[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / tools / llvm-readobj / ELFDumper.cpp
blob387124ad53e408206d3eb058e1229cff3a4ed69c
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/BinaryFormat/MsgPackDocument.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MSP430AttributeParser.h"
54 #include "llvm/Support/MSP430Attributes.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/MipsABIFlags.h"
57 #include "llvm/Support/RISCVAttributeParser.h"
58 #include "llvm/Support/RISCVAttributes.h"
59 #include "llvm/Support/ScopedPrinter.h"
60 #include "llvm/Support/SystemZ/zOSSupport.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
79 case ns::enum: \
80 return #enum;
82 #define ENUM_ENT(enum, altName) \
83 { #enum, altName, ELF::enum }
85 #define ENUM_ENT_1(enum) \
86 { #enum, #enum, ELF::enum }
88 namespace {
90 template <class ELFT> struct RelSymbol {
91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
164 struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
169 struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
180 namespace {
182 struct NoteType {
183 uint32_t ID;
184 StringRef Name;
187 } // namespace
189 template <class ELFT> class Relocation {
190 public:
191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 std::optional<int64_t> Addend;
207 template <class ELFT> class MipsGOTParser;
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
212 public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223 void printMemtag() override;
224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
226 // Hash histogram shows statistics of how efficient the hash was for the
227 // dynamic symbol table. The table shows the number of hash buckets for
228 // different lengths of chains as an absolute number and percentage of the
229 // total buckets, and the cumulative coverage of symbols for each set of
230 // buckets.
231 void printHashHistograms() override;
233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
235 std::string describe(const Elf_Shdr &Sec) const;
237 unsigned getHashTableEntSize() const {
238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239 // sections. This violates the ELF specification.
240 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
241 Obj.getHeader().e_machine == ELF::EM_ALPHA)
242 return 8;
243 return 4;
246 std::vector<EnumEntry<unsigned>>
247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
249 Elf_Dyn_Range dynamic_table() const {
250 // A valid .dynamic section contains an array of entries terminated
251 // with a DT_NULL entry. However, sometimes the section content may
252 // continue past the DT_NULL entry, so to dump the section correctly,
253 // we first find the end of the entries by iterating over them.
254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
256 size_t Size = 0;
257 while (Size < Table.size())
258 if (Table[Size++].getTag() == DT_NULL)
259 break;
261 return Table.slice(0, Size);
264 Elf_Sym_Range dynamic_symbols() const {
265 if (!DynSymRegion)
266 return Elf_Sym_Range();
267 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
270 const Elf_Shdr *findSectionByName(StringRef Name) const;
272 StringRef getDynamicStringTable() const { return DynamicStringTable; }
274 protected:
275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
279 void
280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
281 function_ref<void(StringRef, uint64_t)> OnLibEntry);
283 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
284 const RelSymbol<ELFT> &RelSym) = 0;
285 virtual void printRelrReloc(const Elf_Relr &R) = 0;
286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
287 const DynRegionInfo &Reg) {}
288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
290 void printDynamicReloc(const Relocation<ELFT> &R);
291 void printDynamicRelocationsHelper();
292 void printRelocationsHelper(const Elf_Shdr &Sec);
293 void forEachRelocationDo(
294 const Elf_Shdr &Sec, bool RawRelr,
295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
296 const Elf_Shdr &, const Elf_Shdr *)>
297 RelRelaFn,
298 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
301 bool NonVisibilityBitsUsed,
302 bool ExtraSymInfo) const {};
303 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
304 DataRegion<Elf_Word> ShndxTable,
305 std::optional<StringRef> StrTable, bool IsDynamic,
306 bool NonVisibilityBitsUsed,
307 bool ExtraSymInfo) const = 0;
309 virtual void printMipsABIFlags() = 0;
310 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
311 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
313 virtual void printMemtag(
314 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
315 const ArrayRef<uint8_t> AndroidNoteDesc,
316 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
318 virtual void printHashHistogram(const Elf_Hash &HashTable) const;
319 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
320 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
321 size_t TotalSyms, ArrayRef<size_t> Count,
322 bool IsGnu) const = 0;
324 Expected<ArrayRef<Elf_Versym>>
325 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
326 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
327 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
329 std::vector<GroupSection> getGroups();
331 // Returns the function symbol index for the given address. Matches the
332 // symbol's section with FunctionSec when specified.
333 // Returns std::nullopt if no function symbol can be found for the address or
334 // in case it is not defined in the specified section.
335 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
336 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
337 bool printFunctionStackSize(uint64_t SymValue,
338 std::optional<const Elf_Shdr *> FunctionSec,
339 const Elf_Shdr &StackSizeSec, DataExtractor Data,
340 uint64_t *Offset);
341 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
342 unsigned Ndx, const Elf_Shdr *SymTab,
343 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
344 const RelocationResolver &Resolver, DataExtractor Data);
345 virtual void printStackSizeEntry(uint64_t Size,
346 ArrayRef<std::string> FuncNames) = 0;
348 void printRelocatableStackSizes(std::function<void()> PrintHeader);
349 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
351 const object::ELFObjectFile<ELFT> &ObjF;
352 const ELFFile<ELFT> &Obj;
353 StringRef FileName;
355 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
356 uint64_t EntSize) {
357 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
358 return createError("offset (0x" + Twine::utohexstr(Offset) +
359 ") + size (0x" + Twine::utohexstr(Size) +
360 ") is greater than the file size (0x" +
361 Twine::utohexstr(Obj.getBufSize()) + ")");
362 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
365 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
366 llvm::endianness);
367 void printMipsReginfo();
368 void printMipsOptions();
370 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
371 void loadDynamicTable();
372 void parseDynamicTable();
374 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
375 bool &IsDefault) const;
376 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
378 DynRegionInfo DynRelRegion;
379 DynRegionInfo DynRelaRegion;
380 DynRegionInfo DynRelrRegion;
381 DynRegionInfo DynPLTRelRegion;
382 std::optional<DynRegionInfo> DynSymRegion;
383 DynRegionInfo DynSymTabShndxRegion;
384 DynRegionInfo DynamicTable;
385 StringRef DynamicStringTable;
386 const Elf_Hash *HashTable = nullptr;
387 const Elf_GnuHash *GnuHashTable = nullptr;
388 const Elf_Shdr *DotSymtabSec = nullptr;
389 const Elf_Shdr *DotDynsymSec = nullptr;
390 const Elf_Shdr *DotAddrsigSec = nullptr;
391 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
392 std::optional<uint64_t> SONameOffset;
393 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
395 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
396 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
397 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
399 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
400 DataRegion<Elf_Word> ShndxTable,
401 std::optional<StringRef> StrTable,
402 bool IsDynamic) const;
403 Expected<unsigned>
404 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
405 DataRegion<Elf_Word> ShndxTable) const;
406 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
407 unsigned SectionIndex) const;
408 std::string getStaticSymbolName(uint32_t Index) const;
409 StringRef getDynamicString(uint64_t Value) const;
411 void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const;
412 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
414 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
415 const Elf_Shdr *SymTab) const;
417 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
419 private:
420 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
423 template <class ELFT>
424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
425 return ::describe(Obj, Sec);
428 namespace {
430 template <class ELFT> struct SymtabLink {
431 typename ELFT::SymRange Symbols;
432 StringRef StringTable;
433 const typename ELFT::Shdr *SymTab;
436 // Returns the linked symbol table, symbols and associated string table for a
437 // given section.
438 template <class ELFT>
439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
440 const typename ELFT::Shdr &Sec,
441 unsigned ExpectedType) {
442 Expected<const typename ELFT::Shdr *> SymtabOrErr =
443 Obj.getSection(Sec.sh_link);
444 if (!SymtabOrErr)
445 return createError("invalid section linked to " + describe(Obj, Sec) +
446 ": " + toString(SymtabOrErr.takeError()));
448 if ((*SymtabOrErr)->sh_type != ExpectedType)
449 return createError(
450 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
451 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
452 ", but got " +
453 object::getELFSectionTypeName(Obj.getHeader().e_machine,
454 (*SymtabOrErr)->sh_type));
456 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
457 if (!StrTabOrErr)
458 return createError(
459 "can't get a string table for the symbol table linked to " +
460 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
462 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
463 if (!SymsOrErr)
464 return createError("unable to read symbols from the " + describe(Obj, Sec) +
465 ": " + toString(SymsOrErr.takeError()));
467 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
470 } // namespace
472 template <class ELFT>
473 Expected<ArrayRef<typename ELFT::Versym>>
474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
475 StringRef *StrTab,
476 const Elf_Shdr **SymTabSec) const {
477 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
478 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
479 sizeof(uint16_t) !=
481 return createError("the " + describe(Sec) + " is misaligned");
483 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
484 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
485 if (!VersionsOrErr)
486 return createError("cannot read content of " + describe(Sec) + ": " +
487 toString(VersionsOrErr.takeError()));
489 Expected<SymtabLink<ELFT>> SymTabOrErr =
490 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
491 if (!SymTabOrErr) {
492 reportUniqueWarning(SymTabOrErr.takeError());
493 return *VersionsOrErr;
496 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
497 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
498 Twine(VersionsOrErr->size()) +
499 ") does not match the number of symbols (" +
500 Twine(SymTabOrErr->Symbols.size()) +
501 ") in the symbol table with index " +
502 Twine(Sec.sh_link));
504 if (SymTab) {
505 *SymTab = SymTabOrErr->Symbols;
506 *StrTab = SymTabOrErr->StringTable;
507 *SymTabSec = SymTabOrErr->SymTab;
509 return *VersionsOrErr;
512 template <class ELFT>
513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic,
514 bool ExtraSymInfo) const {
515 std::optional<StringRef> StrTable;
516 size_t Entries = 0;
517 Elf_Sym_Range Syms(nullptr, nullptr);
518 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
520 if (IsDynamic) {
521 StrTable = DynamicStringTable;
522 Syms = dynamic_symbols();
523 Entries = Syms.size();
524 } else if (DotSymtabSec) {
525 if (Expected<StringRef> StrTableOrErr =
526 Obj.getStringTableForSymtab(*DotSymtabSec))
527 StrTable = *StrTableOrErr;
528 else
529 reportUniqueWarning(
530 "unable to get the string table for the SHT_SYMTAB section: " +
531 toString(StrTableOrErr.takeError()));
533 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
534 Syms = *SymsOrErr;
535 else
536 reportUniqueWarning(
537 "unable to read symbols from the SHT_SYMTAB section: " +
538 toString(SymsOrErr.takeError()));
539 Entries = DotSymtabSec->getEntityCount();
541 if (Syms.empty())
542 return;
544 // The st_other field has 2 logical parts. The first two bits hold the symbol
545 // visibility (STV_*) and the remainder hold other platform-specific values.
546 bool NonVisibilityBitsUsed =
547 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
549 DataRegion<Elf_Word> ShndxTable =
550 IsDynamic ? DataRegion<Elf_Word>(
551 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
552 this->getElfObject().getELFFile().end())
553 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
555 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo);
556 for (const Elf_Sym &Sym : Syms)
557 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
558 NonVisibilityBitsUsed, ExtraSymInfo);
561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
562 formatted_raw_ostream &OS;
564 public:
565 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
567 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
568 : ELFDumper<ELFT>(ObjF, Writer),
569 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
570 assert(&this->W.getOStream() == &llvm::fouts());
573 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
574 ArrayRef<std::string> InputFilenames,
575 const Archive *A) override;
576 void printFileHeaders() override;
577 void printGroupSections() override;
578 void printRelocations() override;
579 void printSectionHeaders() override;
580 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
581 bool ExtraSymInfo) override;
582 void printHashSymbols() override;
583 void printSectionDetails() override;
584 void printDependentLibs() override;
585 void printDynamicTable() override;
586 void printDynamicRelocations() override;
587 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
588 bool NonVisibilityBitsUsed,
589 bool ExtraSymInfo) const override;
590 void printProgramHeaders(bool PrintProgramHeaders,
591 cl::boolOrDefault PrintSectionMapping) override;
592 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
593 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
594 void printVersionDependencySection(const Elf_Shdr *Sec) override;
595 void printCGProfile() override;
596 void printBBAddrMaps() override;
597 void printAddrsig() override;
598 void printNotes() override;
599 void printELFLinkerOptions() override;
600 void printStackSizes() override;
601 void printMemtag(
602 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
603 const ArrayRef<uint8_t> AndroidNoteDesc,
604 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
605 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
606 size_t TotalSyms, ArrayRef<size_t> Count,
607 bool IsGnu) const override;
609 private:
610 void printHashTableSymbols(const Elf_Hash &HashTable);
611 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
613 struct Field {
614 std::string Str;
615 unsigned Column;
617 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
618 Field(unsigned Col) : Column(Col) {}
621 template <typename T, typename TEnum>
622 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
623 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
624 TEnum EnumMask3 = {}) const {
625 std::string Str;
626 for (const EnumEntry<TEnum> &Flag : EnumValues) {
627 if (Flag.Value == 0)
628 continue;
630 TEnum EnumMask{};
631 if (Flag.Value & EnumMask1)
632 EnumMask = EnumMask1;
633 else if (Flag.Value & EnumMask2)
634 EnumMask = EnumMask2;
635 else if (Flag.Value & EnumMask3)
636 EnumMask = EnumMask3;
637 bool IsEnum = (Flag.Value & EnumMask) != 0;
638 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
639 (IsEnum && (Value & EnumMask) == Flag.Value)) {
640 if (!Str.empty())
641 Str += ", ";
642 Str += Flag.AltName;
645 return Str;
648 formatted_raw_ostream &printField(struct Field F) const {
649 if (F.Column != 0)
650 OS.PadToColumn(F.Column);
651 OS << F.Str;
652 OS.flush();
653 return OS;
655 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
656 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
657 uint32_t Bucket);
658 void printRelrReloc(const Elf_Relr &R) override;
659 void printRelRelaReloc(const Relocation<ELFT> &R,
660 const RelSymbol<ELFT> &RelSym) override;
661 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
662 DataRegion<Elf_Word> ShndxTable,
663 std::optional<StringRef> StrTable, bool IsDynamic,
664 bool NonVisibilityBitsUsed,
665 bool ExtraSymInfo) const override;
666 void printDynamicRelocHeader(unsigned Type, StringRef Name,
667 const DynRegionInfo &Reg) override;
669 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
670 DataRegion<Elf_Word> ShndxTable,
671 bool ExtraSymInfo = false) const;
672 void printProgramHeaders() override;
673 void printSectionMapping() override;
674 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
675 const Twine &Label, unsigned EntriesNum);
677 void printStackSizeEntry(uint64_t Size,
678 ArrayRef<std::string> FuncNames) override;
680 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
681 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
682 void printMipsABIFlags() override;
685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
686 public:
687 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
689 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
690 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
692 void printFileHeaders() override;
693 void printGroupSections() override;
694 void printRelocations() override;
695 void printSectionHeaders() override;
696 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
697 bool ExtraSymInfo) override;
698 void printDependentLibs() override;
699 void printDynamicTable() override;
700 void printDynamicRelocations() override;
701 void printProgramHeaders(bool PrintProgramHeaders,
702 cl::boolOrDefault PrintSectionMapping) override;
703 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
704 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
705 void printVersionDependencySection(const Elf_Shdr *Sec) override;
706 void printCGProfile() override;
707 void printBBAddrMaps() override;
708 void printAddrsig() override;
709 void printNotes() override;
710 void printELFLinkerOptions() override;
711 void printStackSizes() override;
712 void printMemtag(
713 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
714 const ArrayRef<uint8_t> AndroidNoteDesc,
715 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
716 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
717 DataRegion<Elf_Word> ShndxTable) const;
718 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
719 size_t TotalSyms, ArrayRef<size_t> Count,
720 bool IsGnu) const override;
722 private:
723 void printRelrReloc(const Elf_Relr &R) override;
724 void printRelRelaReloc(const Relocation<ELFT> &R,
725 const RelSymbol<ELFT> &RelSym) override;
727 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
728 DataRegion<Elf_Word> ShndxTable,
729 std::optional<StringRef> StrTable, bool IsDynamic,
730 bool /*NonVisibilityBitsUsed*/,
731 bool /*ExtraSymInfo*/) const override;
732 void printProgramHeaders() override;
733 void printSectionMapping() override {}
734 void printStackSizeEntry(uint64_t Size,
735 ArrayRef<std::string> FuncNames) override;
737 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
738 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
739 void printMipsABIFlags() override;
740 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
742 protected:
743 virtual std::string getGroupSectionHeaderName() const;
744 void printSymbolOtherField(const Elf_Sym &Symbol) const;
745 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
746 StringRef SymbolName,
747 StringRef RelocName);
748 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
749 StringRef SymbolName,
750 StringRef RelocName);
751 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
752 const unsigned SecNdx);
753 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
754 virtual void printEmptyGroupMessage() const;
756 ScopedPrinter &W;
759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
760 // it uses a JSONScopedPrinter.
