TLI;
3572 LoopInfo *LI;
3573 DominatorTree *DT;
3574 AssumptionCache *AC;
3575 DemandedBits *DB;
3576 const DataLayout *DL;
3577 OptimizationRemarkEmitter *ORE;
3579 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3580 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3582 /// Instruction builder to construct the vectorized tree.
3583 IRBuilder<> Builder;
3585 /// A map of scalar integer values to the smallest bit width with which they
3586 /// can legally be represented. The values map to (width, signed) pairs,
3587 /// where "width" indicates the minimum bit width and "signed" is True if the
3588 /// value must be signed-extended, rather than zero-extended, back to its
3589 /// original width.
3590 DenseMap<const TreeEntry *, std::pair<uint64_t, bool>> MinBWs;
3593 } // end namespace slpvectorizer
3595 template <> struct GraphTraits<BoUpSLP *> {
3596 using TreeEntry = BoUpSLP::TreeEntry;
3598 /// NodeRef has to be a pointer per the GraphWriter.
3599 using NodeRef = TreeEntry *;
3601 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3603 /// Add the VectorizableTree to the index iterator to be able to return
3604 /// TreeEntry pointers.
3605 struct ChildIteratorType
3606 : public iterator_adaptor_base<
3607 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3608 ContainerTy &VectorizableTree;
3610 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3611 ContainerTy &VT)
3612 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3614 NodeRef operator*() { return I->UserTE; }
3617 static NodeRef getEntryNode(BoUpSLP &R) {
3618 return R.VectorizableTree[0].get();
3621 static ChildIteratorType child_begin(NodeRef N) {
3622 return {N->UserTreeIndices.begin(), N->Container};
3625 static ChildIteratorType child_end(NodeRef N) {
3626 return {N->UserTreeIndices.end(), N->Container};
3629 /// For the node iterator we just need to turn the TreeEntry iterator into a
3630 /// TreeEntry* iterator so that it dereferences to NodeRef.
3631 class nodes_iterator {
3632 using ItTy = ContainerTy::iterator;
3633 ItTy It;
3635 public:
3636 nodes_iterator(const ItTy &It2) : It(It2) {}
3637 NodeRef operator*() { return It->get(); }
3638 nodes_iterator operator++() {
3639 ++It;
3640 return *this;
3642 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3645 static nodes_iterator nodes_begin(BoUpSLP *R) {
3646 return nodes_iterator(R->VectorizableTree.begin());
3649 static nodes_iterator nodes_end(BoUpSLP *R) {
3650 return nodes_iterator(R->VectorizableTree.end());
3653 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3656 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3657 using TreeEntry = BoUpSLP::TreeEntry;
3659 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
3661 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3662 std::string Str;
3663 raw_string_ostream OS(Str);
3664 OS << Entry->Idx << ".\n";
3665 if (isSplat(Entry->Scalars))
3666 OS << "<splat> ";
3667 for (auto *V : Entry->Scalars) {
3668 OS << *V;
3669 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3670 return EU.Scalar == V;
3672 OS << " <extract>";
3673 OS << "\n";
3675 return Str;
3678 static std::string getNodeAttributes(const TreeEntry *Entry,
3679 const BoUpSLP *) {
3680 if (Entry->State == TreeEntry::NeedToGather)
3681 return "color=red";
3682 if (Entry->State == TreeEntry::ScatterVectorize ||
3683 Entry->State == TreeEntry::PossibleStridedVectorize)
3684 return "color=blue";
3685 return "";
3689 } // end namespace llvm
3691 BoUpSLP::~BoUpSLP() {
3692 SmallVector<WeakTrackingVH> DeadInsts;
3693 for (auto *I : DeletedInstructions) {
3694 for (Use &U : I->operands()) {
3695 auto *Op = dyn_cast<Instruction>(U.get());
3696 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3697 wouldInstructionBeTriviallyDead(Op, TLI))
3698 DeadInsts.emplace_back(Op);
3700 I->dropAllReferences();
3702 for (auto *I : DeletedInstructions) {
3703 assert(I->use_empty() &&
3704 "trying to erase instruction with users.");
3705 I->eraseFromParent();
3708 // Cleanup any dead scalar code feeding the vectorized instructions
3709 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3711 #ifdef EXPENSIVE_CHECKS
3712 // If we could guarantee that this call is not extremely slow, we could
3713 // remove the ifdef limitation (see PR47712).
3714 assert(!verifyFunction(*F, &dbgs()));
3715 #endif
3718 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3719 /// contains original mask for the scalars reused in the node. Procedure
3720 /// transform this mask in accordance with the given \p Mask.
3721 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3722 assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3723 "Expected non-empty mask.");
3724 SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3725 Prev.swap(Reuses);
3726 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3727 if (Mask[I] != PoisonMaskElem)
3728 Reuses[Mask[I]] = Prev[I];
3731 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3732 /// the original order of the scalars. Procedure transforms the provided order
3733 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3734 /// identity order, \p Order is cleared.
3735 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3736 assert(!Mask.empty() && "Expected non-empty mask.");
3737 SmallVector<int> MaskOrder;
3738 if (Order.empty()) {
3739 MaskOrder.resize(Mask.size());
3740 std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3741 } else {
3742 inversePermutation(Order, MaskOrder);
3744 reorderReuses(MaskOrder, Mask);
3745 if (ShuffleVectorInst::isIdentityMask(MaskOrder, MaskOrder.size())) {
3746 Order.clear();
3747 return;
3749 Order.assign(Mask.size(), Mask.size());
3750 for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3751 if (MaskOrder[I] != PoisonMaskElem)
3752 Order[MaskOrder[I]] = I;
3753 fixupOrderingIndices(Order);
3756 std::optional<BoUpSLP::OrdersType>
3757 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3758 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3759 unsigned NumScalars = TE.Scalars.size();
3760 OrdersType CurrentOrder(NumScalars, NumScalars);
3761 SmallVector<int> Positions;
3762 SmallBitVector UsedPositions(NumScalars);
3763 const TreeEntry *STE = nullptr;
3764 // Try to find all gathered scalars that are gets vectorized in other
3765 // vectorize node. Here we can have only one single tree vector node to
3766 // correctly identify order of the gathered scalars.
3767 for (unsigned I = 0; I < NumScalars; ++I) {
3768 Value *V = TE.Scalars[I];
3769 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3770 continue;
3771 if (const auto *LocalSTE = getTreeEntry(V)) {
3772 if (!STE)
3773 STE = LocalSTE;
3774 else if (STE != LocalSTE)
3775 // Take the order only from the single vector node.
3776 return std::nullopt;
3777 unsigned Lane =
3778 std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3779 if (Lane >= NumScalars)
3780 return std::nullopt;
3781 if (CurrentOrder[Lane] != NumScalars) {
3782 if (Lane != I)
3783 continue;
3784 UsedPositions.reset(CurrentOrder[Lane]);
3786 // The partial identity (where only some elements of the gather node are
3787 // in the identity order) is good.
3788 CurrentOrder[Lane] = I;
3789 UsedPositions.set(I);
3792 // Need to keep the order if we have a vector entry and at least 2 scalars or
3793 // the vectorized entry has just 2 scalars.
3794 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3795 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3796 for (unsigned I = 0; I < NumScalars; ++I)
3797 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3798 return false;
3799 return true;
3801 if (IsIdentityOrder(CurrentOrder))
3802 return OrdersType();
3803 auto *It = CurrentOrder.begin();
3804 for (unsigned I = 0; I < NumScalars;) {
3805 if (UsedPositions.test(I)) {
3806 ++I;
3807 continue;
3809 if (*It == NumScalars) {
3810 *It = I;
3811 ++I;
3813 ++It;
3815 return std::move(CurrentOrder);
3817 return std::nullopt;
3820 namespace {
3821 /// Tracks the state we can represent the loads in the given sequence.
3822 enum class LoadsState {
3823 Gather,
3824 Vectorize,
3825 ScatterVectorize,
3826 PossibleStridedVectorize
3828 } // anonymous namespace
3830 static bool arePointersCompatible(Value *Ptr1, Value *Ptr2,
3831 const TargetLibraryInfo &TLI,
3832 bool CompareOpcodes = true) {
3833 if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2))
3834 return false;
3835 auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
3836 if (!GEP1)
3837 return false;
3838 auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
3839 if (!GEP2)
3840 return false;
3841 return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 &&
3842 ((isConstant(GEP1->getOperand(1)) &&
3843 isConstant(GEP2->getOperand(1))) ||
3844 !CompareOpcodes ||
3845 getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI)
3846 .getOpcode());
3849 /// Checks if the given array of loads can be represented as a vectorized,
3850 /// scatter or just simple gather.
3851 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3852 const TargetTransformInfo &TTI,
3853 const DataLayout &DL, ScalarEvolution &SE,
3854 LoopInfo &LI, const TargetLibraryInfo &TLI,
3855 SmallVectorImpl<unsigned> &Order,
3856 SmallVectorImpl<Value *> &PointerOps) {
3857 // Check that a vectorized load would load the same memory as a scalar
3858 // load. For example, we don't want to vectorize loads that are smaller
3859 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3860 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3861 // from such a struct, we read/write packed bits disagreeing with the
3862 // unvectorized version.
3863 Type *ScalarTy = VL0->getType();
3865 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3866 return LoadsState::Gather;
3868 // Make sure all loads in the bundle are simple - we can't vectorize
3869 // atomic or volatile loads.
3870 PointerOps.clear();
3871 PointerOps.resize(VL.size());
3872 auto *POIter = PointerOps.begin();
3873 for (Value *V : VL) {
3874 auto *L = cast<LoadInst>(V);
3875 if (!L->isSimple())
3876 return LoadsState::Gather;
3877 *POIter = L->getPointerOperand();
3878 ++POIter;
3881 Order.clear();
3882 // Check the order of pointer operands or that all pointers are the same.
3883 bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3884 if (IsSorted || all_of(PointerOps, [&](Value *P) {
3885 return arePointersCompatible(P, PointerOps.front(), TLI);
3886 })) {
3887 bool IsPossibleStrided = false;
3888 if (IsSorted) {
3889 Value *Ptr0;
3890 Value *PtrN;
3891 if (Order.empty()) {
3892 Ptr0 = PointerOps.front();
3893 PtrN = PointerOps.back();
3894 } else {
3895 Ptr0 = PointerOps[Order.front()];
3896 PtrN = PointerOps[Order.back()];
3898 std::optional<int> Diff =
3899 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3900 // Check that the sorted loads are consecutive.
3901 if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3902 return LoadsState::Vectorize;
3903 // Simple check if not a strided access - clear order.
3904 IsPossibleStrided = *Diff % (VL.size() - 1) == 0;
3906 // TODO: need to improve analysis of the pointers, if not all of them are
3907 // GEPs or have > 2 operands, we end up with a gather node, which just
3908 // increases the cost.
3909 Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3910 bool ProfitableGatherPointers =
3911 static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3912 return L && L->isLoopInvariant(V);
3913 })) <= VL.size() / 2 && VL.size() > 2;
3914 if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3915 auto *GEP = dyn_cast<GetElementPtrInst>(P);
3916 return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3917 (GEP && GEP->getNumOperands() == 2);
3918 })) {
3919 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3920 for (Value *V : VL)
3921 CommonAlignment =
3922 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
3923 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3924 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3925 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3926 return IsPossibleStrided ? LoadsState::PossibleStridedVectorize
3927 : LoadsState::ScatterVectorize;
3931 return LoadsState::Gather;
3934 static bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3935 const DataLayout &DL, ScalarEvolution &SE,
3936 SmallVectorImpl<unsigned> &SortedIndices) {
3937 assert(llvm::all_of(
3938 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3939 "Expected list of pointer operands.");
3940 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3941 // Ptr into, sort and return the sorted indices with values next to one
3942 // another.
3943 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3944 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3946 unsigned Cnt = 1;
3947 for (Value *Ptr : VL.drop_front()) {
3948 bool Found = any_of(Bases, [&](auto &Base) {
3949 std::optional<int> Diff =
3950 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3951 /*StrictCheck=*/true);
3952 if (!Diff)
3953 return false;
3955 Base.second.emplace_back(Ptr, *Diff, Cnt++);
3956 return true;
3959 if (!Found) {
3960 // If we haven't found enough to usefully cluster, return early.
3961 if (Bases.size() > VL.size() / 2 - 1)
3962 return false;
3964 // Not found already - add a new Base
3965 Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3969 // For each of the bases sort the pointers by Offset and check if any of the
3970 // base become consecutively allocated.
3971 bool AnyConsecutive = false;
3972 for (auto &Base : Bases) {
3973 auto &Vec = Base.second;
3974 if (Vec.size() > 1) {
3975 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3976 const std::tuple<Value *, int, unsigned> &Y) {
3977 return std::get<1>(X) < std::get<1>(Y);
3979 int InitialOffset = std::get<1>(Vec[0]);
3980 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](const auto &P) {
3981 return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3986 // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3987 SortedIndices.clear();
3988 if (!AnyConsecutive)
3989 return false;
3991 for (auto &Base : Bases) {
3992 for (auto &T : Base.second)
3993 SortedIndices.push_back(std::get<2>(T));
3996 assert(SortedIndices.size() == VL.size() &&
3997 "Expected SortedIndices to be the size of VL");
3998 return true;
4001 std::optional<BoUpSLP::OrdersType>
4002 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
4003 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
4004 Type *ScalarTy = TE.Scalars[0]->getType();
4006 SmallVector<Value *> Ptrs;
4007 Ptrs.reserve(TE.Scalars.size());
4008 for (Value *V : TE.Scalars) {
4009 auto *L = dyn_cast<LoadInst>(V);
4010 if (!L || !L->isSimple())
4011 return std::nullopt;
4012 Ptrs.push_back(L->getPointerOperand());
4015 BoUpSLP::OrdersType Order;
4016 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
4017 return std::move(Order);
4018 return std::nullopt;
4021 /// Check if two insertelement instructions are from the same buildvector.
4022 static bool areTwoInsertFromSameBuildVector(
4023 InsertElementInst *VU, InsertElementInst *V,
4024 function_ref<Value *(InsertElementInst *)> GetBaseOperand) {
4025 // Instructions must be from the same basic blocks.
4026 if (VU->getParent() != V->getParent())
4027 return false;
4028 // Checks if 2 insertelements are from the same buildvector.
4029 if (VU->getType() != V->getType())
4030 return false;
4031 // Multiple used inserts are separate nodes.
4032 if (!VU->hasOneUse() && !V->hasOneUse())
4033 return false;
4034 auto *IE1 = VU;
4035 auto *IE2 = V;
4036 std::optional<unsigned> Idx1 = getInsertIndex(IE1);
4037 std::optional<unsigned> Idx2 = getInsertIndex(IE2);
4038 if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4039 return false;
4040 // Go through the vector operand of insertelement instructions trying to find
4041 // either VU as the original vector for IE2 or V as the original vector for
4042 // IE1.
4043 SmallBitVector ReusedIdx(
4044 cast<VectorType>(VU->getType())->getElementCount().getKnownMinValue());
4045 bool IsReusedIdx = false;
4046 do {
4047 if (IE2 == VU && !IE1)
4048 return VU->hasOneUse();
4049 if (IE1 == V && !IE2)
4050 return V->hasOneUse();
4051 if (IE1 && IE1 != V) {
4052 unsigned Idx1 = getInsertIndex(IE1).value_or(*Idx2);
4053 IsReusedIdx |= ReusedIdx.test(Idx1);
4054 ReusedIdx.set(Idx1);
4055 if ((IE1 != VU && !IE1->hasOneUse()) || IsReusedIdx)
4056 IE1 = nullptr;
4057 else
4058 IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1));
4060 if (IE2 && IE2 != VU) {
4061 unsigned Idx2 = getInsertIndex(IE2).value_or(*Idx1);
4062 IsReusedIdx |= ReusedIdx.test(Idx2);
4063 ReusedIdx.set(Idx2);
4064 if ((IE2 != V && !IE2->hasOneUse()) || IsReusedIdx)
4065 IE2 = nullptr;
4066 else
4067 IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2));
4069 } while (!IsReusedIdx && (IE1 || IE2));
4070 return false;
4073 std::optional<BoUpSLP::OrdersType>
4074 BoUpSLP::getReorderingData(const TreeEntry &TE, bool TopToBottom) {
4075 // No need to reorder if need to shuffle reuses, still need to shuffle the
4076 // node.
4077 if (!TE.ReuseShuffleIndices.empty()) {
4078 // Check if reuse shuffle indices can be improved by reordering.
4079 // For this, check that reuse mask is "clustered", i.e. each scalar values
4080 // is used once in each submask of size <number_of_scalars>.
4081 // Example: 4 scalar values.
4082 // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered.
4083 // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because
4084 // element 3 is used twice in the second submask.
4085 unsigned Sz = TE.Scalars.size();
4086 if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
4087 Sz))
4088 return std::nullopt;
4089 unsigned VF = TE.getVectorFactor();
4090 // Try build correct order for extractelement instructions.
4091 SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(),
4092 TE.ReuseShuffleIndices.end());
4093 if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() &&
4094 all_of(TE.Scalars, [Sz](Value *V) {
4095 std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V));
4096 return Idx && *Idx < Sz;
4097 })) {
4098 SmallVector<int> ReorderMask(Sz, PoisonMaskElem);
4099 if (TE.ReorderIndices.empty())
4100 std::iota(ReorderMask.begin(), ReorderMask.end(), 0);
4101 else
4102 inversePermutation(TE.ReorderIndices, ReorderMask);
4103 for (unsigned I = 0; I < VF; ++I) {
4104 int &Idx = ReusedMask[I];
4105 if (Idx == PoisonMaskElem)
4106 continue;
4107 Value *V = TE.Scalars[ReorderMask[Idx]];
4108 std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V));
4109 Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI));
4112 // Build the order of the VF size, need to reorder reuses shuffles, they are
4113 // always of VF size.
4114 OrdersType ResOrder(VF);
4115 std::iota(ResOrder.begin(), ResOrder.end(), 0);
4116 auto *It = ResOrder.begin();
4117 for (unsigned K = 0; K < VF; K += Sz) {
4118 OrdersType CurrentOrder(TE.ReorderIndices);
4119 SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)};
4120 if (SubMask.front() == PoisonMaskElem)
4121 std::iota(SubMask.begin(), SubMask.end(), 0);
4122 reorderOrder(CurrentOrder, SubMask);
4123 transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; });
4124 std::advance(It, Sz);
4126 if (all_of(enumerate(ResOrder),
4127 [](const auto &Data) { return Data.index() == Data.value(); }))
4128 return std::nullopt; // No need to reorder.
4129 return std::move(ResOrder);
4131 if ((TE.State == TreeEntry::Vectorize ||
4132 TE.State == TreeEntry::PossibleStridedVectorize) &&
4133 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
4134 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
4135 !TE.isAltShuffle())
4136 return TE.ReorderIndices;
4137 if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) {
4138 auto PHICompare = [&](unsigned I1, unsigned I2) {
4139 Value *V1 = TE.Scalars[I1];
4140 Value *V2 = TE.Scalars[I2];
4141 if (V1 == V2)
4142 return false;
4143 if (!V1->hasOneUse() || !V2->hasOneUse())
4144 return false;
4145 auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin());
4146 auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin());
4147 if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1))
4148 if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) {
4149 if (!areTwoInsertFromSameBuildVector(
4150 IE1, IE2,
4151 [](InsertElementInst *II) { return II->getOperand(0); }))
4152 return false;
4153 std::optional<unsigned> Idx1 = getInsertIndex(IE1);
4154 std::optional<unsigned> Idx2 = getInsertIndex(IE2);
4155 if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4156 return false;
4157 return *Idx1 < *Idx2;
4159 if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1))
4160 if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) {
4161 if (EE1->getOperand(0) != EE2->getOperand(0))
4162 return false;
4163 std::optional<unsigned> Idx1 = getExtractIndex(EE1);
4164 std::optional<unsigned> Idx2 = getExtractIndex(EE2);
4165 if (Idx1 == std::nullopt || Idx2 == std::nullopt)
4166 return false;
4167 return *Idx1 < *Idx2;
4169 return false;
4171 auto IsIdentityOrder = [](const OrdersType &Order) {
4172 for (unsigned Idx : seq<unsigned>(0, Order.size()))
4173 if (Idx != Order[Idx])
4174 return false;
4175 return true;
4177 if (!TE.ReorderIndices.empty())
4178 return TE.ReorderIndices;
4179 DenseMap<unsigned, unsigned> PhiToId;
4180 SmallVector<unsigned> Phis(TE.Scalars.size());
4181 std::iota(Phis.begin(), Phis.end(), 0);
4182 OrdersType ResOrder(TE.Scalars.size());
4183 for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id)
4184 PhiToId[Id] = Id;
4185 stable_sort(Phis, PHICompare);
4186 for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id)
4187 ResOrder[Id] = PhiToId[Phis[Id]];
4188 if (IsIdentityOrder(ResOrder))
4189 return std::nullopt; // No need to reorder.
4190 return std::move(ResOrder);
4192 if (TE.State == TreeEntry::NeedToGather) {
4193 // TODO: add analysis of other gather nodes with extractelement
4194 // instructions and other values/instructions, not only undefs.
4195 if (((TE.getOpcode() == Instruction::ExtractElement &&
4196 !TE.isAltShuffle()) ||
4197 (all_of(TE.Scalars,
4198 [](Value *V) {
4199 return isa<UndefValue, ExtractElementInst>(V);
4200 }) &&
4201 any_of(TE.Scalars,
4202 [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
4203 all_of(TE.Scalars,
4204 [](Value *V) {
4205 auto *EE = dyn_cast<ExtractElementInst>(V);
4206 return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
4207 }) &&
4208 allSameType(TE.Scalars)) {
4209 // Check that gather of extractelements can be represented as
4210 // just a shuffle of a single vector.
4211 OrdersType CurrentOrder;
4212 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder,
4213 /*ResizeAllowed=*/true);
4214 if (Reuse || !CurrentOrder.empty()) {
4215 if (!CurrentOrder.empty())
4216 fixupOrderingIndices(CurrentOrder);
4217 return std::move(CurrentOrder);
4220 // If the gather node is <undef, v, .., poison> and
4221 // insertelement poison, v, 0 [+ permute]
4222 // is cheaper than
4223 // insertelement poison, v, n - try to reorder.
4224 // If rotating the whole graph, exclude the permute cost, the whole graph
4225 // might be transformed.
4226 int Sz = TE.Scalars.size();
4227 if (isSplat(TE.Scalars) && !allConstant(TE.Scalars) &&
4228 count_if(TE.Scalars, UndefValue::classof) == Sz - 1) {
4229 const auto *It =
4230 find_if(TE.Scalars, [](Value *V) { return !isConstant(V); });
4231 if (It == TE.Scalars.begin())
4232 return OrdersType();
4233 auto *Ty = FixedVectorType::get(TE.Scalars.front()->getType(), Sz);
4234 if (It != TE.Scalars.end()) {
4235 OrdersType Order(Sz, Sz);
4236 unsigned Idx = std::distance(TE.Scalars.begin(), It);
4237 Order[Idx] = 0;
4238 fixupOrderingIndices(Order);
4239 SmallVector<int> Mask;
4240 inversePermutation(Order, Mask);
4241 InstructionCost PermuteCost =
4242 TopToBottom
4244 : TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, Mask);
4245 InstructionCost InsertFirstCost = TTI->getVectorInstrCost(
4246 Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, 0,
4247 PoisonValue::get(Ty), *It);
4248 InstructionCost InsertIdxCost = TTI->getVectorInstrCost(
4249 Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, Idx,
4250 PoisonValue::get(Ty), *It);
4251 if (InsertFirstCost + PermuteCost < InsertIdxCost)
4252 return std::move(Order);
4255 if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
4256 return CurrentOrder;
4257 if (TE.Scalars.size() >= 4)
4258 if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
4259 return Order;
4261 return std::nullopt;
4264 /// Checks if the given mask is a "clustered" mask with the same clusters of
4265 /// size \p Sz, which are not identity submasks.
4266 static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask,
4267 unsigned Sz) {
4268 ArrayRef<int> FirstCluster = Mask.slice(0, Sz);
4269 if (ShuffleVectorInst::isIdentityMask(FirstCluster, Sz))
4270 return false;
4271 for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) {
4272 ArrayRef<int> Cluster = Mask.slice(I, Sz);
4273 if (Cluster != FirstCluster)
4274 return false;
4276 return true;
4279 void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const {
4280 // Reorder reuses mask.
4281 reorderReuses(TE.ReuseShuffleIndices, Mask);
4282 const unsigned Sz = TE.Scalars.size();
4283 // For vectorized and non-clustered reused no need to do anything else.
4284 if (TE.State != TreeEntry::NeedToGather ||
4285 !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
4286 Sz) ||
4287 !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz))
4288 return;
4289 SmallVector<int> NewMask;
4290 inversePermutation(TE.ReorderIndices, NewMask);
4291 addMask(NewMask, TE.ReuseShuffleIndices);
4292 // Clear reorder since it is going to be applied to the new mask.
4293 TE.ReorderIndices.clear();
4294 // Try to improve gathered nodes with clustered reuses, if possible.
4295 ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz);
4296 SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end());
4297 inversePermutation(NewOrder, NewMask);
4298 reorderScalars(TE.Scalars, NewMask);
4299 // Fill the reuses mask with the identity submasks.
4300 for (auto *It = TE.ReuseShuffleIndices.begin(),
4301 *End = TE.ReuseShuffleIndices.end();
4302 It != End; std::advance(It, Sz))
4303 std::iota(It, std::next(It, Sz), 0);
4306 void BoUpSLP::reorderTopToBottom() {
4307 // Maps VF to the graph nodes.
4308 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
4309 // ExtractElement gather nodes which can be vectorized and need to handle
4310 // their ordering.
4311 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4313 // Phi nodes can have preferred ordering based on their result users
4314 DenseMap<const TreeEntry *, OrdersType> PhisToOrders;
4316 // AltShuffles can also have a preferred ordering that leads to fewer
4317 // instructions, e.g., the addsub instruction in x86.
4318 DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
4320 // Maps a TreeEntry to the reorder indices of external users.
4321 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
4322 ExternalUserReorderMap;
4323 // FIXME: Workaround for syntax error reported by MSVC buildbots.
4324 TargetTransformInfo &TTIRef = *TTI;
4325 // Find all reorderable nodes with the given VF.
4326 // Currently the are vectorized stores,loads,extracts + some gathering of
4327 // extracts.
4328 for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
4329 &GathersToOrders, &ExternalUserReorderMap,
4330 &AltShufflesToOrders, &PhisToOrders](
4331 const std::unique_ptr<TreeEntry> &TE) {
4332 // Look for external users that will probably be vectorized.
4333 SmallVector<OrdersType, 1> ExternalUserReorderIndices =
4334 findExternalStoreUsersReorderIndices(TE.get());
4335 if (!ExternalUserReorderIndices.empty()) {
4336 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4337 ExternalUserReorderMap.try_emplace(TE.get(),
4338 std::move(ExternalUserReorderIndices));
4341 // Patterns like [fadd,fsub] can be combined into a single instruction in
4342 // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
4343 // to take into account their order when looking for the most used order.
4344 if (TE->isAltShuffle()) {
4345 VectorType *VecTy =
4346 FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
4347 unsigned Opcode0 = TE->getOpcode();
4348 unsigned Opcode1 = TE->getAltOpcode();
4349 // The opcode mask selects between the two opcodes.
4350 SmallBitVector OpcodeMask(TE->Scalars.size(), false);
4351 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
4352 if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
4353 OpcodeMask.set(Lane);
4354 // If this pattern is supported by the target then we consider the order.
4355 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
4356 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4357 AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
4359 // TODO: Check the reverse order too.
4362 if (std::optional<OrdersType> CurrentOrder =
4363 getReorderingData(*TE, /*TopToBottom=*/true)) {
4364 // Do not include ordering for nodes used in the alt opcode vectorization,
4365 // better to reorder them during bottom-to-top stage. If follow the order
4366 // here, it causes reordering of the whole graph though actually it is
4367 // profitable just to reorder the subgraph that starts from the alternate
4368 // opcode vectorization node. Such nodes already end-up with the shuffle
4369 // instruction and it is just enough to change this shuffle rather than
4370 // rotate the scalars for the whole graph.
4371 unsigned Cnt = 0;
4372 const TreeEntry *UserTE = TE.get();
4373 while (UserTE && Cnt < RecursionMaxDepth) {
4374 if (UserTE->UserTreeIndices.size() != 1)
4375 break;
4376 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
4377 return EI.UserTE->State == TreeEntry::Vectorize &&
4378 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
4380 return;
4381 UserTE = UserTE->UserTreeIndices.back().UserTE;
4382 ++Cnt;
4384 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4385 if (!(TE->State == TreeEntry::Vectorize ||
4386 TE->State == TreeEntry::PossibleStridedVectorize) ||
4387 !TE->ReuseShuffleIndices.empty())
4388 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4389 if (TE->State == TreeEntry::Vectorize &&
4390 TE->getOpcode() == Instruction::PHI)
4391 PhisToOrders.try_emplace(TE.get(), *CurrentOrder);
4395 // Reorder the graph nodes according to their vectorization factor.
4396 for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1;
4397 VF /= 2) {
4398 auto It = VFToOrderedEntries.find(VF);
4399 if (It == VFToOrderedEntries.end())
4400 continue;
4401 // Try to find the most profitable order. We just are looking for the most
4402 // used order and reorder scalar elements in the nodes according to this
4403 // mostly used order.
4404 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
4405 // All operands are reordered and used only in this node - propagate the
4406 // most used order to the user node.
4407 MapVector<OrdersType, unsigned,
4408 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4409 OrdersUses;
4410 // Last chance orders - scatter vectorize. Try to use their orders if no
4411 // other orders or the order is counted already.
4412 SmallVector<OrdersType> StridedVectorizeOrders;
4413 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4414 for (const TreeEntry *OpTE : OrderedEntries) {
4415 // No need to reorder this nodes, still need to extend and to use shuffle,
4416 // just need to merge reordering shuffle and the reuse shuffle.
4417 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4418 continue;
4419 // Count number of orders uses.
4420 const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders,
4421 &PhisToOrders]() -> const OrdersType & {
4422 if (OpTE->State == TreeEntry::NeedToGather ||
4423 !OpTE->ReuseShuffleIndices.empty()) {
4424 auto It = GathersToOrders.find(OpTE);
4425 if (It != GathersToOrders.end())
4426 return It->second;
4428 if (OpTE->isAltShuffle()) {
4429 auto It = AltShufflesToOrders.find(OpTE);
4430 if (It != AltShufflesToOrders.end())
4431 return It->second;
4433 if (OpTE->State == TreeEntry::Vectorize &&
4434 OpTE->getOpcode() == Instruction::PHI) {
4435 auto It = PhisToOrders.find(OpTE);
4436 if (It != PhisToOrders.end())
4437 return It->second;
4439 return OpTE->ReorderIndices;
4440 }();
4441 // First consider the order of the external scalar users.
4442 auto It = ExternalUserReorderMap.find(OpTE);
4443 if (It != ExternalUserReorderMap.end()) {
4444 const auto &ExternalUserReorderIndices = It->second;
4445 // If the OpTE vector factor != number of scalars - use natural order,
4446 // it is an attempt to reorder node with reused scalars but with
4447 // external uses.
4448 if (OpTE->getVectorFactor() != OpTE->Scalars.size()) {
4449 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
4450 ExternalUserReorderIndices.size();
4451 } else {
4452 for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
4453 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
4455 // No other useful reorder data in this entry.
4456 if (Order.empty())
4457 continue;
4459 // Postpone scatter orders.
4460 if (OpTE->State == TreeEntry::PossibleStridedVectorize) {
4461 StridedVectorizeOrders.push_back(Order);
4462 continue;
4464 // Stores actually store the mask, not the order, need to invert.
4465 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4466 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4467 SmallVector<int> Mask;
4468 inversePermutation(Order, Mask);
4469 unsigned E = Order.size();
4470 OrdersType CurrentOrder(E, E);
4471 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4472 return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx);
4474 fixupOrderingIndices(CurrentOrder);
4475 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
4476 } else {
4477 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
4480 // Set order of the user node.
4481 if (OrdersUses.empty()) {
4482 if (StridedVectorizeOrders.empty())
4483 continue;
4484 // Add (potentially!) strided vectorize orders.
4485 for (OrdersType &Order : StridedVectorizeOrders)
4486 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
4487 } else {
4488 // Account (potentially!) strided vectorize orders only if it was used
4489 // already.
4490 for (OrdersType &Order : StridedVectorizeOrders) {
4491 auto *It = OrdersUses.find(Order);
4492 if (It != OrdersUses.end())
4493 ++It->second;
4496 // Choose the most used order.
4497 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4498 unsigned Cnt = OrdersUses.front().second;
4499 for (const auto &Pair : drop_begin(OrdersUses)) {
4500 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4501 BestOrder = Pair.first;
4502 Cnt = Pair.second;
4505 // Set order of the user node.
4506 if (BestOrder.empty())
4507 continue;
4508 SmallVector<int> Mask;
4509 inversePermutation(BestOrder, Mask);
4510 SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem);
4511 unsigned E = BestOrder.size();
4512 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4513 return I < E ? static_cast<int>(I) : PoisonMaskElem;
4515 // Do an actual reordering, if profitable.
4516 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
4517 // Just do the reordering for the nodes with the given VF.
4518 if (TE->Scalars.size() != VF) {
4519 if (TE->ReuseShuffleIndices.size() == VF) {
4520 // Need to reorder the reuses masks of the operands with smaller VF to
4521 // be able to find the match between the graph nodes and scalar
4522 // operands of the given node during vectorization/cost estimation.
4523 assert(all_of(TE->UserTreeIndices,
4524 [VF, &TE](const EdgeInfo &EI) {
4525 return EI.UserTE->Scalars.size() == VF ||
4526 EI.UserTE->Scalars.size() ==
4527 TE->Scalars.size();
4528 }) &&
4529 "All users must be of VF size.");
4530 // Update ordering of the operands with the smaller VF than the given
4531 // one.
4532 reorderNodeWithReuses(*TE, Mask);
4534 continue;
4536 if ((TE->State == TreeEntry::Vectorize ||
4537 TE->State == TreeEntry::PossibleStridedVectorize) &&
4538 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
4539 InsertElementInst>(TE->getMainOp()) &&
4540 !TE->isAltShuffle()) {
4541 // Build correct orders for extract{element,value}, loads and
4542 // stores.
4543 reorderOrder(TE->ReorderIndices, Mask);
4544 if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
4545 TE->reorderOperands(Mask);
4546 } else {
4547 // Reorder the node and its operands.
4548 TE->reorderOperands(Mask);
4549 assert(TE->ReorderIndices.empty() &&
4550 "Expected empty reorder sequence.");
4551 reorderScalars(TE->Scalars, Mask);
4553 if (!TE->ReuseShuffleIndices.empty()) {
4554 // Apply reversed order to keep the original ordering of the reused
4555 // elements to avoid extra reorder indices shuffling.
4556 OrdersType CurrentOrder;
4557 reorderOrder(CurrentOrder, MaskOrder);
4558 SmallVector<int> NewReuses;
4559 inversePermutation(CurrentOrder, NewReuses);
4560 addMask(NewReuses, TE->ReuseShuffleIndices);
4561 TE->ReuseShuffleIndices.swap(NewReuses);
4567 bool BoUpSLP::canReorderOperands(
4568 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
4569 ArrayRef<TreeEntry *> ReorderableGathers,
4570 SmallVectorImpl<TreeEntry *> &GatherOps) {
4571 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
4572 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
4573 return OpData.first == I &&
4574 OpData.second->State == TreeEntry::Vectorize;
4576 continue;
4577 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
4578 // FIXME: Do not reorder (possible!) strided vectorized nodes, they
4579 // require reordering of the operands, which is not implemented yet.
4580 if (TE->State == TreeEntry::PossibleStridedVectorize)
4581 return false;
4582 // Do not reorder if operand node is used by many user nodes.
4583 if (any_of(TE->UserTreeIndices,
4584 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
4585 return false;
4586 // Add the node to the list of the ordered nodes with the identity
4587 // order.
4588 Edges.emplace_back(I, TE);
4589 // Add ScatterVectorize nodes to the list of operands, where just
4590 // reordering of the scalars is required. Similar to the gathers, so
4591 // simply add to the list of gathered ops.
4592 // If there are reused scalars, process this node as a regular vectorize
4593 // node, just reorder reuses mask.
4594 if (TE->State != TreeEntry::Vectorize &&
4595 TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty())
4596 GatherOps.push_back(TE);
4597 continue;
4599 TreeEntry *Gather = nullptr;
4600 if (count_if(ReorderableGathers,
4601 [&Gather, UserTE, I](TreeEntry *TE) {
4602 assert(TE->State != TreeEntry::Vectorize &&
4603 "Only non-vectorized nodes are expected.");
4604 if (any_of(TE->UserTreeIndices,
4605 [UserTE, I](const EdgeInfo &EI) {
4606 return EI.UserTE == UserTE && EI.EdgeIdx == I;
4607 })) {
4608 assert(TE->isSame(UserTE->getOperand(I)) &&
4609 "Operand entry does not match operands.");
4610 Gather = TE;
4611 return true;
4613 return false;
4614 }) > 1 &&
4615 !allConstant(UserTE->getOperand(I)))
4616 return false;
4617 if (Gather)
4618 GatherOps.push_back(Gather);
4620 return true;
4623 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
4624 SetVector<TreeEntry *> OrderedEntries;
4625 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4626 // Find all reorderable leaf nodes with the given VF.
4627 // Currently the are vectorized loads,extracts without alternate operands +
4628 // some gathering of extracts.
4629 SmallVector<TreeEntry *> NonVectorized;
4630 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
4631 if (TE->State != TreeEntry::Vectorize &&
4632 TE->State != TreeEntry::PossibleStridedVectorize)
4633 NonVectorized.push_back(TE.get());
4634 if (std::optional<OrdersType> CurrentOrder =
4635 getReorderingData(*TE, /*TopToBottom=*/false)) {
4636 OrderedEntries.insert(TE.get());
4637 if (!(TE->State == TreeEntry::Vectorize ||
4638 TE->State == TreeEntry::PossibleStridedVectorize) ||
4639 !TE->ReuseShuffleIndices.empty())
4640 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4644 // 1. Propagate order to the graph nodes, which use only reordered nodes.
4645 // I.e., if the node has operands, that are reordered, try to make at least
4646 // one operand order in the natural order and reorder others + reorder the
4647 // user node itself.
4648 SmallPtrSet<const TreeEntry *, 4> Visited;
4649 while (!OrderedEntries.empty()) {
4650 // 1. Filter out only reordered nodes.
4651 // 2. If the entry has multiple uses - skip it and jump to the next node.
4652 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
4653 SmallVector<TreeEntry *> Filtered;
4654 for (TreeEntry *TE : OrderedEntries) {
4655 if (!(TE->State == TreeEntry::Vectorize ||
4656 TE->State == TreeEntry::PossibleStridedVectorize ||
4657 (TE->State == TreeEntry::NeedToGather &&
4658 GathersToOrders.count(TE))) ||
4659 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4660 !all_of(drop_begin(TE->UserTreeIndices),
4661 [TE](const EdgeInfo &EI) {
4662 return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4663 }) ||
4664 !Visited.insert(TE).second) {
4665 Filtered.push_back(TE);
4666 continue;
4668 // Build a map between user nodes and their operands order to speedup
4669 // search. The graph currently does not provide this dependency directly.
4670 for (EdgeInfo &EI : TE->UserTreeIndices) {
4671 TreeEntry *UserTE = EI.UserTE;
4672 auto It = Users.find(UserTE);
4673 if (It == Users.end())
4674 It = Users.insert({UserTE, {}}).first;
4675 It->second.emplace_back(EI.EdgeIdx, TE);
4678 // Erase filtered entries.
4679 for (TreeEntry *TE : Filtered)
4680 OrderedEntries.remove(TE);
4681 SmallVector<
4682 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4683 UsersVec(Users.begin(), Users.end());
4684 sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4685 return Data1.first->Idx > Data2.first->Idx;
4687 for (auto &Data : UsersVec) {
4688 // Check that operands are used only in the User node.
4689 SmallVector<TreeEntry *> GatherOps;
4690 if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4691 GatherOps)) {
4692 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4693 OrderedEntries.remove(Op.second);
4694 continue;
4696 // All operands are reordered and used only in this node - propagate the
4697 // most used order to the user node.
4698 MapVector<OrdersType, unsigned,
4699 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4700 OrdersUses;
4701 // Last chance orders - scatter vectorize. Try to use their orders if no
4702 // other orders or the order is counted already.
4703 SmallVector<std::pair<OrdersType, unsigned>> StridedVectorizeOrders;
4704 // Do the analysis for each tree entry only once, otherwise the order of
4705 // the same node my be considered several times, though might be not
4706 // profitable.
4707 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4708 SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4709 for (const auto &Op : Data.second) {
4710 TreeEntry *OpTE = Op.second;
4711 if (!VisitedOps.insert(OpTE).second)
4712 continue;
4713 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4714 continue;
4715 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4716 if (OpTE->State == TreeEntry::NeedToGather ||
4717 !OpTE->ReuseShuffleIndices.empty())
4718 return GathersToOrders.find(OpTE)->second;
4719 return OpTE->ReorderIndices;
4720 }();
4721 unsigned NumOps = count_if(
4722 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4723 return P.second == OpTE;
4725 // Postpone scatter orders.
4726 if (OpTE->State == TreeEntry::PossibleStridedVectorize) {
4727 StridedVectorizeOrders.emplace_back(Order, NumOps);
4728 continue;
4730 // Stores actually store the mask, not the order, need to invert.
4731 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4732 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4733 SmallVector<int> Mask;
4734 inversePermutation(Order, Mask);
4735 unsigned E = Order.size();
4736 OrdersType CurrentOrder(E, E);
4737 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4738 return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx);
4740 fixupOrderingIndices(CurrentOrder);
4741 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4742 NumOps;
4743 } else {
4744 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4746 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4747 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4748 const TreeEntry *TE) {
4749 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4750 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4751 (IgnoreReorder && TE->Idx == 0))
4752 return true;
4753 if (TE->State == TreeEntry::NeedToGather) {
4754 auto It = GathersToOrders.find(TE);
4755 if (It != GathersToOrders.end())
4756 return !It->second.empty();
4757 return true;
4759 return false;
4761 for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4762 TreeEntry *UserTE = EI.UserTE;
4763 if (!VisitedUsers.insert(UserTE).second)
4764 continue;
4765 // May reorder user node if it requires reordering, has reused
4766 // scalars, is an alternate op vectorize node or its op nodes require
4767 // reordering.
4768 if (AllowsReordering(UserTE))
4769 continue;
4770 // Check if users allow reordering.
4771 // Currently look up just 1 level of operands to avoid increase of
4772 // the compile time.
4773 // Profitable to reorder if definitely more operands allow
4774 // reordering rather than those with natural order.
4775 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4776 if (static_cast<unsigned>(count_if(
4777 Ops, [UserTE, &AllowsReordering](
4778 const std::pair<unsigned, TreeEntry *> &Op) {
4779 return AllowsReordering(Op.second) &&
4780 all_of(Op.second->UserTreeIndices,
4781 [UserTE](const EdgeInfo &EI) {
4782 return EI.UserTE == UserTE;
4784 })) <= Ops.size() / 2)
4785 ++Res.first->second;
4788 // If no orders - skip current nodes and jump to the next one, if any.
4789 if (OrdersUses.empty()) {
4790 if (StridedVectorizeOrders.empty() ||
4791 (Data.first->ReorderIndices.empty() &&
4792 Data.first->ReuseShuffleIndices.empty() &&
4793 !(IgnoreReorder &&
4794 Data.first == VectorizableTree.front().get()))) {
4795 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4796 OrderedEntries.remove(Op.second);
4797 continue;
4799 // Add (potentially!) strided vectorize orders.
4800 for (std::pair<OrdersType, unsigned> &Pair : StridedVectorizeOrders)
4801 OrdersUses.insert(std::make_pair(Pair.first, 0)).first->second +=
4802 Pair.second;
4803 } else {
4804 // Account (potentially!) strided vectorize orders only if it was used
4805 // already.
4806 for (std::pair<OrdersType, unsigned> &Pair : StridedVectorizeOrders) {
4807 auto *It = OrdersUses.find(Pair.first);
4808 if (It != OrdersUses.end())
4809 It->second += Pair.second;
4812 // Choose the best order.
4813 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4814 unsigned Cnt = OrdersUses.front().second;
4815 for (const auto &Pair : drop_begin(OrdersUses)) {
4816 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4817 BestOrder = Pair.first;
4818 Cnt = Pair.second;
4821 // Set order of the user node (reordering of operands and user nodes).
4822 if (BestOrder.empty()) {
4823 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second)
4824 OrderedEntries.remove(Op.second);
4825 continue;
4827 // Erase operands from OrderedEntries list and adjust their orders.
4828 VisitedOps.clear();
4829 SmallVector<int> Mask;
4830 inversePermutation(BestOrder, Mask);
4831 SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem);
4832 unsigned E = BestOrder.size();
4833 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4834 return I < E ? static_cast<int>(I) : PoisonMaskElem;
4836 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4837 TreeEntry *TE = Op.second;
4838 OrderedEntries.remove(TE);
4839 if (!VisitedOps.insert(TE).second)
4840 continue;
4841 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4842 reorderNodeWithReuses(*TE, Mask);
4843 continue;
4845 // Gathers are processed separately.
4846 if (TE->State != TreeEntry::Vectorize &&
4847 TE->State != TreeEntry::PossibleStridedVectorize &&
4848 (TE->State != TreeEntry::ScatterVectorize ||
4849 TE->ReorderIndices.empty()))
4850 continue;
4851 assert((BestOrder.size() == TE->ReorderIndices.size() ||
4852 TE->ReorderIndices.empty()) &&
4853 "Non-matching sizes of user/operand entries.");
4854 reorderOrder(TE->ReorderIndices, Mask);
4855 if (IgnoreReorder && TE == VectorizableTree.front().get())
4856 IgnoreReorder = false;
4858 // For gathers just need to reorder its scalars.
4859 for (TreeEntry *Gather : GatherOps) {
4860 assert(Gather->ReorderIndices.empty() &&
4861 "Unexpected reordering of gathers.");
4862 if (!Gather->ReuseShuffleIndices.empty()) {
4863 // Just reorder reuses indices.
4864 reorderReuses(Gather->ReuseShuffleIndices, Mask);
4865 continue;
4867 reorderScalars(Gather->Scalars, Mask);
4868 OrderedEntries.remove(Gather);
4870 // Reorder operands of the user node and set the ordering for the user
4871 // node itself.
4872 if (Data.first->State != TreeEntry::Vectorize ||
4873 !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4874 Data.first->getMainOp()) ||
4875 Data.first->isAltShuffle())
4876 Data.first->reorderOperands(Mask);
4877 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4878 Data.first->isAltShuffle() ||
4879 Data.first->State == TreeEntry::PossibleStridedVectorize) {
4880 reorderScalars(Data.first->Scalars, Mask);
4881 reorderOrder(Data.first->ReorderIndices, MaskOrder);
4882 if (Data.first->ReuseShuffleIndices.empty() &&
4883 !Data.first->ReorderIndices.empty() &&
4884 !Data.first->isAltShuffle()) {
4885 // Insert user node to the list to try to sink reordering deeper in
4886 // the graph.
4887 OrderedEntries.insert(Data.first);
4889 } else {
4890 reorderOrder(Data.first->ReorderIndices, Mask);
4894 // If the reordering is unnecessary, just remove the reorder.
4895 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4896 VectorizableTree.front()->ReuseShuffleIndices.empty())
4897 VectorizableTree.front()->ReorderIndices.clear();
4900 void BoUpSLP::buildExternalUses(
4901 const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4902 // Collect the values that we need to extract from the tree.
4903 for (auto &TEPtr : VectorizableTree) {
4904 TreeEntry *Entry = TEPtr.get();
4906 // No need to handle users of gathered values.
4907 if (Entry->State == TreeEntry::NeedToGather)
4908 continue;
4910 // For each lane:
4911 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4912 Value *Scalar = Entry->Scalars[Lane];
4913 if (!isa<Instruction>(Scalar))
4914 continue;
4915 int FoundLane = Entry->findLaneForValue(Scalar);
4917 // Check if the scalar is externally used as an extra arg.
4918 const auto *ExtI = ExternallyUsedValues.find(Scalar);
4919 if (ExtI != ExternallyUsedValues.end()) {
4920 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4921 << Lane << " from " << *Scalar << ".\n");
4922 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4924 for (User *U : Scalar->users()) {
4925 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4927 Instruction *UserInst = dyn_cast<Instruction>(U);
4928 if (!UserInst || isDeleted(UserInst))
4929 continue;
4931 // Ignore users in the user ignore list.
4932 if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4933 continue;
4935 // Skip in-tree scalars that become vectors
4936 if (TreeEntry *UseEntry = getTreeEntry(U)) {
4937 // Some in-tree scalars will remain as scalar in vectorized
4938 // instructions. If that is the case, the one in FoundLane will
4939 // be used.
4940 if (UseEntry->State == TreeEntry::ScatterVectorize ||
4941 UseEntry->State == TreeEntry::PossibleStridedVectorize ||
4942 !doesInTreeUserNeedToExtract(
4943 Scalar, cast<Instruction>(UseEntry->Scalars.front()), TLI)) {
4944 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4945 << ".\n");
4946 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4947 continue;
4949 U = nullptr;
4952 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *UserInst
4953 << " from lane " << Lane << " from " << *Scalar
4954 << ".\n");
4955 ExternalUses.emplace_back(Scalar, U, FoundLane);
4961 DenseMap<Value *, SmallVector<StoreInst *>>
4962 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4963 DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap;
4964 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4965 Value *V = TE->Scalars[Lane];
4966 // To save compilation time we don't visit if we have too many users.
4967 static constexpr unsigned UsersLimit = 4;
4968 if (V->hasNUsesOrMore(UsersLimit))
4969 break;
4971 // Collect stores per pointer object.
4972 for (User *U : V->users()) {
4973 auto *SI = dyn_cast<StoreInst>(U);
4974 if (SI == nullptr || !SI->isSimple() ||
4975 !isValidElementType(SI->getValueOperand()->getType()))
4976 continue;
4977 // Skip entry if already
4978 if (getTreeEntry(U))
4979 continue;
4981 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4982 auto &StoresVec = PtrToStoresMap[Ptr];
4983 // For now just keep one store per pointer object per lane.
4984 // TODO: Extend this to support multiple stores per pointer per lane
4985 if (StoresVec.size() > Lane)
4986 continue;
4987 // Skip if in different BBs.
4988 if (!StoresVec.empty() &&
4989 SI->getParent() != StoresVec.back()->getParent())
4990 continue;
4991 // Make sure that the stores are of the same type.
4992 if (!StoresVec.empty() &&
4993 SI->getValueOperand()->getType() !=
4994 StoresVec.back()->getValueOperand()->getType())
4995 continue;
4996 StoresVec.push_back(SI);
4999 return PtrToStoresMap;
5002 bool BoUpSLP::canFormVector(ArrayRef<StoreInst *> StoresVec,
5003 OrdersType &ReorderIndices) const {
5004 // We check whether the stores in StoreVec can form a vector by sorting them
5005 // and checking whether they are consecutive.
5007 // To avoid calling getPointersDiff() while sorting we create a vector of
5008 // pairs {store, offset from first} and sort this instead.
5009 SmallVector<std::pair<StoreInst *, int>> StoreOffsetVec(StoresVec.size());
5010 StoreInst *S0 = StoresVec[0];
5011 StoreOffsetVec[0] = {S0, 0};
5012 Type *S0Ty = S0->getValueOperand()->getType();
5013 Value *S0Ptr = S0->getPointerOperand();
5014 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
5015 StoreInst *SI = StoresVec[Idx];
5016 std::optional<int> Diff =
5017 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
5018 SI->getPointerOperand(), *DL, *SE,
5019 /*StrictCheck=*/true);
5020 // We failed to compare the pointers so just abandon this StoresVec.
5021 if (!Diff)
5022 return false;
5023 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
5026 // Sort the vector based on the pointers. We create a copy because we may
5027 // need the original later for calculating the reorder (shuffle) indices.
5028 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
5029 const std::pair<StoreInst *, int> &Pair2) {
5030 int Offset1 = Pair1.second;
5031 int Offset2 = Pair2.second;
5032 return Offset1 < Offset2;
5035 // Check if the stores are consecutive by checking if their difference is 1.
5036 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
5037 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx - 1].second + 1)
5038 return false;
5040 // Calculate the shuffle indices according to their offset against the sorted
5041 // StoreOffsetVec.
5042 ReorderIndices.reserve(StoresVec.size());
5043 for (StoreInst *SI : StoresVec) {
5044 unsigned Idx = find_if(StoreOffsetVec,
5045 [SI](const std::pair<StoreInst *, int> &Pair) {
5046 return Pair.first == SI;
5047 }) -
5048 StoreOffsetVec.begin();
5049 ReorderIndices.push_back(Idx);
5051 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
5052 // reorderTopToBottom() and reorderBottomToTop(), so we are following the
5053 // same convention here.
5054 auto IsIdentityOrder = [](const OrdersType &Order) {
5055 for (unsigned Idx : seq<unsigned>(0, Order.size()))
5056 if (Idx != Order[Idx])
5057 return false;
5058 return true;
5060 if (IsIdentityOrder(ReorderIndices))
5061 ReorderIndices.clear();
5063 return true;
5066 #ifndef NDEBUG
5067 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
5068 for (unsigned Idx : Order)
5069 dbgs() << Idx << ", ";
5070 dbgs() << "\n";
5072 #endif
5074 SmallVector<BoUpSLP::OrdersType, 1>
5075 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
5076 unsigned NumLanes = TE->Scalars.size();
5078 DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap =
5079 collectUserStores(TE);
5081 // Holds the reorder indices for each candidate store vector that is a user of
5082 // the current TreeEntry.
5083 SmallVector<OrdersType, 1> ExternalReorderIndices;
5085 // Now inspect the stores collected per pointer and look for vectorization
5086 // candidates. For each candidate calculate the reorder index vector and push
5087 // it into `ExternalReorderIndices`
5088 for (const auto &Pair : PtrToStoresMap) {
5089 auto &StoresVec = Pair.second;
5090 // If we have fewer than NumLanes stores, then we can't form a vector.
5091 if (StoresVec.size() != NumLanes)
5092 continue;
5094 // If the stores are not consecutive then abandon this StoresVec.
5095 OrdersType ReorderIndices;
5096 if (!canFormVector(StoresVec, ReorderIndices))
5097 continue;
5099 // We now know that the scalars in StoresVec can form a vector instruction,
5100 // so set the reorder indices.
5101 ExternalReorderIndices.push_back(ReorderIndices);
5103 return ExternalReorderIndices;
5106 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
5107 const SmallDenseSet<Value *> &UserIgnoreLst) {
5108 deleteTree();
5109 UserIgnoreList = &UserIgnoreLst;
5110 if (!allSameType(Roots))
5111 return;
5112 buildTree_rec(Roots, 0, EdgeInfo());
5115 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
5116 deleteTree();
5117 if (!allSameType(Roots))
5118 return;
5119 buildTree_rec(Roots, 0, EdgeInfo());
5122 /// \return true if the specified list of values has only one instruction that
5123 /// requires scheduling, false otherwise.
5124 #ifndef NDEBUG
5125 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
5126 Value *NeedsScheduling = nullptr;
5127 for (Value *V : VL) {
5128 if (doesNotNeedToBeScheduled(V))
5129 continue;
5130 if (!NeedsScheduling) {
5131 NeedsScheduling = V;
5132 continue;
5134 return false;
5136 return NeedsScheduling;
5138 #endif
5140 /// Generates key/subkey pair for the given value to provide effective sorting
5141 /// of the values and better detection of the vectorizable values sequences. The
5142 /// keys/subkeys can be used for better sorting of the values themselves (keys)
5143 /// and in values subgroups (subkeys).
5144 static std::pair<size_t, size_t> generateKeySubkey(
5145 Value *V, const TargetLibraryInfo *TLI,
5146 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
5147 bool AllowAlternate) {
5148 hash_code Key = hash_value(V->getValueID() + 2);
5149 hash_code SubKey = hash_value(0);
5150 // Sort the loads by the distance between the pointers.
5151 if (auto *LI = dyn_cast<LoadInst>(V)) {
5152 Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key);
5153 if (LI->isSimple())
5154 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
5155 else
5156 Key = SubKey = hash_value(LI);
5157 } else if (isVectorLikeInstWithConstOps(V)) {
5158 // Sort extracts by the vector operands.
5159 if (isa<ExtractElementInst, UndefValue>(V))
5160 Key = hash_value(Value::UndefValueVal + 1);
5161 if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
5162 if (!isUndefVector(EI->getVectorOperand()).all() &&
5163 !isa<UndefValue>(EI->getIndexOperand()))
5164 SubKey = hash_value(EI->getVectorOperand());
5166 } else if (auto *I = dyn_cast<Instruction>(V)) {
5167 // Sort other instructions just by the opcodes except for CMPInst.
5168 // For CMP also sort by the predicate kind.
5169 if ((isa<BinaryOperator, CastInst>(I)) &&
5170 isValidForAlternation(I->getOpcode())) {
5171 if (AllowAlternate)
5172 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
5173 else
5174 Key = hash_combine(hash_value(I->getOpcode()), Key);
5175 SubKey = hash_combine(
5176 hash_value(I->getOpcode()), hash_value(I->getType()),
5177 hash_value(isa<BinaryOperator>(I)
5178 ? I->getType()
5179 : cast<CastInst>(I)->getOperand(0)->getType()));
5180 // For casts, look through the only operand to improve compile time.
5181 if (isa<CastInst>(I)) {
5182 std::pair<size_t, size_t> OpVals =
5183 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
5184 /*AllowAlternate=*/true);
5185 Key = hash_combine(OpVals.first, Key);
5186 SubKey = hash_combine(OpVals.first, SubKey);
5188 } else if (auto *CI = dyn_cast<CmpInst>(I)) {
5189 CmpInst::Predicate Pred = CI->getPredicate();
5190 if (CI->isCommutative())
5191 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
5192 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
5193 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
5194 hash_value(SwapPred),
5195 hash_value(CI->getOperand(0)->getType()));
5196 } else if (auto *Call = dyn_cast<CallInst>(I)) {
5197 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
5198 if (isTriviallyVectorizable(ID)) {
5199 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
5200 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
5201 SubKey = hash_combine(hash_value(I->getOpcode()),
5202 hash_value(Call->getCalledFunction()));
5203 } else {
5204 Key = hash_combine(hash_value(Call), Key);
5205 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
5207 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
5208 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
5209 hash_value(Op.Tag), SubKey);
5210 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
5211 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
5212 SubKey = hash_value(Gep->getPointerOperand());
5213 else
5214 SubKey = hash_value(Gep);
5215 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
5216 !isa<ConstantInt>(I->getOperand(1))) {
5217 // Do not try to vectorize instructions with potentially high cost.
5218 SubKey = hash_value(I);
5219 } else {
5220 SubKey = hash_value(I->getOpcode());
5222 Key = hash_combine(hash_value(I->getParent()), Key);
5224 return std::make_pair(Key, SubKey);
5227 /// Checks if the specified instruction \p I is an alternate operation for
5228 /// the given \p MainOp and \p AltOp instructions.
5229 static bool isAlternateInstruction(const Instruction *I,
5230 const Instruction *MainOp,
5231 const Instruction *AltOp,
5232 const TargetLibraryInfo &TLI);
5234 BoUpSLP::TreeEntry::EntryState BoUpSLP::getScalarsVectorizationState(
5235 InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE,
5236 OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps) const {
5237 assert(S.MainOp && "Expected instructions with same/alternate opcodes only.");
5239 unsigned ShuffleOrOp =
5240 S.isAltShuffle() ? (unsigned)Instruction::ShuffleVector : S.getOpcode();
5241 auto *VL0 = cast<Instruction>(S.OpValue);
5242 switch (ShuffleOrOp) {
5243 case Instruction::PHI: {
5244 // Check for terminator values (e.g. invoke).
5245 for (Value *V : VL)
5246 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
5247 Instruction *Term = dyn_cast<Instruction>(Incoming);
5248 if (Term && Term->isTerminator()) {
5249 LLVM_DEBUG(dbgs()
5250 << "SLP: Need to swizzle PHINodes (terminator use).\n");
5251 return TreeEntry::NeedToGather;
5255 return TreeEntry::Vectorize;
5257 case Instruction::ExtractValue:
5258 case Instruction::ExtractElement: {
5259 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
5260 if (Reuse || !CurrentOrder.empty())
5261 return TreeEntry::Vectorize;
5262 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
5263 return TreeEntry::NeedToGather;
5265 case Instruction::InsertElement: {
5266 // Check that we have a buildvector and not a shuffle of 2 or more
5267 // different vectors.
5268 ValueSet SourceVectors;
5269 for (Value *V : VL) {
5270 SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
5271 assert(getInsertIndex(V) != std::nullopt &&
5272 "Non-constant or undef index?");
5275 if (count_if(VL, [&SourceVectors](Value *V) {
5276 return !SourceVectors.contains(V);
5277 }) >= 2) {
5278 // Found 2nd source vector - cancel.
5279 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
5280 "different source vectors.\n");
5281 return TreeEntry::NeedToGather;
5284 return TreeEntry::Vectorize;
5286 case Instruction::Load: {
5287 // Check that a vectorized load would load the same memory as a scalar
5288 // load. For example, we don't want to vectorize loads that are smaller
5289 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
5290 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
5291 // from such a struct, we read/write packed bits disagreeing with the
5292 // unvectorized version.
