[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / tools / llvm-profgen / ProfiledBinary.h
blob0fd12f5acd6b48a876b6d92631a50f5d0b1b775b
1 //===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
10 #define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
12 #include "CallContext.h"
13 #include "ErrorHandling.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/StringSet.h"
17 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
18 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
19 #include "llvm/MC/MCAsmInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstPrinter.h"
24 #include "llvm/MC/MCInstrAnalysis.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCObjectFileInfo.h"
27 #include "llvm/MC/MCPseudoProbe.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/MC/MCTargetOptions.h"
31 #include "llvm/Object/ELFObjectFile.h"
32 #include "llvm/ProfileData/SampleProf.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Path.h"
35 #include "llvm/Transforms/IPO/SampleContextTracker.h"
36 #include <map>
37 #include <set>
38 #include <sstream>
39 #include <string>
40 #include <unordered_map>
41 #include <unordered_set>
42 #include <vector>
44 namespace llvm {
45 extern cl::opt<bool> EnableCSPreInliner;
46 extern cl::opt<bool> UseContextCostForPreInliner;
47 } // namespace llvm
49 using namespace llvm;
50 using namespace sampleprof;
51 using namespace llvm::object;
53 namespace llvm {
54 namespace sampleprof {
56 class ProfiledBinary;
57 class MissingFrameInferrer;
59 struct InstructionPointer {
60 const ProfiledBinary *Binary;
61 // Address of the executable segment of the binary.
62 uint64_t Address;
63 // Index to the sorted code address array of the binary.
64 uint64_t Index = 0;
65 InstructionPointer(const ProfiledBinary *Binary, uint64_t Address,
66 bool RoundToNext = false);
67 bool advance();
68 bool backward();
69 void update(uint64_t Addr);
72 // The special frame addresses.
73 enum SpecialFrameAddr {
74 // Dummy root of frame trie.
75 DummyRoot = 0,
76 // Represent all the addresses outside of current binary.
77 // This's also used to indicate the call stack should be truncated since this
78 // isn't a real call context the compiler will see.
79 ExternalAddr = 1,
82 using RangesTy = std::vector<std::pair<uint64_t, uint64_t>>;
84 struct BinaryFunction {
85 StringRef FuncName;
86 // End of range is an exclusive bound.
87 RangesTy Ranges;
89 uint64_t getFuncSize() {
90 uint64_t Sum = 0;
91 for (auto &R : Ranges) {
92 Sum += R.second - R.first;
94 return Sum;
98 // Info about function range. A function can be split into multiple
99 // non-continuous ranges, each range corresponds to one FuncRange.
100 struct FuncRange {
101 uint64_t StartAddress;
102 // EndAddress is an exclusive bound.
103 uint64_t EndAddress;
104 // Function the range belongs to
105 BinaryFunction *Func;
106 // Whether the start address is the real entry of the function.
107 bool IsFuncEntry = false;
109 StringRef getFuncName() { return Func->FuncName; }
112 // PrologEpilog address tracker, used to filter out broken stack samples
113 // Currently we use a heuristic size (two) to infer prolog and epilog
114 // based on the start address and return address. In the future,
115 // we will switch to Dwarf CFI based tracker
116 struct PrologEpilogTracker {
117 // A set of prolog and epilog addresses. Used by virtual unwinding.
118 std::unordered_set<uint64_t> PrologEpilogSet;
119 ProfiledBinary *Binary;
120 PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
122 // Take the two addresses from the start of function as prolog
123 void
124 inferPrologAddresses(std::map<uint64_t, FuncRange> &FuncStartAddressMap) {
125 for (auto I : FuncStartAddressMap) {
126 PrologEpilogSet.insert(I.first);
127 InstructionPointer IP(Binary, I.first);
128 if (!IP.advance())
129 break;
130 PrologEpilogSet.insert(IP.Address);
134 // Take the last two addresses before the return address as epilog
135 void inferEpilogAddresses(std::unordered_set<uint64_t> &RetAddrs) {
136 for (auto Addr : RetAddrs) {
137 PrologEpilogSet.insert(Addr);
138 InstructionPointer IP(Binary, Addr);
139 if (!IP.backward())
140 break;
141 PrologEpilogSet.insert(IP.Address);
146 // Track function byte size under different context (outlined version as well as
147 // various inlined versions). It also provides query support to get function
148 // size with the best matching context, which is used to help pre-inliner use
149 // accurate post-optimization size to make decisions.
