[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VectorCombine.cpp
blobf18711ba30b70881cf4c822f2f04b2ac6410318b
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include <numeric>
33 #include <queue>
35 #define DEBUG_TYPE "vector-combine"
36 #include "llvm/Transforms/Utils/InstructionWorklist.h"
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
41 STATISTIC(NumVecLoad, "Number of vector loads formed");
42 STATISTIC(NumVecCmp, "Number of vector compares formed");
43 STATISTIC(NumVecBO, "Number of vector binops formed");
44 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
45 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
46 STATISTIC(NumScalarBO, "Number of scalar binops formed");
47 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
49 static cl::opt<bool> DisableVectorCombine(
50 "disable-vector-combine", cl::init(false), cl::Hidden,
51 cl::desc("Disable all vector combine transforms"));
53 static cl::opt<bool> DisableBinopExtractShuffle(
54 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
55 cl::desc("Disable binop extract to shuffle transforms"));
57 static cl::opt<unsigned> MaxInstrsToScan(
58 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
59 cl::desc("Max number of instructions to scan for vector combining."));
61 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
63 namespace {
64 class VectorCombine {
65 public:
66 VectorCombine(Function &F, const TargetTransformInfo &TTI,
67 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
68 bool TryEarlyFoldsOnly)
69 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
70 TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
72 bool run();
74 private:
75 Function &F;
76 IRBuilder<> Builder;
77 const TargetTransformInfo &TTI;
78 const DominatorTree &DT;
79 AAResults &AA;
80 AssumptionCache &AC;
82 /// If true, only perform beneficial early IR transforms. Do not introduce new
83 /// vector operations.
84 bool TryEarlyFoldsOnly;
86 InstructionWorklist Worklist;
88 // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
89 // parameter. That should be updated to specific sub-classes because the
90 // run loop was changed to dispatch on opcode.
91 bool vectorizeLoadInsert(Instruction &I);
92 bool widenSubvectorLoad(Instruction &I);
93 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
94 ExtractElementInst *Ext1,
95 unsigned PreferredExtractIndex) const;
96 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
97 const Instruction &I,
98 ExtractElementInst *&ConvertToShuffle,
99 unsigned PreferredExtractIndex);
100 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
101 Instruction &I);
102 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
103 Instruction &I);
104 bool foldExtractExtract(Instruction &I);
105 bool foldInsExtFNeg(Instruction &I);
106 bool foldBitcastShuffle(Instruction &I);
107 bool scalarizeBinopOrCmp(Instruction &I);
108 bool scalarizeVPIntrinsic(Instruction &I);
109 bool foldExtractedCmps(Instruction &I);
110 bool foldSingleElementStore(Instruction &I);
111 bool scalarizeLoadExtract(Instruction &I);
112 bool foldShuffleOfBinops(Instruction &I);
113 bool foldShuffleFromReductions(Instruction &I);
114 bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
116 void replaceValue(Value &Old, Value &New) {
117 Old.replaceAllUsesWith(&New);
118 if (auto *NewI = dyn_cast<Instruction>(&New)) {
119 New.takeName(&Old);
120 Worklist.pushUsersToWorkList(*NewI);
121 Worklist.pushValue(NewI);
123 Worklist.pushValue(&Old);
126 void eraseInstruction(Instruction &I) {
127 for (Value *Op : I.operands())
128 Worklist.pushValue(Op);
129 Worklist.remove(&I);
130 I.eraseFromParent();
133 } // namespace
135 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
136 // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
137 // The widened load may load data from dirty regions or create data races
138 // non-existent in the source.
139 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
140 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
141 mustSuppressSpeculation(*Load))
142 return false;
144 // We are potentially transforming byte-sized (8-bit) memory accesses, so make
145 // sure we have all of our type-based constraints in place for this target.
146 Type *ScalarTy = Load->getType()->getScalarType();
147 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
148 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
149 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
150 ScalarSize % 8 != 0)
151 return false;
153 return true;
156 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
157 // Match insert into fixed vector of scalar value.
158 // TODO: Handle non-zero insert index.
159 Value *Scalar;
160 if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
161 !Scalar->hasOneUse())
162 return false;
164 // Optionally match an extract from another vector.
165 Value *X;
166 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
167 if (!HasExtract)
168 X = Scalar;
170 auto *Load = dyn_cast<LoadInst>(X);
171 if (!canWidenLoad(Load, TTI))
172 return false;
174 Type *ScalarTy = Scalar->getType();
175 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
176 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
178 // Check safety of replacing the scalar load with a larger vector load.
179 // We use minimal alignment (maximum flexibility) because we only care about
180 // the dereferenceable region. When calculating cost and creating a new op,
181 // we may use a larger value based on alignment attributes.
182 const DataLayout &DL = I.getModule()->getDataLayout();
183 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
184 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
186 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
187 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
188 unsigned OffsetEltIndex = 0;
189 Align Alignment = Load->getAlign();
190 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
191 &DT)) {
192 // It is not safe to load directly from the pointer, but we can still peek
193 // through gep offsets and check if it safe to load from a base address with
194 // updated alignment. If it is, we can shuffle the element(s) into place
195 // after loading.
196 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
197 APInt Offset(OffsetBitWidth, 0);
198 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
200 // We want to shuffle the result down from a high element of a vector, so
201 // the offset must be positive.
202 if (Offset.isNegative())
203 return false;
205 // The offset must be a multiple of the scalar element to shuffle cleanly
206 // in the element's size.
207 uint64_t ScalarSizeInBytes = ScalarSize / 8;
208 if (Offset.urem(ScalarSizeInBytes) != 0)
209 return false;
211 // If we load MinVecNumElts, will our target element still be loaded?
212 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
213 if (OffsetEltIndex >= MinVecNumElts)
214 return false;
216 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
217 &DT))
218 return false;
220 // Update alignment with offset value. Note that the offset could be negated
221 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
222 // negation does not change the result of the alignment calculation.
223 Alignment = commonAlignment(Alignment, Offset.getZExtValue());
226 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
227 // Use the greater of the alignment on the load or its source pointer.
228 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
229 Type *LoadTy = Load->getType();
230 unsigned AS = Load->getPointerAddressSpace();
231 InstructionCost OldCost =
232 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
233 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
234 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
235 OldCost +=
236 TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
237 /* Insert */ true, HasExtract, CostKind);
239 // New pattern: load VecPtr
240 InstructionCost NewCost =
241 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
242 // Optionally, we are shuffling the loaded vector element(s) into place.
243 // For the mask set everything but element 0 to undef to prevent poison from
244 // propagating from the extra loaded memory. This will also optionally
245 // shrink/grow the vector from the loaded size to the output size.
246 // We assume this operation has no cost in codegen if there was no offset.
247 // Note that we could use freeze to avoid poison problems, but then we might
248 // still need a shuffle to change the vector size.
249 auto *Ty = cast<FixedVectorType>(I.getType());
250 unsigned OutputNumElts = Ty->getNumElements();
251 SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
252 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
253 Mask[0] = OffsetEltIndex;
254 if (OffsetEltIndex)
255 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
257 // We can aggressively convert to the vector form because the backend can
258 // invert this transform if it does not result in a performance win.
259 if (OldCost < NewCost || !NewCost.isValid())
260 return false;
262 // It is safe and potentially profitable to load a vector directly:
263 // inselt undef, load Scalar, 0 --> load VecPtr
264 IRBuilder<> Builder(Load);
265 Value *CastedPtr =
266 Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
267 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
268 VecLd = Builder.CreateShuffleVector(VecLd, Mask);
270 replaceValue(I, *VecLd);
271 ++NumVecLoad;
272 return true;
275 /// If we are loading a vector and then inserting it into a larger vector with
276 /// undefined elements, try to load the larger vector and eliminate the insert.
277 /// This removes a shuffle in IR and may allow combining of other loaded values.