761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
762 public:
763 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
765 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
766 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
768 std::string getGroupSectionHeaderName() const override;
770 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
771 ArrayRef<std::string> InputFilenames,
772 const Archive *A) override;
773 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
775 void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
776 StringRef SymbolName,
777 StringRef RelocName) override;
779 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
780 const unsigned SecNdx) override;
782 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
784 void printEmptyGroupMessage() const override;
786 private:
787 std::unique_ptr<DictScope> FileScope;
790 } // end anonymous namespace
792 namespace llvm {
794 template <class ELFT>
795 static std::unique_ptr<ObjDumper>
796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
797 if (opts::Output == opts::GNU)
798 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
799 else if (opts::Output == opts::JSON)
800 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
801 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
805 ScopedPrinter &Writer) {
806 // Little-endian 32-bit
807 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
808 return createELFDumper(*ELFObj, Writer);
810 // Big-endian 32-bit
811 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
812 return createELFDumper(*ELFObj, Writer);
814 // Little-endian 64-bit
815 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
816 return createELFDumper(*ELFObj, Writer);
818 // Big-endian 64-bit
819 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
822 } // end namespace llvm
824 template <class ELFT>
825 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
826 ELFDumper<ELFT>::getVersionMap() const {
827 // If the VersionMap has already been loaded or if there is no dynamic symtab
828 // or version table, there is nothing to do.
829 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
830 return &VersionMap;
832 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
833 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
834 if (MapOrErr)
835 VersionMap = *MapOrErr;
836 else
837 return MapOrErr.takeError();
839 return &VersionMap;
842 template <typename ELFT>
843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
844 bool &IsDefault) const {
845 // This is a dynamic symbol. Look in the GNU symbol version table.
846 if (!SymbolVersionSection) {
847 // No version table.
848 IsDefault = false;
849 return "";
852 assert(DynSymRegion && "DynSymRegion has not been initialised");
853 // Determine the position in the symbol table of this entry.
854 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
855 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
856 sizeof(Elf_Sym);
858 // Get the corresponding version index entry.
859 Expected<const Elf_Versym *> EntryOrErr =
860 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
861 if (!EntryOrErr)
862 return EntryOrErr.takeError();
864 unsigned Version = (*EntryOrErr)->vs_index;
865 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
866 IsDefault = false;
867 return "";
870 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
871 getVersionMap();
872 if (!MapOrErr)
873 return MapOrErr.takeError();
875 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
876 Sym.st_shndx == ELF::SHN_UNDEF);
879 template <typename ELFT>
880 Expected<RelSymbol<ELFT>>
881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
882 const Elf_Shdr *SymTab) const {
883 if (R.Symbol == 0)
884 return RelSymbol<ELFT>(nullptr, "");
886 Expected<const Elf_Sym *> SymOrErr =
887 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
888 if (!SymOrErr)
889 return createError("unable to read an entry with index " + Twine(R.Symbol) +
890 " from " + describe(*SymTab) + ": " +
891 toString(SymOrErr.takeError()));
892 const Elf_Sym *Sym = *SymOrErr;
893 if (!Sym)
894 return RelSymbol<ELFT>(nullptr, "");
896 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
897 if (!StrTableOrErr)
898 return StrTableOrErr.takeError();
900 const Elf_Sym *FirstSym =
901 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
902 std::string SymbolName =
903 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
904 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
905 return RelSymbol<ELFT>(Sym, SymbolName);
908 template <typename ELFT>
909 ArrayRef<typename ELFT::Word>
910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
911 if (Symtab) {
912 auto It = ShndxTables.find(Symtab);
913 if (It != ShndxTables.end())
914 return It->second;
916 return {};
919 static std::string maybeDemangle(StringRef Name) {
920 return opts::Demangle ? demangle(Name) : Name.str();
923 template <typename ELFT>
924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
925 auto Warn = [&](Error E) -> std::string {
926 reportUniqueWarning("unable to read the name of symbol with index " +
927 Twine(Index) + ": " + toString(std::move(E)));
928 return "<?>";
931 Expected<const typename ELFT::Sym *> SymOrErr =
932 Obj.getSymbol(DotSymtabSec, Index);
933 if (!SymOrErr)
934 return Warn(SymOrErr.takeError());
936 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
937 if (!StrTabOrErr)
938 return Warn(StrTabOrErr.takeError());
940 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
941 if (!NameOrErr)
942 return Warn(NameOrErr.takeError());
943 return maybeDemangle(*NameOrErr);
946 template <typename ELFT>
947 std::string ELFDumper<ELFT>::getFullSymbolName(
948 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
949 std::optional<StringRef> StrTable, bool IsDynamic) const {
950 if (!StrTable)
951 return "<?>";
953 std::string SymbolName;
954 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
955 SymbolName = maybeDemangle(*NameOrErr);
956 } else {
957 reportUniqueWarning(NameOrErr.takeError());
958 return "<?>";
961 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
962 Expected<unsigned> SectionIndex =
963 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
964 if (!SectionIndex) {
965 reportUniqueWarning(SectionIndex.takeError());
966 return "<?>";
968 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
969 if (!NameOrErr) {
970 reportUniqueWarning(NameOrErr.takeError());
971 return ("<section " + Twine(*SectionIndex) + ">").str();
973 return std::string(*NameOrErr);
976 if (!IsDynamic)
977 return SymbolName;
979 bool IsDefault;
980 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
981 if (!VersionOrErr) {
982 reportUniqueWarning(VersionOrErr.takeError());
983 return SymbolName + "@<corrupt>";
986 if (!VersionOrErr->empty()) {
987 SymbolName += (IsDefault ? "@@" : "@");
988 SymbolName += *VersionOrErr;
990 return SymbolName;
993 template <typename ELFT>
994 Expected<unsigned>
995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
996 DataRegion<Elf_Word> ShndxTable) const {
997 unsigned Ndx = Symbol.st_shndx;
998 if (Ndx == SHN_XINDEX)
999 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1000 ShndxTable);
1001 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1002 return Ndx;
1004 auto CreateErr = [&](const Twine &Name,
1005 std::optional<unsigned> Offset = std::nullopt) {
1006 std::string Desc;
1007 if (Offset)
1008 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1009 else
1010 Desc = Name.str();
1011 return createError(
1012 "unable to get section index for symbol with st_shndx = 0x" +
1013 Twine::utohexstr(Ndx) + " (" + Desc + ")");
1016 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1017 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1018 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1019 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1020 if (Ndx == ELF::SHN_UNDEF)
1021 return CreateErr("SHN_UNDEF");
1022 if (Ndx == ELF::SHN_ABS)
1023 return CreateErr("SHN_ABS");
1024 if (Ndx == ELF::SHN_COMMON)
1025 return CreateErr("SHN_COMMON");
1026 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1029 template <typename ELFT>
1030 Expected<StringRef>
1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1032 unsigned SectionIndex) const {
1033 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1034 if (!SecOrErr)
1035 return SecOrErr.takeError();
1036 return Obj.getSectionName(**SecOrErr);
1039 template <class ELFO>
1040 static const typename ELFO::Elf_Shdr *
1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1042 uint64_t Addr) {
1043 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1044 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1045 return &Shdr;
1046 return nullptr;
1049 const EnumEntry<unsigned> ElfClass[] = {
1050 {"None", "none", ELF::ELFCLASSNONE},
1051 {"32-bit", "ELF32", ELF::ELFCLASS32},
1052 {"64-bit", "ELF64", ELF::ELFCLASS64},
1055 const EnumEntry<unsigned> ElfDataEncoding[] = {
1056 {"None", "none", ELF::ELFDATANONE},
1057 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1058 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
1061 const EnumEntry<unsigned> ElfObjectFileType[] = {
1062 {"None", "NONE (none)", ELF::ET_NONE},
1063 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1064 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1065 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1066 {"Core", "CORE (Core file)", ELF::ET_CORE},
1069 const EnumEntry<unsigned> ElfOSABI[] = {
1070 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1071 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1072 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1073 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1074 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1075 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1076 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1077 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1078 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1079 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1080 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1081 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1082 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1083 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1084 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1085 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1086 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1087 {"CUDA", "NVIDIA - CUDA", ELF::ELFOSABI_CUDA},
1088 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1091 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1092 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1093 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1094 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1097 const EnumEntry<unsigned> ARMElfOSABI[] = {
1098 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1101 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1102 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1103 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1106 const EnumEntry<unsigned> ElfMachineType[] = {
1107 ENUM_ENT(EM_NONE, "None"),
1108 ENUM_ENT(EM_M32, "WE32100"),
1109 ENUM_ENT(EM_SPARC, "Sparc"),
1110 ENUM_ENT(EM_386, "Intel 80386"),
1111 ENUM_ENT(EM_68K, "MC68000"),
1112 ENUM_ENT(EM_88K, "MC88000"),
1113 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1114 ENUM_ENT(EM_860, "Intel 80860"),
1115 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1116 ENUM_ENT(EM_S370, "IBM System/370"),
1117 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1118 ENUM_ENT(EM_PARISC, "HPPA"),
1119 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1120 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1121 ENUM_ENT(EM_960, "Intel 80960"),
1122 ENUM_ENT(EM_PPC, "PowerPC"),
1123 ENUM_ENT(EM_PPC64, "PowerPC64"),
1124 ENUM_ENT(EM_S390, "IBM S/390"),
1125 ENUM_ENT(EM_SPU, "SPU"),
1126 ENUM_ENT(EM_V800, "NEC V800 series"),
1127 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1128 ENUM_ENT(EM_RH32, "TRW RH-32"),
1129 ENUM_ENT(EM_RCE, "Motorola RCE"),
1130 ENUM_ENT(EM_ARM, "ARM"),
1131 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1132 ENUM_ENT(EM_SH, "Hitachi SH"),
1133 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1134 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1135 ENUM_ENT(EM_ARC, "ARC"),
1136 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1137 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1138 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1139 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1140 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1141 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1142 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1143 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1144 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1145 ENUM_ENT(EM_PCP, "Siemens PCP"),
1146 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1147 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1148 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1149 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1150 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1151 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1152 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1153 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1154 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1155 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1156 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1157 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1158 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1159 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1160 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1161 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1162 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1163 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1164 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1165 ENUM_ENT(EM_VAX, "Digital VAX"),
1166 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1167 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1168 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1169 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1170 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1171 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1172 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1173 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1174 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1175 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1176 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1177 ENUM_ENT(EM_V850, "NEC v850"),
1178 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1179 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1180 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1181 ENUM_ENT(EM_PJ, "picoJava"),
1182 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1183 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1184 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1185 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1186 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1187 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1188 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1189 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1190 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1191 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1192 ENUM_ENT(EM_MAX, "MAX Processor"),
1193 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1194 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1195 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1196 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1197 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1198 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1199 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1200 ENUM_ENT(EM_UNICORE, "Unicore"),
1201 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1202 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1203 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1204 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1205 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1206 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1207 ENUM_ENT(EM_M16C, "Renesas M16C"),
1208 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1209 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1210 ENUM_ENT(EM_M32C, "Renesas M32C"),
1211 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1212 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1213 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1214 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1215 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1216 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1217 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1218 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1219 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1220 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1221 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1222 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1223 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1224 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1225 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1226 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1227 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1228 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1229 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1230 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1231 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1232 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1233 // an identical number to EM_ECOG1.