5293 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI, CurrentOrder,
5294 PointerOps)) {
5295 case LoadsState::Vectorize:
5296 return TreeEntry::Vectorize;
5297 case LoadsState::ScatterVectorize:
5298 return TreeEntry::ScatterVectorize;
5299 case LoadsState::PossibleStridedVectorize:
5300 return TreeEntry::PossibleStridedVectorize;
5301 case LoadsState::Gather:
5302 #ifndef NDEBUG
5303 Type *ScalarTy = VL0->getType();
5304 if (DL->getTypeSizeInBits(ScalarTy) !=
5305 DL->getTypeAllocSizeInBits(ScalarTy))
5306 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
5307 else if (any_of(VL,
5308 [](Value *V) { return !cast<LoadInst>(V)->isSimple(); }))
5309 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
5310 else
5311 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
5312 #endif // NDEBUG
5313 return TreeEntry::NeedToGather;
5315 llvm_unreachable("Unexpected state of loads");
5317 case Instruction::ZExt:
5318 case Instruction::SExt:
5319 case Instruction::FPToUI:
5320 case Instruction::FPToSI:
5321 case Instruction::FPExt:
5322 case Instruction::PtrToInt:
5323 case Instruction::IntToPtr:
5324 case Instruction::SIToFP:
5325 case Instruction::UIToFP:
5326 case Instruction::Trunc:
5327 case Instruction::FPTrunc:
5328 case Instruction::BitCast: {
5329 Type *SrcTy = VL0->getOperand(0)->getType();
5330 for (Value *V : VL) {
5331 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5332 if (Ty != SrcTy || !isValidElementType(Ty)) {
5333 LLVM_DEBUG(
5334 dbgs() << "SLP: Gathering casts with different src types.\n");
5335 return TreeEntry::NeedToGather;
5338 return TreeEntry::Vectorize;
5340 case Instruction::ICmp:
5341 case Instruction::FCmp: {
5342 // Check that all of the compares have the same predicate.
5343 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5344 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5345 Type *ComparedTy = VL0->getOperand(0)->getType();
5346 for (Value *V : VL) {
5347 CmpInst *Cmp = cast<CmpInst>(V);
5348 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5349 Cmp->getOperand(0)->getType() != ComparedTy) {
5350 LLVM_DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
5351 return TreeEntry::NeedToGather;
5354 return TreeEntry::Vectorize;
5356 case Instruction::Select:
5357 case Instruction::FNeg:
5358 case Instruction::Add:
5359 case Instruction::FAdd:
5360 case Instruction::Sub:
5361 case Instruction::FSub:
5362 case Instruction::Mul:
5363 case Instruction::FMul:
5364 case Instruction::UDiv:
5365 case Instruction::SDiv:
5366 case Instruction::FDiv:
5367 case Instruction::URem:
5368 case Instruction::SRem:
5369 case Instruction::FRem:
5370 case Instruction::Shl:
5371 case Instruction::LShr:
5372 case Instruction::AShr:
5373 case Instruction::And:
5374 case Instruction::Or:
5375 case Instruction::Xor:
5376 return TreeEntry::Vectorize;
5377 case Instruction::GetElementPtr: {
5378 // We don't combine GEPs with complicated (nested) indexing.
5379 for (Value *V : VL) {
5380 auto *I = dyn_cast<GetElementPtrInst>(V);
5381 if (!I)
5382 continue;
5383 if (I->getNumOperands() != 2) {
5384 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5385 return TreeEntry::NeedToGather;
5389 // We can't combine several GEPs into one vector if they operate on
5390 // different types.
5391 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5392 for (Value *V : VL) {
5393 auto *GEP = dyn_cast<GEPOperator>(V);
5394 if (!GEP)
5395 continue;
5396 Type *CurTy = GEP->getSourceElementType();
5397 if (Ty0 != CurTy) {
5398 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
5399 return TreeEntry::NeedToGather;
5403 // We don't combine GEPs with non-constant indexes.
5404 Type *Ty1 = VL0->getOperand(1)->getType();
5405 for (Value *V : VL) {
5406 auto *I = dyn_cast<GetElementPtrInst>(V);
5407 if (!I)
5408 continue;
5409 auto *Op = I->getOperand(1);
5410 if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5411 (Op->getType() != Ty1 &&
5412 ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5413 Op->getType()->getScalarSizeInBits() >
5414 DL->getIndexSizeInBits(
5415 V->getType()->getPointerAddressSpace())))) {
5416 LLVM_DEBUG(
5417 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5418 return TreeEntry::NeedToGather;
5422 return TreeEntry::Vectorize;
5424 case Instruction::Store: {
5425 // Check if the stores are consecutive or if we need to swizzle them.
5426 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5427 // Avoid types that are padded when being allocated as scalars, while
5428 // being packed together in a vector (such as i1).
5429 if (DL->getTypeSizeInBits(ScalarTy) !=
5430 DL->getTypeAllocSizeInBits(ScalarTy)) {
5431 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5432 return TreeEntry::NeedToGather;
5434 // Make sure all stores in the bundle are simple - we can't vectorize
5435 // atomic or volatile stores.
5436 for (Value *V : VL) {
5437 auto *SI = cast<StoreInst>(V);
5438 if (!SI->isSimple()) {
5439 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5440 return TreeEntry::NeedToGather;
5442 PointerOps.push_back(SI->getPointerOperand());
5445 // Check the order of pointer operands.
5446 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5447 Value *Ptr0;
5448 Value *PtrN;
5449 if (CurrentOrder.empty()) {
5450 Ptr0 = PointerOps.front();
5451 PtrN = PointerOps.back();
5452 } else {
5453 Ptr0 = PointerOps[CurrentOrder.front()];
5454 PtrN = PointerOps[CurrentOrder.back()];
5456 std::optional<int> Dist =
5457 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5458 // Check that the sorted pointer operands are consecutive.
5459 if (static_cast<unsigned>(*Dist) == VL.size() - 1)
5460 return TreeEntry::Vectorize;
5463 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5464 return TreeEntry::NeedToGather;
5466 case Instruction::Call: {
5467 // Check if the calls are all to the same vectorizable intrinsic or
5468 // library function.
5469 CallInst *CI = cast<CallInst>(VL0);
5470 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5472 VFShape Shape = VFShape::get(
5473 CI->getFunctionType(),
5474 ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5475 false /*HasGlobalPred*/);
5476 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5478 if (!VecFunc && !isTriviallyVectorizable(ID)) {
5479 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5480 return TreeEntry::NeedToGather;
5482 Function *F = CI->getCalledFunction();
5483 unsigned NumArgs = CI->arg_size();
5484 SmallVector<Value *, 4> ScalarArgs(NumArgs, nullptr);
5485 for (unsigned J = 0; J != NumArgs; ++J)
5486 if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
5487 ScalarArgs[J] = CI->getArgOperand(J);
5488 for (Value *V : VL) {
5489 CallInst *CI2 = dyn_cast<CallInst>(V);
5490 if (!CI2 || CI2->getCalledFunction() != F ||
5491 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5492 (VecFunc &&
5493 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5494 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5495 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5496 << "\n");
5497 return TreeEntry::NeedToGather;
5499 // Some intrinsics have scalar arguments and should be same in order for
5500 // them to be vectorized.
5501 for (unsigned J = 0; J != NumArgs; ++J) {
5502 if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) {
5503 Value *A1J = CI2->getArgOperand(J);
5504 if (ScalarArgs[J] != A1J) {
5505 LLVM_DEBUG(dbgs()
5506 << "SLP: mismatched arguments in call:" << *CI
5507 << " argument " << ScalarArgs[J] << "!=" << A1J << "\n");
5508 return TreeEntry::NeedToGather;
5512 // Verify that the bundle operands are identical between the two calls.
5513 if (CI->hasOperandBundles() &&
5514 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5515 CI->op_begin() + CI->getBundleOperandsEndIndex(),
5516 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5517 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI
5518 << "!=" << *V << '\n');
5519 return TreeEntry::NeedToGather;
5523 return TreeEntry::Vectorize;
5525 case Instruction::ShuffleVector: {
5526 // If this is not an alternate sequence of opcode like add-sub
5527 // then do not vectorize this instruction.
5528 if (!S.isAltShuffle()) {
5529 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5530 return TreeEntry::NeedToGather;
5532 return TreeEntry::Vectorize;
5534 default:
5535 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5536 return TreeEntry::NeedToGather;
5540 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
5541 const EdgeInfo &UserTreeIdx) {
5542 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
5544 SmallVector<int> ReuseShuffleIndicies;
5545 SmallVector<Value *> UniqueValues;
5546 SmallVector<Value *> NonUniqueValueVL;
5547 auto TryToFindDuplicates = [&](const InstructionsState &S,
5548 bool DoNotFail = false) {
5549 // Check that every instruction appears once in this bundle.
5550 DenseMap<Value *, unsigned> UniquePositions(VL.size());
5551 for (Value *V : VL) {
5552 if (isConstant(V)) {
5553 ReuseShuffleIndicies.emplace_back(
5554 isa<UndefValue>(V) ? PoisonMaskElem : UniqueValues.size());
5555 UniqueValues.emplace_back(V);
5556 continue;
5558 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5559 ReuseShuffleIndicies.emplace_back(Res.first->second);
5560 if (Res.second)
5561 UniqueValues.emplace_back(V);
5563 size_t NumUniqueScalarValues = UniqueValues.size();
5564 if (NumUniqueScalarValues == VL.size()) {
5565 ReuseShuffleIndicies.clear();
5566 } else {
5567 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
5568 if (NumUniqueScalarValues <= 1 ||
5569 (UniquePositions.size() == 1 && all_of(UniqueValues,
5570 [](Value *V) {
5571 return isa<UndefValue>(V) ||
5572 !isConstant(V);
5573 })) ||
5574 !llvm::has_single_bit<uint32_t>(NumUniqueScalarValues)) {
5575 if (DoNotFail && UniquePositions.size() > 1 &&
5576 NumUniqueScalarValues > 1 && S.MainOp->isSafeToRemove() &&
5577 all_of(UniqueValues, [=](Value *V) {
5578 return isa<ExtractElementInst>(V) ||
5579 areAllUsersVectorized(cast<Instruction>(V),
5580 UserIgnoreList);
5581 })) {
5582 unsigned PWSz = PowerOf2Ceil(UniqueValues.size());
5583 if (PWSz == VL.size()) {
5584 ReuseShuffleIndicies.clear();
5585 } else {
5586 NonUniqueValueVL.assign(UniqueValues.begin(), UniqueValues.end());
5587 NonUniqueValueVL.append(PWSz - UniqueValues.size(),
5588 UniqueValues.back());
5589 VL = NonUniqueValueVL;
5591 return true;
5593 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
5594 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5595 return false;
5597 VL = UniqueValues;
5599 return true;
5602 InstructionsState S = getSameOpcode(VL, *TLI);
5604 // Don't vectorize ephemeral values.
5605 if (!EphValues.empty()) {
5606 for (Value *V : VL) {
5607 if (EphValues.count(V)) {
5608 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
5609 << ") is ephemeral.\n");
5610 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5611 return;
5616 // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of
5617 // a load), in which case peek through to include it in the tree, without
5618 // ballooning over-budget.
5619 if (Depth >= RecursionMaxDepth &&
5620 !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp &&
5621 VL.size() >= 4 &&
5622 (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) {
5623 return match(I,
5624 m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) &&
5625 cast<Instruction>(I)->getOpcode() ==
5626 cast<Instruction>(S.MainOp)->getOpcode();
5627 })))) {
5628 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
5629 if (TryToFindDuplicates(S))
5630 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5631 ReuseShuffleIndicies);
5632 return;
5635 // Don't handle scalable vectors
5636 if (S.getOpcode() == Instruction::ExtractElement &&
5637 isa<ScalableVectorType>(
5638 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
5639 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
5640 if (TryToFindDuplicates(S))
5641 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5642 ReuseShuffleIndicies);
5643 return;
5646 // Don't handle vectors.
5647 if (S.OpValue->getType()->isVectorTy() &&
5648 !isa<InsertElementInst>(S.OpValue)) {
5649 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
5650 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5651 return;
5654 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
5655 if (SI->getValueOperand()->getType()->isVectorTy()) {
5656 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
5657 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5658 return;
5661 // If all of the operands are identical or constant we have a simple solution.
5662 // If we deal with insert/extract instructions, they all must have constant
5663 // indices, otherwise we should gather them, not try to vectorize.
5664 // If alternate op node with 2 elements with gathered operands - do not
5665 // vectorize.
5666 auto &&NotProfitableForVectorization = [&S, this,
5667 Depth](ArrayRef<Value *> VL) {
5668 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
5669 return false;
5670 if (VectorizableTree.size() < MinTreeSize)
5671 return false;
5672 if (Depth >= RecursionMaxDepth - 1)
5673 return true;
5674 // Check if all operands are extracts, part of vector node or can build a
5675 // regular vectorize node.
5676 SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
5677 for (Value *V : VL) {
5678 auto *I = cast<Instruction>(V);
5679 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
5680 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
5681 }));
5683 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
5684 if ((IsCommutative &&
5685 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
5686 (!IsCommutative &&
5687 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
5688 return true;
5689 assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
5690 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
5691 auto *I1 = cast<Instruction>(VL.front());
5692 auto *I2 = cast<Instruction>(VL.back());
5693 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5694 Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5695 I2->getOperand(Op));
5696 if (static_cast<unsigned>(count_if(
5697 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5698 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5699 })) >= S.MainOp->getNumOperands() / 2)
5700 return false;
5701 if (S.MainOp->getNumOperands() > 2)
5702 return true;
5703 if (IsCommutative) {
5704 // Check permuted operands.
5705 Candidates.clear();
5706 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5707 Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5708 I2->getOperand((Op + 1) % E));
5709 if (any_of(
5710 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5711 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5713 return false;
5715 return true;
5717 SmallVector<unsigned> SortedIndices;
5718 BasicBlock *BB = nullptr;
5719 bool IsScatterVectorizeUserTE =
5720 UserTreeIdx.UserTE &&
5721 (UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize ||
5722 UserTreeIdx.UserTE->State == TreeEntry::PossibleStridedVectorize);
5723 bool AreAllSameInsts =
5724 (S.getOpcode() && allSameBlock(VL)) ||
5725 (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE &&
5726 VL.size() > 2 &&
5727 all_of(VL,
5728 [&BB](Value *V) {
5729 auto *I = dyn_cast<GetElementPtrInst>(V);
5730 if (!I)
5731 return doesNotNeedToBeScheduled(V);
5732 if (!BB)
5733 BB = I->getParent();
5734 return BB == I->getParent() && I->getNumOperands() == 2;
5735 }) &&
5736 BB &&
5737 sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
5738 SortedIndices));
5739 if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) ||
5740 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
5741 S.OpValue) &&
5742 !all_of(VL, isVectorLikeInstWithConstOps)) ||
5743 NotProfitableForVectorization(VL)) {
5744 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
5745 if (TryToFindDuplicates(S))
5746 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5747 ReuseShuffleIndicies);
5748 return;
5751 // We now know that this is a vector of instructions of the same type from
5752 // the same block.
5754 // Check if this is a duplicate of another entry.
5755 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
5756 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
5757 if (!E->isSame(VL)) {
5758 auto It = MultiNodeScalars.find(S.OpValue);
5759 if (It != MultiNodeScalars.end()) {
5760 auto *TEIt = find_if(It->getSecond(),
5761 [&](TreeEntry *ME) { return ME->isSame(VL); });
5762 if (TEIt != It->getSecond().end())
5763 E = *TEIt;
5764 else
5765 E = nullptr;
5766 } else {
5767 E = nullptr;
5770 if (!E) {
5771 if (!doesNotNeedToBeScheduled(S.OpValue)) {
5772 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
5773 if (TryToFindDuplicates(S))
5774 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5775 ReuseShuffleIndicies);
5776 return;
5778 } else {
5779 // Record the reuse of the tree node. FIXME, currently this is only used
5780 // to properly draw the graph rather than for the actual vectorization.
5781 E->UserTreeIndices.push_back(UserTreeIdx);
5782 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
5783 << ".\n");
5784 return;
5788 // Check that none of the instructions in the bundle are already in the tree.
5789 for (Value *V : VL) {
5790 if ((!IsScatterVectorizeUserTE && !isa<Instruction>(V)) ||
5791 doesNotNeedToBeScheduled(V))
5792 continue;
5793 if (getTreeEntry(V)) {
5794 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
5795 << ") is already in tree.\n");
5796 if (TryToFindDuplicates(S))
5797 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5798 ReuseShuffleIndicies);
5799 return;
5803 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
5804 if (UserIgnoreList && !UserIgnoreList->empty()) {
5805 for (Value *V : VL) {
5806 if (UserIgnoreList && UserIgnoreList->contains(V)) {
5807 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
5808 if (TryToFindDuplicates(S))
5809 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5810 ReuseShuffleIndicies);
5811 return;
5816 // Special processing for sorted pointers for ScatterVectorize node with
5817 // constant indeces only.
5818 if (AreAllSameInsts && UserTreeIdx.UserTE &&
5819 (UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize ||
5820 UserTreeIdx.UserTE->State == TreeEntry::PossibleStridedVectorize) &&
5821 !(S.getOpcode() && allSameBlock(VL))) {
5822 assert(S.OpValue->getType()->isPointerTy() &&
5823 count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
5824 2 &&
5825 "Expected pointers only.");
5826 // Reset S to make it GetElementPtr kind of node.
5827 const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
5828 assert(It != VL.end() && "Expected at least one GEP.");
5829 S = getSameOpcode(*It, *TLI);
5832 // Check that all of the users of the scalars that we want to vectorize are
5833 // schedulable.
5834 auto *VL0 = cast<Instruction>(S.OpValue);
5835 BB = VL0->getParent();
5837 if (!DT->isReachableFromEntry(BB)) {
5838 // Don't go into unreachable blocks. They may contain instructions with
5839 // dependency cycles which confuse the final scheduling.
5840 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
5841 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5842 return;
5845 // Don't go into catchswitch blocks, which can happen with PHIs.
5846 // Such blocks can only have PHIs and the catchswitch. There is no
5847 // place to insert a shuffle if we need to, so just avoid that issue.
5848 if (isa<CatchSwitchInst>(BB->getTerminator())) {
5849 LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n");
5850 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
5851 return;
5854 // Check that every instruction appears once in this bundle.
5855 if (!TryToFindDuplicates(S, /*DoNotFail=*/true))
5856 return;
5858 // Perform specific checks for each particular instruction kind.
5859 OrdersType CurrentOrder;
5860 SmallVector<Value *> PointerOps;
5861 TreeEntry::EntryState State = getScalarsVectorizationState(
5862 S, VL, IsScatterVectorizeUserTE, CurrentOrder, PointerOps);
5863 if (State == TreeEntry::NeedToGather) {
5864 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5865 ReuseShuffleIndicies);
5866 return;
5869 auto &BSRef = BlocksSchedules[BB];
5870 if (!BSRef)
5871 BSRef = std::make_unique<BlockScheduling>(BB);
5873 BlockScheduling &BS = *BSRef;
5875 std::optional<ScheduleData *> Bundle =
5876 BS.tryScheduleBundle(UniqueValues, this, S);
5877 #ifdef EXPENSIVE_CHECKS
5878 // Make sure we didn't break any internal invariants
5879 BS.verify();
5880 #endif
5881 if (!Bundle) {
5882 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
5883 assert((!BS.getScheduleData(VL0) ||
5884 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
5885 "tryScheduleBundle should cancelScheduling on failure");
5886 newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
5887 ReuseShuffleIndicies);
5888 return;
5890 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
5892 unsigned ShuffleOrOp = S.isAltShuffle() ?
5893 (unsigned) Instruction::ShuffleVector : S.getOpcode();
5894 switch (ShuffleOrOp) {
5895 case Instruction::PHI: {
5896 auto *PH = cast<PHINode>(VL0);
5898 TreeEntry *TE =
5899 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
5900 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
5902 // Keeps the reordered operands to avoid code duplication.
5903 SmallVector<ValueList, 2> OperandsVec;
5904 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
5905 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
5906 ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
5907 TE->setOperand(I, Operands);
5908 OperandsVec.push_back(Operands);
5909 continue;
5911 ValueList Operands;
5912 // Prepare the operand vector.
5913 for (Value *V : VL)
5914 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
5915 PH->getIncomingBlock(I)));
5916 TE->setOperand(I, Operands);
5917 OperandsVec.push_back(Operands);
5919 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
5920 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
5921 return;
5923 case Instruction::ExtractValue:
5924 case Instruction::ExtractElement: {
5925 if (CurrentOrder.empty()) {
5926 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
5927 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5928 ReuseShuffleIndicies);
5929 // This is a special case, as it does not gather, but at the same time
5930 // we are not extending buildTree_rec() towards the operands.
5931 ValueList Op0;
5932 Op0.assign(VL.size(), VL0->getOperand(0));
5933 VectorizableTree.back()->setOperand(0, Op0);
5934 return;
5936 LLVM_DEBUG({
5937 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
5938 "with order";
5939 for (unsigned Idx : CurrentOrder)
5940 dbgs() << " " << Idx;
5941 dbgs() << "\n";
5943 fixupOrderingIndices(CurrentOrder);
5944 // Insert new order with initial value 0, if it does not exist,
5945 // otherwise return the iterator to the existing one.
5946 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5947 ReuseShuffleIndicies, CurrentOrder);
5948 // This is a special case, as it does not gather, but at the same time
5949 // we are not extending buildTree_rec() towards the operands.
5950 ValueList Op0;
5951 Op0.assign(VL.size(), VL0->getOperand(0));
5952 VectorizableTree.back()->setOperand(0, Op0);
5953 return;
5955 case Instruction::InsertElement: {
5956 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
5958 auto OrdCompare = [](const std::pair<int, int> &P1,
5959 const std::pair<int, int> &P2) {
5960 return P1.first > P2.first;
5962 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
5963 decltype(OrdCompare)>
5964 Indices(OrdCompare);
5965 for (int I = 0, E = VL.size(); I < E; ++I) {
5966 unsigned Idx = *getInsertIndex(VL[I]);
5967 Indices.emplace(Idx, I);
5969 OrdersType CurrentOrder(VL.size(), VL.size());
5970 bool IsIdentity = true;
5971 for (int I = 0, E = VL.size(); I < E; ++I) {
5972 CurrentOrder[Indices.top().second] = I;
5973 IsIdentity &= Indices.top().second == I;
5974 Indices.pop();
5976 if (IsIdentity)
5977 CurrentOrder.clear();
5978 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5979 std::nullopt, CurrentOrder);
5980 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
5982 constexpr int NumOps = 2;
5983 ValueList VectorOperands[NumOps];
5984 for (int I = 0; I < NumOps; ++I) {
5985 for (Value *V : VL)
5986 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
5988 TE->setOperand(I, VectorOperands[I]);
5990 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
5991 return;
5993 case Instruction::Load: {
5994 // Check that a vectorized load would load the same memory as a scalar
5995 // load. For example, we don't want to vectorize loads that are smaller
5996 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
5997 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
5998 // from such a struct, we read/write packed bits disagreeing with the
5999 // unvectorized version.
6000 TreeEntry *TE = nullptr;
6001 fixupOrderingIndices(CurrentOrder);
6002 switch (State) {
6003 case TreeEntry::Vectorize:
6004 if (CurrentOrder.empty()) {
6005 // Original loads are consecutive and does not require reordering.
6006 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6007 ReuseShuffleIndicies);
6008 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
6009 } else {
6010 // Need to reorder.
6011 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6012 ReuseShuffleIndicies, CurrentOrder);
6013 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
6015 TE->setOperandsInOrder();
6016 break;
6017 case TreeEntry::PossibleStridedVectorize:
6018 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
6019 if (CurrentOrder.empty()) {
6020 TE = newTreeEntry(VL, TreeEntry::PossibleStridedVectorize, Bundle, S,
6021 UserTreeIdx, ReuseShuffleIndicies);
6022 } else {
6023 TE = newTreeEntry(VL, TreeEntry::PossibleStridedVectorize, Bundle, S,
6024 UserTreeIdx, ReuseShuffleIndicies, CurrentOrder);
6026 TE->setOperandsInOrder();
6027 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
6028 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
6029 break;
6030 case TreeEntry::ScatterVectorize:
6031 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
6032 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
6033 UserTreeIdx, ReuseShuffleIndicies);
6034 TE->setOperandsInOrder();
6035 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
6036 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
6037 break;
6038 case TreeEntry::NeedToGather:
6039 llvm_unreachable("Unexpected loads state.");
6041 return;
6043 case Instruction::ZExt:
6044 case Instruction::SExt:
6045 case Instruction::FPToUI:
6046 case Instruction::FPToSI:
6047 case Instruction::FPExt:
6048 case Instruction::PtrToInt:
6049 case Instruction::IntToPtr:
6050 case Instruction::SIToFP:
6051 case Instruction::UIToFP:
6052 case Instruction::Trunc:
6053 case Instruction::FPTrunc:
6054 case Instruction::BitCast: {
6055 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6056 ReuseShuffleIndicies);
6057 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
6059 TE->setOperandsInOrder();
6060 for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6061 ValueList Operands;
6062 // Prepare the operand vector.
6063 for (Value *V : VL)
6064 Operands.push_back(cast<Instruction>(V)->getOperand(I));
6066 buildTree_rec(Operands, Depth + 1, {TE, I});
6068 return;
6070 case Instruction::ICmp:
6071 case Instruction::FCmp: {
6072 // Check that all of the compares have the same predicate.
6073 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6074 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6075 ReuseShuffleIndicies);
6076 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
6078 ValueList Left, Right;
6079 if (cast<CmpInst>(VL0)->isCommutative()) {
6080 // Commutative predicate - collect + sort operands of the instructions
6081 // so that each side is more likely to have the same opcode.
6082 assert(P0 == CmpInst::getSwappedPredicate(P0) &&
6083 "Commutative Predicate mismatch");
6084 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
6085 } else {
6086 // Collect operands - commute if it uses the swapped predicate.
6087 for (Value *V : VL) {
6088 auto *Cmp = cast<CmpInst>(V);
6089 Value *LHS = Cmp->getOperand(0);
6090 Value *RHS = Cmp->getOperand(1);
6091 if (Cmp->getPredicate() != P0)
6092 std::swap(LHS, RHS);
6093 Left.push_back(LHS);
6094 Right.push_back(RHS);
6097 TE->setOperand(0, Left);
6098 TE->setOperand(1, Right);
6099 buildTree_rec(Left, Depth + 1, {TE, 0});
6100 buildTree_rec(Right, Depth + 1, {TE, 1});
6101 return;
6103 case Instruction::Select:
6104 case Instruction::FNeg:
6105 case Instruction::Add:
6106 case Instruction::FAdd:
6107 case Instruction::Sub:
6108 case Instruction::FSub:
6109 case Instruction::Mul:
6110 case Instruction::FMul:
6111 case Instruction::UDiv:
6112 case Instruction::SDiv:
6113 case Instruction::FDiv:
6114 case Instruction::URem:
6115 case Instruction::SRem:
6116 case Instruction::FRem:
6117 case Instruction::Shl:
6118 case Instruction::LShr:
6119 case Instruction::AShr:
6120 case Instruction::And:
6121 case Instruction::Or:
6122 case Instruction::Xor: {
6123 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6124 ReuseShuffleIndicies);
6125 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
6127 // Sort operands of the instructions so that each side is more likely to
6128 // have the same opcode.
6129 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
6130 ValueList Left, Right;
6131 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
6132 TE->setOperand(0, Left);
6133 TE->setOperand(1, Right);
6134 buildTree_rec(Left, Depth + 1, {TE, 0});
6135 buildTree_rec(Right, Depth + 1, {TE, 1});
6136 return;
6139 TE->setOperandsInOrder();
6140 for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6141 ValueList Operands;
6142 // Prepare the operand vector.
6143 for (Value *V : VL)
6144 Operands.push_back(cast<Instruction>(V)->getOperand(I));
6146 buildTree_rec(Operands, Depth + 1, {TE, I});
6148 return;
6150 case Instruction::GetElementPtr: {
6151 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6152 ReuseShuffleIndicies);
6153 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
6154 SmallVector<ValueList, 2> Operands(2);
6155 // Prepare the operand vector for pointer operands.
6156 for (Value *V : VL) {
6157 auto *GEP = dyn_cast<GetElementPtrInst>(V);
6158 if (!GEP) {
6159 Operands.front().push_back(V);
6160 continue;
6162 Operands.front().push_back(GEP->getPointerOperand());
6164 TE->setOperand(0, Operands.front());
6165 // Need to cast all indices to the same type before vectorization to
6166 // avoid crash.
6167 // Required to be able to find correct matches between different gather
6168 // nodes and reuse the vectorized values rather than trying to gather them
6169 // again.
6170 int IndexIdx = 1;
6171 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
6172 Type *Ty = all_of(VL,
6173 [VL0Ty, IndexIdx](Value *V) {
6174 auto *GEP = dyn_cast<GetElementPtrInst>(V);
6175 if (!GEP)
6176 return true;
6177 return VL0Ty == GEP->getOperand(IndexIdx)->getType();
6179 ? VL0Ty
6180 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
6181 ->getPointerOperandType()
6182 ->getScalarType());
6183 // Prepare the operand vector.
6184 for (Value *V : VL) {
6185 auto *I = dyn_cast<GetElementPtrInst>(V);
6186 if (!I) {
6187 Operands.back().push_back(
6188 ConstantInt::get(Ty, 0, /*isSigned=*/false));
6189 continue;
6191 auto *Op = I->getOperand(IndexIdx);
6192 auto *CI = dyn_cast<ConstantInt>(Op);
6193 if (!CI)
6194 Operands.back().push_back(Op);
6195 else
6196 Operands.back().push_back(ConstantFoldIntegerCast(
6197 CI, Ty, CI->getValue().isSignBitSet(), *DL));
6199 TE->setOperand(IndexIdx, Operands.back());
6201 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
6202 buildTree_rec(Operands[I], Depth + 1, {TE, I});
6203 return;
6205 case Instruction::Store: {
6206 // Check if the stores are consecutive or if we need to swizzle them.
6207 ValueList Operands(VL.size());
6208 auto *OIter = Operands.begin();
6209 for (Value *V : VL) {
6210 auto *SI = cast<StoreInst>(V);
6211 *OIter = SI->getValueOperand();
6212 ++OIter;
6214 // Check that the sorted pointer operands are consecutive.
6215 if (CurrentOrder.empty()) {
6216 // Original stores are consecutive and does not require reordering.
6217 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6218 ReuseShuffleIndicies);
6219 TE->setOperandsInOrder();
6220 buildTree_rec(Operands, Depth + 1, {TE, 0});
6221 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
6222 } else {
6223 fixupOrderingIndices(CurrentOrder);
6224 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6225 ReuseShuffleIndicies, CurrentOrder);
6226 TE->setOperandsInOrder();
6227 buildTree_rec(Operands, Depth + 1, {TE, 0});
6228 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
6230 return;
6232 case Instruction::Call: {
6233 // Check if the calls are all to the same vectorizable intrinsic or
6234 // library function.
6235 CallInst *CI = cast<CallInst>(VL0);
6236 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6238 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6239 ReuseShuffleIndicies);
6240 TE->setOperandsInOrder();
6241 for (unsigned I : seq<unsigned>(0, CI->arg_size())) {
6242 // For scalar operands no need to create an entry since no need to
6243 // vectorize it.
6244 if (isVectorIntrinsicWithScalarOpAtArg(ID, I))
6245 continue;
6246 ValueList Operands;
6247 // Prepare the operand vector.
6248 for (Value *V : VL) {
6249 auto *CI2 = cast<CallInst>(V);
6250 Operands.push_back(CI2->getArgOperand(I));
6252 buildTree_rec(Operands, Depth + 1, {TE, I});
6254 return;
6256 case Instruction::ShuffleVector: {
6257 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
6258 ReuseShuffleIndicies);
6259 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
6261 // Reorder operands if reordering would enable vectorization.
6262 auto *CI = dyn_cast<CmpInst>(VL0);
6263 if (isa<BinaryOperator>(VL0) || CI) {
6264 ValueList Left, Right;
6265 if (!CI || all_of(VL, [](Value *V) {
6266 return cast<CmpInst>(V)->isCommutative();
6267 })) {
6268 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE,
6269 *this);
6270 } else {
6271 auto *MainCI = cast<CmpInst>(S.MainOp);
6272 auto *AltCI = cast<CmpInst>(S.AltOp);
6273 CmpInst::Predicate MainP = MainCI->getPredicate();
6274 CmpInst::Predicate AltP = AltCI->getPredicate();
6275 assert(MainP != AltP &&
6276 "Expected different main/alternate predicates.");
6277 // Collect operands - commute if it uses the swapped predicate or
6278 // alternate operation.
6279 for (Value *V : VL) {
6280 auto *Cmp = cast<CmpInst>(V);
6281 Value *LHS = Cmp->getOperand(0);
6282 Value *RHS = Cmp->getOperand(1);
6284 if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) {
6285 if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
6286 std::swap(LHS, RHS);
6287 } else {
6288 if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
6289 std::swap(LHS, RHS);
6291 Left.push_back(LHS);
6292 Right.push_back(RHS);
6295 TE->setOperand(0, Left);
6296 TE->setOperand(1, Right);
6297 buildTree_rec(Left, Depth + 1, {TE, 0});
6298 buildTree_rec(Right, Depth + 1, {TE, 1});
6299 return;
6302 TE->setOperandsInOrder();
6303 for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) {
6304 ValueList Operands;
6305 // Prepare the operand vector.
6306 for (Value *V : VL)
6307 Operands.push_back(cast<Instruction>(V)->getOperand(I));
6309 buildTree_rec(Operands, Depth + 1, {TE, I});
6311 return;
6313 default:
6314 break;
6316 llvm_unreachable("Unexpected vectorization of the instructions.");
6319 unsigned BoUpSLP::canMapToVector(Type *T) const {
6320 unsigned N = 1;
6321 Type *EltTy = T;
6323 while (isa<StructType, ArrayType, FixedVectorType>(EltTy)) {
6324 if (auto *ST = dyn_cast<StructType>(EltTy)) {
6325 // Check that struct is homogeneous.
6326 for (const auto *Ty : ST->elements())
6327 if (Ty != *ST->element_begin())
6328 return 0;
6329 N *= ST->getNumElements();
6330 EltTy = *ST->element_begin();
6331 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
6332 N *= AT->getNumElements();
6333 EltTy = AT->getElementType();
6334 } else {
6335 auto *VT = cast<FixedVectorType>(EltTy);
6336 N *= VT->getNumElements();
6337 EltTy = VT->getElementType();
6341 if (!isValidElementType(EltTy))
6342 return 0;
6343 uint64_t VTSize = DL->getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
6344 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize ||
6345 VTSize != DL->getTypeStoreSizeInBits(T))
6346 return 0;
6347 return N;
6350 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
6351 SmallVectorImpl<unsigned> &CurrentOrder,
6352 bool ResizeAllowed) const {
6353 const auto *It = find_if(VL, [](Value *V) {
6354 return isa<ExtractElementInst, ExtractValueInst>(V);
6356 assert(It != VL.end() && "Expected at least one extract instruction.");
6357 auto *E0 = cast<Instruction>(*It);
6358 assert(all_of(VL,
6359 [](Value *V) {
6360 return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
6362 }) &&
6363 "Invalid opcode");
6364 // Check if all of the extracts come from the same vector and from the
6365 // correct offset.
6366 Value *Vec = E0->getOperand(0);
6368 CurrentOrder.clear();
6370 // We have to extract from a vector/aggregate with the same number of elements.
6371 unsigned NElts;
6372 if (E0->getOpcode() == Instruction::ExtractValue) {
6373 NElts = canMapToVector(Vec->getType());
6374 if (!NElts)
6375 return false;
6376 // Check if load can be rewritten as load of vector.
6377 LoadInst *LI = dyn_cast<LoadInst>(Vec);
6378 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
6379 return false;
6380 } else {
6381 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
6384 unsigned E = VL.size();
6385 if (!ResizeAllowed && NElts != E)
6386 return false;
6387 SmallVector<int> Indices(E, PoisonMaskElem);
6388 unsigned MinIdx = NElts, MaxIdx = 0;
6389 for (auto [I, V] : enumerate(VL)) {
6390 auto *Inst = dyn_cast<Instruction>(V);
6391 if (!Inst)
6392 continue;
6393 if (Inst->getOperand(0) != Vec)
6394 return false;
6395 if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
6396 if (isa<UndefValue>(EE->getIndexOperand()))
6397 continue;
6398 std::optional<unsigned> Idx = getExtractIndex(Inst);
6399 if (!Idx)
6400 return false;
6401 const unsigned ExtIdx = *Idx;
6402 if (ExtIdx >= NElts)
6403 continue;
6404 Indices[I] = ExtIdx;
6405 if (MinIdx > ExtIdx)
6406 MinIdx = ExtIdx;
6407 if (MaxIdx < ExtIdx)
6408 MaxIdx = ExtIdx;
6410 if (MaxIdx - MinIdx + 1 > E)
6411 return false;
6412 if (MaxIdx + 1 <= E)
6413 MinIdx = 0;
6415 // Check that all of the indices extract from the correct offset.
6416 bool ShouldKeepOrder = true;
6417 // Assign to all items the initial value E + 1 so we can check if the extract
6418 // instruction index was used already.
6419 // Also, later we can check that all the indices are used and we have a
6420 // consecutive access in the extract instructions, by checking that no
6421 // element of CurrentOrder still has value E + 1.
6422 CurrentOrder.assign(E, E);
6423 for (unsigned I = 0; I < E; ++I) {
6424 if (Indices[I] == PoisonMaskElem)
6425 continue;
6426 const unsigned ExtIdx = Indices[I] - MinIdx;
6427 if (CurrentOrder[ExtIdx] != E) {
6428 CurrentOrder.clear();
6429 return false;
6431 ShouldKeepOrder &= ExtIdx == I;
6432 CurrentOrder[ExtIdx] = I;
6434 if (ShouldKeepOrder)
6435 CurrentOrder.clear();
6437 return ShouldKeepOrder;
6440 bool BoUpSLP::areAllUsersVectorized(
6441 Instruction *I, const SmallDenseSet<Value *> *VectorizedVals) const {
6442 return (I->hasOneUse() && (!VectorizedVals || VectorizedVals->contains(I))) ||
6443 all_of(I->users(), [this](User *U) {
6444 return ScalarToTreeEntry.contains(U) ||
6445 isVectorLikeInstWithConstOps(U) ||
6446 (isa<ExtractElementInst>(U) && MustGather.contains(U));
6450 static std::pair<InstructionCost, InstructionCost>
6451 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
6452 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
6453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6455 // Calculate the cost of the scalar and vector calls.
6456 SmallVector<Type *, 4> VecTys;
6457 for (Use &Arg : CI->args())
6458 VecTys.push_back(
6459 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
6460 FastMathFlags FMF;
6461 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
6462 FMF = FPCI->getFastMathFlags();
6463 SmallVector<const Value *> Arguments(CI->args());
6464 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
6465 dyn_cast<IntrinsicInst>(CI));
6466 auto IntrinsicCost =
6467 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
6469 auto Shape = VFShape::get(CI->getFunctionType(),
6470 ElementCount::getFixed(VecTy->getNumElements()),
6471 false /*HasGlobalPred*/);
6472 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
6473 auto LibCost = IntrinsicCost;
6474 if (!CI->isNoBuiltin() && VecFunc) {
6475 // Calculate the cost of the vector library call.
6476 // If the corresponding vector call is cheaper, return its cost.
6477 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
6478 TTI::TCK_RecipThroughput);
6480 return {IntrinsicCost, LibCost};
6483 void BoUpSLP::TreeEntry::buildAltOpShuffleMask(
6484 const function_ref<bool(Instruction *)> IsAltOp, SmallVectorImpl<int> &Mask,
6485 SmallVectorImpl<Value *> *OpScalars,
6486 SmallVectorImpl<Value *> *AltScalars) const {
6487 unsigned Sz = Scalars.size();
6488 Mask.assign(Sz, PoisonMaskElem);
6489 SmallVector<int> OrderMask;
6490 if (!ReorderIndices.empty())
6491 inversePermutation(ReorderIndices, OrderMask);
6492 for (unsigned I = 0; I < Sz; ++I) {
6493 unsigned Idx = I;
6494 if (!ReorderIndices.empty())
6495 Idx = OrderMask[I];
6496 auto *OpInst = cast<Instruction>(Scalars[Idx]);
6497 if (IsAltOp(OpInst)) {
6498 Mask[I] = Sz + Idx;
6499 if (AltScalars)
6500 AltScalars->push_back(OpInst);
6501 } else {
6502 Mask[I] = Idx;
6503 if (OpScalars)
6504 OpScalars->push_back(OpInst);
6507 if (!ReuseShuffleIndices.empty()) {
6508 SmallVector<int> NewMask(ReuseShuffleIndices.size(), PoisonMaskElem);
6509 transform(ReuseShuffleIndices, NewMask.begin(), [&Mask](int Idx) {
6510 return Idx != PoisonMaskElem ? Mask[Idx] : PoisonMaskElem;
6512 Mask.swap(NewMask);
6516 static bool isAlternateInstruction(const Instruction *I,
6517 const Instruction *MainOp,
6518 const Instruction *AltOp,
6519 const TargetLibraryInfo &TLI) {
6520 if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) {
6521 auto *AltCI = cast<CmpInst>(AltOp);
6522 CmpInst::Predicate MainP = MainCI->getPredicate();
6523 CmpInst::Predicate AltP = AltCI->getPredicate();
6524 assert(MainP != AltP && "Expected different main/alternate predicates.");
6525 auto *CI = cast<CmpInst>(I);
6526 if (isCmpSameOrSwapped(MainCI, CI, TLI))
6527 return false;
6528 if (isCmpSameOrSwapped(AltCI, CI, TLI))
6529 return true;
6530 CmpInst::Predicate P = CI->getPredicate();
6531 CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P);
6533 assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) &&
6534 "CmpInst expected to match either main or alternate predicate or "
6535 "their swap.");
6536 (void)AltP;
6537 return MainP != P && MainP != SwappedP;
6539 return I->getOpcode() == AltOp->getOpcode();
6542 TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> Ops) {
6543 assert(!Ops.empty());
6544 const auto *Op0 = Ops.front();
6546 const bool IsConstant = all_of(Ops, [](Value *V) {
6547 // TODO: We should allow undef elements here
6548 return isConstant(V) && !isa<UndefValue>(V);
6550 const bool IsUniform = all_of(Ops, [=](Value *V) {
6551 // TODO: We should allow undef elements here
6552 return V == Op0;
6554 const bool IsPowerOfTwo = all_of(Ops, [](Value *V) {
6555 // TODO: We should allow undef elements here
6556 if (auto *CI = dyn_cast<ConstantInt>(V))
6557 return CI->getValue().isPowerOf2();
6558 return false;
6560 const bool IsNegatedPowerOfTwo = all_of(Ops, [](Value *V) {
6561 // TODO: We should allow undef elements here
6562 if (auto *CI = dyn_cast<ConstantInt>(V))
6563 return CI->getValue().isNegatedPowerOf2();
6564 return false;
6567 TTI::OperandValueKind VK = TTI::OK_AnyValue;
6568 if (IsConstant && IsUniform)
6569 VK = TTI::OK_UniformConstantValue;
6570 else if (IsConstant)
6571 VK = TTI::OK_NonUniformConstantValue;
6572 else if (IsUniform)
6573 VK = TTI::OK_UniformValue;
6575 TTI::OperandValueProperties VP = TTI::OP_None;
6576 VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP;
6577 VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP;
6579 return {VK, VP};
6582 namespace {
6583 /// The base class for shuffle instruction emission and shuffle cost estimation.
6584 class BaseShuffleAnalysis {
6585 protected:
6586 /// Checks if the mask is an identity mask.
6587 /// \param IsStrict if is true the function returns false if mask size does
6588 /// not match vector size.
6589 static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy,
6590 bool IsStrict) {
6591 int Limit = Mask.size();
6592 int VF = VecTy->getNumElements();
6593 int Index = -1;
6594 if (VF == Limit && ShuffleVectorInst::isIdentityMask(Mask, Limit))
6595 return true;
6596 if (!IsStrict) {
6597 // Consider extract subvector starting from index 0.
6598 if (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) &&
6599 Index == 0)
6600 return true;
6601 // All VF-size submasks are identity (e.g.
6602 // <poison,poison,poison,poison,0,1,2,poison,poison,1,2,3> etc. for VF 4).
6603 if (Limit % VF == 0 && all_of(seq<int>(0, Limit / VF), [=](int Idx) {
6604 ArrayRef<int> Slice = Mask.slice(Idx * VF, VF);
6605 return all_of(Slice, [](int I) { return I == PoisonMaskElem; }) ||
6606 ShuffleVectorInst::isIdentityMask(Slice, VF);
6608 return true;
6610 return false;
6613 /// Tries to combine 2 different masks into single one.
6614 /// \param LocalVF Vector length of the permuted input vector. \p Mask may
6615 /// change the size of the vector, \p LocalVF is the original size of the
6616 /// shuffled vector.
6617 static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask,
6618 ArrayRef<int> ExtMask) {
6619 unsigned VF = Mask.size();
6620 SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem);
6621 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
6622 if (ExtMask[I] == PoisonMaskElem)
6623 continue;
6624 int MaskedIdx = Mask[ExtMask[I] % VF];
6625 NewMask[I] =
6626 MaskedIdx == PoisonMaskElem ? PoisonMaskElem : MaskedIdx % LocalVF;
6628 Mask.swap(NewMask);
6631 /// Looks through shuffles trying to reduce final number of shuffles in the
6632 /// code. The function looks through the previously emitted shuffle
6633 /// instructions and properly mark indices in mask as undef.
6634 /// For example, given the code
6635 /// \code
6636 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
6637 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
6638 /// \endcode
6639 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
6640 /// look through %s1 and %s2 and select vectors %0 and %1 with mask
6641 /// <0, 1, 2, 3> for the shuffle.
6642 /// If 2 operands are of different size, the smallest one will be resized and
6643 /// the mask recalculated properly.
6644 /// For example, given the code
6645 /// \code
6646 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
6647 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
6648 /// \endcode
6649 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
6650 /// look through %s1 and %s2 and select vectors %0 and %1 with mask
6651 /// <0, 1, 2, 3> for the shuffle.
6652 /// So, it tries to transform permutations to simple vector merge, if
6653 /// possible.
6654 /// \param V The input vector which must be shuffled using the given \p Mask.
6655 /// If the better candidate is found, \p V is set to this best candidate
6656 /// vector.
6657 /// \param Mask The input mask for the shuffle. If the best candidate is found
6658 /// during looking-through-shuffles attempt, it is updated accordingly.
6659 /// \param SinglePermute true if the shuffle operation is originally a
6660 /// single-value-permutation. In this case the look-through-shuffles procedure
6661 /// may look for resizing shuffles as the best candidates.
6662 /// \return true if the shuffle results in the non-resizing identity shuffle
6663 /// (and thus can be ignored), false - otherwise.
6664 static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask,
6665 bool SinglePermute) {
6666 Value *Op = V;
6667 ShuffleVectorInst *IdentityOp = nullptr;
6668 SmallVector<int> IdentityMask;
6669 while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) {
6670 // Exit if not a fixed vector type or changing size shuffle.
6671 auto *SVTy = dyn_cast<FixedVectorType>(SV->getType());
6672 if (!SVTy)
6673 break;
6674 // Remember the identity or broadcast mask, if it is not a resizing
6675 // shuffle. If no better candidates are found, this Op and Mask will be
6676 // used in the final shuffle.
6677 if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) {
6678 if (!IdentityOp || !SinglePermute ||
6679 (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) &&
6680 !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask,
6681 IdentityMask.size()))) {
6682 IdentityOp = SV;
6683 // Store current mask in the IdentityMask so later we did not lost
6684 // this info if IdentityOp is selected as the best candidate for the
6685 // permutation.
6686 IdentityMask.assign(Mask);
6689 // Remember the broadcast mask. If no better candidates are found, this Op
6690 // and Mask will be used in the final shuffle.
6691 // Zero splat can be used as identity too, since it might be used with
6692 // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling.
6693 // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is
6694 // expensive, the analysis founds out, that the source vector is just a
6695 // broadcast, this original mask can be transformed to identity mask <0,
6696 // 1, 2, 3>.
6697 // \code
6698 // %0 = shuffle %v, poison, zeroinitalizer
6699 // %res = shuffle %0, poison, <3, 1, 2, 0>
6700 // \endcode
6701 // may be transformed to
6702 // \code
6703 // %0 = shuffle %v, poison, zeroinitalizer
6704 // %res = shuffle %0, poison, <0, 1, 2, 3>
6705 // \endcode
6706 if (SV->isZeroEltSplat()) {
6707 IdentityOp = SV;
6708 IdentityMask.assign(Mask);
6710 int LocalVF = Mask.size();
6711 if (auto *SVOpTy =
6712 dyn_cast<FixedVectorType>(SV->getOperand(0)->getType()))
6713 LocalVF = SVOpTy->getNumElements();
6714 SmallVector<int> ExtMask(Mask.size(), PoisonMaskElem);
6715 for (auto [Idx, I] : enumerate(Mask)) {
6716 if (I == PoisonMaskElem ||
6717 static_cast<unsigned>(I) >= SV->getShuffleMask().size())
6718 continue;
6719 ExtMask[Idx] = SV->getMaskValue(I);
6721 bool IsOp1Undef =
6722 isUndefVector(SV->getOperand(0),
6723 buildUseMask(LocalVF, ExtMask, UseMask::FirstArg))
6724 .all();
6725 bool IsOp2Undef =
6726 isUndefVector(SV->getOperand(1),
6727 buildUseMask(LocalVF, ExtMask, UseMask::SecondArg))
6728 .all();
6729 if (!IsOp1Undef && !IsOp2Undef) {
6730 // Update mask and mark undef elems.
6731 for (int &I : Mask) {
6732 if (I == PoisonMaskElem)
6733 continue;
6734 if (SV->getMaskValue(I % SV->getShuffleMask().size()) ==
6735 PoisonMaskElem)
6736 I = PoisonMaskElem;
6738 break;
6740 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
6741 SV->getShuffleMask().end());
6742 combineMasks(LocalVF, ShuffleMask, Mask);
6743 Mask.swap(ShuffleMask);
6744 if (IsOp2Undef)
6745 Op = SV->getOperand(0);
6746 else
6747 Op = SV->getOperand(1);
6749 if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType());
6750 !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute) ||
6751 ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size())) {
6752 if (IdentityOp) {
6753 V = IdentityOp;
6754 assert(Mask.size() == IdentityMask.size() &&
6755 "Expected masks of same sizes.");
6756 // Clear known poison elements.
6757 for (auto [I, Idx] : enumerate(Mask))
6758 if (Idx == PoisonMaskElem)
6759 IdentityMask[I] = PoisonMaskElem;
6760 Mask.swap(IdentityMask);
6761 auto *Shuffle = dyn_cast<ShuffleVectorInst>(V);
6762 return SinglePermute &&
6763 (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()),
6764 /*IsStrict=*/true) ||
6765 (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() &&
6766 Shuffle->isZeroEltSplat() &&
6767 ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size())));
6769 V = Op;
6770 return false;
6772 V = Op;
6773 return true;
6776 /// Smart shuffle instruction emission, walks through shuffles trees and
6777 /// tries to find the best matching vector for the actual shuffle
6778 /// instruction.
6779 template <typename T, typename ShuffleBuilderTy>
6780 static T createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask,
6781 ShuffleBuilderTy &Builder) {
6782 assert(V1 && "Expected at least one vector value.");
6783 if (V2)
6784 Builder.resizeToMatch(V1, V2);
6785 int VF = Mask.size();
6786 if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
6787 VF = FTy->getNumElements();
6788 if (V2 &&
6789 !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) {
6790 // Peek through shuffles.
6791 Value *Op1 = V1;
6792 Value *Op2 = V2;
6793 int VF =
6794 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
6795 SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem);
6796 SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem);
6797 for (int I = 0, E = Mask.size(); I < E; ++I) {
6798 if (Mask[I] < VF)
6799 CombinedMask1[I] = Mask[I];
6800 else
6801 CombinedMask2[I] = Mask[I] - VF;
6803 Value *PrevOp1;
6804 Value *PrevOp2;
6805 do {
6806 PrevOp1 = Op1;
6807 PrevOp2 = Op2;
6808 (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false);
6809 (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false);
6810 // Check if we have 2 resizing shuffles - need to peek through operands
6811 // again.
6812 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
6813 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) {
6814 SmallVector<int> ExtMask1(Mask.size(), PoisonMaskElem);
6815 for (auto [Idx, I] : enumerate(CombinedMask1)) {
6816 if (I == PoisonMaskElem)
6817 continue;
6818 ExtMask1[Idx] = SV1->getMaskValue(I);
6820 SmallBitVector UseMask1 = buildUseMask(
6821 cast<FixedVectorType>(SV1->getOperand(1)->getType())
6822 ->getNumElements(),
6823 ExtMask1, UseMask::SecondArg);
6824 SmallVector<int> ExtMask2(CombinedMask2.size(), PoisonMaskElem);
6825 for (auto [Idx, I] : enumerate(CombinedMask2)) {
6826 if (I == PoisonMaskElem)
6827 continue;
6828 ExtMask2[Idx] = SV2->getMaskValue(I);
6830 SmallBitVector UseMask2 = buildUseMask(
6831 cast<FixedVectorType>(SV2->getOperand(1)->getType())
6832 ->getNumElements(),
6833 ExtMask2, UseMask::SecondArg);
6834 if (SV1->getOperand(0)->getType() ==
6835 SV2->getOperand(0)->getType() &&
6836 SV1->getOperand(0)->getType() != SV1->getType() &&
6837 isUndefVector(SV1->getOperand(1), UseMask1).all() &&
6838 isUndefVector(SV2->getOperand(1), UseMask2).all()) {
6839 Op1 = SV1->getOperand(0);
6840 Op2 = SV2->getOperand(0);
6841 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
6842 SV1->getShuffleMask().end());
6843 int LocalVF = ShuffleMask1.size();
6844 if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType()))
6845 LocalVF = FTy->getNumElements();
6846 combineMasks(LocalVF, ShuffleMask1, CombinedMask1);
6847 CombinedMask1.swap(ShuffleMask1);
6848 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
6849 SV2->getShuffleMask().end());
6850 LocalVF = ShuffleMask2.size();
6851 if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType()))
6852 LocalVF = FTy->getNumElements();
6853 combineMasks(LocalVF, ShuffleMask2, CombinedMask2);
6854 CombinedMask2.swap(ShuffleMask2);
6857 } while (PrevOp1 != Op1 || PrevOp2 != Op2);
6858 Builder.resizeToMatch(Op1, Op2);
6859 VF = std::max(cast<VectorType>(Op1->getType())
6860 ->getElementCount()
6861 .getKnownMinValue(),
6862 cast<VectorType>(Op2->getType())
6863 ->getElementCount()
6864 .getKnownMinValue());
6865 for (int I = 0, E = Mask.size(); I < E; ++I) {
6866 if (CombinedMask2[I] != PoisonMaskElem) {
6867 assert(CombinedMask1[I] == PoisonMaskElem &&
6868 "Expected undefined mask element");
6869 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
6872 if (Op1 == Op2 &&
6873 (ShuffleVectorInst::isIdentityMask(CombinedMask1, VF) ||
6874 (ShuffleVectorInst::isZeroEltSplatMask(CombinedMask1, VF) &&
6875 isa<ShuffleVectorInst>(Op1) &&
6876 cast<ShuffleVectorInst>(Op1)->getShuffleMask() ==
6877 ArrayRef(CombinedMask1))))
6878 return Builder.createIdentity(Op1);
6879 return Builder.createShuffleVector(
6880 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
6881 CombinedMask1);
6883 if (isa<PoisonValue>(V1))
6884 return Builder.createPoison(
6885 cast<VectorType>(V1->getType())->getElementType(), Mask.size());
6886 SmallVector<int> NewMask(Mask.begin(), Mask.end());
6887 bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true);
6888 assert(V1 && "Expected non-null value after looking through shuffles.");
6890 if (!IsIdentity)
6891 return Builder.createShuffleVector(V1, NewMask);
6892 return Builder.createIdentity(V1);
6895 } // namespace
6897 /// Returns the cost of the shuffle instructions with the given \p Kind, vector
6898 /// type \p Tp and optional \p Mask. Adds SLP-specifc cost estimation for insert
6899 /// subvector pattern.
6900 static InstructionCost
6901 getShuffleCost(const TargetTransformInfo &TTI, TTI::ShuffleKind Kind,
6902 VectorType *Tp, ArrayRef<int> Mask = std::nullopt,
6903 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
6904 int Index = 0, VectorType *SubTp = nullptr,
6905 ArrayRef<const Value *> Args = std::nullopt) {
6906 if (Kind != TTI::SK_PermuteTwoSrc)
6907 return TTI.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
6908 int NumSrcElts = Tp->getElementCount().getKnownMinValue();
6909 int NumSubElts;
6910 if (Mask.size() > 2 && ShuffleVectorInst::isInsertSubvectorMask(
6911 Mask, NumSrcElts, NumSubElts, Index)) {
6912 if (Index + NumSubElts > NumSrcElts &&
6913 Index + NumSrcElts <= static_cast<int>(Mask.size()))
6914 return TTI.getShuffleCost(
6915 TTI::SK_InsertSubvector,
6916 FixedVectorType::get(Tp->getElementType(), Mask.size()), std::nullopt,
6917 TTI::TCK_RecipThroughput, Index, Tp);
6919 return TTI.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
6922 /// Merges shuffle masks and emits final shuffle instruction, if required. It
6923 /// supports shuffling of 2 input vectors. It implements lazy shuffles emission,
6924 /// when the actual shuffle instruction is generated only if this is actually
6925 /// required. Otherwise, the shuffle instruction emission is delayed till the
6926 /// end of the process, to reduce the number of emitted instructions and further
6927 /// analysis/transformations.
6928 class BoUpSLP::ShuffleCostEstimator : public BaseShuffleAnalysis {
6929 bool IsFinalized = false;
6930 SmallVector<int> CommonMask;
6931 SmallVector<PointerUnion<Value *, const TreeEntry *>, 2> InVectors;
6932 const TargetTransformInfo &TTI;
6933 InstructionCost Cost = 0;
6934 SmallDenseSet<Value *> VectorizedVals;
6935 BoUpSLP &R;
6936 SmallPtrSetImpl<Value *> &CheckedExtracts;
6937 constexpr static TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6938 /// While set, still trying to estimate the cost for the same nodes and we
6939 /// can delay actual cost estimation (virtual shuffle instruction emission).
6940 /// May help better estimate the cost if same nodes must be permuted + allows
6941 /// to move most of the long shuffles cost estimation to TTI.
6942 bool SameNodesEstimated = true;
6944 static Constant *getAllOnesValue(const DataLayout &DL, Type *Ty) {
6945 if (Ty->getScalarType()->isPointerTy()) {
6946 Constant *Res = ConstantExpr::getIntToPtr(
6947 ConstantInt::getAllOnesValue(
6948 IntegerType::get(Ty->getContext(),
6949 DL.getTypeStoreSizeInBits(Ty->getScalarType()))),
6950 Ty->getScalarType());
6951 if (auto *VTy = dyn_cast<VectorType>(Ty))
6952 Res = ConstantVector::getSplat(VTy->getElementCount(), Res);
6953 return Res;
6955 return Constant::getAllOnesValue(Ty);
6958 InstructionCost getBuildVectorCost(ArrayRef<Value *> VL, Value *Root) {
6959 if ((!Root && allConstant(VL)) || all_of(VL, UndefValue::classof))
6960 return TTI::TCC_Free;
6961 auto *VecTy = FixedVectorType::get(VL.front()->getType(), VL.size());
6962 InstructionCost GatherCost = 0;
6963 SmallVector<Value *> Gathers(VL.begin(), VL.end());
6964 // Improve gather cost for gather of loads, if we can group some of the
6965 // loads into vector loads.
6966 InstructionsState S = getSameOpcode(VL, *R.TLI);
6967 const unsigned Sz = R.DL->getTypeSizeInBits(VL.front()->getType());
6968 unsigned MinVF = R.getMinVF(2 * Sz);
6969 if (VL.size() > 2 &&
6970 ((S.getOpcode() == Instruction::Load && !S.isAltShuffle()) ||
6971 (InVectors.empty() &&
6972 any_of(seq<unsigned>(0, VL.size() / MinVF),
6973 [&](unsigned Idx) {
6974 ArrayRef<Value *> SubVL = VL.slice(Idx * MinVF, MinVF);
6975 InstructionsState S = getSameOpcode(SubVL, *R.TLI);
6976 return S.getOpcode() == Instruction::Load &&
6977 !S.isAltShuffle();
6978 }))) &&
6979 !all_of(Gathers, [&](Value *V) { return R.getTreeEntry(V); }) &&
6980 !isSplat(Gathers)) {
6981 SetVector<Value *> VectorizedLoads;
6982 SmallVector<LoadInst *> VectorizedStarts;
6983 SmallVector<std::pair<unsigned, unsigned>> ScatterVectorized;
6984 unsigned StartIdx = 0;
6985 unsigned VF = VL.size() / 2;
6986 for (; VF >= MinVF; VF /= 2) {
6987 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
6988 Cnt += VF) {
6989 ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
6990 if (S.getOpcode() != Instruction::Load || S.isAltShuffle()) {
6991 InstructionsState SliceS = getSameOpcode(Slice, *R.TLI);
6992 if (SliceS.getOpcode() != Instruction::Load ||
6993 SliceS.isAltShuffle())
6994 continue;
6996 if (!VectorizedLoads.count(Slice.front()) &&
6997 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
6998 SmallVector<Value *> PointerOps;
6999 OrdersType CurrentOrder;
7000 LoadsState LS =
7001 canVectorizeLoads(Slice, Slice.front(), TTI, *R.DL, *R.SE,
7002 *R.LI, *R.TLI, CurrentOrder, PointerOps);
7003 switch (LS) {
7004 case LoadsState::Vectorize:
7005 case LoadsState::ScatterVectorize:
7006 case LoadsState::PossibleStridedVectorize:
7007 // Mark the vectorized loads so that we don't vectorize them
7008 // again.