278 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
279 // Match subvector insert of fixed vector.
280 auto *Shuf = cast<ShuffleVectorInst>(&I);
281 if (!Shuf->isIdentityWithPadding())
282 return false;
284 // Allow a non-canonical shuffle mask that is choosing elements from op1.
285 unsigned NumOpElts =
286 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
287 unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
288 return M >= (int)(NumOpElts);
291 auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
292 if (!canWidenLoad(Load, TTI))
293 return false;
295 // We use minimal alignment (maximum flexibility) because we only care about
296 // the dereferenceable region. When calculating cost and creating a new op,
297 // we may use a larger value based on alignment attributes.
298 auto *Ty = cast<FixedVectorType>(I.getType());
299 const DataLayout &DL = I.getModule()->getDataLayout();
300 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
301 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
302 Align Alignment = Load->getAlign();
303 if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), DL, Load, &AC, &DT))
304 return false;
306 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
307 Type *LoadTy = Load->getType();
308 unsigned AS = Load->getPointerAddressSpace();
310 // Original pattern: insert_subvector (load PtrOp)
311 // This conservatively assumes that the cost of a subvector insert into an
312 // undef value is 0. We could add that cost if the cost model accurately
313 // reflects the real cost of that operation.
314 InstructionCost OldCost =
315 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
317 // New pattern: load PtrOp
318 InstructionCost NewCost =
319 TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS);
321 // We can aggressively convert to the vector form because the backend can
322 // invert this transform if it does not result in a performance win.
323 if (OldCost < NewCost || !NewCost.isValid())
324 return false;
326 IRBuilder<> Builder(Load);
327 Value *CastedPtr =
328 Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
329 Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
330 replaceValue(I, *VecLd);
331 ++NumVecLoad;
332 return true;
335 /// Determine which, if any, of the inputs should be replaced by a shuffle
336 /// followed by extract from a different index.
337 ExtractElementInst *VectorCombine::getShuffleExtract(
338 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
339 unsigned PreferredExtractIndex = InvalidIndex) const {
340 auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
341 auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
342 assert(Index0C && Index1C && "Expected constant extract indexes");
344 unsigned Index0 = Index0C->getZExtValue();
345 unsigned Index1 = Index1C->getZExtValue();
347 // If the extract indexes are identical, no shuffle is needed.
348 if (Index0 == Index1)
349 return nullptr;
351 Type *VecTy = Ext0->getVectorOperand()->getType();
352 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
353 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
354 InstructionCost Cost0 =
355 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
356 InstructionCost Cost1 =
357 TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
359 // If both costs are invalid no shuffle is needed
360 if (!Cost0.isValid() && !Cost1.isValid())
361 return nullptr;
363 // We are extracting from 2 different indexes, so one operand must be shuffled
364 // before performing a vector operation and/or extract. The more expensive
365 // extract will be replaced by a shuffle.
366 if (Cost0 > Cost1)
367 return Ext0;
368 if (Cost1 > Cost0)
369 return Ext1;
371 // If the costs are equal and there is a preferred extract index, shuffle the
372 // opposite operand.
373 if (PreferredExtractIndex == Index0)
374 return Ext1;
375 if (PreferredExtractIndex == Index1)
376 return Ext0;
378 // Otherwise, replace the extract with the higher index.
379 return Index0 > Index1 ? Ext0 : Ext1;
382 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
383 /// vector operation(s) followed by extract. Return true if the existing
384 /// instructions are cheaper than a vector alternative. Otherwise, return false
385 /// and if one of the extracts should be transformed to a shufflevector, set
386 /// \p ConvertToShuffle to that extract instruction.
387 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
388 ExtractElementInst *Ext1,
389 const Instruction &I,
390 ExtractElementInst *&ConvertToShuffle,
391 unsigned PreferredExtractIndex) {
392 auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
393 auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
394 assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
396 unsigned Opcode = I.getOpcode();
397 Type *ScalarTy = Ext0->getType();
398 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
399 InstructionCost ScalarOpCost, VectorOpCost;
401 // Get cost estimates for scalar and vector versions of the operation.
402 bool IsBinOp = Instruction::isBinaryOp(Opcode);
403 if (IsBinOp) {
404 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
405 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
406 } else {
407 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
408 "Expected a compare");
409 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
410 ScalarOpCost = TTI.getCmpSelInstrCost(
411 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
412 VectorOpCost = TTI.getCmpSelInstrCost(
413 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
416 // Get cost estimates for the extract elements. These costs will factor into
417 // both sequences.
418 unsigned Ext0Index = Ext0IndexC->getZExtValue();
419 unsigned Ext1Index = Ext1IndexC->getZExtValue();
420 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
422 InstructionCost Extract0Cost =
423 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
424 InstructionCost Extract1Cost =
425 TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
427 // A more expensive extract will always be replaced by a splat shuffle.
428 // For example, if Ext0 is more expensive:
429 // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
430 // extelt (opcode (splat V0, Ext0), V1), Ext1
431 // TODO: Evaluate whether that always results in lowest cost. Alternatively,
432 // check the cost of creating a broadcast shuffle and shuffling both
433 // operands to element 0.
434 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
436 // Extra uses of the extracts mean that we include those costs in the
437 // vector total because those instructions will not be eliminated.
438 InstructionCost OldCost, NewCost;
439 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
440 // Handle a special case. If the 2 extracts are identical, adjust the
441 // formulas to account for that. The extra use charge allows for either the
442 // CSE'd pattern or an unoptimized form with identical values:
443 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
444 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
445 : !Ext0->hasOneUse() || !Ext1->hasOneUse();
446 OldCost = CheapExtractCost + ScalarOpCost;
447 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
448 } else {
449 // Handle the general case. Each extract is actually a different value:
450 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
451 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
452 NewCost = VectorOpCost + CheapExtractCost +
453 !Ext0->hasOneUse() * Extract0Cost +
454 !Ext1->hasOneUse() * Extract1Cost;
457 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
458 if (ConvertToShuffle) {
459 if (IsBinOp && DisableBinopExtractShuffle)
460 return true;
462 // If we are extracting from 2 different indexes, then one operand must be
463 // shuffled before performing the vector operation. The shuffle mask is
464 // poison except for 1 lane that is being translated to the remaining
465 // extraction lane. Therefore, it is a splat shuffle. Ex:
466 // ShufMask = { poison, poison, 0, poison }
467 // TODO: The cost model has an option for a "broadcast" shuffle
468 // (splat-from-element-0), but no option for a more general splat.
469 NewCost +=
470 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
473 // Aggressively form a vector op if the cost is equal because the transform
474 // may enable further optimization.
475 // Codegen can reverse this transform (scalarize) if it was not profitable.
476 return OldCost < NewCost;
479 /// Create a shuffle that translates (shifts) 1 element from the input vector
480 /// to a new element location.
481 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
482 unsigned NewIndex, IRBuilder<> &Builder) {
483 // The shuffle mask is poison except for 1 lane that is being translated
484 // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
485 // ShufMask = { 2, poison, poison, poison }
486 auto *VecTy = cast<FixedVectorType>(Vec->getType());
487 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
488 ShufMask[NewIndex] = OldIndex;
489 return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
492 /// Given an extract element instruction with constant index operand, shuffle
493 /// the source vector (shift the scalar element) to a NewIndex for extraction.
494 /// Return null if the input can be constant folded, so that we are not creating
495 /// unnecessary instructions.
496 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
497 unsigned NewIndex,
498 IRBuilder<> &Builder) {
499 // Shufflevectors can only be created for fixed-width vectors.
500 if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
501 return nullptr;
503 // If the extract can be constant-folded, this code is unsimplified. Defer
504 // to other passes to handle that.