150 // TODO: If an inlinee is completely optimized away, ideally we should have zero
151 // for its context size, currently we would misss such context since it doesn't
152 // have instructions. To fix this, we need to mark all inlinee with entry probe
153 // but without instructions as having zero size.
154 class BinarySizeContextTracker {
155 public:
156 // Add instruction with given size to a context
157 void addInstructionForContext(const SampleContextFrameVector &Context,
158 uint32_t InstrSize);
160 // Get function size with a specific context. When there's no exact match
161 // for the given context, try to retrieve the size of that function from
162 // closest matching context.
163 uint32_t getFuncSizeForContext(const ContextTrieNode *Context);
165 // For inlinees that are full optimized away, we can establish zero size using
166 // their remaining probes.
167 void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder);
169 using ProbeFrameStack = SmallVector<std::pair<StringRef, uint32_t>>;
170 void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder,
171 MCDecodedPseudoProbeInlineTree &ProbeNode,
172 ProbeFrameStack &Context);
174 void dump() { RootContext.dumpTree(); }
176 private:
177 // Root node for context trie tree, node that this is a reverse context trie
178 // with callee as parent and caller as child. This way we can traverse from
179 // root to find the best/longest matching context if an exact match does not
180 // exist. It gives us the best possible estimate for function's post-inline,
181 // post-optimization byte size.
182 ContextTrieNode RootContext;
185 using AddressRange = std::pair<uint64_t, uint64_t>;
187 class ProfiledBinary {
188 // Absolute path of the executable binary.
189 std::string Path;
190 // Path of the debug info binary.
191 std::string DebugBinaryPath;
192 // The target triple.
193 Triple TheTriple;
194 // Path of symbolizer path which should be pointed to binary with debug info.
195 StringRef SymbolizerPath;
196 // Options used to configure the symbolizer
197 symbolize::LLVMSymbolizer::Options SymbolizerOpts;
198 // The runtime base address that the first executable segment is loaded at.
199 uint64_t BaseAddress = 0;
200 // The runtime base address that the first loadabe segment is loaded at.
201 uint64_t FirstLoadableAddress = 0;
202 // The preferred load address of each executable segment.
203 std::vector<uint64_t> PreferredTextSegmentAddresses;
204 // The file offset of each executable segment.
205 std::vector<uint64_t> TextSegmentOffsets;
207 // Mutiple MC component info
208 std::unique_ptr<const MCRegisterInfo> MRI;
209 std::unique_ptr<const MCAsmInfo> AsmInfo;
210 std::unique_ptr<const MCSubtargetInfo> STI;
211 std::unique_ptr<const MCInstrInfo> MII;
212 std::unique_ptr<MCDisassembler> DisAsm;
213 std::unique_ptr<const MCInstrAnalysis> MIA;
214 std::unique_ptr<MCInstPrinter> IPrinter;
215 // A list of text sections sorted by start RVA and size. Used to check
216 // if a given RVA is a valid code address.
217 std::set<std::pair<uint64_t, uint64_t>> TextSections;
219 // A map of mapping function name to BinaryFunction info.
220 std::unordered_map<std::string, BinaryFunction> BinaryFunctions;
222 // Lookup BinaryFunctions using the function name's MD5 hash. Needed if the
223 // profile is using MD5.
224 std::unordered_map<uint64_t, BinaryFunction *> HashBinaryFunctions;
226 // A list of binary functions that have samples.
227 std::unordered_set<const BinaryFunction *> ProfiledFunctions;
229 // GUID to Elf symbol start address map
230 DenseMap<uint64_t, uint64_t> SymbolStartAddrs;
232 // These maps are for temporary use of warning diagnosis.
233 DenseSet<int64_t> AddrsWithMultipleSymbols;
234 DenseSet<std::pair<uint64_t, uint64_t>> AddrsWithInvalidInstruction;
236 // Start address to Elf symbol GUID map
237 std::unordered_multimap<uint64_t, uint64_t> StartAddrToSymMap;
239 // An ordered map of mapping function's start address to function range
240 // relevant info. Currently to determine if the offset of ELF is the start of
241 // a real function, we leverage the function range info from DWARF.
242 std::map<uint64_t, FuncRange> StartAddrToFuncRangeMap;
244 // Address to context location map. Used to expand the context.
245 std::unordered_map<uint64_t, SampleContextFrameVector> AddressToLocStackMap;
247 // Address to instruction size map. Also used for quick Address lookup.