7009 // TODO: better handling of loads with reorders.
7010 if (LS == LoadsState::Vectorize && CurrentOrder.empty())
7011 VectorizedStarts.push_back(cast<LoadInst>(Slice.front()));
7012 else
7013 ScatterVectorized.emplace_back(Cnt, VF);
7014 VectorizedLoads.insert(Slice.begin(), Slice.end());
7015 // If we vectorized initial block, no need to try to vectorize
7016 // it again.
7017 if (Cnt == StartIdx)
7018 StartIdx += VF;
7019 break;
7020 case LoadsState::Gather:
7021 break;
7025 // Check if the whole array was vectorized already - exit.
7026 if (StartIdx >= VL.size())
7027 break;
7028 // Found vectorizable parts - exit.
7029 if (!VectorizedLoads.empty())
7030 break;
7032 if (!VectorizedLoads.empty()) {
7033 unsigned NumParts = TTI.getNumberOfParts(VecTy);
7034 bool NeedInsertSubvectorAnalysis =
7035 !NumParts || (VL.size() / VF) > NumParts;
7036 // Get the cost for gathered loads.
7037 for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
7038 if (VectorizedLoads.contains(VL[I]))
7039 continue;
7040 GatherCost += getBuildVectorCost(VL.slice(I, VF), Root);
7042 // Exclude potentially vectorized loads from list of gathered
7043 // scalars.
7044 Gathers.assign(Gathers.size(), PoisonValue::get(VL.front()->getType()));
7045 // The cost for vectorized loads.
7046 InstructionCost ScalarsCost = 0;
7047 for (Value *V : VectorizedLoads) {
7048 auto *LI = cast<LoadInst>(V);
7049 ScalarsCost +=
7050 TTI.getMemoryOpCost(Instruction::Load, LI->getType(),
7051 LI->getAlign(), LI->getPointerAddressSpace(),
7052 CostKind, TTI::OperandValueInfo(), LI);
7054 auto *LoadTy = FixedVectorType::get(VL.front()->getType(), VF);
7055 for (LoadInst *LI : VectorizedStarts) {
7056 Align Alignment = LI->getAlign();
7057 GatherCost +=
7058 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
7059 LI->getPointerAddressSpace(), CostKind,
7060 TTI::OperandValueInfo(), LI);
7062 for (std::pair<unsigned, unsigned> P : ScatterVectorized) {
7063 auto *LI0 = cast<LoadInst>(VL[P.first]);
7064 Align CommonAlignment = LI0->getAlign();
7065 for (Value *V : VL.slice(P.first + 1, VF - 1))
7066 CommonAlignment =
7067 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
7068 GatherCost += TTI.getGatherScatterOpCost(
7069 Instruction::Load, LoadTy, LI0->getPointerOperand(),
7070 /*VariableMask=*/false, CommonAlignment, CostKind, LI0);
7072 if (NeedInsertSubvectorAnalysis) {
7073 // Add the cost for the subvectors insert.
7074 for (int I = VF, E = VL.size(); I < E; I += VF)
7075 GatherCost += TTI.getShuffleCost(TTI::SK_InsertSubvector, VecTy,
7076 std::nullopt, CostKind, I, LoadTy);
7078 GatherCost -= ScalarsCost;
7080 } else if (!Root && isSplat(VL)) {
7081 // Found the broadcasting of the single scalar, calculate the cost as
7082 // the broadcast.
7083 const auto *It =
7084 find_if(VL, [](Value *V) { return !isa<UndefValue>(V); });
7085 assert(It != VL.end() && "Expected at least one non-undef value.");
7086 // Add broadcast for non-identity shuffle only.
7087 bool NeedShuffle =
7088 count(VL, *It) > 1 &&
7089 (VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof));
7090 InstructionCost InsertCost = TTI.getVectorInstrCost(
7091 Instruction::InsertElement, VecTy, CostKind,
7092 NeedShuffle ? 0 : std::distance(VL.begin(), It),
7093 PoisonValue::get(VecTy), *It);
7094 return InsertCost +
7095 (NeedShuffle ? TTI.getShuffleCost(
7096 TargetTransformInfo::SK_Broadcast, VecTy,
7097 /*Mask=*/std::nullopt, CostKind, /*Index=*/0,
7098 /*SubTp=*/nullptr, /*Args=*/*It)
7099 : TTI::TCC_Free);
7101 return GatherCost +
7102 (all_of(Gathers, UndefValue::classof)
7103 ? TTI::TCC_Free
7104 : R.getGatherCost(Gathers, !Root && VL.equals(Gathers)));
7107 /// Compute the cost of creating a vector containing the extracted values from
7108 /// \p VL.
7109 InstructionCost
7110 computeExtractCost(ArrayRef<Value *> VL, ArrayRef<int> Mask,
7111 ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
7112 unsigned NumParts) {
7113 assert(VL.size() > NumParts && "Unexpected scalarized shuffle.");
7114 unsigned NumElts =
7115 std::accumulate(VL.begin(), VL.end(), 0, [](unsigned Sz, Value *V) {
7116 auto *EE = dyn_cast<ExtractElementInst>(V);
7117 if (!EE)
7118 return Sz;
7119 auto *VecTy = cast<FixedVectorType>(EE->getVectorOperandType());
7120 return std::max(Sz, VecTy->getNumElements());
7122 unsigned NumSrcRegs = TTI.getNumberOfParts(
7123 FixedVectorType::get(VL.front()->getType(), NumElts));
7124 if (NumSrcRegs == 0)
7125 NumSrcRegs = 1;
7126 // FIXME: this must be moved to TTI for better estimation.
7127 unsigned EltsPerVector = PowerOf2Ceil(std::max(
7128 divideCeil(VL.size(), NumParts), divideCeil(NumElts, NumSrcRegs)));
7129 auto CheckPerRegistersShuffle =
7130 [&](MutableArrayRef<int> Mask) -> std::optional<TTI::ShuffleKind> {
7131 DenseSet<int> RegIndices;
7132 // Check that if trying to permute same single/2 input vectors.
7133 TTI::ShuffleKind ShuffleKind = TTI::SK_PermuteSingleSrc;
7134 int FirstRegId = -1;
7135 for (int &I : Mask) {
7136 if (I == PoisonMaskElem)
7137 continue;
7138 int RegId = (I / NumElts) * NumParts + (I % NumElts) / EltsPerVector;
7139 if (FirstRegId < 0)
7140 FirstRegId = RegId;
7141 RegIndices.insert(RegId);
7142 if (RegIndices.size() > 2)
7143 return std::nullopt;
7144 if (RegIndices.size() == 2)
7145 ShuffleKind = TTI::SK_PermuteTwoSrc;
7146 I = (I % NumElts) % EltsPerVector +
7147 (RegId == FirstRegId ? 0 : EltsPerVector);
7149 return ShuffleKind;
7151 InstructionCost Cost = 0;
7153 // Process extracts in blocks of EltsPerVector to check if the source vector
7154 // operand can be re-used directly. If not, add the cost of creating a
7155 // shuffle to extract the values into a vector register.
7156 for (unsigned Part = 0; Part < NumParts; ++Part) {
7157 if (!ShuffleKinds[Part])
7158 continue;
7159 ArrayRef<int> MaskSlice =
7160 Mask.slice(Part * EltsPerVector,
7161 (Part == NumParts - 1 && Mask.size() % EltsPerVector != 0)
7162 ? Mask.size() % EltsPerVector
7163 : EltsPerVector);
7164 SmallVector<int> SubMask(EltsPerVector, PoisonMaskElem);
7165 copy(MaskSlice, SubMask.begin());
7166 std::optional<TTI::ShuffleKind> RegShuffleKind =
7167 CheckPerRegistersShuffle(SubMask);
7168 if (!RegShuffleKind) {
7169 Cost += ::getShuffleCost(
7170 TTI, *ShuffleKinds[Part],
7171 FixedVectorType::get(VL.front()->getType(), NumElts), MaskSlice);
7172 continue;
7174 if (*RegShuffleKind != TTI::SK_PermuteSingleSrc ||
7175 !ShuffleVectorInst::isIdentityMask(SubMask, EltsPerVector)) {
7176 Cost += ::getShuffleCost(
7177 TTI, *RegShuffleKind,
7178 FixedVectorType::get(VL.front()->getType(), EltsPerVector),
7179 SubMask);
7182 return Cost;
7184 /// Transforms mask \p CommonMask per given \p Mask to make proper set after
7185 /// shuffle emission.
7186 static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask,
7187 ArrayRef<int> Mask) {
7188 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7189 if (Mask[Idx] != PoisonMaskElem)
7190 CommonMask[Idx] = Idx;
7192 /// Adds the cost of reshuffling \p E1 and \p E2 (if present), using given
7193 /// mask \p Mask, register number \p Part, that includes \p SliceSize
7194 /// elements.
7195 void estimateNodesPermuteCost(const TreeEntry &E1, const TreeEntry *E2,
7196 ArrayRef<int> Mask, unsigned Part,
7197 unsigned SliceSize) {
7198 if (SameNodesEstimated) {
7199 // Delay the cost estimation if the same nodes are reshuffling.
7200 // If we already requested the cost of reshuffling of E1 and E2 before, no
7201 // need to estimate another cost with the sub-Mask, instead include this
7202 // sub-Mask into the CommonMask to estimate it later and avoid double cost
7203 // estimation.
7204 if ((InVectors.size() == 2 &&
7205 InVectors.front().get<const TreeEntry *>() == &E1 &&
7206 InVectors.back().get<const TreeEntry *>() == E2) ||
7207 (!E2 && InVectors.front().get<const TreeEntry *>() == &E1)) {
7208 assert(all_of(ArrayRef(CommonMask).slice(Part * SliceSize, SliceSize),
7209 [](int Idx) { return Idx == PoisonMaskElem; }) &&
7210 "Expected all poisoned elements.");
7211 ArrayRef<int> SubMask =
7212 ArrayRef(Mask).slice(Part * SliceSize, SliceSize);
7213 copy(SubMask, std::next(CommonMask.begin(), SliceSize * Part));
7214 return;
7216 // Found non-matching nodes - need to estimate the cost for the matched
7217 // and transform mask.
7218 Cost += createShuffle(InVectors.front(),
7219 InVectors.size() == 1 ? nullptr : InVectors.back(),
7220 CommonMask);
7221 transformMaskAfterShuffle(CommonMask, CommonMask);
7223 SameNodesEstimated = false;
7224 Cost += createShuffle(&E1, E2, Mask);
7225 transformMaskAfterShuffle(CommonMask, Mask);
7228 class ShuffleCostBuilder {
7229 const TargetTransformInfo &TTI;
7231 static bool isEmptyOrIdentity(ArrayRef<int> Mask, unsigned VF) {
7232 int Index = -1;
7233 return Mask.empty() ||
7234 (VF == Mask.size() &&
7235 ShuffleVectorInst::isIdentityMask(Mask, VF)) ||
7236 (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) &&
7237 Index == 0);
7240 public:
7241 ShuffleCostBuilder(const TargetTransformInfo &TTI) : TTI(TTI) {}
7242 ~ShuffleCostBuilder() = default;
7243 InstructionCost createShuffleVector(Value *V1, Value *,
7244 ArrayRef<int> Mask) const {
7245 // Empty mask or identity mask are free.
7246 unsigned VF =
7247 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
7248 if (isEmptyOrIdentity(Mask, VF))
7249 return TTI::TCC_Free;
7250 return ::getShuffleCost(TTI, TTI::SK_PermuteTwoSrc,
7251 cast<VectorType>(V1->getType()), Mask);
7253 InstructionCost createShuffleVector(Value *V1, ArrayRef<int> Mask) const {
7254 // Empty mask or identity mask are free.
7255 unsigned VF =
7256 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
7257 if (isEmptyOrIdentity(Mask, VF))
7258 return TTI::TCC_Free;
7259 return TTI.getShuffleCost(TTI::SK_PermuteSingleSrc,
7260 cast<VectorType>(V1->getType()), Mask);
7262 InstructionCost createIdentity(Value *) const { return TTI::TCC_Free; }
7263 InstructionCost createPoison(Type *Ty, unsigned VF) const {
7264 return TTI::TCC_Free;
7266 void resizeToMatch(Value *&, Value *&) const {}
7269 /// Smart shuffle instruction emission, walks through shuffles trees and
7270 /// tries to find the best matching vector for the actual shuffle
7271 /// instruction.
7272 InstructionCost
7273 createShuffle(const PointerUnion<Value *, const TreeEntry *> &P1,
7274 const PointerUnion<Value *, const TreeEntry *> &P2,
7275 ArrayRef<int> Mask) {
7276 ShuffleCostBuilder Builder(TTI);
7277 SmallVector<int> CommonMask(Mask.begin(), Mask.end());
7278 Value *V1 = P1.dyn_cast<Value *>(), *V2 = P2.dyn_cast<Value *>();
7279 unsigned CommonVF = Mask.size();
7280 if (!V1 && !V2 && !P2.isNull()) {
7281 // Shuffle 2 entry nodes.
7282 const TreeEntry *E = P1.get<const TreeEntry *>();
7283 unsigned VF = E->getVectorFactor();
7284 const TreeEntry *E2 = P2.get<const TreeEntry *>();
7285 CommonVF = std::max(VF, E2->getVectorFactor());
7286 assert(all_of(Mask,
7287 [=](int Idx) {
7288 return Idx < 2 * static_cast<int>(CommonVF);
7289 }) &&
7290 "All elements in mask must be less than 2 * CommonVF.");
7291 if (E->Scalars.size() == E2->Scalars.size()) {
7292 SmallVector<int> EMask = E->getCommonMask();
7293 SmallVector<int> E2Mask = E2->getCommonMask();
7294 if (!EMask.empty() || !E2Mask.empty()) {
7295 for (int &Idx : CommonMask) {
7296 if (Idx == PoisonMaskElem)
7297 continue;
7298 if (Idx < static_cast<int>(CommonVF) && !EMask.empty())
7299 Idx = EMask[Idx];
7300 else if (Idx >= static_cast<int>(CommonVF))
7301 Idx = (E2Mask.empty() ? Idx - CommonVF : E2Mask[Idx - CommonVF]) +
7302 E->Scalars.size();
7305 CommonVF = E->Scalars.size();
7307 V1 = Constant::getNullValue(
7308 FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7309 V2 = getAllOnesValue(
7310 *R.DL, FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7311 } else if (!V1 && P2.isNull()) {
7312 // Shuffle single entry node.
7313 const TreeEntry *E = P1.get<const TreeEntry *>();
7314 unsigned VF = E->getVectorFactor();
7315 CommonVF = VF;
7316 assert(
7317 all_of(Mask,
7318 [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) &&
7319 "All elements in mask must be less than CommonVF.");
7320 if (E->Scalars.size() == Mask.size() && VF != Mask.size()) {
7321 SmallVector<int> EMask = E->getCommonMask();
7322 assert(!EMask.empty() && "Expected non-empty common mask.");
7323 for (int &Idx : CommonMask) {
7324 if (Idx != PoisonMaskElem)
7325 Idx = EMask[Idx];
7327 CommonVF = E->Scalars.size();
7329 V1 = Constant::getNullValue(
7330 FixedVectorType::get(E->Scalars.front()->getType(), CommonVF));
7331 } else if (V1 && P2.isNull()) {
7332 // Shuffle single vector.
7333 CommonVF = cast<FixedVectorType>(V1->getType())->getNumElements();
7334 assert(
7335 all_of(Mask,
7336 [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) &&
7337 "All elements in mask must be less than CommonVF.");
7338 } else if (V1 && !V2) {
7339 // Shuffle vector and tree node.
7340 unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7341 const TreeEntry *E2 = P2.get<const TreeEntry *>();
7342 CommonVF = std::max(VF, E2->getVectorFactor());
7343 assert(all_of(Mask,
7344 [=](int Idx) {
7345 return Idx < 2 * static_cast<int>(CommonVF);
7346 }) &&
7347 "All elements in mask must be less than 2 * CommonVF.");
7348 if (E2->Scalars.size() == VF && VF != CommonVF) {
7349 SmallVector<int> E2Mask = E2->getCommonMask();
7350 assert(!E2Mask.empty() && "Expected non-empty common mask.");
7351 for (int &Idx : CommonMask) {
7352 if (Idx == PoisonMaskElem)
7353 continue;
7354 if (Idx >= static_cast<int>(CommonVF))
7355 Idx = E2Mask[Idx - CommonVF] + VF;
7357 CommonVF = VF;
7359 V1 = Constant::getNullValue(
7360 FixedVectorType::get(E2->Scalars.front()->getType(), CommonVF));
7361 V2 = getAllOnesValue(
7362 *R.DL,
7363 FixedVectorType::get(E2->Scalars.front()->getType(), CommonVF));
7364 } else if (!V1 && V2) {
7365 // Shuffle vector and tree node.
7366 unsigned VF = cast<FixedVectorType>(V2->getType())->getNumElements();
7367 const TreeEntry *E1 = P1.get<const TreeEntry *>();
7368 CommonVF = std::max(VF, E1->getVectorFactor());
7369 assert(all_of(Mask,
7370 [=](int Idx) {
7371 return Idx < 2 * static_cast<int>(CommonVF);
7372 }) &&
7373 "All elements in mask must be less than 2 * CommonVF.");
7374 if (E1->Scalars.size() == VF && VF != CommonVF) {
7375 SmallVector<int> E1Mask = E1->getCommonMask();
7376 assert(!E1Mask.empty() && "Expected non-empty common mask.");
7377 for (int &Idx : CommonMask) {
7378 if (Idx == PoisonMaskElem)
7379 continue;
7380 if (Idx >= static_cast<int>(CommonVF))
7381 Idx = E1Mask[Idx - CommonVF] + VF;
7382 else
7383 Idx = E1Mask[Idx];
7385 CommonVF = VF;
7387 V1 = Constant::getNullValue(
7388 FixedVectorType::get(E1->Scalars.front()->getType(), CommonVF));
7389 V2 = getAllOnesValue(
7390 *R.DL,
7391 FixedVectorType::get(E1->Scalars.front()->getType(), CommonVF));
7392 } else {
7393 assert(V1 && V2 && "Expected both vectors.");
7394 unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7395 CommonVF =
7396 std::max(VF, cast<FixedVectorType>(V2->getType())->getNumElements());
7397 assert(all_of(Mask,
7398 [=](int Idx) {
7399 return Idx < 2 * static_cast<int>(CommonVF);
7400 }) &&
7401 "All elements in mask must be less than 2 * CommonVF.");
7402 if (V1->getType() != V2->getType()) {
7403 V1 = Constant::getNullValue(FixedVectorType::get(
7404 cast<FixedVectorType>(V1->getType())->getElementType(), CommonVF));
7405 V2 = getAllOnesValue(
7406 *R.DL, FixedVectorType::get(
7407 cast<FixedVectorType>(V1->getType())->getElementType(),
7408 CommonVF));
7411 InVectors.front() = Constant::getNullValue(FixedVectorType::get(
7412 cast<FixedVectorType>(V1->getType())->getElementType(),
7413 CommonMask.size()));
7414 if (InVectors.size() == 2)
7415 InVectors.pop_back();
7416 return BaseShuffleAnalysis::createShuffle<InstructionCost>(
7417 V1, V2, CommonMask, Builder);
7420 public:
7421 ShuffleCostEstimator(TargetTransformInfo &TTI,
7422 ArrayRef<Value *> VectorizedVals, BoUpSLP &R,
7423 SmallPtrSetImpl<Value *> &CheckedExtracts)
7424 : TTI(TTI), VectorizedVals(VectorizedVals.begin(), VectorizedVals.end()),
7425 R(R), CheckedExtracts(CheckedExtracts) {}
7426 Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask,
7427 ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
7428 unsigned NumParts, bool &UseVecBaseAsInput) {
7429 UseVecBaseAsInput = false;
7430 if (Mask.empty())
7431 return nullptr;
7432 Value *VecBase = nullptr;
7433 ArrayRef<Value *> VL = E->Scalars;
7434 // If the resulting type is scalarized, do not adjust the cost.
7435 if (NumParts == VL.size())
7436 return nullptr;
7437 // Check if it can be considered reused if same extractelements were
7438 // vectorized already.
7439 bool PrevNodeFound = any_of(
7440 ArrayRef(R.VectorizableTree).take_front(E->Idx),
7441 [&](const std::unique_ptr<TreeEntry> &TE) {
7442 return ((!TE->isAltShuffle() &&
7443 TE->getOpcode() == Instruction::ExtractElement) ||
7444 TE->State == TreeEntry::NeedToGather) &&
7445 all_of(enumerate(TE->Scalars), [&](auto &&Data) {
7446 return VL.size() > Data.index() &&
7447 (Mask[Data.index()] == PoisonMaskElem ||
7448 isa<UndefValue>(VL[Data.index()]) ||
7449 Data.value() == VL[Data.index()]);
7452 SmallPtrSet<Value *, 4> UniqueBases;
7453 unsigned SliceSize = VL.size() / NumParts;
7454 for (unsigned Part = 0; Part < NumParts; ++Part) {
7455 ArrayRef<int> SubMask = Mask.slice(Part * SliceSize, SliceSize);
7456 for (auto [I, V] : enumerate(VL.slice(Part * SliceSize, SliceSize))) {
7457 // Ignore non-extractelement scalars.
7458 if (isa<UndefValue>(V) ||
7459 (!SubMask.empty() && SubMask[I] == PoisonMaskElem))
7460 continue;
7461 // If all users of instruction are going to be vectorized and this
7462 // instruction itself is not going to be vectorized, consider this
7463 // instruction as dead and remove its cost from the final cost of the
7464 // vectorized tree.
7465 // Also, avoid adjusting the cost for extractelements with multiple uses
7466 // in different graph entries.
7467 auto *EE = cast<ExtractElementInst>(V);
7468 VecBase = EE->getVectorOperand();
7469 UniqueBases.insert(VecBase);
7470 const TreeEntry *VE = R.getTreeEntry(V);
7471 if (!CheckedExtracts.insert(V).second ||
7472 !R.areAllUsersVectorized(cast<Instruction>(V), &VectorizedVals) ||
7473 (VE && VE != E))
7474 continue;
7475 std::optional<unsigned> EEIdx = getExtractIndex(EE);
7476 if (!EEIdx)
7477 continue;
7478 unsigned Idx = *EEIdx;
7479 // Take credit for instruction that will become dead.
7480 if (EE->hasOneUse() || !PrevNodeFound) {
7481 Instruction *Ext = EE->user_back();
7482 if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) {
7483 return isa<GetElementPtrInst>(U);
7484 })) {
7485 // Use getExtractWithExtendCost() to calculate the cost of
7486 // extractelement/ext pair.
7487 Cost -=
7488 TTI.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
7489 EE->getVectorOperandType(), Idx);
7490 // Add back the cost of s|zext which is subtracted separately.
7491 Cost += TTI.getCastInstrCost(
7492 Ext->getOpcode(), Ext->getType(), EE->getType(),
7493 TTI::getCastContextHint(Ext), CostKind, Ext);
7494 continue;
7497 Cost -= TTI.getVectorInstrCost(*EE, EE->getVectorOperandType(),
7498 CostKind, Idx);
7501 // Check that gather of extractelements can be represented as just a
7502 // shuffle of a single/two vectors the scalars are extracted from.
7503 // Found the bunch of extractelement instructions that must be gathered
7504 // into a vector and can be represented as a permutation elements in a
7505 // single input vector or of 2 input vectors.
7506 // Done for reused if same extractelements were vectorized already.
7507 if (!PrevNodeFound)
7508 Cost += computeExtractCost(VL, Mask, ShuffleKinds, NumParts);
7509 InVectors.assign(1, E);
7510 CommonMask.assign(Mask.begin(), Mask.end());
7511 transformMaskAfterShuffle(CommonMask, CommonMask);
7512 SameNodesEstimated = false;
7513 if (NumParts != 1 && UniqueBases.size() != 1) {
7514 UseVecBaseAsInput = true;
7515 VecBase = Constant::getNullValue(
7516 FixedVectorType::get(VL.front()->getType(), CommonMask.size()));
7518 return VecBase;
7520 /// Checks if the specified entry \p E needs to be delayed because of its
7521 /// dependency nodes.
7522 std::optional<InstructionCost>
7523 needToDelay(const TreeEntry *,
7524 ArrayRef<SmallVector<const TreeEntry *>>) const {
7525 // No need to delay the cost estimation during analysis.
7526 return std::nullopt;
7528 void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) {
7529 if (&E1 == &E2) {
7530 assert(all_of(Mask,
7531 [&](int Idx) {
7532 return Idx < static_cast<int>(E1.getVectorFactor());
7533 }) &&
7534 "Expected single vector shuffle mask.");
7535 add(E1, Mask);
7536 return;
7538 if (InVectors.empty()) {
7539 CommonMask.assign(Mask.begin(), Mask.end());
7540 InVectors.assign({&E1, &E2});
7541 return;
7543 assert(!CommonMask.empty() && "Expected non-empty common mask.");
7544 auto *MaskVecTy =
7545 FixedVectorType::get(E1.Scalars.front()->getType(), Mask.size());
7546 unsigned NumParts = TTI.getNumberOfParts(MaskVecTy);
7547 if (NumParts == 0 || NumParts >= Mask.size())
7548 NumParts = 1;
7549 unsigned SliceSize = Mask.size() / NumParts;
7550 const auto *It =
7551 find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; });
7552 unsigned Part = std::distance(Mask.begin(), It) / SliceSize;
7553 estimateNodesPermuteCost(E1, &E2, Mask, Part, SliceSize);
7555 void add(const TreeEntry &E1, ArrayRef<int> Mask) {
7556 if (InVectors.empty()) {
7557 CommonMask.assign(Mask.begin(), Mask.end());
7558 InVectors.assign(1, &E1);
7559 return;
7561 assert(!CommonMask.empty() && "Expected non-empty common mask.");
7562 auto *MaskVecTy =
7563 FixedVectorType::get(E1.Scalars.front()->getType(), Mask.size());
7564 unsigned NumParts = TTI.getNumberOfParts(MaskVecTy);
7565 if (NumParts == 0 || NumParts >= Mask.size())
7566 NumParts = 1;
7567 unsigned SliceSize = Mask.size() / NumParts;
7568 const auto *It =
7569 find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; });
7570 unsigned Part = std::distance(Mask.begin(), It) / SliceSize;
7571 estimateNodesPermuteCost(E1, nullptr, Mask, Part, SliceSize);
7572 if (!SameNodesEstimated && InVectors.size() == 1)
7573 InVectors.emplace_back(&E1);
7575 /// Adds 2 input vectors and the mask for their shuffling.
7576 void add(Value *V1, Value *V2, ArrayRef<int> Mask) {
7577 // May come only for shuffling of 2 vectors with extractelements, already
7578 // handled in adjustExtracts.
7579 assert(InVectors.size() == 1 &&
7580 all_of(enumerate(CommonMask),
7581 [&](auto P) {
7582 if (P.value() == PoisonMaskElem)
7583 return Mask[P.index()] == PoisonMaskElem;
7584 auto *EI =
7585 cast<ExtractElementInst>(InVectors.front()
7586 .get<const TreeEntry *>()
7587 ->Scalars[P.index()]);
7588 return EI->getVectorOperand() == V1 ||
7589 EI->getVectorOperand() == V2;
7590 }) &&
7591 "Expected extractelement vectors.");
7593 /// Adds another one input vector and the mask for the shuffling.
7594 void add(Value *V1, ArrayRef<int> Mask, bool ForExtracts = false) {
7595 if (InVectors.empty()) {
7596 assert(CommonMask.empty() && !ForExtracts &&
7597 "Expected empty input mask/vectors.");
7598 CommonMask.assign(Mask.begin(), Mask.end());
7599 InVectors.assign(1, V1);
7600 return;
7602 if (ForExtracts) {
7603 // No need to add vectors here, already handled them in adjustExtracts.
7604 assert(InVectors.size() == 1 &&
7605 InVectors.front().is<const TreeEntry *>() && !CommonMask.empty() &&
7606 all_of(enumerate(CommonMask),
7607 [&](auto P) {
7608 Value *Scalar = InVectors.front()
7609 .get<const TreeEntry *>()
7610 ->Scalars[P.index()];
7611 if (P.value() == PoisonMaskElem)
7612 return P.value() == Mask[P.index()] ||
7613 isa<UndefValue>(Scalar);
7614 if (isa<Constant>(V1))
7615 return true;
7616 auto *EI = cast<ExtractElementInst>(Scalar);
7617 return EI->getVectorOperand() == V1;
7618 }) &&
7619 "Expected only tree entry for extractelement vectors.");
7620 return;
7622 assert(!InVectors.empty() && !CommonMask.empty() &&
7623 "Expected only tree entries from extracts/reused buildvectors.");
7624 unsigned VF = cast<FixedVectorType>(V1->getType())->getNumElements();
7625 if (InVectors.size() == 2) {
7626 Cost += createShuffle(InVectors.front(), InVectors.back(), CommonMask);
7627 transformMaskAfterShuffle(CommonMask, CommonMask);
7628 VF = std::max<unsigned>(VF, CommonMask.size());
7629 } else if (const auto *InTE =
7630 InVectors.front().dyn_cast<const TreeEntry *>()) {
7631 VF = std::max(VF, InTE->getVectorFactor());
7632 } else {
7633 VF = std::max(
7634 VF, cast<FixedVectorType>(InVectors.front().get<Value *>()->getType())
7635 ->getNumElements());
7637 InVectors.push_back(V1);
7638 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7639 if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem)
7640 CommonMask[Idx] = Mask[Idx] + VF;
7642 Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0,
7643 Value *Root = nullptr) {
7644 Cost += getBuildVectorCost(VL, Root);
7645 if (!Root) {
7646 // FIXME: Need to find a way to avoid use of getNullValue here.
7647 SmallVector<Constant *> Vals;
7648 unsigned VF = VL.size();
7649 if (MaskVF != 0)
7650 VF = std::min(VF, MaskVF);
7651 for (Value *V : VL.take_front(VF)) {
7652 if (isa<UndefValue>(V)) {
7653 Vals.push_back(cast<Constant>(V));
7654 continue;
7656 Vals.push_back(Constant::getNullValue(V->getType()));
7658 return ConstantVector::get(Vals);
7660 return ConstantVector::getSplat(
7661 ElementCount::getFixed(
7662 cast<FixedVectorType>(Root->getType())->getNumElements()),
7663 getAllOnesValue(*R.DL, VL.front()->getType()));
7665 InstructionCost createFreeze(InstructionCost Cost) { return Cost; }
7666 /// Finalize emission of the shuffles.
7667 InstructionCost
7668 finalize(ArrayRef<int> ExtMask, unsigned VF = 0,
7669 function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) {
7670 IsFinalized = true;
7671 if (Action) {
7672 const PointerUnion<Value *, const TreeEntry *> &Vec = InVectors.front();
7673 if (InVectors.size() == 2)
7674 Cost += createShuffle(Vec, InVectors.back(), CommonMask);
7675 else
7676 Cost += createShuffle(Vec, nullptr, CommonMask);
7677 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
7678 if (CommonMask[Idx] != PoisonMaskElem)
7679 CommonMask[Idx] = Idx;
7680 assert(VF > 0 &&
7681 "Expected vector length for the final value before action.");
7682 Value *V = Vec.get<Value *>();
7683 Action(V, CommonMask);
7684 InVectors.front() = V;
7686 ::addMask(CommonMask, ExtMask, /*ExtendingManyInputs=*/true);
7687 if (CommonMask.empty()) {
7688 assert(InVectors.size() == 1 && "Expected only one vector with no mask");
7689 return Cost;
7691 return Cost +
7692 createShuffle(InVectors.front(),
7693 InVectors.size() == 2 ? InVectors.back() : nullptr,
7694 CommonMask);
7697 ~ShuffleCostEstimator() {
7698 assert((IsFinalized || CommonMask.empty()) &&
7699 "Shuffle construction must be finalized.");
7703 const BoUpSLP::TreeEntry *BoUpSLP::getOperandEntry(const TreeEntry *E,
7704 unsigned Idx) const {
7705 Value *Op = E->getOperand(Idx).front();
7706 if (const TreeEntry *TE = getTreeEntry(Op)) {
7707 if (find_if(E->UserTreeIndices, [&](const EdgeInfo &EI) {
7708 return EI.EdgeIdx == Idx && EI.UserTE == E;
7709 }) != TE->UserTreeIndices.end())
7710 return TE;
7711 auto MIt = MultiNodeScalars.find(Op);
7712 if (MIt != MultiNodeScalars.end()) {
7713 for (const TreeEntry *TE : MIt->second) {
7714 if (find_if(TE->UserTreeIndices, [&](const EdgeInfo &EI) {
7715 return EI.EdgeIdx == Idx && EI.UserTE == E;
7716 }) != TE->UserTreeIndices.end())
7717 return TE;
7721 const auto *It =
7722 find_if(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
7723 return TE->State == TreeEntry::NeedToGather &&
7724 find_if(TE->UserTreeIndices, [&](const EdgeInfo &EI) {
7725 return EI.EdgeIdx == Idx && EI.UserTE == E;
7726 }) != TE->UserTreeIndices.end();
7728 assert(It != VectorizableTree.end() && "Expected vectorizable entry.");
7729 return It->get();
7732 InstructionCost
7733 BoUpSLP::getEntryCost(const TreeEntry *E, ArrayRef<Value *> VectorizedVals,
7734 SmallPtrSetImpl<Value *> &CheckedExtracts) {
7735 ArrayRef<Value *> VL = E->Scalars;
7737 Type *ScalarTy = VL[0]->getType();
7738 if (E->State != TreeEntry::NeedToGather) {
7739 if (auto *SI = dyn_cast<StoreInst>(VL[0]))
7740 ScalarTy = SI->getValueOperand()->getType();
7741 else if (auto *CI = dyn_cast<CmpInst>(VL[0]))
7742 ScalarTy = CI->getOperand(0)->getType();
7743 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7744 ScalarTy = IE->getOperand(1)->getType();
7746 if (!FixedVectorType::isValidElementType(ScalarTy))
7747 return InstructionCost::getInvalid();
7748 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7749 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7751 // If we have computed a smaller type for the expression, update VecTy so
7752 // that the costs will be accurate.
7753 auto It = MinBWs.find(E);
7754 if (It != MinBWs.end()) {
7755 ScalarTy = IntegerType::get(F->getContext(), It->second.first);
7756 VecTy = FixedVectorType::get(ScalarTy, VL.size());
7758 unsigned EntryVF = E->getVectorFactor();
7759 auto *FinalVecTy = FixedVectorType::get(ScalarTy, EntryVF);
7761 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7762 if (E->State == TreeEntry::NeedToGather) {
7763 if (allConstant(VL))
7764 return 0;
7765 if (isa<InsertElementInst>(VL[0]))
7766 return InstructionCost::getInvalid();
7767 return processBuildVector<ShuffleCostEstimator, InstructionCost>(
7768 E, *TTI, VectorizedVals, *this, CheckedExtracts);
7770 InstructionCost CommonCost = 0;
7771 SmallVector<int> Mask;
7772 if (!E->ReorderIndices.empty() &&
7773 E->State != TreeEntry::PossibleStridedVectorize) {
7774 SmallVector<int> NewMask;
7775 if (E->getOpcode() == Instruction::Store) {
7776 // For stores the order is actually a mask.
7777 NewMask.resize(E->ReorderIndices.size());
7778 copy(E->ReorderIndices, NewMask.begin());
7779 } else {
7780 inversePermutation(E->ReorderIndices, NewMask);
7782 ::addMask(Mask, NewMask);
7784 if (NeedToShuffleReuses)
7785 ::addMask(Mask, E->ReuseShuffleIndices);
7786 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
7787 CommonCost =
7788 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
7789 assert((E->State == TreeEntry::Vectorize ||
7790 E->State == TreeEntry::ScatterVectorize ||
7791 E->State == TreeEntry::PossibleStridedVectorize) &&
7792 "Unhandled state");
7793 assert(E->getOpcode() &&
7794 ((allSameType(VL) && allSameBlock(VL)) ||
7795 (E->getOpcode() == Instruction::GetElementPtr &&
7796 E->getMainOp()->getType()->isPointerTy())) &&
7797 "Invalid VL");
7798 Instruction *VL0 = E->getMainOp();
7799 unsigned ShuffleOrOp =
7800 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7801 SetVector<Value *> UniqueValues(VL.begin(), VL.end());
7802 const unsigned Sz = UniqueValues.size();
7803 SmallBitVector UsedScalars(Sz, false);
7804 for (unsigned I = 0; I < Sz; ++I) {
7805 if (getTreeEntry(UniqueValues[I]) == E)
7806 continue;
7807 UsedScalars.set(I);
7809 auto GetCastContextHint = [&](Value *V) {
7810 if (const TreeEntry *OpTE = getTreeEntry(V)) {
7811 if (OpTE->State == TreeEntry::ScatterVectorize)
7812 return TTI::CastContextHint::GatherScatter;
7813 if (OpTE->State == TreeEntry::Vectorize &&
7814 OpTE->getOpcode() == Instruction::Load && !OpTE->isAltShuffle()) {
7815 if (OpTE->ReorderIndices.empty())
7816 return TTI::CastContextHint::Normal;
7817 SmallVector<int> Mask;
7818 inversePermutation(OpTE->ReorderIndices, Mask);
7819 if (ShuffleVectorInst::isReverseMask(Mask, Mask.size()))
7820 return TTI::CastContextHint::Reversed;
7822 } else {
7823 InstructionsState SrcState = getSameOpcode(E->getOperand(0), *TLI);
7824 if (SrcState.getOpcode() == Instruction::Load && !SrcState.isAltShuffle())
7825 return TTI::CastContextHint::GatherScatter;
7827 return TTI::CastContextHint::None;
7829 auto GetCostDiff =
7830 [=](function_ref<InstructionCost(unsigned)> ScalarEltCost,
7831 function_ref<InstructionCost(InstructionCost)> VectorCost) {
7832 // Calculate the cost of this instruction.
7833 InstructionCost ScalarCost = 0;
7834 if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) {
7835 // For some of the instructions no need to calculate cost for each
7836 // particular instruction, we can use the cost of the single
7837 // instruction x total number of scalar instructions.
7838 ScalarCost = (Sz - UsedScalars.count()) * ScalarEltCost(0);
7839 } else {
7840 for (unsigned I = 0; I < Sz; ++I) {
7841 if (UsedScalars.test(I))
7842 continue;
7843 ScalarCost += ScalarEltCost(I);
7847 InstructionCost VecCost = VectorCost(CommonCost);
7848 // Check if the current node must be resized, if the parent node is not
7849 // resized.
7850 if (!UnaryInstruction::isCast(E->getOpcode()) && E->Idx != 0) {
7851 const EdgeInfo &EI = E->UserTreeIndices.front();
7852 if ((EI.UserTE->getOpcode() != Instruction::Select ||
7853 EI.EdgeIdx != 0) &&
7854 It != MinBWs.end()) {
7855 auto UserBWIt = MinBWs.find(EI.UserTE);
7856 Type *UserScalarTy =
7857 EI.UserTE->getOperand(EI.EdgeIdx).front()->getType();
7858 if (UserBWIt != MinBWs.end())
7859 UserScalarTy = IntegerType::get(ScalarTy->getContext(),
7860 UserBWIt->second.first);
7861 if (ScalarTy != UserScalarTy) {
7862 unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
7863 unsigned SrcBWSz = DL->getTypeSizeInBits(UserScalarTy);
7864 unsigned VecOpcode;
7865 auto *SrcVecTy =
7866 FixedVectorType::get(UserScalarTy, E->getVectorFactor());
7867 if (BWSz > SrcBWSz)
7868 VecOpcode = Instruction::Trunc;
7869 else
7870 VecOpcode =
7871 It->second.second ? Instruction::SExt : Instruction::ZExt;
7872 TTI::CastContextHint CCH = GetCastContextHint(VL0);
7873 VecCost += TTI->getCastInstrCost(VecOpcode, VecTy, SrcVecTy, CCH,
7874 CostKind);
7875 ScalarCost +=
7876 Sz * TTI->getCastInstrCost(VecOpcode, ScalarTy, UserScalarTy,
7877 CCH, CostKind);
7881 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost - CommonCost,
7882 ScalarCost, "Calculated costs for Tree"));
7883 return VecCost - ScalarCost;
7885 // Calculate cost difference from vectorizing set of GEPs.
7886 // Negative value means vectorizing is profitable.
7887 auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) {
7888 InstructionCost ScalarCost = 0;
7889 InstructionCost VecCost = 0;
7890 // Here we differentiate two cases: (1) when Ptrs represent a regular
7891 // vectorization tree node (as they are pointer arguments of scattered
7892 // loads) or (2) when Ptrs are the arguments of loads or stores being
7893 // vectorized as plane wide unit-stride load/store since all the
7894 // loads/stores are known to be from/to adjacent locations.
7895 assert(E->State == TreeEntry::Vectorize &&
7896 "Entry state expected to be Vectorize here.");
7897 if (isa<LoadInst, StoreInst>(VL0)) {
7898 // Case 2: estimate costs for pointer related costs when vectorizing to
7899 // a wide load/store.
7900 // Scalar cost is estimated as a set of pointers with known relationship
7901 // between them.
7902 // For vector code we will use BasePtr as argument for the wide load/store
7903 // but we also need to account all the instructions which are going to
7904 // stay in vectorized code due to uses outside of these scalar
7905 // loads/stores.
7906 ScalarCost = TTI->getPointersChainCost(
7907 Ptrs, BasePtr, TTI::PointersChainInfo::getUnitStride(), ScalarTy,
7908 CostKind);
7910 SmallVector<const Value *> PtrsRetainedInVecCode;
7911 for (Value *V : Ptrs) {
7912 if (V == BasePtr) {
7913 PtrsRetainedInVecCode.push_back(V);
7914 continue;
7916 auto *Ptr = dyn_cast<GetElementPtrInst>(V);
7917 // For simplicity assume Ptr to stay in vectorized code if it's not a
7918 // GEP instruction. We don't care since it's cost considered free.
7919 // TODO: We should check for any uses outside of vectorizable tree
7920 // rather than just single use.
7921 if (!Ptr || !Ptr->hasOneUse())
7922 PtrsRetainedInVecCode.push_back(V);
7925 if (PtrsRetainedInVecCode.size() == Ptrs.size()) {
7926 // If all pointers stay in vectorized code then we don't have
7927 // any savings on that.
7928 LLVM_DEBUG(dumpTreeCosts(E, 0, ScalarCost, ScalarCost,
7929 "Calculated GEPs cost for Tree"));
7930 return InstructionCost{TTI::TCC_Free};
7932 VecCost = TTI->getPointersChainCost(
7933 PtrsRetainedInVecCode, BasePtr,
7934 TTI::PointersChainInfo::getKnownStride(), VecTy, CostKind);
7935 } else {
7936 // Case 1: Ptrs are the arguments of loads that we are going to transform
7937 // into masked gather load intrinsic.
7938 // All the scalar GEPs will be removed as a result of vectorization.
7939 // For any external uses of some lanes extract element instructions will
7940 // be generated (which cost is estimated separately).
7941 TTI::PointersChainInfo PtrsInfo =
7942 all_of(Ptrs,
7943 [](const Value *V) {
7944 auto *Ptr = dyn_cast<GetElementPtrInst>(V);
7945 return Ptr && !Ptr->hasAllConstantIndices();
7947 ? TTI::PointersChainInfo::getUnknownStride()
7948 : TTI::PointersChainInfo::getKnownStride();
7950 ScalarCost = TTI->getPointersChainCost(Ptrs, BasePtr, PtrsInfo, ScalarTy,
7951 CostKind);
7952 if (auto *BaseGEP = dyn_cast<GEPOperator>(BasePtr)) {
7953 SmallVector<const Value *> Indices(BaseGEP->indices());
7954 VecCost = TTI->getGEPCost(BaseGEP->getSourceElementType(),
7955 BaseGEP->getPointerOperand(), Indices, VecTy,
7956 CostKind);
7960 LLVM_DEBUG(dumpTreeCosts(E, 0, VecCost, ScalarCost,
7961 "Calculated GEPs cost for Tree"));
7963 return VecCost - ScalarCost;
7966 switch (ShuffleOrOp) {
7967 case Instruction::PHI: {
7968 // Count reused scalars.
7969 InstructionCost ScalarCost = 0;
7970 SmallPtrSet<const TreeEntry *, 4> CountedOps;
7971 for (Value *V : UniqueValues) {
7972 auto *PHI = dyn_cast<PHINode>(V);
7973 if (!PHI)
7974 continue;
7976 ValueList Operands(PHI->getNumIncomingValues(), nullptr);
7977 for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) {
7978 Value *Op = PHI->getIncomingValue(I);
7979 Operands[I] = Op;
7981 if (const TreeEntry *OpTE = getTreeEntry(Operands.front()))
7982 if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second)
7983 if (!OpTE->ReuseShuffleIndices.empty())
7984 ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() -
7985 OpTE->Scalars.size());
7988 return CommonCost - ScalarCost;
7990 case Instruction::ExtractValue:
7991 case Instruction::ExtractElement: {
7992 auto GetScalarCost = [&](unsigned Idx) {
7993 auto *I = cast<Instruction>(UniqueValues[Idx]);
7994 VectorType *SrcVecTy;
7995 if (ShuffleOrOp == Instruction::ExtractElement) {
7996 auto *EE = cast<ExtractElementInst>(I);
7997 SrcVecTy = EE->getVectorOperandType();
7998 } else {
7999 auto *EV = cast<ExtractValueInst>(I);
8000 Type *AggregateTy = EV->getAggregateOperand()->getType();
8001 unsigned NumElts;
8002 if (auto *ATy = dyn_cast<ArrayType>(AggregateTy))
8003 NumElts = ATy->getNumElements();
8004 else
8005 NumElts = AggregateTy->getStructNumElements();
8006 SrcVecTy = FixedVectorType::get(ScalarTy, NumElts);
8008 if (I->hasOneUse()) {
8009 Instruction *Ext = I->user_back();
8010 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
8011 all_of(Ext->users(),
8012 [](User *U) { return isa<GetElementPtrInst>(U); })) {
8013 // Use getExtractWithExtendCost() to calculate the cost of
8014 // extractelement/ext pair.
8015 InstructionCost Cost = TTI->getExtractWithExtendCost(
8016 Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I));
8017 // Subtract the cost of s|zext which is subtracted separately.
8018 Cost -= TTI->getCastInstrCost(
8019 Ext->getOpcode(), Ext->getType(), I->getType(),
8020 TTI::getCastContextHint(Ext), CostKind, Ext);
8021 return Cost;
8024 return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy,
8025 CostKind, *getExtractIndex(I));
8027 auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; };
8028 return GetCostDiff(GetScalarCost, GetVectorCost);
8030 case Instruction::InsertElement: {
8031 assert(E->ReuseShuffleIndices.empty() &&
8032 "Unique insertelements only are expected.");
8033 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
8034 unsigned const NumElts = SrcVecTy->getNumElements();
8035 unsigned const NumScalars = VL.size();
8037 unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
8039 SmallVector<int> InsertMask(NumElts, PoisonMaskElem);
8040 unsigned OffsetBeg = *getInsertIndex(VL.front());
8041 unsigned OffsetEnd = OffsetBeg;
8042 InsertMask[OffsetBeg] = 0;
8043 for (auto [I, V] : enumerate(VL.drop_front())) {
8044 unsigned Idx = *getInsertIndex(V);
8045 if (OffsetBeg > Idx)
8046 OffsetBeg = Idx;
8047 else if (OffsetEnd < Idx)
8048 OffsetEnd = Idx;
8049 InsertMask[Idx] = I + 1;
8051 unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
8052 if (NumOfParts > 0)
8053 VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
8054 unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
8055 VecScalarsSz;
8056 unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
8057 unsigned InsertVecSz = std::min<unsigned>(
8058 PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
8059 ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz);
8060 bool IsWholeSubvector =
8061 OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
8062 // Check if we can safely insert a subvector. If it is not possible, just
8063 // generate a whole-sized vector and shuffle the source vector and the new
8064 // subvector.
8065 if (OffsetBeg + InsertVecSz > VecSz) {
8066 // Align OffsetBeg to generate correct mask.
8067 OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
8068 InsertVecSz = VecSz;
8071 APInt DemandedElts = APInt::getZero(NumElts);
8072 // TODO: Add support for Instruction::InsertValue.
8073 SmallVector<int> Mask;
8074 if (!E->ReorderIndices.empty()) {
8075 inversePermutation(E->ReorderIndices, Mask);
8076 Mask.append(InsertVecSz - Mask.size(), PoisonMaskElem);
8077 } else {
8078 Mask.assign(VecSz, PoisonMaskElem);
8079 std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
8081 bool IsIdentity = true;
8082 SmallVector<int> PrevMask(InsertVecSz, PoisonMaskElem);
8083 Mask.swap(PrevMask);
8084 for (unsigned I = 0; I < NumScalars; ++I) {
8085 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
8086 DemandedElts.setBit(InsertIdx);
8087 IsIdentity &= InsertIdx - OffsetBeg == I;
8088 Mask[InsertIdx - OffsetBeg] = I;
8090 assert(Offset < NumElts && "Failed to find vector index offset");
8092 InstructionCost Cost = 0;
8093 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
8094 /*Insert*/ true, /*Extract*/ false,
8095 CostKind);
8097 // First cost - resize to actual vector size if not identity shuffle or
8098 // need to shift the vector.
8099 // Do not calculate the cost if the actual size is the register size and
8100 // we can merge this shuffle with the following SK_Select.
8101 auto *InsertVecTy = FixedVectorType::get(ScalarTy, InsertVecSz);
8102 if (!IsIdentity)
8103 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
8104 InsertVecTy, Mask);
8105 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
8106 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
8107 }));
8108 // Second cost - permutation with subvector, if some elements are from the
8109 // initial vector or inserting a subvector.
8110 // TODO: Implement the analysis of the FirstInsert->getOperand(0)
8111 // subvector of ActualVecTy.
8112 SmallBitVector InMask =
8113 isUndefVector(FirstInsert->getOperand(0),
8114 buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask));
8115 if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) {
8116 if (InsertVecSz != VecSz) {
8117 auto *ActualVecTy = FixedVectorType::get(ScalarTy, VecSz);
8118 Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy,
8119 std::nullopt, CostKind, OffsetBeg - Offset,
8120 InsertVecTy);
8121 } else {
8122 for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
8123 Mask[I] = InMask.test(I) ? PoisonMaskElem : I;
8124 for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
8125 I <= End; ++I)
8126 if (Mask[I] != PoisonMaskElem)
8127 Mask[I] = I + VecSz;
8128 for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
8129 Mask[I] =
8130 ((I >= InMask.size()) || InMask.test(I)) ? PoisonMaskElem : I;
8131 Cost +=
8132 ::getShuffleCost(*TTI, TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
8135 return Cost;
8137 case Instruction::ZExt:
8138 case Instruction::SExt:
8139 case Instruction::FPToUI:
8140 case Instruction::FPToSI:
8141 case Instruction::FPExt:
8142 case Instruction::PtrToInt:
8143 case Instruction::IntToPtr:
8144 case Instruction::SIToFP:
8145 case Instruction::UIToFP:
8146 case Instruction::Trunc:
8147 case Instruction::FPTrunc:
8148 case Instruction::BitCast: {
8149 auto SrcIt = MinBWs.find(getOperandEntry(E, 0));
8150 Type *SrcScalarTy = VL0->getOperand(0)->getType();
8151 auto *SrcVecTy = FixedVectorType::get(SrcScalarTy, VL.size());
8152 unsigned Opcode = ShuffleOrOp;
8153 unsigned VecOpcode = Opcode;
8154 if (!ScalarTy->isFloatingPointTy() && !SrcScalarTy->isFloatingPointTy() &&
8155 (SrcIt != MinBWs.end() || It != MinBWs.end())) {
8156 // Check if the values are candidates to demote.
8157 unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy);
8158 if (SrcIt != MinBWs.end()) {
8159 SrcBWSz = SrcIt->second.first;
8160 SrcScalarTy = IntegerType::get(F->getContext(), SrcBWSz);
8161 SrcVecTy = FixedVectorType::get(SrcScalarTy, VL.size());
8163 unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
8164 if (BWSz == SrcBWSz) {
8165 VecOpcode = Instruction::BitCast;
8166 } else if (BWSz < SrcBWSz) {
8167 VecOpcode = Instruction::Trunc;
8168 } else if (It != MinBWs.end()) {
8169 assert(BWSz > SrcBWSz && "Invalid cast!");
8170 VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt;
8173 auto GetScalarCost = [&](unsigned Idx) -> InstructionCost {
8174 // Do not count cost here if minimum bitwidth is in effect and it is just
8175 // a bitcast (here it is just a noop).
8176 if (VecOpcode != Opcode && VecOpcode == Instruction::BitCast)
8177 return TTI::TCC_Free;
8178 auto *VI = VL0->getOpcode() == Opcode
8179 ? cast<Instruction>(UniqueValues[Idx])
8180 : nullptr;
8181 return TTI->getCastInstrCost(Opcode, VL0->getType(),
8182 VL0->getOperand(0)->getType(),
8183 TTI::getCastContextHint(VI), CostKind, VI);
8185 auto GetVectorCost = [=](InstructionCost CommonCost) {
8186 // Do not count cost here if minimum bitwidth is in effect and it is just
8187 // a bitcast (here it is just a noop).
8188 if (VecOpcode != Opcode && VecOpcode == Instruction::BitCast)
8189 return CommonCost;
8190 auto *VI = VL0->getOpcode() == Opcode ? VL0 : nullptr;
8191 TTI::CastContextHint CCH = GetCastContextHint(VL0->getOperand(0));
8192 return CommonCost +
8193 TTI->getCastInstrCost(VecOpcode, VecTy, SrcVecTy, CCH, CostKind,
8194 VecOpcode == Opcode ? VI : nullptr);
8196 return GetCostDiff(GetScalarCost, GetVectorCost);
8198 case Instruction::FCmp:
8199 case Instruction::ICmp:
8200 case Instruction::Select: {
8201 CmpInst::Predicate VecPred, SwappedVecPred;
8202 auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value());
8203 if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) ||
8204 match(VL0, MatchCmp))
8205 SwappedVecPred = CmpInst::getSwappedPredicate(VecPred);
8206 else
8207 SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy()
8208 ? CmpInst::BAD_FCMP_PREDICATE
8209 : CmpInst::BAD_ICMP_PREDICATE;
8210 auto GetScalarCost = [&](unsigned Idx) {
8211 auto *VI = cast<Instruction>(UniqueValues[Idx]);
8212 CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy()
8213 ? CmpInst::BAD_FCMP_PREDICATE
8214 : CmpInst::BAD_ICMP_PREDICATE;
8215 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
8216 if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) &&
8217 !match(VI, MatchCmp)) ||
8218 (CurrentPred != VecPred && CurrentPred != SwappedVecPred))
8219 VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy()
8220 ? CmpInst::BAD_FCMP_PREDICATE
8221 : CmpInst::BAD_ICMP_PREDICATE;
8223 return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
8224 Builder.getInt1Ty(), CurrentPred, CostKind,
8225 VI);
8227 auto GetVectorCost = [&](InstructionCost CommonCost) {
8228 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
8230 InstructionCost VecCost = TTI->getCmpSelInstrCost(
8231 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
8232 // Check if it is possible and profitable to use min/max for selects
8233 // in VL.
8235 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
8236 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
8237 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
8238 {VecTy, VecTy});
8239 InstructionCost IntrinsicCost =
8240 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
8241 // If the selects are the only uses of the compares, they will be
8242 // dead and we can adjust the cost by removing their cost.
8243 if (IntrinsicAndUse.second)
8244 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
8245 MaskTy, VecPred, CostKind);
8246 VecCost = std::min(VecCost, IntrinsicCost);
8248 return VecCost + CommonCost;
8250 return GetCostDiff(GetScalarCost, GetVectorCost);
8252 case Instruction::FNeg:
8253 case Instruction::Add:
8254 case Instruction::FAdd:
8255 case Instruction::Sub:
8256 case Instruction::FSub:
8257 case Instruction::Mul:
8258 case Instruction::FMul:
8259 case Instruction::UDiv:
8260 case Instruction::SDiv:
8261 case Instruction::FDiv:
8262 case Instruction::URem:
8263 case Instruction::SRem:
8264 case Instruction::FRem:
8265 case Instruction::Shl:
8266 case Instruction::LShr:
8267 case Instruction::AShr:
8268 case Instruction::And:
8269 case Instruction::Or:
8270 case Instruction::Xor: {
8271 auto GetScalarCost = [&](unsigned Idx) {
8272 auto *VI = cast<Instruction>(UniqueValues[Idx]);
8273 unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1;
8274 TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0));
8275 TTI::OperandValueInfo Op2Info =
8276 TTI::getOperandInfo(VI->getOperand(OpIdx));
8277 SmallVector<const Value *> Operands(VI->operand_values());
8278 return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind,
8279 Op1Info, Op2Info, Operands, VI);
8281 auto GetVectorCost = [=](InstructionCost CommonCost) {
8282 unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1;
8283 TTI::OperandValueInfo Op1Info = getOperandInfo(E->getOperand(0));
8284 TTI::OperandValueInfo Op2Info = getOperandInfo(E->getOperand(OpIdx));
8285 return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info,
8286 Op2Info) +
8287 CommonCost;
8289 return GetCostDiff(GetScalarCost, GetVectorCost);
8291 case Instruction::GetElementPtr: {
8292 return CommonCost + GetGEPCostDiff(VL, VL0);
8294 case Instruction::Load: {
8295 auto GetScalarCost = [&](unsigned Idx) {
8296 auto *VI = cast<LoadInst>(UniqueValues[Idx]);
8297 return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(),
8298 VI->getPointerAddressSpace(), CostKind,
8299 TTI::OperandValueInfo(), VI);
8301 auto *LI0 = cast<LoadInst>(VL0);
8302 auto GetVectorCost = [&](InstructionCost CommonCost) {
8303 InstructionCost VecLdCost;
8304 if (E->State == TreeEntry::Vectorize) {
8305 VecLdCost = TTI->getMemoryOpCost(
8306 Instruction::Load, VecTy, LI0->getAlign(),
8307 LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo());
8308 } else {
8309 assert((E->State == TreeEntry::ScatterVectorize ||
8310 E->State == TreeEntry::PossibleStridedVectorize) &&
8311 "Unknown EntryState");
8312 Align CommonAlignment = LI0->getAlign();
8313 for (Value *V : UniqueValues)
8314 CommonAlignment =
8315 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
8316 VecLdCost = TTI->getGatherScatterOpCost(
8317 Instruction::Load, VecTy, LI0->getPointerOperand(),
8318 /*VariableMask=*/false, CommonAlignment, CostKind);
8320 return VecLdCost + CommonCost;
8323 InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost);
8324 // If this node generates masked gather load then it is not a terminal node.
8325 // Hence address operand cost is estimated separately.
8326 if (E->State == TreeEntry::ScatterVectorize ||
8327 E->State == TreeEntry::PossibleStridedVectorize)
8328 return Cost;
8330 // Estimate cost of GEPs since this tree node is a terminator.
8331 SmallVector<Value *> PointerOps(VL.size());
8332 for (auto [I, V] : enumerate(VL))
8333 PointerOps[I] = cast<LoadInst>(V)->getPointerOperand();
8334 return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand());
8336 case Instruction::Store: {
8337 bool IsReorder = !E->ReorderIndices.empty();
8338 auto GetScalarCost = [=](unsigned Idx) {
8339 auto *VI = cast<StoreInst>(VL[Idx]);
8340 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(VI->getValueOperand());
8341 return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(),
8342 VI->getPointerAddressSpace(), CostKind,
8343 OpInfo, VI);
8345 auto *BaseSI =
8346 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
8347 auto GetVectorCost = [=](InstructionCost CommonCost) {
8348 // We know that we can merge the stores. Calculate the cost.
8349 TTI::OperandValueInfo OpInfo = getOperandInfo(E->getOperand(0));
8350 return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(),
8351 BaseSI->getPointerAddressSpace(), CostKind,
8352 OpInfo) +
8353 CommonCost;
8355 SmallVector<Value *> PointerOps(VL.size());
8356 for (auto [I, V] : enumerate(VL)) {
8357 unsigned Idx = IsReorder ? E->ReorderIndices[I] : I;
8358 PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand();
8361 return GetCostDiff(GetScalarCost, GetVectorCost) +
8362 GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand());
8364 case Instruction::Call: {
8365 auto GetScalarCost = [&](unsigned Idx) {
8366 auto *CI = cast<CallInst>(UniqueValues[Idx]);
8367 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8368 if (ID != Intrinsic::not_intrinsic) {
8369 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
8370 return TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
8372 return TTI->getCallInstrCost(CI->getCalledFunction(),
8373 CI->getFunctionType()->getReturnType(),
8374 CI->getFunctionType()->params(), CostKind);
8376 auto GetVectorCost = [=](InstructionCost CommonCost) {
8377 auto *CI = cast<CallInst>(VL0);
8378 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8379 return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost;
8381 return GetCostDiff(GetScalarCost, GetVectorCost);
8383 case Instruction::ShuffleVector: {
8384 assert(E->isAltShuffle() &&
8385 ((Instruction::isBinaryOp(E->getOpcode()) &&
8386 Instruction::isBinaryOp(E->getAltOpcode())) ||
8387 (Instruction::isCast(E->getOpcode()) &&
8388 Instruction::isCast(E->getAltOpcode())) ||
8389 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8390 "Invalid Shuffle Vector Operand");
8391 // Try to find the previous shuffle node with the same operands and same
8392 // main/alternate ops.
