1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
35 #define DEBUG_TYPE "vector-combine"
36 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 using namespace llvm::PatternMatch
;
41 STATISTIC(NumVecLoad
, "Number of vector loads formed");
42 STATISTIC(NumVecCmp
, "Number of vector compares formed");
43 STATISTIC(NumVecBO
, "Number of vector binops formed");
44 STATISTIC(NumVecCmpBO
, "Number of vector compare + binop formed");
45 STATISTIC(NumShufOfBitcast
, "Number of shuffles moved after bitcast");
46 STATISTIC(NumScalarBO
, "Number of scalar binops formed");
47 STATISTIC(NumScalarCmp
, "Number of scalar compares formed");
49 static cl::opt
<bool> DisableVectorCombine(
50 "disable-vector-combine", cl::init(false), cl::Hidden
,
51 cl::desc("Disable all vector combine transforms"));
53 static cl::opt
<bool> DisableBinopExtractShuffle(
54 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden
,
55 cl::desc("Disable binop extract to shuffle transforms"));
57 static cl::opt
<unsigned> MaxInstrsToScan(
58 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden
,
59 cl::desc("Max number of instructions to scan for vector combining."));
61 static const unsigned InvalidIndex
= std::numeric_limits
<unsigned>::max();
66 VectorCombine(Function
&F
, const TargetTransformInfo
&TTI
,
67 const DominatorTree
&DT
, AAResults
&AA
, AssumptionCache
&AC
,
68 bool TryEarlyFoldsOnly
)
69 : F(F
), Builder(F
.getContext()), TTI(TTI
), DT(DT
), AA(AA
), AC(AC
),
70 TryEarlyFoldsOnly(TryEarlyFoldsOnly
) {}
77 const TargetTransformInfo
&TTI
;
78 const DominatorTree
&DT
;
82 /// If true, only perform beneficial early IR transforms. Do not introduce new
83 /// vector operations.
84 bool TryEarlyFoldsOnly
;
86 InstructionWorklist Worklist
;
88 // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
89 // parameter. That should be updated to specific sub-classes because the
90 // run loop was changed to dispatch on opcode.
91 bool vectorizeLoadInsert(Instruction
&I
);
92 bool widenSubvectorLoad(Instruction
&I
);
93 ExtractElementInst
*getShuffleExtract(ExtractElementInst
*Ext0
,
94 ExtractElementInst
*Ext1
,
95 unsigned PreferredExtractIndex
) const;
96 bool isExtractExtractCheap(ExtractElementInst
*Ext0
, ExtractElementInst
*Ext1
,
98 ExtractElementInst
*&ConvertToShuffle
,
99 unsigned PreferredExtractIndex
);
100 void foldExtExtCmp(ExtractElementInst
*Ext0
, ExtractElementInst
*Ext1
,
102 void foldExtExtBinop(ExtractElementInst
*Ext0
, ExtractElementInst
*Ext1
,
104 bool foldExtractExtract(Instruction
&I
);
105 bool foldInsExtFNeg(Instruction
&I
);
106 bool foldBitcastShuffle(Instruction
&I
);
107 bool scalarizeBinopOrCmp(Instruction
&I
);
108 bool scalarizeVPIntrinsic(Instruction
&I
);
109 bool foldExtractedCmps(Instruction
&I
);
110 bool foldSingleElementStore(Instruction
&I
);
111 bool scalarizeLoadExtract(Instruction
&I
);
112 bool foldShuffleOfBinops(Instruction
&I
);
113 bool foldShuffleFromReductions(Instruction
&I
);
114 bool foldSelectShuffle(Instruction
&I
, bool FromReduction
= false);
116 void replaceValue(Value
&Old
, Value
&New
) {
117 Old
.replaceAllUsesWith(&New
);
118 if (auto *NewI
= dyn_cast
<Instruction
>(&New
)) {
120 Worklist
.pushUsersToWorkList(*NewI
);
121 Worklist
.pushValue(NewI
);
123 Worklist
.pushValue(&Old
);
126 void eraseInstruction(Instruction
&I
) {
127 for (Value
*Op
: I
.operands())
128 Worklist
.pushValue(Op
);
135 static bool canWidenLoad(LoadInst
*Load
, const TargetTransformInfo
&TTI
) {
136 // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
137 // The widened load may load data from dirty regions or create data races
138 // non-existent in the source.
139 if (!Load
|| !Load
->isSimple() || !Load
->hasOneUse() ||
140 Load
->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag
) ||
141 mustSuppressSpeculation(*Load
))
144 // We are potentially transforming byte-sized (8-bit) memory accesses, so make
145 // sure we have all of our type-based constraints in place for this target.
146 Type
*ScalarTy
= Load
->getType()->getScalarType();
147 uint64_t ScalarSize
= ScalarTy
->getPrimitiveSizeInBits();
148 unsigned MinVectorSize
= TTI
.getMinVectorRegisterBitWidth();
149 if (!ScalarSize
|| !MinVectorSize
|| MinVectorSize
% ScalarSize
!= 0 ||
156 bool VectorCombine::vectorizeLoadInsert(Instruction
&I
) {
157 // Match insert into fixed vector of scalar value.
158 // TODO: Handle non-zero insert index.
160 if (!match(&I
, m_InsertElt(m_Undef(), m_Value(Scalar
), m_ZeroInt())) ||
161 !Scalar
->hasOneUse())
164 // Optionally match an extract from another vector.
166 bool HasExtract
= match(Scalar
, m_ExtractElt(m_Value(X
), m_ZeroInt()));
170 auto *Load
= dyn_cast
<LoadInst
>(X
);
171 if (!canWidenLoad(Load
, TTI
))
174 Type
*ScalarTy
= Scalar
->getType();
175 uint64_t ScalarSize
= ScalarTy
->getPrimitiveSizeInBits();
176 unsigned MinVectorSize
= TTI
.getMinVectorRegisterBitWidth();
178 // Check safety of replacing the scalar load with a larger vector load.
179 // We use minimal alignment (maximum flexibility) because we only care about
180 // the dereferenceable region. When calculating cost and creating a new op,
181 // we may use a larger value based on alignment attributes.
182 const DataLayout
&DL
= I
.getModule()->getDataLayout();
183 Value
*SrcPtr
= Load
->getPointerOperand()->stripPointerCasts();
184 assert(isa
<PointerType
>(SrcPtr
->getType()) && "Expected a pointer type");
186 unsigned MinVecNumElts
= MinVectorSize
/ ScalarSize
;
187 auto *MinVecTy
= VectorType::get(ScalarTy
, MinVecNumElts
, false);
188 unsigned OffsetEltIndex
= 0;
189 Align Alignment
= Load
->getAlign();
190 if (!isSafeToLoadUnconditionally(SrcPtr
, MinVecTy
, Align(1), DL
, Load
, &AC
,
192 // It is not safe to load directly from the pointer, but we can still peek
193 // through gep offsets and check if it safe to load from a base address with
194 // updated alignment. If it is, we can shuffle the element(s) into place
196 unsigned OffsetBitWidth
= DL
.getIndexTypeSizeInBits(SrcPtr
->getType());
197 APInt
Offset(OffsetBitWidth
, 0);
198 SrcPtr
= SrcPtr
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
200 // We want to shuffle the result down from a high element of a vector, so
201 // the offset must be positive.
202 if (Offset
.isNegative())
205 // The offset must be a multiple of the scalar element to shuffle cleanly
206 // in the element's size.
207 uint64_t ScalarSizeInBytes
= ScalarSize
/ 8;
208 if (Offset
.urem(ScalarSizeInBytes
) != 0)
211 // If we load MinVecNumElts, will our target element still be loaded?
212 OffsetEltIndex
= Offset
.udiv(ScalarSizeInBytes
).getZExtValue();
213 if (OffsetEltIndex
>= MinVecNumElts
)
216 if (!isSafeToLoadUnconditionally(SrcPtr
, MinVecTy
, Align(1), DL
, Load
, &AC
,
220 // Update alignment with offset value. Note that the offset could be negated
221 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
222 // negation does not change the result of the alignment calculation.
223 Alignment
= commonAlignment(Alignment
, Offset
.getZExtValue());
226 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
227 // Use the greater of the alignment on the load or its source pointer.
228 Alignment
= std::max(SrcPtr
->getPointerAlignment(DL
), Alignment
);
229 Type
*LoadTy
= Load
->getType();
230 unsigned AS
= Load
->getPointerAddressSpace();
231 InstructionCost OldCost
=
232 TTI
.getMemoryOpCost(Instruction::Load
, LoadTy
, Alignment
, AS
);
233 APInt DemandedElts
= APInt::getOneBitSet(MinVecNumElts
, 0);
234 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
236 TTI
.getScalarizationOverhead(MinVecTy
, DemandedElts
,
237 /* Insert */ true, HasExtract
, CostKind
);
239 // New pattern: load VecPtr
240 InstructionCost NewCost
=
241 TTI
.getMemoryOpCost(Instruction::Load
, MinVecTy
, Alignment
, AS
);
242 // Optionally, we are shuffling the loaded vector element(s) into place.
243 // For the mask set everything but element 0 to undef to prevent poison from
244 // propagating from the extra loaded memory. This will also optionally
245 // shrink/grow the vector from the loaded size to the output size.
246 // We assume this operation has no cost in codegen if there was no offset.
247 // Note that we could use freeze to avoid poison problems, but then we might
248 // still need a shuffle to change the vector size.
249 auto *Ty
= cast
<FixedVectorType
>(I
.getType());
250 unsigned OutputNumElts
= Ty
->getNumElements();
251 SmallVector
<int, 16> Mask(OutputNumElts
, PoisonMaskElem
);
252 assert(OffsetEltIndex
< MinVecNumElts
&& "Address offset too big");
253 Mask
[0] = OffsetEltIndex
;
255 NewCost
+= TTI
.getShuffleCost(TTI::SK_PermuteSingleSrc
, MinVecTy
, Mask
);
257 // We can aggressively convert to the vector form because the backend can
258 // invert this transform if it does not result in a performance win.
259 if (OldCost
< NewCost
|| !NewCost
.isValid())
262 // It is safe and potentially profitable to load a vector directly:
263 // inselt undef, load Scalar, 0 --> load VecPtr
264 IRBuilder
<> Builder(Load
);
266 Builder
.CreatePointerBitCastOrAddrSpaceCast(SrcPtr
, Builder
.getPtrTy(AS
));
267 Value
*VecLd
= Builder
.CreateAlignedLoad(MinVecTy
, CastedPtr
, Alignment
);
268 VecLd
= Builder
.CreateShuffleVector(VecLd
, Mask
);
270 replaceValue(I
, *VecLd
);
275 /// If we are loading a vector and then inserting it into a larger vector with
276 /// undefined elements, try to load the larger vector and eliminate the insert.
277 /// This removes a shuffle in IR and may allow combining of other loaded values.
278 bool VectorCombine::widenSubvectorLoad(Instruction
&I
) {
279 // Match subvector insert of fixed vector.
280 auto *Shuf
= cast
<ShuffleVectorInst
>(&I
);
281 if (!Shuf
->isIdentityWithPadding())
284 // Allow a non-canonical shuffle mask that is choosing elements from op1.