505 Value *X = ExtElt->getVectorOperand();
506 Value *C = ExtElt->getIndexOperand();
507 assert(isa<ConstantInt>(C) && "Expected a constant index operand");
508 if (isa<Constant>(X))
509 return nullptr;
511 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
512 NewIndex, Builder);
513 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
516 /// Try to reduce extract element costs by converting scalar compares to vector
517 /// compares followed by extract.
518 /// cmp (ext0 V0, C), (ext1 V1, C)
519 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
520 ExtractElementInst *Ext1, Instruction &I) {
521 assert(isa<CmpInst>(&I) && "Expected a compare");
522 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
523 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
524 "Expected matching constant extract indexes");
526 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
527 ++NumVecCmp;
528 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
529 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
530 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
531 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
532 replaceValue(I, *NewExt);
535 /// Try to reduce extract element costs by converting scalar binops to vector
536 /// binops followed by extract.
537 /// bo (ext0 V0, C), (ext1 V1, C)
538 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
539 ExtractElementInst *Ext1, Instruction &I) {
540 assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
541 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
542 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
543 "Expected matching constant extract indexes");
545 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
546 ++NumVecBO;
547 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
548 Value *VecBO =
549 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
551 // All IR flags are safe to back-propagate because any potential poison
552 // created in unused vector elements is discarded by the extract.
553 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
554 VecBOInst->copyIRFlags(&I);
556 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
557 replaceValue(I, *NewExt);
560 /// Match an instruction with extracted vector operands.
561 bool VectorCombine::foldExtractExtract(Instruction &I) {
562 // It is not safe to transform things like div, urem, etc. because we may
563 // create undefined behavior when executing those on unknown vector elements.
564 if (!isSafeToSpeculativelyExecute(&I))
565 return false;
567 Instruction *I0, *I1;
568 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
569 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
570 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
571 return false;
573 Value *V0, *V1;
574 uint64_t C0, C1;
575 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
576 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
577 V0->getType() != V1->getType())
578 return false;
580 // If the scalar value 'I' is going to be re-inserted into a vector, then try
581 // to create an extract to that same element. The extract/insert can be
582 // reduced to a "select shuffle".
583 // TODO: If we add a larger pattern match that starts from an insert, this
584 // probably becomes unnecessary.
585 auto *Ext0 = cast<ExtractElementInst>(I0);
586 auto *Ext1 = cast<ExtractElementInst>(I1);
587 uint64_t InsertIndex = InvalidIndex;
588 if (I.hasOneUse())
589 match(I.user_back(),
590 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
592 ExtractElementInst *ExtractToChange;
593 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
594 return false;
596 if (ExtractToChange) {
597 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
598 ExtractElementInst *NewExtract =
599 translateExtract(ExtractToChange, CheapExtractIdx, Builder);
600 if (!NewExtract)
601 return false;
602 if (ExtractToChange == Ext0)
603 Ext0 = NewExtract;
604 else
605 Ext1 = NewExtract;
608 if (Pred != CmpInst::BAD_ICMP_PREDICATE)
609 foldExtExtCmp(Ext0, Ext1, I);
610 else
611 foldExtExtBinop(Ext0, Ext1, I);
613 Worklist.push(Ext0);
614 Worklist.push(Ext1);
615 return true;
618 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
619 /// shuffle.
620 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
621 // Match an insert (op (extract)) pattern.
622 Value *DestVec;
623 uint64_t Index;
624 Instruction *FNeg;
625 if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
626 m_ConstantInt(Index))))
627 return false;
629 // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
630 Value *SrcVec;
631 Instruction *Extract;
632 if (!match(FNeg, m_FNeg(m_CombineAnd(
633 m_Instruction(Extract),
634 m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
635 return false;
637 // TODO: We could handle this with a length-changing shuffle.
638 auto *VecTy = cast<FixedVectorType>(I.getType());
639 if (SrcVec->getType() != VecTy)
640 return false;
642 // Ignore bogus insert/extract index.
643 unsigned NumElts = VecTy->getNumElements();
644 if (Index >= NumElts)
645 return false;
647 // We are inserting the negated element into the same lane that we extracted
648 // from. This is equivalent to a select-shuffle that chooses all but the
649 // negated element from the destination vector.
650 SmallVector<int> Mask(NumElts);
651 std::iota(Mask.begin(), Mask.end(), 0);
652 Mask[Index] = Index + NumElts;
654 Type *ScalarTy = VecTy->getScalarType();
655 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
656 InstructionCost OldCost =
657 TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy) +
658 TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
660 // If the extract has one use, it will be eliminated, so count it in the
661 // original cost. If it has more than one use, ignore the cost because it will
662 // be the same before/after.
663 if (Extract->hasOneUse())
664 OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
666 InstructionCost NewCost =
667 TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy) +
668 TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask);
670 if (NewCost > OldCost)
671 return false;
673 // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
674 // shuffle DestVec, (fneg SrcVec), Mask
675 Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
676 Value *Shuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
677 replaceValue(I, *Shuf);
678 return true;
681 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
682 /// destination type followed by shuffle. This can enable further transforms by
683 /// moving bitcasts or shuffles together.
684 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
685 Value *V;
686 ArrayRef<int> Mask;
687 if (!match(&I, m_BitCast(
688 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
689 return false;
691 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
692 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
693 // mask for scalable type is a splat or not.
694 // 2) Disallow non-vector casts.
695 // TODO: We could allow any shuffle.
696 auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
697 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
698 if (!DestTy || !SrcTy)
699 return false;
701 unsigned DestEltSize = DestTy->getScalarSizeInBits();
702 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
703 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
704 return false;
706 SmallVector<int, 16> NewMask;
707 if (DestEltSize <= SrcEltSize) {
708 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
709 // always be expanded to the equivalent form choosing narrower elements.
710 assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
711 unsigned ScaleFactor = SrcEltSize / DestEltSize;
712 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
713 } else {
714 // The bitcast is from narrow elements to wide elements. The shuffle mask
715 // must choose consecutive elements to allow casting first.
716 assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
717 unsigned ScaleFactor = DestEltSize / SrcEltSize;
718 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
719 return false;
722 // Bitcast the shuffle src - keep its original width but using the destination
723 // scalar type.
724 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
725 auto *ShuffleTy = FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
727 // The new shuffle must not cost more than the old shuffle. The bitcast is
728 // moved ahead of the shuffle, so assume that it has the same cost as before.
729 InstructionCost DestCost = TTI.getShuffleCost(
730 TargetTransformInfo::SK_PermuteSingleSrc, ShuffleTy, NewMask);
731 InstructionCost SrcCost =
732 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
733 if (DestCost > SrcCost || !DestCost.isValid())
734 return false;
736 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
737 ++NumShufOfBitcast;
738 Value *CastV = Builder.CreateBitCast(V, ShuffleTy);
739 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
740 replaceValue(I, *Shuf);
741 return true;
744 /// VP Intrinsics whose vector operands are both splat values may be simplified
745 /// into the scalar version of the operation and the result splatted. This
746 /// can lead to scalarization down the line.
747 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
748 if (!isa<VPIntrinsic>(I))
749 return false;
750 VPIntrinsic &VPI = cast<VPIntrinsic>(I);
751 Value *Op0 = VPI.getArgOperand(0);
752 Value *Op1 = VPI.getArgOperand(1);
754 if (!isSplatValue(Op0) || !isSplatValue(Op1))
755 return false;
757 // Check getSplatValue early in this function, to avoid doing unnecessary
758 // work.
759 Value *ScalarOp0 = getSplatValue(Op0);
760 Value *ScalarOp1 = getSplatValue(Op1);
761 if (!ScalarOp0 || !ScalarOp1)
762 return false;
764 // For the binary VP intrinsics supported here, the result on disabled lanes
765 // is a poison value. For now, only do this simplification if all lanes
766 // are active.
767 // TODO: Relax the condition that all lanes are active by using insertelement
768 // on inactive lanes.