248 std::unordered_map<uint64_t, uint64_t> AddressToInstSizeMap;
250 // An array of Addresses of all instructions sorted in increasing order. The
251 // sorting is needed to fast advance to the next forward/backward instruction.
252 std::vector<uint64_t> CodeAddressVec;
253 // A set of call instruction addresses. Used by virtual unwinding.
254 std::unordered_set<uint64_t> CallAddressSet;
255 // A set of return instruction addresses. Used by virtual unwinding.
256 std::unordered_set<uint64_t> RetAddressSet;
257 // An ordered set of unconditional branch instruction addresses.
258 std::set<uint64_t> UncondBranchAddrSet;
259 // A set of branch instruction addresses.
260 std::unordered_set<uint64_t> BranchAddressSet;
262 // Estimate and track function prolog and epilog ranges.
263 PrologEpilogTracker ProEpilogTracker;
265 // Infer missing frames due to compiler optimizations such as tail call
266 // elimination.
267 std::unique_ptr<MissingFrameInferrer> MissingContextInferrer;
269 // Track function sizes under different context
270 BinarySizeContextTracker FuncSizeTracker;
272 // The symbolizer used to get inline context for an instruction.
273 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
275 // String table owning function name strings created from the symbolizer.
276 std::unordered_set<std::string> NameStrings;
278 // A collection of functions to print disassembly for.
279 StringSet<> DisassembleFunctionSet;
281 // Pseudo probe decoder
282 MCPseudoProbeDecoder ProbeDecoder;
284 // Function name to probe frame map for top-level outlined functions.
285 StringMap<MCDecodedPseudoProbeInlineTree *> TopLevelProbeFrameMap;
287 bool UsePseudoProbes = false;
289 bool UseFSDiscriminator = false;
291 // Whether we need to symbolize all instructions to get function context size.
292 bool TrackFuncContextSize = false;
294 // Indicate if the base loading address is parsed from the mmap event or uses
295 // the preferred address
296 bool IsLoadedByMMap = false;
297 // Use to avoid redundant warning.
298 bool MissingMMapWarned = false;
300 void setPreferredTextSegmentAddresses(const ELFObjectFileBase *O);
302 template <class ELFT>
303 void setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj,
304 StringRef FileName);
306 void checkPseudoProbe(const ELFObjectFileBase *Obj);
308 void decodePseudoProbe(const ELFObjectFileBase *Obj);
310 void
311 checkUseFSDiscriminator(const ELFObjectFileBase *Obj,
312 std::map<SectionRef, SectionSymbolsTy> &AllSymbols);
314 // Set up disassembler and related components.
315 void setUpDisassembler(const ELFObjectFileBase *Obj);
316 symbolize::LLVMSymbolizer::Options getSymbolizerOpts() const;
318 // Load debug info of subprograms from DWARF section.
319 void loadSymbolsFromDWARF(ObjectFile &Obj);
321 // Load debug info from DWARF unit.
322 void loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit);
324 // Create elf symbol to its start address mapping.
325 void populateElfSymbolAddressList(const ELFObjectFileBase *O);
327 // A function may be spilt into multiple non-continuous address ranges. We use
328 // this to set whether start a function range is the real entry of the
329 // function and also set false to the non-function label.
330 void setIsFuncEntry(FuncRange *FRange, StringRef RangeSymName);
332 // Warn if no entry range exists in the function.
333 void warnNoFuncEntry();
335 /// Dissassemble the text section and build various address maps.
336 void disassemble(const ELFObjectFileBase *O);
338 /// Helper function to dissassemble the symbol and extract info for unwinding
339 bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
340 SectionSymbolsTy &Symbols, const SectionRef &Section);
341 /// Symbolize a given instruction pointer and return a full call context.
342 SampleContextFrameVector symbolize(const InstructionPointer &IP,
343 bool UseCanonicalFnName = false,
344 bool UseProbeDiscriminator = false);
345 /// Decode the interesting parts of the binary and build internal data
346 /// structures. On high level, the parts of interest are:
347 /// 1. Text sections, including the main code section and the PLT
348 /// entries that will be used to handle cross-module call transitions.
349 /// 2. The .debug_line section, used by Dwarf-based profile generation.
350 /// 3. Pseudo probe related sections, used by probe-based profile
351 /// generation.
352 void load();
354 public:
355 ProfiledBinary(const StringRef ExeBinPath, const StringRef DebugBinPath);
356 ~ProfiledBinary();
358 void decodePseudoProbe();
360 StringRef getPath() const { return Path; }
361 StringRef getName() const { return llvm::sys::path::filename(Path); }
362 uint64_t getBaseAddress() const { return BaseAddress; }
363 void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
365 // Canonicalize to use preferred load address as base address.