286 cast
<FixedVectorType
>(Shuf
->getOperand(0)->getType())->getNumElements();
287 unsigned OpIndex
= any_of(Shuf
->getShuffleMask(), [&NumOpElts
](int M
) {
288 return M
>= (int)(NumOpElts
);
291 auto *Load
= dyn_cast
<LoadInst
>(Shuf
->getOperand(OpIndex
));
292 if (!canWidenLoad(Load
, TTI
))
295 // We use minimal alignment (maximum flexibility) because we only care about
296 // the dereferenceable region. When calculating cost and creating a new op,
297 // we may use a larger value based on alignment attributes.
298 auto *Ty
= cast
<FixedVectorType
>(I
.getType());
299 const DataLayout
&DL
= I
.getModule()->getDataLayout();
300 Value
*SrcPtr
= Load
->getPointerOperand()->stripPointerCasts();
301 assert(isa
<PointerType
>(SrcPtr
->getType()) && "Expected a pointer type");
302 Align Alignment
= Load
->getAlign();
303 if (!isSafeToLoadUnconditionally(SrcPtr
, Ty
, Align(1), DL
, Load
, &AC
, &DT
))
306 Alignment
= std::max(SrcPtr
->getPointerAlignment(DL
), Alignment
);
307 Type
*LoadTy
= Load
->getType();
308 unsigned AS
= Load
->getPointerAddressSpace();
310 // Original pattern: insert_subvector (load PtrOp)
311 // This conservatively assumes that the cost of a subvector insert into an
312 // undef value is 0. We could add that cost if the cost model accurately
313 // reflects the real cost of that operation.
314 InstructionCost OldCost
=
315 TTI
.getMemoryOpCost(Instruction::Load
, LoadTy
, Alignment
, AS
);
317 // New pattern: load PtrOp
318 InstructionCost NewCost
=
319 TTI
.getMemoryOpCost(Instruction::Load
, Ty
, Alignment
, AS
);
321 // We can aggressively convert to the vector form because the backend can
322 // invert this transform if it does not result in a performance win.
323 if (OldCost
< NewCost
|| !NewCost
.isValid())
326 IRBuilder
<> Builder(Load
);
328 Builder
.CreatePointerBitCastOrAddrSpaceCast(SrcPtr
, Builder
.getPtrTy(AS
));
329 Value
*VecLd
= Builder
.CreateAlignedLoad(Ty
, CastedPtr
, Alignment
);
330 replaceValue(I
, *VecLd
);
335 /// Determine which, if any, of the inputs should be replaced by a shuffle
336 /// followed by extract from a different index.
337 ExtractElementInst
*VectorCombine::getShuffleExtract(
338 ExtractElementInst
*Ext0
, ExtractElementInst
*Ext1
,
339 unsigned PreferredExtractIndex
= InvalidIndex
) const {
340 auto *Index0C
= dyn_cast
<ConstantInt
>(Ext0
->getIndexOperand());
341 auto *Index1C
= dyn_cast
<ConstantInt
>(Ext1
->getIndexOperand());
342 assert(Index0C
&& Index1C
&& "Expected constant extract indexes");
344 unsigned Index0
= Index0C
->getZExtValue();
345 unsigned Index1
= Index1C
->getZExtValue();
347 // If the extract indexes are identical, no shuffle is needed.
348 if (Index0
== Index1
)
351 Type
*VecTy
= Ext0
->getVectorOperand()->getType();
352 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
353 assert(VecTy
== Ext1
->getVectorOperand()->getType() && "Need matching types");
354 InstructionCost Cost0
=
355 TTI
.getVectorInstrCost(*Ext0
, VecTy
, CostKind
, Index0
);
356 InstructionCost Cost1
=
357 TTI
.getVectorInstrCost(*Ext1
, VecTy
, CostKind
, Index1
);
359 // If both costs are invalid no shuffle is needed
360 if (!Cost0
.isValid() && !Cost1
.isValid())
363 // We are extracting from 2 different indexes, so one operand must be shuffled
364 // before performing a vector operation and/or extract. The more expensive
365 // extract will be replaced by a shuffle.
371 // If the costs are equal and there is a preferred extract index, shuffle the
373 if (PreferredExtractIndex
== Index0
)
375 if (PreferredExtractIndex
== Index1
)
378 // Otherwise, replace the extract with the higher index.
379 return Index0
> Index1
? Ext0
: Ext1
;
382 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
383 /// vector operation(s) followed by extract. Return true if the existing
384 /// instructions are cheaper than a vector alternative. Otherwise, return false
385 /// and if one of the extracts should be transformed to a shufflevector, set
386 /// \p ConvertToShuffle to that extract instruction.
387 bool VectorCombine::isExtractExtractCheap(ExtractElementInst
*Ext0
,
388 ExtractElementInst
*Ext1
,
389 const Instruction
&I
,
390 ExtractElementInst
*&ConvertToShuffle
,
391 unsigned PreferredExtractIndex
) {
392 auto *Ext0IndexC
= dyn_cast
<ConstantInt
>(Ext0
->getOperand(1));
393 auto *Ext1IndexC
= dyn_cast
<ConstantInt
>(Ext1
->getOperand(1));
394 assert(Ext0IndexC
&& Ext1IndexC
&& "Expected constant extract indexes");
396 unsigned Opcode
= I
.getOpcode();
397 Type
*ScalarTy
= Ext0
->getType();
398 auto *VecTy
= cast
<VectorType
>(Ext0
->getOperand(0)->getType());
399 InstructionCost ScalarOpCost
, VectorOpCost
;
401 // Get cost estimates for scalar and vector versions of the operation.
402 bool IsBinOp
= Instruction::isBinaryOp(Opcode
);
404 ScalarOpCost
= TTI
.getArithmeticInstrCost(Opcode
, ScalarTy
);
405 VectorOpCost
= TTI
.getArithmeticInstrCost(Opcode
, VecTy
);
407 assert((Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) &&
408 "Expected a compare");
409 CmpInst::Predicate Pred
= cast
<CmpInst
>(I
).getPredicate();
410 ScalarOpCost
= TTI
.getCmpSelInstrCost(
411 Opcode
, ScalarTy
, CmpInst::makeCmpResultType(ScalarTy
), Pred
);
412 VectorOpCost
= TTI
.getCmpSelInstrCost(
413 Opcode
, VecTy
, CmpInst::makeCmpResultType(VecTy
), Pred
);
416 // Get cost estimates for the extract elements. These costs will factor into
418 unsigned Ext0Index
= Ext0IndexC
->getZExtValue();
419 unsigned Ext1Index
= Ext1IndexC
->getZExtValue();
420 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
422 InstructionCost Extract0Cost
=
423 TTI
.getVectorInstrCost(*Ext0
, VecTy
, CostKind
, Ext0Index
);
424 InstructionCost Extract1Cost
=
425 TTI
.getVectorInstrCost(*Ext1
, VecTy
, CostKind
, Ext1Index
);
427 // A more expensive extract will always be replaced by a splat shuffle.
428 // For example, if Ext0 is more expensive:
429 // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
430 // extelt (opcode (splat V0, Ext0), V1), Ext1
431 // TODO: Evaluate whether that always results in lowest cost. Alternatively,
432 // check the cost of creating a broadcast shuffle and shuffling both
433 // operands to element 0.
434 InstructionCost CheapExtractCost
= std::min(Extract0Cost
, Extract1Cost
);
436 // Extra uses of the extracts mean that we include those costs in the
437 // vector total because those instructions will not be eliminated.
438 InstructionCost OldCost
, NewCost
;
439 if (Ext0
->getOperand(0) == Ext1
->getOperand(0) && Ext0Index
== Ext1Index
) {
440 // Handle a special case. If the 2 extracts are identical, adjust the
441 // formulas to account for that. The extra use charge allows for either the
442 // CSE'd pattern or an unoptimized form with identical values:
443 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
444 bool HasUseTax
= Ext0
== Ext1
? !Ext0
->hasNUses(2)
445 : !Ext0
->hasOneUse() || !Ext1
->hasOneUse();
446 OldCost
= CheapExtractCost
+ ScalarOpCost
;
447 NewCost
= VectorOpCost
+ CheapExtractCost
+ HasUseTax
* CheapExtractCost
;
449 // Handle the general case. Each extract is actually a different value:
450 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
451 OldCost
= Extract0Cost
+ Extract1Cost
+ ScalarOpCost
;
452 NewCost
= VectorOpCost
+ CheapExtractCost
+
453 !Ext0
->hasOneUse() * Extract0Cost
+
454 !Ext1
->hasOneUse() * Extract1Cost
;
457 ConvertToShuffle
= getShuffleExtract(Ext0
, Ext1
, PreferredExtractIndex
);
458 if (ConvertToShuffle
) {
459 if (IsBinOp
&& DisableBinopExtractShuffle
)
462 // If we are extracting from 2 different indexes, then one operand must be
463 // shuffled before performing the vector operation. The shuffle mask is
464 // poison except for 1 lane that is being translated to the remaining
465 // extraction lane. Therefore, it is a splat shuffle. Ex:
466 // ShufMask = { poison, poison, 0, poison }
467 // TODO: The cost model has an option for a "broadcast" shuffle
468 // (splat-from-element-0), but no option for a more general splat.
470 TTI
.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, VecTy
);
473 // Aggressively form a vector op if the cost is equal because the transform
474 // may enable further optimization.
475 // Codegen can reverse this transform (scalarize) if it was not profitable.
476 return OldCost
< NewCost
;
479 /// Create a shuffle that translates (shifts) 1 element from the input vector
480 /// to a new element location.
481 static Value
*createShiftShuffle(Value
*Vec
, unsigned OldIndex
,
482 unsigned NewIndex
, IRBuilder
<> &Builder
) {
483 // The shuffle mask is poison except for 1 lane that is being translated
484 // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
485 // ShufMask = { 2, poison, poison, poison }
486 auto *VecTy
= cast
<FixedVectorType
>(Vec
->getType());
487 SmallVector
<int, 32> ShufMask(VecTy
->getNumElements(), PoisonMaskElem
);
488 ShufMask
[NewIndex
] = OldIndex
;
489 return Builder
.CreateShuffleVector(Vec
, ShufMask
, "shift");
492 /// Given an extract element instruction with constant index operand, shuffle
493 /// the source vector (shift the scalar element) to a NewIndex for extraction.
494 /// Return null if the input can be constant folded, so that we are not creating
495 /// unnecessary instructions.
496 static ExtractElementInst
*translateExtract(ExtractElementInst
*ExtElt
,
498 IRBuilder
<> &Builder
) {
499 // Shufflevectors can only be created for fixed-width vectors.
500 if (!isa
<FixedVectorType
>(ExtElt
->getOperand(0)->getType()))
503 // If the extract can be constant-folded, this code is unsimplified. Defer
504 // to other passes to handle that.
505 Value
*X
= ExtElt
->getVectorOperand();
506 Value
*C
= ExtElt
->getIndexOperand();
507 assert(isa
<ConstantInt
>(C
) && "Expected a constant index operand");
508 if (isa
<Constant
>(X
))
511 Value
*Shuf
= createShiftShuffle(X
, cast
<ConstantInt
>(C
)->getZExtValue(),
513 return cast
<ExtractElementInst
>(Builder
.CreateExtractElement(Shuf
, NewIndex
));
516 /// Try to reduce extract element costs by converting scalar compares to vector
517 /// compares followed by extract.