1234 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1235 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1236 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1237 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1238 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1239 ENUM_ENT(EM_RX, "Renesas RX"),
1240 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1241 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1242 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1243 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
1244 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1245 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1246 ENUM_ENT(EM_L10M, "EM_L10M"),
1247 ENUM_ENT(EM_K10M, "EM_K10M"),
1248 ENUM_ENT(EM_AARCH64, "AArch64"),
1249 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1250 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1251 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1252 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1253 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1254 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1255 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1256 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1257 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1258 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1259 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1260 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1261 ENUM_ENT(EM_RL78, "Renesas RL78"),
1262 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1263 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1264 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1265 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1266 ENUM_ENT(EM_RISCV, "RISC-V"),
1267 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1268 ENUM_ENT(EM_BPF, "EM_BPF"),
1269 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1270 ENUM_ENT(EM_LOONGARCH, "LoongArch"),
1273 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1274 {"Local", "LOCAL", ELF::STB_LOCAL},
1275 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1276 {"Weak", "WEAK", ELF::STB_WEAK},
1277 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1279 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1280 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1281 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1282 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1283 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1285 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1286 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1289 static const char *getGroupType(uint32_t Flag) {
1290 if (Flag & ELF::GRP_COMDAT)
1291 return "COMDAT";
1292 else
1293 return "(unknown)";
1296 const EnumEntry<unsigned> ElfSectionFlags[] = {
1297 ENUM_ENT(SHF_WRITE, "W"),
1298 ENUM_ENT(SHF_ALLOC, "A"),
1299 ENUM_ENT(SHF_EXECINSTR, "X"),
1300 ENUM_ENT(SHF_MERGE, "M"),
1301 ENUM_ENT(SHF_STRINGS, "S"),
1302 ENUM_ENT(SHF_INFO_LINK, "I"),
1303 ENUM_ENT(SHF_LINK_ORDER, "L"),
1304 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1305 ENUM_ENT(SHF_GROUP, "G"),
1306 ENUM_ENT(SHF_TLS, "T"),
1307 ENUM_ENT(SHF_COMPRESSED, "C"),
1308 ENUM_ENT(SHF_EXCLUDE, "E"),
1311 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1312 ENUM_ENT(SHF_GNU_RETAIN, "R")
1315 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1316 ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1319 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1320 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1321 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1324 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1325 ENUM_ENT(SHF_ARM_PURECODE, "y")
1328 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1329 ENUM_ENT(SHF_HEX_GPREL, "")
1332 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1333 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1334 ENUM_ENT(SHF_MIPS_NAMES, ""),
1335 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1336 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1337 ENUM_ENT(SHF_MIPS_GPREL, ""),
1338 ENUM_ENT(SHF_MIPS_MERGE, ""),
1339 ENUM_ENT(SHF_MIPS_ADDR, ""),
1340 ENUM_ENT(SHF_MIPS_STRING, "")
1343 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1344 ENUM_ENT(SHF_X86_64_LARGE, "l")
1347 static std::vector<EnumEntry<unsigned>>
1348 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1349 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1350 std::end(ElfSectionFlags));
1351 switch (EOSAbi) {
1352 case ELFOSABI_SOLARIS:
1353 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1354 std::end(ElfSolarisSectionFlags));
1355 break;
1356 default:
1357 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1358 std::end(ElfGNUSectionFlags));
1359 break;
1361 switch (EMachine) {
1362 case EM_ARM:
1363 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1364 std::end(ElfARMSectionFlags));
1365 break;
1366 case EM_HEXAGON:
1367 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1368 std::end(ElfHexagonSectionFlags));
1369 break;
1370 case EM_MIPS:
1371 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1372 std::end(ElfMipsSectionFlags));
1373 break;
1374 case EM_X86_64:
1375 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1376 std::end(ElfX86_64SectionFlags));
1377 break;
1378 case EM_XCORE:
1379 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1380 std::end(ElfXCoreSectionFlags));
1381 break;
1382 default:
1383 break;
1385 return Ret;
1388 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1389 uint64_t Flags) {
1390 // Here we are trying to build the flags string in the same way as GNU does.
1391 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1392 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1393 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1394 // "p". It only will print "E" when no other processor flag is set.
1395 std::string Str;
1396 bool HasUnknownFlag = false;
1397 bool HasOSFlag = false;
1398 bool HasProcFlag = false;
1399 std::vector<EnumEntry<unsigned>> FlagsList =
1400 getSectionFlagsForTarget(EOSAbi, EMachine);
1401 while (Flags) {
1402 // Take the least significant bit as a flag.
1403 uint64_t Flag = Flags & -Flags;
1404 Flags -= Flag;
1406 // Find the flag in the known flags list.
1407 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1408 // Flags with empty names are not printed in GNU style output.
1409 return E.Value == Flag && !E.AltName.empty();
1411 if (I != FlagsList.end()) {
1412 Str += I->AltName;
1413 continue;
1416 // If we did not find a matching regular flag, then we deal with an OS
1417 // specific flag, processor specific flag or an unknown flag.
1418 if (Flag & ELF::SHF_MASKOS) {
1419 HasOSFlag = true;
1420 Flags &= ~ELF::SHF_MASKOS;
1421 } else if (Flag & ELF::SHF_MASKPROC) {
1422 HasProcFlag = true;
1423 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1424 // bit if set so that it doesn't also get printed.
1425 Flags &= ~ELF::SHF_MASKPROC;
1426 } else {
1427 HasUnknownFlag = true;
1431 // "o", "p" and "x" are printed last.
1432 if (HasOSFlag)
1433 Str += "o";
1434 if (HasProcFlag)
1435 Str += "p";
1436 if (HasUnknownFlag)
1437 Str += "x";
1438 return Str;
1441 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1442 // Check potentially overlapped processor-specific program header type.
1443 switch (Arch) {
1444 case ELF::EM_ARM:
1445 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1446 break;
1447 case ELF::EM_MIPS:
1448 case ELF::EM_MIPS_RS3_LE:
1449 switch (Type) {
1450 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1453 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1455 break;
1456 case ELF::EM_RISCV:
1457 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1460 switch (Type) {
1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1462 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1466 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1471 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1473 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1474 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1475 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1477 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1478 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1479 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1480 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1481 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS);
1482 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1483 default:
1484 return "";
1488 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1489 StringRef Seg = segmentTypeToString(Arch, Type);
1490 if (Seg.empty())
1491 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1493 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1494 if (Seg.consume_front("PT_ARM_"))
1495 return Seg.str();
1497 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1498 if (Seg.consume_front("PT_MIPS_"))
1499 return Seg.str();
1501 // E.g. "PT_RISCV_ATTRIBUTES"
1502 if (Seg.consume_front("PT_RISCV_"))
1503 return Seg.str();
1505 // E.g. "PT_LOAD" -> "LOAD".
1506 assert(Seg.starts_with("PT_"));
1507 return Seg.drop_front(3).str();
1510 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1511 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1512 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1513 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1516 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1517 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1518 ENUM_ENT(EF_MIPS_PIC, "pic"),
1519 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1520 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1521 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1522 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1523 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1524 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1525 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1526 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1527 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1528 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1529 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1530 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1531 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1532 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1533 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1534 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1535 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1536 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1537 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1538 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1539 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1540 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1541 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1542 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1543 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1544 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1545 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1546 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1547 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1548 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1549 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1550 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1551 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1552 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1553 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1554 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1555 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1556 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1557 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1558 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1559 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1562 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1563 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"),
1564 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"),
1565 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"),
1566 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"),
1567 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"),
1568 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"),
1569 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"),
1570 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"),
1571 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"),
1572 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"),
1573 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"),
1574 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"),
1575 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"),
1576 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"),
1577 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"),
1578 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"),
1579 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"),
1580 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"),
1581 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"),
1582 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"),
1583 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"),
1584 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"),
1585 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"),
1586 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"),
1587 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"),
1588 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"),
1589 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"),
1590 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"),
1591 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"),
1592 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"),
1593 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"),
1594 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"),
1595 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"),
1596 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"),
1597 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"),
1598 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"),
1599 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"),
1600 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"),
1601 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"),
1602 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"),
1603 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"),
1604 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"),
1605 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"),
1606 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"),
1607 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"),
1608 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"),
1609 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"),
1610 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"),
1611 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"),
1612 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"),
1613 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"),
1614 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"),
1615 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"),
1616 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"),
1617 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"),
1618 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"),
1619 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"),
1620 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"),
1621 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"),
1622 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"),
1623 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"),
1624 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"),
1625 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"),
1628 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1629 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"),
1630 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"),
1631 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"),
1632 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"),
1633 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"),
1634 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"),
1635 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"),
1636 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"),
1637 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"),
1638 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"),
1639 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"),
1640 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"),
1641 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"),
1642 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"),
1643 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"),
1644 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"),
1645 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"),
1646 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"),
1647 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"),
1648 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"),
1649 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"),
1650 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"),
1651 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"),
1652 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"),
1653 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"),
1654 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"),
1655 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"),
1656 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"),
1657 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"),
1658 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"),
1659 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"),
1660 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"),
1661 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"),
1662 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"),
1663 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"),
1664 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"),
1665 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"),
1666 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"),
1667 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"),
1668 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"),
1669 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"),
1670 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"),
1671 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"),
1672 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"),
1673 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"),
1674 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"),
1675 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"),
1676 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"),
1677 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"),
1678 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"),
1679 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"),
1680 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"),
1681 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"),
1682 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"),
1683 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"),
1684 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"),
1685 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"),
1686 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"),
1687 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"),
1688 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"),
1689 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"),
1690 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"),
1691 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"),
1692 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"),
1693 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"),
1694 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"),
1695 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"),
1698 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = {
1699 ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"),
1700 ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"),
1701 ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"),
1702 ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"),
1703 ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"),
1704 ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"),
1705 ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"),
1706 ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"),
1707 ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"),
1708 ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"),
1711 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1712 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1713 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1714 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1715 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1716 ENUM_ENT(EF_RISCV_RVE, "RVE"),
1717 ENUM_ENT(EF_RISCV_TSO, "TSO"),
1720 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1721 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1722 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1723 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1724 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1725 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1726 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1727 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1728 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1729 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1730 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1731 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1732 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1733 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1734 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1735 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1736 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1737 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1738 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1739 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1742 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1743 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1744 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1745 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1746 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1747 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1750 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1751 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1752 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1753 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1756 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1757 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1758 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1759 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1762 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1763 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1764 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1765 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1766 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1769 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1770 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1773 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1774 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1775 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1776 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1779 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1780 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1782 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1783 switch (Odk) {
1784 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1785 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1786 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1787 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1788 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1789 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1790 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1791 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1792 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1793 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1794 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1795 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1796 default:
1797 return "Unknown";
1801 template <typename ELFT>
1802 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1803 ELFDumper<ELFT>::findDynamic() {
1804 // Try to locate the PT_DYNAMIC header.
1805 const Elf_Phdr *DynamicPhdr = nullptr;
1806 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1807 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1808 if (Phdr.p_type != ELF::PT_DYNAMIC)
1809 continue;
1810 DynamicPhdr = &Phdr;
1811 break;
1813 } else {
1814 reportUniqueWarning(
1815 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1816 toString(PhdrsOrErr.takeError()));
1819 // Try to locate the .dynamic section in the sections header table.
1820 const Elf_Shdr *DynamicSec = nullptr;
1821 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1822 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1823 continue;
1824 DynamicSec = &Sec;
1825 break;
1828 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1829 ObjF.getMemoryBufferRef().getBufferSize()) ||
1830 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1831 DynamicPhdr->p_offset))) {
1832 reportUniqueWarning(
1833 "PT_DYNAMIC segment offset (0x" +
1834 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1835 Twine::utohexstr(DynamicPhdr->p_filesz) +
1836 ") exceeds the size of the file (0x" +
1837 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1838 // Don't use the broken dynamic header.
1839 DynamicPhdr = nullptr;
1842 if (DynamicPhdr && DynamicSec) {
1843 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1844 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1845 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1846 reportUniqueWarning(describe(*DynamicSec) +
1847 " is not contained within the "
1848 "PT_DYNAMIC segment");
1850 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1851 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1852 "PT_DYNAMIC segment");
1855 return std::make_pair(DynamicPhdr, DynamicSec);
1858 template <typename ELFT>
1859 void ELFDumper<ELFT>::loadDynamicTable() {
1860 const Elf_Phdr *DynamicPhdr;
1861 const Elf_Shdr *DynamicSec;
1862 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1863 if (!DynamicPhdr && !DynamicSec)
1864 return;
1866 DynRegionInfo FromPhdr(ObjF, *this);
1867 bool IsPhdrTableValid = false;
1868 if (DynamicPhdr) {
1869 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1870 // validated in findDynamic() and so createDRI() is not expected to fail.
1871 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1872 sizeof(Elf_Dyn)));
1873 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1874 FromPhdr.EntSizePrintName = "";
1875 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1878 // Locate the dynamic table described in a section header.
1879 // Ignore sh_entsize and use the expected value for entry size explicitly.
1880 // This allows us to dump dynamic sections with a broken sh_entsize
1881 // field.
1882 DynRegionInfo FromSec(ObjF, *this);
1883 bool IsSecTableValid = false;
1884 if (DynamicSec) {
1885 Expected<DynRegionInfo> RegOrErr =
1886 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1887 if (RegOrErr) {
1888 FromSec = *RegOrErr;
1889 FromSec.Context = describe(*DynamicSec);
1890 FromSec.EntSizePrintName = "";
1891 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1892 } else {
1893 reportUniqueWarning("unable to read the dynamic table from " +
1894 describe(*DynamicSec) + ": " +
1895 toString(RegOrErr.takeError()));
1899 // When we only have information from one of the SHT_DYNAMIC section header or
1900 // PT_DYNAMIC program header, just use that.
1901 if (!DynamicPhdr || !DynamicSec) {
1902 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1903 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1904 parseDynamicTable();
1905 } else {
1906 reportUniqueWarning("no valid dynamic table was found");
1908 return;
1911 // At this point we have tables found from the section header and from the
1912 // dynamic segment. Usually they match, but we have to do sanity checks to
1913 // verify that.
1915 if (FromPhdr.Addr != FromSec.Addr)
1916 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1917 "program header disagree about "
1918 "the location of the dynamic table");
1920 if (!IsPhdrTableValid && !IsSecTableValid) {
1921 reportUniqueWarning("no valid dynamic table was found");
1922 return;
1925 // Information in the PT_DYNAMIC program header has priority over the
1926 // information in a section header.