769 auto IsAllTrueMask = [](Value *MaskVal) {
770 if (Value *SplattedVal = getSplatValue(MaskVal))
771 if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
772 return ConstValue->isAllOnesValue();
773 return false;
775 if (!IsAllTrueMask(VPI.getArgOperand(2)))
776 return false;
778 // Check to make sure we support scalarization of the intrinsic
779 Intrinsic::ID IntrID = VPI.getIntrinsicID();
780 if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
781 return false;
783 // Calculate cost of splatting both operands into vectors and the vector
784 // intrinsic
785 VectorType *VecTy = cast<VectorType>(VPI.getType());
786 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
787 InstructionCost SplatCost =
788 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
789 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
791 // Calculate the cost of the VP Intrinsic
792 SmallVector<Type *, 4> Args;
793 for (Value *V : VPI.args())
794 Args.push_back(V->getType());
795 IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
796 InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
797 InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
799 // Determine scalar opcode
800 std::optional<unsigned> FunctionalOpcode =
801 VPI.getFunctionalOpcode();
802 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
803 if (!FunctionalOpcode) {
804 ScalarIntrID = VPI.getFunctionalIntrinsicID();
805 if (!ScalarIntrID)
806 return false;
809 // Calculate cost of scalarizing
810 InstructionCost ScalarOpCost = 0;
811 if (ScalarIntrID) {
812 IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
813 ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
814 } else {
815 ScalarOpCost =
816 TTI.getArithmeticInstrCost(*FunctionalOpcode, VecTy->getScalarType());
819 // The existing splats may be kept around if other instructions use them.
820 InstructionCost CostToKeepSplats =
821 (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
822 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
824 LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
825 << "\n");
826 LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
827 << ", Cost of scalarizing:" << NewCost << "\n");
829 // We want to scalarize unless the vector variant actually has lower cost.
830 if (OldCost < NewCost || !NewCost.isValid())
831 return false;
833 // Scalarize the intrinsic
834 ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
835 Value *EVL = VPI.getArgOperand(3);
836 const DataLayout &DL = VPI.getModule()->getDataLayout();
838 // If the VP op might introduce UB or poison, we can scalarize it provided
839 // that we know the EVL > 0: If the EVL is zero, then the original VP op
840 // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
841 // scalarizing it.
842 bool SafeToSpeculate;
843 if (ScalarIntrID)
844 SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
845 .hasFnAttr(Attribute::AttrKind::Speculatable);
846 else
847 SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
848 *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
849 if (!SafeToSpeculate && !isKnownNonZero(EVL, DL, 0, &AC, &VPI, &DT))
850 return false;
852 Value *ScalarVal =
853 ScalarIntrID
854 ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
855 {ScalarOp0, ScalarOp1})
856 : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
857 ScalarOp0, ScalarOp1);
859 replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
860 return true;
863 /// Match a vector binop or compare instruction with at least one inserted
864 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
865 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
866 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
867 Value *Ins0, *Ins1;
868 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
869 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
870 return false;
872 // Do not convert the vector condition of a vector select into a scalar
873 // condition. That may cause problems for codegen because of differences in
874 // boolean formats and register-file transfers.
875 // TODO: Can we account for that in the cost model?
876 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
877 if (IsCmp)
878 for (User *U : I.users())
879 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
880 return false;
882 // Match against one or both scalar values being inserted into constant
883 // vectors:
884 // vec_op VecC0, (inselt VecC1, V1, Index)
885 // vec_op (inselt VecC0, V0, Index), VecC1
886 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
887 // TODO: Deal with mismatched index constants and variable indexes?
888 Constant *VecC0 = nullptr, *VecC1 = nullptr;
889 Value *V0 = nullptr, *V1 = nullptr;
890 uint64_t Index0 = 0, Index1 = 0;
891 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
892 m_ConstantInt(Index0))) &&
893 !match(Ins0, m_Constant(VecC0)))
894 return false;
895 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
896 m_ConstantInt(Index1))) &&
897 !match(Ins1, m_Constant(VecC1)))
898 return false;
900 bool IsConst0 = !V0;
901 bool IsConst1 = !V1;
902 if (IsConst0 && IsConst1)
903 return false;
904 if (!IsConst0 && !IsConst1 && Index0 != Index1)
905 return false;
907 // Bail for single insertion if it is a load.
908 // TODO: Handle this once getVectorInstrCost can cost for load/stores.
909 auto *I0 = dyn_cast_or_null<Instruction>(V0);
910 auto *I1 = dyn_cast_or_null<Instruction>(V1);
911 if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
912 (IsConst1 && I0 && I0->mayReadFromMemory()))
913 return false;
915 uint64_t Index = IsConst0 ? Index1 : Index0;
916 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
917 Type *VecTy = I.getType();
918 assert(VecTy->isVectorTy() &&
919 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
920 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
921 ScalarTy->isPointerTy()) &&
922 "Unexpected types for insert element into binop or cmp");
924 unsigned Opcode = I.getOpcode();
925 InstructionCost ScalarOpCost, VectorOpCost;
926 if (IsCmp) {
927 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
928 ScalarOpCost = TTI.getCmpSelInstrCost(
929 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
930 VectorOpCost = TTI.getCmpSelInstrCost(
931 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
932 } else {
933 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
934 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
937 // Get cost estimate for the insert element. This cost will factor into
938 // both sequences.
939 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
940 InstructionCost InsertCost = TTI.getVectorInstrCost(
941 Instruction::InsertElement, VecTy, CostKind, Index);
942 InstructionCost OldCost =
943 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
944 InstructionCost NewCost = ScalarOpCost + InsertCost +
945 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
946 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
948 // We want to scalarize unless the vector variant actually has lower cost.
949 if (OldCost < NewCost || !NewCost.isValid())
950 return false;
952 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
953 // inselt NewVecC, (scalar_op V0, V1), Index
954 if (IsCmp)
955 ++NumScalarCmp;
956 else
957 ++NumScalarBO;
959 // For constant cases, extract the scalar element, this should constant fold.
960 if (IsConst0)
961 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
962 if (IsConst1)
963 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
965 Value *Scalar =
966 IsCmp ? Builder.CreateCmp(Pred, V0, V1)
967 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
969 Scalar->setName(I.getName() + ".scalar");
971 // All IR flags are safe to back-propagate. There is no potential for extra
972 // poison to be created by the scalar instruction.
973 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
974 ScalarInst->copyIRFlags(&I);
976 // Fold the vector constants in the original vectors into a new base vector.
977 Value *NewVecC =
978 IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
979 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
980 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
981 replaceValue(I, *Insert);
982 return true;
985 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
986 /// a vector into vector operations followed by extract. Note: The SLP pass
987 /// may miss this pattern because of implementation problems.
988 bool VectorCombine::foldExtractedCmps(Instruction &I) {
989 // We are looking for a scalar binop of booleans.
990 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
991 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
992 return false;
994 // The compare predicates should match, and each compare should have a
995 // constant operand.
996 // TODO: Relax the one-use constraints.
997 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
998 Instruction *I0, *I1;
999 Constant *C0, *C1;
1000 CmpInst::Predicate P0, P1;
1001 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
1002 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
1003 P0 != P1)
1004 return false;
1006 // The compare operands must be extracts of the same vector with constant
1007 // extract indexes.
1008 // TODO: Relax the one-use constraints.