518 /// cmp (ext0 V0, C), (ext1 V1, C)
519 void VectorCombine::foldExtExtCmp(ExtractElementInst
*Ext0
,
520 ExtractElementInst
*Ext1
, Instruction
&I
) {
521 assert(isa
<CmpInst
>(&I
) && "Expected a compare");
522 assert(cast
<ConstantInt
>(Ext0
->getIndexOperand())->getZExtValue() ==
523 cast
<ConstantInt
>(Ext1
->getIndexOperand())->getZExtValue() &&
524 "Expected matching constant extract indexes");
526 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
528 CmpInst::Predicate Pred
= cast
<CmpInst
>(&I
)->getPredicate();
529 Value
*V0
= Ext0
->getVectorOperand(), *V1
= Ext1
->getVectorOperand();
530 Value
*VecCmp
= Builder
.CreateCmp(Pred
, V0
, V1
);
531 Value
*NewExt
= Builder
.CreateExtractElement(VecCmp
, Ext0
->getIndexOperand());
532 replaceValue(I
, *NewExt
);
535 /// Try to reduce extract element costs by converting scalar binops to vector
536 /// binops followed by extract.
537 /// bo (ext0 V0, C), (ext1 V1, C)
538 void VectorCombine::foldExtExtBinop(ExtractElementInst
*Ext0
,
539 ExtractElementInst
*Ext1
, Instruction
&I
) {
540 assert(isa
<BinaryOperator
>(&I
) && "Expected a binary operator");
541 assert(cast
<ConstantInt
>(Ext0
->getIndexOperand())->getZExtValue() ==
542 cast
<ConstantInt
>(Ext1
->getIndexOperand())->getZExtValue() &&
543 "Expected matching constant extract indexes");
545 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
547 Value
*V0
= Ext0
->getVectorOperand(), *V1
= Ext1
->getVectorOperand();
549 Builder
.CreateBinOp(cast
<BinaryOperator
>(&I
)->getOpcode(), V0
, V1
);
551 // All IR flags are safe to back-propagate because any potential poison
552 // created in unused vector elements is discarded by the extract.
553 if (auto *VecBOInst
= dyn_cast
<Instruction
>(VecBO
))
554 VecBOInst
->copyIRFlags(&I
);
556 Value
*NewExt
= Builder
.CreateExtractElement(VecBO
, Ext0
->getIndexOperand());
557 replaceValue(I
, *NewExt
);
560 /// Match an instruction with extracted vector operands.
561 bool VectorCombine::foldExtractExtract(Instruction
&I
) {
562 // It is not safe to transform things like div, urem, etc. because we may
563 // create undefined behavior when executing those on unknown vector elements.
564 if (!isSafeToSpeculativelyExecute(&I
))
567 Instruction
*I0
, *I1
;
568 CmpInst::Predicate Pred
= CmpInst::BAD_ICMP_PREDICATE
;
569 if (!match(&I
, m_Cmp(Pred
, m_Instruction(I0
), m_Instruction(I1
))) &&
570 !match(&I
, m_BinOp(m_Instruction(I0
), m_Instruction(I1
))))
575 if (!match(I0
, m_ExtractElt(m_Value(V0
), m_ConstantInt(C0
))) ||
576 !match(I1
, m_ExtractElt(m_Value(V1
), m_ConstantInt(C1
))) ||
577 V0
->getType() != V1
->getType())
580 // If the scalar value 'I' is going to be re-inserted into a vector, then try
581 // to create an extract to that same element. The extract/insert can be
582 // reduced to a "select shuffle".
583 // TODO: If we add a larger pattern match that starts from an insert, this
584 // probably becomes unnecessary.
585 auto *Ext0
= cast
<ExtractElementInst
>(I0
);
586 auto *Ext1
= cast
<ExtractElementInst
>(I1
);
587 uint64_t InsertIndex
= InvalidIndex
;
590 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex
)));
592 ExtractElementInst
*ExtractToChange
;
593 if (isExtractExtractCheap(Ext0
, Ext1
, I
, ExtractToChange
, InsertIndex
))
596 if (ExtractToChange
) {
597 unsigned CheapExtractIdx
= ExtractToChange
== Ext0
? C1
: C0
;
598 ExtractElementInst
*NewExtract
=
599 translateExtract(ExtractToChange
, CheapExtractIdx
, Builder
);
602 if (ExtractToChange
== Ext0
)
608 if (Pred
!= CmpInst::BAD_ICMP_PREDICATE
)
609 foldExtExtCmp(Ext0
, Ext1
, I
);
611 foldExtExtBinop(Ext0
, Ext1
, I
);
618 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
620 bool VectorCombine::foldInsExtFNeg(Instruction
&I
) {
621 // Match an insert (op (extract)) pattern.
625 if (!match(&I
, m_InsertElt(m_Value(DestVec
), m_OneUse(m_Instruction(FNeg
)),
626 m_ConstantInt(Index
))))
629 // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
631 Instruction
*Extract
;
632 if (!match(FNeg
, m_FNeg(m_CombineAnd(
633 m_Instruction(Extract
),
634 m_ExtractElt(m_Value(SrcVec
), m_SpecificInt(Index
))))))
637 // TODO: We could handle this with a length-changing shuffle.
638 auto *VecTy
= cast
<FixedVectorType
>(I
.getType());
639 if (SrcVec
->getType() != VecTy
)
642 // Ignore bogus insert/extract index.
643 unsigned NumElts
= VecTy
->getNumElements();
644 if (Index
>= NumElts
)
647 // We are inserting the negated element into the same lane that we extracted
648 // from. This is equivalent to a select-shuffle that chooses all but the
649 // negated element from the destination vector.
650 SmallVector
<int> Mask(NumElts
);
651 std::iota(Mask
.begin(), Mask
.end(), 0);
652 Mask
[Index
] = Index
+ NumElts
;
654 Type
*ScalarTy
= VecTy
->getScalarType();
655 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
656 InstructionCost OldCost
=
657 TTI
.getArithmeticInstrCost(Instruction::FNeg
, ScalarTy
) +
658 TTI
.getVectorInstrCost(I
, VecTy
, CostKind
, Index
);
660 // If the extract has one use, it will be eliminated, so count it in the
661 // original cost. If it has more than one use, ignore the cost because it will
662 // be the same before/after.
663 if (Extract
->hasOneUse())
664 OldCost
+= TTI
.getVectorInstrCost(*Extract
, VecTy
, CostKind
, Index
);
666 InstructionCost NewCost
=
667 TTI
.getArithmeticInstrCost(Instruction::FNeg
, VecTy
) +
668 TTI
.getShuffleCost(TargetTransformInfo::SK_Select
, VecTy
, Mask
);
670 if (NewCost
> OldCost
)
673 // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
674 // shuffle DestVec, (fneg SrcVec), Mask
675 Value
*VecFNeg
= Builder
.CreateFNegFMF(SrcVec
, FNeg
);
676 Value
*Shuf
= Builder
.CreateShuffleVector(DestVec
, VecFNeg
, Mask
);
677 replaceValue(I
, *Shuf
);
681 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
682 /// destination type followed by shuffle. This can enable further transforms by
683 /// moving bitcasts or shuffles together.
684 bool VectorCombine::foldBitcastShuffle(Instruction
&I
) {
687 if (!match(&I
, m_BitCast(
688 m_OneUse(m_Shuffle(m_Value(V
), m_Undef(), m_Mask(Mask
))))))
691 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
692 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
693 // mask for scalable type is a splat or not.
694 // 2) Disallow non-vector casts.
695 // TODO: We could allow any shuffle.
696 auto *DestTy
= dyn_cast
<FixedVectorType
>(I
.getType());
697 auto *SrcTy
= dyn_cast
<FixedVectorType
>(V
->getType());
698 if (!DestTy
|| !SrcTy
)
701 unsigned DestEltSize
= DestTy
->getScalarSizeInBits();
702 unsigned SrcEltSize
= SrcTy
->getScalarSizeInBits();
703 if (SrcTy
->getPrimitiveSizeInBits() % DestEltSize
!= 0)
706 SmallVector
<int, 16> NewMask
;
707 if (DestEltSize
<= SrcEltSize
) {
708 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
709 // always be expanded to the equivalent form choosing narrower elements.
710 assert(SrcEltSize
% DestEltSize
== 0 && "Unexpected shuffle mask");
711 unsigned ScaleFactor
= SrcEltSize
/ DestEltSize
;
712 narrowShuffleMaskElts(ScaleFactor
, Mask
, NewMask
);
714 // The bitcast is from narrow elements to wide elements. The shuffle mask
715 // must choose consecutive elements to allow casting first.
716 assert(DestEltSize
% SrcEltSize
== 0 && "Unexpected shuffle mask");
717 unsigned ScaleFactor
= DestEltSize
/ SrcEltSize
;
718 if (!widenShuffleMaskElts(ScaleFactor
, Mask
, NewMask
))
722 // Bitcast the shuffle src - keep its original width but using the destination
724 unsigned NumSrcElts
= SrcTy
->getPrimitiveSizeInBits() / DestEltSize
;
725 auto *ShuffleTy
= FixedVectorType::get(DestTy
->getScalarType(), NumSrcElts
);
727 // The new shuffle must not cost more than the old shuffle. The bitcast is
728 // moved ahead of the shuffle, so assume that it has the same cost as before.
729 InstructionCost DestCost
= TTI
.getShuffleCost(
730 TargetTransformInfo::SK_PermuteSingleSrc
, ShuffleTy
, NewMask
);
731 InstructionCost SrcCost
=
732 TTI
.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, SrcTy
, Mask
);
733 if (DestCost
> SrcCost
|| !DestCost
.isValid())
736 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
738 Value
*CastV
= Builder
.CreateBitCast(V
, ShuffleTy
);
739 Value
*Shuf
= Builder
.CreateShuffleVector(CastV
, NewMask
);
740 replaceValue(I
, *Shuf
);
744 /// VP Intrinsics whose vector operands are both splat values may be simplified
745 /// into the scalar version of the operation and the result splatted. This
746 /// can lead to scalarization down the line.
747 bool VectorCombine::scalarizeVPIntrinsic(Instruction
&I
) {
748 if (!isa
<VPIntrinsic
>(I
))
750 VPIntrinsic
&VPI
= cast
<VPIntrinsic
>(I
);
751 Value
*Op0
= VPI
.getArgOperand(0);
752 Value
*Op1
= VPI
.getArgOperand(1);
754 if (!isSplatValue(Op0
) || !isSplatValue(Op1
))
757 // Check getSplatValue early in this function, to avoid doing unnecessary
759 Value
*ScalarOp0
= getSplatValue(Op0
);
760 Value
*ScalarOp1
= getSplatValue(Op1
);
761 if (!ScalarOp0
|| !ScalarOp1
)
764 // For the binary VP intrinsics supported here, the result on disabled lanes
765 // is a poison value. For now, only do this simplification if all lanes
767 // TODO: Relax the condition that all lanes are active by using insertelement
768 // on inactive lanes.