1927 if (IsPhdrTableValid) {
1928 if (!IsSecTableValid)
1929 reportUniqueWarning(
1930 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1931 DynamicTable = FromPhdr;
1932 } else {
1933 reportUniqueWarning(
1934 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1935 DynamicTable = FromSec;
1938 parseDynamicTable();
1941 template <typename ELFT>
1942 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1943 ScopedPrinter &Writer)
1944 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1945 FileName(O.getFileName()), DynRelRegion(O, *this),
1946 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1947 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1948 DynamicTable(O, *this) {
1949 if (!O.IsContentValid())
1950 return;
1952 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1953 for (const Elf_Shdr &Sec : Sections) {
1954 switch (Sec.sh_type) {
1955 case ELF::SHT_SYMTAB:
1956 if (!DotSymtabSec)
1957 DotSymtabSec = &Sec;
1958 break;
1959 case ELF::SHT_DYNSYM:
1960 if (!DotDynsymSec)
1961 DotDynsymSec = &Sec;
1963 if (!DynSymRegion) {
1964 Expected<DynRegionInfo> RegOrErr =
1965 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1966 if (RegOrErr) {
1967 DynSymRegion = *RegOrErr;
1968 DynSymRegion->Context = describe(Sec);
1970 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1971 DynamicStringTable = *E;
1972 else
1973 reportUniqueWarning("unable to get the string table for the " +
1974 describe(Sec) + ": " + toString(E.takeError()));
1975 } else {
1976 reportUniqueWarning("unable to read dynamic symbols from " +
1977 describe(Sec) + ": " +
1978 toString(RegOrErr.takeError()));
1981 break;
1982 case ELF::SHT_SYMTAB_SHNDX: {
1983 uint32_t SymtabNdx = Sec.sh_link;
1984 if (SymtabNdx >= Sections.size()) {
1985 reportUniqueWarning(
1986 "unable to get the associated symbol table for " + describe(Sec) +
1987 ": sh_link (" + Twine(SymtabNdx) +
1988 ") is greater than or equal to the total number of sections (" +
1989 Twine(Sections.size()) + ")");
1990 continue;
1993 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1994 Obj.getSHNDXTable(Sec)) {
1995 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1996 .second)
1997 reportUniqueWarning(
1998 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1999 describe(Sec));
2000 } else {
2001 reportUniqueWarning(ShndxTableOrErr.takeError());
2003 break;
2005 case ELF::SHT_GNU_versym:
2006 if (!SymbolVersionSection)
2007 SymbolVersionSection = &Sec;
2008 break;
2009 case ELF::SHT_GNU_verdef:
2010 if (!SymbolVersionDefSection)
2011 SymbolVersionDefSection = &Sec;
2012 break;
2013 case ELF::SHT_GNU_verneed:
2014 if (!SymbolVersionNeedSection)
2015 SymbolVersionNeedSection = &Sec;
2016 break;
2017 case ELF::SHT_LLVM_ADDRSIG:
2018 if (!DotAddrsigSec)
2019 DotAddrsigSec = &Sec;
2020 break;
2024 loadDynamicTable();
2027 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
2028 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2029 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
2030 this->reportUniqueWarning(Msg);
2031 return Error::success();
2033 if (!MappedAddrOrError) {
2034 this->reportUniqueWarning("unable to parse DT_" +
2035 Obj.getDynamicTagAsString(Tag) + ": " +
2036 llvm::toString(MappedAddrOrError.takeError()));
2037 return nullptr;
2039 return MappedAddrOrError.get();
2042 const char *StringTableBegin = nullptr;
2043 uint64_t StringTableSize = 0;
2044 std::optional<DynRegionInfo> DynSymFromTable;
2045 for (const Elf_Dyn &Dyn : dynamic_table()) {
2046 if (Obj.getHeader().e_machine == EM_AARCH64) {
2047 switch (Dyn.d_tag) {
2048 case ELF::DT_AARCH64_AUTH_RELRSZ:
2049 DynRelrRegion.Size = Dyn.getVal();
2050 DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value";
2051 continue;
2052 case ELF::DT_AARCH64_AUTH_RELRENT:
2053 DynRelrRegion.EntSize = Dyn.getVal();
2054 DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value";
2055 continue;
2058 switch (Dyn.d_tag) {
2059 case ELF::DT_HASH:
2060 HashTable = reinterpret_cast<const Elf_Hash *>(
2061 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2062 break;
2063 case ELF::DT_GNU_HASH:
2064 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2065 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2066 break;
2067 case ELF::DT_STRTAB:
2068 StringTableBegin = reinterpret_cast<const char *>(
2069 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2070 break;
2071 case ELF::DT_STRSZ:
2072 StringTableSize = Dyn.getVal();
2073 break;
2074 case ELF::DT_SYMTAB: {
2075 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2076 // no program headers), we ignore its value.
2077 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2078 DynSymFromTable.emplace(ObjF, *this);
2079 DynSymFromTable->Addr = VA;
2080 DynSymFromTable->EntSize = sizeof(Elf_Sym);
2081 DynSymFromTable->EntSizePrintName = "";
2083 break;
2085 case ELF::DT_SYMENT: {
2086 uint64_t Val = Dyn.getVal();
2087 if (Val != sizeof(Elf_Sym))
2088 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2089 Twine::utohexstr(Val) +
2090 " is not the size of a symbol (0x" +
2091 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2092 break;
2094 case ELF::DT_RELA:
2095 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2096 break;
2097 case ELF::DT_RELASZ:
2098 DynRelaRegion.Size = Dyn.getVal();
2099 DynRelaRegion.SizePrintName = "DT_RELASZ value";
2100 break;
2101 case ELF::DT_RELAENT:
2102 DynRelaRegion.EntSize = Dyn.getVal();
2103 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2104 break;
2105 case ELF::DT_SONAME:
2106 SONameOffset = Dyn.getVal();
2107 break;
2108 case ELF::DT_REL:
2109 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2110 break;
2111 case ELF::DT_RELSZ:
2112 DynRelRegion.Size = Dyn.getVal();
2113 DynRelRegion.SizePrintName = "DT_RELSZ value";
2114 break;
2115 case ELF::DT_RELENT:
2116 DynRelRegion.EntSize = Dyn.getVal();
2117 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2118 break;
2119 case ELF::DT_RELR:
2120 case ELF::DT_ANDROID_RELR:
2121 case ELF::DT_AARCH64_AUTH_RELR:
2122 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2123 break;
2124 case ELF::DT_RELRSZ:
2125 case ELF::DT_ANDROID_RELRSZ:
2126 case ELF::DT_AARCH64_AUTH_RELRSZ:
2127 DynRelrRegion.Size = Dyn.getVal();
2128 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2129 ? "DT_RELRSZ value"
2130 : "DT_ANDROID_RELRSZ value";
2131 break;
2132 case ELF::DT_RELRENT:
2133 case ELF::DT_ANDROID_RELRENT:
2134 case ELF::DT_AARCH64_AUTH_RELRENT:
2135 DynRelrRegion.EntSize = Dyn.getVal();
2136 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2137 ? "DT_RELRENT value"
2138 : "DT_ANDROID_RELRENT value";
2139 break;
2140 case ELF::DT_PLTREL:
2141 if (Dyn.getVal() == DT_REL)
2142 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2143 else if (Dyn.getVal() == DT_RELA)
2144 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2145 else
2146 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2147 Twine((uint64_t)Dyn.getVal()));
2148 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2149 break;
2150 case ELF::DT_JMPREL:
2151 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2152 break;
2153 case ELF::DT_PLTRELSZ:
2154 DynPLTRelRegion.Size = Dyn.getVal();
2155 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2156 break;
2157 case ELF::DT_SYMTAB_SHNDX:
2158 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2159 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2160 break;
2164 if (StringTableBegin) {
2165 const uint64_t FileSize = Obj.getBufSize();
2166 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2167 if (StringTableSize > FileSize - Offset)
2168 reportUniqueWarning(
2169 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2170 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2171 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2172 else
2173 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2176 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2177 if (DynSymRegion) {
2178 // Often we find the information about the dynamic symbol table
2179 // location in the SHT_DYNSYM section header. However, the value in
2180 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2181 // locate .dynsym at runtime. The location we find in the section header
2182 // and the location we find here should match.
2183 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2184 reportUniqueWarning(
2185 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2186 "the location of the dynamic symbol table"));
2188 // According to the ELF gABI: "The number of symbol table entries should
2189 // equal nchain". Check to see if the DT_HASH hash table nchain value
2190 // conflicts with the number of symbols in the dynamic symbol table
2191 // according to the section header.
2192 if (HashTable && IsHashTableSupported) {
2193 if (DynSymRegion->EntSize == 0)
2194 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2195 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2196 reportUniqueWarning(
2197 "hash table nchain (" + Twine(HashTable->nchain) +
2198 ") differs from symbol count derived from SHT_DYNSYM section "
2199 "header (" +
2200 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2204 // Delay the creation of the actual dynamic symbol table until now, so that
2205 // checks can always be made against the section header-based properties,
2206 // without worrying about tag order.
2207 if (DynSymFromTable) {
2208 if (!DynSymRegion) {
2209 DynSymRegion = DynSymFromTable;
2210 } else {
2211 DynSymRegion->Addr = DynSymFromTable->Addr;
2212 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2213 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2217 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2218 // present.
2219 if (HashTable && IsHashTableSupported && DynSymRegion) {
2220 const uint64_t FileSize = Obj.getBufSize();
2221 const uint64_t DerivedSize =
2222 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2223 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2224 if (DerivedSize > FileSize - Offset)
2225 reportUniqueWarning(
2226 "the size (0x" + Twine::utohexstr(DerivedSize) +
2227 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2228 ", derived from the hash table, goes past the end of the file (0x" +
2229 Twine::utohexstr(FileSize) + ") and will be ignored");
2230 else
2231 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2235 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2236 // Dump version symbol section.
2237 printVersionSymbolSection(SymbolVersionSection);
2239 // Dump version definition section.
2240 printVersionDefinitionSection(SymbolVersionDefSection);
2242 // Dump version dependency section.
2243 printVersionDependencySection(SymbolVersionNeedSection);
2246 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2247 { #enum, prefix##_##enum }
2249 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2250 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2251 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2252 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2253 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2254 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2257 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2258 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2259 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2260 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2261 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2262 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2263 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2264 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2265 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2266 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2267 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2268 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2269 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2270 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2271 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2272 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2273 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2274 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2275 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2276 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2277 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2278 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2279 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2280 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2281 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2282 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2283 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2284 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2287 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2288 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2289 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2290 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2291 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2292 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2293 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2294 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2295 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2296 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2297 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2298 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2299 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2300 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2301 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2302 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2303 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2306 #undef LLVM_READOBJ_DT_FLAG_ENT
2308 template <typename T, typename TFlag>
2309 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2310 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2311 for (const EnumEntry<TFlag> &Flag : Flags)
2312 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2313 SetFlags.push_back(Flag);
2315 for (const EnumEntry<TFlag> &Flag : SetFlags)
2316 OS << Flag.Name << " ";
2319 template <class ELFT>
2320 const typename ELFT::Shdr *
2321 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2322 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2323 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2324 if (*NameOrErr == Name)
2325 return &Shdr;
2326 } else {
2327 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2328 ": " + toString(NameOrErr.takeError()));
2331 return nullptr;
2334 template <class ELFT>
2335 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2336 uint64_t Value) const {
2337 auto FormatHexValue = [](uint64_t V) {
2338 std::string Str;
2339 raw_string_ostream OS(Str);
2340 const char *ConvChar =
2341 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2342 OS << format(ConvChar, V);
2343 return OS.str();
2346 auto FormatFlags = [](uint64_t V,
2347 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2348 std::string Str;
2349 raw_string_ostream OS(Str);
2350 printFlags(V, Array, OS);
2351 return OS.str();
2354 // Handle custom printing of architecture specific tags
2355 switch (Obj.getHeader().e_machine) {
2356 case EM_AARCH64:
2357 switch (Type) {
2358 case DT_AARCH64_BTI_PLT:
2359 case DT_AARCH64_PAC_PLT:
2360 case DT_AARCH64_VARIANT_PCS:
2361 case DT_AARCH64_MEMTAG_GLOBALSSZ:
2362 return std::to_string(Value);
2363 case DT_AARCH64_MEMTAG_MODE:
2364 switch (Value) {
2365 case 0:
2366 return "Synchronous (0)";
2367 case 1:
2368 return "Asynchronous (1)";
2369 default:
2370 return (Twine("Unknown (") + Twine(Value) + ")").str();
2372 case DT_AARCH64_MEMTAG_HEAP:
2373 case DT_AARCH64_MEMTAG_STACK:
2374 switch (Value) {
2375 case 0:
2376 return "Disabled (0)";
2377 case 1:
2378 return "Enabled (1)";
2379 default:
2380 return (Twine("Unknown (") + Twine(Value) + ")").str();
2382 case DT_AARCH64_MEMTAG_GLOBALS:
2383 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2384 default:
2385 break;
2387 break;
2388 case EM_HEXAGON:
2389 switch (Type) {
2390 case DT_HEXAGON_VER:
2391 return std::to_string(Value);
2392 case DT_HEXAGON_SYMSZ:
2393 case DT_HEXAGON_PLT:
2394 return FormatHexValue(Value);
2395 default:
2396 break;
2398 break;
2399 case EM_MIPS:
2400 switch (Type) {
2401 case DT_MIPS_RLD_VERSION:
2402 case DT_MIPS_LOCAL_GOTNO:
2403 case DT_MIPS_SYMTABNO:
2404 case DT_MIPS_UNREFEXTNO:
2405 return std::to_string(Value);
2406 case DT_MIPS_TIME_STAMP:
2407 case DT_MIPS_ICHECKSUM:
2408 case DT_MIPS_IVERSION:
2409 case DT_MIPS_BASE_ADDRESS:
2410 case DT_MIPS_MSYM:
2411 case DT_MIPS_CONFLICT:
2412 case DT_MIPS_LIBLIST:
2413 case DT_MIPS_CONFLICTNO:
2414 case DT_MIPS_LIBLISTNO:
2415 case DT_MIPS_GOTSYM:
2416 case DT_MIPS_HIPAGENO:
2417 case DT_MIPS_RLD_MAP:
2418 case DT_MIPS_DELTA_CLASS:
2419 case DT_MIPS_DELTA_CLASS_NO:
2420 case DT_MIPS_DELTA_INSTANCE:
2421 case DT_MIPS_DELTA_RELOC:
2422 case DT_MIPS_DELTA_RELOC_NO:
2423 case DT_MIPS_DELTA_SYM:
2424 case DT_MIPS_DELTA_SYM_NO:
2425 case DT_MIPS_DELTA_CLASSSYM:
2426 case DT_MIPS_DELTA_CLASSSYM_NO:
2427 case DT_MIPS_CXX_FLAGS:
2428 case DT_MIPS_PIXIE_INIT:
2429 case DT_MIPS_SYMBOL_LIB:
2430 case DT_MIPS_LOCALPAGE_GOTIDX:
2431 case DT_MIPS_LOCAL_GOTIDX:
2432 case DT_MIPS_HIDDEN_GOTIDX:
2433 case DT_MIPS_PROTECTED_GOTIDX:
2434 case DT_MIPS_OPTIONS:
2435 case DT_MIPS_INTERFACE:
2436 case DT_MIPS_DYNSTR_ALIGN:
2437 case DT_MIPS_INTERFACE_SIZE:
2438 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2439 case DT_MIPS_PERF_SUFFIX:
2440 case DT_MIPS_COMPACT_SIZE:
2441 case DT_MIPS_GP_VALUE:
2442 case DT_MIPS_AUX_DYNAMIC:
2443 case DT_MIPS_PLTGOT:
2444 case DT_MIPS_RWPLT:
2445 case DT_MIPS_RLD_MAP_REL:
2446 case DT_MIPS_XHASH:
2447 return FormatHexValue(Value);
2448 case DT_MIPS_FLAGS:
2449 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2450 default:
2451 break;
2453 break;
2454 default:
2455 break;
2458 switch (Type) {
2459 case DT_PLTREL:
2460 if (Value == DT_REL)
2461 return "REL";
2462 if (Value == DT_RELA)
2463 return "RELA";
2464 [[fallthrough]];
2465 case DT_PLTGOT:
2466 case DT_HASH:
2467 case DT_STRTAB:
2468 case DT_SYMTAB:
2469 case DT_RELA:
2470 case DT_INIT:
2471 case DT_FINI:
2472 case DT_REL:
2473 case DT_JMPREL:
2474 case DT_INIT_ARRAY:
2475 case DT_FINI_ARRAY:
2476 case DT_PREINIT_ARRAY:
2477 case DT_DEBUG:
2478 case DT_VERDEF:
2479 case DT_VERNEED:
2480 case DT_VERSYM:
2481 case DT_GNU_HASH:
2482 case DT_NULL:
2483 return FormatHexValue(Value);
2484 case DT_RELACOUNT:
2485 case DT_RELCOUNT:
2486 case DT_VERDEFNUM:
2487 case DT_VERNEEDNUM:
2488 return std::to_string(Value);
2489 case DT_PLTRELSZ:
2490 case DT_RELASZ:
2491 case DT_RELAENT:
2492 case DT_STRSZ:
2493 case DT_SYMENT:
2494 case DT_RELSZ:
2495 case DT_RELENT:
2496 case DT_INIT_ARRAYSZ:
2497 case DT_FINI_ARRAYSZ:
2498 case DT_PREINIT_ARRAYSZ:
2499 case DT_RELRSZ:
2500 case DT_RELRENT:
2501 case DT_AARCH64_AUTH_RELRSZ:
2502 case DT_AARCH64_AUTH_RELRENT:
2503 case DT_ANDROID_RELSZ:
2504 case DT_ANDROID_RELASZ:
2505 return std::to_string(Value) + " (bytes)";
2506 case DT_NEEDED:
2507 case DT_SONAME:
2508 case DT_AUXILIARY:
2509 case DT_USED:
2510 case DT_FILTER:
2511 case DT_RPATH:
2512 case DT_RUNPATH: {
2513 const std::map<uint64_t, const char *> TagNames = {
2514 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2515 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2516 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2517 {DT_RUNPATH, "Library runpath"},
2520 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2521 .str();
2523 case DT_FLAGS:
2524 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2525 case DT_FLAGS_1:
2526 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2527 default:
2528 return FormatHexValue(Value);
2532 template <class ELFT>
2533 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2534 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2535 reportUniqueWarning("string table was not found");
2536 return "<?>";
2539 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2540 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2541 Msg);
2542 return "<?>";
2545 const uint64_t FileSize = Obj.getBufSize();
2546 const uint64_t Offset =
2547 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2548 if (DynamicStringTable.size() > FileSize - Offset)
2549 return WarnAndReturn(" with size 0x" +
2550 Twine::utohexstr(DynamicStringTable.size()) +
2551 " goes past the end of the file (0x" +
2552 Twine::utohexstr(FileSize) + ")",
2553 Offset);
2555 if (Value >= DynamicStringTable.size())
2556 return WarnAndReturn(
2557 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2558 ": it goes past the end of the table (0x" +
2559 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2560 Offset);
2562 if (DynamicStringTable.back() != '\0')
2563 return WarnAndReturn(": unable to read the string at 0x" +
2564 Twine::utohexstr(Offset + Value) +
2565 ": the string table is not null-terminated",
2566 Offset);
2568 return DynamicStringTable.data() + Value;
2571 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2572 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2573 Ctx.printUnwindInformation();
2576 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2577 namespace {
2578 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2579 if (Obj.getHeader().e_machine == EM_ARM) {
2580 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2581 DotSymtabSec);
2582 Ctx.PrintUnwindInformation();
2584 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2585 Ctx.printUnwindInformation();
2587 } // namespace
2589 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2590 ListScope D(W, "NeededLibraries");
2592 std::vector<StringRef> Libs;
2593 for (const auto &Entry : dynamic_table())
2594 if (Entry.d_tag == ELF::DT_NEEDED)
2595 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2597 llvm::sort(Libs);
2599 for (StringRef L : Libs)
2600 W.printString(L);
2603 template <class ELFT>
2604 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2605 const typename ELFT::Hash *H,
2606 bool *IsHeaderValid = nullptr) {
2607 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2608 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2609 if (Dumper.getHashTableEntSize() == 8) {
2610 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2611 return E.Value == Obj.getHeader().e_machine;
2613 if (IsHeaderValid)
2614 *IsHeaderValid = false;
2615 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2616 " is not supported: it contains non-standard 8 "
2617 "byte entries on " +
2618 It->AltName + " platform");
2621 auto MakeError = [&](const Twine &Msg = "") {
2622 return createError("the hash table at offset 0x" +
2623 Twine::utohexstr(SecOffset) +
2624 " goes past the end of the file (0x" +
2625 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2628 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2629 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2631 if (IsHeaderValid)
2632 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2634 if (Obj.getBufSize() - SecOffset < HeaderSize)
2635 return MakeError();
2637 if (Obj.getBufSize() - SecOffset - HeaderSize <
2638 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2639 return MakeError(", nbucket = " + Twine(H->nbucket) +
2640 ", nchain = " + Twine(H->nchain));
2641 return Error::success();
2644 template <class ELFT>
2645 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2646 const typename ELFT::GnuHash *GnuHashTable,
2647 bool *IsHeaderValid = nullptr) {
2648 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2649 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2650 "GnuHashTable must always point to a location inside the file");
2652 uint64_t TableOffset = TableData - Obj.base();
2653 if (IsHeaderValid)
2654 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2655 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2656 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2657 Obj.getBufSize())
2658 return createError("unable to dump the SHT_GNU_HASH "
2659 "section at 0x" +
2660 Twine::utohexstr(TableOffset) +
2661 ": it goes past the end of the file");
2662 return Error::success();
2665 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2666 DictScope D(W, "HashTable");
2667 if (!HashTable)
2668 return;
2670 bool IsHeaderValid;
2671 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2672 if (IsHeaderValid) {
2673 W.printNumber("Num Buckets", HashTable->nbucket);
2674 W.printNumber("Num Chains", HashTable->nchain);
2677 if (Err) {
2678 reportUniqueWarning(std::move(Err));
2679 return;
2682 W.printList("Buckets", HashTable->buckets());
2683 W.printList("Chains", HashTable->chains());
2686 template <class ELFT>
2687 static Expected<ArrayRef<typename ELFT::Word>>
2688 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2689 const typename ELFT::GnuHash *GnuHashTable) {
2690 if (!DynSymRegion)
2691 return createError("no dynamic symbol table found");
2693 ArrayRef<typename ELFT::Sym> DynSymTable =
2694 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2695 size_t NumSyms = DynSymTable.size();
2696 if (!NumSyms)
2697 return createError("the dynamic symbol table is empty");
2699 if (GnuHashTable->symndx < NumSyms)
2700 return GnuHashTable->values(NumSyms);
2702 // A normal empty GNU hash table section produced by linker might have
2703 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2704 // and have dummy null values in the Bloom filter and in the buckets
2705 // vector (or no values at all). It happens because the value of symndx is not
2706 // important for dynamic loaders when the GNU hash table is empty. They just
2707 // skip the whole object during symbol lookup. In such cases, the symndx value
2708 // is irrelevant and we should not report a warning.
2709 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2710 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2711 return createError(
2712 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2713 ") is greater than or equal to the number of dynamic symbols (" +
2714 Twine(NumSyms) + ")");
2715 // There is no way to represent an array of (dynamic symbols count - symndx)
2716 // length.
2717 return ArrayRef<typename ELFT::Word>();
2720 template <typename ELFT>
2721 void ELFDumper<ELFT>::printGnuHashTable() {
2722 DictScope D(W, "GnuHashTable");
2723 if (!GnuHashTable)
2724 return;
2726 bool IsHeaderValid;
2727 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2728 if (IsHeaderValid) {
2729 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2730 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2731 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2732 W.printNumber("Shift Count", GnuHashTable->shift2);
2735 if (Err) {
2736 reportUniqueWarning(std::move(Err));
2737 return;
2740 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2741 W.printHexList("Bloom Filter", BloomFilter);
2743 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2744 W.printList("Buckets", Buckets);
2746 Expected<ArrayRef<Elf_Word>> Chains =
2747 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2748 if (!Chains) {
2749 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2750 "section: " +
2751 toString(Chains.takeError()));
2752 return;
2755 W.printHexList("Values", *Chains);
2758 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2759 // Print histogram for the .hash section.
2760 if (this->HashTable) {
2761 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2762 this->reportUniqueWarning(std::move(E));
2763 else
2764 printHashHistogram(*this->HashTable);
2767 // Print histogram for the .gnu.hash section.
2768 if (this->GnuHashTable) {
2769 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2770 this->reportUniqueWarning(std::move(E));
2771 else
2772 printGnuHashHistogram(*this->GnuHashTable);
2776 template <typename ELFT>
2777 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2778 size_t NBucket = HashTable.nbucket;
2779 size_t NChain = HashTable.nchain;
2780 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2781 ArrayRef<Elf_Word> Chains = HashTable.chains();
2782 size_t TotalSyms = 0;
2783 // If hash table is correct, we have at least chains with 0 length.
2784 size_t MaxChain = 1;
2786 if (NChain == 0 || NBucket == 0)
2787 return;
2789 std::vector<size_t> ChainLen(NBucket, 0);
2790 // Go over all buckets and note chain lengths of each bucket (total
2791 // unique chain lengths).
2792 for (size_t B = 0; B < NBucket; ++B) {
2793 BitVector Visited(NChain);
2794 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2795 if (C == ELF::STN_UNDEF)
2796 break;
2797 if (Visited[C]) {
2798 this->reportUniqueWarning(
2799 ".hash section is invalid: bucket " + Twine(C) +
2800 ": a cycle was detected in the linked chain");
2801 break;
2803 Visited[C] = true;
2804 if (MaxChain <= ++ChainLen[B])
2805 ++MaxChain;
2807 TotalSyms += ChainLen[B];
2810 if (!TotalSyms)
2811 return;
2813 std::vector<size_t> Count(MaxChain, 0);
2814 // Count how long is the chain for each bucket.
2815 for (size_t B = 0; B < NBucket; B++)
2816 ++Count[ChainLen[B]];
2817 // Print Number of buckets with each chain lengths and their cumulative
2818 // coverage of the symbols.
2819 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2822 template <class ELFT>
2823 void ELFDumper<ELFT>::printGnuHashHistogram(
2824 const Elf_GnuHash &GnuHashTable) const {
2825 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2826 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2827 if (!ChainsOrErr) {
2828 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2829 toString(ChainsOrErr.takeError()));
2830 return;
2833 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2834 size_t Symndx = GnuHashTable.symndx;
2835 size_t TotalSyms = 0;
2836 size_t MaxChain = 1;
2838 size_t NBucket = GnuHashTable.nbuckets;
2839 if (Chains.empty() || NBucket == 0)
2840 return;
2842 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2843 std::vector<size_t> ChainLen(NBucket, 0);
2844 for (size_t B = 0; B < NBucket; ++B) {
2845 if (!Buckets[B])
2846 continue;
2847 size_t Len = 1;
2848 for (size_t C = Buckets[B] - Symndx;
2849 C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2850 if (MaxChain < ++Len)
2851 ++MaxChain;
2852 ChainLen[B] = Len;
2853 TotalSyms += Len;
2855 ++MaxChain;
2857 if (!TotalSyms)
2858 return;
2860 std::vector<size_t> Count(MaxChain, 0);
2861 for (size_t B = 0; B < NBucket; ++B)
2862 ++Count[ChainLen[B]];
2863 // Print Number of buckets with each chain lengths and their cumulative
2864 // coverage of the symbols.
2865 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2868 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2869 StringRef SOName = "<Not found>";
2870 if (SONameOffset)
2871 SOName = getDynamicString(*SONameOffset);
2872 W.printString("LoadName", SOName);
2875 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2876 switch (Obj.getHeader().e_machine) {
2877 case EM_ARM:
2878 if (Obj.isLE())
2879 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2880 std::make_unique<ARMAttributeParser>(&W),
2881 llvm::endianness::little);
2882 else
2883 reportUniqueWarning("attribute printing not implemented for big-endian "
2884 "ARM objects");
2885 break;
2886 case EM_RISCV:
2887 if (Obj.isLE())
2888 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2889 std::make_unique<RISCVAttributeParser>(&W),
2890 llvm::endianness::little);
2891 else
2892 reportUniqueWarning("attribute printing not implemented for big-endian "
2893 "RISC-V objects");
2894 break;
2895 case EM_MSP430:
2896 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2897 std::make_unique<MSP430AttributeParser>(&W),
2898 llvm::endianness::little);
2899 break;
2900 case EM_MIPS: {
2901 printMipsABIFlags();
2902 printMipsOptions();
2903 printMipsReginfo();
2904 MipsGOTParser<ELFT> Parser(*this);
2905 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2906 reportUniqueWarning(std::move(E));
2907 else if (!Parser.isGotEmpty())
2908 printMipsGOT(Parser);
2910 if (Error E = Parser.findPLT(dynamic_table()))
2911 reportUniqueWarning(std::move(E));
2912 else if (!Parser.isPltEmpty())
2913 printMipsPLT(Parser);
2914 break;
2916 default:
2917 break;
2921 template <class ELFT>
2922 void ELFDumper<ELFT>::printAttributes(
2923 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2924 llvm::endianness Endianness) {
2925 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2926 "Incomplete ELF attribute implementation");
2927 DictScope BA(W, "BuildAttributes");
2928 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2929 if (Sec.sh_type != AttrShType)
2930 continue;
2932 ArrayRef<uint8_t> Contents;
2933 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2934 Obj.getSectionContents(Sec)) {
2935 Contents = *ContentOrErr;
2936 if (Contents.empty()) {
2937 reportUniqueWarning("the " + describe(Sec) + " is empty");
2938 continue;
2940 } else {
2941 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2942 ": " + toString(ContentOrErr.takeError()));
2943 continue;
2946 W.printHex("FormatVersion", Contents[0]);
2948 if (Error E = AttrParser->parse(Contents, Endianness))
2949 reportUniqueWarning("unable to dump attributes from the " +
2950 describe(Sec) + ": " + toString(std::move(E)));
2954 namespace {
2956 template <class ELFT> class MipsGOTParser {
2957 public:
2958 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2959 using Entry = typename ELFT::Addr;
2960 using Entries = ArrayRef<Entry>;
2962 const bool IsStatic;
2963 const ELFFile<ELFT> &Obj;
2964 const ELFDumper<ELFT> &Dumper;
2966 MipsGOTParser(const ELFDumper<ELFT> &D);
2967 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2968 Error findPLT(Elf_Dyn_Range DynTable);
2970 bool isGotEmpty() const { return GotEntries.empty(); }
2971 bool isPltEmpty() const { return PltEntries.empty(); }
2973 uint64_t getGp() const;
2975 const Entry *getGotLazyResolver() const;
2976 const Entry *getGotModulePointer() const;
2977 const Entry *getPltLazyResolver() const;
2978 const Entry *getPltModulePointer() const;
2980 Entries getLocalEntries() const;
2981 Entries getGlobalEntries() const;
2982 Entries getOtherEntries() const;
2983 Entries getPltEntries() const;
2985 uint64_t getGotAddress(const Entry * E) const;
2986 int64_t getGotOffset(const Entry * E) const;
2987 const Elf_Sym *getGotSym(const Entry *E) const;
2989 uint64_t getPltAddress(const Entry * E) const;
2990 const Elf_Sym *getPltSym(const Entry *E) const;
2992 StringRef getPltStrTable() const { return PltStrTable; }
2993 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2995 private:
2996 const Elf_Shdr *GotSec;
2997 size_t LocalNum;
2998 size_t GlobalNum;
3000 const Elf_Shdr *PltSec;
3001 const Elf_Shdr *PltRelSec;
3002 const Elf_Shdr *PltSymTable;
3003 StringRef FileName;
3005 Elf_Sym_Range GotDynSyms;
3006 StringRef PltStrTable;
3008 Entries GotEntries;
3009 Entries PltEntries;
3012 } // end anonymous namespace
3014 template <class ELFT>
3015 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
3016 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
3017 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
3018 PltRelSec(nullptr), PltSymTable(nullptr),
3019 FileName(D.getElfObject().getFileName()) {}
3021 template <class ELFT>
3022 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
3023 Elf_Sym_Range DynSyms) {
3024 // See "Global Offset Table" in Chapter 5 in the following document
3025 // for detailed GOT description.