8393 auto TryFindNodeWithEqualOperands = [=]() {
8394 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
8395 if (TE.get() == E)
8396 break;
8397 if (TE->isAltShuffle() &&
8398 ((TE->getOpcode() == E->getOpcode() &&
8399 TE->getAltOpcode() == E->getAltOpcode()) ||
8400 (TE->getOpcode() == E->getAltOpcode() &&
8401 TE->getAltOpcode() == E->getOpcode())) &&
8402 TE->hasEqualOperands(*E))
8403 return true;
8405 return false;
8407 auto GetScalarCost = [&](unsigned Idx) {
8408 auto *VI = cast<Instruction>(UniqueValues[Idx]);
8409 assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode");
8410 (void)E;
8411 return TTI->getInstructionCost(VI, CostKind);
8413 // FIXME: Workaround for syntax error reported by MSVC buildbots.
8414 TargetTransformInfo &TTIRef = *TTI;
8415 // Need to clear CommonCost since the final shuffle cost is included into
8416 // vector cost.
8417 auto GetVectorCost = [&](InstructionCost) {
8418 // VecCost is equal to sum of the cost of creating 2 vectors
8419 // and the cost of creating shuffle.
8420 InstructionCost VecCost = 0;
8421 if (TryFindNodeWithEqualOperands()) {
8422 LLVM_DEBUG({
8423 dbgs() << "SLP: diamond match for alternate node found.\n";
8424 E->dump();
8426 // No need to add new vector costs here since we're going to reuse
8427 // same main/alternate vector ops, just do different shuffling.
8428 } else if (Instruction::isBinaryOp(E->getOpcode())) {
8429 VecCost =
8430 TTIRef.getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
8431 VecCost +=
8432 TTIRef.getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind);
8433 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8434 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
8435 VecCost = TTIRef.getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
8436 CI0->getPredicate(), CostKind, VL0);
8437 VecCost += TTIRef.getCmpSelInstrCost(
8438 E->getOpcode(), VecTy, MaskTy,
8439 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
8440 E->getAltOp());
8441 } else {
8442 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
8443 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
8444 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
8445 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
8446 VecCost = TTIRef.getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
8447 TTI::CastContextHint::None, CostKind);
8448 VecCost +=
8449 TTIRef.getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
8450 TTI::CastContextHint::None, CostKind);
8452 SmallVector<int> Mask;
8453 E->buildAltOpShuffleMask(
8454 [E](Instruction *I) {
8455 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8456 return I->getOpcode() == E->getAltOpcode();
8458 Mask);
8459 VecCost += ::getShuffleCost(TTIRef, TargetTransformInfo::SK_PermuteTwoSrc,
8460 FinalVecTy, Mask);
8461 // Patterns like [fadd,fsub] can be combined into a single instruction
8462 // in x86. Reordering them into [fsub,fadd] blocks this pattern. So we
8463 // need to take into account their order when looking for the most used
8464 // order.
8465 unsigned Opcode0 = E->getOpcode();
8466 unsigned Opcode1 = E->getAltOpcode();
8467 // The opcode mask selects between the two opcodes.
8468 SmallBitVector OpcodeMask(E->Scalars.size(), false);
8469 for (unsigned Lane : seq<unsigned>(0, E->Scalars.size()))
8470 if (cast<Instruction>(E->Scalars[Lane])->getOpcode() == Opcode1)
8471 OpcodeMask.set(Lane);
8472 // If this pattern is supported by the target then we consider the
8473 // order.
8474 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
8475 InstructionCost AltVecCost = TTIRef.getAltInstrCost(
8476 VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
8477 return AltVecCost < VecCost ? AltVecCost : VecCost;
8479 // TODO: Check the reverse order too.
8480 return VecCost;
8482 return GetCostDiff(GetScalarCost, GetVectorCost);
8484 default:
8485 llvm_unreachable("Unknown instruction");
8489 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
8490 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
8491 << VectorizableTree.size() << " is fully vectorizable .\n");
8493 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
8494 SmallVector<int> Mask;
8495 return TE->State == TreeEntry::NeedToGather &&
8496 !any_of(TE->Scalars,
8497 [this](Value *V) { return EphValues.contains(V); }) &&
8498 (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
8499 TE->Scalars.size() < Limit ||
8500 ((TE->getOpcode() == Instruction::ExtractElement ||
8501 all_of(TE->Scalars,
8502 [](Value *V) {
8503 return isa<ExtractElementInst, UndefValue>(V);
8504 })) &&
8505 isFixedVectorShuffle(TE->Scalars, Mask)) ||
8506 (TE->State == TreeEntry::NeedToGather &&
8507 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
8510 // We only handle trees of heights 1 and 2.
8511 if (VectorizableTree.size() == 1 &&
8512 (VectorizableTree[0]->State == TreeEntry::Vectorize ||
8513 (ForReduction &&
8514 AreVectorizableGathers(VectorizableTree[0].get(),
8515 VectorizableTree[0]->Scalars.size()) &&
8516 VectorizableTree[0]->getVectorFactor() > 2)))
8517 return true;
8519 if (VectorizableTree.size() != 2)
8520 return false;
8522 // Handle splat and all-constants stores. Also try to vectorize tiny trees
8523 // with the second gather nodes if they have less scalar operands rather than
8524 // the initial tree element (may be profitable to shuffle the second gather)
8525 // or they are extractelements, which form shuffle.
8526 SmallVector<int> Mask;
8527 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
8528 AreVectorizableGathers(VectorizableTree[1].get(),
8529 VectorizableTree[0]->Scalars.size()))
8530 return true;
8532 // Gathering cost would be too much for tiny trees.
8533 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
8534 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
8535 VectorizableTree[0]->State != TreeEntry::ScatterVectorize &&
8536 VectorizableTree[0]->State != TreeEntry::PossibleStridedVectorize))
8537 return false;
8539 return true;
8542 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
8543 TargetTransformInfo *TTI,
8544 bool MustMatchOrInst) {
8545 // Look past the root to find a source value. Arbitrarily follow the
8546 // path through operand 0 of any 'or'. Also, peek through optional
8547 // shift-left-by-multiple-of-8-bits.
8548 Value *ZextLoad = Root;
8549 const APInt *ShAmtC;
8550 bool FoundOr = false;
8551 while (!isa<ConstantExpr>(ZextLoad) &&
8552 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
8553 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
8554 ShAmtC->urem(8) == 0))) {
8555 auto *BinOp = cast<BinaryOperator>(ZextLoad);
8556 ZextLoad = BinOp->getOperand(0);
8557 if (BinOp->getOpcode() == Instruction::Or)
8558 FoundOr = true;
8560 // Check if the input is an extended load of the required or/shift expression.
8561 Value *Load;
8562 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
8563 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
8564 return false;
8566 // Require that the total load bit width is a legal integer type.
8567 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
8568 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
8569 Type *SrcTy = Load->getType();
8570 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
8571 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
8572 return false;
8574 // Everything matched - assume that we can fold the whole sequence using
8575 // load combining.
8576 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
8577 << *(cast<Instruction>(Root)) << "\n");
8579 return true;
8582 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
8583 if (RdxKind != RecurKind::Or)
8584 return false;
8586 unsigned NumElts = VectorizableTree[0]->Scalars.size();
8587 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
8588 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
8589 /* MatchOr */ false);
8592 bool BoUpSLP::isLoadCombineCandidate() const {
8593 // Peek through a final sequence of stores and check if all operations are
8594 // likely to be load-combined.
8595 unsigned NumElts = VectorizableTree[0]->Scalars.size();
8596 for (Value *Scalar : VectorizableTree[0]->Scalars) {
8597 Value *X;
8598 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
8599 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
8600 return false;
8602 return true;
8605 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
8606 // No need to vectorize inserts of gathered values.
8607 if (VectorizableTree.size() == 2 &&
8608 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
8609 VectorizableTree[1]->State == TreeEntry::NeedToGather &&
8610 (VectorizableTree[1]->getVectorFactor() <= 2 ||
8611 !(isSplat(VectorizableTree[1]->Scalars) ||
8612 allConstant(VectorizableTree[1]->Scalars))))
8613 return true;
8615 // If the graph includes only PHI nodes and gathers, it is defnitely not
8616 // profitable for the vectorization, we can skip it, if the cost threshold is
8617 // default. The cost of vectorized PHI nodes is almost always 0 + the cost of
8618 // gathers/buildvectors.
8619 constexpr int Limit = 4;
8620 if (!ForReduction && !SLPCostThreshold.getNumOccurrences() &&
8621 !VectorizableTree.empty() &&
8622 all_of(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
8623 return (TE->State == TreeEntry::NeedToGather &&
8624 TE->getOpcode() != Instruction::ExtractElement &&
8625 count_if(TE->Scalars,
8626 [](Value *V) { return isa<ExtractElementInst>(V); }) <=
8627 Limit) ||
8628 TE->getOpcode() == Instruction::PHI;
8630 return true;
8632 // We can vectorize the tree if its size is greater than or equal to the
8633 // minimum size specified by the MinTreeSize command line option.
8634 if (VectorizableTree.size() >= MinTreeSize)
8635 return false;
8637 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
8638 // can vectorize it if we can prove it fully vectorizable.
8639 if (isFullyVectorizableTinyTree(ForReduction))
8640 return false;
8642 assert(VectorizableTree.empty()
8643 ? ExternalUses.empty()
8644 : true && "We shouldn't have any external users");
8646 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
8647 // vectorizable.
8648 return true;
8651 InstructionCost BoUpSLP::getSpillCost() const {
8652 // Walk from the bottom of the tree to the top, tracking which values are
8653 // live. When we see a call instruction that is not part of our tree,
8654 // query TTI to see if there is a cost to keeping values live over it
8655 // (for example, if spills and fills are required).
8656 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
8657 InstructionCost Cost = 0;
8659 SmallPtrSet<Instruction *, 4> LiveValues;
8660 Instruction *PrevInst = nullptr;
8662 // The entries in VectorizableTree are not necessarily ordered by their
8663 // position in basic blocks. Collect them and order them by dominance so later
8664 // instructions are guaranteed to be visited first. For instructions in
8665 // different basic blocks, we only scan to the beginning of the block, so
8666 // their order does not matter, as long as all instructions in a basic block
8667 // are grouped together. Using dominance ensures a deterministic order.
8668 SmallVector<Instruction *, 16> OrderedScalars;
8669 for (const auto &TEPtr : VectorizableTree) {
8670 if (TEPtr->State != TreeEntry::Vectorize)
8671 continue;
8672 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
8673 if (!Inst)
8674 continue;
8675 OrderedScalars.push_back(Inst);
8677 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
8678 auto *NodeA = DT->getNode(A->getParent());
8679 auto *NodeB = DT->getNode(B->getParent());
8680 assert(NodeA && "Should only process reachable instructions");
8681 assert(NodeB && "Should only process reachable instructions");
8682 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
8683 "Different nodes should have different DFS numbers");
8684 if (NodeA != NodeB)
8685 return NodeA->getDFSNumIn() > NodeB->getDFSNumIn();
8686 return B->comesBefore(A);
8689 for (Instruction *Inst : OrderedScalars) {
8690 if (!PrevInst) {
8691 PrevInst = Inst;
8692 continue;
8695 // Update LiveValues.
8696 LiveValues.erase(PrevInst);
8697 for (auto &J : PrevInst->operands()) {
8698 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
8699 LiveValues.insert(cast<Instruction>(&*J));
8702 LLVM_DEBUG({
8703 dbgs() << "SLP: #LV: " << LiveValues.size();
8704 for (auto *X : LiveValues)
8705 dbgs() << " " << X->getName();
8706 dbgs() << ", Looking at ";
8707 Inst->dump();
8710 // Now find the sequence of instructions between PrevInst and Inst.
8711 unsigned NumCalls = 0;
8712 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
8713 PrevInstIt =
8714 PrevInst->getIterator().getReverse();
8715 while (InstIt != PrevInstIt) {
8716 if (PrevInstIt == PrevInst->getParent()->rend()) {
8717 PrevInstIt = Inst->getParent()->rbegin();
8718 continue;
8721 auto NoCallIntrinsic = [this](Instruction *I) {
8722 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
8723 if (II->isAssumeLikeIntrinsic())
8724 return true;
8725 FastMathFlags FMF;
8726 SmallVector<Type *, 4> Tys;
8727 for (auto &ArgOp : II->args())
8728 Tys.push_back(ArgOp->getType());
8729 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
8730 FMF = FPMO->getFastMathFlags();
8731 IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys,
8732 FMF);
8733 InstructionCost IntrCost =
8734 TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput);
8735 InstructionCost CallCost = TTI->getCallInstrCost(
8736 nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput);
8737 if (IntrCost < CallCost)
8738 return true;
8740 return false;
8743 // Debug information does not impact spill cost.
8744 if (isa<CallBase>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) &&
8745 &*PrevInstIt != PrevInst)
8746 NumCalls++;
8748 ++PrevInstIt;
8751 if (NumCalls) {
8752 SmallVector<Type *, 4> V;
8753 for (auto *II : LiveValues) {
8754 auto *ScalarTy = II->getType();
8755 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
8756 ScalarTy = VectorTy->getElementType();
8757 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
8759 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
8762 PrevInst = Inst;
8765 return Cost;
8768 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
8769 /// buildvector sequence.
8770 static bool isFirstInsertElement(const InsertElementInst *IE1,
8771 const InsertElementInst *IE2) {
8772 if (IE1 == IE2)
8773 return false;
8774 const auto *I1 = IE1;
8775 const auto *I2 = IE2;
8776 const InsertElementInst *PrevI1;
8777 const InsertElementInst *PrevI2;
8778 unsigned Idx1 = *getInsertIndex(IE1);
8779 unsigned Idx2 = *getInsertIndex(IE2);
8780 do {
8781 if (I2 == IE1)
8782 return true;
8783 if (I1 == IE2)
8784 return false;
8785 PrevI1 = I1;
8786 PrevI2 = I2;
8787 if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
8788 getInsertIndex(I1).value_or(Idx2) != Idx2)
8789 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
8790 if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
8791 getInsertIndex(I2).value_or(Idx1) != Idx1)
8792 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
8793 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
8794 llvm_unreachable("Two different buildvectors not expected.");
8797 namespace {
8798 /// Returns incoming Value *, if the requested type is Value * too, or a default
8799 /// value, otherwise.
8800 struct ValueSelect {
8801 template <typename U>
8802 static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) {
8803 return V;
8805 template <typename U>
8806 static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) {
8807 return U();
8810 } // namespace
8812 /// Does the analysis of the provided shuffle masks and performs the requested
8813 /// actions on the vectors with the given shuffle masks. It tries to do it in
8814 /// several steps.
8815 /// 1. If the Base vector is not undef vector, resizing the very first mask to
8816 /// have common VF and perform action for 2 input vectors (including non-undef
8817 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
8818 /// and processed as a shuffle of 2 elements.
8819 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
8820 /// action only for 1 vector with the given mask, if it is not the identity
8821 /// mask.
8822 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
8823 /// vectors, combing the masks properly between the steps.
8824 template <typename T>
8825 static T *performExtractsShuffleAction(
8826 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
8827 function_ref<unsigned(T *)> GetVF,
8828 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction,
8829 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
8830 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
8831 SmallVector<int> Mask(ShuffleMask.begin()->second);
8832 auto VMIt = std::next(ShuffleMask.begin());
8833 T *Prev = nullptr;
8834 SmallBitVector UseMask =
8835 buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask);
8836 SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask);
8837 if (!IsBaseUndef.all()) {
8838 // Base is not undef, need to combine it with the next subvectors.
8839 std::pair<T *, bool> Res =
8840 ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false);
8841 SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask);
8842 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
8843 if (Mask[Idx] == PoisonMaskElem)
8844 Mask[Idx] = IsBasePoison.test(Idx) ? PoisonMaskElem : Idx;
8845 else
8846 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
8848 auto *V = ValueSelect::get<T *>(Base);
8849 (void)V;
8850 assert((!V || GetVF(V) == Mask.size()) &&
8851 "Expected base vector of VF number of elements.");
8852 Prev = Action(Mask, {nullptr, Res.first});
8853 } else if (ShuffleMask.size() == 1) {
8854 // Base is undef and only 1 vector is shuffled - perform the action only for
8855 // single vector, if the mask is not the identity mask.
8856 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask,
8857 /*ForSingleMask=*/true);
8858 if (Res.second)
8859 // Identity mask is found.
8860 Prev = Res.first;
8861 else
8862 Prev = Action(Mask, {ShuffleMask.begin()->first});
8863 } else {
8864 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
8865 // shuffles step by step, combining shuffle between the steps.
8866 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
8867 unsigned Vec2VF = GetVF(VMIt->first);
8868 if (Vec1VF == Vec2VF) {
8869 // No need to resize the input vectors since they are of the same size, we
8870 // can shuffle them directly.
8871 ArrayRef<int> SecMask = VMIt->second;
8872 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8873 if (SecMask[I] != PoisonMaskElem) {
8874 assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8875 Mask[I] = SecMask[I] + Vec1VF;
8878 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
8879 } else {
8880 // Vectors of different sizes - resize and reshuffle.
8881 std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask,
8882 /*ForSingleMask=*/false);
8883 std::pair<T *, bool> Res2 =
8884 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
8885 ArrayRef<int> SecMask = VMIt->second;
8886 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8887 if (Mask[I] != PoisonMaskElem) {
8888 assert(SecMask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8889 if (Res1.second)
8890 Mask[I] = I;
8891 } else if (SecMask[I] != PoisonMaskElem) {
8892 assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars.");
8893 Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
8896 Prev = Action(Mask, {Res1.first, Res2.first});
8898 VMIt = std::next(VMIt);
8900 bool IsBaseNotUndef = !IsBaseUndef.all();
8901 (void)IsBaseNotUndef;
8902 // Perform requested actions for the remaining masks/vectors.
8903 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
8904 // Shuffle other input vectors, if any.
8905 std::pair<T *, bool> Res =
8906 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
8907 ArrayRef<int> SecMask = VMIt->second;
8908 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
8909 if (SecMask[I] != PoisonMaskElem) {
8910 assert((Mask[I] == PoisonMaskElem || IsBaseNotUndef) &&
8911 "Multiple uses of scalars.");
8912 Mask[I] = (Res.second ? I : SecMask[I]) + VF;
8913 } else if (Mask[I] != PoisonMaskElem) {
8914 Mask[I] = I;
8917 Prev = Action(Mask, {Prev, Res.first});
8919 return Prev;
8922 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
8923 InstructionCost Cost = 0;
8924 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
8925 << VectorizableTree.size() << ".\n");
8927 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
8929 SmallPtrSet<Value *, 4> CheckedExtracts;
8930 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
8931 TreeEntry &TE = *VectorizableTree[I];
8932 if (TE.State == TreeEntry::NeedToGather) {
8933 if (const TreeEntry *E = getTreeEntry(TE.getMainOp());
8934 E && E->getVectorFactor() == TE.getVectorFactor() &&
8935 E->isSame(TE.Scalars)) {
8936 // Some gather nodes might be absolutely the same as some vectorizable
8937 // nodes after reordering, need to handle it.
8938 LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle "
8939 << shortBundleName(TE.Scalars) << ".\n"
8940 << "SLP: Current total cost = " << Cost << "\n");
8941 continue;
8945 InstructionCost C = getEntryCost(&TE, VectorizedVals, CheckedExtracts);
8946 Cost += C;
8947 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle "
8948 << shortBundleName(TE.Scalars) << ".\n"
8949 << "SLP: Current total cost = " << Cost << "\n");
8952 SmallPtrSet<Value *, 16> ExtractCostCalculated;
8953 InstructionCost ExtractCost = 0;
8954 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
8955 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
8956 SmallVector<APInt> DemandedElts;
8957 SmallDenseSet<Value *, 4> UsedInserts;
8958 DenseSet<Value *> VectorCasts;
8959 for (ExternalUser &EU : ExternalUses) {
8960 // We only add extract cost once for the same scalar.
8961 if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
8962 !ExtractCostCalculated.insert(EU.Scalar).second)
8963 continue;
8965 // Uses by ephemeral values are free (because the ephemeral value will be
8966 // removed prior to code generation, and so the extraction will be
8967 // removed as well).
8968 if (EphValues.count(EU.User))
8969 continue;
8971 // No extract cost for vector "scalar"
8972 if (isa<FixedVectorType>(EU.Scalar->getType()))
8973 continue;
8975 // If found user is an insertelement, do not calculate extract cost but try
8976 // to detect it as a final shuffled/identity match.
8977 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
8978 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
8979 if (!UsedInserts.insert(VU).second)
8980 continue;
8981 std::optional<unsigned> InsertIdx = getInsertIndex(VU);
8982 if (InsertIdx) {
8983 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
8984 auto *It = find_if(
8985 FirstUsers,
8986 [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) {
8987 return areTwoInsertFromSameBuildVector(
8988 VU, cast<InsertElementInst>(Pair.first),
8989 [this](InsertElementInst *II) -> Value * {
8990 Value *Op0 = II->getOperand(0);
8991 if (getTreeEntry(II) && !getTreeEntry(Op0))
8992 return nullptr;
8993 return Op0;
8996 int VecId = -1;
8997 if (It == FirstUsers.end()) {
8998 (void)ShuffleMasks.emplace_back();
8999 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
9000 if (Mask.empty())
9001 Mask.assign(FTy->getNumElements(), PoisonMaskElem);
9002 // Find the insertvector, vectorized in tree, if any.
9003 Value *Base = VU;
9004 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
9005 if (IEBase != EU.User &&
9006 (!IEBase->hasOneUse() ||
9007 getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
9008 break;
9009 // Build the mask for the vectorized insertelement instructions.
9010 if (const TreeEntry *E = getTreeEntry(IEBase)) {
9011 VU = IEBase;
9012 do {
9013 IEBase = cast<InsertElementInst>(Base);
9014 int Idx = *getInsertIndex(IEBase);
9015 assert(Mask[Idx] == PoisonMaskElem &&
9016 "InsertElementInstruction used already.");
9017 Mask[Idx] = Idx;
9018 Base = IEBase->getOperand(0);
9019 } while (E == getTreeEntry(Base));
9020 break;
9022 Base = cast<InsertElementInst>(Base)->getOperand(0);
9024 FirstUsers.emplace_back(VU, ScalarTE);
9025 DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
9026 VecId = FirstUsers.size() - 1;
9027 auto It = MinBWs.find(ScalarTE);
9028 if (It != MinBWs.end() && VectorCasts.insert(EU.Scalar).second) {
9029 unsigned BWSz = It->second.second;
9030 unsigned SrcBWSz = DL->getTypeSizeInBits(FTy->getElementType());
9031 unsigned VecOpcode;
9032 if (BWSz < SrcBWSz)
9033 VecOpcode = Instruction::Trunc;
9034 else
9035 VecOpcode =
9036 It->second.second ? Instruction::SExt : Instruction::ZExt;
9037 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9038 InstructionCost C = TTI->getCastInstrCost(
9039 VecOpcode, FTy,
9040 FixedVectorType::get(
9041 IntegerType::get(FTy->getContext(), It->second.first),
9042 FTy->getNumElements()),
9043 TTI::CastContextHint::None, CostKind);
9044 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
9045 << " for extending externally used vector with "
9046 "non-equal minimum bitwidth.\n");
9047 Cost += C;
9049 } else {
9050 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
9051 It->first = VU;
9052 VecId = std::distance(FirstUsers.begin(), It);
9054 int InIdx = *InsertIdx;
9055 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
9056 if (Mask.empty())
9057 Mask.assign(FTy->getNumElements(), PoisonMaskElem);
9058 Mask[InIdx] = EU.Lane;
9059 DemandedElts[VecId].setBit(InIdx);
9060 continue;
9065 // If we plan to rewrite the tree in a smaller type, we will need to sign
9066 // extend the extracted value back to the original type. Here, we account
9067 // for the extract and the added cost of the sign extend if needed.
9068 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
9069 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9070 auto It = MinBWs.find(getTreeEntry(EU.Scalar));
9071 if (It != MinBWs.end()) {
9072 auto *MinTy = IntegerType::get(F->getContext(), It->second.first);
9073 unsigned Extend =
9074 It->second.second ? Instruction::SExt : Instruction::ZExt;
9075 VecTy = FixedVectorType::get(MinTy, BundleWidth);
9076 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
9077 VecTy, EU.Lane);
9078 } else {
9079 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
9080 CostKind, EU.Lane);
9083 // Add reduced value cost, if resized.
9084 if (!VectorizedVals.empty()) {
9085 auto BWIt = MinBWs.find(VectorizableTree.front().get());
9086 if (BWIt != MinBWs.end()) {
9087 Type *DstTy = VectorizableTree.front()->Scalars.front()->getType();
9088 unsigned OriginalSz = DL->getTypeSizeInBits(DstTy);
9089 unsigned Opcode = Instruction::Trunc;
9090 if (OriginalSz < BWIt->second.first)
9091 Opcode = BWIt->second.second ? Instruction::SExt : Instruction::ZExt;
9092 Type *SrcTy = IntegerType::get(DstTy->getContext(), BWIt->second.first);
9093 Cost += TTI->getCastInstrCost(Opcode, DstTy, SrcTy,
9094 TTI::CastContextHint::None,
9095 TTI::TCK_RecipThroughput);
9099 InstructionCost SpillCost = getSpillCost();
9100 Cost += SpillCost + ExtractCost;
9101 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask,
9102 bool) {
9103 InstructionCost C = 0;
9104 unsigned VF = Mask.size();
9105 unsigned VecVF = TE->getVectorFactor();
9106 if (VF != VecVF &&
9107 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
9108 !ShuffleVectorInst::isIdentityMask(Mask, VF))) {
9109 SmallVector<int> OrigMask(VecVF, PoisonMaskElem);
9110 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
9111 OrigMask.begin());
9112 C = TTI->getShuffleCost(
9113 TTI::SK_PermuteSingleSrc,
9114 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
9115 LLVM_DEBUG(
9116 dbgs() << "SLP: Adding cost " << C
9117 << " for final shuffle of insertelement external users.\n";
9118 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
9119 Cost += C;
9120 return std::make_pair(TE, true);
9122 return std::make_pair(TE, false);
9124 // Calculate the cost of the reshuffled vectors, if any.
9125 for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
9126 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
9127 auto Vector = ShuffleMasks[I].takeVector();
9128 unsigned VF = 0;
9129 auto EstimateShufflesCost = [&](ArrayRef<int> Mask,
9130 ArrayRef<const TreeEntry *> TEs) {
9131 assert((TEs.size() == 1 || TEs.size() == 2) &&
9132 "Expected exactly 1 or 2 tree entries.");
9133 if (TEs.size() == 1) {
9134 if (VF == 0)
9135 VF = TEs.front()->getVectorFactor();
9136 auto *FTy =
9137 FixedVectorType::get(TEs.back()->Scalars.front()->getType(), VF);
9138 if (!ShuffleVectorInst::isIdentityMask(Mask, VF) &&
9139 !all_of(enumerate(Mask), [=](const auto &Data) {
9140 return Data.value() == PoisonMaskElem ||
9141 (Data.index() < VF &&
9142 static_cast<int>(Data.index()) == Data.value());
9143 })) {
9144 InstructionCost C =
9145 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
9146 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
9147 << " for final shuffle of insertelement "
9148 "external users.\n";
9149 TEs.front()->dump();
9150 dbgs() << "SLP: Current total cost = " << Cost << "\n");
9151 Cost += C;
9153 } else {
9154 if (VF == 0) {
9155 if (TEs.front() &&
9156 TEs.front()->getVectorFactor() == TEs.back()->getVectorFactor())
9157 VF = TEs.front()->getVectorFactor();
9158 else
9159 VF = Mask.size();
9161 auto *FTy =
9162 FixedVectorType::get(TEs.back()->Scalars.front()->getType(), VF);
9163 InstructionCost C =
9164 ::getShuffleCost(*TTI, TTI::SK_PermuteTwoSrc, FTy, Mask);
9165 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
9166 << " for final shuffle of vector node and external "
9167 "insertelement users.\n";
9168 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
9169 dbgs() << "SLP: Current total cost = " << Cost << "\n");
9170 Cost += C;
9172 VF = Mask.size();
9173 return TEs.back();
9175 (void)performExtractsShuffleAction<const TreeEntry>(
9176 MutableArrayRef(Vector.data(), Vector.size()), Base,
9177 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
9178 EstimateShufflesCost);
9179 InstructionCost InsertCost = TTI->getScalarizationOverhead(
9180 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
9181 /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput);
9182 Cost -= InsertCost;
9185 #ifndef NDEBUG
9186 SmallString<256> Str;
9188 raw_svector_ostream OS(Str);
9189 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
9190 << "SLP: Extract Cost = " << ExtractCost << ".\n"
9191 << "SLP: Total Cost = " << Cost << ".\n";
9193 LLVM_DEBUG(dbgs() << Str);
9194 if (ViewSLPTree)
9195 ViewGraph(this, "SLP" + F->getName(), false, Str);
9196 #endif
9198 return Cost;
9201 /// Tries to find extractelement instructions with constant indices from fixed
9202 /// vector type and gather such instructions into a bunch, which highly likely
9203 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was
9204 /// successful, the matched scalars are replaced by poison values in \p VL for
9205 /// future analysis.
9206 std::optional<TTI::ShuffleKind>
9207 BoUpSLP::tryToGatherSingleRegisterExtractElements(
9208 MutableArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) const {
9209 // Scan list of gathered scalars for extractelements that can be represented
9210 // as shuffles.
9211 MapVector<Value *, SmallVector<int>> VectorOpToIdx;
9212 SmallVector<int> UndefVectorExtracts;
9213 for (int I = 0, E = VL.size(); I < E; ++I) {
9214 auto *EI = dyn_cast<ExtractElementInst>(VL[I]);
9215 if (!EI) {
9216 if (isa<UndefValue>(VL[I]))
9217 UndefVectorExtracts.push_back(I);
9218 continue;
9220 auto *VecTy = dyn_cast<FixedVectorType>(EI->getVectorOperandType());
9221 if (!VecTy || !isa<ConstantInt, UndefValue>(EI->getIndexOperand()))
9222 continue;
9223 std::optional<unsigned> Idx = getExtractIndex(EI);
9224 // Undefined index.
9225 if (!Idx) {
9226 UndefVectorExtracts.push_back(I);
9227 continue;
9229 SmallBitVector ExtractMask(VecTy->getNumElements(), true);
9230 ExtractMask.reset(*Idx);
9231 if (isUndefVector(EI->getVectorOperand(), ExtractMask).all()) {
9232 UndefVectorExtracts.push_back(I);
9233 continue;
9235 VectorOpToIdx[EI->getVectorOperand()].push_back(I);
9237 // Sort the vector operands by the maximum number of uses in extractelements.
9238 MapVector<unsigned, SmallVector<Value *>> VFToVector;
9239 for (const auto &Data : VectorOpToIdx)
9240 VFToVector[cast<FixedVectorType>(Data.first->getType())->getNumElements()]
9241 .push_back(Data.first);
9242 for (auto &Data : VFToVector) {
9243 stable_sort(Data.second, [&VectorOpToIdx](Value *V1, Value *V2) {
9244 return VectorOpToIdx.find(V1)->second.size() >
9245 VectorOpToIdx.find(V2)->second.size();
9248 // Find the best pair of the vectors with the same number of elements or a
9249 // single vector.
9250 const int UndefSz = UndefVectorExtracts.size();
9251 unsigned SingleMax = 0;
9252 Value *SingleVec = nullptr;
9253 unsigned PairMax = 0;
9254 std::pair<Value *, Value *> PairVec(nullptr, nullptr);
9255 for (auto &Data : VFToVector) {
9256 Value *V1 = Data.second.front();
9257 if (SingleMax < VectorOpToIdx[V1].size() + UndefSz) {
9258 SingleMax = VectorOpToIdx[V1].size() + UndefSz;
9259 SingleVec = V1;
9261 Value *V2 = nullptr;
9262 if (Data.second.size() > 1)
9263 V2 = *std::next(Data.second.begin());
9264 if (V2 && PairMax < VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() +
9265 UndefSz) {
9266 PairMax = VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() + UndefSz;
9267 PairVec = std::make_pair(V1, V2);
9270 if (SingleMax == 0 && PairMax == 0 && UndefSz == 0)
9271 return std::nullopt;
9272 // Check if better to perform a shuffle of 2 vectors or just of a single
9273 // vector.
9274 SmallVector<Value *> SavedVL(VL.begin(), VL.end());
9275 SmallVector<Value *> GatheredExtracts(
9276 VL.size(), PoisonValue::get(VL.front()->getType()));
9277 if (SingleMax >= PairMax && SingleMax) {
9278 for (int Idx : VectorOpToIdx[SingleVec])
9279 std::swap(GatheredExtracts[Idx], VL[Idx]);
9280 } else {
9281 for (Value *V : {PairVec.first, PairVec.second})
9282 for (int Idx : VectorOpToIdx[V])
9283 std::swap(GatheredExtracts[Idx], VL[Idx]);
9285 // Add extracts from undefs too.
9286 for (int Idx : UndefVectorExtracts)
9287 std::swap(GatheredExtracts[Idx], VL[Idx]);
9288 // Check that gather of extractelements can be represented as just a
9289 // shuffle of a single/two vectors the scalars are extracted from.
9290 std::optional<TTI::ShuffleKind> Res =
9291 isFixedVectorShuffle(GatheredExtracts, Mask);
9292 if (!Res) {
9293 // TODO: try to check other subsets if possible.
9294 // Restore the original VL if attempt was not successful.
9295 copy(SavedVL, VL.begin());
9296 return std::nullopt;
9298 // Restore unused scalars from mask, if some of the extractelements were not
9299 // selected for shuffle.
9300 for (int I = 0, E = GatheredExtracts.size(); I < E; ++I) {
9301 if (Mask[I] == PoisonMaskElem && !isa<PoisonValue>(GatheredExtracts[I]) &&
9302 isa<UndefValue>(GatheredExtracts[I])) {
9303 std::swap(VL[I], GatheredExtracts[I]);
9304 continue;
9306 auto *EI = dyn_cast<ExtractElementInst>(VL[I]);
9307 if (!EI || !isa<FixedVectorType>(EI->getVectorOperandType()) ||
9308 !isa<ConstantInt, UndefValue>(EI->getIndexOperand()) ||
9309 is_contained(UndefVectorExtracts, I))
9310 continue;
9312 return Res;
9315 /// Tries to find extractelement instructions with constant indices from fixed
9316 /// vector type and gather such instructions into a bunch, which highly likely
9317 /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was
9318 /// successful, the matched scalars are replaced by poison values in \p VL for
9319 /// future analysis.
9320 SmallVector<std::optional<TTI::ShuffleKind>>
9321 BoUpSLP::tryToGatherExtractElements(SmallVectorImpl<Value *> &VL,
9322 SmallVectorImpl<int> &Mask,
9323 unsigned NumParts) const {
9324 assert(NumParts > 0 && "NumParts expected be greater than or equal to 1.");
9325 SmallVector<std::optional<TTI::ShuffleKind>> ShufflesRes(NumParts);
9326 Mask.assign(VL.size(), PoisonMaskElem);
9327 unsigned SliceSize = VL.size() / NumParts;
9328 for (unsigned Part = 0; Part < NumParts; ++Part) {
9329 // Scan list of gathered scalars for extractelements that can be represented
9330 // as shuffles.
9331 MutableArrayRef<Value *> SubVL =
9332 MutableArrayRef(VL).slice(Part * SliceSize, SliceSize);
9333 SmallVector<int> SubMask;
9334 std::optional<TTI::ShuffleKind> Res =
9335 tryToGatherSingleRegisterExtractElements(SubVL, SubMask);
9336 ShufflesRes[Part] = Res;
9337 copy(SubMask, std::next(Mask.begin(), Part * SliceSize));
9339 if (none_of(ShufflesRes, [](const std::optional<TTI::ShuffleKind> &Res) {
9340 return Res.has_value();
9342 ShufflesRes.clear();
9343 return ShufflesRes;
9346 std::optional<TargetTransformInfo::ShuffleKind>
9347 BoUpSLP::isGatherShuffledSingleRegisterEntry(
9348 const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask,
9349 SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part) {
9350 Entries.clear();
9351 // TODO: currently checking only for Scalars in the tree entry, need to count
9352 // reused elements too for better cost estimation.
9353 const EdgeInfo &TEUseEI = TE->UserTreeIndices.front();
9354 const Instruction *TEInsertPt = &getLastInstructionInBundle(TEUseEI.UserTE);
9355 const BasicBlock *TEInsertBlock = nullptr;
9356 // Main node of PHI entries keeps the correct order of operands/incoming
9357 // blocks.
9358 if (auto *PHI = dyn_cast<PHINode>(TEUseEI.UserTE->getMainOp())) {
9359 TEInsertBlock = PHI->getIncomingBlock(TEUseEI.EdgeIdx);
9360 TEInsertPt = TEInsertBlock->getTerminator();
9361 } else {
9362 TEInsertBlock = TEInsertPt->getParent();
9364 auto *NodeUI = DT->getNode(TEInsertBlock);
9365 assert(NodeUI && "Should only process reachable instructions");
9366 SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end());
9367 auto CheckOrdering = [&](const Instruction *InsertPt) {
9368 // Argument InsertPt is an instruction where vector code for some other
9369 // tree entry (one that shares one or more scalars with TE) is going to be
9370 // generated. This lambda returns true if insertion point of vector code
9371 // for the TE dominates that point (otherwise dependency is the other way
9372 // around). The other node is not limited to be of a gather kind. Gather
9373 // nodes are not scheduled and their vector code is inserted before their
9374 // first user. If user is PHI, that is supposed to be at the end of a
9375 // predecessor block. Otherwise it is the last instruction among scalars of
9376 // the user node. So, instead of checking dependency between instructions
9377 // themselves, we check dependency between their insertion points for vector
9378 // code (since each scalar instruction ends up as a lane of a vector
9379 // instruction).
9380 const BasicBlock *InsertBlock = InsertPt->getParent();
9381 auto *NodeEUI = DT->getNode(InsertBlock);
9382 if (!NodeEUI)
9383 return false;
9384 assert((NodeUI == NodeEUI) ==
9385 (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) &&
9386 "Different nodes should have different DFS numbers");
9387 // Check the order of the gather nodes users.
9388 if (TEInsertPt->getParent() != InsertBlock &&
9389 (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI)))
9390 return false;
9391 if (TEInsertPt->getParent() == InsertBlock &&
9392 TEInsertPt->comesBefore(InsertPt))
9393 return false;
9394 return true;
9396 // Find all tree entries used by the gathered values. If no common entries
9397 // found - not a shuffle.
9398 // Here we build a set of tree nodes for each gathered value and trying to
9399 // find the intersection between these sets. If we have at least one common
9400 // tree node for each gathered value - we have just a permutation of the
9401 // single vector. If we have 2 different sets, we're in situation where we
9402 // have a permutation of 2 input vectors.
9403 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
9404 DenseMap<Value *, int> UsedValuesEntry;
9405 for (Value *V : VL) {
9406 if (isConstant(V))
9407 continue;
9408 // Build a list of tree entries where V is used.
9409 SmallPtrSet<const TreeEntry *, 4> VToTEs;
9410 for (const TreeEntry *TEPtr : ValueToGatherNodes.find(V)->second) {
9411 if (TEPtr == TE)
9412 continue;
9413 assert(any_of(TEPtr->Scalars,
9414 [&](Value *V) { return GatheredScalars.contains(V); }) &&
9415 "Must contain at least single gathered value.");
9416 assert(TEPtr->UserTreeIndices.size() == 1 &&
9417 "Expected only single user of a gather node.");
9418 const EdgeInfo &UseEI = TEPtr->UserTreeIndices.front();
9420 PHINode *UserPHI = dyn_cast<PHINode>(UseEI.UserTE->getMainOp());
9421 const Instruction *InsertPt =
9422 UserPHI ? UserPHI->getIncomingBlock(UseEI.EdgeIdx)->getTerminator()
9423 : &getLastInstructionInBundle(UseEI.UserTE);
9424 if (TEInsertPt == InsertPt) {
9425 // If 2 gathers are operands of the same entry (regardless of whether
9426 // user is PHI or else), compare operands indices, use the earlier one
9427 // as the base.
9428 if (TEUseEI.UserTE == UseEI.UserTE && TEUseEI.EdgeIdx < UseEI.EdgeIdx)
9429 continue;
9430 // If the user instruction is used for some reason in different
9431 // vectorized nodes - make it depend on index.
9432 if (TEUseEI.UserTE != UseEI.UserTE &&
9433 TEUseEI.UserTE->Idx < UseEI.UserTE->Idx)
9434 continue;
9437 // Check if the user node of the TE comes after user node of TEPtr,
9438 // otherwise TEPtr depends on TE.
9439 if ((TEInsertBlock != InsertPt->getParent() ||
9440 TEUseEI.EdgeIdx < UseEI.EdgeIdx || TEUseEI.UserTE != UseEI.UserTE) &&
9441 !CheckOrdering(InsertPt))
9442 continue;
9443 VToTEs.insert(TEPtr);
9445 if (const TreeEntry *VTE = getTreeEntry(V)) {
9446 Instruction &LastBundleInst = getLastInstructionInBundle(VTE);
9447 if (&LastBundleInst == TEInsertPt || !CheckOrdering(&LastBundleInst))
9448 continue;
9449 auto It = MinBWs.find(VTE);
9450 // If vectorize node is demoted - do not match.
9451 if (It != MinBWs.end() &&
9452 It->second.first != DL->getTypeSizeInBits(V->getType()))
9453 continue;
9454 VToTEs.insert(VTE);
9456 if (VToTEs.empty())
9457 continue;
9458 if (UsedTEs.empty()) {
9459 // The first iteration, just insert the list of nodes to vector.
9460 UsedTEs.push_back(VToTEs);
9461 UsedValuesEntry.try_emplace(V, 0);
9462 } else {
9463 // Need to check if there are any previously used tree nodes which use V.
9464 // If there are no such nodes, consider that we have another one input
9465 // vector.
9466 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
9467 unsigned Idx = 0;
9468 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
9469 // Do we have a non-empty intersection of previously listed tree entries
9470 // and tree entries using current V?
9471 set_intersect(VToTEs, Set);
9472 if (!VToTEs.empty()) {
9473 // Yes, write the new subset and continue analysis for the next
9474 // scalar.
9475 Set.swap(VToTEs);
9476 break;
9478 VToTEs = SavedVToTEs;
9479 ++Idx;
9481 // No non-empty intersection found - need to add a second set of possible
9482 // source vectors.
9483 if (Idx == UsedTEs.size()) {
9484 // If the number of input vectors is greater than 2 - not a permutation,
9485 // fallback to the regular gather.
9486 // TODO: support multiple reshuffled nodes.
9487 if (UsedTEs.size() == 2)
9488 continue;
9489 UsedTEs.push_back(SavedVToTEs);
9490 Idx = UsedTEs.size() - 1;
9492 UsedValuesEntry.try_emplace(V, Idx);
9496 if (UsedTEs.empty()) {
9497 Entries.clear();
9498 return std::nullopt;
9501 unsigned VF = 0;
9502 if (UsedTEs.size() == 1) {
9503 // Keep the order to avoid non-determinism.
9504 SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(),
9505 UsedTEs.front().end());
9506 sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
9507 return TE1->Idx < TE2->Idx;
9509 // Try to find the perfect match in another gather node at first.
9510 auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) {
9511 return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars);
9513 if (It != FirstEntries.end() &&
9514 ((*It)->getVectorFactor() == VL.size() ||
9515 ((*It)->getVectorFactor() == TE->Scalars.size() &&
9516 TE->ReuseShuffleIndices.size() == VL.size() &&
9517 (*It)->isSame(TE->Scalars)))) {
9518 Entries.push_back(*It);
9519 if ((*It)->getVectorFactor() == VL.size()) {
9520 std::iota(std::next(Mask.begin(), Part * VL.size()),
9521 std::next(Mask.begin(), (Part + 1) * VL.size()), 0);
9522 } else {
9523 SmallVector<int> CommonMask = TE->getCommonMask();
9524 copy(CommonMask, Mask.begin());
9526 // Clear undef scalars.
9527 for (int I = 0, Sz = VL.size(); I < Sz; ++I)
9528 if (isa<PoisonValue>(VL[I]))
9529 Mask[I] = PoisonMaskElem;
9530 return TargetTransformInfo::SK_PermuteSingleSrc;
9532 // No perfect match, just shuffle, so choose the first tree node from the
9533 // tree.
9534 Entries.push_back(FirstEntries.front());
9535 } else {
9536 // Try to find nodes with the same vector factor.
9537 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
9538 // Keep the order of tree nodes to avoid non-determinism.
9539 DenseMap<int, const TreeEntry *> VFToTE;
9540 for (const TreeEntry *TE : UsedTEs.front()) {
9541 unsigned VF = TE->getVectorFactor();
9542 auto It = VFToTE.find(VF);
9543 if (It != VFToTE.end()) {
9544 if (It->second->Idx > TE->Idx)
9545 It->getSecond() = TE;
9546 continue;
9548 VFToTE.try_emplace(VF, TE);
9550 // Same, keep the order to avoid non-determinism.
9551 SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(),
9552 UsedTEs.back().end());
9553 sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
9554 return TE1->Idx < TE2->Idx;
9556 for (const TreeEntry *TE : SecondEntries) {
9557 auto It = VFToTE.find(TE->getVectorFactor());
9558 if (It != VFToTE.end()) {
9559 VF = It->first;
9560 Entries.push_back(It->second);
9561 Entries.push_back(TE);
9562 break;
9565 // No 2 source vectors with the same vector factor - just choose 2 with max
9566 // index.
9567 if (Entries.empty()) {
9568 Entries.push_back(
9569 *std::max_element(UsedTEs.front().begin(), UsedTEs.front().end(),
9570 [](const TreeEntry *TE1, const TreeEntry *TE2) {
9571 return TE1->Idx < TE2->Idx;
9572 }));
9573 Entries.push_back(SecondEntries.front());
9574 VF = std::max(Entries.front()->getVectorFactor(),
9575 Entries.back()->getVectorFactor());
9579 bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof);
9580 // Checks if the 2 PHIs are compatible in terms of high possibility to be
9581 // vectorized.
9582 auto AreCompatiblePHIs = [&](Value *V, Value *V1) {
9583 auto *PHI = cast<PHINode>(V);
9584 auto *PHI1 = cast<PHINode>(V1);
9585 // Check that all incoming values are compatible/from same parent (if they
9586 // are instructions).
9587 // The incoming values are compatible if they all are constants, or
9588 // instruction with the same/alternate opcodes from the same basic block.
9589 for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
9590 Value *In = PHI->getIncomingValue(I);
9591 Value *In1 = PHI1->getIncomingValue(I);
9592 if (isConstant(In) && isConstant(In1))
9593 continue;
9594 if (!getSameOpcode({In, In1}, *TLI).getOpcode())
9595 return false;
9596 if (cast<Instruction>(In)->getParent() !=
9597 cast<Instruction>(In1)->getParent())
9598 return false;
9600 return true;
9602 // Check if the value can be ignored during analysis for shuffled gathers.
9603 // We suppose it is better to ignore instruction, which do not form splats,
9604 // are not vectorized/not extractelements (these instructions will be handled
9605 // by extractelements processing) or may form vector node in future.
9606 auto MightBeIgnored = [=](Value *V) {
9607 auto *I = dyn_cast<Instruction>(V);
9608 return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) &&
9609 !isVectorLikeInstWithConstOps(I) &&
9610 !areAllUsersVectorized(I, UserIgnoreList) && isSimple(I);
9612 // Check that the neighbor instruction may form a full vector node with the
9613 // current instruction V. It is possible, if they have same/alternate opcode
9614 // and same parent basic block.
9615 auto NeighborMightBeIgnored = [&](Value *V, int Idx) {
9616 Value *V1 = VL[Idx];
9617 bool UsedInSameVTE = false;
9618 auto It = UsedValuesEntry.find(V1);
9619 if (It != UsedValuesEntry.end())
9620 UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second;
9621 return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE &&
9622 getSameOpcode({V, V1}, *TLI).getOpcode() &&
9623 cast<Instruction>(V)->getParent() ==
9624 cast<Instruction>(V1)->getParent() &&
9625 (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1));
9627 // Build a shuffle mask for better cost estimation and vector emission.
9628 SmallBitVector UsedIdxs(Entries.size());
9629 SmallVector<std::pair<unsigned, int>> EntryLanes;
9630 for (int I = 0, E = VL.size(); I < E; ++I) {
9631 Value *V = VL[I];
9632 auto It = UsedValuesEntry.find(V);
9633 if (It == UsedValuesEntry.end())
9634 continue;
9635 // Do not try to shuffle scalars, if they are constants, or instructions
9636 // that can be vectorized as a result of the following vector build
9637 // vectorization.
9638 if (isConstant(V) || (MightBeIgnored(V) &&
9639 ((I > 0 && NeighborMightBeIgnored(V, I - 1)) ||
9640 (I != E - 1 && NeighborMightBeIgnored(V, I + 1)))))
9641 continue;
9642 unsigned Idx = It->second;
9643 EntryLanes.emplace_back(Idx, I);
9644 UsedIdxs.set(Idx);
9646 // Iterate through all shuffled scalars and select entries, which can be used
9647 // for final shuffle.
9648 SmallVector<const TreeEntry *> TempEntries;
9649 for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) {
9650 if (!UsedIdxs.test(I))
9651 continue;
9652 // Fix the entry number for the given scalar. If it is the first entry, set
9653 // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes).
9654 // These indices are used when calculating final shuffle mask as the vector
9655 // offset.
9656 for (std::pair<unsigned, int> &Pair : EntryLanes)
9657 if (Pair.first == I)
9658 Pair.first = TempEntries.size();
9659 TempEntries.push_back(Entries[I]);
9661 Entries.swap(TempEntries);
9662 if (EntryLanes.size() == Entries.size() &&
9663 !VL.equals(ArrayRef(TE->Scalars)
9664 .slice(Part * VL.size(),
9665 std::min<int>(VL.size(), TE->Scalars.size())))) {
9666 // We may have here 1 or 2 entries only. If the number of scalars is equal
9667 // to the number of entries, no need to do the analysis, it is not very
9668 // profitable. Since VL is not the same as TE->Scalars, it means we already
9669 // have some shuffles before. Cut off not profitable case.
9670 Entries.clear();
9671 return std::nullopt;
9673 // Build the final mask, check for the identity shuffle, if possible.
9674 bool IsIdentity = Entries.size() == 1;
9675 // Pair.first is the offset to the vector, while Pair.second is the index of
9676 // scalar in the list.
9677 for (const std::pair<unsigned, int> &Pair : EntryLanes) {
9678 unsigned Idx = Part * VL.size() + Pair.second;
9679 Mask[Idx] = Pair.first * VF +
9680 Entries[Pair.first]->findLaneForValue(VL[Pair.second]);
9681 IsIdentity &= Mask[Idx] == Pair.second;
9683 switch (Entries.size()) {
9684 case 1:
9685 if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2)
9686 return TargetTransformInfo::SK_PermuteSingleSrc;
9687 break;
9688 case 2:
9689 if (EntryLanes.size() > 2 || VL.size() <= 2)
9690 return TargetTransformInfo::SK_PermuteTwoSrc;
9691 break;
9692 default:
9693 break;
9695 Entries.clear();
9696 // Clear the corresponding mask elements.
9697 std::fill(std::next(Mask.begin(), Part * VL.size()),
9698 std::next(Mask.begin(), (Part + 1) * VL.size()), PoisonMaskElem);
9699 return std::nullopt;
9702 SmallVector<std::optional<TargetTransformInfo::ShuffleKind>>
9703 BoUpSLP::isGatherShuffledEntry(
9704 const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask,
9705 SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries,
9706 unsigned NumParts) {
9707 assert(NumParts > 0 && NumParts < VL.size() &&
9708 "Expected positive number of registers.");
9709 Entries.clear();
9710 // No need to check for the topmost gather node.
9711 if (TE == VectorizableTree.front().get())
9712 return {};
9713 Mask.assign(VL.size(), PoisonMaskElem);
9714 assert(TE->UserTreeIndices.size() == 1 &&
9715 "Expected only single user of the gather node.");
9716 assert(VL.size() % NumParts == 0 &&
9717 "Number of scalars must be divisible by NumParts.");
9718 unsigned SliceSize = VL.size() / NumParts;
9719 SmallVector<std::optional<TTI::ShuffleKind>> Res;
9720 for (unsigned Part = 0; Part < NumParts; ++Part) {
9721 ArrayRef<Value *> SubVL = VL.slice(Part * SliceSize, SliceSize);
9722 SmallVectorImpl<const TreeEntry *> &SubEntries = Entries.emplace_back();
9723 std::optional<TTI::ShuffleKind> SubRes =
9724 isGatherShuffledSingleRegisterEntry(TE, SubVL, Mask, SubEntries, Part);
9725 if (!SubRes)
9726 SubEntries.clear();
9727 Res.push_back(SubRes);
9728 if (SubEntries.size() == 1 && *SubRes == TTI::SK_PermuteSingleSrc &&
9729 SubEntries.front()->getVectorFactor() == VL.size() &&
9730 (SubEntries.front()->isSame(TE->Scalars) ||
9731 SubEntries.front()->isSame(VL))) {
9732 SmallVector<const TreeEntry *> LocalSubEntries;
9733 LocalSubEntries.swap(SubEntries);
9734 Entries.clear();
9735 Res.clear();
9736 std::iota(Mask.begin(), Mask.end(), 0);
9737 // Clear undef scalars.
9738 for (int I = 0, Sz = VL.size(); I < Sz; ++I)
9739 if (isa<PoisonValue>(VL[I]))
9740 Mask[I] = PoisonMaskElem;
9741 Entries.emplace_back(1, LocalSubEntries.front());
9742 Res.push_back(TargetTransformInfo::SK_PermuteSingleSrc);
9743 return Res;
9746 if (all_of(Res,
9747 [](const std::optional<TTI::ShuffleKind> &SK) { return !SK; })) {
9748 Entries.clear();
9749 return {};
9751 return Res;
9754 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL,
9755 bool ForPoisonSrc) const {
9756 // Find the type of the operands in VL.
9757 Type *ScalarTy = VL[0]->getType();
9758 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
9759 ScalarTy = SI->getValueOperand()->getType();
9760 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
9761 bool DuplicateNonConst = false;
9762 // Find the cost of inserting/extracting values from the vector.
9763 // Check if the same elements are inserted several times and count them as
9764 // shuffle candidates.
9765 APInt ShuffledElements = APInt::getZero(VL.size());
9766 DenseSet<Value *> UniqueElements;
9767 constexpr TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9768 InstructionCost Cost;
9769 auto EstimateInsertCost = [&](unsigned I, Value *V) {
9770 if (!ForPoisonSrc)
9771 Cost +=
9772 TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind,
9773 I, Constant::getNullValue(VecTy), V);
9775 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
9776 Value *V = VL[I];
9777 // No need to shuffle duplicates for constants.
9778 if ((ForPoisonSrc && isConstant(V)) || isa<UndefValue>(V)) {
9779 ShuffledElements.setBit(I);
9780 continue;
9782 if (!UniqueElements.insert(V).second) {
9783 DuplicateNonConst = true;
9784 ShuffledElements.setBit(I);
9785 continue;
9787 EstimateInsertCost(I, V);
9789 if (ForPoisonSrc)
9790 Cost =
9791 TTI->getScalarizationOverhead(VecTy, ~ShuffledElements, /*Insert*/ true,
9792 /*Extract*/ false, CostKind);
9793 if (DuplicateNonConst)
9794 Cost +=
9795 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
9796 return Cost;
9799 // Perform operand reordering on the instructions in VL and return the reordered
9800 // operands in Left and Right.
9801 void BoUpSLP::reorderInputsAccordingToOpcode(
9802 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
9803 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
9804 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) {
9805 if (VL.empty())
9806 return;
9807 VLOperands Ops(VL, TLI, DL, SE, R);
9808 // Reorder the operands in place.
9809 Ops.reorder();
9810 Left = Ops.getVL(0);
9811 Right = Ops.getVL(1);
9814 Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) {
9815 auto &Res = EntryToLastInstruction.FindAndConstruct(E);
9816 if (Res.second)
9817 return *Res.second;
9818 // Get the basic block this bundle is in. All instructions in the bundle
9819 // should be in this block (except for extractelement-like instructions with
9820 // constant indeces).
9821 auto *Front = E->getMainOp();
9822 auto *BB = Front->getParent();
9823 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
9824 if (E->getOpcode() == Instruction::GetElementPtr &&
9825 !isa<GetElementPtrInst>(V))
9826 return true;
9827 auto *I = cast<Instruction>(V);
9828 return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
9829 isVectorLikeInstWithConstOps(I);
9830 }));
9832 auto FindLastInst = [&]() {
9833 Instruction *LastInst = Front;
9834 for (Value *V : E->Scalars) {
9835 auto *I = dyn_cast<Instruction>(V);
9836 if (!I)
9837 continue;
9838 if (LastInst->getParent() == I->getParent()) {
9839 if (LastInst->comesBefore(I))
9840 LastInst = I;
9841 continue;
9843 assert(((E->getOpcode() == Instruction::GetElementPtr &&
9844 !isa<GetElementPtrInst>(I)) ||
9845 (isVectorLikeInstWithConstOps(LastInst) &&
9846 isVectorLikeInstWithConstOps(I))) &&
9847 "Expected vector-like or non-GEP in GEP node insts only.");
9848 if (!DT->isReachableFromEntry(LastInst->getParent())) {
9849 LastInst = I;
9850 continue;
9852 if (!DT->isReachableFromEntry(I->getParent()))
9853 continue;
9854 auto *NodeA = DT->getNode(LastInst->getParent());
9855 auto *NodeB = DT->getNode(I->getParent());
9856 assert(NodeA && "Should only process reachable instructions");
9857 assert(NodeB && "Should only process reachable instructions");
9858 assert((NodeA == NodeB) ==
9859 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
9860 "Different nodes should have different DFS numbers");
9861 if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
9862 LastInst = I;
9864 BB = LastInst->getParent();
9865 return LastInst;
9868 auto FindFirstInst = [&]() {
9869 Instruction *FirstInst = Front;
9870 for (Value *V : E->Scalars) {
9871 auto *I = dyn_cast<Instruction>(V);
9872 if (!I)
9873 continue;
9874 if (FirstInst->getParent() == I->getParent()) {
9875 if (I->comesBefore(FirstInst))
9876 FirstInst = I;
9877 continue;
9879 assert(((E->getOpcode() == Instruction::GetElementPtr &&
9880 !isa<GetElementPtrInst>(I)) ||
9881 (isVectorLikeInstWithConstOps(FirstInst) &&
9882 isVectorLikeInstWithConstOps(I))) &&
9883 "Expected vector-like or non-GEP in GEP node insts only.");
9884 if (!DT->isReachableFromEntry(FirstInst->getParent())) {
9885 FirstInst = I;
9886 continue;
9888 if (!DT->isReachableFromEntry(I->getParent()))
9889 continue;
9890 auto *NodeA = DT->getNode(FirstInst->getParent());
9891 auto *NodeB = DT->getNode(I->getParent());
9892 assert(NodeA && "Should only process reachable instructions");
9893 assert(NodeB && "Should only process reachable instructions");
9894 assert((NodeA == NodeB) ==
9895 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
9896 "Different nodes should have different DFS numbers");
9897 if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn())
9898 FirstInst = I;
9900 return FirstInst;
9903 // Set the insert point to the beginning of the basic block if the entry
9904 // should not be scheduled.
9905 if (doesNotNeedToSchedule(E->Scalars) ||
9906 (E->State != TreeEntry::NeedToGather &&
9907 all_of(E->Scalars, isVectorLikeInstWithConstOps))) {
9908 if ((E->getOpcode() == Instruction::GetElementPtr &&
9909 any_of(E->Scalars,
9910 [](Value *V) {
9911 return !isa<GetElementPtrInst>(V) && isa<Instruction>(V);
9912 })) ||
9913 all_of(E->Scalars, [](Value *V) {
9914 return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V);
9916 Res.second = FindLastInst();
9917 else
9918 Res.second = FindFirstInst();
9919 return *Res.second;
9922 // Find the last instruction. The common case should be that BB has been
9923 // scheduled, and the last instruction is VL.back(). So we start with
9924 // VL.back() and iterate over schedule data until we reach the end of the
9925 // bundle. The end of the bundle is marked by null ScheduleData.
9926 if (BlocksSchedules.count(BB)) {
9927 Value *V = E->isOneOf(E->Scalars.back());
9928 if (doesNotNeedToBeScheduled(V))
9929 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
9930 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
9931 if (Bundle && Bundle->isPartOfBundle())
9932 for (; Bundle; Bundle = Bundle->NextInBundle)
9933 if (Bundle->OpValue == Bundle->Inst)
9934 Res.second = Bundle->Inst;
9937 // LastInst can still be null at this point if there's either not an entry
9938 // for BB in BlocksSchedules or there's no ScheduleData available for
9939 // VL.back(). This can be the case if buildTree_rec aborts for various
9940 // reasons (e.g., the maximum recursion depth is reached, the maximum region
9941 // size is reached, etc.). ScheduleData is initialized in the scheduling
9942 // "dry-run".
9944 // If this happens, we can still find the last instruction by brute force. We
9945 // iterate forwards from Front (inclusive) until we either see all
9946 // instructions in the bundle or reach the end of the block. If Front is the
9947 // last instruction in program order, LastInst will be set to Front, and we
9948 // will visit all the remaining instructions in the block.
9950 // One of the reasons we exit early from buildTree_rec is to place an upper
9951 // bound on compile-time. Thus, taking an additional compile-time hit here is
9952 // not ideal. However, this should be exceedingly rare since it requires that
9953 // we both exit early from buildTree_rec and that the bundle be out-of-order
9954 // (causing us to iterate all the way to the end of the block).