769 auto IsAllTrueMask
= [](Value
*MaskVal
) {
770 if (Value
*SplattedVal
= getSplatValue(MaskVal
))
771 if (auto *ConstValue
= dyn_cast
<Constant
>(SplattedVal
))
772 return ConstValue
->isAllOnesValue();
775 if (!IsAllTrueMask(VPI
.getArgOperand(2)))
778 // Check to make sure we support scalarization of the intrinsic
779 Intrinsic::ID IntrID
= VPI
.getIntrinsicID();
780 if (!VPBinOpIntrinsic::isVPBinOp(IntrID
))
783 // Calculate cost of splatting both operands into vectors and the vector
785 VectorType
*VecTy
= cast
<VectorType
>(VPI
.getType());
786 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
787 InstructionCost SplatCost
=
788 TTI
.getVectorInstrCost(Instruction::InsertElement
, VecTy
, CostKind
, 0) +
789 TTI
.getShuffleCost(TargetTransformInfo::SK_Broadcast
, VecTy
);
791 // Calculate the cost of the VP Intrinsic
792 SmallVector
<Type
*, 4> Args
;
793 for (Value
*V
: VPI
.args())
794 Args
.push_back(V
->getType());
795 IntrinsicCostAttributes
Attrs(IntrID
, VecTy
, Args
);
796 InstructionCost VectorOpCost
= TTI
.getIntrinsicInstrCost(Attrs
, CostKind
);
797 InstructionCost OldCost
= 2 * SplatCost
+ VectorOpCost
;
799 // Determine scalar opcode
800 std::optional
<unsigned> FunctionalOpcode
=
801 VPI
.getFunctionalOpcode();
802 std::optional
<Intrinsic::ID
> ScalarIntrID
= std::nullopt
;
803 if (!FunctionalOpcode
) {
804 ScalarIntrID
= VPI
.getFunctionalIntrinsicID();
809 // Calculate cost of scalarizing
810 InstructionCost ScalarOpCost
= 0;
812 IntrinsicCostAttributes
Attrs(*ScalarIntrID
, VecTy
->getScalarType(), Args
);
813 ScalarOpCost
= TTI
.getIntrinsicInstrCost(Attrs
, CostKind
);
816 TTI
.getArithmeticInstrCost(*FunctionalOpcode
, VecTy
->getScalarType());
819 // The existing splats may be kept around if other instructions use them.
820 InstructionCost CostToKeepSplats
=
821 (SplatCost
* !Op0
->hasOneUse()) + (SplatCost
* !Op1
->hasOneUse());
822 InstructionCost NewCost
= ScalarOpCost
+ SplatCost
+ CostToKeepSplats
;
824 LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
826 LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
827 << ", Cost of scalarizing:" << NewCost
<< "\n");
829 // We want to scalarize unless the vector variant actually has lower cost.
830 if (OldCost
< NewCost
|| !NewCost
.isValid())
833 // Scalarize the intrinsic
834 ElementCount EC
= cast
<VectorType
>(Op0
->getType())->getElementCount();
835 Value
*EVL
= VPI
.getArgOperand(3);
836 const DataLayout
&DL
= VPI
.getModule()->getDataLayout();
838 // If the VP op might introduce UB or poison, we can scalarize it provided
839 // that we know the EVL > 0: If the EVL is zero, then the original VP op
840 // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
842 bool SafeToSpeculate
;
844 SafeToSpeculate
= Intrinsic::getAttributes(I
.getContext(), *ScalarIntrID
)
845 .hasFnAttr(Attribute::AttrKind::Speculatable
);
847 SafeToSpeculate
= isSafeToSpeculativelyExecuteWithOpcode(
848 *FunctionalOpcode
, &VPI
, nullptr, &AC
, &DT
);
849 if (!SafeToSpeculate
&& !isKnownNonZero(EVL
, DL
, 0, &AC
, &VPI
, &DT
))
854 ? Builder
.CreateIntrinsic(VecTy
->getScalarType(), *ScalarIntrID
,
855 {ScalarOp0
, ScalarOp1
})
856 : Builder
.CreateBinOp((Instruction::BinaryOps
)(*FunctionalOpcode
),
857 ScalarOp0
, ScalarOp1
);
859 replaceValue(VPI
, *Builder
.CreateVectorSplat(EC
, ScalarVal
));
863 /// Match a vector binop or compare instruction with at least one inserted
864 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
865 bool VectorCombine::scalarizeBinopOrCmp(Instruction
&I
) {
866 CmpInst::Predicate Pred
= CmpInst::BAD_ICMP_PREDICATE
;
868 if (!match(&I
, m_BinOp(m_Value(Ins0
), m_Value(Ins1
))) &&
869 !match(&I
, m_Cmp(Pred
, m_Value(Ins0
), m_Value(Ins1
))))
872 // Do not convert the vector condition of a vector select into a scalar
873 // condition. That may cause problems for codegen because of differences in
874 // boolean formats and register-file transfers.
875 // TODO: Can we account for that in the cost model?
876 bool IsCmp
= Pred
!= CmpInst::Predicate::BAD_ICMP_PREDICATE
;
878 for (User
*U
: I
.users())
879 if (match(U
, m_Select(m_Specific(&I
), m_Value(), m_Value())))
882 // Match against one or both scalar values being inserted into constant
884 // vec_op VecC0, (inselt VecC1, V1, Index)
885 // vec_op (inselt VecC0, V0, Index), VecC1
886 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
887 // TODO: Deal with mismatched index constants and variable indexes?
888 Constant
*VecC0
= nullptr, *VecC1
= nullptr;
889 Value
*V0
= nullptr, *V1
= nullptr;
890 uint64_t Index0
= 0, Index1
= 0;
891 if (!match(Ins0
, m_InsertElt(m_Constant(VecC0
), m_Value(V0
),
892 m_ConstantInt(Index0
))) &&
893 !match(Ins0
, m_Constant(VecC0
)))
895 if (!match(Ins1
, m_InsertElt(m_Constant(VecC1
), m_Value(V1
),
896 m_ConstantInt(Index1
))) &&
897 !match(Ins1
, m_Constant(VecC1
)))
902 if (IsConst0
&& IsConst1
)
904 if (!IsConst0
&& !IsConst1
&& Index0
!= Index1
)
907 // Bail for single insertion if it is a load.
908 // TODO: Handle this once getVectorInstrCost can cost for load/stores.
909 auto *I0
= dyn_cast_or_null
<Instruction
>(V0
);
910 auto *I1
= dyn_cast_or_null
<Instruction
>(V1
);
911 if ((IsConst0
&& I1
&& I1
->mayReadFromMemory()) ||
912 (IsConst1
&& I0
&& I0
->mayReadFromMemory()))
915 uint64_t Index
= IsConst0
? Index1
: Index0
;
916 Type
*ScalarTy
= IsConst0
? V1
->getType() : V0
->getType();
917 Type
*VecTy
= I
.getType();
918 assert(VecTy
->isVectorTy() &&
919 (IsConst0
|| IsConst1
|| V0
->getType() == V1
->getType()) &&
920 (ScalarTy
->isIntegerTy() || ScalarTy
->isFloatingPointTy() ||
921 ScalarTy
->isPointerTy()) &&
922 "Unexpected types for insert element into binop or cmp");
924 unsigned Opcode
= I
.getOpcode();
925 InstructionCost ScalarOpCost
, VectorOpCost
;
927 CmpInst::Predicate Pred
= cast
<CmpInst
>(I
).getPredicate();
928 ScalarOpCost
= TTI
.getCmpSelInstrCost(
929 Opcode
, ScalarTy
, CmpInst::makeCmpResultType(ScalarTy
), Pred
);
930 VectorOpCost
= TTI
.getCmpSelInstrCost(
931 Opcode
, VecTy
, CmpInst::makeCmpResultType(VecTy
), Pred
);
933 ScalarOpCost
= TTI
.getArithmeticInstrCost(Opcode
, ScalarTy
);
934 VectorOpCost
= TTI
.getArithmeticInstrCost(Opcode
, VecTy
);
937 // Get cost estimate for the insert element. This cost will factor into
939 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
940 InstructionCost InsertCost
= TTI
.getVectorInstrCost(
941 Instruction::InsertElement
, VecTy
, CostKind
, Index
);
942 InstructionCost OldCost
=
943 (IsConst0
? 0 : InsertCost
) + (IsConst1
? 0 : InsertCost
) + VectorOpCost
;
944 InstructionCost NewCost
= ScalarOpCost
+ InsertCost
+
945 (IsConst0
? 0 : !Ins0
->hasOneUse() * InsertCost
) +
946 (IsConst1
? 0 : !Ins1
->hasOneUse() * InsertCost
);
948 // We want to scalarize unless the vector variant actually has lower cost.
949 if (OldCost
< NewCost
|| !NewCost
.isValid())
952 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
953 // inselt NewVecC, (scalar_op V0, V1), Index
959 // For constant cases, extract the scalar element, this should constant fold.
961 V0
= ConstantExpr::getExtractElement(VecC0
, Builder
.getInt64(Index
));
963 V1
= ConstantExpr::getExtractElement(VecC1
, Builder
.getInt64(Index
));
966 IsCmp
? Builder
.CreateCmp(Pred
, V0
, V1
)
967 : Builder
.CreateBinOp((Instruction::BinaryOps
)Opcode
, V0
, V1
);
969 Scalar
->setName(I
.getName() + ".scalar");
971 // All IR flags are safe to back-propagate. There is no potential for extra
972 // poison to be created by the scalar instruction.
973 if (auto *ScalarInst
= dyn_cast
<Instruction
>(Scalar
))
974 ScalarInst
->copyIRFlags(&I
);
976 // Fold the vector constants in the original vectors into a new base vector.
978 IsCmp
? Builder
.CreateCmp(Pred
, VecC0
, VecC1
)
979 : Builder
.CreateBinOp((Instruction::BinaryOps
)Opcode
, VecC0
, VecC1
);
980 Value
*Insert
= Builder
.CreateInsertElement(NewVecC
, Scalar
, Index
);
981 replaceValue(I
, *Insert
);
985 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
986 /// a vector into vector operations followed by extract. Note: The SLP pass
987 /// may miss this pattern because of implementation problems.
988 bool VectorCombine::foldExtractedCmps(Instruction
&I
) {
989 // We are looking for a scalar binop of booleans.
990 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
991 if (!I
.isBinaryOp() || !I
.getType()->isIntegerTy(1))
994 // The compare predicates should match, and each compare should have a
996 // TODO: Relax the one-use constraints.
997 Value
*B0
= I
.getOperand(0), *B1
= I
.getOperand(1);
998 Instruction
*I0
, *I1
;
1000 CmpInst::Predicate P0
, P1
;
1001 if (!match(B0
, m_OneUse(m_Cmp(P0
, m_Instruction(I0
), m_Constant(C0
)))) ||
1002 !match(B1
, m_OneUse(m_Cmp(P1
, m_Instruction(I1
), m_Constant(C1
)))) ||
1006 // The compare operands must be extracts of the same vector with constant
1008 // TODO: Relax the one-use constraints.