366 uint64_t canonicalizeVirtualAddress(uint64_t Address) {
367 return Address - BaseAddress + getPreferredBaseAddress();
369 // Return the preferred load address for the first executable segment.
370 uint64_t getPreferredBaseAddress() const {
371 return PreferredTextSegmentAddresses[0];
373 // Return the preferred load address for the first loadable segment.
374 uint64_t getFirstLoadableAddress() const { return FirstLoadableAddress; }
375 // Return the file offset for the first executable segment.
376 uint64_t getTextSegmentOffset() const { return TextSegmentOffsets[0]; }
377 const std::vector<uint64_t> &getPreferredTextSegmentAddresses() const {
378 return PreferredTextSegmentAddresses;
380 const std::vector<uint64_t> &getTextSegmentOffsets() const {
381 return TextSegmentOffsets;
384 uint64_t getInstSize(uint64_t Address) const {
385 auto I = AddressToInstSizeMap.find(Address);
386 if (I == AddressToInstSizeMap.end())
387 return 0;
388 return I->second;
391 bool addressIsCode(uint64_t Address) const {
392 return AddressToInstSizeMap.find(Address) != AddressToInstSizeMap.end();
395 bool addressIsCall(uint64_t Address) const {
396 return CallAddressSet.count(Address);
398 bool addressIsReturn(uint64_t Address) const {
399 return RetAddressSet.count(Address);
401 bool addressInPrologEpilog(uint64_t Address) const {
402 return ProEpilogTracker.PrologEpilogSet.count(Address);
405 bool addressIsTransfer(uint64_t Address) {
406 return BranchAddressSet.count(Address) || RetAddressSet.count(Address) ||
407 CallAddressSet.count(Address);
410 bool rangeCrossUncondBranch(uint64_t Start, uint64_t End) {
411 if (Start >= End)
412 return false;
413 auto R = UncondBranchAddrSet.lower_bound(Start);
414 return R != UncondBranchAddrSet.end() && *R < End;
417 uint64_t getAddressforIndex(uint64_t Index) const {
418 return CodeAddressVec[Index];
421 size_t getCodeAddrVecSize() const { return CodeAddressVec.size(); }
423 bool usePseudoProbes() const { return UsePseudoProbes; }
424 bool useFSDiscriminator() const { return UseFSDiscriminator; }
425 // Get the index in CodeAddressVec for the address
426 // As we might get an address which is not the code
427 // here it would round to the next valid code address by
428 // using lower bound operation
429 uint32_t getIndexForAddr(uint64_t Address) const {
430 auto Low = llvm::lower_bound(CodeAddressVec, Address);
431 return Low - CodeAddressVec.begin();
434 uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
435 if (FrameAddr == ExternalAddr)
436 return ExternalAddr;
437 auto I = getIndexForAddr(FrameAddr);
438 FrameAddr = I ? getAddressforIndex(I - 1) : 0;
439 if (FrameAddr && addressIsCall(FrameAddr))
440 return FrameAddr;
441 return 0;
444 FuncRange *findFuncRangeForStartAddr(uint64_t Address) {
445 auto I = StartAddrToFuncRangeMap.find(Address);
446 if (I == StartAddrToFuncRangeMap.end())
447 return nullptr;
448 return &I->second;
451 // Binary search the function range which includes the input address.
452 FuncRange *findFuncRange(uint64_t Address) {
453 auto I = StartAddrToFuncRangeMap.upper_bound(Address);
454 if (I == StartAddrToFuncRangeMap.begin())
455 return nullptr;
456 I--;
458 if (Address >= I->second.EndAddress)
459 return nullptr;
461 return &I->second;
464 // Get all ranges of one function.
465 RangesTy getRanges(uint64_t Address) {
466 auto *FRange = findFuncRange(Address);
467 // Ignore the range which falls into plt section or system lib.