9955 if (!Res.second)
9956 Res.second = FindLastInst();
9957 assert(Res.second && "Failed to find last instruction in bundle");
9958 return *Res.second;
9961 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
9962 auto *Front = E->getMainOp();
9963 Instruction *LastInst = &getLastInstructionInBundle(E);
9964 assert(LastInst && "Failed to find last instruction in bundle");
9965 BasicBlock::iterator LastInstIt = LastInst->getIterator();
9966 // If the instruction is PHI, set the insert point after all the PHIs.
9967 bool IsPHI = isa<PHINode>(LastInst);
9968 if (IsPHI)
9969 LastInstIt = LastInst->getParent()->getFirstNonPHIIt();
9970 if (IsPHI || (E->State != TreeEntry::NeedToGather &&
9971 doesNotNeedToSchedule(E->Scalars))) {
9972 Builder.SetInsertPoint(LastInst->getParent(), LastInstIt);
9973 } else {
9974 // Set the insertion point after the last instruction in the bundle. Set the
9975 // debug location to Front.
9976 Builder.SetInsertPoint(
9977 LastInst->getParent(),
9978 LastInst->getNextNonDebugInstruction()->getIterator());
9980 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
9983 Value *BoUpSLP::gather(ArrayRef<Value *> VL, Value *Root) {
9984 // List of instructions/lanes from current block and/or the blocks which are
9985 // part of the current loop. These instructions will be inserted at the end to
9986 // make it possible to optimize loops and hoist invariant instructions out of
9987 // the loops body with better chances for success.
9988 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
9989 SmallSet<int, 4> PostponedIndices;
9990 Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
9991 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
9992 SmallPtrSet<BasicBlock *, 4> Visited;
9993 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
9994 InsertBB = InsertBB->getSinglePredecessor();
9995 return InsertBB && InsertBB == InstBB;
9997 for (int I = 0, E = VL.size(); I < E; ++I) {
9998 if (auto *Inst = dyn_cast<Instruction>(VL[I]))
9999 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
10000 getTreeEntry(Inst) ||
10001 (L && (!Root || L->isLoopInvariant(Root)) && L->contains(Inst))) &&
10002 PostponedIndices.insert(I).second)
10003 PostponedInsts.emplace_back(Inst, I);
10006 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
10007 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
10008 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
10009 if (!InsElt)
10010 return Vec;
10011 GatherShuffleExtractSeq.insert(InsElt);
10012 CSEBlocks.insert(InsElt->getParent());
10013 // Add to our 'need-to-extract' list.
10014 if (isa<Instruction>(V)) {
10015 if (TreeEntry *Entry = getTreeEntry(V)) {
10016 // Find which lane we need to extract.
10017 unsigned FoundLane = Entry->findLaneForValue(V);
10018 ExternalUses.emplace_back(V, InsElt, FoundLane);
10021 return Vec;
10023 Value *Val0 =
10024 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
10025 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
10026 Value *Vec = Root ? Root : PoisonValue::get(VecTy);
10027 SmallVector<int> NonConsts;
10028 // Insert constant values at first.
10029 for (int I = 0, E = VL.size(); I < E; ++I) {
10030 if (PostponedIndices.contains(I))
10031 continue;
10032 if (!isConstant(VL[I])) {
10033 NonConsts.push_back(I);
10034 continue;
10036 if (Root) {
10037 if (!isa<UndefValue>(VL[I])) {
10038 NonConsts.push_back(I);
10039 continue;
10041 if (isa<PoisonValue>(VL[I]))
10042 continue;
10043 if (auto *SV = dyn_cast<ShuffleVectorInst>(Root)) {
10044 if (SV->getMaskValue(I) == PoisonMaskElem)
10045 continue;
10048 Vec = CreateInsertElement(Vec, VL[I], I);
10050 // Insert non-constant values.
10051 for (int I : NonConsts)
10052 Vec = CreateInsertElement(Vec, VL[I], I);
10053 // Append instructions, which are/may be part of the loop, in the end to make
10054 // it possible to hoist non-loop-based instructions.
10055 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
10056 Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
10058 return Vec;
10061 /// Merges shuffle masks and emits final shuffle instruction, if required. It
10062 /// supports shuffling of 2 input vectors. It implements lazy shuffles emission,
10063 /// when the actual shuffle instruction is generated only if this is actually
10064 /// required. Otherwise, the shuffle instruction emission is delayed till the
10065 /// end of the process, to reduce the number of emitted instructions and further
10066 /// analysis/transformations.
10067 /// The class also will look through the previously emitted shuffle instructions
10068 /// and properly mark indices in mask as undef.
10069 /// For example, given the code
10070 /// \code
10071 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
10072 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
10073 /// \endcode
10074 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
10075 /// look through %s1 and %s2 and emit
10076 /// \code
10077 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
10078 /// \endcode
10079 /// instead.
10080 /// If 2 operands are of different size, the smallest one will be resized and
10081 /// the mask recalculated properly.
10082 /// For example, given the code
10083 /// \code
10084 /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
10085 /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
10086 /// \endcode
10087 /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
10088 /// look through %s1 and %s2 and emit
10089 /// \code
10090 /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
10091 /// \endcode
10092 /// instead.
10093 class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis {
10094 bool IsFinalized = false;
10095 /// Combined mask for all applied operands and masks. It is built during
10096 /// analysis and actual emission of shuffle vector instructions.
10097 SmallVector<int> CommonMask;
10098 /// List of operands for the shuffle vector instruction. It hold at max 2
10099 /// operands, if the 3rd is going to be added, the first 2 are combined into
10100 /// shuffle with \p CommonMask mask, the first operand sets to be the
10101 /// resulting shuffle and the second operand sets to be the newly added
10102 /// operand. The \p CommonMask is transformed in the proper way after that.
10103 SmallVector<Value *, 2> InVectors;
10104 IRBuilderBase &Builder;
10105 BoUpSLP &R;
10107 class ShuffleIRBuilder {
10108 IRBuilderBase &Builder;
10109 /// Holds all of the instructions that we gathered.
10110 SetVector<Instruction *> &GatherShuffleExtractSeq;
10111 /// A list of blocks that we are going to CSE.
10112 DenseSet<BasicBlock *> &CSEBlocks;
10114 public:
10115 ShuffleIRBuilder(IRBuilderBase &Builder,
10116 SetVector<Instruction *> &GatherShuffleExtractSeq,
10117 DenseSet<BasicBlock *> &CSEBlocks)
10118 : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq),
10119 CSEBlocks(CSEBlocks) {}
10120 ~ShuffleIRBuilder() = default;
10121 /// Creates shufflevector for the 2 operands with the given mask.
10122 Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) {
10123 Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask);
10124 if (auto *I = dyn_cast<Instruction>(Vec)) {
10125 GatherShuffleExtractSeq.insert(I);
10126 CSEBlocks.insert(I->getParent());
10128 return Vec;
10130 /// Creates permutation of the single vector operand with the given mask, if
10131 /// it is not identity mask.
10132 Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) {
10133 if (Mask.empty())
10134 return V1;
10135 unsigned VF = Mask.size();
10136 unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements();
10137 if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask, VF))
10138 return V1;
10139 Value *Vec = Builder.CreateShuffleVector(V1, Mask);
10140 if (auto *I = dyn_cast<Instruction>(Vec)) {
10141 GatherShuffleExtractSeq.insert(I);
10142 CSEBlocks.insert(I->getParent());
10144 return Vec;
10146 Value *createIdentity(Value *V) { return V; }
10147 Value *createPoison(Type *Ty, unsigned VF) {
10148 return PoisonValue::get(FixedVectorType::get(Ty, VF));
10150 /// Resizes 2 input vector to match the sizes, if the they are not equal
10151 /// yet. The smallest vector is resized to the size of the larger vector.
10152 void resizeToMatch(Value *&V1, Value *&V2) {
10153 if (V1->getType() == V2->getType())
10154 return;
10155 int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements();
10156 int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements();
10157 int VF = std::max(V1VF, V2VF);
10158 int MinVF = std::min(V1VF, V2VF);
10159 SmallVector<int> IdentityMask(VF, PoisonMaskElem);
10160 std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF),
10162 Value *&Op = MinVF == V1VF ? V1 : V2;
10163 Op = Builder.CreateShuffleVector(Op, IdentityMask);
10164 if (auto *I = dyn_cast<Instruction>(Op)) {
10165 GatherShuffleExtractSeq.insert(I);
10166 CSEBlocks.insert(I->getParent());
10168 if (MinVF == V1VF)
10169 V1 = Op;
10170 else
10171 V2 = Op;
10175 /// Smart shuffle instruction emission, walks through shuffles trees and
10176 /// tries to find the best matching vector for the actual shuffle
10177 /// instruction.
10178 Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) {
10179 assert(V1 && "Expected at least one vector value.");
10180 ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq,
10181 R.CSEBlocks);
10182 return BaseShuffleAnalysis::createShuffle<Value *>(V1, V2, Mask,
10183 ShuffleBuilder);
10186 /// Transforms mask \p CommonMask per given \p Mask to make proper set after
10187 /// shuffle emission.
10188 static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask,
10189 ArrayRef<int> Mask) {
10190 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10191 if (Mask[Idx] != PoisonMaskElem)
10192 CommonMask[Idx] = Idx;
10195 public:
10196 ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R)
10197 : Builder(Builder), R(R) {}
10199 /// Adjusts extractelements after reusing them.
10200 Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask,
10201 ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds,
10202 unsigned NumParts, bool &UseVecBaseAsInput) {
10203 UseVecBaseAsInput = false;
10204 SmallPtrSet<Value *, 4> UniqueBases;
10205 Value *VecBase = nullptr;
10206 for (int I = 0, Sz = Mask.size(); I < Sz; ++I) {
10207 int Idx = Mask[I];
10208 if (Idx == PoisonMaskElem)
10209 continue;
10210 auto *EI = cast<ExtractElementInst>(E->Scalars[I]);
10211 VecBase = EI->getVectorOperand();
10212 if (const TreeEntry *TE = R.getTreeEntry(VecBase))
10213 VecBase = TE->VectorizedValue;
10214 assert(VecBase && "Expected vectorized value.");
10215 UniqueBases.insert(VecBase);
10216 // If the only one use is vectorized - can delete the extractelement
10217 // itself.
10218 if (!EI->hasOneUse() || (NumParts != 1 && count(E->Scalars, EI) > 1) ||
10219 any_of(EI->users(), [&](User *U) {
10220 const TreeEntry *UTE = R.getTreeEntry(U);
10221 return !UTE || R.MultiNodeScalars.contains(U) ||
10222 count_if(R.VectorizableTree,
10223 [&](const std::unique_ptr<TreeEntry> &TE) {
10224 return any_of(TE->UserTreeIndices,
10225 [&](const EdgeInfo &Edge) {
10226 return Edge.UserTE == UTE;
10227 }) &&
10228 is_contained(TE->Scalars, EI);
10229 }) != 1;
10231 continue;
10232 R.eraseInstruction(EI);
10234 if (NumParts == 1 || UniqueBases.size() == 1)
10235 return VecBase;
10236 UseVecBaseAsInput = true;
10237 auto TransformToIdentity = [](MutableArrayRef<int> Mask) {
10238 for (auto [I, Idx] : enumerate(Mask))
10239 if (Idx != PoisonMaskElem)
10240 Idx = I;
10242 // Perform multi-register vector shuffle, joining them into a single virtual
10243 // long vector.
10244 // Need to shuffle each part independently and then insert all this parts
10245 // into a long virtual vector register, forming the original vector.
10246 Value *Vec = nullptr;
10247 SmallVector<int> VecMask(Mask.size(), PoisonMaskElem);
10248 unsigned SliceSize = E->Scalars.size() / NumParts;
10249 for (unsigned Part = 0; Part < NumParts; ++Part) {
10250 ArrayRef<Value *> VL =
10251 ArrayRef(E->Scalars).slice(Part * SliceSize, SliceSize);
10252 MutableArrayRef<int> SubMask = Mask.slice(Part * SliceSize, SliceSize);
10253 constexpr int MaxBases = 2;
10254 SmallVector<Value *, MaxBases> Bases(MaxBases);
10255 #ifndef NDEBUG
10256 int PrevSize = 0;
10257 #endif // NDEBUG
10258 for (const auto [I, V]: enumerate(VL)) {
10259 if (SubMask[I] == PoisonMaskElem)
10260 continue;
10261 Value *VecOp = cast<ExtractElementInst>(V)->getVectorOperand();
10262 if (const TreeEntry *TE = R.getTreeEntry(VecOp))
10263 VecOp = TE->VectorizedValue;
10264 assert(VecOp && "Expected vectorized value.");
10265 const int Size =
10266 cast<FixedVectorType>(VecOp->getType())->getNumElements();
10267 #ifndef NDEBUG
10268 assert((PrevSize == Size || PrevSize == 0) &&
10269 "Expected vectors of the same size.");
10270 PrevSize = Size;
10271 #endif // NDEBUG
10272 Bases[SubMask[I] < Size ? 0 : 1] = VecOp;
10274 if (!Bases.front())
10275 continue;
10276 Value *SubVec;
10277 if (Bases.back()) {
10278 SubVec = createShuffle(Bases.front(), Bases.back(), SubMask);
10279 TransformToIdentity(SubMask);
10280 } else {
10281 SubVec = Bases.front();
10283 if (!Vec) {
10284 Vec = SubVec;
10285 assert((Part == 0 || all_of(seq<unsigned>(0, Part),
10286 [&](unsigned P) {
10287 ArrayRef<int> SubMask =
10288 Mask.slice(P * SliceSize, SliceSize);
10289 return all_of(SubMask, [](int Idx) {
10290 return Idx == PoisonMaskElem;
10292 })) &&
10293 "Expected first part or all previous parts masked.");
10294 copy(SubMask, std::next(VecMask.begin(), Part * SliceSize));
10295 } else {
10296 unsigned VF = cast<FixedVectorType>(Vec->getType())->getNumElements();
10297 if (Vec->getType() != SubVec->getType()) {
10298 unsigned SubVecVF =
10299 cast<FixedVectorType>(SubVec->getType())->getNumElements();
10300 VF = std::max(VF, SubVecVF);
10302 // Adjust SubMask.
10303 for (auto [I, Idx] : enumerate(SubMask))
10304 if (Idx != PoisonMaskElem)
10305 Idx += VF;
10306 copy(SubMask, std::next(VecMask.begin(), Part * SliceSize));
10307 Vec = createShuffle(Vec, SubVec, VecMask);
10308 TransformToIdentity(VecMask);
10311 copy(VecMask, Mask.begin());
10312 return Vec;
10314 /// Checks if the specified entry \p E needs to be delayed because of its
10315 /// dependency nodes.
10316 std::optional<Value *>
10317 needToDelay(const TreeEntry *E,
10318 ArrayRef<SmallVector<const TreeEntry *>> Deps) const {
10319 // No need to delay emission if all deps are ready.
10320 if (all_of(Deps, [](ArrayRef<const TreeEntry *> TEs) {
10321 return all_of(
10322 TEs, [](const TreeEntry *TE) { return TE->VectorizedValue; });
10324 return std::nullopt;
10325 // Postpone gather emission, will be emitted after the end of the
10326 // process to keep correct order.
10327 auto *VecTy = FixedVectorType::get(E->Scalars.front()->getType(),
10328 E->getVectorFactor());
10329 return Builder.CreateAlignedLoad(
10330 VecTy, PoisonValue::get(PointerType::getUnqual(VecTy->getContext())),
10331 MaybeAlign());
10333 /// Adds 2 input vectors (in form of tree entries) and the mask for their
10334 /// shuffling.
10335 void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) {
10336 add(E1.VectorizedValue, E2.VectorizedValue, Mask);
10338 /// Adds single input vector (in form of tree entry) and the mask for its
10339 /// shuffling.
10340 void add(const TreeEntry &E1, ArrayRef<int> Mask) {
10341 add(E1.VectorizedValue, Mask);
10343 /// Adds 2 input vectors and the mask for their shuffling.
10344 void add(Value *V1, Value *V2, ArrayRef<int> Mask) {
10345 assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors.");
10346 if (InVectors.empty()) {
10347 InVectors.push_back(V1);
10348 InVectors.push_back(V2);
10349 CommonMask.assign(Mask.begin(), Mask.end());
10350 return;
10352 Value *Vec = InVectors.front();
10353 if (InVectors.size() == 2) {
10354 Vec = createShuffle(Vec, InVectors.back(), CommonMask);
10355 transformMaskAfterShuffle(CommonMask, CommonMask);
10356 } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() !=
10357 Mask.size()) {
10358 Vec = createShuffle(Vec, nullptr, CommonMask);
10359 transformMaskAfterShuffle(CommonMask, CommonMask);
10361 V1 = createShuffle(V1, V2, Mask);
10362 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10363 if (Mask[Idx] != PoisonMaskElem)
10364 CommonMask[Idx] = Idx + Sz;
10365 InVectors.front() = Vec;
10366 if (InVectors.size() == 2)
10367 InVectors.back() = V1;
10368 else
10369 InVectors.push_back(V1);
10371 /// Adds another one input vector and the mask for the shuffling.
10372 void add(Value *V1, ArrayRef<int> Mask, bool = false) {
10373 if (InVectors.empty()) {
10374 if (!isa<FixedVectorType>(V1->getType())) {
10375 V1 = createShuffle(V1, nullptr, CommonMask);
10376 CommonMask.assign(Mask.size(), PoisonMaskElem);
10377 transformMaskAfterShuffle(CommonMask, Mask);
10379 InVectors.push_back(V1);
10380 CommonMask.assign(Mask.begin(), Mask.end());
10381 return;
10383 const auto *It = find(InVectors, V1);
10384 if (It == InVectors.end()) {
10385 if (InVectors.size() == 2 ||
10386 InVectors.front()->getType() != V1->getType() ||
10387 !isa<FixedVectorType>(V1->getType())) {
10388 Value *V = InVectors.front();
10389 if (InVectors.size() == 2) {
10390 V = createShuffle(InVectors.front(), InVectors.back(), CommonMask);
10391 transformMaskAfterShuffle(CommonMask, CommonMask);
10392 } else if (cast<FixedVectorType>(V->getType())->getNumElements() !=
10393 CommonMask.size()) {
10394 V = createShuffle(InVectors.front(), nullptr, CommonMask);
10395 transformMaskAfterShuffle(CommonMask, CommonMask);
10397 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10398 if (CommonMask[Idx] == PoisonMaskElem && Mask[Idx] != PoisonMaskElem)
10399 CommonMask[Idx] =
10400 V->getType() != V1->getType()
10401 ? Idx + Sz
10402 : Mask[Idx] + cast<FixedVectorType>(V1->getType())
10403 ->getNumElements();
10404 if (V->getType() != V1->getType())
10405 V1 = createShuffle(V1, nullptr, Mask);
10406 InVectors.front() = V;
10407 if (InVectors.size() == 2)
10408 InVectors.back() = V1;
10409 else
10410 InVectors.push_back(V1);
10411 return;
10413 // Check if second vector is required if the used elements are already
10414 // used from the first one.
10415 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10416 if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) {
10417 InVectors.push_back(V1);
10418 break;
10421 int VF = CommonMask.size();
10422 if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
10423 VF = FTy->getNumElements();
10424 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10425 if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem)
10426 CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF);
10428 /// Adds another one input vector and the mask for the shuffling.
10429 void addOrdered(Value *V1, ArrayRef<unsigned> Order) {
10430 SmallVector<int> NewMask;
10431 inversePermutation(Order, NewMask);
10432 add(V1, NewMask);
10434 Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0,
10435 Value *Root = nullptr) {
10436 return R.gather(VL, Root);
10438 Value *createFreeze(Value *V) { return Builder.CreateFreeze(V); }
10439 /// Finalize emission of the shuffles.
10440 /// \param Action the action (if any) to be performed before final applying of
10441 /// the \p ExtMask mask.
10442 Value *
10443 finalize(ArrayRef<int> ExtMask, unsigned VF = 0,
10444 function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) {
10445 IsFinalized = true;
10446 if (Action) {
10447 Value *Vec = InVectors.front();
10448 if (InVectors.size() == 2) {
10449 Vec = createShuffle(Vec, InVectors.back(), CommonMask);
10450 InVectors.pop_back();
10451 } else {
10452 Vec = createShuffle(Vec, nullptr, CommonMask);
10454 for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
10455 if (CommonMask[Idx] != PoisonMaskElem)
10456 CommonMask[Idx] = Idx;
10457 assert(VF > 0 &&
10458 "Expected vector length for the final value before action.");
10459 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
10460 if (VecVF < VF) {
10461 SmallVector<int> ResizeMask(VF, PoisonMaskElem);
10462 std::iota(ResizeMask.begin(), std::next(ResizeMask.begin(), VecVF), 0);
10463 Vec = createShuffle(Vec, nullptr, ResizeMask);
10465 Action(Vec, CommonMask);
10466 InVectors.front() = Vec;
10468 if (!ExtMask.empty()) {
10469 if (CommonMask.empty()) {
10470 CommonMask.assign(ExtMask.begin(), ExtMask.end());
10471 } else {
10472 SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem);
10473 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
10474 if (ExtMask[I] == PoisonMaskElem)
10475 continue;
10476 NewMask[I] = CommonMask[ExtMask[I]];
10478 CommonMask.swap(NewMask);
10481 if (CommonMask.empty()) {
10482 assert(InVectors.size() == 1 && "Expected only one vector with no mask");
10483 return InVectors.front();
10485 if (InVectors.size() == 2)
10486 return createShuffle(InVectors.front(), InVectors.back(), CommonMask);
10487 return createShuffle(InVectors.front(), nullptr, CommonMask);
10490 ~ShuffleInstructionBuilder() {
10491 assert((IsFinalized || CommonMask.empty()) &&
10492 "Shuffle construction must be finalized.");
10496 Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx,
10497 bool PostponedPHIs) {
10498 ValueList &VL = E->getOperand(NodeIdx);
10499 if (E->State == TreeEntry::PossibleStridedVectorize &&
10500 !E->ReorderIndices.empty()) {
10501 SmallVector<int> Mask(E->ReorderIndices.begin(), E->ReorderIndices.end());
10502 reorderScalars(VL, Mask);
10504 const unsigned VF = VL.size();
10505 InstructionsState S = getSameOpcode(VL, *TLI);
10506 // Special processing for GEPs bundle, which may include non-gep values.
10507 if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
10508 const auto *It =
10509 find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
10510 if (It != VL.end())
10511 S = getSameOpcode(*It, *TLI);
10513 if (S.getOpcode()) {
10514 auto CheckSameVE = [&](const TreeEntry *VE) {
10515 return VE->isSame(VL) &&
10516 (any_of(VE->UserTreeIndices,
10517 [E, NodeIdx](const EdgeInfo &EI) {
10518 return EI.UserTE == E && EI.EdgeIdx == NodeIdx;
10519 }) ||
10520 any_of(VectorizableTree,
10521 [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) {
10522 return TE->isOperandGatherNode({E, NodeIdx}) &&
10523 VE->isSame(TE->Scalars);
10524 }));
10526 TreeEntry *VE = getTreeEntry(S.OpValue);
10527 bool IsSameVE = VE && CheckSameVE(VE);
10528 if (!IsSameVE) {
10529 auto It = MultiNodeScalars.find(S.OpValue);
10530 if (It != MultiNodeScalars.end()) {
10531 auto *I = find_if(It->getSecond(), [&](const TreeEntry *TE) {
10532 return TE != VE && CheckSameVE(TE);
10534 if (I != It->getSecond().end()) {
10535 VE = *I;
10536 IsSameVE = true;
10540 if (IsSameVE) {
10541 auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) {
10542 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
10543 ShuffleBuilder.add(V, Mask);
10544 return ShuffleBuilder.finalize(std::nullopt);
10546 Value *V = vectorizeTree(VE, PostponedPHIs);
10547 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
10548 if (!VE->ReuseShuffleIndices.empty()) {
10549 // Reshuffle to get only unique values.
10550 // If some of the scalars are duplicated in the vectorization
10551 // tree entry, we do not vectorize them but instead generate a
10552 // mask for the reuses. But if there are several users of the
10553 // same entry, they may have different vectorization factors.
10554 // This is especially important for PHI nodes. In this case, we
10555 // need to adapt the resulting instruction for the user
10556 // vectorization factor and have to reshuffle it again to take
10557 // only unique elements of the vector. Without this code the
10558 // function incorrectly returns reduced vector instruction with
10559 // the same elements, not with the unique ones.
10561 // block:
10562 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
10563 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
10564 // ... (use %2)
10565 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
10566 // br %block
10567 SmallVector<int> UniqueIdxs(VF, PoisonMaskElem);
10568 SmallSet<int, 4> UsedIdxs;
10569 int Pos = 0;
10570 for (int Idx : VE->ReuseShuffleIndices) {
10571 if (Idx != static_cast<int>(VF) && Idx != PoisonMaskElem &&
10572 UsedIdxs.insert(Idx).second)
10573 UniqueIdxs[Idx] = Pos;
10574 ++Pos;
10576 assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
10577 "less than original vector size.");
10578 UniqueIdxs.append(VF - UsedIdxs.size(), PoisonMaskElem);
10579 V = FinalShuffle(V, UniqueIdxs);
10580 } else {
10581 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
10582 "Expected vectorization factor less "
10583 "than original vector size.");
10584 SmallVector<int> UniformMask(VF, 0);
10585 std::iota(UniformMask.begin(), UniformMask.end(), 0);
10586 V = FinalShuffle(V, UniformMask);
10589 // Need to update the operand gather node, if actually the operand is not a
10590 // vectorized node, but the buildvector/gather node, which matches one of
10591 // the vectorized nodes.
10592 if (find_if(VE->UserTreeIndices, [&](const EdgeInfo &EI) {
10593 return EI.UserTE == E && EI.EdgeIdx == NodeIdx;
10594 }) == VE->UserTreeIndices.end()) {
10595 auto *It = find_if(
10596 VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) {
10597 return TE->State == TreeEntry::NeedToGather &&
10598 TE->UserTreeIndices.front().UserTE == E &&
10599 TE->UserTreeIndices.front().EdgeIdx == NodeIdx;
10601 assert(It != VectorizableTree.end() && "Expected gather node operand.");
10602 (*It)->VectorizedValue = V;
10604 return V;
10608 // Find the corresponding gather entry and vectorize it.
10609 // Allows to be more accurate with tree/graph transformations, checks for the
10610 // correctness of the transformations in many cases.
10611 auto *I = find_if(VectorizableTree,
10612 [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) {
10613 return TE->isOperandGatherNode({E, NodeIdx});
10615 assert(I != VectorizableTree.end() && "Gather node is not in the graph.");
10616 assert(I->get()->UserTreeIndices.size() == 1 &&
10617 "Expected only single user for the gather node.");
10618 assert(I->get()->isSame(VL) && "Expected same list of scalars.");
10619 return vectorizeTree(I->get(), PostponedPHIs);
10622 template <typename BVTy, typename ResTy, typename... Args>
10623 ResTy BoUpSLP::processBuildVector(const TreeEntry *E, Args &...Params) {
10624 assert(E->State == TreeEntry::NeedToGather && "Expected gather node.");
10625 unsigned VF = E->getVectorFactor();
10627 bool NeedFreeze = false;
10628 SmallVector<int> ReuseShuffleIndicies(E->ReuseShuffleIndices.begin(),
10629 E->ReuseShuffleIndices.end());
10630 SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end());
10631 // Build a mask out of the reorder indices and reorder scalars per this
10632 // mask.
10633 SmallVector<int> ReorderMask;
10634 inversePermutation(E->ReorderIndices, ReorderMask);
10635 if (!ReorderMask.empty())
10636 reorderScalars(GatheredScalars, ReorderMask);
10637 auto FindReusedSplat = [&](MutableArrayRef<int> Mask, unsigned InputVF,
10638 unsigned I, unsigned SliceSize) {
10639 if (!isSplat(E->Scalars) || none_of(E->Scalars, [](Value *V) {
10640 return isa<UndefValue>(V) && !isa<PoisonValue>(V);
10642 return false;
10643 TreeEntry *UserTE = E->UserTreeIndices.back().UserTE;
10644 unsigned EdgeIdx = E->UserTreeIndices.back().EdgeIdx;
10645 if (UserTE->getNumOperands() != 2)
10646 return false;
10647 auto *It =
10648 find_if(VectorizableTree, [=](const std::unique_ptr<TreeEntry> &TE) {
10649 return find_if(TE->UserTreeIndices, [=](const EdgeInfo &EI) {
10650 return EI.UserTE == UserTE && EI.EdgeIdx != EdgeIdx;
10651 }) != TE->UserTreeIndices.end();
10653 if (It == VectorizableTree.end())
10654 return false;
10655 int Idx;
10656 if ((Mask.size() < InputVF &&
10657 ShuffleVectorInst::isExtractSubvectorMask(Mask, InputVF, Idx) &&
10658 Idx == 0) ||
10659 (Mask.size() == InputVF &&
10660 ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))) {
10661 std::iota(std::next(Mask.begin(), I * SliceSize),
10662 std::next(Mask.begin(), (I + 1) * SliceSize), 0);
10663 } else {
10664 unsigned IVal =
10665 *find_if_not(Mask, [](int Idx) { return Idx == PoisonMaskElem; });
10666 std::fill(std::next(Mask.begin(), I * SliceSize),
10667 std::next(Mask.begin(), (I + 1) * SliceSize), IVal);
10669 return true;
10671 BVTy ShuffleBuilder(Params...);
10672 ResTy Res = ResTy();
10673 SmallVector<int> Mask;
10674 SmallVector<int> ExtractMask(GatheredScalars.size(), PoisonMaskElem);
10675 SmallVector<std::optional<TTI::ShuffleKind>> ExtractShuffles;
10676 Value *ExtractVecBase = nullptr;
10677 bool UseVecBaseAsInput = false;
10678 SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> GatherShuffles;
10679 SmallVector<SmallVector<const TreeEntry *>> Entries;
10680 Type *ScalarTy = GatheredScalars.front()->getType();
10681 auto *VecTy = FixedVectorType::get(ScalarTy, GatheredScalars.size());
10682 unsigned NumParts = TTI->getNumberOfParts(VecTy);
10683 if (NumParts == 0 || NumParts >= GatheredScalars.size())
10684 NumParts = 1;
10685 if (!all_of(GatheredScalars, UndefValue::classof)) {
10686 // Check for gathered extracts.
10687 bool Resized = false;
10688 ExtractShuffles =
10689 tryToGatherExtractElements(GatheredScalars, ExtractMask, NumParts);
10690 if (!ExtractShuffles.empty()) {
10691 SmallVector<const TreeEntry *> ExtractEntries;
10692 for (auto [Idx, I] : enumerate(ExtractMask)) {
10693 if (I == PoisonMaskElem)
10694 continue;
10695 if (const auto *TE = getTreeEntry(
10696 cast<ExtractElementInst>(E->Scalars[Idx])->getVectorOperand()))
10697 ExtractEntries.push_back(TE);
10699 if (std::optional<ResTy> Delayed =
10700 ShuffleBuilder.needToDelay(E, ExtractEntries)) {
10701 // Delay emission of gathers which are not ready yet.
10702 PostponedGathers.insert(E);
10703 // Postpone gather emission, will be emitted after the end of the
10704 // process to keep correct order.
10705 return *Delayed;
10707 if (Value *VecBase = ShuffleBuilder.adjustExtracts(
10708 E, ExtractMask, ExtractShuffles, NumParts, UseVecBaseAsInput)) {
10709 ExtractVecBase = VecBase;
10710 if (auto *VecBaseTy = dyn_cast<FixedVectorType>(VecBase->getType()))
10711 if (VF == VecBaseTy->getNumElements() &&
10712 GatheredScalars.size() != VF) {
10713 Resized = true;
10714 GatheredScalars.append(VF - GatheredScalars.size(),
10715 PoisonValue::get(ScalarTy));
10719 // Gather extracts after we check for full matched gathers only.
10720 if (!ExtractShuffles.empty() || E->getOpcode() != Instruction::Load ||
10721 E->isAltShuffle() ||
10722 all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) ||
10723 isSplat(E->Scalars) ||
10724 (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) {
10725 GatherShuffles =
10726 isGatherShuffledEntry(E, GatheredScalars, Mask, Entries, NumParts);
10728 if (!GatherShuffles.empty()) {
10729 if (std::optional<ResTy> Delayed =
10730 ShuffleBuilder.needToDelay(E, Entries)) {
10731 // Delay emission of gathers which are not ready yet.
10732 PostponedGathers.insert(E);
10733 // Postpone gather emission, will be emitted after the end of the
10734 // process to keep correct order.
10735 return *Delayed;
10737 if (GatherShuffles.size() == 1 &&
10738 *GatherShuffles.front() == TTI::SK_PermuteSingleSrc &&
10739 Entries.front().front()->isSame(E->Scalars)) {
10740 // Perfect match in the graph, will reuse the previously vectorized
10741 // node. Cost is 0.
10742 LLVM_DEBUG(
10743 dbgs()
10744 << "SLP: perfect diamond match for gather bundle "
10745 << shortBundleName(E->Scalars) << ".\n");
10746 // Restore the mask for previous partially matched values.
10747 Mask.resize(E->Scalars.size());
10748 const TreeEntry *FrontTE = Entries.front().front();
10749 if (FrontTE->ReorderIndices.empty() &&
10750 ((FrontTE->ReuseShuffleIndices.empty() &&
10751 E->Scalars.size() == FrontTE->Scalars.size()) ||
10752 (E->Scalars.size() == FrontTE->ReuseShuffleIndices.size()))) {
10753 std::iota(Mask.begin(), Mask.end(), 0);
10754 } else {
10755 for (auto [I, V] : enumerate(E->Scalars)) {
10756 if (isa<PoisonValue>(V)) {
10757 Mask[I] = PoisonMaskElem;
10758 continue;
10760 Mask[I] = FrontTE->findLaneForValue(V);
10763 ShuffleBuilder.add(*FrontTE, Mask);
10764 Res = ShuffleBuilder.finalize(E->getCommonMask());
10765 return Res;
10767 if (!Resized) {
10768 if (GatheredScalars.size() != VF &&
10769 any_of(Entries, [&](ArrayRef<const TreeEntry *> TEs) {
10770 return any_of(TEs, [&](const TreeEntry *TE) {
10771 return TE->getVectorFactor() == VF;
10774 GatheredScalars.append(VF - GatheredScalars.size(),
10775 PoisonValue::get(ScalarTy));
10777 // Remove shuffled elements from list of gathers.
10778 for (int I = 0, Sz = Mask.size(); I < Sz; ++I) {
10779 if (Mask[I] != PoisonMaskElem)
10780 GatheredScalars[I] = PoisonValue::get(ScalarTy);
10784 auto TryPackScalars = [&](SmallVectorImpl<Value *> &Scalars,
10785 SmallVectorImpl<int> &ReuseMask,
10786 bool IsRootPoison) {
10787 // For splats with can emit broadcasts instead of gathers, so try to find
10788 // such sequences.
10789 bool IsSplat = IsRootPoison && isSplat(Scalars) &&
10790 (Scalars.size() > 2 || Scalars.front() == Scalars.back());
10791 Scalars.append(VF - Scalars.size(), PoisonValue::get(ScalarTy));
10792 SmallVector<int> UndefPos;
10793 DenseMap<Value *, unsigned> UniquePositions;
10794 // Gather unique non-const values and all constant values.
10795 // For repeated values, just shuffle them.
10796 int NumNonConsts = 0;
10797 int SinglePos = 0;
10798 for (auto [I, V] : enumerate(Scalars)) {
10799 if (isa<UndefValue>(V)) {
10800 if (!isa<PoisonValue>(V)) {
10801 ReuseMask[I] = I;
10802 UndefPos.push_back(I);
10804 continue;
10806 if (isConstant(V)) {
10807 ReuseMask[I] = I;
10808 continue;
10810 ++NumNonConsts;
10811 SinglePos = I;
10812 Value *OrigV = V;
10813 Scalars[I] = PoisonValue::get(ScalarTy);
10814 if (IsSplat) {
10815 Scalars.front() = OrigV;
10816 ReuseMask[I] = 0;
10817 } else {
10818 const auto Res = UniquePositions.try_emplace(OrigV, I);
10819 Scalars[Res.first->second] = OrigV;
10820 ReuseMask[I] = Res.first->second;
10823 if (NumNonConsts == 1) {
10824 // Restore single insert element.
10825 if (IsSplat) {
10826 ReuseMask.assign(VF, PoisonMaskElem);
10827 std::swap(Scalars.front(), Scalars[SinglePos]);
10828 if (!UndefPos.empty() && UndefPos.front() == 0)
10829 Scalars.front() = UndefValue::get(ScalarTy);
10831 ReuseMask[SinglePos] = SinglePos;
10832 } else if (!UndefPos.empty() && IsSplat) {
10833 // For undef values, try to replace them with the simple broadcast.
10834 // We can do it if the broadcasted value is guaranteed to be
10835 // non-poisonous, or by freezing the incoming scalar value first.
10836 auto *It = find_if(Scalars, [this, E](Value *V) {
10837 return !isa<UndefValue>(V) &&
10838 (getTreeEntry(V) || isGuaranteedNotToBePoison(V) ||
10839 (E->UserTreeIndices.size() == 1 &&
10840 any_of(V->uses(), [E](const Use &U) {
10841 // Check if the value already used in the same operation in
10842 // one of the nodes already.
10843 return E->UserTreeIndices.front().EdgeIdx !=
10844 U.getOperandNo() &&
10845 is_contained(
10846 E->UserTreeIndices.front().UserTE->Scalars,
10847 U.getUser());
10848 })));
10850 if (It != Scalars.end()) {
10851 // Replace undefs by the non-poisoned scalars and emit broadcast.
10852 int Pos = std::distance(Scalars.begin(), It);
10853 for (int I : UndefPos) {
10854 // Set the undef position to the non-poisoned scalar.
10855 ReuseMask[I] = Pos;
10856 // Replace the undef by the poison, in the mask it is replaced by
10857 // non-poisoned scalar already.
10858 if (I != Pos)
10859 Scalars[I] = PoisonValue::get(ScalarTy);
10861 } else {
10862 // Replace undefs by the poisons, emit broadcast and then emit
10863 // freeze.
10864 for (int I : UndefPos) {
10865 ReuseMask[I] = PoisonMaskElem;
10866 if (isa<UndefValue>(Scalars[I]))
10867 Scalars[I] = PoisonValue::get(ScalarTy);
10869 NeedFreeze = true;
10873 if (!ExtractShuffles.empty() || !GatherShuffles.empty()) {
10874 bool IsNonPoisoned = true;
10875 bool IsUsedInExpr = true;
10876 Value *Vec1 = nullptr;
10877 if (!ExtractShuffles.empty()) {
10878 // Gather of extractelements can be represented as just a shuffle of
10879 // a single/two vectors the scalars are extracted from.
10880 // Find input vectors.
10881 Value *Vec2 = nullptr;
10882 for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) {
10883 if (!Mask.empty() && Mask[I] != PoisonMaskElem)
10884 ExtractMask[I] = PoisonMaskElem;
10886 if (UseVecBaseAsInput) {
10887 Vec1 = ExtractVecBase;
10888 } else {
10889 for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) {
10890 if (ExtractMask[I] == PoisonMaskElem)
10891 continue;
10892 if (isa<UndefValue>(E->Scalars[I]))
10893 continue;
10894 auto *EI = cast<ExtractElementInst>(E->Scalars[I]);
10895 Value *VecOp = EI->getVectorOperand();
10896 if (const auto *TE = getTreeEntry(VecOp))
10897 if (TE->VectorizedValue)
10898 VecOp = TE->VectorizedValue;
10899 if (!Vec1) {
10900 Vec1 = VecOp;
10901 } else if (Vec1 != EI->getVectorOperand()) {
10902 assert((!Vec2 || Vec2 == EI->getVectorOperand()) &&
10903 "Expected only 1 or 2 vectors shuffle.");
10904 Vec2 = VecOp;
10908 if (Vec2) {
10909 IsUsedInExpr = false;
10910 IsNonPoisoned &=
10911 isGuaranteedNotToBePoison(Vec1) && isGuaranteedNotToBePoison(Vec2);
10912 ShuffleBuilder.add(Vec1, Vec2, ExtractMask);
10913 } else if (Vec1) {
10914 IsUsedInExpr &= FindReusedSplat(
10915 ExtractMask,
10916 cast<FixedVectorType>(Vec1->getType())->getNumElements(), 0,
10917 ExtractMask.size());
10918 ShuffleBuilder.add(Vec1, ExtractMask, /*ForExtracts=*/true);
10919 IsNonPoisoned &= isGuaranteedNotToBePoison(Vec1);
10920 } else {
10921 IsUsedInExpr = false;
10922 ShuffleBuilder.add(PoisonValue::get(FixedVectorType::get(
10923 ScalarTy, GatheredScalars.size())),
10924 ExtractMask, /*ForExtracts=*/true);
10927 if (!GatherShuffles.empty()) {
10928 unsigned SliceSize = E->Scalars.size() / NumParts;
10929 SmallVector<int> VecMask(Mask.size(), PoisonMaskElem);
10930 for (const auto [I, TEs] : enumerate(Entries)) {
10931 if (TEs.empty()) {
10932 assert(!GatherShuffles[I] &&
10933 "No shuffles with empty entries list expected.");
10934 continue;
10936 assert((TEs.size() == 1 || TEs.size() == 2) &&
10937 "Expected shuffle of 1 or 2 entries.");
10938 auto SubMask = ArrayRef(Mask).slice(I * SliceSize, SliceSize);
10939 VecMask.assign(VecMask.size(), PoisonMaskElem);
10940 copy(SubMask, std::next(VecMask.begin(), I * SliceSize));
10941 if (TEs.size() == 1) {
10942 IsUsedInExpr &=
10943 FindReusedSplat(VecMask, TEs.front()->getVectorFactor(), I, SliceSize);
10944 ShuffleBuilder.add(*TEs.front(), VecMask);
10945 if (TEs.front()->VectorizedValue)
10946 IsNonPoisoned &=
10947 isGuaranteedNotToBePoison(TEs.front()->VectorizedValue);
10948 } else {
10949 IsUsedInExpr = false;
10950 ShuffleBuilder.add(*TEs.front(), *TEs.back(), VecMask);
10951 if (TEs.front()->VectorizedValue && TEs.back()->VectorizedValue)
10952 IsNonPoisoned &=
10953 isGuaranteedNotToBePoison(TEs.front()->VectorizedValue) &&
10954 isGuaranteedNotToBePoison(TEs.back()->VectorizedValue);
10958 // Try to figure out best way to combine values: build a shuffle and insert
10959 // elements or just build several shuffles.
10960 // Insert non-constant scalars.
10961 SmallVector<Value *> NonConstants(GatheredScalars);
10962 int EMSz = ExtractMask.size();
10963 int MSz = Mask.size();
10964 // Try to build constant vector and shuffle with it only if currently we
10965 // have a single permutation and more than 1 scalar constants.
10966 bool IsSingleShuffle = ExtractShuffles.empty() || GatherShuffles.empty();
10967 bool IsIdentityShuffle =
10968 ((UseVecBaseAsInput ||
10969 all_of(ExtractShuffles,
10970 [](const std::optional<TTI::ShuffleKind> &SK) {
10971 return SK.value_or(TTI::SK_PermuteTwoSrc) ==
10972 TTI::SK_PermuteSingleSrc;
10973 })) &&
10974 none_of(ExtractMask, [&](int I) { return I >= EMSz; }) &&
10975 ShuffleVectorInst::isIdentityMask(ExtractMask, EMSz)) ||
10976 (!GatherShuffles.empty() &&
10977 all_of(GatherShuffles,
10978 [](const std::optional<TTI::ShuffleKind> &SK) {
10979 return SK.value_or(TTI::SK_PermuteTwoSrc) ==
10980 TTI::SK_PermuteSingleSrc;
10981 }) &&
10982 none_of(Mask, [&](int I) { return I >= MSz; }) &&
10983 ShuffleVectorInst::isIdentityMask(Mask, MSz));
10984 bool EnoughConstsForShuffle =
10985 IsSingleShuffle &&
10986 (none_of(GatheredScalars,
10987 [](Value *V) {
10988 return isa<UndefValue>(V) && !isa<PoisonValue>(V);
10989 }) ||
10990 any_of(GatheredScalars,
10991 [](Value *V) {
10992 return isa<Constant>(V) && !isa<UndefValue>(V);
10993 })) &&
10994 (!IsIdentityShuffle ||
10995 (GatheredScalars.size() == 2 &&
10996 any_of(GatheredScalars,
10997 [](Value *V) { return !isa<UndefValue>(V); })) ||
10998 count_if(GatheredScalars, [](Value *V) {
10999 return isa<Constant>(V) && !isa<PoisonValue>(V);
11000 }) > 1);
11001 // NonConstants array contains just non-constant values, GatheredScalars
11002 // contains only constant to build final vector and then shuffle.
11003 for (int I = 0, Sz = GatheredScalars.size(); I < Sz; ++I) {
11004 if (EnoughConstsForShuffle && isa<Constant>(GatheredScalars[I]))
11005 NonConstants[I] = PoisonValue::get(ScalarTy);
11006 else
11007 GatheredScalars[I] = PoisonValue::get(ScalarTy);
11009 // Generate constants for final shuffle and build a mask for them.
11010 if (!all_of(GatheredScalars, PoisonValue::classof)) {
11011 SmallVector<int> BVMask(GatheredScalars.size(), PoisonMaskElem);
11012 TryPackScalars(GatheredScalars, BVMask, /*IsRootPoison=*/true);
11013 Value *BV = ShuffleBuilder.gather(GatheredScalars, BVMask.size());
11014 ShuffleBuilder.add(BV, BVMask);
11016 if (all_of(NonConstants, [=](Value *V) {
11017 return isa<PoisonValue>(V) ||
11018 (IsSingleShuffle && ((IsIdentityShuffle &&
11019 IsNonPoisoned) || IsUsedInExpr) && isa<UndefValue>(V));
11021 Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
11022 else
11023 Res = ShuffleBuilder.finalize(
11024 E->ReuseShuffleIndices, E->Scalars.size(),
11025 [&](Value *&Vec, SmallVectorImpl<int> &Mask) {
11026 TryPackScalars(NonConstants, Mask, /*IsRootPoison=*/false);
11027 Vec = ShuffleBuilder.gather(NonConstants, Mask.size(), Vec);
11029 } else if (!allConstant(GatheredScalars)) {
11030 // Gather unique scalars and all constants.
11031 SmallVector<int> ReuseMask(GatheredScalars.size(), PoisonMaskElem);
11032 TryPackScalars(GatheredScalars, ReuseMask, /*IsRootPoison=*/true);
11033 Value *BV = ShuffleBuilder.gather(GatheredScalars, ReuseMask.size());
11034 ShuffleBuilder.add(BV, ReuseMask);
11035 Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
11036 } else {
11037 // Gather all constants.
11038 SmallVector<int> Mask(E->Scalars.size(), PoisonMaskElem);
11039 for (auto [I, V] : enumerate(E->Scalars)) {
11040 if (!isa<PoisonValue>(V))
11041 Mask[I] = I;
11043 Value *BV = ShuffleBuilder.gather(E->Scalars);
11044 ShuffleBuilder.add(BV, Mask);
11045 Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
11048 if (NeedFreeze)
11049 Res = ShuffleBuilder.createFreeze(Res);
11050 return Res;
11053 Value *BoUpSLP::createBuildVector(const TreeEntry *E) {
11054 return processBuildVector<ShuffleInstructionBuilder, Value *>(E, Builder,
11055 *this);
11058 Value *BoUpSLP::vectorizeTree(TreeEntry *E, bool PostponedPHIs) {
11059 IRBuilder<>::InsertPointGuard Guard(Builder);
11061 if (E->VectorizedValue &&
11062 (E->State != TreeEntry::Vectorize || E->getOpcode() != Instruction::PHI ||
11063 E->isAltShuffle())) {
11064 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
11065 return E->VectorizedValue;
11068 if (E->State == TreeEntry::NeedToGather) {
11069 // Set insert point for non-reduction initial nodes.
11070 if (E->getMainOp() && E->Idx == 0 && !UserIgnoreList)
11071 setInsertPointAfterBundle(E);
11072 Value *Vec = createBuildVector(E);
11073 E->VectorizedValue = Vec;
11074 return Vec;
11077 auto FinalShuffle = [&](Value *V, const TreeEntry *E, VectorType *VecTy,
11078 bool IsSigned) {
11079 if (V->getType() != VecTy)
11080 V = Builder.CreateIntCast(V, VecTy, IsSigned);
11081 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
11082 if (E->getOpcode() == Instruction::Store) {
11083 ArrayRef<int> Mask =
11084 ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()),
11085 E->ReorderIndices.size());
11086 ShuffleBuilder.add(V, Mask);
11087 } else if (E->State == TreeEntry::PossibleStridedVectorize) {
11088 ShuffleBuilder.addOrdered(V, std::nullopt);
11089 } else {
11090 ShuffleBuilder.addOrdered(V, E->ReorderIndices);
11092 return ShuffleBuilder.finalize(E->ReuseShuffleIndices);
11095 assert((E->State == TreeEntry::Vectorize ||
11096 E->State == TreeEntry::ScatterVectorize ||
11097 E->State == TreeEntry::PossibleStridedVectorize) &&
11098 "Unhandled state");
11099 unsigned ShuffleOrOp =
11100 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
11101 Instruction *VL0 = E->getMainOp();
11102 Type *ScalarTy = VL0->getType();
11103 if (auto *Store = dyn_cast<StoreInst>(VL0))
11104 ScalarTy = Store->getValueOperand()->getType();
11105 else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
11106 ScalarTy = IE->getOperand(1)->getType();
11107 bool IsSigned = false;
11108 auto It = MinBWs.find(E);
11109 if (It != MinBWs.end()) {
11110 ScalarTy = IntegerType::get(F->getContext(), It->second.first);
11111 IsSigned = It->second.second;
11113 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
11114 switch (ShuffleOrOp) {
11115 case Instruction::PHI: {
11116 assert((E->ReorderIndices.empty() ||
11117 E != VectorizableTree.front().get() ||
11118 !E->UserTreeIndices.empty()) &&
11119 "PHI reordering is free.");
11120 if (PostponedPHIs && E->VectorizedValue)
11121 return E->VectorizedValue;
11122 auto *PH = cast<PHINode>(VL0);
11123 Builder.SetInsertPoint(PH->getParent(),
11124 PH->getParent()->getFirstNonPHIIt());
11125 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11126 if (PostponedPHIs || !E->VectorizedValue) {
11127 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
11128 E->PHI = NewPhi;
11129 Value *V = NewPhi;
11131 // Adjust insertion point once all PHI's have been generated.
11132 Builder.SetInsertPoint(PH->getParent(),
11133 PH->getParent()->getFirstInsertionPt());
11134 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11136 V = FinalShuffle(V, E, VecTy, IsSigned);
11138 E->VectorizedValue = V;
11139 if (PostponedPHIs)
11140 return V;
11142 PHINode *NewPhi = cast<PHINode>(E->PHI);
11143 // If phi node is fully emitted - exit.
11144 if (NewPhi->getNumIncomingValues() != 0)
11145 return NewPhi;
11147 // PHINodes may have multiple entries from the same block. We want to
11148 // visit every block once.
11149 SmallPtrSet<BasicBlock *, 4> VisitedBBs;
11151 for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) {
11152 ValueList Operands;
11153 BasicBlock *IBB = PH->getIncomingBlock(I);
11155 // Stop emission if all incoming values are generated.
11156 if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) {
11157 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11158 return NewPhi;
11161 if (!VisitedBBs.insert(IBB).second) {
11162 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
11163 continue;
11166 Builder.SetInsertPoint(IBB->getTerminator());
11167 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
11168 Value *Vec = vectorizeOperand(E, I, /*PostponedPHIs=*/true);
11169 if (VecTy != Vec->getType()) {
11170 assert(MinBWs.contains(getOperandEntry(E, I)) &&
11171 "Expected item in MinBWs.");
11172 Vec = Builder.CreateIntCast(Vec, VecTy, It->second.second);
11174 NewPhi->addIncoming(Vec, IBB);
11177 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
11178 "Invalid number of incoming values");
11179 return NewPhi;
11182 case Instruction::ExtractElement: {
11183 Value *V = E->getSingleOperand(0);
11184 if (const TreeEntry *TE = getTreeEntry(V))
11185 V = TE->VectorizedValue;
11186 setInsertPointAfterBundle(E);
11187 V = FinalShuffle(V, E, VecTy, IsSigned);
11188 E->VectorizedValue = V;
11189 return V;
11191 case Instruction::ExtractValue: {
11192 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
11193 Builder.SetInsertPoint(LI);
11194 Value *Ptr = LI->getPointerOperand();
11195 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
11196 Value *NewV = propagateMetadata(V, E->Scalars);
11197 NewV = FinalShuffle(NewV, E, VecTy, IsSigned);
11198 E->VectorizedValue = NewV;
11199 return NewV;
11201 case Instruction::InsertElement: {
11202 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
11203 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
11204 Value *V = vectorizeOperand(E, 1, PostponedPHIs);
11205 ArrayRef<Value *> Op = E->getOperand(1);
11206 Type *ScalarTy = Op.front()->getType();
11207 if (cast<VectorType>(V->getType())->getElementType() != ScalarTy) {
11208 assert(ScalarTy->isIntegerTy() && "Expected item in MinBWs.");
11209 std::pair<unsigned, bool> Res = MinBWs.lookup(getOperandEntry(E, 1));
11210 assert(Res.first > 0 && "Expected item in MinBWs.");
11211 V = Builder.CreateIntCast(
11213 FixedVectorType::get(
11214 ScalarTy,
11215 cast<FixedVectorType>(V->getType())->getNumElements()),
11216 Res.second);
11219 // Create InsertVector shuffle if necessary
11220 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
11221 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
11222 }));
11223 const unsigned NumElts =
11224 cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
11225 const unsigned NumScalars = E->Scalars.size();
11227 unsigned Offset = *getInsertIndex(VL0);
11228 assert(Offset < NumElts && "Failed to find vector index offset");
11230 // Create shuffle to resize vector
11231 SmallVector<int> Mask;
11232 if (!E->ReorderIndices.empty()) {
11233 inversePermutation(E->ReorderIndices, Mask);
11234 Mask.append(NumElts - NumScalars, PoisonMaskElem);
11235 } else {
11236 Mask.assign(NumElts, PoisonMaskElem);
11237 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
11239 // Create InsertVector shuffle if necessary
11240 bool IsIdentity = true;
11241 SmallVector<int> PrevMask(NumElts, PoisonMaskElem);
11242 Mask.swap(PrevMask);
11243 for (unsigned I = 0; I < NumScalars; ++I) {
11244 Value *Scalar = E->Scalars[PrevMask[I]];
11245 unsigned InsertIdx = *getInsertIndex(Scalar);
11246 IsIdentity &= InsertIdx - Offset == I;
11247 Mask[InsertIdx - Offset] = I;
11249 if (!IsIdentity || NumElts != NumScalars) {
11250 Value *V2 = nullptr;
11251 bool IsVNonPoisonous = isGuaranteedNotToBePoison(V) && !isConstant(V);
11252 SmallVector<int> InsertMask(Mask);
11253 if (NumElts != NumScalars && Offset == 0) {
11254 // Follow all insert element instructions from the current buildvector
11255 // sequence.
11256 InsertElementInst *Ins = cast<InsertElementInst>(VL0);
11257 do {
11258 std::optional<unsigned> InsertIdx = getInsertIndex(Ins);
11259 if (!InsertIdx)
11260 break;
11261 if (InsertMask[*InsertIdx] == PoisonMaskElem)
11262 InsertMask[*InsertIdx] = *InsertIdx;
11263 if (!Ins->hasOneUse())
11264 break;
11265 Ins = dyn_cast_or_null<InsertElementInst>(
11266 Ins->getUniqueUndroppableUser());
11267 } while (Ins);
11268 SmallBitVector UseMask =
11269 buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask);
11270 SmallBitVector IsFirstPoison =
11271 isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11272 SmallBitVector IsFirstUndef =
11273 isUndefVector(FirstInsert->getOperand(0), UseMask);
11274 if (!IsFirstPoison.all()) {
11275 unsigned Idx = 0;
11276 for (unsigned I = 0; I < NumElts; I++) {
11277 if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I) &&
11278 IsFirstUndef.test(I)) {
11279 if (IsVNonPoisonous) {
11280 InsertMask[I] = I < NumScalars ? I : 0;
11281 continue;
11283 if (!V2)
11284 V2 = UndefValue::get(V->getType());
11285 if (Idx >= NumScalars)
11286 Idx = NumScalars - 1;
11287 InsertMask[I] = NumScalars + Idx;
11288 ++Idx;
11289 } else if (InsertMask[I] != PoisonMaskElem &&
11290 Mask[I] == PoisonMaskElem) {
11291 InsertMask[I] = PoisonMaskElem;
11294 } else {
11295 InsertMask = Mask;
11298 if (!V2)
11299 V2 = PoisonValue::get(V->getType());
11300 V = Builder.CreateShuffleVector(V, V2, InsertMask);
11301 if (auto *I = dyn_cast<Instruction>(V)) {
11302 GatherShuffleExtractSeq.insert(I);
11303 CSEBlocks.insert(I->getParent());
11307 SmallVector<int> InsertMask(NumElts, PoisonMaskElem);
11308 for (unsigned I = 0; I < NumElts; I++) {
11309 if (Mask[I] != PoisonMaskElem)
11310 InsertMask[Offset + I] = I;
11312 SmallBitVector UseMask =
11313 buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask);
11314 SmallBitVector IsFirstUndef =
11315 isUndefVector(FirstInsert->getOperand(0), UseMask);
11316 if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) &&
11317 NumElts != NumScalars) {
11318 if (IsFirstUndef.all()) {
11319 if (!ShuffleVectorInst::isIdentityMask(InsertMask, NumElts)) {
11320 SmallBitVector IsFirstPoison =
11321 isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11322 if (!IsFirstPoison.all()) {
11323 for (unsigned I = 0; I < NumElts; I++) {
11324 if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I))
11325 InsertMask[I] = I + NumElts;
11328 V = Builder.CreateShuffleVector(
11330 IsFirstPoison.all() ? PoisonValue::get(V->getType())
11331 : FirstInsert->getOperand(0),
11332 InsertMask, cast<Instruction>(E->Scalars.back())->getName());
11333 if (auto *I = dyn_cast<Instruction>(V)) {
11334 GatherShuffleExtractSeq.insert(I);
11335 CSEBlocks.insert(I->getParent());
11338 } else {
11339 SmallBitVector IsFirstPoison =
11340 isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
11341 for (unsigned I = 0; I < NumElts; I++) {
11342 if (InsertMask[I] == PoisonMaskElem)
11343 InsertMask[I] = IsFirstPoison.test(I) ? PoisonMaskElem : I;
11344 else
11345 InsertMask[I] += NumElts;
11347 V = Builder.CreateShuffleVector(
11348 FirstInsert->getOperand(0), V, InsertMask,
11349 cast<Instruction>(E->Scalars.back())->getName());
11350 if (auto *I = dyn_cast<Instruction>(V)) {
11351 GatherShuffleExtractSeq.insert(I);
11352 CSEBlocks.insert(I->getParent());
11357 ++NumVectorInstructions;
11358 E->VectorizedValue = V;
11359 return V;
11361 case Instruction::ZExt:
11362 case Instruction::SExt:
11363 case Instruction::FPToUI:
11364 case Instruction::FPToSI:
11365 case Instruction::FPExt:
11366 case Instruction::PtrToInt:
11367 case Instruction::IntToPtr:
11368 case Instruction::SIToFP:
11369 case Instruction::UIToFP:
11370 case Instruction::Trunc:
11371 case Instruction::FPTrunc:
11372 case Instruction::BitCast: {
11373 setInsertPointAfterBundle(E);
11375 Value *InVec = vectorizeOperand(E, 0, PostponedPHIs);
11376 if (E->VectorizedValue) {
11377 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11378 return E->VectorizedValue;
11381 auto *CI = cast<CastInst>(VL0);
11382 Instruction::CastOps VecOpcode = CI->getOpcode();
11383 Type *SrcScalarTy = VL0->getOperand(0)->getType();
11384 auto SrcIt = MinBWs.find(getOperandEntry(E, 0));
11385 if (!ScalarTy->isFloatingPointTy() && !SrcScalarTy->isFloatingPointTy() &&
11386 (SrcIt != MinBWs.end() || It != MinBWs.end())) {
11387 // Check if the values are candidates to demote.
11388 unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy);
11389 if (SrcIt != MinBWs.end())
11390 SrcBWSz = SrcIt->second.first;
11391 unsigned BWSz = DL->getTypeSizeInBits(ScalarTy);
11392 if (BWSz == SrcBWSz) {
11393 VecOpcode = Instruction::BitCast;
11394 } else if (BWSz < SrcBWSz) {
11395 VecOpcode = Instruction::Trunc;
11396 } else if (It != MinBWs.end()) {
11397 assert(BWSz > SrcBWSz && "Invalid cast!");
11398 VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt;
11401 Value *V = (VecOpcode != ShuffleOrOp && VecOpcode == Instruction::BitCast)
11402 ? InVec
11403 : Builder.CreateCast(VecOpcode, InVec, VecTy);
11404 V = FinalShuffle(V, E, VecTy, IsSigned);
11406 E->VectorizedValue = V;
11407 ++NumVectorInstructions;
11408 return V;
11410 case Instruction::FCmp:
11411 case Instruction::ICmp: {
11412 setInsertPointAfterBundle(E);
11414 Value *L = vectorizeOperand(E, 0, PostponedPHIs);
11415 if (E->VectorizedValue) {
11416 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11417 return E->VectorizedValue;
11419 Value *R = vectorizeOperand(E, 1, PostponedPHIs);
11420 if (E->VectorizedValue) {
11421 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11422 return E->VectorizedValue;
11424 if (L->getType() != R->getType()) {
11425 assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11426 MinBWs.contains(getOperandEntry(E, 1))) &&
11427 "Expected item in MinBWs.");
11428 L = Builder.CreateIntCast(L, VecTy, IsSigned);
11429 R = Builder.CreateIntCast(R, VecTy, IsSigned);
11432 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
11433 Value *V = Builder.CreateCmp(P0, L, R);
11434 propagateIRFlags(V, E->Scalars, VL0);
11435 // Do not cast for cmps.