1010 uint64_t Index0
, Index1
;
1011 if (!match(I0
, m_OneUse(m_ExtractElt(m_Value(X
), m_ConstantInt(Index0
)))) ||
1012 !match(I1
, m_OneUse(m_ExtractElt(m_Specific(X
), m_ConstantInt(Index1
)))))
1015 auto *Ext0
= cast
<ExtractElementInst
>(I0
);
1016 auto *Ext1
= cast
<ExtractElementInst
>(I1
);
1017 ExtractElementInst
*ConvertToShuf
= getShuffleExtract(Ext0
, Ext1
);
1021 // The original scalar pattern is:
1022 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1023 CmpInst::Predicate Pred
= P0
;
1024 unsigned CmpOpcode
= CmpInst::isFPPredicate(Pred
) ? Instruction::FCmp
1025 : Instruction::ICmp
;
1026 auto *VecTy
= dyn_cast
<FixedVectorType
>(X
->getType());
1030 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
1031 InstructionCost OldCost
=
1032 TTI
.getVectorInstrCost(*Ext0
, VecTy
, CostKind
, Index0
);
1033 OldCost
+= TTI
.getVectorInstrCost(*Ext1
, VecTy
, CostKind
, Index1
);
1035 TTI
.getCmpSelInstrCost(CmpOpcode
, I0
->getType(),
1036 CmpInst::makeCmpResultType(I0
->getType()), Pred
) *
1038 OldCost
+= TTI
.getArithmeticInstrCost(I
.getOpcode(), I
.getType());
1040 // The proposed vector pattern is:
1041 // vcmp = cmp Pred X, VecC
1042 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1043 int CheapIndex
= ConvertToShuf
== Ext0
? Index1
: Index0
;
1044 int ExpensiveIndex
= ConvertToShuf
== Ext0
? Index0
: Index1
;
1045 auto *CmpTy
= cast
<FixedVectorType
>(CmpInst::makeCmpResultType(X
->getType()));
1046 InstructionCost NewCost
= TTI
.getCmpSelInstrCost(
1047 CmpOpcode
, X
->getType(), CmpInst::makeCmpResultType(X
->getType()), Pred
);
1048 SmallVector
<int, 32> ShufMask(VecTy
->getNumElements(), PoisonMaskElem
);
1049 ShufMask
[CheapIndex
] = ExpensiveIndex
;
1050 NewCost
+= TTI
.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, CmpTy
,
1052 NewCost
+= TTI
.getArithmeticInstrCost(I
.getOpcode(), CmpTy
);
1053 NewCost
+= TTI
.getVectorInstrCost(*Ext0
, CmpTy
, CostKind
, CheapIndex
);
1055 // Aggressively form vector ops if the cost is equal because the transform
1056 // may enable further optimization.
1057 // Codegen can reverse this transform (scalarize) if it was not profitable.
1058 if (OldCost
< NewCost
|| !NewCost
.isValid())
1061 // Create a vector constant from the 2 scalar constants.
1062 SmallVector
<Constant
*, 32> CmpC(VecTy
->getNumElements(),
1063 PoisonValue::get(VecTy
->getElementType()));
1066 Value
*VCmp
= Builder
.CreateCmp(Pred
, X
, ConstantVector::get(CmpC
));
1068 Value
*Shuf
= createShiftShuffle(VCmp
, ExpensiveIndex
, CheapIndex
, Builder
);
1069 Value
*VecLogic
= Builder
.CreateBinOp(cast
<BinaryOperator
>(I
).getOpcode(),
1071 Value
*NewExt
= Builder
.CreateExtractElement(VecLogic
, CheapIndex
);
1072 replaceValue(I
, *NewExt
);
1077 // Check if memory loc modified between two instrs in the same BB
1078 static bool isMemModifiedBetween(BasicBlock::iterator Begin
,
1079 BasicBlock::iterator End
,
1080 const MemoryLocation
&Loc
, AAResults
&AA
) {
1081 unsigned NumScanned
= 0;
1082 return std::any_of(Begin
, End
, [&](const Instruction
&Instr
) {
1083 return isModSet(AA
.getModRefInfo(&Instr
, Loc
)) ||
1084 ++NumScanned
> MaxInstrsToScan
;
1089 /// Helper class to indicate whether a vector index can be safely scalarized and
1090 /// if a freeze needs to be inserted.
1091 class ScalarizationResult
{
1092 enum class StatusTy
{ Unsafe
, Safe
, SafeWithFreeze
};
1097 ScalarizationResult(StatusTy Status
, Value
*ToFreeze
= nullptr)
1098 : Status(Status
), ToFreeze(ToFreeze
) {}
1101 ScalarizationResult(const ScalarizationResult
&Other
) = default;
1102 ~ScalarizationResult() {
1103 assert(!ToFreeze
&& "freeze() not called with ToFreeze being set");
1106 static ScalarizationResult
unsafe() { return {StatusTy::Unsafe
}; }
1107 static ScalarizationResult
safe() { return {StatusTy::Safe
}; }
1108 static ScalarizationResult
safeWithFreeze(Value
*ToFreeze
) {
1109 return {StatusTy::SafeWithFreeze
, ToFreeze
};
1112 /// Returns true if the index can be scalarize without requiring a freeze.
1113 bool isSafe() const { return Status
== StatusTy::Safe
; }
1114 /// Returns true if the index cannot be scalarized.
1115 bool isUnsafe() const { return Status
== StatusTy::Unsafe
; }
1116 /// Returns true if the index can be scalarize, but requires inserting a
1118 bool isSafeWithFreeze() const { return Status
== StatusTy::SafeWithFreeze
; }
1120 /// Reset the state of Unsafe and clear ToFreze if set.
1123 Status
= StatusTy::Unsafe
;
1126 /// Freeze the ToFreeze and update the use in \p User to use it.
1127 void freeze(IRBuilder
<> &Builder
, Instruction
&UserI
) {
1128 assert(isSafeWithFreeze() &&
1129 "should only be used when freezing is required");
1130 assert(is_contained(ToFreeze
->users(), &UserI
) &&
1131 "UserI must be a user of ToFreeze");
1132 IRBuilder
<>::InsertPointGuard
Guard(Builder
);
1133 Builder
.SetInsertPoint(cast
<Instruction
>(&UserI
));
1135 Builder
.CreateFreeze(ToFreeze
, ToFreeze
->getName() + ".frozen");
1136 for (Use
&U
: make_early_inc_range((UserI
.operands())))
1137 if (U
.get() == ToFreeze
)
1145 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1146 /// Idx. \p Idx must access a valid vector element.
1147 static ScalarizationResult
canScalarizeAccess(VectorType
*VecTy
, Value
*Idx
,
1149 AssumptionCache
&AC
,
1150 const DominatorTree
&DT
) {
1151 // We do checks for both fixed vector types and scalable vector types.
1152 // This is the number of elements of fixed vector types,
1153 // or the minimum number of elements of scalable vector types.
1154 uint64_t NumElements
= VecTy
->getElementCount().getKnownMinValue();
1156 if (auto *C
= dyn_cast
<ConstantInt
>(Idx
)) {
1157 if (C
->getValue().ult(NumElements
))
1158 return ScalarizationResult::safe();
1159 return ScalarizationResult::unsafe();
1162 unsigned IntWidth
= Idx
->getType()->getScalarSizeInBits();
1163 APInt
Zero(IntWidth
, 0);
1164 APInt
MaxElts(IntWidth
, NumElements
);
1165 ConstantRange
ValidIndices(Zero
, MaxElts
);
1166 ConstantRange
IdxRange(IntWidth
, true);
1168 if (isGuaranteedNotToBePoison(Idx
, &AC
)) {
1169 if (ValidIndices
.contains(computeConstantRange(Idx
, /* ForSigned */ false,
1170 true, &AC
, CtxI
, &DT
)))
1171 return ScalarizationResult::safe();
1172 return ScalarizationResult::unsafe();
1175 // If the index may be poison, check if we can insert a freeze before the
1176 // range of the index is restricted.
1179 if (match(Idx
, m_And(m_Value(IdxBase
), m_ConstantInt(CI
)))) {
1180 IdxRange
= IdxRange
.binaryAnd(CI
->getValue());
1181 } else if (match(Idx
, m_URem(m_Value(IdxBase
), m_ConstantInt(CI
)))) {
1182 IdxRange
= IdxRange
.urem(CI
->getValue());
1185 if (ValidIndices
.contains(IdxRange
))
1186 return ScalarizationResult::safeWithFreeze(IdxBase
);
1187 return ScalarizationResult::unsafe();
1190 /// The memory operation on a vector of \p ScalarType had alignment of
1191 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1192 /// alignment that will be valid for the memory operation on a single scalar
1193 /// element of the same type with index \p Idx.
1194 static Align
computeAlignmentAfterScalarization(Align VectorAlignment
,
1195 Type
*ScalarType
, Value
*Idx
,
1196 const DataLayout
&DL
) {
1197 if (auto *C
= dyn_cast
<ConstantInt
>(Idx
))
1198 return commonAlignment(VectorAlignment
,
1199 C
->getZExtValue() * DL
.getTypeStoreSize(ScalarType
));
1200 return commonAlignment(VectorAlignment
, DL
.getTypeStoreSize(ScalarType
));
1203 // Combine patterns like:
1204 // %0 = load <4 x i32>, <4 x i32>* %a
1205 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1206 // store <4 x i32> %1, <4 x i32>* %a
1208 // %0 = bitcast <4 x i32>* %a to i32*
1209 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1210 // store i32 %b, i32* %1
1211 bool VectorCombine::foldSingleElementStore(Instruction
&I
) {
1212 auto *SI
= cast
<StoreInst
>(&I
);
1213 if (!SI
->isSimple() || !isa
<VectorType
>(SI
->getValueOperand()->getType()))
1216 // TODO: Combine more complicated patterns (multiple insert) by referencing
1217 // TargetTransformInfo.
1218 Instruction
*Source
;
1221 if (!match(SI
->getValueOperand(),
1222 m_InsertElt(m_Instruction(Source
), m_Value(NewElement
),
1226 if (auto *Load
= dyn_cast
<LoadInst
>(Source
)) {
1227 auto VecTy
= cast
<VectorType
>(SI
->getValueOperand()->getType());
1228 const DataLayout
&DL
= I
.getModule()->getDataLayout();
1229 Value
*SrcAddr
= Load
->getPointerOperand()->stripPointerCasts();
1230 // Don't optimize for atomic/volatile load or store. Ensure memory is not
1231 // modified between, vector type matches store size, and index is inbounds.