1009 Value *X;
1010 uint64_t Index0, Index1;
1011 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
1012 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
1013 return false;
1015 auto *Ext0 = cast<ExtractElementInst>(I0);
1016 auto *Ext1 = cast<ExtractElementInst>(I1);
1017 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
1018 if (!ConvertToShuf)
1019 return false;
1021 // The original scalar pattern is:
1022 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1023 CmpInst::Predicate Pred = P0;
1024 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
1025 : Instruction::ICmp;
1026 auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1027 if (!VecTy)
1028 return false;
1030 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1031 InstructionCost OldCost =
1032 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1033 OldCost += TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1034 OldCost +=
1035 TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
1036 CmpInst::makeCmpResultType(I0->getType()), Pred) *
1038 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
1040 // The proposed vector pattern is:
1041 // vcmp = cmp Pred X, VecC
1042 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1043 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1044 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1045 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1046 InstructionCost NewCost = TTI.getCmpSelInstrCost(
1047 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
1048 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1049 ShufMask[CheapIndex] = ExpensiveIndex;
1050 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1051 ShufMask);
1052 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
1053 NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1055 // Aggressively form vector ops if the cost is equal because the transform
1056 // may enable further optimization.
1057 // Codegen can reverse this transform (scalarize) if it was not profitable.
1058 if (OldCost < NewCost || !NewCost.isValid())
1059 return false;
1061 // Create a vector constant from the 2 scalar constants.
1062 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1063 PoisonValue::get(VecTy->getElementType()));
1064 CmpC[Index0] = C0;
1065 CmpC[Index1] = C1;
1066 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1068 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1069 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
1070 VCmp, Shuf);
1071 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1072 replaceValue(I, *NewExt);
1073 ++NumVecCmpBO;
1074 return true;
1077 // Check if memory loc modified between two instrs in the same BB
1078 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1079 BasicBlock::iterator End,
1080 const MemoryLocation &Loc, AAResults &AA) {
1081 unsigned NumScanned = 0;
1082 return std::any_of(Begin, End, [&](const Instruction &Instr) {
1083 return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1084 ++NumScanned > MaxInstrsToScan;
1088 namespace {
1089 /// Helper class to indicate whether a vector index can be safely scalarized and
1090 /// if a freeze needs to be inserted.
1091 class ScalarizationResult {
1092 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1094 StatusTy Status;
1095 Value *ToFreeze;
1097 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1098 : Status(Status), ToFreeze(ToFreeze) {}
1100 public:
1101 ScalarizationResult(const ScalarizationResult &Other) = default;
1102 ~ScalarizationResult() {
1103 assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1106 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
1107 static ScalarizationResult safe() { return {StatusTy::Safe}; }
1108 static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1109 return {StatusTy::SafeWithFreeze, ToFreeze};
1112 /// Returns true if the index can be scalarize without requiring a freeze.
1113 bool isSafe() const { return Status == StatusTy::Safe; }
1114 /// Returns true if the index cannot be scalarized.
1115 bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1116 /// Returns true if the index can be scalarize, but requires inserting a
1117 /// freeze.
1118 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1120 /// Reset the state of Unsafe and clear ToFreze if set.
1121 void discard() {
1122 ToFreeze = nullptr;
1123 Status = StatusTy::Unsafe;
1126 /// Freeze the ToFreeze and update the use in \p User to use it.
1127 void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1128 assert(isSafeWithFreeze() &&
1129 "should only be used when freezing is required");
1130 assert(is_contained(ToFreeze->users(), &UserI) &&
1131 "UserI must be a user of ToFreeze");
1132 IRBuilder<>::InsertPointGuard Guard(Builder);
1133 Builder.SetInsertPoint(cast<Instruction>(&UserI));
1134 Value *Frozen =
1135 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1136 for (Use &U : make_early_inc_range((UserI.operands())))
1137 if (U.get() == ToFreeze)
1138 U.set(Frozen);
1140 ToFreeze = nullptr;
1143 } // namespace
1145 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1146 /// Idx. \p Idx must access a valid vector element.
1147 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1148 Instruction *CtxI,
1149 AssumptionCache &AC,
1150 const DominatorTree &DT) {
1151 // We do checks for both fixed vector types and scalable vector types.
1152 // This is the number of elements of fixed vector types,
1153 // or the minimum number of elements of scalable vector types.
1154 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1156 if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1157 if (C->getValue().ult(NumElements))
1158 return ScalarizationResult::safe();
1159 return ScalarizationResult::unsafe();
1162 unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1163 APInt Zero(IntWidth, 0);
1164 APInt MaxElts(IntWidth, NumElements);
1165 ConstantRange ValidIndices(Zero, MaxElts);
1166 ConstantRange IdxRange(IntWidth, true);
1168 if (isGuaranteedNotToBePoison(Idx, &AC)) {
1169 if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1170 true, &AC, CtxI, &DT)))
1171 return ScalarizationResult::safe();
1172 return ScalarizationResult::unsafe();
1175 // If the index may be poison, check if we can insert a freeze before the
1176 // range of the index is restricted.
1177 Value *IdxBase;
1178 ConstantInt *CI;
1179 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1180 IdxRange = IdxRange.binaryAnd(CI->getValue());
1181 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1182 IdxRange = IdxRange.urem(CI->getValue());
1185 if (ValidIndices.contains(IdxRange))
1186 return ScalarizationResult::safeWithFreeze(IdxBase);
1187 return ScalarizationResult::unsafe();
1190 /// The memory operation on a vector of \p ScalarType had alignment of
1191 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1192 /// alignment that will be valid for the memory operation on a single scalar
1193 /// element of the same type with index \p Idx.
1194 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1195 Type *ScalarType, Value *Idx,
1196 const DataLayout &DL) {
1197 if (auto *C = dyn_cast<ConstantInt>(Idx))
1198 return commonAlignment(VectorAlignment,
1199 C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1200 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1203 // Combine patterns like:
1204 // %0 = load <4 x i32>, <4 x i32>* %a
1205 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1206 // store <4 x i32> %1, <4 x i32>* %a
1207 // to:
1208 // %0 = bitcast <4 x i32>* %a to i32*
1209 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1210 // store i32 %b, i32* %1
1211 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1212 auto *SI = cast<StoreInst>(&I);
1213 if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1214 return false;
1216 // TODO: Combine more complicated patterns (multiple insert) by referencing
1217 // TargetTransformInfo.
1218 Instruction *Source;
1219 Value *NewElement;
1220 Value *Idx;
1221 if (!match(SI->getValueOperand(),
1222 m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1223 m_Value(Idx))))
1224 return false;
1226 if (auto *Load = dyn_cast<LoadInst>(Source)) {
1227 auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1228 const DataLayout &DL = I.getModule()->getDataLayout();
1229 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1230 // Don't optimize for atomic/volatile load or store. Ensure memory is not
1231 // modified between, vector type matches store size, and index is inbounds.
1232 if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1233 !DL.typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1234 SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1235 return false;
1237 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1238 if (ScalarizableIdx.isUnsafe() ||
1239 isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1240 MemoryLocation::get(SI), AA))
1241 return false;
1243 if (ScalarizableIdx.isSafeWithFreeze())
1244 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1245 Value *GEP = Builder.CreateInBoundsGEP(
1246 SI->getValueOperand()->getType(), SI->getPointerOperand(),
1247 {ConstantInt::get(Idx->getType(), 0), Idx});
1248 StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1249 NSI->copyMetadata(*SI);
1250 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1251 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1252 DL);
1253 NSI->setAlignment(ScalarOpAlignment);
1254 replaceValue(I, *NSI);
1255 eraseInstruction(I);
1256 return true;
1259 return false;
1262 /// Try to scalarize vector loads feeding extractelement instructions.
1263 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1264 Value *Ptr;
1265 if (!match(&I, m_Load(m_Value(Ptr))))
1266 return false;
1268 auto *VecTy = cast<VectorType>(I.getType());
1269 auto *LI = cast<LoadInst>(&I);
1270 const DataLayout &DL = I.getModule()->getDataLayout();
1271 if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(VecTy->getScalarType()))
1272 return false;
1274 InstructionCost OriginalCost =
1275 TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1276 LI->getPointerAddressSpace());
1277 InstructionCost ScalarizedCost = 0;
1279 Instruction *LastCheckedInst = LI;
1280 unsigned NumInstChecked = 0;
1281 DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1282 auto FailureGuard = make_scope_exit([&]() {
1283 // If the transform is aborted, discard the ScalarizationResults.