11436 VecTy = cast<FixedVectorType>(V->getType());
11437 V = FinalShuffle(V, E, VecTy, IsSigned);
11439 E->VectorizedValue = V;
11440 ++NumVectorInstructions;
11441 return V;
11443 case Instruction::Select: {
11444 setInsertPointAfterBundle(E);
11446 Value *Cond = vectorizeOperand(E, 0, PostponedPHIs);
11447 if (E->VectorizedValue) {
11448 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11449 return E->VectorizedValue;
11451 Value *True = vectorizeOperand(E, 1, PostponedPHIs);
11452 if (E->VectorizedValue) {
11453 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11454 return E->VectorizedValue;
11456 Value *False = vectorizeOperand(E, 2, PostponedPHIs);
11457 if (E->VectorizedValue) {
11458 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11459 return E->VectorizedValue;
11461 if (True->getType() != False->getType()) {
11462 assert((MinBWs.contains(getOperandEntry(E, 1)) ||
11463 MinBWs.contains(getOperandEntry(E, 2))) &&
11464 "Expected item in MinBWs.");
11465 True = Builder.CreateIntCast(True, VecTy, IsSigned);
11466 False = Builder.CreateIntCast(False, VecTy, IsSigned);
11469 Value *V = Builder.CreateSelect(Cond, True, False);
11470 V = FinalShuffle(V, E, VecTy, IsSigned);
11472 E->VectorizedValue = V;
11473 ++NumVectorInstructions;
11474 return V;
11476 case Instruction::FNeg: {
11477 setInsertPointAfterBundle(E);
11479 Value *Op = vectorizeOperand(E, 0, PostponedPHIs);
11481 if (E->VectorizedValue) {
11482 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11483 return E->VectorizedValue;
11486 Value *V = Builder.CreateUnOp(
11487 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
11488 propagateIRFlags(V, E->Scalars, VL0);
11489 if (auto *I = dyn_cast<Instruction>(V))
11490 V = propagateMetadata(I, E->Scalars);
11492 V = FinalShuffle(V, E, VecTy, IsSigned);
11494 E->VectorizedValue = V;
11495 ++NumVectorInstructions;
11497 return V;
11499 case Instruction::Add:
11500 case Instruction::FAdd:
11501 case Instruction::Sub:
11502 case Instruction::FSub:
11503 case Instruction::Mul:
11504 case Instruction::FMul:
11505 case Instruction::UDiv:
11506 case Instruction::SDiv:
11507 case Instruction::FDiv:
11508 case Instruction::URem:
11509 case Instruction::SRem:
11510 case Instruction::FRem:
11511 case Instruction::Shl:
11512 case Instruction::LShr:
11513 case Instruction::AShr:
11514 case Instruction::And:
11515 case Instruction::Or:
11516 case Instruction::Xor: {
11517 setInsertPointAfterBundle(E);
11519 Value *LHS = vectorizeOperand(E, 0, PostponedPHIs);
11520 if (E->VectorizedValue) {
11521 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11522 return E->VectorizedValue;
11524 Value *RHS = vectorizeOperand(E, 1, PostponedPHIs);
11525 if (E->VectorizedValue) {
11526 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11527 return E->VectorizedValue;
11529 if (LHS->getType() != RHS->getType()) {
11530 assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11531 MinBWs.contains(getOperandEntry(E, 1))) &&
11532 "Expected item in MinBWs.");
11533 LHS = Builder.CreateIntCast(LHS, VecTy, IsSigned);
11534 RHS = Builder.CreateIntCast(RHS, VecTy, IsSigned);
11537 Value *V = Builder.CreateBinOp(
11538 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
11539 RHS);
11540 propagateIRFlags(V, E->Scalars, VL0, !MinBWs.contains(E));
11541 if (auto *I = dyn_cast<Instruction>(V))
11542 V = propagateMetadata(I, E->Scalars);
11544 V = FinalShuffle(V, E, VecTy, IsSigned);
11546 E->VectorizedValue = V;
11547 ++NumVectorInstructions;
11549 return V;
11551 case Instruction::Load: {
11552 // Loads are inserted at the head of the tree because we don't want to
11553 // sink them all the way down past store instructions.
11554 setInsertPointAfterBundle(E);
11556 LoadInst *LI = cast<LoadInst>(VL0);
11557 Instruction *NewLI;
11558 Value *PO = LI->getPointerOperand();
11559 if (E->State == TreeEntry::Vectorize) {
11560 NewLI = Builder.CreateAlignedLoad(VecTy, PO, LI->getAlign());
11561 } else {
11562 assert((E->State == TreeEntry::ScatterVectorize ||
11563 E->State == TreeEntry::PossibleStridedVectorize) &&
11564 "Unhandled state");
11565 Value *VecPtr = vectorizeOperand(E, 0, PostponedPHIs);
11566 if (E->VectorizedValue) {
11567 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11568 return E->VectorizedValue;
11570 // Use the minimum alignment of the gathered loads.
11571 Align CommonAlignment = LI->getAlign();
11572 for (Value *V : E->Scalars)
11573 CommonAlignment =
11574 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
11575 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
11577 Value *V = propagateMetadata(NewLI, E->Scalars);
11579 V = FinalShuffle(V, E, VecTy, IsSigned);
11580 E->VectorizedValue = V;
11581 ++NumVectorInstructions;
11582 return V;
11584 case Instruction::Store: {
11585 auto *SI = cast<StoreInst>(VL0);
11587 setInsertPointAfterBundle(E);
11589 Value *VecValue = vectorizeOperand(E, 0, PostponedPHIs);
11590 VecValue = FinalShuffle(VecValue, E, VecTy, IsSigned);
11592 Value *Ptr = SI->getPointerOperand();
11593 StoreInst *ST =
11594 Builder.CreateAlignedStore(VecValue, Ptr, SI->getAlign());
11596 Value *V = propagateMetadata(ST, E->Scalars);
11598 E->VectorizedValue = V;
11599 ++NumVectorInstructions;
11600 return V;
11602 case Instruction::GetElementPtr: {
11603 auto *GEP0 = cast<GetElementPtrInst>(VL0);
11604 setInsertPointAfterBundle(E);
11606 Value *Op0 = vectorizeOperand(E, 0, PostponedPHIs);
11607 if (E->VectorizedValue) {
11608 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11609 return E->VectorizedValue;
11612 SmallVector<Value *> OpVecs;
11613 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
11614 Value *OpVec = vectorizeOperand(E, J, PostponedPHIs);
11615 if (E->VectorizedValue) {
11616 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11617 return E->VectorizedValue;
11619 OpVecs.push_back(OpVec);
11622 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
11623 if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
11624 SmallVector<Value *> GEPs;
11625 for (Value *V : E->Scalars) {
11626 if (isa<GetElementPtrInst>(V))
11627 GEPs.push_back(V);
11629 V = propagateMetadata(I, GEPs);
11632 V = FinalShuffle(V, E, VecTy, IsSigned);
11634 E->VectorizedValue = V;
11635 ++NumVectorInstructions;
11637 return V;
11639 case Instruction::Call: {
11640 CallInst *CI = cast<CallInst>(VL0);
11641 setInsertPointAfterBundle(E);
11643 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
11645 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
11646 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
11647 VecCallCosts.first <= VecCallCosts.second;
11649 Value *ScalarArg = nullptr;
11650 SmallVector<Value *> OpVecs;
11651 SmallVector<Type *, 2> TysForDecl;
11652 // Add return type if intrinsic is overloaded on it.
11653 if (UseIntrinsic && isVectorIntrinsicWithOverloadTypeAtArg(ID, -1))
11654 TysForDecl.push_back(
11655 FixedVectorType::get(CI->getType(), E->Scalars.size()));
11656 for (unsigned I : seq<unsigned>(0, CI->arg_size())) {
11657 ValueList OpVL;
11658 // Some intrinsics have scalar arguments. This argument should not be
11659 // vectorized.
11660 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(ID, I)) {
11661 CallInst *CEI = cast<CallInst>(VL0);
11662 ScalarArg = CEI->getArgOperand(I);
11663 OpVecs.push_back(CEI->getArgOperand(I));
11664 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
11665 TysForDecl.push_back(ScalarArg->getType());
11666 continue;
11669 Value *OpVec = vectorizeOperand(E, I, PostponedPHIs);
11670 if (E->VectorizedValue) {
11671 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11672 return E->VectorizedValue;
11674 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << I << "]: " << *OpVec << "\n");
11675 OpVecs.push_back(OpVec);
11676 if (UseIntrinsic && isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
11677 TysForDecl.push_back(OpVec->getType());
11680 Function *CF;
11681 if (!UseIntrinsic) {
11682 VFShape Shape =
11683 VFShape::get(CI->getFunctionType(),
11684 ElementCount::getFixed(
11685 static_cast<unsigned>(VecTy->getNumElements())),
11686 false /*HasGlobalPred*/);
11687 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
11688 } else {
11689 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
11692 SmallVector<OperandBundleDef, 1> OpBundles;
11693 CI->getOperandBundlesAsDefs(OpBundles);
11694 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
11696 propagateIRFlags(V, E->Scalars, VL0);
11697 V = FinalShuffle(V, E, VecTy, IsSigned);
11699 E->VectorizedValue = V;
11700 ++NumVectorInstructions;
11701 return V;
11703 case Instruction::ShuffleVector: {
11704 assert(E->isAltShuffle() &&
11705 ((Instruction::isBinaryOp(E->getOpcode()) &&
11706 Instruction::isBinaryOp(E->getAltOpcode())) ||
11707 (Instruction::isCast(E->getOpcode()) &&
11708 Instruction::isCast(E->getAltOpcode())) ||
11709 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
11710 "Invalid Shuffle Vector Operand");
11712 Value *LHS = nullptr, *RHS = nullptr;
11713 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
11714 setInsertPointAfterBundle(E);
11715 LHS = vectorizeOperand(E, 0, PostponedPHIs);
11716 if (E->VectorizedValue) {
11717 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11718 return E->VectorizedValue;
11720 RHS = vectorizeOperand(E, 1, PostponedPHIs);
11721 } else {
11722 setInsertPointAfterBundle(E);
11723 LHS = vectorizeOperand(E, 0, PostponedPHIs);
11725 if (E->VectorizedValue) {
11726 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
11727 return E->VectorizedValue;
11729 if (LHS && RHS && LHS->getType() != RHS->getType()) {
11730 assert((MinBWs.contains(getOperandEntry(E, 0)) ||
11731 MinBWs.contains(getOperandEntry(E, 1))) &&
11732 "Expected item in MinBWs.");
11733 LHS = Builder.CreateIntCast(LHS, VecTy, IsSigned);
11734 RHS = Builder.CreateIntCast(RHS, VecTy, IsSigned);
11737 Value *V0, *V1;
11738 if (Instruction::isBinaryOp(E->getOpcode())) {
11739 V0 = Builder.CreateBinOp(
11740 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
11741 V1 = Builder.CreateBinOp(
11742 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
11743 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
11744 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
11745 auto *AltCI = cast<CmpInst>(E->getAltOp());
11746 CmpInst::Predicate AltPred = AltCI->getPredicate();
11747 V1 = Builder.CreateCmp(AltPred, LHS, RHS);
11748 } else {
11749 V0 = Builder.CreateCast(
11750 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
11751 V1 = Builder.CreateCast(
11752 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
11754 // Add V0 and V1 to later analysis to try to find and remove matching
11755 // instruction, if any.
11756 for (Value *V : {V0, V1}) {
11757 if (auto *I = dyn_cast<Instruction>(V)) {
11758 GatherShuffleExtractSeq.insert(I);
11759 CSEBlocks.insert(I->getParent());
11763 // Create shuffle to take alternate operations from the vector.
11764 // Also, gather up main and alt scalar ops to propagate IR flags to
11765 // each vector operation.
11766 ValueList OpScalars, AltScalars;
11767 SmallVector<int> Mask;
11768 E->buildAltOpShuffleMask(
11769 [E, this](Instruction *I) {
11770 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
11771 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(),
11772 *TLI);
11774 Mask, &OpScalars, &AltScalars);
11776 propagateIRFlags(V0, OpScalars);
11777 propagateIRFlags(V1, AltScalars);
11779 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
11780 if (auto *I = dyn_cast<Instruction>(V)) {
11781 V = propagateMetadata(I, E->Scalars);
11782 GatherShuffleExtractSeq.insert(I);
11783 CSEBlocks.insert(I->getParent());
11786 if (V->getType() != VecTy && !isa<CmpInst>(VL0))
11787 V = Builder.CreateIntCast(
11788 V, FixedVectorType::get(ScalarTy, E->getVectorFactor()), IsSigned);
11789 E->VectorizedValue = V;
11790 ++NumVectorInstructions;
11792 return V;
11794 default:
11795 llvm_unreachable("unknown inst");
11797 return nullptr;
11800 Value *BoUpSLP::vectorizeTree() {
11801 ExtraValueToDebugLocsMap ExternallyUsedValues;
11802 SmallVector<std::pair<Value *, Value *>> ReplacedExternals;
11803 return vectorizeTree(ExternallyUsedValues, ReplacedExternals);
11806 namespace {
11807 /// Data type for handling buildvector sequences with the reused scalars from
11808 /// other tree entries.
11809 struct ShuffledInsertData {
11810 /// List of insertelements to be replaced by shuffles.
11811 SmallVector<InsertElementInst *> InsertElements;
11812 /// The parent vectors and shuffle mask for the given list of inserts.
11813 MapVector<Value *, SmallVector<int>> ValueMasks;
11815 } // namespace
11817 Value *BoUpSLP::vectorizeTree(
11818 const ExtraValueToDebugLocsMap &ExternallyUsedValues,
11819 SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals,
11820 Instruction *ReductionRoot) {
11821 // All blocks must be scheduled before any instructions are inserted.
11822 for (auto &BSIter : BlocksSchedules) {
11823 scheduleBlock(BSIter.second.get());
11825 // Clean Entry-to-LastInstruction table. It can be affected after scheduling,
11826 // need to rebuild it.
11827 EntryToLastInstruction.clear();
11829 if (ReductionRoot)
11830 Builder.SetInsertPoint(ReductionRoot->getParent(),
11831 ReductionRoot->getIterator());
11832 else
11833 Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
11835 // Postpone emission of PHIs operands to avoid cyclic dependencies issues.
11836 (void)vectorizeTree(VectorizableTree[0].get(), /*PostponedPHIs=*/true);
11837 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree)
11838 if (TE->State == TreeEntry::Vectorize &&
11839 TE->getOpcode() == Instruction::PHI && !TE->isAltShuffle() &&
11840 TE->VectorizedValue)
11841 (void)vectorizeTree(TE.get(), /*PostponedPHIs=*/false);
11842 // Run through the list of postponed gathers and emit them, replacing the temp
11843 // emitted allocas with actual vector instructions.
11844 ArrayRef<const TreeEntry *> PostponedNodes = PostponedGathers.getArrayRef();
11845 DenseMap<Value *, SmallVector<TreeEntry *>> PostponedValues;
11846 for (const TreeEntry *E : PostponedNodes) {
11847 auto *TE = const_cast<TreeEntry *>(E);
11848 if (auto *VecTE = getTreeEntry(TE->Scalars.front()))
11849 if (VecTE->isSame(TE->UserTreeIndices.front().UserTE->getOperand(
11850 TE->UserTreeIndices.front().EdgeIdx)))
11851 // Found gather node which is absolutely the same as one of the
11852 // vectorized nodes. It may happen after reordering.
11853 continue;
11854 auto *PrevVec = cast<Instruction>(TE->VectorizedValue);
11855 TE->VectorizedValue = nullptr;
11856 auto *UserI =
11857 cast<Instruction>(TE->UserTreeIndices.front().UserTE->VectorizedValue);
11858 // If user is a PHI node, its vector code have to be inserted right before
11859 // block terminator. Since the node was delayed, there were some unresolved
11860 // dependencies at the moment when stab instruction was emitted. In a case
11861 // when any of these dependencies turn out an operand of another PHI, coming
11862 // from this same block, position of a stab instruction will become invalid.
11863 // The is because source vector that supposed to feed this gather node was
11864 // inserted at the end of the block [after stab instruction]. So we need
11865 // to adjust insertion point again to the end of block.
11866 if (isa<PHINode>(UserI)) {
11867 // Insert before all users.
11868 Instruction *InsertPt = PrevVec->getParent()->getTerminator();
11869 for (User *U : PrevVec->users()) {
11870 if (U == UserI)
11871 continue;
11872 auto *UI = dyn_cast<Instruction>(U);
11873 if (!UI || isa<PHINode>(UI) || UI->getParent() != InsertPt->getParent())
11874 continue;
11875 if (UI->comesBefore(InsertPt))
11876 InsertPt = UI;
11878 Builder.SetInsertPoint(InsertPt);
11879 } else {
11880 Builder.SetInsertPoint(PrevVec);
11882 Builder.SetCurrentDebugLocation(UserI->getDebugLoc());
11883 Value *Vec = vectorizeTree(TE, /*PostponedPHIs=*/false);
11884 PrevVec->replaceAllUsesWith(Vec);
11885 PostponedValues.try_emplace(Vec).first->second.push_back(TE);
11886 // Replace the stub vector node, if it was used before for one of the
11887 // buildvector nodes already.
11888 auto It = PostponedValues.find(PrevVec);
11889 if (It != PostponedValues.end()) {
11890 for (TreeEntry *VTE : It->getSecond())
11891 VTE->VectorizedValue = Vec;
11893 eraseInstruction(PrevVec);
11896 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
11897 << " values .\n");
11899 SmallVector<ShuffledInsertData> ShuffledInserts;
11900 // Maps vector instruction to original insertelement instruction
11901 DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
11902 // Maps extract Scalar to the corresponding extractelement instruction in the
11903 // basic block. Only one extractelement per block should be emitted.
11904 DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs;
11905 SmallDenseSet<Value *, 4> UsedInserts;
11906 DenseMap<Value *, Value *> VectorCasts;
11907 SmallDenseSet<Value *, 4> ScalarsWithNullptrUser;
11908 // Extract all of the elements with the external uses.
11909 for (const auto &ExternalUse : ExternalUses) {
11910 Value *Scalar = ExternalUse.Scalar;
11911 llvm::User *User = ExternalUse.User;
11913 // Skip users that we already RAUW. This happens when one instruction
11914 // has multiple uses of the same value.
11915 if (User && !is_contained(Scalar->users(), User))
11916 continue;
11917 TreeEntry *E = getTreeEntry(Scalar);
11918 assert(E && "Invalid scalar");
11919 assert(E->State != TreeEntry::NeedToGather &&
11920 "Extracting from a gather list");
11921 // Non-instruction pointers are not deleted, just skip them.
11922 if (E->getOpcode() == Instruction::GetElementPtr &&
11923 !isa<GetElementPtrInst>(Scalar))
11924 continue;
11926 Value *Vec = E->VectorizedValue;
11927 assert(Vec && "Can't find vectorizable value");
11929 Value *Lane = Builder.getInt32(ExternalUse.Lane);
11930 auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
11931 if (Scalar->getType() != Vec->getType()) {
11932 Value *Ex = nullptr;
11933 auto It = ScalarToEEs.find(Scalar);
11934 if (It != ScalarToEEs.end()) {
11935 // No need to emit many extracts, just move the only one in the
11936 // current block.
11937 auto EEIt = It->second.find(Builder.GetInsertBlock());
11938 if (EEIt != It->second.end()) {
11939 Instruction *I = EEIt->second;
11940 if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() &&
11941 Builder.GetInsertPoint()->comesBefore(I))
11942 I->moveBefore(*Builder.GetInsertPoint()->getParent(),
11943 Builder.GetInsertPoint());
11944 Ex = I;
11947 if (!Ex) {
11948 // "Reuse" the existing extract to improve final codegen.
11949 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
11950 Value *V = ES->getVectorOperand();
11951 if (const TreeEntry *ETE = getTreeEntry(V))
11952 V = ETE->VectorizedValue;
11953 Ex = Builder.CreateExtractElement(V, ES->getIndexOperand());
11954 } else {
11955 Ex = Builder.CreateExtractElement(Vec, Lane);
11957 if (auto *I = dyn_cast<Instruction>(Ex))
11958 ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I);
11960 // The then branch of the previous if may produce constants, since 0
11961 // operand might be a constant.
11962 if (auto *ExI = dyn_cast<Instruction>(Ex)) {
11963 GatherShuffleExtractSeq.insert(ExI);
11964 CSEBlocks.insert(ExI->getParent());
11966 // If necessary, sign-extend or zero-extend ScalarRoot
11967 // to the larger type.
11968 if (Scalar->getType() != Ex->getType())
11969 return Builder.CreateIntCast(Ex, Scalar->getType(),
11970 MinBWs.find(E)->second.second);
11971 return Ex;
11973 assert(isa<FixedVectorType>(Scalar->getType()) &&
11974 isa<InsertElementInst>(Scalar) &&
11975 "In-tree scalar of vector type is not insertelement?");
11976 auto *IE = cast<InsertElementInst>(Scalar);
11977 VectorToInsertElement.try_emplace(Vec, IE);
11978 return Vec;
11980 // If User == nullptr, the Scalar remains as scalar in vectorized
11981 // instructions or is used as extra arg. Generate ExtractElement instruction
11982 // and update the record for this scalar in ExternallyUsedValues.
11983 if (!User) {
11984 if (!ScalarsWithNullptrUser.insert(Scalar).second)
11985 continue;
11986 assert((ExternallyUsedValues.count(Scalar) ||
11987 any_of(Scalar->users(),
11988 [&](llvm::User *U) {
11989 TreeEntry *UseEntry = getTreeEntry(U);
11990 return UseEntry &&
11991 UseEntry->State == TreeEntry::Vectorize &&
11992 E->State == TreeEntry::Vectorize &&
11993 doesInTreeUserNeedToExtract(
11994 Scalar,
11995 cast<Instruction>(UseEntry->Scalars.front()),
11996 TLI);
11997 })) &&
11998 "Scalar with nullptr User must be registered in "
11999 "ExternallyUsedValues map or remain as scalar in vectorized "
12000 "instructions");
12001 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
12002 if (auto *PHI = dyn_cast<PHINode>(VecI))
12003 Builder.SetInsertPoint(PHI->getParent(),
12004 PHI->getParent()->getFirstNonPHIIt());
12005 else
12006 Builder.SetInsertPoint(VecI->getParent(),
12007 std::next(VecI->getIterator()));
12008 } else {
12009 Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
12011 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12012 // Required to update internally referenced instructions.
12013 Scalar->replaceAllUsesWith(NewInst);
12014 ReplacedExternals.emplace_back(Scalar, NewInst);
12015 continue;
12018 if (auto *VU = dyn_cast<InsertElementInst>(User)) {
12019 // Skip if the scalar is another vector op or Vec is not an instruction.
12020 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
12021 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
12022 if (!UsedInserts.insert(VU).second)
12023 continue;
12024 // Need to use original vector, if the root is truncated.
12025 auto BWIt = MinBWs.find(E);
12026 if (BWIt != MinBWs.end() && Vec->getType() != VU->getType()) {
12027 auto VecIt = VectorCasts.find(Scalar);
12028 if (VecIt == VectorCasts.end()) {
12029 IRBuilder<>::InsertPointGuard Guard(Builder);
12030 if (auto *IVec = dyn_cast<Instruction>(Vec))
12031 Builder.SetInsertPoint(IVec->getNextNonDebugInstruction());
12032 Vec = Builder.CreateIntCast(
12033 Vec,
12034 FixedVectorType::get(
12035 cast<VectorType>(VU->getType())->getElementType(),
12036 cast<FixedVectorType>(Vec->getType())->getNumElements()),
12037 BWIt->second.second);
12038 VectorCasts.try_emplace(Scalar, Vec);
12039 } else {
12040 Vec = VecIt->second;
12044 std::optional<unsigned> InsertIdx = getInsertIndex(VU);
12045 if (InsertIdx) {
12046 auto *It =
12047 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
12048 // Checks if 2 insertelements are from the same buildvector.
12049 InsertElementInst *VecInsert = Data.InsertElements.front();
12050 return areTwoInsertFromSameBuildVector(
12051 VU, VecInsert,
12052 [](InsertElementInst *II) { return II->getOperand(0); });
12054 unsigned Idx = *InsertIdx;
12055 if (It == ShuffledInserts.end()) {
12056 (void)ShuffledInserts.emplace_back();
12057 It = std::next(ShuffledInserts.begin(),
12058 ShuffledInserts.size() - 1);
12059 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
12060 if (Mask.empty())
12061 Mask.assign(FTy->getNumElements(), PoisonMaskElem);
12062 // Find the insertvector, vectorized in tree, if any.
12063 Value *Base = VU;
12064 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
12065 if (IEBase != User &&
12066 (!IEBase->hasOneUse() ||
12067 getInsertIndex(IEBase).value_or(Idx) == Idx))
12068 break;
12069 // Build the mask for the vectorized insertelement instructions.
12070 if (const TreeEntry *E = getTreeEntry(IEBase)) {
12071 do {
12072 IEBase = cast<InsertElementInst>(Base);
12073 int IEIdx = *getInsertIndex(IEBase);
12074 assert(Mask[Idx] == PoisonMaskElem &&
12075 "InsertElementInstruction used already.");
12076 Mask[IEIdx] = IEIdx;
12077 Base = IEBase->getOperand(0);
12078 } while (E == getTreeEntry(Base));
12079 break;
12081 Base = cast<InsertElementInst>(Base)->getOperand(0);
12082 // After the vectorization the def-use chain has changed, need
12083 // to look through original insertelement instructions, if they
12084 // get replaced by vector instructions.
12085 auto It = VectorToInsertElement.find(Base);
12086 if (It != VectorToInsertElement.end())
12087 Base = It->second;
12090 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
12091 if (Mask.empty())
12092 Mask.assign(FTy->getNumElements(), PoisonMaskElem);
12093 Mask[Idx] = ExternalUse.Lane;
12094 It->InsertElements.push_back(cast<InsertElementInst>(User));
12095 continue;
12101 // Generate extracts for out-of-tree users.
12102 // Find the insertion point for the extractelement lane.
12103 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
12104 if (PHINode *PH = dyn_cast<PHINode>(User)) {
12105 for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) {
12106 if (PH->getIncomingValue(I) == Scalar) {
12107 Instruction *IncomingTerminator =
12108 PH->getIncomingBlock(I)->getTerminator();
12109 if (isa<CatchSwitchInst>(IncomingTerminator)) {
12110 Builder.SetInsertPoint(VecI->getParent(),
12111 std::next(VecI->getIterator()));
12112 } else {
12113 Builder.SetInsertPoint(PH->getIncomingBlock(I)->getTerminator());
12115 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12116 PH->setOperand(I, NewInst);
12119 } else {
12120 Builder.SetInsertPoint(cast<Instruction>(User));
12121 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12122 User->replaceUsesOfWith(Scalar, NewInst);
12124 } else {
12125 Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin());
12126 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
12127 User->replaceUsesOfWith(Scalar, NewInst);
12130 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
12133 auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) {
12134 SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem);
12135 SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem);
12136 int VF = cast<FixedVectorType>(V1->getType())->getNumElements();
12137 for (int I = 0, E = Mask.size(); I < E; ++I) {
12138 if (Mask[I] < VF)
12139 CombinedMask1[I] = Mask[I];
12140 else
12141 CombinedMask2[I] = Mask[I] - VF;
12143 ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
12144 ShuffleBuilder.add(V1, CombinedMask1);
12145 if (V2)
12146 ShuffleBuilder.add(V2, CombinedMask2);
12147 return ShuffleBuilder.finalize(std::nullopt);
12150 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask,
12151 bool ForSingleMask) {
12152 unsigned VF = Mask.size();
12153 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
12154 if (VF != VecVF) {
12155 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
12156 Vec = CreateShuffle(Vec, nullptr, Mask);
12157 return std::make_pair(Vec, true);
12159 if (!ForSingleMask) {
12160 SmallVector<int> ResizeMask(VF, PoisonMaskElem);
12161 for (unsigned I = 0; I < VF; ++I) {
12162 if (Mask[I] != PoisonMaskElem)
12163 ResizeMask[Mask[I]] = Mask[I];
12165 Vec = CreateShuffle(Vec, nullptr, ResizeMask);
12169 return std::make_pair(Vec, false);
12171 // Perform shuffling of the vectorize tree entries for better handling of
12172 // external extracts.
12173 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
12174 // Find the first and the last instruction in the list of insertelements.
12175 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
12176 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
12177 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
12178 Builder.SetInsertPoint(LastInsert);
12179 auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
12180 Value *NewInst = performExtractsShuffleAction<Value>(
12181 MutableArrayRef(Vector.data(), Vector.size()),
12182 FirstInsert->getOperand(0),
12183 [](Value *Vec) {
12184 return cast<VectorType>(Vec->getType())
12185 ->getElementCount()
12186 .getKnownMinValue();
12188 ResizeToVF,
12189 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
12190 ArrayRef<Value *> Vals) {
12191 assert((Vals.size() == 1 || Vals.size() == 2) &&
12192 "Expected exactly 1 or 2 input values.");
12193 if (Vals.size() == 1) {
12194 // Do not create shuffle if the mask is a simple identity
12195 // non-resizing mask.
12196 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
12197 ->getNumElements() ||
12198 !ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
12199 return CreateShuffle(Vals.front(), nullptr, Mask);
12200 return Vals.front();
12202 return CreateShuffle(Vals.front() ? Vals.front()
12203 : FirstInsert->getOperand(0),
12204 Vals.back(), Mask);
12206 auto It = ShuffledInserts[I].InsertElements.rbegin();
12207 // Rebuild buildvector chain.
12208 InsertElementInst *II = nullptr;
12209 if (It != ShuffledInserts[I].InsertElements.rend())
12210 II = *It;
12211 SmallVector<Instruction *> Inserts;
12212 while (It != ShuffledInserts[I].InsertElements.rend()) {
12213 assert(II && "Must be an insertelement instruction.");
12214 if (*It == II)
12215 ++It;
12216 else
12217 Inserts.push_back(cast<Instruction>(II));
12218 II = dyn_cast<InsertElementInst>(II->getOperand(0));
12220 for (Instruction *II : reverse(Inserts)) {
12221 II->replaceUsesOfWith(II->getOperand(0), NewInst);
12222 if (auto *NewI = dyn_cast<Instruction>(NewInst))
12223 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
12224 II->moveAfter(NewI);
12225 NewInst = II;
12227 LastInsert->replaceAllUsesWith(NewInst);
12228 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
12229 IE->replaceUsesOfWith(IE->getOperand(0),
12230 PoisonValue::get(IE->getOperand(0)->getType()));
12231 IE->replaceUsesOfWith(IE->getOperand(1),
12232 PoisonValue::get(IE->getOperand(1)->getType()));
12233 eraseInstruction(IE);
12235 CSEBlocks.insert(LastInsert->getParent());
12238 SmallVector<Instruction *> RemovedInsts;
12239 // For each vectorized value:
12240 for (auto &TEPtr : VectorizableTree) {
12241 TreeEntry *Entry = TEPtr.get();
12243 // No need to handle users of gathered values.
12244 if (Entry->State == TreeEntry::NeedToGather)
12245 continue;
12247 assert(Entry->VectorizedValue && "Can't find vectorizable value");
12249 // For each lane:
12250 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
12251 Value *Scalar = Entry->Scalars[Lane];
12253 if (Entry->getOpcode() == Instruction::GetElementPtr &&
12254 !isa<GetElementPtrInst>(Scalar))
12255 continue;
12256 #ifndef NDEBUG
12257 Type *Ty = Scalar->getType();
12258 if (!Ty->isVoidTy()) {
12259 for (User *U : Scalar->users()) {
12260 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
12262 // It is legal to delete users in the ignorelist.
12263 assert((getTreeEntry(U) ||
12264 (UserIgnoreList && UserIgnoreList->contains(U)) ||
12265 (isa_and_nonnull<Instruction>(U) &&
12266 isDeleted(cast<Instruction>(U)))) &&
12267 "Deleting out-of-tree value");
12270 #endif
12271 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
12272 eraseInstruction(cast<Instruction>(Scalar));
12273 // Retain to-be-deleted instructions for some debug-info
12274 // bookkeeping. NOTE: eraseInstruction only marks the instruction for
12275 // deletion - instructions are not deleted until later.
12276 RemovedInsts.push_back(cast<Instruction>(Scalar));
12280 // Merge the DIAssignIDs from the about-to-be-deleted instructions into the
12281 // new vector instruction.
12282 if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue))
12283 V->mergeDIAssignID(RemovedInsts);
12285 Builder.ClearInsertionPoint();
12286 InstrElementSize.clear();
12288 return VectorizableTree[0]->VectorizedValue;
12291 void BoUpSLP::optimizeGatherSequence() {
12292 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size()
12293 << " gather sequences instructions.\n");
12294 // LICM InsertElementInst sequences.
12295 for (Instruction *I : GatherShuffleExtractSeq) {
12296 if (isDeleted(I))
12297 continue;
12299 // Check if this block is inside a loop.
12300 Loop *L = LI->getLoopFor(I->getParent());
12301 if (!L)
12302 continue;
12304 // Check if it has a preheader.
12305 BasicBlock *PreHeader = L->getLoopPreheader();
12306 if (!PreHeader)
12307 continue;
12309 // If the vector or the element that we insert into it are
12310 // instructions that are defined in this basic block then we can't
12311 // hoist this instruction.
12312 if (any_of(I->operands(), [L](Value *V) {
12313 auto *OpI = dyn_cast<Instruction>(V);
12314 return OpI && L->contains(OpI);
12316 continue;
12318 // We can hoist this instruction. Move it to the pre-header.
12319 I->moveBefore(PreHeader->getTerminator());
12320 CSEBlocks.insert(PreHeader);
12323 // Make a list of all reachable blocks in our CSE queue.
12324 SmallVector<const DomTreeNode *, 8> CSEWorkList;
12325 CSEWorkList.reserve(CSEBlocks.size());
12326 for (BasicBlock *BB : CSEBlocks)
12327 if (DomTreeNode *N = DT->getNode(BB)) {
12328 assert(DT->isReachableFromEntry(N));
12329 CSEWorkList.push_back(N);
12332 // Sort blocks by domination. This ensures we visit a block after all blocks
12333 // dominating it are visited.
12334 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
12335 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
12336 "Different nodes should have different DFS numbers");
12337 return A->getDFSNumIn() < B->getDFSNumIn();
12340 // Less defined shuffles can be replaced by the more defined copies.
12341 // Between two shuffles one is less defined if it has the same vector operands
12342 // and its mask indeces are the same as in the first one or undefs. E.g.
12343 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
12344 // poison, <0, 0, 0, 0>.
12345 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
12346 SmallVectorImpl<int> &NewMask) {
12347 if (I1->getType() != I2->getType())
12348 return false;
12349 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
12350 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
12351 if (!SI1 || !SI2)
12352 return I1->isIdenticalTo(I2);
12353 if (SI1->isIdenticalTo(SI2))
12354 return true;
12355 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
12356 if (SI1->getOperand(I) != SI2->getOperand(I))
12357 return false;
12358 // Check if the second instruction is more defined than the first one.
12359 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
12360 ArrayRef<int> SM1 = SI1->getShuffleMask();
12361 // Count trailing undefs in the mask to check the final number of used
12362 // registers.
12363 unsigned LastUndefsCnt = 0;
12364 for (int I = 0, E = NewMask.size(); I < E; ++I) {
12365 if (SM1[I] == PoisonMaskElem)
12366 ++LastUndefsCnt;
12367 else
12368 LastUndefsCnt = 0;
12369 if (NewMask[I] != PoisonMaskElem && SM1[I] != PoisonMaskElem &&
12370 NewMask[I] != SM1[I])
12371 return false;
12372 if (NewMask[I] == PoisonMaskElem)
12373 NewMask[I] = SM1[I];
12375 // Check if the last undefs actually change the final number of used vector
12376 // registers.
12377 return SM1.size() - LastUndefsCnt > 1 &&
12378 TTI->getNumberOfParts(SI1->getType()) ==
12379 TTI->getNumberOfParts(
12380 FixedVectorType::get(SI1->getType()->getElementType(),
12381 SM1.size() - LastUndefsCnt));
12383 // Perform O(N^2) search over the gather/shuffle sequences and merge identical
12384 // instructions. TODO: We can further optimize this scan if we split the
12385 // instructions into different buckets based on the insert lane.
12386 SmallVector<Instruction *, 16> Visited;
12387 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
12388 assert(*I &&
12389 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
12390 "Worklist not sorted properly!");
12391 BasicBlock *BB = (*I)->getBlock();
12392 // For all instructions in blocks containing gather sequences:
12393 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
12394 if (isDeleted(&In))
12395 continue;
12396 if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) &&
12397 !GatherShuffleExtractSeq.contains(&In))
12398 continue;
12400 // Check if we can replace this instruction with any of the
12401 // visited instructions.
12402 bool Replaced = false;
12403 for (Instruction *&V : Visited) {
12404 SmallVector<int> NewMask;
12405 if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
12406 DT->dominates(V->getParent(), In.getParent())) {
12407 In.replaceAllUsesWith(V);
12408 eraseInstruction(&In);
12409 if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
12410 if (!NewMask.empty())
12411 SI->setShuffleMask(NewMask);
12412 Replaced = true;
12413 break;
12415 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
12416 GatherShuffleExtractSeq.contains(V) &&
12417 IsIdenticalOrLessDefined(V, &In, NewMask) &&
12418 DT->dominates(In.getParent(), V->getParent())) {
12419 In.moveAfter(V);
12420 V->replaceAllUsesWith(&In);
12421 eraseInstruction(V);
12422 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
12423 if (!NewMask.empty())
12424 SI->setShuffleMask(NewMask);
12425 V = &In;
12426 Replaced = true;
12427 break;
12430 if (!Replaced) {
12431 assert(!is_contained(Visited, &In));
12432 Visited.push_back(&In);
12436 CSEBlocks.clear();
12437 GatherShuffleExtractSeq.clear();
12440 BoUpSLP::ScheduleData *
12441 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
12442 ScheduleData *Bundle = nullptr;
12443 ScheduleData *PrevInBundle = nullptr;
12444 for (Value *V : VL) {
12445 if (doesNotNeedToBeScheduled(V))
12446 continue;
12447 ScheduleData *BundleMember = getScheduleData(V);
12448 assert(BundleMember &&
12449 "no ScheduleData for bundle member "
12450 "(maybe not in same basic block)");
12451 assert(BundleMember->isSchedulingEntity() &&
12452 "bundle member already part of other bundle");
12453 if (PrevInBundle) {
12454 PrevInBundle->NextInBundle = BundleMember;
12455 } else {
12456 Bundle = BundleMember;
12459 // Group the instructions to a bundle.
12460 BundleMember->FirstInBundle = Bundle;
12461 PrevInBundle = BundleMember;
12463 assert(Bundle && "Failed to find schedule bundle");
12464 return Bundle;
12467 // Groups the instructions to a bundle (which is then a single scheduling entity)
12468 // and schedules instructions until the bundle gets ready.
12469 std::optional<BoUpSLP::ScheduleData *>
12470 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
12471 const InstructionsState &S) {
12472 // No need to schedule PHIs, insertelement, extractelement and extractvalue
12473 // instructions.
12474 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
12475 doesNotNeedToSchedule(VL))
12476 return nullptr;
12478 // Initialize the instruction bundle.
12479 Instruction *OldScheduleEnd = ScheduleEnd;
12480 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
12482 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
12483 ScheduleData *Bundle) {
12484 // The scheduling region got new instructions at the lower end (or it is a
12485 // new region for the first bundle). This makes it necessary to
12486 // recalculate all dependencies.
12487 // It is seldom that this needs to be done a second time after adding the
12488 // initial bundle to the region.
12489 if (ScheduleEnd != OldScheduleEnd) {
12490 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
12491 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
12492 ReSchedule = true;
12494 if (Bundle) {
12495 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
12496 << " in block " << BB->getName() << "\n");
12497 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
12500 if (ReSchedule) {
12501 resetSchedule();
12502 initialFillReadyList(ReadyInsts);
12505 // Now try to schedule the new bundle or (if no bundle) just calculate
12506 // dependencies. As soon as the bundle is "ready" it means that there are no
12507 // cyclic dependencies and we can schedule it. Note that's important that we
12508 // don't "schedule" the bundle yet (see cancelScheduling).
12509 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
12510 !ReadyInsts.empty()) {
12511 ScheduleData *Picked = ReadyInsts.pop_back_val();
12512 assert(Picked->isSchedulingEntity() && Picked->isReady() &&
12513 "must be ready to schedule");
12514 schedule(Picked, ReadyInsts);
12518 // Make sure that the scheduling region contains all
12519 // instructions of the bundle.
12520 for (Value *V : VL) {
12521 if (doesNotNeedToBeScheduled(V))
12522 continue;
12523 if (!extendSchedulingRegion(V, S)) {
12524 // If the scheduling region got new instructions at the lower end (or it
12525 // is a new region for the first bundle). This makes it necessary to
12526 // recalculate all dependencies.
12527 // Otherwise the compiler may crash trying to incorrectly calculate
12528 // dependencies and emit instruction in the wrong order at the actual
12529 // scheduling.
12530 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
12531 return std::nullopt;
12535 bool ReSchedule = false;
12536 for (Value *V : VL) {
12537 if (doesNotNeedToBeScheduled(V))
12538 continue;
12539 ScheduleData *BundleMember = getScheduleData(V);
12540 assert(BundleMember &&
12541 "no ScheduleData for bundle member (maybe not in same basic block)");
12543 // Make sure we don't leave the pieces of the bundle in the ready list when
12544 // whole bundle might not be ready.
12545 ReadyInsts.remove(BundleMember);
12547 if (!BundleMember->IsScheduled)
12548 continue;
12549 // A bundle member was scheduled as single instruction before and now
12550 // needs to be scheduled as part of the bundle. We just get rid of the
12551 // existing schedule.
12552 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
12553 << " was already scheduled\n");
12554 ReSchedule = true;
12557 auto *Bundle = buildBundle(VL);
12558 TryScheduleBundleImpl(ReSchedule, Bundle);
12559 if (!Bundle->isReady()) {
12560 cancelScheduling(VL, S.OpValue);
12561 return std::nullopt;
12563 return Bundle;
12566 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
12567 Value *OpValue) {
12568 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
12569 doesNotNeedToSchedule(VL))
12570 return;
12572 if (doesNotNeedToBeScheduled(OpValue))
12573 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
12574 ScheduleData *Bundle = getScheduleData(OpValue);
12575 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
12576 assert(!Bundle->IsScheduled &&
12577 "Can't cancel bundle which is already scheduled");
12578 assert(Bundle->isSchedulingEntity() &&
12579 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
12580 "tried to unbundle something which is not a bundle");
12582 // Remove the bundle from the ready list.
12583 if (Bundle->isReady())
12584 ReadyInsts.remove(Bundle);
12586 // Un-bundle: make single instructions out of the bundle.
12587 ScheduleData *BundleMember = Bundle;
12588 while (BundleMember) {
12589 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
12590 BundleMember->FirstInBundle = BundleMember;
12591 ScheduleData *Next = BundleMember->NextInBundle;
12592 BundleMember->NextInBundle = nullptr;
12593 BundleMember->TE = nullptr;
12594 if (BundleMember->unscheduledDepsInBundle() == 0) {
12595 ReadyInsts.insert(BundleMember);
12597 BundleMember = Next;
12601 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
12602 // Allocate a new ScheduleData for the instruction.
12603 if (ChunkPos >= ChunkSize) {
12604 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
12605 ChunkPos = 0;
12607 return &(ScheduleDataChunks.back()[ChunkPos++]);
12610 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
12611 const InstructionsState &S) {
12612 if (getScheduleData(V, isOneOf(S, V)))
12613 return true;
12614 Instruction *I = dyn_cast<Instruction>(V);
12615 assert(I && "bundle member must be an instruction");
12616 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
12617 !doesNotNeedToBeScheduled(I) &&
12618 "phi nodes/insertelements/extractelements/extractvalues don't need to "
12619 "be scheduled");
12620 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
12621 ScheduleData *ISD = getScheduleData(I);
12622 if (!ISD)
12623 return false;
12624 assert(isInSchedulingRegion(ISD) &&
12625 "ScheduleData not in scheduling region");
12626 ScheduleData *SD = allocateScheduleDataChunks();
12627 SD->Inst = I;
12628 SD->init(SchedulingRegionID, S.OpValue);
12629 ExtraScheduleDataMap[I][S.OpValue] = SD;
12630 return true;
12632 if (CheckScheduleForI(I))
12633 return true;
12634 if (!ScheduleStart) {
12635 // It's the first instruction in the new region.
12636 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
12637 ScheduleStart = I;
12638 ScheduleEnd = I->getNextNode();
12639 if (isOneOf(S, I) != I)
12640 CheckScheduleForI(I);
12641 assert(ScheduleEnd && "tried to vectorize a terminator?");
12642 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
12643 return true;
12645 // Search up and down at the same time, because we don't know if the new
12646 // instruction is above or below the existing scheduling region.
12647 // Ignore debug info (and other "AssumeLike" intrinsics) so that's not counted
12648 // against the budget. Otherwise debug info could affect codegen.
12649 BasicBlock::reverse_iterator UpIter =
12650 ++ScheduleStart->getIterator().getReverse();
12651 BasicBlock::reverse_iterator UpperEnd = BB->rend();
12652 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
12653 BasicBlock::iterator LowerEnd = BB->end();
12654 auto IsAssumeLikeIntr = [](const Instruction &I) {
12655 if (auto *II = dyn_cast<IntrinsicInst>(&I))
12656 return II->isAssumeLikeIntrinsic();
12657 return false;
12659 UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr);
12660 DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr);
12661 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
12662 &*DownIter != I) {
12663 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
12664 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
12665 return false;
12668 ++UpIter;
12669 ++DownIter;
12671 UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr);
12672 DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr);
12674 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
12675 assert(I->getParent() == ScheduleStart->getParent() &&
12676 "Instruction is in wrong basic block.");
12677 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
12678 ScheduleStart = I;
12679 if (isOneOf(S, I) != I)
12680 CheckScheduleForI(I);
12681 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
12682 << "\n");
12683 return true;
12685 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
12686 "Expected to reach top of the basic block or instruction down the "
12687 "lower end.");
12688 assert(I->getParent() == ScheduleEnd->getParent() &&
12689 "Instruction is in wrong basic block.");
12690 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
12691 nullptr);
12692 ScheduleEnd = I->getNextNode();
12693 if (isOneOf(S, I) != I)
12694 CheckScheduleForI(I);
12695 assert(ScheduleEnd && "tried to vectorize a terminator?");
12696 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
12697 return true;
12700 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
12701 Instruction *ToI,
12702 ScheduleData *PrevLoadStore,
12703 ScheduleData *NextLoadStore) {
12704 ScheduleData *CurrentLoadStore = PrevLoadStore;
12705 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
12706 // No need to allocate data for non-schedulable instructions.
12707 if (doesNotNeedToBeScheduled(I))
12708 continue;
12709 ScheduleData *SD = ScheduleDataMap.lookup(I);
12710 if (!SD) {
12711 SD = allocateScheduleDataChunks();
12712 ScheduleDataMap[I] = SD;
12713 SD->Inst = I;
12715 assert(!isInSchedulingRegion(SD) &&
12716 "new ScheduleData already in scheduling region");
12717 SD->init(SchedulingRegionID, I);
12719 if (I->mayReadOrWriteMemory() &&
12720 (!isa<IntrinsicInst>(I) ||
12721 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
12722 cast<IntrinsicInst>(I)->getIntrinsicID() !=
12723 Intrinsic::pseudoprobe))) {
12724 // Update the linked list of memory accessing instructions.
12725 if (CurrentLoadStore) {
12726 CurrentLoadStore->NextLoadStore = SD;
12727 } else {
12728 FirstLoadStoreInRegion = SD;
12730 CurrentLoadStore = SD;
12733 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
12734 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12735 RegionHasStackSave = true;
12737 if (NextLoadStore) {
12738 if (CurrentLoadStore)
12739 CurrentLoadStore->NextLoadStore = NextLoadStore;
12740 } else {
12741 LastLoadStoreInRegion = CurrentLoadStore;
12745 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
12746 bool InsertInReadyList,
12747 BoUpSLP *SLP) {
12748 assert(SD->isSchedulingEntity());
12750 SmallVector<ScheduleData *, 10> WorkList;
12751 WorkList.push_back(SD);
12753 while (!WorkList.empty()) {
12754 ScheduleData *SD = WorkList.pop_back_val();
12755 for (ScheduleData *BundleMember = SD; BundleMember;
12756 BundleMember = BundleMember->NextInBundle) {
12757 assert(isInSchedulingRegion(BundleMember));
12758 if (BundleMember->hasValidDependencies())
12759 continue;
12761 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
12762 << "\n");
12763 BundleMember->Dependencies = 0;
12764 BundleMember->resetUnscheduledDeps();
12766 // Handle def-use chain dependencies.
12767 if (BundleMember->OpValue != BundleMember->Inst) {
12768 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
12769 BundleMember->Dependencies++;
12770 ScheduleData *DestBundle = UseSD->FirstInBundle;
12771 if (!DestBundle->IsScheduled)
12772 BundleMember->incrementUnscheduledDeps(1);
12773 if (!DestBundle->hasValidDependencies())
12774 WorkList.push_back(DestBundle);
12776 } else {
12777 for (User *U : BundleMember->Inst->users()) {
12778 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
12779 BundleMember->Dependencies++;
12780 ScheduleData *DestBundle = UseSD->FirstInBundle;
12781 if (!DestBundle->IsScheduled)
12782 BundleMember->incrementUnscheduledDeps(1);
12783 if (!DestBundle->hasValidDependencies())
12784 WorkList.push_back(DestBundle);
12789 auto MakeControlDependent = [&](Instruction *I) {
12790 auto *DepDest = getScheduleData(I);
12791 assert(DepDest && "must be in schedule window");
12792 DepDest->ControlDependencies.push_back(BundleMember);
12793 BundleMember->Dependencies++;
12794 ScheduleData *DestBundle = DepDest->FirstInBundle;
12795 if (!DestBundle->IsScheduled)
12796 BundleMember->incrementUnscheduledDeps(1);
12797 if (!DestBundle->hasValidDependencies())
12798 WorkList.push_back(DestBundle);
12801 // Any instruction which isn't safe to speculate at the beginning of the
12802 // block is control dependend on any early exit or non-willreturn call
12803 // which proceeds it.
12804 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
12805 for (Instruction *I = BundleMember->Inst->getNextNode();
12806 I != ScheduleEnd; I = I->getNextNode()) {
12807 if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC))
12808 continue;
12810 // Add the dependency
12811 MakeControlDependent(I);
12813 if (!isGuaranteedToTransferExecutionToSuccessor(I))
12814 // Everything past here must be control dependent on I.
12815 break;
12819 if (RegionHasStackSave) {
12820 // If we have an inalloc alloca instruction, it needs to be scheduled
12821 // after any preceeding stacksave. We also need to prevent any alloca
12822 // from reordering above a preceeding stackrestore.
12823 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
12824 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
12825 for (Instruction *I = BundleMember->Inst->getNextNode();
12826 I != ScheduleEnd; I = I->getNextNode()) {
12827 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
12828 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12829 // Any allocas past here must be control dependent on I, and I
12830 // must be memory dependend on BundleMember->Inst.
12831 break;
12833 if (!isa<AllocaInst>(I))
12834 continue;
12836 // Add the dependency
12837 MakeControlDependent(I);
12841 // In addition to the cases handle just above, we need to prevent
12842 // allocas and loads/stores from moving below a stacksave or a
12843 // stackrestore. Avoiding moving allocas below stackrestore is currently
12844 // thought to be conservatism. Moving loads/stores below a stackrestore
12845 // can lead to incorrect code.
12846 if (isa<AllocaInst>(BundleMember->Inst) ||
12847 BundleMember->Inst->mayReadOrWriteMemory()) {
12848 for (Instruction *I = BundleMember->Inst->getNextNode();
12849 I != ScheduleEnd; I = I->getNextNode()) {
12850 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
12851 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
12852 continue;
12854 // Add the dependency
12855 MakeControlDependent(I);
12856 break;
12861 // Handle the memory dependencies (if any).
12862 ScheduleData *DepDest = BundleMember->NextLoadStore;
12863 if (!DepDest)
12864 continue;
12865 Instruction *SrcInst = BundleMember->Inst;
12866 assert(SrcInst->mayReadOrWriteMemory() &&
12867 "NextLoadStore list for non memory effecting bundle?");
12868 MemoryLocation SrcLoc = getLocation(SrcInst);
12869 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
12870 unsigned NumAliased = 0;
12871 unsigned DistToSrc = 1;
12873 for (; DepDest; DepDest = DepDest->NextLoadStore) {
12874 assert(isInSchedulingRegion(DepDest));
12876 // We have two limits to reduce the complexity:
12877 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
12878 // SLP->isAliased (which is the expensive part in this loop).
12879 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
12880 // the whole loop (even if the loop is fast, it's quadratic).
12881 // It's important for the loop break condition (see below) to
12882 // check this limit even between two read-only instructions.
12883 if (DistToSrc >= MaxMemDepDistance ||
12884 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
12885 (NumAliased >= AliasedCheckLimit ||
12886 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
12888 // We increment the counter only if the locations are aliased
12889 // (instead of counting all alias checks). This gives a better
12890 // balance between reduced runtime and accurate dependencies.
12891 NumAliased++;
12893 DepDest->MemoryDependencies.push_back(BundleMember);
12894 BundleMember->Dependencies++;
12895 ScheduleData *DestBundle = DepDest->FirstInBundle;
12896 if (!DestBundle->IsScheduled) {
12897 BundleMember->incrementUnscheduledDeps(1);
12899 if (!DestBundle->hasValidDependencies()) {
12900 WorkList.push_back(DestBundle);
12904 // Example, explaining the loop break condition: Let's assume our
12905 // starting instruction is i0 and MaxMemDepDistance = 3.
12907 // +--------v--v--v
12908 // i0,i1,i2,i3,i4,i5,i6,i7,i8
12909 // +--------^--^--^
12911 // MaxMemDepDistance let us stop alias-checking at i3 and we add
12912 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
12913 // Previously we already added dependencies from i3 to i6,i7,i8
12914 // (because of MaxMemDepDistance). As we added a dependency from
12915 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
12916 // and we can abort this loop at i6.
12917 if (DistToSrc >= 2 * MaxMemDepDistance)
12918 break;
12919 DistToSrc++;
12922 if (InsertInReadyList && SD->isReady()) {
12923 ReadyInsts.insert(SD);
12924 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
12925 << "\n");
12930 void BoUpSLP::BlockScheduling::resetSchedule() {
12931 assert(ScheduleStart &&
12932 "tried to reset schedule on block which has not been scheduled");
12933 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
12934 doForAllOpcodes(I, [&](ScheduleData *SD) {
12935 assert(isInSchedulingRegion(SD) &&
12936 "ScheduleData not in scheduling region");
12937 SD->IsScheduled = false;
12938 SD->resetUnscheduledDeps();
12941 ReadyInsts.clear();
12944 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
12945 if (!BS->ScheduleStart)
12946 return;
12948 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
12950 // A key point - if we got here, pre-scheduling was able to find a valid
12951 // scheduling of the sub-graph of the scheduling window which consists
12952 // of all vector bundles and their transitive users. As such, we do not
12953 // need to reschedule anything *outside of* that subgraph.
12955 BS->resetSchedule();
12957 // For the real scheduling we use a more sophisticated ready-list: it is
12958 // sorted by the original instruction location. This lets the final schedule
12959 // be as close as possible to the original instruction order.
12960 // WARNING: If changing this order causes a correctness issue, that means
12961 // there is some missing dependence edge in the schedule data graph.
12962 struct ScheduleDataCompare {
12963 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
12964 return SD2->SchedulingPriority < SD1->SchedulingPriority;
12967 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
12969 // Ensure that all dependency data is updated (for nodes in the sub-graph)
12970 // and fill the ready-list with initial instructions.
12971 int Idx = 0;
12972 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
12973 I = I->getNextNode()) {
12974 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
12975 TreeEntry *SDTE = getTreeEntry(SD->Inst);
12976 (void)SDTE;
12977 assert((isVectorLikeInstWithConstOps(SD->Inst) ||
12978 SD->isPartOfBundle() ==
12979 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
12980 "scheduler and vectorizer bundle mismatch");
12981 SD->FirstInBundle->SchedulingPriority = Idx++;
12983 if (SD->isSchedulingEntity() && SD->isPartOfBundle())
12984 BS->calculateDependencies(SD, false, this);
12987 BS->initialFillReadyList(ReadyInsts);
12989 Instruction *LastScheduledInst = BS->ScheduleEnd;
12991 // Do the "real" scheduling.
12992 while (!ReadyInsts.empty()) {
12993 ScheduleData *Picked = *ReadyInsts.begin();
12994 ReadyInsts.erase(ReadyInsts.begin());
12996 // Move the scheduled instruction(s) to their dedicated places, if not
12997 // there yet.
12998 for (ScheduleData *BundleMember = Picked; BundleMember;
12999 BundleMember = BundleMember->NextInBundle) {
13000 Instruction *PickedInst = BundleMember->Inst;
13001 if (PickedInst->getNextNonDebugInstruction() != LastScheduledInst)
13002 PickedInst->moveAfter(LastScheduledInst->getPrevNode());
13003 LastScheduledInst = PickedInst;
13006 BS->schedule(Picked, ReadyInsts);
13009 // Check that we didn't break any of our invariants.
13010 #ifdef EXPENSIVE_CHECKS
13011 BS->verify();
13012 #endif
13014 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
13015 // Check that all schedulable entities got scheduled
13016 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
13017 BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
13018 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
13019 assert(SD->IsScheduled && "must be scheduled at this point");
13023 #endif
13025 // Avoid duplicate scheduling of the block.
13026 BS->ScheduleStart = nullptr;
13029 unsigned BoUpSLP::getVectorElementSize(Value *V) {
13030 // If V is a store, just return the width of the stored value (or value
13031 // truncated just before storing) without traversing the expression tree.
13032 // This is the common case.
13033 if (auto *Store = dyn_cast<StoreInst>(V))
13034 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
13036 if (auto *IEI = dyn_cast<InsertElementInst>(V))
13037 return getVectorElementSize(IEI->getOperand(1));
13039 auto E = InstrElementSize.find(V);
13040 if (E != InstrElementSize.end())
13041 return E->second;
13043 // If V is not a store, we can traverse the expression tree to find loads
13044 // that feed it. The type of the loaded value may indicate a more suitable
13045 // width than V's type. We want to base the vector element size on the width
13046 // of memory operations where possible.
13047 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
13048 SmallPtrSet<Instruction *, 16> Visited;
13049 if (auto *I = dyn_cast<Instruction>(V)) {
13050 Worklist.emplace_back(I, I->getParent());
13051 Visited.insert(I);
13054 // Traverse the expression tree in bottom-up order looking for loads. If we
13055 // encounter an instruction we don't yet handle, we give up.
13056 auto Width = 0u;
13057 while (!Worklist.empty()) {
13058 Instruction *I;
13059 BasicBlock *Parent;
13060 std::tie(I, Parent) = Worklist.pop_back_val();
13062 // We should only be looking at scalar instructions here. If the current
13063 // instruction has a vector type, skip.
13064 auto *Ty = I->getType();
13065 if (isa<VectorType>(Ty))
13066 continue;
13068 // If the current instruction is a load, update MaxWidth to reflect the
13069 // width of the loaded value.
13070 if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I))
13071 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
13073 // Otherwise, we need to visit the operands of the instruction. We only
13074 // handle the interesting cases from buildTree here. If an operand is an
13075 // instruction we haven't yet visited and from the same basic block as the
13076 // user or the use is a PHI node, we add it to the worklist.
13077 else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst,
13078 BinaryOperator, UnaryOperator>(I)) {
13079 for (Use &U : I->operands())
13080 if (auto *J = dyn_cast<Instruction>(U.get()))
13081 if (Visited.insert(J).second &&
13082 (isa<PHINode>(I) || J->getParent() == Parent))
13083 Worklist.emplace_back(J, J->getParent());
13084 } else {
13085 break;
13089 // If we didn't encounter a memory access in the expression tree, or if we
13090 // gave up for some reason, just return the width of V. Otherwise, return the
13091 // maximum width we found.
13092 if (!Width) {
13093 if (auto *CI = dyn_cast<CmpInst>(V))
13094 V = CI->getOperand(0);
13095 Width = DL->getTypeSizeInBits(V->getType());
13098 for (Instruction *I : Visited)
13099 InstrElementSize[I] = Width;
13101 return Width;
13104 // Determine if a value V in a vectorizable expression Expr can be demoted to a
13105 // smaller type with a truncation. We collect the values that will be demoted
13106 // in ToDemote and additional roots that require investigating in Roots.
13107 bool BoUpSLP::collectValuesToDemote(
13108 Value *V, SmallVectorImpl<Value *> &ToDemote,
13109 DenseMap<Instruction *, SmallVector<unsigned>> &DemotedConsts,
13110 SmallVectorImpl<Value *> &Roots, DenseSet<Value *> &Visited) const {
13111 // We can always demote constants.
13112 if (isa<Constant>(V))
13113 return true;
13115 // If the value is not a vectorized instruction in the expression and not used
13116 // by the insertelement instruction and not used in multiple vector nodes, it
13117 // cannot be demoted.