3026 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3028 // Find static GOT secton.
3029 if (IsStatic) {
3030 GotSec = Dumper.findSectionByName(".got");
3031 if (!GotSec)
3032 return Error::success();
3034 ArrayRef<uint8_t> Content =
3035 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3036 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3037 Content.size() / sizeof(Entry));
3038 LocalNum = GotEntries.size();
3039 return Error::success();
3042 // Lookup dynamic table tags which define the GOT layout.
3043 std::optional<uint64_t> DtPltGot;
3044 std::optional<uint64_t> DtLocalGotNum;
3045 std::optional<uint64_t> DtGotSym;
3046 for (const auto &Entry : DynTable) {
3047 switch (Entry.getTag()) {
3048 case ELF::DT_PLTGOT:
3049 DtPltGot = Entry.getVal();
3050 break;
3051 case ELF::DT_MIPS_LOCAL_GOTNO:
3052 DtLocalGotNum = Entry.getVal();
3053 break;
3054 case ELF::DT_MIPS_GOTSYM:
3055 DtGotSym = Entry.getVal();
3056 break;
3060 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3061 return Error::success();
3063 if (!DtPltGot)
3064 return createError("cannot find PLTGOT dynamic tag");
3065 if (!DtLocalGotNum)
3066 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3067 if (!DtGotSym)
3068 return createError("cannot find MIPS_GOTSYM dynamic tag");
3070 size_t DynSymTotal = DynSyms.size();
3071 if (*DtGotSym > DynSymTotal)
3072 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3073 ") exceeds the number of dynamic symbols (" +
3074 Twine(DynSymTotal) + ")");
3076 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3077 if (!GotSec)
3078 return createError("there is no non-empty GOT section at 0x" +
3079 Twine::utohexstr(*DtPltGot));
3081 LocalNum = *DtLocalGotNum;
3082 GlobalNum = DynSymTotal - *DtGotSym;
3084 ArrayRef<uint8_t> Content =
3085 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3086 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3087 Content.size() / sizeof(Entry));
3088 GotDynSyms = DynSyms.drop_front(*DtGotSym);
3090 return Error::success();
3093 template <class ELFT>
3094 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3095 // Lookup dynamic table tags which define the PLT layout.
3096 std::optional<uint64_t> DtMipsPltGot;
3097 std::optional<uint64_t> DtJmpRel;
3098 for (const auto &Entry : DynTable) {
3099 switch (Entry.getTag()) {
3100 case ELF::DT_MIPS_PLTGOT:
3101 DtMipsPltGot = Entry.getVal();
3102 break;
3103 case ELF::DT_JMPREL:
3104 DtJmpRel = Entry.getVal();
3105 break;
3109 if (!DtMipsPltGot && !DtJmpRel)
3110 return Error::success();
3112 // Find PLT section.
3113 if (!DtMipsPltGot)
3114 return createError("cannot find MIPS_PLTGOT dynamic tag");
3115 if (!DtJmpRel)
3116 return createError("cannot find JMPREL dynamic tag");
3118 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3119 if (!PltSec)
3120 return createError("there is no non-empty PLTGOT section at 0x" +
3121 Twine::utohexstr(*DtMipsPltGot));
3123 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3124 if (!PltRelSec)
3125 return createError("there is no non-empty RELPLT section at 0x" +
3126 Twine::utohexstr(*DtJmpRel));
3128 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3129 Obj.getSectionContents(*PltSec))
3130 PltEntries =
3131 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3132 PltContentOrErr->size() / sizeof(Entry));
3133 else
3134 return createError("unable to read PLTGOT section content: " +
3135 toString(PltContentOrErr.takeError()));
3137 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3138 Obj.getSection(PltRelSec->sh_link))
3139 PltSymTable = *PltSymTableOrErr;
3140 else
3141 return createError("unable to get a symbol table linked to the " +
3142 describe(Obj, *PltRelSec) + ": " +
3143 toString(PltSymTableOrErr.takeError()));
3145 if (Expected<StringRef> StrTabOrErr =
3146 Obj.getStringTableForSymtab(*PltSymTable))
3147 PltStrTable = *StrTabOrErr;
3148 else
3149 return createError("unable to get a string table for the " +
3150 describe(Obj, *PltSymTable) + ": " +
3151 toString(StrTabOrErr.takeError()));
3153 return Error::success();
3156 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3157 return GotSec->sh_addr + 0x7ff0;
3160 template <class ELFT>
3161 const typename MipsGOTParser<ELFT>::Entry *
3162 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3163 return LocalNum > 0 ? &GotEntries[0] : nullptr;
3166 template <class ELFT>
3167 const typename MipsGOTParser<ELFT>::Entry *
3168 MipsGOTParser<ELFT>::getGotModulePointer() const {
3169 if (LocalNum < 2)
3170 return nullptr;
3171 const Entry &E = GotEntries[1];
3172 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3173 return nullptr;
3174 return &E;
3177 template <class ELFT>
3178 typename MipsGOTParser<ELFT>::Entries
3179 MipsGOTParser<ELFT>::getLocalEntries() const {
3180 size_t Skip = getGotModulePointer() ? 2 : 1;
3181 if (LocalNum - Skip <= 0)
3182 return Entries();
3183 return GotEntries.slice(Skip, LocalNum - Skip);
3186 template <class ELFT>
3187 typename MipsGOTParser<ELFT>::Entries
3188 MipsGOTParser<ELFT>::getGlobalEntries() const {
3189 if (GlobalNum == 0)
3190 return Entries();
3191 return GotEntries.slice(LocalNum, GlobalNum);
3194 template <class ELFT>
3195 typename MipsGOTParser<ELFT>::Entries
3196 MipsGOTParser<ELFT>::getOtherEntries() const {
3197 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3198 if (OtherNum == 0)
3199 return Entries();
3200 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3203 template <class ELFT>
3204 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3205 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3206 return GotSec->sh_addr + Offset;
3209 template <class ELFT>
3210 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3211 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3212 return Offset - 0x7ff0;
3215 template <class ELFT>
3216 const typename MipsGOTParser<ELFT>::Elf_Sym *
3217 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3218 int64_t Offset = std::distance(GotEntries.data(), E);
3219 return &GotDynSyms[Offset - LocalNum];
3222 template <class ELFT>
3223 const typename MipsGOTParser<ELFT>::Entry *
3224 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3225 return PltEntries.empty() ? nullptr : &PltEntries[0];
3228 template <class ELFT>
3229 const typename MipsGOTParser<ELFT>::Entry *
3230 MipsGOTParser<ELFT>::getPltModulePointer() const {
3231 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3234 template <class ELFT>
3235 typename MipsGOTParser<ELFT>::Entries
3236 MipsGOTParser<ELFT>::getPltEntries() const {
3237 if (PltEntries.size() <= 2)
3238 return Entries();
3239 return PltEntries.slice(2, PltEntries.size() - 2);
3242 template <class ELFT>
3243 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3244 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3245 return PltSec->sh_addr + Offset;
3248 template <class ELFT>
3249 const typename MipsGOTParser<ELFT>::Elf_Sym *
3250 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3251 int64_t Offset = std::distance(getPltEntries().data(), E);
3252 if (PltRelSec->sh_type == ELF::SHT_REL) {
3253 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3254 return unwrapOrError(FileName,
3255 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3256 } else {
3257 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3258 return unwrapOrError(FileName,
3259 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3263 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3264 {"None", Mips::AFL_EXT_NONE},
3265 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3266 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3267 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3268 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3269 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3270 {"LSI R4010", Mips::AFL_EXT_4010},
3271 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3272 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3273 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3274 {"MIPS R4650", Mips::AFL_EXT_4650},
3275 {"MIPS R5900", Mips::AFL_EXT_5900},
3276 {"MIPS R10000", Mips::AFL_EXT_10000},
3277 {"NEC VR4100", Mips::AFL_EXT_4100},
3278 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3279 {"NEC VR4120", Mips::AFL_EXT_4120},
3280 {"NEC VR5400", Mips::AFL_EXT_5400},
3281 {"NEC VR5500", Mips::AFL_EXT_5500},
3282 {"RMI Xlr", Mips::AFL_EXT_XLR},
3283 {"Toshiba R3900", Mips::AFL_EXT_3900}
3286 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3287 {"DSP", Mips::AFL_ASE_DSP},
3288 {"DSPR2", Mips::AFL_ASE_DSPR2},
3289 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3290 {"MCU", Mips::AFL_ASE_MCU},
3291 {"MDMX", Mips::AFL_ASE_MDMX},
3292 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3293 {"MT", Mips::AFL_ASE_MT},
3294 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3295 {"VZ", Mips::AFL_ASE_VIRT},
3296 {"MSA", Mips::AFL_ASE_MSA},
3297 {"MIPS16", Mips::AFL_ASE_MIPS16},
3298 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3299 {"XPA", Mips::AFL_ASE_XPA},
3300 {"CRC", Mips::AFL_ASE_CRC},
3301 {"GINV", Mips::AFL_ASE_GINV},
3304 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3305 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3306 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3307 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3308 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3309 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3310 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3311 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3312 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3313 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3314 Mips::Val_GNU_MIPS_ABI_FP_64A}
3317 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3318 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3321 static int getMipsRegisterSize(uint8_t Flag) {
3322 switch (Flag) {
3323 case Mips::AFL_REG_NONE:
3324 return 0;
3325 case Mips::AFL_REG_32:
3326 return 32;
3327 case Mips::AFL_REG_64:
3328 return 64;
3329 case Mips::AFL_REG_128:
3330 return 128;
3331 default:
3332 return -1;
3336 template <class ELFT>
3337 static void printMipsReginfoData(ScopedPrinter &W,
3338 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3339 W.printHex("GP", Reginfo.ri_gp_value);
3340 W.printHex("General Mask", Reginfo.ri_gprmask);
3341 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3342 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3343 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3344 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3347 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3348 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3349 if (!RegInfoSec) {
3350 W.startLine() << "There is no .reginfo section in the file.\n";
3351 return;
3354 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3355 Obj.getSectionContents(*RegInfoSec);
3356 if (!ContentsOrErr) {
3357 this->reportUniqueWarning(
3358 "unable to read the content of the .reginfo section (" +
3359 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3360 return;
3363 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3364 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3365 Twine::utohexstr(ContentsOrErr->size()) + ")");
3366 return;
3369 DictScope GS(W, "MIPS RegInfo");
3370 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3371 ContentsOrErr->data()));
3374 template <class ELFT>
3375 static Expected<const Elf_Mips_Options<ELFT> *>
3376 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3377 bool &IsSupported) {
3378 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3379 return createError("the .MIPS.options section has an invalid size (0x" +
3380 Twine::utohexstr(SecData.size()) + ")");
3382 const Elf_Mips_Options<ELFT> *O =
3383 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3384 const uint8_t Size = O->size;
3385 if (Size > SecData.size()) {
3386 const uint64_t Offset = SecData.data() - SecBegin;
3387 const uint64_t SecSize = Offset + SecData.size();
3388 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3389 " at offset 0x" + Twine::utohexstr(Offset) +
3390 " goes past the end of the .MIPS.options "
3391 "section of size 0x" +
3392 Twine::utohexstr(SecSize));
3395 IsSupported = O->kind == ODK_REGINFO;
3396 const size_t ExpectedSize =
3397 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3399 if (IsSupported)
3400 if (Size < ExpectedSize)
3401 return createError(
3402 "a .MIPS.options entry of kind " +
3403 Twine(getElfMipsOptionsOdkType(O->kind)) +
3404 " has an invalid size (0x" + Twine::utohexstr(Size) +
3405 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3407 SecData = SecData.drop_front(Size);
3408 return O;
3411 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3412 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3413 if (!MipsOpts) {
3414 W.startLine() << "There is no .MIPS.options section in the file.\n";
3415 return;
3418 DictScope GS(W, "MIPS Options");
3420 ArrayRef<uint8_t> Data =
3421 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3422 const uint8_t *const SecBegin = Data.begin();
3423 while (!Data.empty()) {
3424 bool IsSupported;
3425 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3426 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3427 if (!OptsOrErr) {
3428 reportUniqueWarning(OptsOrErr.takeError());
3429 break;
3432 unsigned Kind = (*OptsOrErr)->kind;
3433 const char *Type = getElfMipsOptionsOdkType(Kind);
3434 if (!IsSupported) {
3435 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3436 << ")\n";
3437 continue;
3440 DictScope GS(W, Type);
3441 if (Kind == ODK_REGINFO)
3442 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3443 else
3444 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3448 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3449 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3450 if (!StackMapSection)
3451 return;
3453 auto Warn = [&](Error &&E) {
3454 this->reportUniqueWarning("unable to read the stack map from " +
3455 describe(*StackMapSection) + ": " +
3456 toString(std::move(E)));
3459 Expected<ArrayRef<uint8_t>> ContentOrErr =
3460 Obj.getSectionContents(*StackMapSection);
3461 if (!ContentOrErr) {
3462 Warn(ContentOrErr.takeError());
3463 return;
3466 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3467 *ContentOrErr)) {
3468 Warn(std::move(E));
3469 return;
3472 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3475 template <class ELFT>
3476 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3477 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3478 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3479 if (!Target)
3480 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3481 " in " + describe(Sec) + ": " +
3482 toString(Target.takeError()));
3483 else
3484 printRelRelaReloc(R, *Target);
3487 template <class ELFT>
3488 std::vector<EnumEntry<unsigned>>
3489 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3490 const Elf_Sym &Symbol) const {
3491 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3492 std::end(ElfSymOtherFlags));
3493 if (Header.e_machine == EM_MIPS) {
3494 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3495 // flag overlap with other ST_MIPS_xxx flags. So consider both
3496 // cases separately.