1232 if (!Load
->isSimple() || Load
->getParent() != SI
->getParent() ||
1233 !DL
.typeSizeEqualsStoreSize(Load
->getType()->getScalarType()) ||
1234 SrcAddr
!= SI
->getPointerOperand()->stripPointerCasts())
1237 auto ScalarizableIdx
= canScalarizeAccess(VecTy
, Idx
, Load
, AC
, DT
);
1238 if (ScalarizableIdx
.isUnsafe() ||
1239 isMemModifiedBetween(Load
->getIterator(), SI
->getIterator(),
1240 MemoryLocation::get(SI
), AA
))
1243 if (ScalarizableIdx
.isSafeWithFreeze())
1244 ScalarizableIdx
.freeze(Builder
, *cast
<Instruction
>(Idx
));
1245 Value
*GEP
= Builder
.CreateInBoundsGEP(
1246 SI
->getValueOperand()->getType(), SI
->getPointerOperand(),
1247 {ConstantInt::get(Idx
->getType(), 0), Idx
});
1248 StoreInst
*NSI
= Builder
.CreateStore(NewElement
, GEP
);
1249 NSI
->copyMetadata(*SI
);
1250 Align ScalarOpAlignment
= computeAlignmentAfterScalarization(
1251 std::max(SI
->getAlign(), Load
->getAlign()), NewElement
->getType(), Idx
,
1253 NSI
->setAlignment(ScalarOpAlignment
);
1254 replaceValue(I
, *NSI
);
1255 eraseInstruction(I
);
1262 /// Try to scalarize vector loads feeding extractelement instructions.
1263 bool VectorCombine::scalarizeLoadExtract(Instruction
&I
) {
1265 if (!match(&I
, m_Load(m_Value(Ptr
))))
1268 auto *VecTy
= cast
<VectorType
>(I
.getType());
1269 auto *LI
= cast
<LoadInst
>(&I
);
1270 const DataLayout
&DL
= I
.getModule()->getDataLayout();
1271 if (LI
->isVolatile() || !DL
.typeSizeEqualsStoreSize(VecTy
->getScalarType()))
1274 InstructionCost OriginalCost
=
1275 TTI
.getMemoryOpCost(Instruction::Load
, VecTy
, LI
->getAlign(),
1276 LI
->getPointerAddressSpace());
1277 InstructionCost ScalarizedCost
= 0;
1279 Instruction
*LastCheckedInst
= LI
;
1280 unsigned NumInstChecked
= 0;
1281 DenseMap
<ExtractElementInst
*, ScalarizationResult
> NeedFreeze
;
1282 auto FailureGuard
= make_scope_exit([&]() {
1283 // If the transform is aborted, discard the ScalarizationResults.
1284 for (auto &Pair
: NeedFreeze
)
1285 Pair
.second
.discard();
1288 // Check if all users of the load are extracts with no memory modifications
1289 // between the load and the extract. Compute the cost of both the original
1290 // code and the scalarized version.
1291 for (User
*U
: LI
->users()) {
1292 auto *UI
= dyn_cast
<ExtractElementInst
>(U
);
1293 if (!UI
|| UI
->getParent() != LI
->getParent())
1296 // Check if any instruction between the load and the extract may modify
1298 if (LastCheckedInst
->comesBefore(UI
)) {
1299 for (Instruction
&I
:
1300 make_range(std::next(LI
->getIterator()), UI
->getIterator())) {
1301 // Bail out if we reached the check limit or the instruction may write
1303 if (NumInstChecked
== MaxInstrsToScan
|| I
.mayWriteToMemory())
1307 LastCheckedInst
= UI
;
1310 auto ScalarIdx
= canScalarizeAccess(VecTy
, UI
->getOperand(1), &I
, AC
, DT
);
1311 if (ScalarIdx
.isUnsafe())
1313 if (ScalarIdx
.isSafeWithFreeze()) {
1314 NeedFreeze
.try_emplace(UI
, ScalarIdx
);
1315 ScalarIdx
.discard();
1318 auto *Index
= dyn_cast
<ConstantInt
>(UI
->getOperand(1));
1319 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
1321 TTI
.getVectorInstrCost(Instruction::ExtractElement
, VecTy
, CostKind
,
1322 Index
? Index
->getZExtValue() : -1);
1324 TTI
.getMemoryOpCost(Instruction::Load
, VecTy
->getElementType(),
1325 Align(1), LI
->getPointerAddressSpace());
1326 ScalarizedCost
+= TTI
.getAddressComputationCost(VecTy
->getElementType());
1329 if (ScalarizedCost
>= OriginalCost
)
1332 // Replace extracts with narrow scalar loads.
1333 for (User
*U
: LI
->users()) {
1334 auto *EI
= cast
<ExtractElementInst
>(U
);
1335 Value
*Idx
= EI
->getOperand(1);
1337 // Insert 'freeze' for poison indexes.
1338 auto It
= NeedFreeze
.find(EI
);
1339 if (It
!= NeedFreeze
.end())
1340 It
->second
.freeze(Builder
, *cast
<Instruction
>(Idx
));
1342 Builder
.SetInsertPoint(EI
);
1344 Builder
.CreateInBoundsGEP(VecTy
, Ptr
, {Builder
.getInt32(0), Idx
});
1345 auto *NewLoad
= cast
<LoadInst
>(Builder
.CreateLoad(
1346 VecTy
->getElementType(), GEP
, EI
->getName() + ".scalar"));
1348 Align ScalarOpAlignment
= computeAlignmentAfterScalarization(
1349 LI
->getAlign(), VecTy
->getElementType(), Idx
, DL
);
1350 NewLoad
->setAlignment(ScalarOpAlignment
);
1352 replaceValue(*EI
, *NewLoad
);
1355 FailureGuard
.release();
1359 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
1360 /// "binop (shuffle), (shuffle)".
1361 bool VectorCombine::foldShuffleOfBinops(Instruction
&I
) {
1362 auto *VecTy
= cast
<FixedVectorType
>(I
.getType());
1363 BinaryOperator
*B0
, *B1
;
1365 if (!match(&I
, m_Shuffle(m_OneUse(m_BinOp(B0
)), m_OneUse(m_BinOp(B1
)),
1367 B0
->getOpcode() != B1
->getOpcode() || B0
->getType() != VecTy
)
1370 // Try to replace a binop with a shuffle if the shuffle is not costly.
1371 // The new shuffle will choose from a single, common operand, so it may be
1372 // cheaper than the existing two-operand shuffle.
1373 SmallVector
<int> UnaryMask
= createUnaryMask(Mask
, Mask
.size());
1374 Instruction::BinaryOps Opcode
= B0
->getOpcode();
1375 InstructionCost BinopCost
= TTI
.getArithmeticInstrCost(Opcode
, VecTy
);
1376 InstructionCost ShufCost
= TTI
.getShuffleCost(
1377 TargetTransformInfo::SK_PermuteSingleSrc
, VecTy
, UnaryMask
);
1378 if (ShufCost
> BinopCost
)
1381 // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1382 Value
*X
= B0
->getOperand(0), *Y
= B0
->getOperand(1);
1383 Value
*Z
= B1
->getOperand(0), *W
= B1
->getOperand(1);
1384 if (BinaryOperator::isCommutative(Opcode
) && X
!= Z
&& Y
!= W
)
1387 Value
*Shuf0
, *Shuf1
;
1389 // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
1390 Shuf0
= Builder
.CreateShuffleVector(X
, UnaryMask
);
1391 Shuf1
= Builder
.CreateShuffleVector(Y
, W
, Mask
);
1392 } else if (Y
== W
) {
1393 // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
1394 Shuf0
= Builder
.CreateShuffleVector(X
, Z
, Mask
);
1395 Shuf1
= Builder
.CreateShuffleVector(Y
, UnaryMask
);
1400 Value
*NewBO
= Builder
.CreateBinOp(Opcode
, Shuf0
, Shuf1
);
1401 // Intersect flags from the old binops.
1402 if (auto *NewInst
= dyn_cast
<Instruction
>(NewBO
)) {
1403 NewInst
->copyIRFlags(B0
);
1404 NewInst
->andIRFlags(B1
);
1406 replaceValue(I
, *NewBO
);
1410 /// Given a commutative reduction, the order of the input lanes does not alter
1411 /// the results. We can use this to remove certain shuffles feeding the
1412 /// reduction, removing the need to shuffle at all.
1413 bool VectorCombine::foldShuffleFromReductions(Instruction
&I
) {
1414 auto *II
= dyn_cast
<IntrinsicInst
>(&I
);
1417 switch (II
->getIntrinsicID()) {
1418 case Intrinsic::vector_reduce_add
:
1419 case Intrinsic::vector_reduce_mul
:
1420 case Intrinsic::vector_reduce_and
:
1421 case Intrinsic::vector_reduce_or
:
1422 case Intrinsic::vector_reduce_xor
:
1423 case Intrinsic::vector_reduce_smin
:
1424 case Intrinsic::vector_reduce_smax
:
1425 case Intrinsic::vector_reduce_umin
:
1426 case Intrinsic::vector_reduce_umax
:
1432 // Find all the inputs when looking through operations that do not alter the
1433 // lane order (binops, for example). Currently we look for a single shuffle,
1434 // and can ignore splat values.
1435 std::queue
<Value
*> Worklist
;
1436 SmallPtrSet
<Value
*, 4> Visited
;
1437 ShuffleVectorInst
*Shuffle
= nullptr;
1438 if (auto *Op
= dyn_cast
<Instruction
>(I
.getOperand(0)))
1441 while (!Worklist
.empty()) {
1442 Value
*CV
= Worklist
.front();
1444 if (Visited
.contains(CV
))
1447 // Splats don't change the order, so can be safely ignored.
1448 if (isSplatValue(CV
))
1453 if (auto *CI
= dyn_cast
<Instruction
>(CV
)) {
1454 if (CI
->isBinaryOp()) {
1455 for (auto *Op
: CI
->operand_values())
1458 } else if (auto *SV
= dyn_cast
<ShuffleVectorInst
>(CI
)) {
1459 if (Shuffle
&& Shuffle
!= SV
)
1466 // Anything else is currently an unknown node.
1473 // Check all uses of the binary ops and shuffles are also included in the
1474 // lane-invariant operations (Visited should be the list of lanewise
1475 // instructions, including the shuffle that we found).
1476 for (auto *V
: Visited
)
1477 for (auto *U
: V
->users())
1478 if (!Visited
.contains(U
) && U
!= &I
)
1481 FixedVectorType
*VecType
=
1482 dyn_cast
<FixedVectorType
>(II
->getOperand(0)->getType());
1485 FixedVectorType
*ShuffleInputType
=
1486 dyn_cast
<FixedVectorType
>(Shuffle
->getOperand(0)->getType());
1487 if (!ShuffleInputType
)
1489 unsigned NumInputElts
= ShuffleInputType
->getNumElements();
1491 // Find the mask from sorting the lanes into order. This is most likely to
1492 // become a identity or concat mask. Undef elements are pushed to the end.
1493 SmallVector
<int> ConcatMask
;
1494 Shuffle
->getShuffleMask(ConcatMask
);
1495 sort(ConcatMask
, [](int X
, int Y
) { return (unsigned)X
< (unsigned)Y
; });
1496 // In the case of a truncating shuffle it's possible for the mask
1497 // to have an index greater than the size of the resulting vector.
1498 // This requires special handling.