13118 auto *I = dyn_cast<Instruction>(V);
13119 if (!I || !getTreeEntry(I) || MultiNodeScalars.contains(I) ||
13120 !Visited.insert(I).second || all_of(I->users(), [&](User *U) {
13121 return isa<InsertElementInst>(U) && !getTreeEntry(U);
13123 return false;
13125 unsigned Start = 0;
13126 unsigned End = I->getNumOperands();
13127 switch (I->getOpcode()) {
13129 // We can always demote truncations and extensions. Since truncations can
13130 // seed additional demotion, we save the truncated value.
13131 case Instruction::Trunc:
13132 Roots.push_back(I->getOperand(0));
13133 break;
13134 case Instruction::ZExt:
13135 case Instruction::SExt:
13136 if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0)))
13137 return false;
13138 break;
13140 // We can demote certain binary operations if we can demote both of their
13141 // operands.
13142 case Instruction::Add:
13143 case Instruction::Sub:
13144 case Instruction::Mul:
13145 case Instruction::And:
13146 case Instruction::Or:
13147 case Instruction::Xor:
13148 if (!collectValuesToDemote(I->getOperand(0), ToDemote, DemotedConsts, Roots,
13149 Visited) ||
13150 !collectValuesToDemote(I->getOperand(1), ToDemote, DemotedConsts, Roots,
13151 Visited))
13152 return false;
13153 break;
13155 // We can demote selects if we can demote their true and false values.
13156 case Instruction::Select: {
13157 Start = 1;
13158 SelectInst *SI = cast<SelectInst>(I);
13159 if (!collectValuesToDemote(SI->getTrueValue(), ToDemote, DemotedConsts,
13160 Roots, Visited) ||
13161 !collectValuesToDemote(SI->getFalseValue(), ToDemote, DemotedConsts,
13162 Roots, Visited))
13163 return false;
13164 break;
13167 // We can demote phis if we can demote all their incoming operands. Note that
13168 // we don't need to worry about cycles since we ensure single use above.
13169 case Instruction::PHI: {
13170 PHINode *PN = cast<PHINode>(I);
13171 for (Value *IncValue : PN->incoming_values())
13172 if (!collectValuesToDemote(IncValue, ToDemote, DemotedConsts, Roots,
13173 Visited))
13174 return false;
13175 break;
13178 // Otherwise, conservatively give up.
13179 default:
13180 return false;
13183 // Gather demoted constant operands.
13184 for (unsigned Idx : seq<unsigned>(Start, End))
13185 if (isa<Constant>(I->getOperand(Idx)))
13186 DemotedConsts.try_emplace(I).first->getSecond().push_back(Idx);
13187 // Record the value that we can demote.
13188 ToDemote.push_back(V);
13189 return true;
13192 void BoUpSLP::computeMinimumValueSizes() {
13193 // We only attempt to truncate integer expressions.
13194 auto &TreeRoot = VectorizableTree[0]->Scalars;
13195 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
13196 if (!TreeRootIT || VectorizableTree.front()->State == TreeEntry::NeedToGather)
13197 return;
13199 // Ensure the roots of the vectorizable tree don't form a cycle.
13200 if (!VectorizableTree.front()->UserTreeIndices.empty())
13201 return;
13203 // Conservatively determine if we can actually truncate the roots of the
13204 // expression. Collect the values that can be demoted in ToDemote and
13205 // additional roots that require investigating in Roots.
13206 SmallVector<Value *, 32> ToDemote;
13207 DenseMap<Instruction *, SmallVector<unsigned>> DemotedConsts;
13208 SmallVector<Value *, 4> Roots;
13209 for (auto *Root : TreeRoot) {
13210 DenseSet<Value *> Visited;
13211 if (!collectValuesToDemote(Root, ToDemote, DemotedConsts, Roots, Visited))
13212 return;
13215 // The maximum bit width required to represent all the values that can be
13216 // demoted without loss of precision. It would be safe to truncate the roots
13217 // of the expression to this width.
13218 auto MaxBitWidth = 1u;
13220 // We first check if all the bits of the roots are demanded. If they're not,
13221 // we can truncate the roots to this narrower type.
13222 for (auto *Root : TreeRoot) {
13223 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
13224 MaxBitWidth = std::max<unsigned>(Mask.getBitWidth() - Mask.countl_zero(),
13225 MaxBitWidth);
13228 // True if the roots can be zero-extended back to their original type, rather
13229 // than sign-extended. We know that if the leading bits are not demanded, we
13230 // can safely zero-extend. So we initialize IsKnownPositive to True.
13231 bool IsKnownPositive = true;
13233 // If all the bits of the roots are demanded, we can try a little harder to
13234 // compute a narrower type. This can happen, for example, if the roots are
13235 // getelementptr indices. InstCombine promotes these indices to the pointer
13236 // width. Thus, all their bits are technically demanded even though the
13237 // address computation might be vectorized in a smaller type.
13239 // We start by looking at each entry that can be demoted. We compute the
13240 // maximum bit width required to store the scalar by using ValueTracking to
13241 // compute the number of high-order bits we can truncate.
13242 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
13243 all_of(TreeRoot, [](Value *V) {
13244 return all_of(V->users(),
13245 [](User *U) { return isa<GetElementPtrInst>(U); });
13246 })) {
13247 MaxBitWidth = 8u;
13249 // Determine if the sign bit of all the roots is known to be zero. If not,
13250 // IsKnownPositive is set to False.
13251 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
13252 KnownBits Known = computeKnownBits(R, *DL);
13253 return Known.isNonNegative();
13256 // Determine the maximum number of bits required to store the scalar
13257 // values.
13258 for (auto *Scalar : ToDemote) {
13259 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
13260 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
13261 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
13264 // If we can't prove that the sign bit is zero, we must add one to the
13265 // maximum bit width to account for the unknown sign bit. This preserves
13266 // the existing sign bit so we can safely sign-extend the root back to the
13267 // original type. Otherwise, if we know the sign bit is zero, we will
13268 // zero-extend the root instead.
13270 // FIXME: This is somewhat suboptimal, as there will be cases where adding
13271 // one to the maximum bit width will yield a larger-than-necessary
13272 // type. In general, we need to add an extra bit only if we can't
13273 // prove that the upper bit of the original type is equal to the
13274 // upper bit of the proposed smaller type. If these two bits are the
13275 // same (either zero or one) we know that sign-extending from the
13276 // smaller type will result in the same value. Here, since we can't
13277 // yet prove this, we are just making the proposed smaller type
13278 // larger to ensure correctness.
13279 if (!IsKnownPositive)
13280 ++MaxBitWidth;
13283 // Round MaxBitWidth up to the next power-of-two.
13284 MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
13286 // If the maximum bit width we compute is less than the with of the roots'
13287 // type, we can proceed with the narrowing. Otherwise, do nothing.
13288 if (MaxBitWidth >= TreeRootIT->getBitWidth())
13289 return;
13291 // If we can truncate the root, we must collect additional values that might
13292 // be demoted as a result. That is, those seeded by truncations we will
13293 // modify.
13294 while (!Roots.empty()) {
13295 DenseSet<Value *> Visited;
13296 collectValuesToDemote(Roots.pop_back_val(), ToDemote, DemotedConsts, Roots,
13297 Visited);
13300 // Finally, map the values we can demote to the maximum bit with we computed.
13301 for (auto *Scalar : ToDemote) {
13302 auto *TE = getTreeEntry(Scalar);
13303 assert(TE && "Expected vectorized scalar.");
13304 if (MinBWs.contains(TE))
13305 continue;
13306 bool IsSigned = any_of(TE->Scalars, [&](Value *R) {
13307 KnownBits Known = computeKnownBits(R, *DL);
13308 return !Known.isNonNegative();
13310 MinBWs.try_emplace(TE, MaxBitWidth, IsSigned);
13311 const auto *I = cast<Instruction>(Scalar);
13312 auto DCIt = DemotedConsts.find(I);
13313 if (DCIt != DemotedConsts.end()) {
13314 for (unsigned Idx : DCIt->getSecond()) {
13315 // Check that all instructions operands are demoted.
13316 if (all_of(TE->Scalars, [&](Value *V) {
13317 auto SIt = DemotedConsts.find(cast<Instruction>(V));
13318 return SIt != DemotedConsts.end() &&
13319 is_contained(SIt->getSecond(), Idx);
13320 })) {
13321 const TreeEntry *CTE = getOperandEntry(TE, Idx);
13322 MinBWs.try_emplace(CTE, MaxBitWidth, IsSigned);
13329 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
13330 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
13331 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
13332 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
13333 auto *AA = &AM.getResult<AAManager>(F);
13334 auto *LI = &AM.getResult<LoopAnalysis>(F);
13335 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
13336 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
13337 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
13338 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
13340 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
13341 if (!Changed)
13342 return PreservedAnalyses::all();
13344 PreservedAnalyses PA;
13345 PA.preserveSet<CFGAnalyses>();
13346 return PA;
13349 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
13350 TargetTransformInfo *TTI_,
13351 TargetLibraryInfo *TLI_, AAResults *AA_,
13352 LoopInfo *LI_, DominatorTree *DT_,
13353 AssumptionCache *AC_, DemandedBits *DB_,
13354 OptimizationRemarkEmitter *ORE_) {
13355 if (!RunSLPVectorization)
13356 return false;
13357 SE = SE_;
13358 TTI = TTI_;
13359 TLI = TLI_;
13360 AA = AA_;
13361 LI = LI_;
13362 DT = DT_;
13363 AC = AC_;
13364 DB = DB_;
13365 DL = &F.getParent()->getDataLayout();
13367 Stores.clear();
13368 GEPs.clear();
13369 bool Changed = false;
13371 // If the target claims to have no vector registers don't attempt
13372 // vectorization.
13373 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
13374 LLVM_DEBUG(
13375 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
13376 return false;
13379 // Don't vectorize when the attribute NoImplicitFloat is used.
13380 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
13381 return false;
13383 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
13385 // Use the bottom up slp vectorizer to construct chains that start with
13386 // store instructions.
13387 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
13389 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
13390 // delete instructions.
13392 // Update DFS numbers now so that we can use them for ordering.
13393 DT->updateDFSNumbers();
13395 // Scan the blocks in the function in post order.
13396 for (auto *BB : post_order(&F.getEntryBlock())) {
13397 // Start new block - clear the list of reduction roots.
13398 R.clearReductionData();
13399 collectSeedInstructions(BB);
13401 // Vectorize trees that end at stores.
13402 if (!Stores.empty()) {
13403 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
13404 << " underlying objects.\n");
13405 Changed |= vectorizeStoreChains(R);
13408 // Vectorize trees that end at reductions.
13409 Changed |= vectorizeChainsInBlock(BB, R);
13411 // Vectorize the index computations of getelementptr instructions. This
13412 // is primarily intended to catch gather-like idioms ending at
13413 // non-consecutive loads.
13414 if (!GEPs.empty()) {
13415 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
13416 << " underlying objects.\n");
13417 Changed |= vectorizeGEPIndices(BB, R);
13421 if (Changed) {
13422 R.optimizeGatherSequence();
13423 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
13425 return Changed;
13428 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
13429 unsigned Idx, unsigned MinVF) {
13430 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
13431 << "\n");
13432 const unsigned Sz = R.getVectorElementSize(Chain[0]);
13433 unsigned VF = Chain.size();
13435 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
13436 return false;
13438 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
13439 << "\n");
13441 R.buildTree(Chain);
13442 if (R.isTreeTinyAndNotFullyVectorizable())
13443 return false;
13444 if (R.isLoadCombineCandidate())
13445 return false;
13446 R.reorderTopToBottom();
13447 R.reorderBottomToTop();
13448 R.buildExternalUses();
13450 R.computeMinimumValueSizes();
13452 InstructionCost Cost = R.getTreeCost();
13454 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n");
13455 if (Cost < -SLPCostThreshold) {
13456 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
13458 using namespace ore;
13460 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
13461 cast<StoreInst>(Chain[0]))
13462 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
13463 << " and with tree size "
13464 << NV("TreeSize", R.getTreeSize()));
13466 R.vectorizeTree();
13467 return true;
13470 return false;
13473 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
13474 BoUpSLP &R) {
13475 // We may run into multiple chains that merge into a single chain. We mark the
13476 // stores that we vectorized so that we don't visit the same store twice.
13477 BoUpSLP::ValueSet VectorizedStores;
13478 bool Changed = false;
13480 // Stores the pair of stores (first_store, last_store) in a range, that were
13481 // already tried to be vectorized. Allows to skip the store ranges that were
13482 // already tried to be vectorized but the attempts were unsuccessful.
13483 DenseSet<std::pair<Value *, Value *>> TriedSequences;
13484 struct StoreDistCompare {
13485 bool operator()(const std::pair<unsigned, int> &Op1,
13486 const std::pair<unsigned, int> &Op2) const {
13487 return Op1.second < Op2.second;
13490 // A set of pairs (index of store in Stores array ref, Distance of the store
13491 // address relative to base store address in units).
13492 using StoreIndexToDistSet =
13493 std::set<std::pair<unsigned, int>, StoreDistCompare>;
13494 auto TryToVectorize = [&](const StoreIndexToDistSet &Set) {
13495 int PrevDist = -1;
13496 BoUpSLP::ValueList Operands;
13497 // Collect the chain into a list.
13498 for (auto [Idx, Data] : enumerate(Set)) {
13499 if (Operands.empty() || Data.second - PrevDist == 1) {
13500 Operands.push_back(Stores[Data.first]);
13501 PrevDist = Data.second;
13502 if (Idx != Set.size() - 1)
13503 continue;
13505 if (Operands.size() <= 1) {
13506 Operands.clear();
13507 Operands.push_back(Stores[Data.first]);
13508 PrevDist = Data.second;
13509 continue;
13512 unsigned MaxVecRegSize = R.getMaxVecRegSize();
13513 unsigned EltSize = R.getVectorElementSize(Operands[0]);
13514 unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize);
13516 unsigned MaxVF =
13517 std::min(R.getMaximumVF(EltSize, Instruction::Store), MaxElts);
13518 auto *Store = cast<StoreInst>(Operands[0]);
13519 Type *StoreTy = Store->getValueOperand()->getType();
13520 Type *ValueTy = StoreTy;
13521 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
13522 ValueTy = Trunc->getSrcTy();
13523 unsigned MinVF = TTI->getStoreMinimumVF(
13524 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
13526 if (MaxVF <= MinVF) {
13527 LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF
13528 << ") <= "
13529 << "MinVF (" << MinVF << ")\n");
13532 // FIXME: Is division-by-2 the correct step? Should we assert that the
13533 // register size is a power-of-2?
13534 unsigned StartIdx = 0;
13535 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
13536 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
13537 ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size);
13538 assert(
13539 all_of(
13540 Slice,
13541 [&](Value *V) {
13542 return cast<StoreInst>(V)->getValueOperand()->getType() ==
13543 cast<StoreInst>(Slice.front())
13544 ->getValueOperand()
13545 ->getType();
13546 }) &&
13547 "Expected all operands of same type.");
13548 if (!VectorizedStores.count(Slice.front()) &&
13549 !VectorizedStores.count(Slice.back()) &&
13550 TriedSequences.insert(std::make_pair(Slice.front(), Slice.back()))
13551 .second &&
13552 vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
13553 // Mark the vectorized stores so that we don't vectorize them again.
13554 VectorizedStores.insert(Slice.begin(), Slice.end());
13555 Changed = true;
13556 // If we vectorized initial block, no need to try to vectorize it
13557 // again.
13558 if (Cnt == StartIdx)
13559 StartIdx += Size;
13560 Cnt += Size;
13561 continue;
13563 ++Cnt;
13565 // Check if the whole array was vectorized already - exit.
13566 if (StartIdx >= Operands.size())
13567 break;
13569 Operands.clear();
13570 Operands.push_back(Stores[Data.first]);
13571 PrevDist = Data.second;
13575 // Stores pair (first: index of the store into Stores array ref, address of
13576 // which taken as base, second: sorted set of pairs {index, dist}, which are
13577 // indices of stores in the set and their store location distances relative to
13578 // the base address).
13580 // Need to store the index of the very first store separately, since the set
13581 // may be reordered after the insertion and the first store may be moved. This
13582 // container allows to reduce number of calls of getPointersDiff() function.
13583 SmallVector<std::pair<unsigned, StoreIndexToDistSet>> SortedStores;
13584 // Inserts the specified store SI with the given index Idx to the set of the
13585 // stores. If the store with the same distance is found already - stop
13586 // insertion, try to vectorize already found stores. If some stores from this
13587 // sequence were not vectorized - try to vectorize them with the new store
13588 // later. But this logic is applied only to the stores, that come before the
13589 // previous store with the same distance.
13590 // Example:
13591 // 1. store x, %p
13592 // 2. store y, %p+1
13593 // 3. store z, %p+2
13594 // 4. store a, %p
13595 // 5. store b, %p+3
13596 // - Scan this from the last to first store. The very first bunch of stores is
13597 // {5, {{4, -3}, {2, -2}, {3, -1}, {5, 0}}} (the element in SortedStores
13598 // vector).
13599 // - The next store in the list - #1 - has the same distance from store #5 as
13600 // the store #4.
13601 // - Try to vectorize sequence of stores 4,2,3,5.
13602 // - If all these stores are vectorized - just drop them.
13603 // - If some of them are not vectorized (say, #3 and #5), do extra analysis.
13604 // - Start new stores sequence.
13605 // The new bunch of stores is {1, {1, 0}}.
13606 // - Add the stores from previous sequence, that were not vectorized.
13607 // Here we consider the stores in the reversed order, rather they are used in
13608 // the IR (Stores are reversed already, see vectorizeStoreChains() function).
13609 // Store #3 can be added -> comes after store #4 with the same distance as
13610 // store #1.
13611 // Store #5 cannot be added - comes before store #4.
13612 // This logic allows to improve the compile time, we assume that the stores
13613 // after previous store with the same distance most likely have memory
13614 // dependencies and no need to waste compile time to try to vectorize them.
13615 // - Try to vectorize the sequence {1, {1, 0}, {3, 2}}.
13616 auto FillStoresSet = [&](unsigned Idx, StoreInst *SI) {
13617 for (std::pair<unsigned, StoreIndexToDistSet> &Set : SortedStores) {
13618 std::optional<int> Diff = getPointersDiff(
13619 Stores[Set.first]->getValueOperand()->getType(),
13620 Stores[Set.first]->getPointerOperand(),
13621 SI->getValueOperand()->getType(), SI->getPointerOperand(), *DL, *SE,
13622 /*StrictCheck=*/true);
13623 if (!Diff)
13624 continue;
13625 auto It = Set.second.find(std::make_pair(Idx, *Diff));
13626 if (It == Set.second.end()) {
13627 Set.second.emplace(Idx, *Diff);
13628 return;
13630 // Try to vectorize the first found set to avoid duplicate analysis.
13631 TryToVectorize(Set.second);
13632 StoreIndexToDistSet PrevSet;
13633 PrevSet.swap(Set.second);
13634 Set.first = Idx;
13635 Set.second.emplace(Idx, 0);
13636 // Insert stores that followed previous match to try to vectorize them
13637 // with this store.
13638 unsigned StartIdx = It->first + 1;
13639 SmallBitVector UsedStores(Idx - StartIdx);
13640 // Distances to previously found dup store (or this store, since they
13641 // store to the same addresses).
13642 SmallVector<int> Dists(Idx - StartIdx, 0);
13643 for (const std::pair<unsigned, int> &Pair : reverse(PrevSet)) {
13644 // Do not try to vectorize sequences, we already tried.
13645 if (Pair.first <= It->first ||
13646 VectorizedStores.contains(Stores[Pair.first]))
13647 break;
13648 unsigned BI = Pair.first - StartIdx;
13649 UsedStores.set(BI);
13650 Dists[BI] = Pair.second - It->second;
13652 for (unsigned I = StartIdx; I < Idx; ++I) {
13653 unsigned BI = I - StartIdx;
13654 if (UsedStores.test(BI))
13655 Set.second.emplace(I, Dists[BI]);
13657 return;
13659 auto &Res = SortedStores.emplace_back();
13660 Res.first = Idx;
13661 Res.second.emplace(Idx, 0);
13663 StoreInst *PrevStore = Stores.front();
13664 for (auto [I, SI] : enumerate(Stores)) {
13665 // Check that we do not try to vectorize stores of different types.
13666 if (PrevStore->getValueOperand()->getType() !=
13667 SI->getValueOperand()->getType()) {
13668 for (auto &Set : SortedStores)
13669 TryToVectorize(Set.second);
13670 SortedStores.clear();
13671 PrevStore = SI;
13673 FillStoresSet(I, SI);
13676 // Final vectorization attempt.
13677 for (auto &Set : SortedStores)
13678 TryToVectorize(Set.second);
13680 return Changed;
13683 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
13684 // Initialize the collections. We will make a single pass over the block.
13685 Stores.clear();
13686 GEPs.clear();
13688 // Visit the store and getelementptr instructions in BB and organize them in
13689 // Stores and GEPs according to the underlying objects of their pointer
13690 // operands.
13691 for (Instruction &I : *BB) {
13692 // Ignore store instructions that are volatile or have a pointer operand
13693 // that doesn't point to a scalar type.
13694 if (auto *SI = dyn_cast<StoreInst>(&I)) {
13695 if (!SI->isSimple())
13696 continue;
13697 if (!isValidElementType(SI->getValueOperand()->getType()))
13698 continue;
13699 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
13702 // Ignore getelementptr instructions that have more than one index, a
13703 // constant index, or a pointer operand that doesn't point to a scalar
13704 // type.
13705 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
13706 if (GEP->getNumIndices() != 1)
13707 continue;
13708 Value *Idx = GEP->idx_begin()->get();
13709 if (isa<Constant>(Idx))
13710 continue;
13711 if (!isValidElementType(Idx->getType()))
13712 continue;
13713 if (GEP->getType()->isVectorTy())
13714 continue;
13715 GEPs[GEP->getPointerOperand()].push_back(GEP);
13720 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
13721 bool MaxVFOnly) {
13722 if (VL.size() < 2)
13723 return false;
13725 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
13726 << VL.size() << ".\n");
13728 // Check that all of the parts are instructions of the same type,
13729 // we permit an alternate opcode via InstructionsState.
13730 InstructionsState S = getSameOpcode(VL, *TLI);
13731 if (!S.getOpcode())
13732 return false;
13734 Instruction *I0 = cast<Instruction>(S.OpValue);
13735 // Make sure invalid types (including vector type) are rejected before
13736 // determining vectorization factor for scalar instructions.
13737 for (Value *V : VL) {
13738 Type *Ty = V->getType();
13739 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
13740 // NOTE: the following will give user internal llvm type name, which may
13741 // not be useful.
13742 R.getORE()->emit([&]() {
13743 std::string TypeStr;
13744 llvm::raw_string_ostream rso(TypeStr);
13745 Ty->print(rso);
13746 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
13747 << "Cannot SLP vectorize list: type "
13748 << rso.str() + " is unsupported by vectorizer";
13750 return false;
13754 unsigned Sz = R.getVectorElementSize(I0);
13755 unsigned MinVF = R.getMinVF(Sz);
13756 unsigned MaxVF = std::max<unsigned>(llvm::bit_floor(VL.size()), MinVF);
13757 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
13758 if (MaxVF < 2) {
13759 R.getORE()->emit([&]() {
13760 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
13761 << "Cannot SLP vectorize list: vectorization factor "
13762 << "less than 2 is not supported";
13764 return false;
13767 bool Changed = false;
13768 bool CandidateFound = false;
13769 InstructionCost MinCost = SLPCostThreshold.getValue();
13770 Type *ScalarTy = VL[0]->getType();
13771 if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
13772 ScalarTy = IE->getOperand(1)->getType();
13774 unsigned NextInst = 0, MaxInst = VL.size();
13775 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
13776 // No actual vectorization should happen, if number of parts is the same as
13777 // provided vectorization factor (i.e. the scalar type is used for vector
13778 // code during codegen).
13779 auto *VecTy = FixedVectorType::get(ScalarTy, VF);
13780 if (TTI->getNumberOfParts(VecTy) == VF)
13781 continue;
13782 for (unsigned I = NextInst; I < MaxInst; ++I) {
13783 unsigned ActualVF = std::min(MaxInst - I, VF);
13785 if (!isPowerOf2_32(ActualVF))
13786 continue;
13788 if (MaxVFOnly && ActualVF < MaxVF)
13789 break;
13790 if ((VF > MinVF && ActualVF <= VF / 2) || (VF == MinVF && ActualVF < 2))
13791 break;
13793 ArrayRef<Value *> Ops = VL.slice(I, ActualVF);
13794 // Check that a previous iteration of this loop did not delete the Value.
13795 if (llvm::any_of(Ops, [&R](Value *V) {
13796 auto *I = dyn_cast<Instruction>(V);
13797 return I && R.isDeleted(I);
13799 continue;
13801 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << ActualVF << " operations "
13802 << "\n");
13804 R.buildTree(Ops);
13805 if (R.isTreeTinyAndNotFullyVectorizable())
13806 continue;
13807 R.reorderTopToBottom();
13808 R.reorderBottomToTop(
13809 /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) &&
13810 !R.doesRootHaveInTreeUses());
13811 R.buildExternalUses();
13813 R.computeMinimumValueSizes();
13814 InstructionCost Cost = R.getTreeCost();
13815 CandidateFound = true;
13816 MinCost = std::min(MinCost, Cost);
13818 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
13819 << " for VF=" << ActualVF << "\n");
13820 if (Cost < -SLPCostThreshold) {
13821 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
13822 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
13823 cast<Instruction>(Ops[0]))
13824 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
13825 << " and with tree size "
13826 << ore::NV("TreeSize", R.getTreeSize()));
13828 R.vectorizeTree();
13829 // Move to the next bundle.
13830 I += VF - 1;
13831 NextInst = I + 1;
13832 Changed = true;
13837 if (!Changed && CandidateFound) {
13838 R.getORE()->emit([&]() {
13839 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
13840 << "List vectorization was possible but not beneficial with cost "
13841 << ore::NV("Cost", MinCost) << " >= "
13842 << ore::NV("Treshold", -SLPCostThreshold);
13844 } else if (!Changed) {
13845 R.getORE()->emit([&]() {
13846 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
13847 << "Cannot SLP vectorize list: vectorization was impossible"
13848 << " with available vectorization factors";
13851 return Changed;
13854 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
13855 if (!I)
13856 return false;
13858 if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType()))
13859 return false;
13861 Value *P = I->getParent();
13863 // Vectorize in current basic block only.
13864 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
13865 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
13866 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
13867 return false;
13869 // First collect all possible candidates
13870 SmallVector<std::pair<Value *, Value *>, 4> Candidates;
13871 Candidates.emplace_back(Op0, Op1);
13873 auto *A = dyn_cast<BinaryOperator>(Op0);
13874 auto *B = dyn_cast<BinaryOperator>(Op1);
13875 // Try to skip B.
13876 if (A && B && B->hasOneUse()) {
13877 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
13878 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
13879 if (B0 && B0->getParent() == P)
13880 Candidates.emplace_back(A, B0);
13881 if (B1 && B1->getParent() == P)
13882 Candidates.emplace_back(A, B1);
13884 // Try to skip A.
13885 if (B && A && A->hasOneUse()) {
13886 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
13887 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
13888 if (A0 && A0->getParent() == P)
13889 Candidates.emplace_back(A0, B);
13890 if (A1 && A1->getParent() == P)
13891 Candidates.emplace_back(A1, B);
13894 if (Candidates.size() == 1)
13895 return tryToVectorizeList({Op0, Op1}, R);
13897 // We have multiple options. Try to pick the single best.
13898 std::optional<int> BestCandidate = R.findBestRootPair(Candidates);
13899 if (!BestCandidate)
13900 return false;
13901 return tryToVectorizeList(
13902 {Candidates[*BestCandidate].first, Candidates[*BestCandidate].second}, R);
13905 namespace {
13907 /// Model horizontal reductions.
13909 /// A horizontal reduction is a tree of reduction instructions that has values
13910 /// that can be put into a vector as its leaves. For example:
13912 /// mul mul mul mul
13913 /// \ / \ /
13914 /// + +
13915 /// \ /
13916 /// +
13917 /// This tree has "mul" as its leaf values and "+" as its reduction
13918 /// instructions. A reduction can feed into a store or a binary operation
13919 /// feeding a phi.
13920 /// ...
13921 /// \ /
13922 /// +
13923 /// |
13924 /// phi +=
13926 /// Or:
13927 /// ...
13928 /// \ /
13929 /// +
13930 /// |
13931 /// *p =
13933 class HorizontalReduction {
13934 using ReductionOpsType = SmallVector<Value *, 16>;
13935 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
13936 ReductionOpsListType ReductionOps;
13937 /// List of possibly reduced values.
13938 SmallVector<SmallVector<Value *>> ReducedVals;
13939 /// Maps reduced value to the corresponding reduction operation.
13940 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
13941 // Use map vector to make stable output.
13942 MapVector<Instruction *, Value *> ExtraArgs;
13943 WeakTrackingVH ReductionRoot;
13944 /// The type of reduction operation.
13945 RecurKind RdxKind;
13946 /// Checks if the optimization of original scalar identity operations on
13947 /// matched horizontal reductions is enabled and allowed.
13948 bool IsSupportedHorRdxIdentityOp = false;
13950 static bool isCmpSelMinMax(Instruction *I) {
13951 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
13952 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
13955 // And/or are potentially poison-safe logical patterns like:
13956 // select x, y, false
13957 // select x, true, y
13958 static bool isBoolLogicOp(Instruction *I) {
13959 return isa<SelectInst>(I) &&
13960 (match(I, m_LogicalAnd()) || match(I, m_LogicalOr()));
13963 /// Checks if instruction is associative and can be vectorized.
13964 static bool isVectorizable(RecurKind Kind, Instruction *I) {
13965 if (Kind == RecurKind::None)
13966 return false;
13968 // Integer ops that map to select instructions or intrinsics are fine.
13969 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
13970 isBoolLogicOp(I))
13971 return true;
13973 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
13974 // FP min/max are associative except for NaN and -0.0. We do not
13975 // have to rule out -0.0 here because the intrinsic semantics do not
13976 // specify a fixed result for it.
13977 return I->getFastMathFlags().noNaNs();
13980 if (Kind == RecurKind::FMaximum || Kind == RecurKind::FMinimum)
13981 return true;
13983 return I->isAssociative();
13986 static Value *getRdxOperand(Instruction *I, unsigned Index) {
13987 // Poison-safe 'or' takes the form: select X, true, Y
13988 // To make that work with the normal operand processing, we skip the
13989 // true value operand.
13990 // TODO: Change the code and data structures to handle this without a hack.
13991 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
13992 return I->getOperand(2);
13993 return I->getOperand(Index);
13996 /// Creates reduction operation with the current opcode.
13997 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
13998 Value *RHS, const Twine &Name, bool UseSelect) {
13999 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
14000 bool IsConstant = isConstant(LHS) && isConstant(RHS);
14001 switch (Kind) {
14002 case RecurKind::Or:
14003 if (UseSelect &&
14004 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
14005 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
14006 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
14007 Name);
14008 case RecurKind::And:
14009 if (UseSelect &&
14010 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
14011 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
14012 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
14013 Name);
14014 case RecurKind::Add:
14015 case RecurKind::Mul:
14016 case RecurKind::Xor:
14017 case RecurKind::FAdd:
14018 case RecurKind::FMul:
14019 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
14020 Name);
14021 case RecurKind::FMax:
14022 if (IsConstant)
14023 return ConstantFP::get(LHS->getType(),
14024 maxnum(cast<ConstantFP>(LHS)->getValueAPF(),
14025 cast<ConstantFP>(RHS)->getValueAPF()));
14026 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
14027 case RecurKind::FMin:
14028 if (IsConstant)
14029 return ConstantFP::get(LHS->getType(),
14030 minnum(cast<ConstantFP>(LHS)->getValueAPF(),
14031 cast<ConstantFP>(RHS)->getValueAPF()));
14032 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
14033 case RecurKind::FMaximum:
14034 if (IsConstant)
14035 return ConstantFP::get(LHS->getType(),
14036 maximum(cast<ConstantFP>(LHS)->getValueAPF(),
14037 cast<ConstantFP>(RHS)->getValueAPF()));
14038 return Builder.CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS);
14039 case RecurKind::FMinimum:
14040 if (IsConstant)
14041 return ConstantFP::get(LHS->getType(),
14042 minimum(cast<ConstantFP>(LHS)->getValueAPF(),
14043 cast<ConstantFP>(RHS)->getValueAPF()));
14044 return Builder.CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS);
14045 case RecurKind::SMax:
14046 if (IsConstant || UseSelect) {
14047 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
14048 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14050 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
14051 case RecurKind::SMin:
14052 if (IsConstant || UseSelect) {
14053 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
14054 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14056 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
14057 case RecurKind::UMax:
14058 if (IsConstant || UseSelect) {
14059 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
14060 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14062 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
14063 case RecurKind::UMin:
14064 if (IsConstant || UseSelect) {
14065 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
14066 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
14068 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
14069 default:
14070 llvm_unreachable("Unknown reduction operation.");
14074 /// Creates reduction operation with the current opcode with the IR flags
14075 /// from \p ReductionOps, dropping nuw/nsw flags.
14076 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
14077 Value *RHS, const Twine &Name,
14078 const ReductionOpsListType &ReductionOps) {
14079 bool UseSelect =
14080 ReductionOps.size() == 2 ||
14081 // Logical or/and.
14082 (ReductionOps.size() == 1 && any_of(ReductionOps.front(), [](Value *V) {
14083 return isa<SelectInst>(V);
14084 }));
14085 assert((!UseSelect || ReductionOps.size() != 2 ||
14086 isa<SelectInst>(ReductionOps[1][0])) &&
14087 "Expected cmp + select pairs for reduction");
14088 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
14089 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
14090 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
14091 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
14092 /*IncludeWrapFlags=*/false);
14093 propagateIRFlags(Op, ReductionOps[1], nullptr,
14094 /*IncludeWrapFlags=*/false);
14095 return Op;
14098 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
14099 return Op;
14102 public:
14103 static RecurKind getRdxKind(Value *V) {
14104 auto *I = dyn_cast<Instruction>(V);
14105 if (!I)
14106 return RecurKind::None;
14107 if (match(I, m_Add(m_Value(), m_Value())))
14108 return RecurKind::Add;
14109 if (match(I, m_Mul(m_Value(), m_Value())))
14110 return RecurKind::Mul;
14111 if (match(I, m_And(m_Value(), m_Value())) ||
14112 match(I, m_LogicalAnd(m_Value(), m_Value())))
14113 return RecurKind::And;
14114 if (match(I, m_Or(m_Value(), m_Value())) ||
14115 match(I, m_LogicalOr(m_Value(), m_Value())))
14116 return RecurKind::Or;
14117 if (match(I, m_Xor(m_Value(), m_Value())))
14118 return RecurKind::Xor;
14119 if (match(I, m_FAdd(m_Value(), m_Value())))
14120 return RecurKind::FAdd;
14121 if (match(I, m_FMul(m_Value(), m_Value())))
14122 return RecurKind::FMul;
14124 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
14125 return RecurKind::FMax;
14126 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
14127 return RecurKind::FMin;
14129 if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
14130 return RecurKind::FMaximum;
14131 if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
14132 return RecurKind::FMinimum;
14133 // This matches either cmp+select or intrinsics. SLP is expected to handle
14134 // either form.
14135 // TODO: If we are canonicalizing to intrinsics, we can remove several
14136 // special-case paths that deal with selects.
14137 if (match(I, m_SMax(m_Value(), m_Value())))
14138 return RecurKind::SMax;
14139 if (match(I, m_SMin(m_Value(), m_Value())))
14140 return RecurKind::SMin;
14141 if (match(I, m_UMax(m_Value(), m_Value())))
14142 return RecurKind::UMax;
14143 if (match(I, m_UMin(m_Value(), m_Value())))
14144 return RecurKind::UMin;
14146 if (auto *Select = dyn_cast<SelectInst>(I)) {
14147 // Try harder: look for min/max pattern based on instructions producing
14148 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
14149 // During the intermediate stages of SLP, it's very common to have
14150 // pattern like this (since optimizeGatherSequence is run only once
14151 // at the end):
14152 // %1 = extractelement <2 x i32> %a, i32 0
14153 // %2 = extractelement <2 x i32> %a, i32 1
14154 // %cond = icmp sgt i32 %1, %2
14155 // %3 = extractelement <2 x i32> %a, i32 0
14156 // %4 = extractelement <2 x i32> %a, i32 1
14157 // %select = select i1 %cond, i32 %3, i32 %4
14158 CmpInst::Predicate Pred;
14159 Instruction *L1;
14160 Instruction *L2;
14162 Value *LHS = Select->getTrueValue();
14163 Value *RHS = Select->getFalseValue();
14164 Value *Cond = Select->getCondition();
14166 // TODO: Support inverse predicates.
14167 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
14168 if (!isa<ExtractElementInst>(RHS) ||
14169 !L2->isIdenticalTo(cast<Instruction>(RHS)))
14170 return RecurKind::None;
14171 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
14172 if (!isa<ExtractElementInst>(LHS) ||
14173 !L1->isIdenticalTo(cast<Instruction>(LHS)))
14174 return RecurKind::None;
14175 } else {
14176 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
14177 return RecurKind::None;
14178 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
14179 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
14180 !L2->isIdenticalTo(cast<Instruction>(RHS)))
14181 return RecurKind::None;
14184 switch (Pred) {
14185 default:
14186 return RecurKind::None;
14187 case CmpInst::ICMP_SGT:
14188 case CmpInst::ICMP_SGE:
14189 return RecurKind::SMax;
14190 case CmpInst::ICMP_SLT:
14191 case CmpInst::ICMP_SLE:
14192 return RecurKind::SMin;
14193 case CmpInst::ICMP_UGT:
14194 case CmpInst::ICMP_UGE:
14195 return RecurKind::UMax;
14196 case CmpInst::ICMP_ULT:
14197 case CmpInst::ICMP_ULE:
14198 return RecurKind::UMin;
14201 return RecurKind::None;
14204 /// Get the index of the first operand.
14205 static unsigned getFirstOperandIndex(Instruction *I) {
14206 return isCmpSelMinMax(I) ? 1 : 0;
14209 private:
14210 /// Total number of operands in the reduction operation.
14211 static unsigned getNumberOfOperands(Instruction *I) {
14212 return isCmpSelMinMax(I) ? 3 : 2;
14215 /// Checks if the instruction is in basic block \p BB.
14216 /// For a cmp+sel min/max reduction check that both ops are in \p BB.
14217 static bool hasSameParent(Instruction *I, BasicBlock *BB) {
14218 if (isCmpSelMinMax(I) || isBoolLogicOp(I)) {
14219 auto *Sel = cast<SelectInst>(I);
14220 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
14221 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
14223 return I->getParent() == BB;
14226 /// Expected number of uses for reduction operations/reduced values.
14227 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
14228 if (IsCmpSelMinMax) {
14229 // SelectInst must be used twice while the condition op must have single
14230 // use only.
14231 if (auto *Sel = dyn_cast<SelectInst>(I))
14232 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
14233 return I->hasNUses(2);
14236 // Arithmetic reduction operation must be used once only.
14237 return I->hasOneUse();
14240 /// Initializes the list of reduction operations.
14241 void initReductionOps(Instruction *I) {
14242 if (isCmpSelMinMax(I))
14243 ReductionOps.assign(2, ReductionOpsType());
14244 else
14245 ReductionOps.assign(1, ReductionOpsType());
14248 /// Add all reduction operations for the reduction instruction \p I.
14249 void addReductionOps(Instruction *I) {
14250 if (isCmpSelMinMax(I)) {
14251 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
14252 ReductionOps[1].emplace_back(I);
14253 } else {
14254 ReductionOps[0].emplace_back(I);
14258 static bool isGoodForReduction(ArrayRef<Value *> Data) {
14259 int Sz = Data.size();
14260 auto *I = dyn_cast<Instruction>(Data.front());
14261 return Sz > 1 || isConstant(Data.front()) ||
14262 (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode()));
14265 public:
14266 HorizontalReduction() = default;
14268 /// Try to find a reduction tree.
14269 bool matchAssociativeReduction(BoUpSLP &R, Instruction *Root,
14270 ScalarEvolution &SE, const DataLayout &DL,
14271 const TargetLibraryInfo &TLI) {
14272 RdxKind = HorizontalReduction::getRdxKind(Root);
14273 if (!isVectorizable(RdxKind, Root))
14274 return false;
14276 // Analyze "regular" integer/FP types for reductions - no target-specific
14277 // types or pointers.
14278 Type *Ty = Root->getType();
14279 if (!isValidElementType(Ty) || Ty->isPointerTy())
14280 return false;
14282 // Though the ultimate reduction may have multiple uses, its condition must
14283 // have only single use.
14284 if (auto *Sel = dyn_cast<SelectInst>(Root))
14285 if (!Sel->getCondition()->hasOneUse())
14286 return false;
14288 ReductionRoot = Root;
14290 // Iterate through all the operands of the possible reduction tree and
14291 // gather all the reduced values, sorting them by their value id.
14292 BasicBlock *BB = Root->getParent();
14293 bool IsCmpSelMinMax = isCmpSelMinMax(Root);
14294 SmallVector<Instruction *> Worklist(1, Root);
14295 // Checks if the operands of the \p TreeN instruction are also reduction
14296 // operations or should be treated as reduced values or an extra argument,
14297 // which is not part of the reduction.
14298 auto CheckOperands = [&](Instruction *TreeN,
14299 SmallVectorImpl<Value *> &ExtraArgs,
14300 SmallVectorImpl<Value *> &PossibleReducedVals,
14301 SmallVectorImpl<Instruction *> &ReductionOps) {
14302 for (int I = getFirstOperandIndex(TreeN),
14303 End = getNumberOfOperands(TreeN);
14304 I < End; ++I) {
14305 Value *EdgeVal = getRdxOperand(TreeN, I);
14306 ReducedValsToOps[EdgeVal].push_back(TreeN);
14307 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
14308 // Edge has wrong parent - mark as an extra argument.
14309 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
14310 !hasSameParent(EdgeInst, BB)) {
14311 ExtraArgs.push_back(EdgeVal);
14312 continue;
14314 // If the edge is not an instruction, or it is different from the main
14315 // reduction opcode or has too many uses - possible reduced value.
14316 // Also, do not try to reduce const values, if the operation is not
14317 // foldable.
14318 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
14319 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
14320 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
14321 !isVectorizable(RdxKind, EdgeInst) ||
14322 (R.isAnalyzedReductionRoot(EdgeInst) &&
14323 all_of(EdgeInst->operands(), Constant::classof))) {
14324 PossibleReducedVals.push_back(EdgeVal);
14325 continue;
14327 ReductionOps.push_back(EdgeInst);
14330 // Try to regroup reduced values so that it gets more profitable to try to
14331 // reduce them. Values are grouped by their value ids, instructions - by
14332 // instruction op id and/or alternate op id, plus do extra analysis for
14333 // loads (grouping them by the distabce between pointers) and cmp
14334 // instructions (grouping them by the predicate).
14335 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
14336 PossibleReducedVals;
14337 initReductionOps(Root);
14338 DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap;
14339 SmallSet<size_t, 2> LoadKeyUsed;
14340 SmallPtrSet<Value *, 4> DoNotReverseVals;
14342 auto GenerateLoadsSubkey = [&](size_t Key, LoadInst *LI) {
14343 Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
14344 if (LoadKeyUsed.contains(Key)) {
14345 auto LIt = LoadsMap.find(Ptr);
14346 if (LIt != LoadsMap.end()) {
14347 for (LoadInst *RLI : LIt->second) {
14348 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
14349 LI->getType(), LI->getPointerOperand(), DL, SE,
14350 /*StrictCheck=*/true))
14351 return hash_value(RLI->getPointerOperand());
14353 for (LoadInst *RLI : LIt->second) {
14354 if (arePointersCompatible(RLI->getPointerOperand(),
14355 LI->getPointerOperand(), TLI)) {
14356 hash_code SubKey = hash_value(RLI->getPointerOperand());
14357 DoNotReverseVals.insert(RLI);
14358 return SubKey;
14361 if (LIt->second.size() > 2) {
14362 hash_code SubKey =
14363 hash_value(LIt->second.back()->getPointerOperand());
14364 DoNotReverseVals.insert(LIt->second.back());
14365 return SubKey;
14369 LoadKeyUsed.insert(Key);
14370 LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
14371 return hash_value(LI->getPointerOperand());
14374 while (!Worklist.empty()) {
14375 Instruction *TreeN = Worklist.pop_back_val();
14376 SmallVector<Value *> Args;
14377 SmallVector<Value *> PossibleRedVals;
14378 SmallVector<Instruction *> PossibleReductionOps;
14379 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
14380 // If too many extra args - mark the instruction itself as a reduction
14381 // value, not a reduction operation.
14382 if (Args.size() < 2) {
14383 addReductionOps(TreeN);
14384 // Add extra args.
14385 if (!Args.empty()) {
14386 assert(Args.size() == 1 && "Expected only single argument.");
14387 ExtraArgs[TreeN] = Args.front();
14389 // Add reduction values. The values are sorted for better vectorization
14390 // results.
14391 for (Value *V : PossibleRedVals) {
14392 size_t Key, Idx;
14393 std::tie(Key, Idx) = generateKeySubkey(V, &TLI, GenerateLoadsSubkey,
14394 /*AllowAlternate=*/false);
14395 ++PossibleReducedVals[Key][Idx]
14396 .insert(std::make_pair(V, 0))
14397 .first->second;
14399 Worklist.append(PossibleReductionOps.rbegin(),
14400 PossibleReductionOps.rend());
14401 } else {
14402 size_t Key, Idx;
14403 std::tie(Key, Idx) = generateKeySubkey(TreeN, &TLI, GenerateLoadsSubkey,
14404 /*AllowAlternate=*/false);
14405 ++PossibleReducedVals[Key][Idx]
14406 .insert(std::make_pair(TreeN, 0))
14407 .first->second;
14410 auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
14411 // Sort values by the total number of values kinds to start the reduction
14412 // from the longest possible reduced values sequences.
14413 for (auto &PossibleReducedVals : PossibleReducedValsVect) {
14414 auto PossibleRedVals = PossibleReducedVals.second.takeVector();
14415 SmallVector<SmallVector<Value *>> PossibleRedValsVect;
14416 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
14417 It != E; ++It) {
14418 PossibleRedValsVect.emplace_back();
14419 auto RedValsVect = It->second.takeVector();
14420 stable_sort(RedValsVect, llvm::less_second());
14421 for (const std::pair<Value *, unsigned> &Data : RedValsVect)
14422 PossibleRedValsVect.back().append(Data.second, Data.first);
14424 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
14425 return P1.size() > P2.size();
14427 int NewIdx = -1;
14428 for (ArrayRef<Value *> Data : PossibleRedValsVect) {
14429 if (isGoodForReduction(Data) ||
14430 (isa<LoadInst>(Data.front()) && NewIdx >= 0 &&
14431 isa<LoadInst>(ReducedVals[NewIdx].front()) &&
14432 getUnderlyingObject(
14433 cast<LoadInst>(Data.front())->getPointerOperand()) ==
14434 getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front())
14435 ->getPointerOperand()))) {
14436 if (NewIdx < 0) {
14437 NewIdx = ReducedVals.size();
14438 ReducedVals.emplace_back();
14440 if (DoNotReverseVals.contains(Data.front()))
14441 ReducedVals[NewIdx].append(Data.begin(), Data.end());
14442 else
14443 ReducedVals[NewIdx].append(Data.rbegin(), Data.rend());
14444 } else {
14445 ReducedVals.emplace_back().append(Data.rbegin(), Data.rend());
14449 // Sort the reduced values by number of same/alternate opcode and/or pointer
14450 // operand.
14451 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
14452 return P1.size() > P2.size();
14454 return true;
14457 /// Attempt to vectorize the tree found by matchAssociativeReduction.
14458 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI,
14459 const TargetLibraryInfo &TLI) {
14460 constexpr int ReductionLimit = 4;
14461 constexpr unsigned RegMaxNumber = 4;
14462 constexpr unsigned RedValsMaxNumber = 128;
14463 // If there are a sufficient number of reduction values, reduce
14464 // to a nearby power-of-2. We can safely generate oversized
14465 // vectors and rely on the backend to split them to legal sizes.
14466 unsigned NumReducedVals =
14467 std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0,
14468 [](unsigned Num, ArrayRef<Value *> Vals) -> unsigned {
14469 if (!isGoodForReduction(Vals))
14470 return Num;
14471 return Num + Vals.size();
14473 if (NumReducedVals < ReductionLimit &&
14474 (!AllowHorRdxIdenityOptimization ||
14475 all_of(ReducedVals, [](ArrayRef<Value *> RedV) {
14476 return RedV.size() < 2 || !allConstant(RedV) || !isSplat(RedV);
14477 }))) {
14478 for (ReductionOpsType &RdxOps : ReductionOps)
14479 for (Value *RdxOp : RdxOps)
14480 V.analyzedReductionRoot(cast<Instruction>(RdxOp));
14481 return nullptr;
14484 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
14486 // Track the reduced values in case if they are replaced by extractelement
14487 // because of the vectorization.
14488 DenseMap<Value *, WeakTrackingVH> TrackedVals(
14489 ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size());
14490 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
14491 SmallVector<std::pair<Value *, Value *>> ReplacedExternals;
14492 ExternallyUsedValues.reserve(ExtraArgs.size() + 1);
14493 // The same extra argument may be used several times, so log each attempt
14494 // to use it.
14495 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
14496 assert(Pair.first && "DebugLoc must be set.");
14497 ExternallyUsedValues[Pair.second].push_back(Pair.first);
14498 TrackedVals.try_emplace(Pair.second, Pair.second);
14501 // The compare instruction of a min/max is the insertion point for new
14502 // instructions and may be replaced with a new compare instruction.
14503 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
14504 assert(isa<SelectInst>(RdxRootInst) &&
14505 "Expected min/max reduction to have select root instruction");
14506 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
14507 assert(isa<Instruction>(ScalarCond) &&
14508 "Expected min/max reduction to have compare condition");
14509 return cast<Instruction>(ScalarCond);
14512 // Return new VectorizedTree, based on previous value.
14513 auto GetNewVectorizedTree = [&](Value *VectorizedTree, Value *Res) {
14514 if (VectorizedTree) {
14515 // Update the final value in the reduction.
14516 Builder.SetCurrentDebugLocation(
14517 cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
14518 if ((isa<PoisonValue>(VectorizedTree) && !isa<PoisonValue>(Res)) ||
14519 (isGuaranteedNotToBePoison(Res) &&
14520 !isGuaranteedNotToBePoison(VectorizedTree))) {
14521 auto It = ReducedValsToOps.find(Res);
14522 if (It != ReducedValsToOps.end() &&
14523 any_of(It->getSecond(),
14524 [](Instruction *I) { return isBoolLogicOp(I); }))
14525 std::swap(VectorizedTree, Res);
14528 return createOp(Builder, RdxKind, VectorizedTree, Res, "op.rdx",
14529 ReductionOps);
14531 // Initialize the final value in the reduction.
14532 return Res;
14534 bool AnyBoolLogicOp =
14535 any_of(ReductionOps.back(), [](Value *V) {
14536 return isBoolLogicOp(cast<Instruction>(V));
14538 // The reduction root is used as the insertion point for new instructions,
14539 // so set it as externally used to prevent it from being deleted.
14540 ExternallyUsedValues[ReductionRoot];
14541 SmallDenseSet<Value *> IgnoreList(ReductionOps.size() *
14542 ReductionOps.front().size());
14543 for (ReductionOpsType &RdxOps : ReductionOps)
14544 for (Value *RdxOp : RdxOps) {
14545 if (!RdxOp)
14546 continue;
14547 IgnoreList.insert(RdxOp);
14549 // Intersect the fast-math-flags from all reduction operations.
14550 FastMathFlags RdxFMF;
14551 RdxFMF.set();
14552 for (Value *U : IgnoreList)
14553 if (auto *FPMO = dyn_cast<FPMathOperator>(U))
14554 RdxFMF &= FPMO->getFastMathFlags();
14555 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
14557 // Need to track reduced vals, they may be changed during vectorization of
14558 // subvectors.
14559 for (ArrayRef<Value *> Candidates : ReducedVals)
14560 for (Value *V : Candidates)
14561 TrackedVals.try_emplace(V, V);
14563 DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size());
14564 // List of the values that were reduced in other trees as part of gather
14565 // nodes and thus requiring extract if fully vectorized in other trees.
14566 SmallPtrSet<Value *, 4> RequiredExtract;
14567 Value *VectorizedTree = nullptr;
14568 bool CheckForReusedReductionOps = false;
14569 // Try to vectorize elements based on their type.
14570 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
14571 ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
14572 InstructionsState S = getSameOpcode(OrigReducedVals, TLI);
14573 SmallVector<Value *> Candidates;
14574 Candidates.reserve(2 * OrigReducedVals.size());
14575 DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size());
14576 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
14577 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
14578 // Check if the reduction value was not overriden by the extractelement
14579 // instruction because of the vectorization and exclude it, if it is not
14580 // compatible with other values.
14581 // Also check if the instruction was folded to constant/other value.
14582 auto *Inst = dyn_cast<Instruction>(RdxVal);
14583 if ((Inst && isVectorLikeInstWithConstOps(Inst) &&
14584 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) ||
14585 (S.getOpcode() && !Inst))
14586 continue;
14587 Candidates.push_back(RdxVal);
14588 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
14590 bool ShuffledExtracts = false;
14591 // Try to handle shuffled extractelements.
14592 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
14593 I + 1 < E) {
14594 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI);
14595 if (NextS.getOpcode() == Instruction::ExtractElement &&
14596 !NextS.isAltShuffle()) {
14597 SmallVector<Value *> CommonCandidates(Candidates);
14598 for (Value *RV : ReducedVals[I + 1]) {
14599 Value *RdxVal = TrackedVals.find(RV)->second;
14600 // Check if the reduction value was not overriden by the
14601 // extractelement instruction because of the vectorization and
14602 // exclude it, if it is not compatible with other values.
14603 if (auto *Inst = dyn_cast<Instruction>(RdxVal))
14604 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
14605 continue;
14606 CommonCandidates.push_back(RdxVal);
14607 TrackedToOrig.try_emplace(RdxVal, RV);
14609 SmallVector<int> Mask;
14610 if (isFixedVectorShuffle(CommonCandidates, Mask)) {
14611 ++I;
14612 Candidates.swap(CommonCandidates);
14613 ShuffledExtracts = true;
14618 // Emit code for constant values.
14619 if (AllowHorRdxIdenityOptimization && Candidates.size() > 1 &&
14620 allConstant(Candidates)) {
14621 Value *Res = Candidates.front();
14622 ++VectorizedVals.try_emplace(Candidates.front(), 0).first->getSecond();
14623 for (Value *VC : ArrayRef(Candidates).drop_front()) {
14624 Res = createOp(Builder, RdxKind, Res, VC, "const.rdx", ReductionOps);
14625 ++VectorizedVals.try_emplace(VC, 0).first->getSecond();
14626 if (auto *ResI = dyn_cast<Instruction>(Res))
14627 V.analyzedReductionRoot(ResI);
14629 VectorizedTree = GetNewVectorizedTree(VectorizedTree, Res);
14630 continue;
14633 unsigned NumReducedVals = Candidates.size();
14634 if (NumReducedVals < ReductionLimit &&
14635 (NumReducedVals < 2 || !AllowHorRdxIdenityOptimization ||
14636 !isSplat(Candidates)))
14637 continue;
14639 // Check if we support repeated scalar values processing (optimization of
14640 // original scalar identity operations on matched horizontal reductions).
14641 IsSupportedHorRdxIdentityOp =
14642 AllowHorRdxIdenityOptimization && RdxKind != RecurKind::Mul &&
14643 RdxKind != RecurKind::FMul && RdxKind != RecurKind::FMulAdd;
14644 // Gather same values.
14645 MapVector<Value *, unsigned> SameValuesCounter;
14646 if (IsSupportedHorRdxIdentityOp)
14647 for (Value *V : Candidates)
14648 ++SameValuesCounter.insert(std::make_pair(V, 0)).first->second;
14649 // Used to check if the reduced values used same number of times. In this
14650 // case the compiler may produce better code. E.g. if reduced values are
14651 // aabbccdd (8 x values), then the first node of the tree will have a node
14652 // for 4 x abcd + shuffle <4 x abcd>, <0, 0, 1, 1, 2, 2, 3, 3>.
14653 // Plus, the final reduction will be performed on <8 x aabbccdd>.
14654 // Instead compiler may build <4 x abcd> tree immediately, + reduction (4
14655 // x abcd) * 2.
14656 // Currently it only handles add/fadd/xor. and/or/min/max do not require
14657 // this analysis, other operations may require an extra estimation of
14658 // the profitability.
14659 bool SameScaleFactor = false;
14660 bool OptReusedScalars = IsSupportedHorRdxIdentityOp &&
14661 SameValuesCounter.size() != Candidates.size();
14662 if (OptReusedScalars) {
14663 SameScaleFactor =
14664 (RdxKind == RecurKind::Add || RdxKind == RecurKind::FAdd ||
14665 RdxKind == RecurKind::Xor) &&
14666 all_of(drop_begin(SameValuesCounter),
14667 [&SameValuesCounter](const std::pair<Value *, unsigned> &P) {
14668 return P.second == SameValuesCounter.front().second;
14670 Candidates.resize(SameValuesCounter.size());
14671 transform(SameValuesCounter, Candidates.begin(),
14672 [](const auto &P) { return P.first; });
14673 NumReducedVals = Candidates.size();
14674 // Have a reduction of the same element.
14675 if (NumReducedVals == 1) {
14676 Value *OrigV = TrackedToOrig.find(Candidates.front())->second;
14677 unsigned Cnt = SameValuesCounter.lookup(OrigV);
14678 Value *RedVal =
14679 emitScaleForReusedOps(Candidates.front(), Builder, Cnt);
14680 VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal);
14681 VectorizedVals.try_emplace(OrigV, Cnt);
14682 continue;
14686 unsigned MaxVecRegSize = V.getMaxVecRegSize();
14687 unsigned EltSize = V.getVectorElementSize(Candidates[0]);
14688 unsigned MaxElts =
14689 RegMaxNumber * llvm::bit_floor(MaxVecRegSize / EltSize);
14691 unsigned ReduxWidth = std::min<unsigned>(
14692 llvm::bit_floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
14693 unsigned Start = 0;
14694 unsigned Pos = Start;
14695 // Restarts vectorization attempt with lower vector factor.
14696 unsigned PrevReduxWidth = ReduxWidth;
14697 bool CheckForReusedReductionOpsLocal = false;
14698 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
14699 &CheckForReusedReductionOpsLocal,
14700 &PrevReduxWidth, &V,
14701 &IgnoreList](bool IgnoreVL = false) {
14702 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
14703 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
14704 // Check if any of the reduction ops are gathered. If so, worth
14705 // trying again with less number of reduction ops.
14706 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
14708 ++Pos;
14709 if (Pos < NumReducedVals - ReduxWidth + 1)
14710 return IsAnyRedOpGathered;
14711 Pos = Start;
14712 ReduxWidth /= 2;
14713 return IsAnyRedOpGathered;
14715 bool AnyVectorized = false;
14716 while (Pos < NumReducedVals - ReduxWidth + 1 &&
14717 ReduxWidth >= ReductionLimit) {
14718 // Dependency in tree of the reduction ops - drop this attempt, try
14719 // later.
14720 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
14721 Start == 0) {
14722 CheckForReusedReductionOps = true;
14723 break;
14725 PrevReduxWidth = ReduxWidth;
14726 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
14727 // Beeing analyzed already - skip.
14728 if (V.areAnalyzedReductionVals(VL)) {
14729 (void)AdjustReducedVals(/*IgnoreVL=*/true);
14730 continue;
14732 // Early exit if any of the reduction values were deleted during
14733 // previous vectorization attempts.
14734 if (any_of(VL, [&V](Value *RedVal) {
14735 auto *RedValI = dyn_cast<Instruction>(RedVal);
14736 if (!RedValI)
14737 return false;
14738 return V.isDeleted(RedValI);
14740 break;
14741 V.buildTree(VL, IgnoreList);
14742 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
14743 if (!AdjustReducedVals())
14744 V.analyzedReductionVals(VL);
14745 continue;
14747 if (V.isLoadCombineReductionCandidate(RdxKind)) {
14748 if (!AdjustReducedVals())
14749 V.analyzedReductionVals(VL);
14750 continue;
14752 V.reorderTopToBottom();
14753 // No need to reorder the root node at all.
14754 V.reorderBottomToTop(/*IgnoreReorder=*/true);
14755 // Keep extracted other reduction values, if they are used in the
14756 // vectorization trees.
14757 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
14758 ExternallyUsedValues);
14759 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
14760 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
14761 continue;
14762 for (Value *V : ReducedVals[Cnt])
14763 if (isa<Instruction>(V))
14764 LocalExternallyUsedValues[TrackedVals[V]];
14766 if (!IsSupportedHorRdxIdentityOp) {
14767 // Number of uses of the candidates in the vector of values.
14768 assert(SameValuesCounter.empty() &&
14769 "Reused values counter map is not empty");
14770 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) {
14771 if (Cnt >= Pos && Cnt < Pos + ReduxWidth)
14772 continue;
14773 Value *V = Candidates[Cnt];
14774 Value *OrigV = TrackedToOrig.find(V)->second;
14775 ++SameValuesCounter[OrigV];
14778 SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end());
14779 // Gather externally used values.
14780 SmallPtrSet<Value *, 4> Visited;
14781 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) {
14782 if (Cnt >= Pos && Cnt < Pos + ReduxWidth)
14783 continue;
14784 Value *RdxVal = Candidates[Cnt];
14785 if (!Visited.insert(RdxVal).second)
14786 continue;
14787 // Check if the scalar was vectorized as part of the vectorization
14788 // tree but not the top node.