3497 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3498 SymOtherFlags.insert(SymOtherFlags.end(),
3499 std::begin(ElfMips16SymOtherFlags),
3500 std::end(ElfMips16SymOtherFlags));
3501 else
3502 SymOtherFlags.insert(SymOtherFlags.end(),
3503 std::begin(ElfMipsSymOtherFlags),
3504 std::end(ElfMipsSymOtherFlags));
3505 } else if (Header.e_machine == EM_AARCH64) {
3506 SymOtherFlags.insert(SymOtherFlags.end(),
3507 std::begin(ElfAArch64SymOtherFlags),
3508 std::end(ElfAArch64SymOtherFlags));
3509 } else if (Header.e_machine == EM_RISCV) {
3510 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3511 std::end(ElfRISCVSymOtherFlags));
3513 return SymOtherFlags;
3516 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3517 StringRef Str2) {
3518 OS.PadToColumn(2u);
3519 OS << Str1;
3520 OS.PadToColumn(37u);
3521 OS << Str2 << "\n";
3522 OS.flush();
3525 template <class ELFT>
3526 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3527 StringRef FileName) {
3528 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3529 if (ElfHeader.e_shnum != 0)
3530 return to_string(ElfHeader.e_shnum);
3532 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3533 if (!ArrOrErr) {
3534 // In this case we can ignore an error, because we have already reported a
3535 // warning about the broken section header table earlier.
3536 consumeError(ArrOrErr.takeError());
3537 return "<?>";
3540 if (ArrOrErr->empty())
3541 return "0";
3542 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3545 template <class ELFT>
3546 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3547 StringRef FileName) {
3548 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3549 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3550 return to_string(ElfHeader.e_shstrndx);
3552 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3553 if (!ArrOrErr) {
3554 // In this case we can ignore an error, because we have already reported a
3555 // warning about the broken section header table earlier.
3556 consumeError(ArrOrErr.takeError());
3557 return "<?>";
3560 if (ArrOrErr->empty())
3561 return "65535 (corrupt: out of range)";
3562 return to_string(ElfHeader.e_shstrndx) + " (" +
3563 to_string((*ArrOrErr)[0].sh_link) + ")";
3566 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3567 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3568 return E.Value == Type;
3570 if (It != ArrayRef(ElfObjectFileType).end())
3571 return It;
3572 return nullptr;
3575 template <class ELFT>
3576 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3577 ArrayRef<std::string> InputFilenames,
3578 const Archive *A) {
3579 if (InputFilenames.size() > 1 || A) {
3580 this->W.startLine() << "\n";
3581 this->W.printString("File", FileStr);
3585 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3586 const Elf_Ehdr &e = this->Obj.getHeader();
3587 OS << "ELF Header:\n";
3588 OS << " Magic: ";
3589 std::string Str;
3590 for (int i = 0; i < ELF::EI_NIDENT; i++)
3591 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3592 OS << "\n";
3593 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3594 printFields(OS, "Class:", Str);
3595 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3596 printFields(OS, "Data:", Str);
3597 OS.PadToColumn(2u);
3598 OS << "Version:";
3599 OS.PadToColumn(37u);
3600 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3601 if (e.e_version == ELF::EV_CURRENT)
3602 OS << " (current)";
3603 OS << "\n";
3604 auto OSABI = ArrayRef(ElfOSABI);
3605 if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3606 e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3607 switch (e.e_machine) {
3608 case ELF::EM_AMDGPU:
3609 OSABI = ArrayRef(AMDGPUElfOSABI);
3610 break;
3611 default:
3612 break;
3615 Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI);
3616 printFields(OS, "OS/ABI:", Str);
3617 printFields(OS,
3618 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3620 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3621 Str = E->AltName.str();
3622 } else {
3623 if (e.e_type >= ET_LOPROC)
3624 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3625 else if (e.e_type >= ET_LOOS)
3626 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3627 else
3628 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3630 printFields(OS, "Type:", Str);
3632 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3633 printFields(OS, "Machine:", Str);
3634 Str = "0x" + utohexstr(e.e_version);
3635 printFields(OS, "Version:", Str);
3636 Str = "0x" + utohexstr(e.e_entry);
3637 printFields(OS, "Entry point address:", Str);
3638 Str = to_string(e.e_phoff) + " (bytes into file)";
3639 printFields(OS, "Start of program headers:", Str);
3640 Str = to_string(e.e_shoff) + " (bytes into file)";
3641 printFields(OS, "Start of section headers:", Str);
3642 std::string ElfFlags;
3643 if (e.e_machine == EM_MIPS)
3644 ElfFlags = printFlags(
3645 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3646 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3647 else if (e.e_machine == EM_RISCV)
3648 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3649 else if (e.e_machine == EM_AVR)
3650 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3651 unsigned(ELF::EF_AVR_ARCH_MASK));
3652 else if (e.e_machine == EM_LOONGARCH)
3653 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3654 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3655 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3656 else if (e.e_machine == EM_XTENSA)
3657 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3658 unsigned(ELF::EF_XTENSA_MACH));
3659 else if (e.e_machine == EM_CUDA)
3660 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
3661 unsigned(ELF::EF_CUDA_SM));
3662 else if (e.e_machine == EM_AMDGPU) {
3663 switch (e.e_ident[ELF::EI_ABIVERSION]) {
3664 default:
3665 break;
3666 case 0:
3667 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
3668 [[fallthrough]];
3669 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
3670 ElfFlags =
3671 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
3672 unsigned(ELF::EF_AMDGPU_MACH));
3673 break;
3674 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
3675 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
3676 ElfFlags =
3677 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
3678 unsigned(ELF::EF_AMDGPU_MACH),
3679 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
3680 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
3681 break;
3684 Str = "0x" + utohexstr(e.e_flags);
3685 if (!ElfFlags.empty())
3686 Str = Str + ", " + ElfFlags;
3687 printFields(OS, "Flags:", Str);
3688 Str = to_string(e.e_ehsize) + " (bytes)";
3689 printFields(OS, "Size of this header:", Str);
3690 Str = to_string(e.e_phentsize) + " (bytes)";
3691 printFields(OS, "Size of program headers:", Str);
3692 Str = to_string(e.e_phnum);
3693 printFields(OS, "Number of program headers:", Str);
3694 Str = to_string(e.e_shentsize) + " (bytes)";
3695 printFields(OS, "Size of section headers:", Str);
3696 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3697 printFields(OS, "Number of section headers:", Str);
3698 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3699 printFields(OS, "Section header string table index:", Str);
3702 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3703 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3704 const Elf_Shdr &Symtab) -> StringRef {
3705 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3706 if (!StrTableOrErr) {
3707 reportUniqueWarning("unable to get the string table for " +
3708 describe(Symtab) + ": " +
3709 toString(StrTableOrErr.takeError()));
3710 return "<?>";
3713 StringRef Strings = *StrTableOrErr;
3714 if (Sym.st_name >= Strings.size()) {
3715 reportUniqueWarning("unable to get the name of the symbol with index " +
3716 Twine(SymNdx) + ": st_name (0x" +
3717 Twine::utohexstr(Sym.st_name) +
3718 ") is past the end of the string table of size 0x" +
3719 Twine::utohexstr(Strings.size()));
3720 return "<?>";
3723 return StrTableOrErr->data() + Sym.st_name;
3726 std::vector<GroupSection> Ret;
3727 uint64_t I = 0;
3728 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3729 ++I;
3730 if (Sec.sh_type != ELF::SHT_GROUP)
3731 continue;
3733 StringRef Signature = "<?>";
3734 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3735 if (Expected<const Elf_Sym *> SymOrErr =
3736 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3737 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3738 else
3739 reportUniqueWarning("unable to get the signature symbol for " +
3740 describe(Sec) + ": " +
3741 toString(SymOrErr.takeError()));
3742 } else {
3743 reportUniqueWarning("unable to get the symbol table for " +
3744 describe(Sec) + ": " +
3745 toString(SymtabOrErr.takeError()));
3748 ArrayRef<Elf_Word> Data;
3749 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3750 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3751 if (ContentsOrErr->empty())
3752 reportUniqueWarning("unable to read the section group flag from the " +
3753 describe(Sec) + ": the section is empty");
3754 else
3755 Data = *ContentsOrErr;
3756 } else {
3757 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3758 ": " + toString(ContentsOrErr.takeError()));
3761 Ret.push_back({getPrintableSectionName(Sec),
3762 maybeDemangle(Signature),
3763 Sec.sh_name,
3764 I - 1,
3765 Sec.sh_link,
3766 Sec.sh_info,
3767 Data.empty() ? Elf_Word(0) : Data[0],
3768 {}});
3770 if (Data.empty())
3771 continue;
3773 std::vector<GroupMember> &GM = Ret.back().Members;
3774 for (uint32_t Ndx : Data.slice(1)) {
3775 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3776 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3777 } else {
3778 reportUniqueWarning("unable to get the section with index " +
3779 Twine(Ndx) + " when dumping the " + describe(Sec) +
3780 ": " + toString(SecOrErr.takeError()));
3781 GM.push_back({"<?>", Ndx});
3785 return Ret;
3788 static DenseMap<uint64_t, const GroupSection *>
3789 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3790 DenseMap<uint64_t, const GroupSection *> Ret;
3791 for (const GroupSection &G : Groups)
3792 for (const GroupMember &GM : G.Members)
3793 Ret.insert({GM.Index, &G});
3794 return Ret;
3797 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3798 std::vector<GroupSection> V = this->getGroups();
3799 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3800 for (const GroupSection &G : V) {
3801 OS << "\n"
3802 << getGroupType(G.Type) << " group section ["
3803 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3804 << "] contains " << G.Members.size() << " sections:\n"
3805 << " [Index] Name\n";
3806 for (const GroupMember &GM : G.Members) {
3807 const GroupSection *MainGroup = Map[GM.Index];
3808 if (MainGroup != &G)
3809 this->reportUniqueWarning(
3810 "section with index " + Twine(GM.Index) +
3811 ", included in the group section with index " +
3812 Twine(MainGroup->Index) +
3813 ", was also found in the group section with index " +
3814 Twine(G.Index));
3815 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3819 if (V.empty())
3820 OS << "There are no section groups in this file.\n";
3823 template <class ELFT>
3824 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3825 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3828 template <class ELFT>
3829 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3830 const RelSymbol<ELFT> &RelSym) {
3831 // First two fields are bit width dependent. The rest of them are fixed width.
3832 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3833 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3834 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3836 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3837 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3839 SmallString<32> RelocName;
3840 this->Obj.getRelocationTypeName(R.Type, RelocName);
3841 Fields[2].Str = RelocName.c_str();
3843 if (RelSym.Sym)
3844 Fields[3].Str =
3845 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3846 if (RelSym.Sym && RelSym.Name.empty())
3847 Fields[4].Str = "<null>";
3848 else
3849 Fields[4].Str = std::string(RelSym.Name);
3851 for (const Field &F : Fields)
3852 printField(F);
3854 std::string Addend;
3855 if (std::optional<int64_t> A = R.Addend) {
3856 int64_t RelAddend = *A;
3857 if (!Fields[4].Str.empty()) {
3858 if (RelAddend < 0) {
3859 Addend = " - ";
3860 RelAddend = -static_cast<uint64_t>(RelAddend);
3861 } else {
3862 Addend = " + ";
3865 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3867 OS << Addend << "\n";
3870 template <class ELFT>
3871 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType,
3872 const typename ELFT::Ehdr &EHeader) {
3873 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3874 bool IsRelr =
3875 SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR ||
3876 (EHeader.e_machine == EM_AARCH64 && SType == ELF::SHT_AARCH64_AUTH_RELR);
3877 if (ELFT::Is64Bits)
3878 OS << " ";
3879 else
3880 OS << " ";
3881 if (IsRelr && opts::RawRelr)
3882 OS << "Data ";
3883 else
3884 OS << "Offset";
3885 if (ELFT::Is64Bits)
3886 OS << " Info Type"
3887 << " Symbol's Value Symbol's Name";
3888 else
3889 OS << " Info Type Sym. Value Symbol's Name";
3890 if (IsRela)
3891 OS << " + Addend";
3892 OS << "\n";
3895 template <class ELFT>
3896 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3897 const DynRegionInfo &Reg) {
3898 uint64_t Offset = Reg.Addr - this->Obj.base();
3899 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3900 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3901 printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader());
3904 template <class ELFT>
3905 static bool isRelocationSec(const typename ELFT::Shdr &Sec,
3906 const typename ELFT::Ehdr &EHeader) {
3907 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3908 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3909 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3910 Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3911 (EHeader.e_machine == EM_AARCH64 &&
3912 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR);
3915 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3916 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3917 // Android's packed relocation section needs to be unpacked first
3918 // to get the actual number of entries.
3919 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3920 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3921 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3922 this->Obj.android_relas(Sec);
3923 if (!RelasOrErr)
3924 return RelasOrErr.takeError();
3925 return RelasOrErr->size();
3928 if (!opts::RawRelr &&
3929 (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3930 (this->Obj.getHeader().e_machine == EM_AARCH64 &&
3931 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR))) {
3932 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3933 if (!RelrsOrErr)
3934 return RelrsOrErr.takeError();
3935 return this->Obj.decode_relrs(*RelrsOrErr).size();
3938 return Sec.getEntityCount();
3941 bool HasRelocSections = false;
3942 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3943 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
3944 continue;
3945 HasRelocSections = true;
3947 std::string EntriesNum = "<?>";
3948 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3949 EntriesNum = std::to_string(*NumOrErr);
3950 else
3951 this->reportUniqueWarning("unable to get the number of relocations in " +
3952 this->describe(Sec) + ": " +
3953 toString(NumOrErr.takeError()));
3955 uintX_t Offset = Sec.sh_offset;
3956 StringRef Name = this->getPrintableSectionName(Sec);
3957 OS << "\nRelocation section '" << Name << "' at offset 0x"
3958 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3959 << " entries:\n";
3960 printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader());
3961 this->printRelocationsHelper(Sec);
3963 if (!HasRelocSections)
3964 OS << "\nThere are no relocations in this file.\n";
3967 // Print the offset of a particular section from anyone of the ranges:
3968 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3969 // If 'Type' does not fall within any of those ranges, then a string is
3970 // returned as '<unknown>' followed by the type value.