1284 for (auto &Pair : NeedFreeze)
1285 Pair.second.discard();
1288 // Check if all users of the load are extracts with no memory modifications
1289 // between the load and the extract. Compute the cost of both the original
1290 // code and the scalarized version.
1291 for (User *U : LI->users()) {
1292 auto *UI = dyn_cast<ExtractElementInst>(U);
1293 if (!UI || UI->getParent() != LI->getParent())
1294 return false;
1296 // Check if any instruction between the load and the extract may modify
1297 // memory.
1298 if (LastCheckedInst->comesBefore(UI)) {
1299 for (Instruction &I :
1300 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1301 // Bail out if we reached the check limit or the instruction may write
1302 // to memory.
1303 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1304 return false;
1305 NumInstChecked++;
1307 LastCheckedInst = UI;
1310 auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
1311 if (ScalarIdx.isUnsafe())
1312 return false;
1313 if (ScalarIdx.isSafeWithFreeze()) {
1314 NeedFreeze.try_emplace(UI, ScalarIdx);
1315 ScalarIdx.discard();
1318 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1319 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1320 OriginalCost +=
1321 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1322 Index ? Index->getZExtValue() : -1);
1323 ScalarizedCost +=
1324 TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1325 Align(1), LI->getPointerAddressSpace());
1326 ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1329 if (ScalarizedCost >= OriginalCost)
1330 return false;
1332 // Replace extracts with narrow scalar loads.
1333 for (User *U : LI->users()) {
1334 auto *EI = cast<ExtractElementInst>(U);
1335 Value *Idx = EI->getOperand(1);
1337 // Insert 'freeze' for poison indexes.
1338 auto It = NeedFreeze.find(EI);
1339 if (It != NeedFreeze.end())
1340 It->second.freeze(Builder, *cast<Instruction>(Idx));
1342 Builder.SetInsertPoint(EI);
1343 Value *GEP =
1344 Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1345 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1346 VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1348 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1349 LI->getAlign(), VecTy->getElementType(), Idx, DL);
1350 NewLoad->setAlignment(ScalarOpAlignment);
1352 replaceValue(*EI, *NewLoad);
1355 FailureGuard.release();
1356 return true;
1359 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
1360 /// "binop (shuffle), (shuffle)".
1361 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1362 auto *VecTy = cast<FixedVectorType>(I.getType());
1363 BinaryOperator *B0, *B1;
1364 ArrayRef<int> Mask;
1365 if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
1366 m_Mask(Mask))) ||
1367 B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
1368 return false;
1370 // Try to replace a binop with a shuffle if the shuffle is not costly.
1371 // The new shuffle will choose from a single, common operand, so it may be
1372 // cheaper than the existing two-operand shuffle.
1373 SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
1374 Instruction::BinaryOps Opcode = B0->getOpcode();
1375 InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
1376 InstructionCost ShufCost = TTI.getShuffleCost(
1377 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
1378 if (ShufCost > BinopCost)
1379 return false;
1381 // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1382 Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
1383 Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
1384 if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
1385 std::swap(X, Y);
1387 Value *Shuf0, *Shuf1;
1388 if (X == Z) {
1389 // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
1390 Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
1391 Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
1392 } else if (Y == W) {
1393 // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
1394 Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
1395 Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
1396 } else {
1397 return false;
1400 Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1401 // Intersect flags from the old binops.
1402 if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1403 NewInst->copyIRFlags(B0);
1404 NewInst->andIRFlags(B1);
1406 replaceValue(I, *NewBO);
1407 return true;
1410 /// Given a commutative reduction, the order of the input lanes does not alter
1411 /// the results. We can use this to remove certain shuffles feeding the
1412 /// reduction, removing the need to shuffle at all.
1413 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
1414 auto *II = dyn_cast<IntrinsicInst>(&I);
1415 if (!II)
1416 return false;
1417 switch (II->getIntrinsicID()) {
1418 case Intrinsic::vector_reduce_add:
1419 case Intrinsic::vector_reduce_mul:
1420 case Intrinsic::vector_reduce_and:
1421 case Intrinsic::vector_reduce_or:
1422 case Intrinsic::vector_reduce_xor:
1423 case Intrinsic::vector_reduce_smin:
1424 case Intrinsic::vector_reduce_smax:
1425 case Intrinsic::vector_reduce_umin:
1426 case Intrinsic::vector_reduce_umax:
1427 break;
1428 default:
1429 return false;
1432 // Find all the inputs when looking through operations that do not alter the
1433 // lane order (binops, for example). Currently we look for a single shuffle,
1434 // and can ignore splat values.
1435 std::queue<Value *> Worklist;
1436 SmallPtrSet<Value *, 4> Visited;
1437 ShuffleVectorInst *Shuffle = nullptr;
1438 if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
1439 Worklist.push(Op);
1441 while (!Worklist.empty()) {
1442 Value *CV = Worklist.front();
1443 Worklist.pop();
1444 if (Visited.contains(CV))
1445 continue;
1447 // Splats don't change the order, so can be safely ignored.
1448 if (isSplatValue(CV))
1449 continue;
1451 Visited.insert(CV);
1453 if (auto *CI = dyn_cast<Instruction>(CV)) {
1454 if (CI->isBinaryOp()) {
1455 for (auto *Op : CI->operand_values())
1456 Worklist.push(Op);
1457 continue;
1458 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
1459 if (Shuffle && Shuffle != SV)
1460 return false;
1461 Shuffle = SV;
1462 continue;
1466 // Anything else is currently an unknown node.
1467 return false;
1470 if (!Shuffle)
1471 return false;
1473 // Check all uses of the binary ops and shuffles are also included in the
1474 // lane-invariant operations (Visited should be the list of lanewise
1475 // instructions, including the shuffle that we found).
1476 for (auto *V : Visited)
1477 for (auto *U : V->users())
1478 if (!Visited.contains(U) && U != &I)
1479 return false;
1481 FixedVectorType *VecType =
1482 dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
1483 if (!VecType)
1484 return false;
1485 FixedVectorType *ShuffleInputType =
1486 dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
1487 if (!ShuffleInputType)
1488 return false;
1489 unsigned NumInputElts = ShuffleInputType->getNumElements();
1491 // Find the mask from sorting the lanes into order. This is most likely to
1492 // become a identity or concat mask. Undef elements are pushed to the end.
1493 SmallVector<int> ConcatMask;
1494 Shuffle->getShuffleMask(ConcatMask);
1495 sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
1496 // In the case of a truncating shuffle it's possible for the mask
1497 // to have an index greater than the size of the resulting vector.
1498 // This requires special handling.
1499 bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
1500 bool UsesSecondVec =
1501 any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
1503 FixedVectorType *VecTyForCost =
1504 (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
1505 InstructionCost OldCost = TTI.getShuffleCost(
1506 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
1507 VecTyForCost, Shuffle->getShuffleMask());
1508 InstructionCost NewCost = TTI.getShuffleCost(
1509 UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
1510 VecTyForCost, ConcatMask);
1512 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
1513 << "\n");
1514 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost
1515 << "\n");
1516 if (NewCost < OldCost) {
1517 Builder.SetInsertPoint(Shuffle);
1518 Value *NewShuffle = Builder.CreateShuffleVector(
1519 Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
1520 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
1521 replaceValue(*Shuffle, *NewShuffle);
1524 // See if we can re-use foldSelectShuffle, getting it to reduce the size of
1525 // the shuffle into a nicer order, as it can ignore the order of the shuffles.
1526 return foldSelectShuffle(*Shuffle, true);
1529 /// This method looks for groups of shuffles acting on binops, of the form:
1530 /// %x = shuffle ...
1531 /// %y = shuffle ...