1499 bool IsTruncatingShuffle
= VecType
->getNumElements() < NumInputElts
;
1500 bool UsesSecondVec
=
1501 any_of(ConcatMask
, [&](int M
) { return M
>= (int)NumInputElts
; });
1503 FixedVectorType
*VecTyForCost
=
1504 (UsesSecondVec
&& !IsTruncatingShuffle
) ? VecType
: ShuffleInputType
;
1505 InstructionCost OldCost
= TTI
.getShuffleCost(
1506 UsesSecondVec
? TTI::SK_PermuteTwoSrc
: TTI::SK_PermuteSingleSrc
,
1507 VecTyForCost
, Shuffle
->getShuffleMask());
1508 InstructionCost NewCost
= TTI
.getShuffleCost(
1509 UsesSecondVec
? TTI::SK_PermuteTwoSrc
: TTI::SK_PermuteSingleSrc
,
1510 VecTyForCost
, ConcatMask
);
1512 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
1514 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost
<< " vs NewCost: " << NewCost
1516 if (NewCost
< OldCost
) {
1517 Builder
.SetInsertPoint(Shuffle
);
1518 Value
*NewShuffle
= Builder
.CreateShuffleVector(
1519 Shuffle
->getOperand(0), Shuffle
->getOperand(1), ConcatMask
);
1520 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle
<< "\n");
1521 replaceValue(*Shuffle
, *NewShuffle
);
1524 // See if we can re-use foldSelectShuffle, getting it to reduce the size of
1525 // the shuffle into a nicer order, as it can ignore the order of the shuffles.
1526 return foldSelectShuffle(*Shuffle
, true);
1529 /// This method looks for groups of shuffles acting on binops, of the form:
1530 /// %x = shuffle ...
1531 /// %y = shuffle ...
1532 /// %a = binop %x, %y
1533 /// %b = binop %x, %y
1534 /// shuffle %a, %b, selectmask
1535 /// We may, especially if the shuffle is wider than legal, be able to convert
1536 /// the shuffle to a form where only parts of a and b need to be computed. On
1537 /// architectures with no obvious "select" shuffle, this can reduce the total
1538 /// number of operations if the target reports them as cheaper.
1539 bool VectorCombine::foldSelectShuffle(Instruction
&I
, bool FromReduction
) {
1540 auto *SVI
= cast
<ShuffleVectorInst
>(&I
);
1541 auto *VT
= cast
<FixedVectorType
>(I
.getType());
1542 auto *Op0
= dyn_cast
<Instruction
>(SVI
->getOperand(0));
1543 auto *Op1
= dyn_cast
<Instruction
>(SVI
->getOperand(1));
1544 if (!Op0
|| !Op1
|| Op0
== Op1
|| !Op0
->isBinaryOp() || !Op1
->isBinaryOp() ||
1545 VT
!= Op0
->getType())
1548 auto *SVI0A
= dyn_cast
<Instruction
>(Op0
->getOperand(0));
1549 auto *SVI0B
= dyn_cast
<Instruction
>(Op0
->getOperand(1));
1550 auto *SVI1A
= dyn_cast
<Instruction
>(Op1
->getOperand(0));
1551 auto *SVI1B
= dyn_cast
<Instruction
>(Op1
->getOperand(1));
1552 SmallPtrSet
<Instruction
*, 4> InputShuffles({SVI0A
, SVI0B
, SVI1A
, SVI1B
});
1553 auto checkSVNonOpUses
= [&](Instruction
*I
) {
1554 if (!I
|| I
->getOperand(0)->getType() != VT
)
1556 return any_of(I
->users(), [&](User
*U
) {
1557 return U
!= Op0
&& U
!= Op1
&&
1558 !(isa
<ShuffleVectorInst
>(U
) &&
1559 (InputShuffles
.contains(cast
<Instruction
>(U
)) ||
1560 isInstructionTriviallyDead(cast
<Instruction
>(U
))));
1563 if (checkSVNonOpUses(SVI0A
) || checkSVNonOpUses(SVI0B
) ||
1564 checkSVNonOpUses(SVI1A
) || checkSVNonOpUses(SVI1B
))
1567 // Collect all the uses that are shuffles that we can transform together. We
1568 // may not have a single shuffle, but a group that can all be transformed
1569 // together profitably.
1570 SmallVector
<ShuffleVectorInst
*> Shuffles
;
1571 auto collectShuffles
= [&](Instruction
*I
) {
1572 for (auto *U
: I
->users()) {
1573 auto *SV
= dyn_cast
<ShuffleVectorInst
>(U
);
1574 if (!SV
|| SV
->getType() != VT
)
1576 if ((SV
->getOperand(0) != Op0
&& SV
->getOperand(0) != Op1
) ||
1577 (SV
->getOperand(1) != Op0
&& SV
->getOperand(1) != Op1
))
1579 if (!llvm::is_contained(Shuffles
, SV
))
1580 Shuffles
.push_back(SV
);
1584 if (!collectShuffles(Op0
) || !collectShuffles(Op1
))
1586 // From a reduction, we need to be processing a single shuffle, otherwise the
1587 // other uses will not be lane-invariant.
1588 if (FromReduction
&& Shuffles
.size() > 1)
1591 // Add any shuffle uses for the shuffles we have found, to include them in our
1592 // cost calculations.
1593 if (!FromReduction
) {
1594 for (ShuffleVectorInst
*SV
: Shuffles
) {
1595 for (auto *U
: SV
->users()) {
1596 ShuffleVectorInst
*SSV
= dyn_cast
<ShuffleVectorInst
>(U
);
1597 if (SSV
&& isa
<UndefValue
>(SSV
->getOperand(1)) && SSV
->getType() == VT
)
1598 Shuffles
.push_back(SSV
);
1603 // For each of the output shuffles, we try to sort all the first vector
1604 // elements to the beginning, followed by the second array elements at the
1605 // end. If the binops are legalized to smaller vectors, this may reduce total
1606 // number of binops. We compute the ReconstructMask mask needed to convert
1607 // back to the original lane order.
1608 SmallVector
<std::pair
<int, int>> V1
, V2
;
1609 SmallVector
<SmallVector
<int>> OrigReconstructMasks
;
1610 int MaxV1Elt
= 0, MaxV2Elt
= 0;
1611 unsigned NumElts
= VT
->getNumElements();
1612 for (ShuffleVectorInst
*SVN
: Shuffles
) {
1613 SmallVector
<int> Mask
;
1614 SVN
->getShuffleMask(Mask
);
1616 // Check the operands are the same as the original, or reversed (in which
1617 // case we need to commute the mask).
1618 Value
*SVOp0
= SVN
->getOperand(0);
1619 Value
*SVOp1
= SVN
->getOperand(1);
1620 if (isa
<UndefValue
>(SVOp1
)) {
1621 auto *SSV
= cast
<ShuffleVectorInst
>(SVOp0
);
1622 SVOp0
= SSV
->getOperand(0);
1623 SVOp1
= SSV
->getOperand(1);
1624 for (unsigned I
= 0, E
= Mask
.size(); I
!= E
; I
++) {
1625 if (Mask
[I
] >= static_cast<int>(SSV
->getShuffleMask().size()))
1627 Mask
[I
] = Mask
[I
] < 0 ? Mask
[I
] : SSV
->getMaskValue(Mask
[I
]);
1630 if (SVOp0
== Op1
&& SVOp1
== Op0
) {
1631 std::swap(SVOp0
, SVOp1
);
1632 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
1634 if (SVOp0
!= Op0
|| SVOp1
!= Op1
)
1637 // Calculate the reconstruction mask for this shuffle, as the mask needed to
1638 // take the packed values from Op0/Op1 and reconstructing to the original
1640 SmallVector
<int> ReconstructMask
;
1641 for (unsigned I
= 0; I
< Mask
.size(); I
++) {
1643 ReconstructMask
.push_back(-1);
1644 } else if (Mask
[I
] < static_cast<int>(NumElts
)) {
1645 MaxV1Elt
= std::max(MaxV1Elt
, Mask
[I
]);
1646 auto It
= find_if(V1
, [&](const std::pair
<int, int> &A
) {
1647 return Mask
[I
] == A
.first
;
1650 ReconstructMask
.push_back(It
- V1
.begin());
1652 ReconstructMask
.push_back(V1
.size());
1653 V1
.emplace_back(Mask
[I
], V1
.size());
1656 MaxV2Elt
= std::max
<int>(MaxV2Elt
, Mask
[I
] - NumElts
);
1657 auto It
= find_if(V2
, [&](const std::pair
<int, int> &A
) {
1658 return Mask
[I
] - static_cast<int>(NumElts
) == A
.first
;
1661 ReconstructMask
.push_back(NumElts
+ It
- V2
.begin());
1663 ReconstructMask
.push_back(NumElts
+ V2
.size());
1664 V2
.emplace_back(Mask
[I
] - NumElts
, NumElts
+ V2
.size());
1669 // For reductions, we know that the lane ordering out doesn't alter the
1670 // result. In-order can help simplify the shuffle away.
1672 sort(ReconstructMask
);
1673 OrigReconstructMasks
.push_back(std::move(ReconstructMask
));
1676 // If the Maximum element used from V1 and V2 are not larger than the new
1677 // vectors, the vectors are already packes and performing the optimization
1678 // again will likely not help any further. This also prevents us from getting
1679 // stuck in a cycle in case the costs do not also rule it out.
1680 if (V1
.empty() || V2
.empty() ||
1681 (MaxV1Elt
== static_cast<int>(V1
.size()) - 1 &&
1682 MaxV2Elt
== static_cast<int>(V2
.size()) - 1))
1685 // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
1686 // shuffle of another shuffle, or not a shuffle (that is treated like a
1687 // identity shuffle).
1688 auto GetBaseMaskValue
= [&](Instruction
*I
, int M
) {
1689 auto *SV
= dyn_cast
<ShuffleVectorInst
>(I
);
1692 if (isa
<UndefValue
>(SV
->getOperand(1)))
1693 if (auto *SSV
= dyn_cast
<ShuffleVectorInst
>(SV
->getOperand(0)))
1694 if (InputShuffles
.contains(SSV
))
1695 return SSV
->getMaskValue(SV
->getMaskValue(M
));
1696 return SV
->getMaskValue(M
);
1699 // Attempt to sort the inputs my ascending mask values to make simpler input
1700 // shuffles and push complex shuffles down to the uses. We sort on the first
1701 // of the two input shuffle orders, to try and get at least one input into a
1703 auto SortBase
= [&](Instruction
*A
, std::pair
<int, int> X
,
1704 std::pair
<int, int> Y
) {
1705 int MXA
= GetBaseMaskValue(A
, X
.first
);
1706 int MYA
= GetBaseMaskValue(A
, Y
.first
);
1709 stable_sort(V1
, [&](std::pair
<int, int> A
, std::pair
<int, int> B
) {
1710 return SortBase(SVI0A
, A
, B
);
1712 stable_sort(V2
, [&](std::pair
<int, int> A
, std::pair
<int, int> B
) {
1713 return SortBase(SVI1A
, A
, B
);
1715 // Calculate our ReconstructMasks from the OrigReconstructMasks and the
1716 // modified order of the input shuffles.