14789 if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) {
14790 LocalExternallyUsedValues[RdxVal];
14791 continue;
14793 Value *OrigV = TrackedToOrig.find(RdxVal)->second;
14794 unsigned NumOps =
14795 VectorizedVals.lookup(RdxVal) + SameValuesCounter[OrigV];
14796 if (NumOps != ReducedValsToOps.find(OrigV)->second.size())
14797 LocalExternallyUsedValues[RdxVal];
14799 // Do not need the list of reused scalars in regular mode anymore.
14800 if (!IsSupportedHorRdxIdentityOp)
14801 SameValuesCounter.clear();
14802 for (Value *RdxVal : VL)
14803 if (RequiredExtract.contains(RdxVal))
14804 LocalExternallyUsedValues[RdxVal];
14805 // Update LocalExternallyUsedValues for the scalar, replaced by
14806 // extractelement instructions.
14807 DenseMap<Value *, Value *> ReplacementToExternal;
14808 for (const std::pair<Value *, Value *> &Pair : ReplacedExternals)
14809 ReplacementToExternal.try_emplace(Pair.second, Pair.first);
14810 for (const std::pair<Value *, Value *> &Pair : ReplacedExternals) {
14811 Value *Ext = Pair.first;
14812 auto RIt = ReplacementToExternal.find(Ext);
14813 while (RIt != ReplacementToExternal.end()) {
14814 Ext = RIt->second;
14815 RIt = ReplacementToExternal.find(Ext);
14817 auto *It = ExternallyUsedValues.find(Ext);
14818 if (It == ExternallyUsedValues.end())
14819 continue;
14820 LocalExternallyUsedValues[Pair.second].append(It->second);
14822 V.buildExternalUses(LocalExternallyUsedValues);
14824 V.computeMinimumValueSizes();
14826 // Estimate cost.
14827 InstructionCost TreeCost = V.getTreeCost(VL);
14828 InstructionCost ReductionCost =
14829 getReductionCost(TTI, VL, IsCmpSelMinMax, ReduxWidth, RdxFMF);
14830 InstructionCost Cost = TreeCost + ReductionCost;
14831 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
14832 << " for reduction\n");
14833 if (!Cost.isValid())
14834 return nullptr;
14835 if (Cost >= -SLPCostThreshold) {
14836 V.getORE()->emit([&]() {
14837 return OptimizationRemarkMissed(
14838 SV_NAME, "HorSLPNotBeneficial",
14839 ReducedValsToOps.find(VL[0])->second.front())
14840 << "Vectorizing horizontal reduction is possible "
14841 << "but not beneficial with cost " << ore::NV("Cost", Cost)
14842 << " and threshold "
14843 << ore::NV("Threshold", -SLPCostThreshold);
14845 if (!AdjustReducedVals())
14846 V.analyzedReductionVals(VL);
14847 continue;
14850 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
14851 << Cost << ". (HorRdx)\n");
14852 V.getORE()->emit([&]() {
14853 return OptimizationRemark(
14854 SV_NAME, "VectorizedHorizontalReduction",
14855 ReducedValsToOps.find(VL[0])->second.front())
14856 << "Vectorized horizontal reduction with cost "
14857 << ore::NV("Cost", Cost) << " and with tree size "
14858 << ore::NV("TreeSize", V.getTreeSize());
14861 Builder.setFastMathFlags(RdxFMF);
14863 // Emit a reduction. If the root is a select (min/max idiom), the insert
14864 // point is the compare condition of that select.
14865 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
14866 Instruction *InsertPt = RdxRootInst;
14867 if (IsCmpSelMinMax)
14868 InsertPt = GetCmpForMinMaxReduction(RdxRootInst);
14870 // Vectorize a tree.
14871 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues,
14872 ReplacedExternals, InsertPt);
14874 Builder.SetInsertPoint(InsertPt);
14876 // To prevent poison from leaking across what used to be sequential,
14877 // safe, scalar boolean logic operations, the reduction operand must be
14878 // frozen.
14879 if ((isBoolLogicOp(RdxRootInst) ||
14880 (AnyBoolLogicOp && VL.size() != TrackedVals.size())) &&
14881 !isGuaranteedNotToBePoison(VectorizedRoot))
14882 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
14884 // Emit code to correctly handle reused reduced values, if required.
14885 if (OptReusedScalars && !SameScaleFactor) {
14886 VectorizedRoot =
14887 emitReusedOps(VectorizedRoot, Builder, V.getRootNodeScalars(),
14888 SameValuesCounter, TrackedToOrig);
14891 Value *ReducedSubTree =
14892 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
14893 if (ReducedSubTree->getType() != VL.front()->getType()) {
14894 ReducedSubTree = Builder.CreateIntCast(
14895 ReducedSubTree, VL.front()->getType(), any_of(VL, [&](Value *R) {
14896 KnownBits Known = computeKnownBits(
14897 R, cast<Instruction>(ReductionOps.front().front())
14898 ->getModule()
14899 ->getDataLayout());
14900 return !Known.isNonNegative();
14901 }));
14904 // Improved analysis for add/fadd/xor reductions with same scale factor
14905 // for all operands of reductions. We can emit scalar ops for them
14906 // instead.
14907 if (OptReusedScalars && SameScaleFactor)
14908 ReducedSubTree = emitScaleForReusedOps(
14909 ReducedSubTree, Builder, SameValuesCounter.front().second);
14911 VectorizedTree = GetNewVectorizedTree(VectorizedTree, ReducedSubTree);
14912 // Count vectorized reduced values to exclude them from final reduction.
14913 for (Value *RdxVal : VL) {
14914 Value *OrigV = TrackedToOrig.find(RdxVal)->second;
14915 if (IsSupportedHorRdxIdentityOp) {
14916 VectorizedVals.try_emplace(OrigV, SameValuesCounter[RdxVal]);
14917 continue;
14919 ++VectorizedVals.try_emplace(OrigV, 0).first->getSecond();
14920 if (!V.isVectorized(RdxVal))
14921 RequiredExtract.insert(RdxVal);
14923 Pos += ReduxWidth;
14924 Start = Pos;
14925 ReduxWidth = llvm::bit_floor(NumReducedVals - Pos);
14926 AnyVectorized = true;
14928 if (OptReusedScalars && !AnyVectorized) {
14929 for (const std::pair<Value *, unsigned> &P : SameValuesCounter) {
14930 Value *RedVal = emitScaleForReusedOps(P.first, Builder, P.second);
14931 VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal);
14932 Value *OrigV = TrackedToOrig.find(P.first)->second;
14933 VectorizedVals.try_emplace(OrigV, P.second);
14935 continue;
14938 if (VectorizedTree) {
14939 // Reorder operands of bool logical op in the natural order to avoid
14940 // possible problem with poison propagation. If not possible to reorder
14941 // (both operands are originally RHS), emit an extra freeze instruction
14942 // for the LHS operand.
14943 // I.e., if we have original code like this:
14944 // RedOp1 = select i1 ?, i1 LHS, i1 false
14945 // RedOp2 = select i1 RHS, i1 ?, i1 false
14947 // Then, we swap LHS/RHS to create a new op that matches the poison
14948 // semantics of the original code.
14950 // If we have original code like this and both values could be poison:
14951 // RedOp1 = select i1 ?, i1 LHS, i1 false
14952 // RedOp2 = select i1 ?, i1 RHS, i1 false
14954 // Then, we must freeze LHS in the new op.
14955 auto FixBoolLogicalOps = [&, VectorizedTree](Value *&LHS, Value *&RHS,
14956 Instruction *RedOp1,
14957 Instruction *RedOp2,
14958 bool InitStep) {
14959 if (!AnyBoolLogicOp)
14960 return;
14961 if (isBoolLogicOp(RedOp1) &&
14962 ((!InitStep && LHS == VectorizedTree) ||
14963 getRdxOperand(RedOp1, 0) == LHS || isGuaranteedNotToBePoison(LHS)))
14964 return;
14965 if (isBoolLogicOp(RedOp2) && ((!InitStep && RHS == VectorizedTree) ||
14966 getRdxOperand(RedOp2, 0) == RHS ||
14967 isGuaranteedNotToBePoison(RHS))) {
14968 std::swap(LHS, RHS);
14969 return;
14971 if (LHS != VectorizedTree)
14972 LHS = Builder.CreateFreeze(LHS);
14974 // Finish the reduction.
14975 // Need to add extra arguments and not vectorized possible reduction
14976 // values.
14977 // Try to avoid dependencies between the scalar remainders after
14978 // reductions.
14979 auto FinalGen =
14980 [&](ArrayRef<std::pair<Instruction *, Value *>> InstVals,
14981 bool InitStep) {
14982 unsigned Sz = InstVals.size();
14983 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
14984 Sz % 2);
14985 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
14986 Instruction *RedOp = InstVals[I + 1].first;
14987 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
14988 Value *RdxVal1 = InstVals[I].second;
14989 Value *StableRdxVal1 = RdxVal1;
14990 auto It1 = TrackedVals.find(RdxVal1);
14991 if (It1 != TrackedVals.end())
14992 StableRdxVal1 = It1->second;
14993 Value *RdxVal2 = InstVals[I + 1].second;
14994 Value *StableRdxVal2 = RdxVal2;
14995 auto It2 = TrackedVals.find(RdxVal2);
14996 if (It2 != TrackedVals.end())
14997 StableRdxVal2 = It2->second;
14998 // To prevent poison from leaking across what used to be
14999 // sequential, safe, scalar boolean logic operations, the
15000 // reduction operand must be frozen.
15001 FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first,
15002 RedOp, InitStep);
15003 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
15004 StableRdxVal2, "op.rdx", ReductionOps);
15005 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
15007 if (Sz % 2 == 1)
15008 ExtraReds[Sz / 2] = InstVals.back();
15009 return ExtraReds;
15011 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
15012 ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot),
15013 VectorizedTree);
15014 SmallPtrSet<Value *, 8> Visited;
15015 for (ArrayRef<Value *> Candidates : ReducedVals) {
15016 for (Value *RdxVal : Candidates) {
15017 if (!Visited.insert(RdxVal).second)
15018 continue;
15019 unsigned NumOps = VectorizedVals.lookup(RdxVal);
15020 for (Instruction *RedOp :
15021 ArrayRef(ReducedValsToOps.find(RdxVal)->second)
15022 .drop_back(NumOps))
15023 ExtraReductions.emplace_back(RedOp, RdxVal);
15026 for (auto &Pair : ExternallyUsedValues) {
15027 // Add each externally used value to the final reduction.
15028 for (auto *I : Pair.second)
15029 ExtraReductions.emplace_back(I, Pair.first);
15031 // Iterate through all not-vectorized reduction values/extra arguments.
15032 bool InitStep = true;
15033 while (ExtraReductions.size() > 1) {
15034 VectorizedTree = ExtraReductions.front().second;
15035 SmallVector<std::pair<Instruction *, Value *>> NewReds =
15036 FinalGen(ExtraReductions, InitStep);
15037 ExtraReductions.swap(NewReds);
15038 InitStep = false;
15040 VectorizedTree = ExtraReductions.front().second;
15042 ReductionRoot->replaceAllUsesWith(VectorizedTree);
15044 // The original scalar reduction is expected to have no remaining
15045 // uses outside the reduction tree itself. Assert that we got this
15046 // correct, replace internal uses with undef, and mark for eventual
15047 // deletion.
15048 #ifndef NDEBUG
15049 SmallSet<Value *, 4> IgnoreSet;
15050 for (ArrayRef<Value *> RdxOps : ReductionOps)
15051 IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
15052 #endif
15053 for (ArrayRef<Value *> RdxOps : ReductionOps) {
15054 for (Value *Ignore : RdxOps) {
15055 if (!Ignore)
15056 continue;
15057 #ifndef NDEBUG
15058 for (auto *U : Ignore->users()) {
15059 assert(IgnoreSet.count(U) &&
15060 "All users must be either in the reduction ops list.");
15062 #endif
15063 if (!Ignore->use_empty()) {
15064 Value *Undef = UndefValue::get(Ignore->getType());
15065 Ignore->replaceAllUsesWith(Undef);
15067 V.eraseInstruction(cast<Instruction>(Ignore));
15070 } else if (!CheckForReusedReductionOps) {
15071 for (ReductionOpsType &RdxOps : ReductionOps)
15072 for (Value *RdxOp : RdxOps)
15073 V.analyzedReductionRoot(cast<Instruction>(RdxOp));
15075 return VectorizedTree;
15078 private:
15079 /// Calculate the cost of a reduction.
15080 InstructionCost getReductionCost(TargetTransformInfo *TTI,
15081 ArrayRef<Value *> ReducedVals,
15082 bool IsCmpSelMinMax, unsigned ReduxWidth,
15083 FastMathFlags FMF) {
15084 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
15085 Type *ScalarTy = ReducedVals.front()->getType();
15086 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
15087 InstructionCost VectorCost = 0, ScalarCost;
15088 // If all of the reduced values are constant, the vector cost is 0, since
15089 // the reduction value can be calculated at the compile time.
15090 bool AllConsts = allConstant(ReducedVals);
15091 auto EvaluateScalarCost = [&](function_ref<InstructionCost()> GenCostFn) {
15092 InstructionCost Cost = 0;
15093 // Scalar cost is repeated for N-1 elements.
15094 int Cnt = ReducedVals.size();
15095 for (Value *RdxVal : ReducedVals) {
15096 if (Cnt == 1)
15097 break;
15098 --Cnt;
15099 if (RdxVal->hasNUsesOrMore(IsCmpSelMinMax ? 3 : 2)) {
15100 Cost += GenCostFn();
15101 continue;
15103 InstructionCost ScalarCost = 0;
15104 for (User *U : RdxVal->users()) {
15105 auto *RdxOp = cast<Instruction>(U);
15106 if (hasRequiredNumberOfUses(IsCmpSelMinMax, RdxOp)) {
15107 ScalarCost += TTI->getInstructionCost(RdxOp, CostKind);
15108 continue;
15110 ScalarCost = InstructionCost::getInvalid();
15111 break;
15113 if (ScalarCost.isValid())
15114 Cost += ScalarCost;
15115 else
15116 Cost += GenCostFn();
15118 return Cost;
15120 switch (RdxKind) {
15121 case RecurKind::Add:
15122 case RecurKind::Mul:
15123 case RecurKind::Or:
15124 case RecurKind::And:
15125 case RecurKind::Xor:
15126 case RecurKind::FAdd:
15127 case RecurKind::FMul: {
15128 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
15129 if (!AllConsts)
15130 VectorCost =
15131 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
15132 ScalarCost = EvaluateScalarCost([&]() {
15133 return TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
15135 break;
15137 case RecurKind::FMax:
15138 case RecurKind::FMin:
15139 case RecurKind::FMaximum:
15140 case RecurKind::FMinimum:
15141 case RecurKind::SMax:
15142 case RecurKind::SMin:
15143 case RecurKind::UMax:
15144 case RecurKind::UMin: {
15145 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RdxKind);
15146 if (!AllConsts)
15147 VectorCost = TTI->getMinMaxReductionCost(Id, VectorTy, FMF, CostKind);
15148 ScalarCost = EvaluateScalarCost([&]() {
15149 IntrinsicCostAttributes ICA(Id, ScalarTy, {ScalarTy, ScalarTy}, FMF);
15150 return TTI->getIntrinsicInstrCost(ICA, CostKind);
15152 break;
15154 default:
15155 llvm_unreachable("Expected arithmetic or min/max reduction operation");
15158 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
15159 << " for reduction of " << shortBundleName(ReducedVals)
15160 << " (It is a splitting reduction)\n");
15161 return VectorCost - ScalarCost;
15164 /// Emit a horizontal reduction of the vectorized value.
15165 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
15166 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
15167 assert(VectorizedValue && "Need to have a vectorized tree node");
15168 assert(isPowerOf2_32(ReduxWidth) &&
15169 "We only handle power-of-two reductions for now");
15170 assert(RdxKind != RecurKind::FMulAdd &&
15171 "A call to the llvm.fmuladd intrinsic is not handled yet");
15173 ++NumVectorInstructions;
15174 return createSimpleTargetReduction(Builder, VectorizedValue, RdxKind);
15177 /// Emits optimized code for unique scalar value reused \p Cnt times.
15178 Value *emitScaleForReusedOps(Value *VectorizedValue, IRBuilderBase &Builder,
15179 unsigned Cnt) {
15180 assert(IsSupportedHorRdxIdentityOp &&
15181 "The optimization of matched scalar identity horizontal reductions "
15182 "must be supported.");
15183 switch (RdxKind) {
15184 case RecurKind::Add: {
15185 // res = mul vv, n
15186 Value *Scale = ConstantInt::get(VectorizedValue->getType(), Cnt);
15187 LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Cnt << "of "
15188 << VectorizedValue << ". (HorRdx)\n");
15189 return Builder.CreateMul(VectorizedValue, Scale);
15191 case RecurKind::Xor: {
15192 // res = n % 2 ? 0 : vv
15193 LLVM_DEBUG(dbgs() << "SLP: Xor " << Cnt << "of " << VectorizedValue
15194 << ". (HorRdx)\n");
15195 if (Cnt % 2 == 0)
15196 return Constant::getNullValue(VectorizedValue->getType());
15197 return VectorizedValue;
15199 case RecurKind::FAdd: {
15200 // res = fmul v, n
15201 Value *Scale = ConstantFP::get(VectorizedValue->getType(), Cnt);
15202 LLVM_DEBUG(dbgs() << "SLP: FAdd (to-fmul) " << Cnt << "of "
15203 << VectorizedValue << ". (HorRdx)\n");
15204 return Builder.CreateFMul(VectorizedValue, Scale);
15206 case RecurKind::And:
15207 case RecurKind::Or:
15208 case RecurKind::SMax:
15209 case RecurKind::SMin:
15210 case RecurKind::UMax:
15211 case RecurKind::UMin:
15212 case RecurKind::FMax:
15213 case RecurKind::FMin:
15214 case RecurKind::FMaximum:
15215 case RecurKind::FMinimum:
15216 // res = vv
15217 return VectorizedValue;
15218 case RecurKind::Mul:
15219 case RecurKind::FMul:
15220 case RecurKind::FMulAdd:
15221 case RecurKind::IAnyOf:
15222 case RecurKind::FAnyOf:
15223 case RecurKind::None:
15224 llvm_unreachable("Unexpected reduction kind for repeated scalar.");
15226 return nullptr;
15229 /// Emits actual operation for the scalar identity values, found during
15230 /// horizontal reduction analysis.
15231 Value *emitReusedOps(Value *VectorizedValue, IRBuilderBase &Builder,
15232 ArrayRef<Value *> VL,
15233 const MapVector<Value *, unsigned> &SameValuesCounter,
15234 const DenseMap<Value *, Value *> &TrackedToOrig) {
15235 assert(IsSupportedHorRdxIdentityOp &&
15236 "The optimization of matched scalar identity horizontal reductions "
15237 "must be supported.");
15238 auto *VTy = cast<FixedVectorType>(VectorizedValue->getType());
15239 if (VTy->getElementType() != VL.front()->getType()) {
15240 VectorizedValue = Builder.CreateIntCast(
15241 VectorizedValue,
15242 FixedVectorType::get(VL.front()->getType(), VTy->getNumElements()),
15243 any_of(VL, [&](Value *R) {
15244 KnownBits Known = computeKnownBits(
15245 R, cast<Instruction>(ReductionOps.front().front())
15246 ->getModule()
15247 ->getDataLayout());
15248 return !Known.isNonNegative();
15249 }));
15251 switch (RdxKind) {
15252 case RecurKind::Add: {
15253 // root = mul prev_root, <1, 1, n, 1>
15254 SmallVector<Constant *> Vals;
15255 for (Value *V : VL) {
15256 unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15257 Vals.push_back(ConstantInt::get(V->getType(), Cnt, /*IsSigned=*/false));
15259 auto *Scale = ConstantVector::get(Vals);
15260 LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Scale << "of "
15261 << VectorizedValue << ". (HorRdx)\n");
15262 return Builder.CreateMul(VectorizedValue, Scale);
15264 case RecurKind::And:
15265 case RecurKind::Or:
15266 // No need for multiple or/and(s).
15267 LLVM_DEBUG(dbgs() << "SLP: And/or of same " << VectorizedValue
15268 << ". (HorRdx)\n");
15269 return VectorizedValue;
15270 case RecurKind::SMax:
15271 case RecurKind::SMin:
15272 case RecurKind::UMax:
15273 case RecurKind::UMin:
15274 case RecurKind::FMax:
15275 case RecurKind::FMin:
15276 case RecurKind::FMaximum:
15277 case RecurKind::FMinimum:
15278 // No need for multiple min/max(s) of the same value.
15279 LLVM_DEBUG(dbgs() << "SLP: Max/min of same " << VectorizedValue
15280 << ". (HorRdx)\n");
15281 return VectorizedValue;
15282 case RecurKind::Xor: {
15283 // Replace values with even number of repeats with 0, since
15284 // x xor x = 0.
15285 // root = shuffle prev_root, zeroinitalizer, <0, 1, 2, vf, 4, vf, 5, 6,
15286 // 7>, if elements 4th and 6th elements have even number of repeats.
15287 SmallVector<int> Mask(
15288 cast<FixedVectorType>(VectorizedValue->getType())->getNumElements(),
15289 PoisonMaskElem);
15290 std::iota(Mask.begin(), Mask.end(), 0);
15291 bool NeedShuffle = false;
15292 for (unsigned I = 0, VF = VL.size(); I < VF; ++I) {
15293 Value *V = VL[I];
15294 unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15295 if (Cnt % 2 == 0) {
15296 Mask[I] = VF;
15297 NeedShuffle = true;
15300 LLVM_DEBUG(dbgs() << "SLP: Xor <"; for (int I
15301 : Mask) dbgs()
15302 << I << " ";
15303 dbgs() << "> of " << VectorizedValue << ". (HorRdx)\n");
15304 if (NeedShuffle)
15305 VectorizedValue = Builder.CreateShuffleVector(
15306 VectorizedValue,
15307 ConstantVector::getNullValue(VectorizedValue->getType()), Mask);
15308 return VectorizedValue;
15310 case RecurKind::FAdd: {
15311 // root = fmul prev_root, <1.0, 1.0, n.0, 1.0>
15312 SmallVector<Constant *> Vals;
15313 for (Value *V : VL) {
15314 unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.find(V)->second);
15315 Vals.push_back(ConstantFP::get(V->getType(), Cnt));
15317 auto *Scale = ConstantVector::get(Vals);
15318 return Builder.CreateFMul(VectorizedValue, Scale);
15320 case RecurKind::Mul:
15321 case RecurKind::FMul:
15322 case RecurKind::FMulAdd:
15323 case RecurKind::IAnyOf:
15324 case RecurKind::FAnyOf:
15325 case RecurKind::None:
15326 llvm_unreachable("Unexpected reduction kind for reused scalars.");
15328 return nullptr;
15331 } // end anonymous namespace
15333 static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) {
15334 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
15335 return cast<FixedVectorType>(IE->getType())->getNumElements();
15337 unsigned AggregateSize = 1;
15338 auto *IV = cast<InsertValueInst>(InsertInst);
15339 Type *CurrentType = IV->getType();
15340 do {
15341 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
15342 for (auto *Elt : ST->elements())
15343 if (Elt != ST->getElementType(0)) // check homogeneity
15344 return std::nullopt;
15345 AggregateSize *= ST->getNumElements();
15346 CurrentType = ST->getElementType(0);
15347 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
15348 AggregateSize *= AT->getNumElements();
15349 CurrentType = AT->getElementType();
15350 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
15351 AggregateSize *= VT->getNumElements();
15352 return AggregateSize;
15353 } else if (CurrentType->isSingleValueType()) {
15354 return AggregateSize;
15355 } else {
15356 return std::nullopt;
15358 } while (true);
15361 static void findBuildAggregate_rec(Instruction *LastInsertInst,
15362 TargetTransformInfo *TTI,
15363 SmallVectorImpl<Value *> &BuildVectorOpds,
15364 SmallVectorImpl<Value *> &InsertElts,
15365 unsigned OperandOffset) {
15366 do {
15367 Value *InsertedOperand = LastInsertInst->getOperand(1);
15368 std::optional<unsigned> OperandIndex =
15369 getInsertIndex(LastInsertInst, OperandOffset);
15370 if (!OperandIndex)
15371 return;
15372 if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) {
15373 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
15374 BuildVectorOpds, InsertElts, *OperandIndex);
15376 } else {
15377 BuildVectorOpds[*OperandIndex] = InsertedOperand;
15378 InsertElts[*OperandIndex] = LastInsertInst;
15380 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
15381 } while (LastInsertInst != nullptr &&
15382 isa<InsertValueInst, InsertElementInst>(LastInsertInst) &&
15383 LastInsertInst->hasOneUse());
15386 /// Recognize construction of vectors like
15387 /// %ra = insertelement <4 x float> poison, float %s0, i32 0
15388 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
15389 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
15390 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
15391 /// starting from the last insertelement or insertvalue instruction.
15393 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
15394 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
15395 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
15397 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
15399 /// \return true if it matches.
15400 static bool findBuildAggregate(Instruction *LastInsertInst,
15401 TargetTransformInfo *TTI,
15402 SmallVectorImpl<Value *> &BuildVectorOpds,
15403 SmallVectorImpl<Value *> &InsertElts) {
15405 assert((isa<InsertElementInst>(LastInsertInst) ||
15406 isa<InsertValueInst>(LastInsertInst)) &&
15407 "Expected insertelement or insertvalue instruction!");
15409 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
15410 "Expected empty result vectors!");
15412 std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
15413 if (!AggregateSize)
15414 return false;
15415 BuildVectorOpds.resize(*AggregateSize);
15416 InsertElts.resize(*AggregateSize);
15418 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
15419 llvm::erase(BuildVectorOpds, nullptr);
15420 llvm::erase(InsertElts, nullptr);
15421 if (BuildVectorOpds.size() >= 2)
15422 return true;
15424 return false;
15427 /// Try and get a reduction instruction from a phi node.
15429 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
15430 /// if they come from either \p ParentBB or a containing loop latch.
15432 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
15433 /// if not possible.
15434 static Instruction *getReductionInstr(const DominatorTree *DT, PHINode *P,
15435 BasicBlock *ParentBB, LoopInfo *LI) {
15436 // There are situations where the reduction value is not dominated by the
15437 // reduction phi. Vectorizing such cases has been reported to cause
15438 // miscompiles. See PR25787.
15439 auto DominatedReduxValue = [&](Value *R) {
15440 return isa<Instruction>(R) &&
15441 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
15444 Instruction *Rdx = nullptr;
15446 // Return the incoming value if it comes from the same BB as the phi node.
15447 if (P->getIncomingBlock(0) == ParentBB) {
15448 Rdx = dyn_cast<Instruction>(P->getIncomingValue(0));
15449 } else if (P->getIncomingBlock(1) == ParentBB) {
15450 Rdx = dyn_cast<Instruction>(P->getIncomingValue(1));
15453 if (Rdx && DominatedReduxValue(Rdx))
15454 return Rdx;
15456 // Otherwise, check whether we have a loop latch to look at.
15457 Loop *BBL = LI->getLoopFor(ParentBB);
15458 if (!BBL)
15459 return nullptr;
15460 BasicBlock *BBLatch = BBL->getLoopLatch();
15461 if (!BBLatch)
15462 return nullptr;
15464 // There is a loop latch, return the incoming value if it comes from
15465 // that. This reduction pattern occasionally turns up.
15466 if (P->getIncomingBlock(0) == BBLatch) {
15467 Rdx = dyn_cast<Instruction>(P->getIncomingValue(0));
15468 } else if (P->getIncomingBlock(1) == BBLatch) {
15469 Rdx = dyn_cast<Instruction>(P->getIncomingValue(1));
15472 if (Rdx && DominatedReduxValue(Rdx))
15473 return Rdx;
15475 return nullptr;
15478 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
15479 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
15480 return true;
15481 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
15482 return true;
15483 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
15484 return true;
15485 if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(V0), m_Value(V1))))
15486 return true;
15487 if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(V0), m_Value(V1))))
15488 return true;
15489 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
15490 return true;
15491 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
15492 return true;
15493 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
15494 return true;
15495 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
15496 return true;
15497 return false;
15500 /// We could have an initial reduction that is not an add.
15501 /// r *= v1 + v2 + v3 + v4
15502 /// In such a case start looking for a tree rooted in the first '+'.
15503 /// \Returns the new root if found, which may be nullptr if not an instruction.
15504 static Instruction *tryGetSecondaryReductionRoot(PHINode *Phi,
15505 Instruction *Root) {
15506 assert((isa<BinaryOperator>(Root) || isa<SelectInst>(Root) ||
15507 isa<IntrinsicInst>(Root)) &&
15508 "Expected binop, select, or intrinsic for reduction matching");
15509 Value *LHS =
15510 Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root));
15511 Value *RHS =
15512 Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root) + 1);
15513 if (LHS == Phi)
15514 return dyn_cast<Instruction>(RHS);
15515 if (RHS == Phi)
15516 return dyn_cast<Instruction>(LHS);
15517 return nullptr;
15520 /// \p Returns the first operand of \p I that does not match \p Phi. If
15521 /// operand is not an instruction it returns nullptr.
15522 static Instruction *getNonPhiOperand(Instruction *I, PHINode *Phi) {
15523 Value *Op0 = nullptr;
15524 Value *Op1 = nullptr;
15525 if (!matchRdxBop(I, Op0, Op1))
15526 return nullptr;
15527 return dyn_cast<Instruction>(Op0 == Phi ? Op1 : Op0);
15530 /// \Returns true if \p I is a candidate instruction for reduction vectorization.
15531 static bool isReductionCandidate(Instruction *I) {
15532 bool IsSelect = match(I, m_Select(m_Value(), m_Value(), m_Value()));
15533 Value *B0 = nullptr, *B1 = nullptr;
15534 bool IsBinop = matchRdxBop(I, B0, B1);
15535 return IsBinop || IsSelect;
15538 bool SLPVectorizerPass::vectorizeHorReduction(
15539 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI,
15540 SmallVectorImpl<WeakTrackingVH> &PostponedInsts) {
15541 if (!ShouldVectorizeHor)
15542 return false;
15543 bool TryOperandsAsNewSeeds = P && isa<BinaryOperator>(Root);
15545 if (Root->getParent() != BB || isa<PHINode>(Root))
15546 return false;
15548 // If we can find a secondary reduction root, use that instead.
15549 auto SelectRoot = [&]() {
15550 if (TryOperandsAsNewSeeds && isReductionCandidate(Root) &&
15551 HorizontalReduction::getRdxKind(Root) != RecurKind::None)
15552 if (Instruction *NewRoot = tryGetSecondaryReductionRoot(P, Root))
15553 return NewRoot;
15554 return Root;
15557 // Start analysis starting from Root instruction. If horizontal reduction is
15558 // found, try to vectorize it. If it is not a horizontal reduction or
15559 // vectorization is not possible or not effective, and currently analyzed
15560 // instruction is a binary operation, try to vectorize the operands, using
15561 // pre-order DFS traversal order. If the operands were not vectorized, repeat
15562 // the same procedure considering each operand as a possible root of the
15563 // horizontal reduction.
15564 // Interrupt the process if the Root instruction itself was vectorized or all
15565 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
15566 // If a horizintal reduction was not matched or vectorized we collect
15567 // instructions for possible later attempts for vectorization.
15568 std::queue<std::pair<Instruction *, unsigned>> Stack;
15569 Stack.emplace(SelectRoot(), 0);
15570 SmallPtrSet<Value *, 8> VisitedInstrs;
15571 bool Res = false;
15572 auto &&TryToReduce = [this, TTI, &R](Instruction *Inst) -> Value * {
15573 if (R.isAnalyzedReductionRoot(Inst))
15574 return nullptr;
15575 if (!isReductionCandidate(Inst))
15576 return nullptr;
15577 HorizontalReduction HorRdx;
15578 if (!HorRdx.matchAssociativeReduction(R, Inst, *SE, *DL, *TLI))
15579 return nullptr;
15580 return HorRdx.tryToReduce(R, TTI, *TLI);
15582 auto TryAppendToPostponedInsts = [&](Instruction *FutureSeed) {
15583 if (TryOperandsAsNewSeeds && FutureSeed == Root) {
15584 FutureSeed = getNonPhiOperand(Root, P);
15585 if (!FutureSeed)
15586 return false;
15588 // Do not collect CmpInst or InsertElementInst/InsertValueInst as their
15589 // analysis is done separately.
15590 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(FutureSeed))
15591 PostponedInsts.push_back(FutureSeed);
15592 return true;
15595 while (!Stack.empty()) {
15596 Instruction *Inst;
15597 unsigned Level;
15598 std::tie(Inst, Level) = Stack.front();
15599 Stack.pop();
15600 // Do not try to analyze instruction that has already been vectorized.
15601 // This may happen when we vectorize instruction operands on a previous
15602 // iteration while stack was populated before that happened.
15603 if (R.isDeleted(Inst))
15604 continue;
15605 if (Value *VectorizedV = TryToReduce(Inst)) {
15606 Res = true;
15607 if (auto *I = dyn_cast<Instruction>(VectorizedV)) {
15608 // Try to find another reduction.
15609 Stack.emplace(I, Level);
15610 continue;
15612 } else {
15613 // We could not vectorize `Inst` so try to use it as a future seed.
15614 if (!TryAppendToPostponedInsts(Inst)) {
15615 assert(Stack.empty() && "Expected empty stack");
15616 break;
15620 // Try to vectorize operands.
15621 // Continue analysis for the instruction from the same basic block only to
15622 // save compile time.
15623 if (++Level < RecursionMaxDepth)
15624 for (auto *Op : Inst->operand_values())
15625 if (VisitedInstrs.insert(Op).second)
15626 if (auto *I = dyn_cast<Instruction>(Op))
15627 // Do not try to vectorize CmpInst operands, this is done
15628 // separately.
15629 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
15630 !R.isDeleted(I) && I->getParent() == BB)
15631 Stack.emplace(I, Level);
15633 return Res;
15636 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Instruction *Root,
15637 BasicBlock *BB, BoUpSLP &R,
15638 TargetTransformInfo *TTI) {
15639 SmallVector<WeakTrackingVH> PostponedInsts;
15640 bool Res = vectorizeHorReduction(P, Root, BB, R, TTI, PostponedInsts);
15641 Res |= tryToVectorize(PostponedInsts, R);
15642 return Res;
15645 bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts,
15646 BoUpSLP &R) {
15647 bool Res = false;
15648 for (Value *V : Insts)
15649 if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst))
15650 Res |= tryToVectorize(Inst, R);
15651 return Res;
15654 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
15655 BasicBlock *BB, BoUpSLP &R) {
15656 if (!R.canMapToVector(IVI->getType()))
15657 return false;
15659 SmallVector<Value *, 16> BuildVectorOpds;
15660 SmallVector<Value *, 16> BuildVectorInsts;
15661 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
15662 return false;
15664 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
15665 // Aggregate value is unlikely to be processed in vector register.
15666 return tryToVectorizeList(BuildVectorOpds, R);
15669 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
15670 BasicBlock *BB, BoUpSLP &R) {
15671 SmallVector<Value *, 16> BuildVectorInsts;
15672 SmallVector<Value *, 16> BuildVectorOpds;
15673 SmallVector<int> Mask;
15674 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
15675 (llvm::all_of(
15676 BuildVectorOpds,
15677 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
15678 isFixedVectorShuffle(BuildVectorOpds, Mask)))
15679 return false;
15681 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
15682 return tryToVectorizeList(BuildVectorInsts, R);
15685 template <typename T>
15686 static bool tryToVectorizeSequence(
15687 SmallVectorImpl<T *> &Incoming, function_ref<bool(T *, T *)> Comparator,
15688 function_ref<bool(T *, T *)> AreCompatible,
15689 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
15690 bool MaxVFOnly, BoUpSLP &R) {
15691 bool Changed = false;
15692 // Sort by type, parent, operands.
15693 stable_sort(Incoming, Comparator);
15695 // Try to vectorize elements base on their type.
15696 SmallVector<T *> Candidates;
15697 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
15698 // Look for the next elements with the same type, parent and operand
15699 // kinds.
15700 auto *SameTypeIt = IncIt;
15701 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
15702 ++SameTypeIt;
15704 // Try to vectorize them.
15705 unsigned NumElts = (SameTypeIt - IncIt);
15706 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
15707 << NumElts << ")\n");
15708 // The vectorization is a 3-state attempt:
15709 // 1. Try to vectorize instructions with the same/alternate opcodes with the
15710 // size of maximal register at first.
15711 // 2. Try to vectorize remaining instructions with the same type, if
15712 // possible. This may result in the better vectorization results rather than
15713 // if we try just to vectorize instructions with the same/alternate opcodes.
15714 // 3. Final attempt to try to vectorize all instructions with the
15715 // same/alternate ops only, this may result in some extra final
15716 // vectorization.
15717 if (NumElts > 1 &&
15718 TryToVectorizeHelper(ArrayRef(IncIt, NumElts), MaxVFOnly)) {
15719 // Success start over because instructions might have been changed.
15720 Changed = true;
15721 } else {
15722 /// \Returns the minimum number of elements that we will attempt to
15723 /// vectorize.
15724 auto GetMinNumElements = [&R](Value *V) {
15725 unsigned EltSize = R.getVectorElementSize(V);
15726 return std::max(2U, R.getMaxVecRegSize() / EltSize);
15728 if (NumElts < GetMinNumElements(*IncIt) &&
15729 (Candidates.empty() ||
15730 Candidates.front()->getType() == (*IncIt)->getType())) {
15731 Candidates.append(IncIt, std::next(IncIt, NumElts));
15734 // Final attempt to vectorize instructions with the same types.
15735 if (Candidates.size() > 1 &&
15736 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
15737 if (TryToVectorizeHelper(Candidates, /*MaxVFOnly=*/false)) {
15738 // Success start over because instructions might have been changed.
15739 Changed = true;
15740 } else if (MaxVFOnly) {
15741 // Try to vectorize using small vectors.
15742 for (auto *It = Candidates.begin(), *End = Candidates.end();
15743 It != End;) {
15744 auto *SameTypeIt = It;
15745 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
15746 ++SameTypeIt;
15747 unsigned NumElts = (SameTypeIt - It);
15748 if (NumElts > 1 && TryToVectorizeHelper(ArrayRef(It, NumElts),
15749 /*MaxVFOnly=*/false))
15750 Changed = true;
15751 It = SameTypeIt;
15754 Candidates.clear();
15757 // Start over at the next instruction of a different type (or the end).
15758 IncIt = SameTypeIt;
15760 return Changed;
15763 /// Compare two cmp instructions. If IsCompatibility is true, function returns
15764 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
15765 /// operands. If IsCompatibility is false, function implements strict weak
15766 /// ordering relation between two cmp instructions, returning true if the first
15767 /// instruction is "less" than the second, i.e. its predicate is less than the
15768 /// predicate of the second or the operands IDs are less than the operands IDs
15769 /// of the second cmp instruction.
15770 template <bool IsCompatibility>
15771 static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI,
15772 const DominatorTree &DT) {
15773 assert(isValidElementType(V->getType()) &&
15774 isValidElementType(V2->getType()) &&
15775 "Expected valid element types only.");
15776 if (V == V2)
15777 return IsCompatibility;
15778 auto *CI1 = cast<CmpInst>(V);
15779 auto *CI2 = cast<CmpInst>(V2);
15780 if (CI1->getOperand(0)->getType()->getTypeID() <
15781 CI2->getOperand(0)->getType()->getTypeID())
15782 return !IsCompatibility;
15783 if (CI1->getOperand(0)->getType()->getTypeID() >
15784 CI2->getOperand(0)->getType()->getTypeID())
15785 return false;
15786 CmpInst::Predicate Pred1 = CI1->getPredicate();
15787 CmpInst::Predicate Pred2 = CI2->getPredicate();
15788 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
15789 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
15790 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
15791 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
15792 if (BasePred1 < BasePred2)
15793 return !IsCompatibility;
15794 if (BasePred1 > BasePred2)
15795 return false;
15796 // Compare operands.
15797 bool CI1Preds = Pred1 == BasePred1;
15798 bool CI2Preds = Pred2 == BasePred1;
15799 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
15800 auto *Op1 = CI1->getOperand(CI1Preds ? I : E - I - 1);
15801 auto *Op2 = CI2->getOperand(CI2Preds ? I : E - I - 1);
15802 if (Op1 == Op2)
15803 continue;
15804 if (Op1->getValueID() < Op2->getValueID())
15805 return !IsCompatibility;
15806 if (Op1->getValueID() > Op2->getValueID())
15807 return false;
15808 if (auto *I1 = dyn_cast<Instruction>(Op1))
15809 if (auto *I2 = dyn_cast<Instruction>(Op2)) {
15810 if (IsCompatibility) {
15811 if (I1->getParent() != I2->getParent())
15812 return false;
15813 } else {
15814 // Try to compare nodes with same parent.
15815 DomTreeNodeBase<BasicBlock> *NodeI1 = DT.getNode(I1->getParent());
15816 DomTreeNodeBase<BasicBlock> *NodeI2 = DT.getNode(I2->getParent());
15817 if (!NodeI1)
15818 return NodeI2 != nullptr;
15819 if (!NodeI2)
15820 return false;
15821 assert((NodeI1 == NodeI2) ==
15822 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
15823 "Different nodes should have different DFS numbers");
15824 if (NodeI1 != NodeI2)
15825 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
15827 InstructionsState S = getSameOpcode({I1, I2}, TLI);
15828 if (S.getOpcode() && (IsCompatibility || !S.isAltShuffle()))
15829 continue;
15830 if (IsCompatibility)
15831 return false;
15832 if (I1->getOpcode() != I2->getOpcode())
15833 return I1->getOpcode() < I2->getOpcode();
15836 return IsCompatibility;
15839 template <typename ItT>
15840 bool SLPVectorizerPass::vectorizeCmpInsts(iterator_range<ItT> CmpInsts,
15841 BasicBlock *BB, BoUpSLP &R) {
15842 bool Changed = false;
15843 // Try to find reductions first.
15844 for (CmpInst *I : CmpInsts) {
15845 if (R.isDeleted(I))
15846 continue;
15847 for (Value *Op : I->operands())
15848 if (auto *RootOp = dyn_cast<Instruction>(Op))
15849 Changed |= vectorizeRootInstruction(nullptr, RootOp, BB, R, TTI);
15851 // Try to vectorize operands as vector bundles.
15852 for (CmpInst *I : CmpInsts) {
15853 if (R.isDeleted(I))
15854 continue;
15855 Changed |= tryToVectorize(I, R);
15857 // Try to vectorize list of compares.
15858 // Sort by type, compare predicate, etc.
15859 auto CompareSorter = [&](Value *V, Value *V2) {
15860 if (V == V2)
15861 return false;
15862 return compareCmp<false>(V, V2, *TLI, *DT);
15865 auto AreCompatibleCompares = [&](Value *V1, Value *V2) {
15866 if (V1 == V2)
15867 return true;
15868 return compareCmp<true>(V1, V2, *TLI, *DT);
15871 SmallVector<Value *> Vals;
15872 for (Instruction *V : CmpInsts)
15873 if (!R.isDeleted(V) && isValidElementType(V->getType()))
15874 Vals.push_back(V);
15875 if (Vals.size() <= 1)
15876 return Changed;
15877 Changed |= tryToVectorizeSequence<Value>(
15878 Vals, CompareSorter, AreCompatibleCompares,
15879 [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) {
15880 // Exclude possible reductions from other blocks.
15881 bool ArePossiblyReducedInOtherBlock = any_of(Candidates, [](Value *V) {
15882 return any_of(V->users(), [V](User *U) {
15883 auto *Select = dyn_cast<SelectInst>(U);
15884 return Select &&
15885 Select->getParent() != cast<Instruction>(V)->getParent();
15888 if (ArePossiblyReducedInOtherBlock)
15889 return false;
15890 return tryToVectorizeList(Candidates, R, MaxVFOnly);
15892 /*MaxVFOnly=*/true, R);
15893 return Changed;
15896 bool SLPVectorizerPass::vectorizeInserts(InstSetVector &Instructions,
15897 BasicBlock *BB, BoUpSLP &R) {
15898 assert(all_of(Instructions,
15899 [](auto *I) {
15900 return isa<InsertElementInst, InsertValueInst>(I);
15901 }) &&
15902 "This function only accepts Insert instructions");
15903 bool OpsChanged = false;
15904 SmallVector<WeakTrackingVH> PostponedInsts;
15905 // pass1 - try to vectorize reductions only
15906 for (auto *I : reverse(Instructions)) {
15907 if (R.isDeleted(I))
15908 continue;
15909 OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts);
15911 // pass2 - try to match and vectorize a buildvector sequence.
15912 for (auto *I : reverse(Instructions)) {
15913 if (R.isDeleted(I) || isa<CmpInst>(I))
15914 continue;
15915 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
15916 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
15917 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
15918 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
15921 // Now try to vectorize postponed instructions.
15922 OpsChanged |= tryToVectorize(PostponedInsts, R);
15924 Instructions.clear();
15925 return OpsChanged;
15928 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
15929 bool Changed = false;
15930 SmallVector<Value *, 4> Incoming;
15931 SmallPtrSet<Value *, 16> VisitedInstrs;
15932 // Maps phi nodes to the non-phi nodes found in the use tree for each phi
15933 // node. Allows better to identify the chains that can be vectorized in the
15934 // better way.
15935 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
15936 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
15937 assert(isValidElementType(V1->getType()) &&
15938 isValidElementType(V2->getType()) &&
15939 "Expected vectorizable types only.");
15940 // It is fine to compare type IDs here, since we expect only vectorizable
15941 // types, like ints, floats and pointers, we don't care about other type.
15942 if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
15943 return true;
15944 if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
15945 return false;
15946 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
15947 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
15948 if (Opcodes1.size() < Opcodes2.size())
15949 return true;
15950 if (Opcodes1.size() > Opcodes2.size())
15951 return false;
15952 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
15953 // Undefs are compatible with any other value.
15954 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
15955 if (isa<Instruction>(Opcodes1[I]))
15956 return true;
15957 if (isa<Instruction>(Opcodes2[I]))
15958 return false;
15959 if (isa<Constant>(Opcodes1[I]) && !isa<UndefValue>(Opcodes1[I]))
15960 return true;
15961 if (isa<Constant>(Opcodes2[I]) && !isa<UndefValue>(Opcodes2[I]))
15962 return false;
15963 if (isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]))
15964 continue;
15965 return isa<UndefValue>(Opcodes2[I]);
15967 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
15968 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
15969 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
15970 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
15971 if (!NodeI1)
15972 return NodeI2 != nullptr;
15973 if (!NodeI2)
15974 return false;
15975 assert((NodeI1 == NodeI2) ==
15976 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
15977 "Different nodes should have different DFS numbers");
15978 if (NodeI1 != NodeI2)
15979 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
15980 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
15981 if (S.getOpcode() && !S.isAltShuffle())
15982 continue;
15983 return I1->getOpcode() < I2->getOpcode();
15985 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
15986 return Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
15987 if (isa<Instruction>(Opcodes1[I]))
15988 return true;
15989 if (isa<Instruction>(Opcodes2[I]))
15990 return false;
15991 if (isa<Constant>(Opcodes1[I]))
15992 return true;
15993 if (isa<Constant>(Opcodes2[I]))
15994 return false;
15995 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
15996 return true;
15997 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
15998 return false;
16000 return false;
16002 auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) {
16003 if (V1 == V2)
16004 return true;
16005 if (V1->getType() != V2->getType())
16006 return false;
16007 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
16008 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
16009 if (Opcodes1.size() != Opcodes2.size())
16010 return false;
16011 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
16012 // Undefs are compatible with any other value.
16013 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
16014 continue;
16015 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
16016 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
16017 if (I1->getParent() != I2->getParent())
16018 return false;
16019 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
16020 if (S.getOpcode())
16021 continue;
16022 return false;
16024 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
16025 continue;
16026 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
16027 return false;
16029 return true;
16032 bool HaveVectorizedPhiNodes = false;
16033 do {
16034 // Collect the incoming values from the PHIs.
16035 Incoming.clear();
16036 for (Instruction &I : *BB) {
16037 PHINode *P = dyn_cast<PHINode>(&I);
16038 if (!P)
16039 break;
16041 // No need to analyze deleted, vectorized and non-vectorizable
16042 // instructions.
16043 if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
16044 isValidElementType(P->getType()))
16045 Incoming.push_back(P);
16048 if (Incoming.size() <= 1)
16049 break;
16051 // Find the corresponding non-phi nodes for better matching when trying to
16052 // build the tree.
16053 for (Value *V : Incoming) {
16054 SmallVectorImpl<Value *> &Opcodes =
16055 PHIToOpcodes.try_emplace(V).first->getSecond();
16056 if (!Opcodes.empty())
16057 continue;
16058 SmallVector<Value *, 4> Nodes(1, V);
16059 SmallPtrSet<Value *, 4> Visited;
16060 while (!Nodes.empty()) {
16061 auto *PHI = cast<PHINode>(Nodes.pop_back_val());
16062 if (!Visited.insert(PHI).second)
16063 continue;
16064 for (Value *V : PHI->incoming_values()) {
16065 if (auto *PHI1 = dyn_cast<PHINode>((V))) {
16066 Nodes.push_back(PHI1);
16067 continue;
16069 Opcodes.emplace_back(V);
16074 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
16075 Incoming, PHICompare, AreCompatiblePHIs,
16076 [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) {
16077 return tryToVectorizeList(Candidates, R, MaxVFOnly);
16079 /*MaxVFOnly=*/true, R);
16080 Changed |= HaveVectorizedPhiNodes;
16081 VisitedInstrs.insert(Incoming.begin(), Incoming.end());
16082 } while (HaveVectorizedPhiNodes);
16084 VisitedInstrs.clear();
16086 InstSetVector PostProcessInserts;
16087 SmallSetVector<CmpInst *, 8> PostProcessCmps;
16088 // Vectorizes Inserts in `PostProcessInserts` and if `VecctorizeCmps` is true
16089 // also vectorizes `PostProcessCmps`.
16090 auto VectorizeInsertsAndCmps = [&](bool VectorizeCmps) {
16091 bool Changed = vectorizeInserts(PostProcessInserts, BB, R);
16092 if (VectorizeCmps) {
16093 Changed |= vectorizeCmpInsts(reverse(PostProcessCmps), BB, R);
16094 PostProcessCmps.clear();
16096 PostProcessInserts.clear();
16097 return Changed;
16099 // Returns true if `I` is in `PostProcessInserts` or `PostProcessCmps`.
16100 auto IsInPostProcessInstrs = [&](Instruction *I) {
16101 if (auto *Cmp = dyn_cast<CmpInst>(I))
16102 return PostProcessCmps.contains(Cmp);
16103 return isa<InsertElementInst, InsertValueInst>(I) &&
16104 PostProcessInserts.contains(I);
16106 // Returns true if `I` is an instruction without users, like terminator, or
16107 // function call with ignored return value, store. Ignore unused instructions
16108 // (basing on instruction type, except for CallInst and InvokeInst).
16109 auto HasNoUsers = [](Instruction *I) {
16110 return I->use_empty() &&
16111 (I->getType()->isVoidTy() || isa<CallInst, InvokeInst>(I));
16113 for (BasicBlock::iterator It = BB->begin(), E = BB->end(); It != E; ++It) {
16114 // Skip instructions with scalable type. The num of elements is unknown at
16115 // compile-time for scalable type.
16116 if (isa<ScalableVectorType>(It->getType()))
16117 continue;
16119 // Skip instructions marked for the deletion.
16120 if (R.isDeleted(&*It))
16121 continue;
16122 // We may go through BB multiple times so skip the one we have checked.
16123 if (!VisitedInstrs.insert(&*It).second) {
16124 if (HasNoUsers(&*It) &&
16125 VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator())) {
16126 // We would like to start over since some instructions are deleted
16127 // and the iterator may become invalid value.
16128 Changed = true;
16129 It = BB->begin();
16130 E = BB->end();
16132 continue;
16135 if (isa<DbgInfoIntrinsic>(It))
16136 continue;
16138 // Try to vectorize reductions that use PHINodes.
16139 if (PHINode *P = dyn_cast<PHINode>(It)) {
16140 // Check that the PHI is a reduction PHI.
16141 if (P->getNumIncomingValues() == 2) {
16142 // Try to match and vectorize a horizontal reduction.
16143 Instruction *Root = getReductionInstr(DT, P, BB, LI);
16144 if (Root && vectorizeRootInstruction(P, Root, BB, R, TTI)) {
16145 Changed = true;
16146 It = BB->begin();
16147 E = BB->end();
16148 continue;
16151 // Try to vectorize the incoming values of the PHI, to catch reductions
16152 // that feed into PHIs.
16153 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
16154 // Skip if the incoming block is the current BB for now. Also, bypass
16155 // unreachable IR for efficiency and to avoid crashing.
16156 // TODO: Collect the skipped incoming values and try to vectorize them
16157 // after processing BB.
16158 if (BB == P->getIncomingBlock(I) ||
16159 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
16160 continue;
16162 // Postponed instructions should not be vectorized here, delay their
16163 // vectorization.
16164 if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I));
16165 PI && !IsInPostProcessInstrs(PI))
16166 Changed |= vectorizeRootInstruction(nullptr, PI,
16167 P->getIncomingBlock(I), R, TTI);
16169 continue;
16172 if (HasNoUsers(&*It)) {
16173 bool OpsChanged = false;
16174 auto *SI = dyn_cast<StoreInst>(It);
16175 bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI;
16176 if (SI) {
16177 auto *I = Stores.find(getUnderlyingObject(SI->getPointerOperand()));
16178 // Try to vectorize chain in store, if this is the only store to the
16179 // address in the block.
16180 // TODO: This is just a temporarily solution to save compile time. Need
16181 // to investigate if we can safely turn on slp-vectorize-hor-store
16182 // instead to allow lookup for reduction chains in all non-vectorized
16183 // stores (need to check side effects and compile time).
16184 TryToVectorizeRoot |= (I == Stores.end() || I->second.size() == 1) &&
16185 SI->getValueOperand()->hasOneUse();
16187 if (TryToVectorizeRoot) {
16188 for (auto *V : It->operand_values()) {
16189 // Postponed instructions should not be vectorized here, delay their
16190 // vectorization.
16191 if (auto *VI = dyn_cast<Instruction>(V);
16192 VI && !IsInPostProcessInstrs(VI))
16193 // Try to match and vectorize a horizontal reduction.
16194 OpsChanged |= vectorizeRootInstruction(nullptr, VI, BB, R, TTI);
16197 // Start vectorization of post-process list of instructions from the
16198 // top-tree instructions to try to vectorize as many instructions as
16199 // possible.
16200 OpsChanged |=
16201 VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator());
16202 if (OpsChanged) {
16203 // We would like to start over since some instructions are deleted
16204 // and the iterator may become invalid value.
16205 Changed = true;
16206 It = BB->begin();
16207 E = BB->end();
16208 continue;
16212 if (isa<InsertElementInst, InsertValueInst>(It))
16213 PostProcessInserts.insert(&*It);
16214 else if (isa<CmpInst>(It))
16215 PostProcessCmps.insert(cast<CmpInst>(&*It));
16218 return Changed;
16221 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
16222 auto Changed = false;
16223 for (auto &Entry : GEPs) {
16224 // If the getelementptr list has fewer than two elements, there's nothing
16225 // to do.
16226 if (Entry.second.size() < 2)
16227 continue;
16229 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
16230 << Entry.second.size() << ".\n");
16232 // Process the GEP list in chunks suitable for the target's supported
16233 // vector size. If a vector register can't hold 1 element, we are done. We
16234 // are trying to vectorize the index computations, so the maximum number of
16235 // elements is based on the size of the index expression, rather than the
16236 // size of the GEP itself (the target's pointer size).
16237 unsigned MaxVecRegSize = R.getMaxVecRegSize();
16238 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
16239 if (MaxVecRegSize < EltSize)
16240 continue;
16242 unsigned MaxElts = MaxVecRegSize / EltSize;
16243 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
16244 auto Len = std::min<unsigned>(BE - BI, MaxElts);
16245 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
16247 // Initialize a set a candidate getelementptrs. Note that we use a
16248 // SetVector here to preserve program order. If the index computations
16249 // are vectorizable and begin with loads, we want to minimize the chance
16250 // of having to reorder them later.
16251 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
16253 // Some of the candidates may have already been vectorized after we
16254 // initially collected them or their index is optimized to constant value.
16255 // If so, they are marked as deleted, so remove them from the set of
16256 // candidates.
16257 Candidates.remove_if([&R](Value *I) {
16258 return R.isDeleted(cast<Instruction>(I)) ||
16259 isa<Constant>(cast<GetElementPtrInst>(I)->idx_begin()->get());
16262 // Remove from the set of candidates all pairs of getelementptrs with
16263 // constant differences. Such getelementptrs are likely not good
16264 // candidates for vectorization in a bottom-up phase since one can be
16265 // computed from the other. We also ensure all candidate getelementptr
16266 // indices are unique.
16267 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
16268 auto *GEPI = GEPList[I];
16269 if (!Candidates.count(GEPI))
16270 continue;
16271 auto *SCEVI = SE->getSCEV(GEPList[I]);
16272 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
16273 auto *GEPJ = GEPList[J];
16274 auto *SCEVJ = SE->getSCEV(GEPList[J]);
16275 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
16276 Candidates.remove(GEPI);
16277 Candidates.remove(GEPJ);
16278 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
16279 Candidates.remove(GEPJ);
16284 // We break out of the above computation as soon as we know there are
16285 // fewer than two candidates remaining.
16286 if (Candidates.size() < 2)
16287 continue;
16289 // Add the single, non-constant index of each candidate to the bundle. We
16290 // ensured the indices met these constraints when we originally collected
16291 // the getelementptrs.
16292 SmallVector<Value *, 16> Bundle(Candidates.size());
16293 auto BundleIndex = 0u;
16294 for (auto *V : Candidates) {
16295 auto *GEP = cast<GetElementPtrInst>(V);
16296 auto *GEPIdx = GEP->idx_begin()->get();
16297 assert(GEP->getNumIndices() == 1 && !isa<Constant>(GEPIdx));
16298 Bundle[BundleIndex++] = GEPIdx;
16301 // Try and vectorize the indices. We are currently only interested in
16302 // gather-like cases of the form:
16304 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
16306 // where the loads of "a", the loads of "b", and the subtractions can be
16307 // performed in parallel. It's likely that detecting this pattern in a
16308 // bottom-up phase will be simpler and less costly than building a
16309 // full-blown top-down phase beginning at the consecutive loads.
16310 Changed |= tryToVectorizeList(Bundle, R);
16313 return Changed;
16316 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
16317 bool Changed = false;
16318 // Sort by type, base pointers and values operand. Value operands must be
16319 // compatible (have the same opcode, same parent), otherwise it is
16320 // definitely not profitable to try to vectorize them.
16321 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
16322 if (V->getValueOperand()->getType()->getTypeID() <
16323 V2->getValueOperand()->getType()->getTypeID())
16324 return true;
16325 if (V->getValueOperand()->getType()->getTypeID() >
16326 V2->getValueOperand()->getType()->getTypeID())
16327 return false;
16328 if (V->getPointerOperandType()->getTypeID() <
16329 V2->getPointerOperandType()->getTypeID())
16330 return true;
16331 if (V->getPointerOperandType()->getTypeID() >
16332 V2->getPointerOperandType()->getTypeID())
16333 return false;
16334 // UndefValues are compatible with all other values.
16335 if (isa<UndefValue>(V->getValueOperand()) ||
16336 isa<UndefValue>(V2->getValueOperand()))
16337 return false;
16338 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
16339 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
16340 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
16341 DT->getNode(I1->getParent());
16342 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
16343 DT->getNode(I2->getParent());
16344 assert(NodeI1 && "Should only process reachable instructions");
16345 assert(NodeI2 && "Should only process reachable instructions");
16346 assert((NodeI1 == NodeI2) ==
16347 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
16348 "Different nodes should have different DFS numbers");
16349 if (NodeI1 != NodeI2)
16350 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
16351 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
16352 if (S.getOpcode())
16353 return false;
16354 return I1->getOpcode() < I2->getOpcode();
16356 if (isa<Constant>(V->getValueOperand()) &&
16357 isa<Constant>(V2->getValueOperand()))
16358 return false;
16359 return V->getValueOperand()->getValueID() <
16360 V2->getValueOperand()->getValueID();
16363 auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) {
16364 if (V1 == V2)
16365 return true;
16366 if (V1->getValueOperand()->getType() != V2->getValueOperand()->getType())
16367 return false;
16368 if (V1->getPointerOperandType() != V2->getPointerOperandType())
16369 return false;
16370 // Undefs are compatible with any other value.
16371 if (isa<UndefValue>(V1->getValueOperand()) ||
16372 isa<UndefValue>(V2->getValueOperand()))
16373 return true;
16374 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
16375 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
16376 if (I1->getParent() != I2->getParent())
16377 return false;
16378 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
16379 return S.getOpcode() > 0;
16381 if (isa<Constant>(V1->getValueOperand()) &&
16382 isa<Constant>(V2->getValueOperand()))
16383 return true;
16384 return V1->getValueOperand()->getValueID() ==
16385 V2->getValueOperand()->getValueID();
16388 // Attempt to sort and vectorize each of the store-groups.
16389 for (auto &Pair : Stores) {
16390 if (Pair.second.size() < 2)
16391 continue;
16393 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
16394 << Pair.second.size() << ".\n");
16396 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
16397 continue;
16399 // Reverse stores to do bottom-to-top analysis. This is important if the
16400 // values are stores to the same addresses several times, in this case need
16401 // to follow the stores order (reversed to meet the memory dependecies).
16402 SmallVector<StoreInst *> ReversedStores(Pair.second.rbegin(),
16403 Pair.second.rend());
16404 Changed |= tryToVectorizeSequence<StoreInst>(
16405 ReversedStores, StoreSorter, AreCompatibleStores,
16406 [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
16407 return vectorizeStores(Candidates, R);
16409 /*MaxVFOnly=*/false, R);
16411 return Changed;