1532 /// %a = binop %x, %y
1533 /// %b = binop %x, %y
1534 /// shuffle %a, %b, selectmask
1535 /// We may, especially if the shuffle is wider than legal, be able to convert
1536 /// the shuffle to a form where only parts of a and b need to be computed. On
1537 /// architectures with no obvious "select" shuffle, this can reduce the total
1538 /// number of operations if the target reports them as cheaper.
1539 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
1540 auto *SVI = cast<ShuffleVectorInst>(&I);
1541 auto *VT = cast<FixedVectorType>(I.getType());
1542 auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
1543 auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
1544 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
1545 VT != Op0->getType())
1546 return false;
1548 auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
1549 auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
1550 auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
1551 auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
1552 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
1553 auto checkSVNonOpUses = [&](Instruction *I) {
1554 if (!I || I->getOperand(0)->getType() != VT)
1555 return true;
1556 return any_of(I->users(), [&](User *U) {
1557 return U != Op0 && U != Op1 &&
1558 !(isa<ShuffleVectorInst>(U) &&
1559 (InputShuffles.contains(cast<Instruction>(U)) ||
1560 isInstructionTriviallyDead(cast<Instruction>(U))));
1563 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
1564 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
1565 return false;
1567 // Collect all the uses that are shuffles that we can transform together. We
1568 // may not have a single shuffle, but a group that can all be transformed
1569 // together profitably.
1570 SmallVector<ShuffleVectorInst *> Shuffles;
1571 auto collectShuffles = [&](Instruction *I) {
1572 for (auto *U : I->users()) {
1573 auto *SV = dyn_cast<ShuffleVectorInst>(U);
1574 if (!SV || SV->getType() != VT)
1575 return false;
1576 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
1577 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
1578 return false;
1579 if (!llvm::is_contained(Shuffles, SV))
1580 Shuffles.push_back(SV);
1582 return true;
1584 if (!collectShuffles(Op0) || !collectShuffles(Op1))
1585 return false;
1586 // From a reduction, we need to be processing a single shuffle, otherwise the
1587 // other uses will not be lane-invariant.
1588 if (FromReduction && Shuffles.size() > 1)
1589 return false;
1591 // Add any shuffle uses for the shuffles we have found, to include them in our
1592 // cost calculations.
1593 if (!FromReduction) {
1594 for (ShuffleVectorInst *SV : Shuffles) {
1595 for (auto *U : SV->users()) {
1596 ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
1597 if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
1598 Shuffles.push_back(SSV);
1603 // For each of the output shuffles, we try to sort all the first vector
1604 // elements to the beginning, followed by the second array elements at the
1605 // end. If the binops are legalized to smaller vectors, this may reduce total
1606 // number of binops. We compute the ReconstructMask mask needed to convert
1607 // back to the original lane order.
1608 SmallVector<std::pair<int, int>> V1, V2;
1609 SmallVector<SmallVector<int>> OrigReconstructMasks;
1610 int MaxV1Elt = 0, MaxV2Elt = 0;
1611 unsigned NumElts = VT->getNumElements();
1612 for (ShuffleVectorInst *SVN : Shuffles) {
1613 SmallVector<int> Mask;
1614 SVN->getShuffleMask(Mask);
1616 // Check the operands are the same as the original, or reversed (in which
1617 // case we need to commute the mask).
1618 Value *SVOp0 = SVN->getOperand(0);
1619 Value *SVOp1 = SVN->getOperand(1);
1620 if (isa<UndefValue>(SVOp1)) {
1621 auto *SSV = cast<ShuffleVectorInst>(SVOp0);
1622 SVOp0 = SSV->getOperand(0);
1623 SVOp1 = SSV->getOperand(1);
1624 for (unsigned I = 0, E = Mask.size(); I != E; I++) {
1625 if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
1626 return false;
1627 Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
1630 if (SVOp0 == Op1 && SVOp1 == Op0) {
1631 std::swap(SVOp0, SVOp1);
1632 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1634 if (SVOp0 != Op0 || SVOp1 != Op1)
1635 return false;
1637 // Calculate the reconstruction mask for this shuffle, as the mask needed to
1638 // take the packed values from Op0/Op1 and reconstructing to the original
1639 // order.
1640 SmallVector<int> ReconstructMask;
1641 for (unsigned I = 0; I < Mask.size(); I++) {
1642 if (Mask[I] < 0) {
1643 ReconstructMask.push_back(-1);
1644 } else if (Mask[I] < static_cast<int>(NumElts)) {
1645 MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
1646 auto It = find_if(V1, [&](const std::pair<int, int> &A) {
1647 return Mask[I] == A.first;
1649 if (It != V1.end())
1650 ReconstructMask.push_back(It - V1.begin());
1651 else {
1652 ReconstructMask.push_back(V1.size());
1653 V1.emplace_back(Mask[I], V1.size());
1655 } else {
1656 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
1657 auto It = find_if(V2, [&](const std::pair<int, int> &A) {
1658 return Mask[I] - static_cast<int>(NumElts) == A.first;
1660 if (It != V2.end())
1661 ReconstructMask.push_back(NumElts + It - V2.begin());
1662 else {
1663 ReconstructMask.push_back(NumElts + V2.size());
1664 V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
1669 // For reductions, we know that the lane ordering out doesn't alter the
1670 // result. In-order can help simplify the shuffle away.
1671 if (FromReduction)
1672 sort(ReconstructMask);
1673 OrigReconstructMasks.push_back(std::move(ReconstructMask));
1676 // If the Maximum element used from V1 and V2 are not larger than the new
1677 // vectors, the vectors are already packes and performing the optimization
1678 // again will likely not help any further. This also prevents us from getting
1679 // stuck in a cycle in case the costs do not also rule it out.
1680 if (V1.empty() || V2.empty() ||
1681 (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
1682 MaxV2Elt == static_cast<int>(V2.size()) - 1))
1683 return false;
1685 // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
1686 // shuffle of another shuffle, or not a shuffle (that is treated like a
1687 // identity shuffle).
1688 auto GetBaseMaskValue = [&](Instruction *I, int M) {
1689 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1690 if (!SV)
1691 return M;
1692 if (isa<UndefValue>(SV->getOperand(1)))
1693 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1694 if (InputShuffles.contains(SSV))
1695 return SSV->getMaskValue(SV->getMaskValue(M));
1696 return SV->getMaskValue(M);
1699 // Attempt to sort the inputs my ascending mask values to make simpler input
1700 // shuffles and push complex shuffles down to the uses. We sort on the first
1701 // of the two input shuffle orders, to try and get at least one input into a
1702 // nice order.
1703 auto SortBase = [&](Instruction *A, std::pair<int, int> X,
1704 std::pair<int, int> Y) {
1705 int MXA = GetBaseMaskValue(A, X.first);
1706 int MYA = GetBaseMaskValue(A, Y.first);
1707 return MXA < MYA;
1709 stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
1710 return SortBase(SVI0A, A, B);
1712 stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
1713 return SortBase(SVI1A, A, B);
1715 // Calculate our ReconstructMasks from the OrigReconstructMasks and the
1716 // modified order of the input shuffles.