468 if (!FRange)
469 return RangesTy();
471 return FRange->Func->Ranges;
474 const std::unordered_map<std::string, BinaryFunction> &
475 getAllBinaryFunctions() {
476 return BinaryFunctions;
479 std::unordered_set<const BinaryFunction *> &getProfiledFunctions() {
480 return ProfiledFunctions;
483 void setProfiledFunctions(std::unordered_set<const BinaryFunction *> &Funcs) {
484 ProfiledFunctions = Funcs;
487 BinaryFunction *getBinaryFunction(FunctionId FName) {
488 if (FName.isStringRef()) {
489 auto I = BinaryFunctions.find(FName.str());
490 if (I == BinaryFunctions.end())
491 return nullptr;
492 return &I->second;
494 auto I = HashBinaryFunctions.find(FName.getHashCode());
495 if (I == HashBinaryFunctions.end())
496 return nullptr;
497 return I->second;
500 uint32_t getFuncSizeForContext(const ContextTrieNode *ContextNode) {
501 return FuncSizeTracker.getFuncSizeForContext(ContextNode);
504 void inferMissingFrames(const SmallVectorImpl<uint64_t> &Context,
505 SmallVectorImpl<uint64_t> &NewContext);
507 // Load the symbols from debug table and populate into symbol list.
508 void populateSymbolListFromDWARF(ProfileSymbolList &SymbolList);
510 SampleContextFrameVector
511 getFrameLocationStack(uint64_t Address, bool UseProbeDiscriminator = false) {
512 InstructionPointer IP(this, Address);
513 return symbolize(IP, SymbolizerOpts.UseSymbolTable, UseProbeDiscriminator);
516 const SampleContextFrameVector &
517 getCachedFrameLocationStack(uint64_t Address,
518 bool UseProbeDiscriminator = false) {
519 auto I = AddressToLocStackMap.emplace(Address, SampleContextFrameVector());
520 if (I.second) {
521 I.first->second = getFrameLocationStack(Address, UseProbeDiscriminator);
523 return I.first->second;
526 std::optional<SampleContextFrame> getInlineLeafFrameLoc(uint64_t Address) {
527 const auto &Stack = getCachedFrameLocationStack(Address);
528 if (Stack.empty())
529 return {};
530 return Stack.back();
533 void flushSymbolizer() { Symbolizer.reset(); }
535 MissingFrameInferrer *getMissingContextInferrer() {
536 return MissingContextInferrer.get();
539 // Compare two addresses' inline context
540 bool inlineContextEqual(uint64_t Add1, uint64_t Add2);
542 // Get the full context of the current stack with inline context filled in.
543 // It will search the disassembling info stored in AddressToLocStackMap. This
544 // is used as the key of function sample map
545 SampleContextFrameVector
546 getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
547 bool &WasLeafInlined);
548 // Go through instructions among the given range and record its size for the
549 // inline context.
550 void computeInlinedContextSizeForRange(uint64_t StartAddress,
551 uint64_t EndAddress);
553 void computeInlinedContextSizeForFunc(const BinaryFunction *Func);
555 const MCDecodedPseudoProbe *getCallProbeForAddr(uint64_t Address) const {
556 return ProbeDecoder.getCallProbeForAddr(Address);
559 void getInlineContextForProbe(const MCDecodedPseudoProbe *Probe,
560 SampleContextFrameVector &InlineContextStack,
561 bool IncludeLeaf = false) const {
562 SmallVector<MCPseduoProbeFrameLocation, 16> ProbeInlineContext;
563 ProbeDecoder.getInlineContextForProbe(Probe, ProbeInlineContext,
564 IncludeLeaf);
565 for (uint32_t I = 0; I < ProbeInlineContext.size(); I++) {
566 auto &Callsite = ProbeInlineContext[I];
567 // Clear the current context for an unknown probe.
568 if (Callsite.second == 0 && I != ProbeInlineContext.size() - 1) {
569 InlineContextStack.clear();
570 continue;
572 InlineContextStack.emplace_back(FunctionId(Callsite.first),
573 LineLocation(Callsite.second, 0));
576 const AddressProbesMap &getAddress2ProbesMap() const {
577 return ProbeDecoder.getAddress2ProbesMap();
579 const MCPseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
580 return ProbeDecoder.getFuncDescForGUID(GUID);
583 const MCPseudoProbeFuncDesc *
584 getInlinerDescForProbe(const MCDecodedPseudoProbe *Probe) {
585 return ProbeDecoder.getInlinerDescForProbe(Probe);
588 bool getTrackFuncContextSize() { return TrackFuncContextSize; }
590 bool getIsLoadedByMMap() { return IsLoadedByMMap; }
592 void setIsLoadedByMMap(bool Value) { IsLoadedByMMap = Value; }
594 bool getMissingMMapWarned() { return MissingMMapWarned; }
596 void setMissingMMapWarned(bool Value) { MissingMMapWarned = Value; }
599 } // end namespace sampleprof
600 } // end namespace llvm
602 #endif