1717 SmallVector
<SmallVector
<int>> ReconstructMasks
;
1718 for (const auto &Mask
: OrigReconstructMasks
) {
1719 SmallVector
<int> ReconstructMask
;
1720 for (int M
: Mask
) {
1721 auto FindIndex
= [](const SmallVector
<std::pair
<int, int>> &V
, int M
) {
1722 auto It
= find_if(V
, [M
](auto A
) { return A
.second
== M
; });
1723 assert(It
!= V
.end() && "Expected all entries in Mask");
1724 return std::distance(V
.begin(), It
);
1727 ReconstructMask
.push_back(-1);
1728 else if (M
< static_cast<int>(NumElts
)) {
1729 ReconstructMask
.push_back(FindIndex(V1
, M
));
1731 ReconstructMask
.push_back(NumElts
+ FindIndex(V2
, M
));
1734 ReconstructMasks
.push_back(std::move(ReconstructMask
));
1737 // Calculate the masks needed for the new input shuffles, which get padded
1739 SmallVector
<int> V1A
, V1B
, V2A
, V2B
;
1740 for (unsigned I
= 0; I
< V1
.size(); I
++) {
1741 V1A
.push_back(GetBaseMaskValue(SVI0A
, V1
[I
].first
));
1742 V1B
.push_back(GetBaseMaskValue(SVI0B
, V1
[I
].first
));
1744 for (unsigned I
= 0; I
< V2
.size(); I
++) {
1745 V2A
.push_back(GetBaseMaskValue(SVI1A
, V2
[I
].first
));
1746 V2B
.push_back(GetBaseMaskValue(SVI1B
, V2
[I
].first
));
1748 while (V1A
.size() < NumElts
) {
1749 V1A
.push_back(PoisonMaskElem
);
1750 V1B
.push_back(PoisonMaskElem
);
1752 while (V2A
.size() < NumElts
) {
1753 V2A
.push_back(PoisonMaskElem
);
1754 V2B
.push_back(PoisonMaskElem
);
1757 auto AddShuffleCost
= [&](InstructionCost C
, Instruction
*I
) {
1758 auto *SV
= dyn_cast
<ShuffleVectorInst
>(I
);
1761 return C
+ TTI
.getShuffleCost(isa
<UndefValue
>(SV
->getOperand(1))
1762 ? TTI::SK_PermuteSingleSrc
1763 : TTI::SK_PermuteTwoSrc
,
1764 VT
, SV
->getShuffleMask());
1766 auto AddShuffleMaskCost
= [&](InstructionCost C
, ArrayRef
<int> Mask
) {
1767 return C
+ TTI
.getShuffleCost(TTI::SK_PermuteTwoSrc
, VT
, Mask
);
1770 // Get the costs of the shuffles + binops before and after with the new
1772 InstructionCost CostBefore
=
1773 TTI
.getArithmeticInstrCost(Op0
->getOpcode(), VT
) +
1774 TTI
.getArithmeticInstrCost(Op1
->getOpcode(), VT
);
1775 CostBefore
+= std::accumulate(Shuffles
.begin(), Shuffles
.end(),
1776 InstructionCost(0), AddShuffleCost
);
1777 CostBefore
+= std::accumulate(InputShuffles
.begin(), InputShuffles
.end(),
1778 InstructionCost(0), AddShuffleCost
);
1780 // The new binops will be unused for lanes past the used shuffle lengths.
1781 // These types attempt to get the correct cost for that from the target.
1782 FixedVectorType
*Op0SmallVT
=
1783 FixedVectorType::get(VT
->getScalarType(), V1
.size());
1784 FixedVectorType
*Op1SmallVT
=
1785 FixedVectorType::get(VT
->getScalarType(), V2
.size());
1786 InstructionCost CostAfter
=
1787 TTI
.getArithmeticInstrCost(Op0
->getOpcode(), Op0SmallVT
) +
1788 TTI
.getArithmeticInstrCost(Op1
->getOpcode(), Op1SmallVT
);
1789 CostAfter
+= std::accumulate(ReconstructMasks
.begin(), ReconstructMasks
.end(),
1790 InstructionCost(0), AddShuffleMaskCost
);
1791 std::set
<SmallVector
<int>> OutputShuffleMasks({V1A
, V1B
, V2A
, V2B
});
1793 std::accumulate(OutputShuffleMasks
.begin(), OutputShuffleMasks
.end(),
1794 InstructionCost(0), AddShuffleMaskCost
);
1796 LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I
<< "\n");
1797 LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
1798 << " vs CostAfter: " << CostAfter
<< "\n");
1799 if (CostBefore
<= CostAfter
)
1802 // The cost model has passed, create the new instructions.
1803 auto GetShuffleOperand
= [&](Instruction
*I
, unsigned Op
) -> Value
* {
1804 auto *SV
= dyn_cast
<ShuffleVectorInst
>(I
);
1807 if (isa
<UndefValue
>(SV
->getOperand(1)))
1808 if (auto *SSV
= dyn_cast
<ShuffleVectorInst
>(SV
->getOperand(0)))
1809 if (InputShuffles
.contains(SSV
))
1810 return SSV
->getOperand(Op
);
1811 return SV
->getOperand(Op
);
1813 Builder
.SetInsertPoint(*SVI0A
->getInsertionPointAfterDef());
1814 Value
*NSV0A
= Builder
.CreateShuffleVector(GetShuffleOperand(SVI0A
, 0),
1815 GetShuffleOperand(SVI0A
, 1), V1A
);
1816 Builder
.SetInsertPoint(*SVI0B
->getInsertionPointAfterDef());
1817 Value
*NSV0B
= Builder
.CreateShuffleVector(GetShuffleOperand(SVI0B
, 0),
1818 GetShuffleOperand(SVI0B
, 1), V1B
);
1819 Builder
.SetInsertPoint(*SVI1A
->getInsertionPointAfterDef());
1820 Value
*NSV1A
= Builder
.CreateShuffleVector(GetShuffleOperand(SVI1A
, 0),
1821 GetShuffleOperand(SVI1A
, 1), V2A
);
1822 Builder
.SetInsertPoint(*SVI1B
->getInsertionPointAfterDef());
1823 Value
*NSV1B
= Builder
.CreateShuffleVector(GetShuffleOperand(SVI1B
, 0),
1824 GetShuffleOperand(SVI1B
, 1), V2B
);
1825 Builder
.SetInsertPoint(Op0
);
1826 Value
*NOp0
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op0
->getOpcode(),
1828 if (auto *I
= dyn_cast
<Instruction
>(NOp0
))
1829 I
->copyIRFlags(Op0
, true);
1830 Builder
.SetInsertPoint(Op1
);
1831 Value
*NOp1
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op1
->getOpcode(),
1833 if (auto *I
= dyn_cast
<Instruction
>(NOp1
))
1834 I
->copyIRFlags(Op1
, true);
1836 for (int S
= 0, E
= ReconstructMasks
.size(); S
!= E
; S
++) {
1837 Builder
.SetInsertPoint(Shuffles
[S
]);
1838 Value
*NSV
= Builder
.CreateShuffleVector(NOp0
, NOp1
, ReconstructMasks
[S
]);
1839 replaceValue(*Shuffles
[S
], *NSV
);
1842 Worklist
.pushValue(NSV0A
);
1843 Worklist
.pushValue(NSV0B
);
1844 Worklist
.pushValue(NSV1A
);
1845 Worklist
.pushValue(NSV1B
);
1846 for (auto *S
: Shuffles
)
1851 /// This is the entry point for all transforms. Pass manager differences are
1852 /// handled in the callers of this function.
1853 bool VectorCombine::run() {
1854 if (DisableVectorCombine
)
1857 // Don't attempt vectorization if the target does not support vectors.
1858 if (!TTI
.getNumberOfRegisters(TTI
.getRegisterClassForType(/*Vector*/ true)))
1861 bool MadeChange
= false;
1862 auto FoldInst
= [this, &MadeChange
](Instruction
&I
) {
1863 Builder
.SetInsertPoint(&I
);
1864 bool IsFixedVectorType
= isa
<FixedVectorType
>(I
.getType());
1865 auto Opcode
= I
.getOpcode();
1867 // These folds should be beneficial regardless of when this pass is run
1868 // in the optimization pipeline.
1869 // The type checking is for run-time efficiency. We can avoid wasting time
1870 // dispatching to folding functions if there's no chance of matching.
1871 if (IsFixedVectorType
) {
1873 case Instruction::InsertElement
:
1874 MadeChange
|= vectorizeLoadInsert(I
);
1876 case Instruction::ShuffleVector
:
1877 MadeChange
|= widenSubvectorLoad(I
);
1884 // This transform works with scalable and fixed vectors
1885 // TODO: Identify and allow other scalable transforms
1886 if (isa
<VectorType
>(I
.getType())) {
1887 MadeChange
|= scalarizeBinopOrCmp(I
);
1888 MadeChange
|= scalarizeLoadExtract(I
);
1889 MadeChange
|= scalarizeVPIntrinsic(I
);
1892 if (Opcode
== Instruction::Store
)
1893 MadeChange
|= foldSingleElementStore(I
);
1895 // If this is an early pipeline invocation of this pass, we are done.
1896 if (TryEarlyFoldsOnly
)
1899 // Otherwise, try folds that improve codegen but may interfere with
1900 // early IR canonicalizations.
1901 // The type checking is for run-time efficiency. We can avoid wasting time
1902 // dispatching to folding functions if there's no chance of matching.
1903 if (IsFixedVectorType
) {
1905 case Instruction::InsertElement
:
1906 MadeChange
|= foldInsExtFNeg(I
);
1908 case Instruction::ShuffleVector
:
1909 MadeChange
|= foldShuffleOfBinops(I
);
1910 MadeChange
|= foldSelectShuffle(I
);
1912 case Instruction::BitCast
:
1913 MadeChange
|= foldBitcastShuffle(I
);
1918 case Instruction::Call
:
1919 MadeChange
|= foldShuffleFromReductions(I
);
1921 case Instruction::ICmp
:
1922 case Instruction::FCmp
:
1923 MadeChange
|= foldExtractExtract(I
);
1926 if (Instruction::isBinaryOp(Opcode
)) {
1927 MadeChange
|= foldExtractExtract(I
);
1928 MadeChange
|= foldExtractedCmps(I
);
1935 for (BasicBlock
&BB
: F
) {
1936 // Ignore unreachable basic blocks.
1937 if (!DT
.isReachableFromEntry(&BB
))
1939 // Use early increment range so that we can erase instructions in loop.
1940 for (Instruction
&I
: make_early_inc_range(BB
)) {
1941 if (I
.isDebugOrPseudoInst())
1947 while (!Worklist
.isEmpty()) {
1948 Instruction
*I
= Worklist
.removeOne();
1952 if (isInstructionTriviallyDead(I
)) {
1953 eraseInstruction(*I
);
1963 PreservedAnalyses
VectorCombinePass::run(Function
&F
,
1964 FunctionAnalysisManager
&FAM
) {
1965 auto &AC
= FAM
.getResult
<AssumptionAnalysis
>(F
);
1966 TargetTransformInfo
&TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
1967 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
1968 AAResults
&AA
= FAM
.getResult
<AAManager
>(F
);
1969 VectorCombine
Combiner(F
, TTI
, DT
, AA
, AC
, TryEarlyFoldsOnly
);
1970 if (!Combiner
.run())
1971 return PreservedAnalyses::all();
1972 PreservedAnalyses PA
;
1973 PA
.preserveSet
<CFGAnalyses
>();