1717 SmallVector<SmallVector<int>> ReconstructMasks;
1718 for (const auto &Mask : OrigReconstructMasks) {
1719 SmallVector<int> ReconstructMask;
1720 for (int M : Mask) {
1721 auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
1722 auto It = find_if(V, [M](auto A) { return A.second == M; });
1723 assert(It != V.end() && "Expected all entries in Mask");
1724 return std::distance(V.begin(), It);
1726 if (M < 0)
1727 ReconstructMask.push_back(-1);
1728 else if (M < static_cast<int>(NumElts)) {
1729 ReconstructMask.push_back(FindIndex(V1, M));
1730 } else {
1731 ReconstructMask.push_back(NumElts + FindIndex(V2, M));
1734 ReconstructMasks.push_back(std::move(ReconstructMask));
1737 // Calculate the masks needed for the new input shuffles, which get padded
1738 // with undef
1739 SmallVector<int> V1A, V1B, V2A, V2B;
1740 for (unsigned I = 0; I < V1.size(); I++) {
1741 V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
1742 V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
1744 for (unsigned I = 0; I < V2.size(); I++) {
1745 V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
1746 V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
1748 while (V1A.size() < NumElts) {
1749 V1A.push_back(PoisonMaskElem);
1750 V1B.push_back(PoisonMaskElem);
1752 while (V2A.size() < NumElts) {
1753 V2A.push_back(PoisonMaskElem);
1754 V2B.push_back(PoisonMaskElem);
1757 auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
1758 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1759 if (!SV)
1760 return C;
1761 return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
1762 ? TTI::SK_PermuteSingleSrc
1763 : TTI::SK_PermuteTwoSrc,
1764 VT, SV->getShuffleMask());
1766 auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
1767 return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
1770 // Get the costs of the shuffles + binops before and after with the new
1771 // shuffle masks.
1772 InstructionCost CostBefore =
1773 TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
1774 TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
1775 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
1776 InstructionCost(0), AddShuffleCost);
1777 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
1778 InstructionCost(0), AddShuffleCost);
1780 // The new binops will be unused for lanes past the used shuffle lengths.
1781 // These types attempt to get the correct cost for that from the target.
1782 FixedVectorType *Op0SmallVT =
1783 FixedVectorType::get(VT->getScalarType(), V1.size());
1784 FixedVectorType *Op1SmallVT =
1785 FixedVectorType::get(VT->getScalarType(), V2.size());
1786 InstructionCost CostAfter =
1787 TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
1788 TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
1789 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
1790 InstructionCost(0), AddShuffleMaskCost);
1791 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
1792 CostAfter +=
1793 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
1794 InstructionCost(0), AddShuffleMaskCost);
1796 LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
1797 LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
1798 << " vs CostAfter: " << CostAfter << "\n");
1799 if (CostBefore <= CostAfter)
1800 return false;
1802 // The cost model has passed, create the new instructions.
1803 auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
1804 auto *SV = dyn_cast<ShuffleVectorInst>(I);
1805 if (!SV)
1806 return I;
1807 if (isa<UndefValue>(SV->getOperand(1)))
1808 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1809 if (InputShuffles.contains(SSV))
1810 return SSV->getOperand(Op);
1811 return SV->getOperand(Op);
1813 Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
1814 Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
1815 GetShuffleOperand(SVI0A, 1), V1A);
1816 Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
1817 Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
1818 GetShuffleOperand(SVI0B, 1), V1B);
1819 Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
1820 Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
1821 GetShuffleOperand(SVI1A, 1), V2A);
1822 Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
1823 Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
1824 GetShuffleOperand(SVI1B, 1), V2B);
1825 Builder.SetInsertPoint(Op0);
1826 Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
1827 NSV0A, NSV0B);
1828 if (auto *I = dyn_cast<Instruction>(NOp0))
1829 I->copyIRFlags(Op0, true);
1830 Builder.SetInsertPoint(Op1);
1831 Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
1832 NSV1A, NSV1B);
1833 if (auto *I = dyn_cast<Instruction>(NOp1))
1834 I->copyIRFlags(Op1, true);
1836 for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
1837 Builder.SetInsertPoint(Shuffles[S]);
1838 Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
1839 replaceValue(*Shuffles[S], *NSV);
1842 Worklist.pushValue(NSV0A);
1843 Worklist.pushValue(NSV0B);
1844 Worklist.pushValue(NSV1A);
1845 Worklist.pushValue(NSV1B);
1846 for (auto *S : Shuffles)
1847 Worklist.add(S);
1848 return true;
1851 /// This is the entry point for all transforms. Pass manager differences are
1852 /// handled in the callers of this function.
1853 bool VectorCombine::run() {
1854 if (DisableVectorCombine)
1855 return false;
1857 // Don't attempt vectorization if the target does not support vectors.
1858 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1859 return false;
1861 bool MadeChange = false;
1862 auto FoldInst = [this, &MadeChange](Instruction &I) {
1863 Builder.SetInsertPoint(&I);
1864 bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
1865 auto Opcode = I.getOpcode();
1867 // These folds should be beneficial regardless of when this pass is run
1868 // in the optimization pipeline.
1869 // The type checking is for run-time efficiency. We can avoid wasting time
1870 // dispatching to folding functions if there's no chance of matching.
1871 if (IsFixedVectorType) {
1872 switch (Opcode) {
1873 case Instruction::InsertElement:
1874 MadeChange |= vectorizeLoadInsert(I);
1875 break;
1876 case Instruction::ShuffleVector:
1877 MadeChange |= widenSubvectorLoad(I);
1878 break;
1879 default:
1880 break;
1884 // This transform works with scalable and fixed vectors
1885 // TODO: Identify and allow other scalable transforms
1886 if (isa<VectorType>(I.getType())) {
1887 MadeChange |= scalarizeBinopOrCmp(I);
1888 MadeChange |= scalarizeLoadExtract(I);
1889 MadeChange |= scalarizeVPIntrinsic(I);
1892 if (Opcode == Instruction::Store)
1893 MadeChange |= foldSingleElementStore(I);
1895 // If this is an early pipeline invocation of this pass, we are done.
1896 if (TryEarlyFoldsOnly)
1897 return;
1899 // Otherwise, try folds that improve codegen but may interfere with
1900 // early IR canonicalizations.
1901 // The type checking is for run-time efficiency. We can avoid wasting time
1902 // dispatching to folding functions if there's no chance of matching.
1903 if (IsFixedVectorType) {
1904 switch (Opcode) {
1905 case Instruction::InsertElement:
1906 MadeChange |= foldInsExtFNeg(I);
1907 break;
1908 case Instruction::ShuffleVector:
1909 MadeChange |= foldShuffleOfBinops(I);
1910 MadeChange |= foldSelectShuffle(I);
1911 break;
1912 case Instruction::BitCast:
1913 MadeChange |= foldBitcastShuffle(I);
1914 break;
1916 } else {
1917 switch (Opcode) {
1918 case Instruction::Call:
1919 MadeChange |= foldShuffleFromReductions(I);
1920 break;
1921 case Instruction::ICmp:
1922 case Instruction::FCmp:
1923 MadeChange |= foldExtractExtract(I);
1924 break;
1925 default:
1926 if (Instruction::isBinaryOp(Opcode)) {
1927 MadeChange |= foldExtractExtract(I);
1928 MadeChange |= foldExtractedCmps(I);
1930 break;
1935 for (BasicBlock &BB : F) {
1936 // Ignore unreachable basic blocks.
1937 if (!DT.isReachableFromEntry(&BB))
1938 continue;
1939 // Use early increment range so that we can erase instructions in loop.
1940 for (Instruction &I : make_early_inc_range(BB)) {
1941 if (I.isDebugOrPseudoInst())
1942 continue;
1943 FoldInst(I);
1947 while (!Worklist.isEmpty()) {
1948 Instruction *I = Worklist.removeOne();
1949 if (!I)
1950 continue;
1952 if (isInstructionTriviallyDead(I)) {
1953 eraseInstruction(*I);
1954 continue;
1957 FoldInst(*I);
1960 return MadeChange;
1963 PreservedAnalyses VectorCombinePass::run(Function &F,
1964 FunctionAnalysisManager &FAM) {
1965 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1966 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1967 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1968 AAResults &AA = FAM.getResult<AAManager>(F);
1969 VectorCombine Combiner(F, TTI, DT, AA, AC, TryEarlyFoldsOnly);
1970 if (!Combiner.run())
1971 return PreservedAnalyses::all();
1972 PreservedAnalyses PA;
1973 PA.preserveSet<CFGAnalyses>();
1974 return PA;