3971 static std::string getSectionTypeOffsetString(unsigned Type) {
3972 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3973 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3974 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3975 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3976 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3977 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3978 return "0x" + utohexstr(Type) + ": <unknown>";
3981 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3982 StringRef Name = getELFSectionTypeName(Machine, Type);
3984 // Handle SHT_GNU_* type names.
3985 if (Name.consume_front("SHT_GNU_")) {
3986 if (Name == "HASH")
3987 return "GNU_HASH";
3988 // E.g. SHT_GNU_verneed -> VERNEED.
3989 return Name.upper();
3992 if (Name == "SHT_SYMTAB_SHNDX")
3993 return "SYMTAB SECTION INDICES";
3995 if (Name.consume_front("SHT_"))
3996 return Name.str();
3997 return getSectionTypeOffsetString(Type);
4000 static void printSectionDescription(formatted_raw_ostream &OS,
4001 unsigned EMachine) {
4002 OS << "Key to Flags:\n";
4003 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
4004 "(info),\n";
4005 OS << " L (link order), O (extra OS processing required), G (group), T "
4006 "(TLS),\n";
4007 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
4008 OS << " R (retain)";
4010 if (EMachine == EM_X86_64)
4011 OS << ", l (large)";
4012 else if (EMachine == EM_ARM)
4013 OS << ", y (purecode)";
4015 OS << ", p (processor specific)\n";
4018 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
4019 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4020 if (Sections.empty()) {
4021 OS << "\nThere are no sections in this file.\n";
4022 Expected<StringRef> SecStrTableOrErr =
4023 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4024 if (!SecStrTableOrErr)
4025 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4026 return;
4028 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
4029 OS << "There are " << to_string(Sections.size())
4030 << " section headers, starting at offset "
4031 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4032 OS << "Section Headers:\n";
4033 Field Fields[11] = {
4034 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
4035 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
4036 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
4037 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
4038 for (const Field &F : Fields)
4039 printField(F);
4040 OS << "\n";
4042 StringRef SecStrTable;
4043 if (Expected<StringRef> SecStrTableOrErr =
4044 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4045 SecStrTable = *SecStrTableOrErr;
4046 else
4047 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4049 size_t SectionIndex = 0;
4050 for (const Elf_Shdr &Sec : Sections) {
4051 Fields[0].Str = to_string(SectionIndex);
4052 if (SecStrTable.empty())
4053 Fields[1].Str = "<no-strings>";
4054 else
4055 Fields[1].Str = std::string(unwrapOrError<StringRef>(
4056 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
4057 Fields[2].Str =
4058 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
4059 Fields[3].Str =
4060 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
4061 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
4062 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
4063 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
4064 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
4065 this->Obj.getHeader().e_machine, Sec.sh_flags);
4066 Fields[8].Str = to_string(Sec.sh_link);
4067 Fields[9].Str = to_string(Sec.sh_info);
4068 Fields[10].Str = to_string(Sec.sh_addralign);
4070 OS.PadToColumn(Fields[0].Column);
4071 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
4072 for (int i = 1; i < 7; i++)
4073 printField(Fields[i]);
4074 OS.PadToColumn(Fields[7].Column);
4075 OS << right_justify(Fields[7].Str, 3);
4076 OS.PadToColumn(Fields[8].Column);
4077 OS << right_justify(Fields[8].Str, 2);
4078 OS.PadToColumn(Fields[9].Column);
4079 OS << right_justify(Fields[9].Str, 3);
4080 OS.PadToColumn(Fields[10].Column);
4081 OS << right_justify(Fields[10].Str, 2);
4082 OS << "\n";
4083 ++SectionIndex;
4085 printSectionDescription(OS, this->Obj.getHeader().e_machine);
4088 template <class ELFT>
4089 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
4090 size_t Entries,
4091 bool NonVisibilityBitsUsed,
4092 bool ExtraSymInfo) const {
4093 StringRef Name;
4094 if (Symtab)
4095 Name = this->getPrintableSectionName(*Symtab);
4096 if (!Name.empty())
4097 OS << "\nSymbol table '" << Name << "'";
4098 else
4099 OS << "\nSymbol table for image";
4100 OS << " contains " << Entries << " entries:\n";
4102 if (ELFT::Is64Bits) {
4103 OS << " Num: Value Size Type Bind Vis";
4104 if (ExtraSymInfo)
4105 OS << "+Other";
4106 } else {
4107 OS << " Num: Value Size Type Bind Vis";
4108 if (ExtraSymInfo)
4109 OS << "+Other";
4112 OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0));
4113 if (ExtraSymInfo)
4114 OS << "Ndx(SecName) Name [+ Version Info]\n";
4115 else
4116 OS << "Ndx Name\n";
4119 template <class ELFT>
4120 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx(
4121 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
4122 bool ExtraSymInfo) const {
4123 unsigned SectionIndex = Symbol.st_shndx;
4124 switch (SectionIndex) {
4125 case ELF::SHN_UNDEF:
4126 return "UND";
4127 case ELF::SHN_ABS:
4128 return "ABS";
4129 case ELF::SHN_COMMON:
4130 return "COM";
4131 case ELF::SHN_XINDEX: {
4132 Expected<uint32_t> IndexOrErr =
4133 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4134 if (!IndexOrErr) {
4135 assert(Symbol.st_shndx == SHN_XINDEX &&
4136 "getExtendedSymbolTableIndex should only fail due to an invalid "
4137 "SHT_SYMTAB_SHNDX table/reference");
4138 this->reportUniqueWarning(IndexOrErr.takeError());
4139 return "RSV[0xffff]";
4141 SectionIndex = *IndexOrErr;
4142 break;
4144 default:
4145 // Find if:
4146 // Processor specific
4147 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4148 return std::string("PRC[0x") +
4149 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4150 // OS specific
4151 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4152 return std::string("OS[0x") +
4153 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4154 // Architecture reserved:
4155 if (SectionIndex >= ELF::SHN_LORESERVE &&
4156 SectionIndex <= ELF::SHN_HIRESERVE)
4157 return std::string("RSV[0x") +
4158 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4159 break;
4162 std::string Extra;
4163 if (ExtraSymInfo) {
4164 auto Sec = this->Obj.getSection(SectionIndex);
4165 if (!Sec) {
4166 this->reportUniqueWarning(Sec.takeError());
4167 } else {
4168 auto SecName = this->Obj.getSectionName(**Sec);
4169 if (!SecName)
4170 this->reportUniqueWarning(SecName.takeError());
4171 else
4172 Extra = Twine(" (" + *SecName + ")").str();
4175 return to_string(format_decimal(SectionIndex, 3)) + Extra;
4178 template <class ELFT>
4179 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4180 DataRegion<Elf_Word> ShndxTable,
4181 std::optional<StringRef> StrTable,
4182 bool IsDynamic, bool NonVisibilityBitsUsed,
4183 bool ExtraSymInfo) const {
4184 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4185 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
4186 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4187 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4188 Fields[1].Str =
4189 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4190 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4192 unsigned char SymbolType = Symbol.getType();
4193 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4194 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4195 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4196 else
4197 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4199 Fields[4].Str =
4200 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4201 Fields[5].Str =
4202 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4204 if (Symbol.st_other & ~0x3) {
4205 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4206 uint8_t Other = Symbol.st_other & ~0x3;
4207 if (Other & STO_AARCH64_VARIANT_PCS) {
4208 Other &= ~STO_AARCH64_VARIANT_PCS;
4209 Fields[5].Str += " [VARIANT_PCS";
4210 if (Other != 0)
4211 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4212 Fields[5].Str.append("]");
4214 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4215 uint8_t Other = Symbol.st_other & ~0x3;
4216 if (Other & STO_RISCV_VARIANT_CC) {
4217 Other &= ~STO_RISCV_VARIANT_CC;
4218 Fields[5].Str += " [VARIANT_CC";
4219 if (Other != 0)
4220 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4221 Fields[5].Str.append("]");
4223 } else {
4224 Fields[5].Str +=
4225 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4229 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4230 Fields[6].Str =
4231 getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo);
4233 Fields[7].Column += ExtraSymInfo ? 10 : 0;
4234 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4235 StrTable, IsDynamic);
4236 for (const Field &Entry : Fields)
4237 printField(Entry);
4238 OS << "\n";
4241 template <class ELFT>
4242 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4243 unsigned SymIndex,
4244 DataRegion<Elf_Word> ShndxTable,
4245 StringRef StrTable,
4246 uint32_t Bucket) {
4247 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4248 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
4249 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4250 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4251 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4253 Fields[2].Str = to_string(
4254 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4255 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4257 unsigned char SymbolType = Symbol->getType();
4258 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4259 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4260 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4261 else
4262 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4264 Fields[5].Str =
4265 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4266 Fields[6].Str =
4267 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4268 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4269 Fields[8].Str =
4270 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4272 for (const Field &Entry : Fields)
4273 printField(Entry);
4274 OS << "\n";
4277 template <class ELFT>
4278 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4279 bool PrintDynamicSymbols,
4280 bool ExtraSymInfo) {
4281 if (!PrintSymbols && !PrintDynamicSymbols)
4282 return;
4283 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4284 this->printSymbolsHelper(true, ExtraSymInfo);
4285 if (PrintSymbols)
4286 this->printSymbolsHelper(false, ExtraSymInfo);
4289 template <class ELFT>
4290 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4291 if (this->DynamicStringTable.empty())
4292 return;
4294 if (ELFT::Is64Bits)
4295 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4296 else
4297 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4298 OS << "\n";
4300 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4301 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4302 if (!FirstSym) {
4303 this->reportUniqueWarning(
4304 Twine("unable to print symbols for the .hash table: the "
4305 "dynamic symbol table ") +
4306 (this->DynSymRegion ? "is empty" : "was not found"));
4307 return;
4310 DataRegion<Elf_Word> ShndxTable(
4311 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4312 auto Buckets = SysVHash.buckets();
4313 auto Chains = SysVHash.chains();
4314 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4315 if (Buckets[Buc] == ELF::STN_UNDEF)
4316 continue;
4317 BitVector Visited(SysVHash.nchain);
4318 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4319 if (Ch == ELF::STN_UNDEF)
4320 break;
4322 if (Visited[Ch]) {
4323 this->reportUniqueWarning(".hash section is invalid: bucket " +
4324 Twine(Ch) +
4325 ": a cycle was detected in the linked chain");
4326 break;
4329 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4330 Buc);
4331 Visited[Ch] = true;
4336 template <class ELFT>
4337 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4338 if (this->DynamicStringTable.empty())
4339 return;
4341 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4342 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4343 if (!FirstSym) {
4344 this->reportUniqueWarning(
4345 Twine("unable to print symbols for the .gnu.hash table: the "
4346 "dynamic symbol table ") +
4347 (this->DynSymRegion ? "is empty" : "was not found"));
4348 return;
4351 auto GetSymbol = [&](uint64_t SymIndex,
4352 uint64_t SymsTotal) -> const Elf_Sym * {
4353 if (SymIndex >= SymsTotal) {
4354 this->reportUniqueWarning(
4355 "unable to print hashed symbol with index " + Twine(SymIndex) +
4356 ", which is greater than or equal to the number of dynamic symbols "
4357 "(" +
4358 Twine::utohexstr(SymsTotal) + ")");
4359 return nullptr;
4361 return FirstSym + SymIndex;
4364 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4365 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4366 ArrayRef<Elf_Word> Values;
4367 if (!ValuesOrErr)
4368 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4369 "section: " +
4370 toString(ValuesOrErr.takeError()));
4371 else
4372 Values = *ValuesOrErr;
4374 DataRegion<Elf_Word> ShndxTable(
4375 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4376 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4377 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4378 if (Buckets[Buc] == ELF::STN_UNDEF)
4379 continue;
4380 uint32_t Index = Buckets[Buc];
4381 // Print whole chain.
4382 while (true) {
4383 uint32_t SymIndex = Index++;
4384 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4385 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4386 Buc);
4387 else
4388 break;
4390 if (SymIndex < GnuHash.symndx) {
4391 this->reportUniqueWarning(
4392 "unable to read the hash value for symbol with index " +
4393 Twine(SymIndex) +
4394 ", which is less than the index of the first hashed symbol (" +
4395 Twine(GnuHash.symndx) + ")");
4396 break;
4399 // Chain ends at symbol with stopper bit.
4400 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4401 break;
4406 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4407 if (this->HashTable) {
4408 OS << "\n Symbol table of .hash for image:\n";
4409 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4410 this->reportUniqueWarning(std::move(E));
4411 else
4412 printHashTableSymbols(*this->HashTable);
4415 // Try printing the .gnu.hash table.
4416 if (this->GnuHashTable) {
4417 OS << "\n Symbol table of .gnu.hash for image:\n";
4418 if (ELFT::Is64Bits)
4419 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4420 else
4421 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4422 OS << "\n";
4424 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4425 this->reportUniqueWarning(std::move(E));
4426 else
4427 printGnuHashTableSymbols(*this->GnuHashTable);
4431 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4432 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4433 if (Sections.empty()) {
4434 OS << "\nThere are no sections in this file.\n";
4435 Expected<StringRef> SecStrTableOrErr =
4436 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4437 if (!SecStrTableOrErr)
4438 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4439 return;
4441 OS << "There are " << to_string(Sections.size())
4442 << " section headers, starting at offset "
4443 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4445 OS << "Section Headers:\n";
4447 auto PrintFields = [&](ArrayRef<Field> V) {
4448 for (const Field &F : V)
4449 printField(F);
4450 OS << "\n";
4453 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4455 constexpr bool Is64 = ELFT::Is64Bits;
4456 PrintFields({{"Type", 7},
4457 {Is64 ? "Address" : "Addr", 23},
4458 {"Off", Is64 ? 40 : 32},
4459 {"Size", Is64 ? 47 : 39},
4460 {"ES", Is64 ? 54 : 46},
4461 {"Lk", Is64 ? 59 : 51},
4462 {"Inf", Is64 ? 62 : 54},
4463 {"Al", Is64 ? 66 : 57}});
4464 PrintFields({{"Flags", 7}});
4466 StringRef SecStrTable;
4467 if (Expected<StringRef> SecStrTableOrErr =
4468 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4469 SecStrTable = *SecStrTableOrErr;
4470 else
4471 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4473 size_t SectionIndex = 0;
4474 const unsigned AddrSize = Is64 ? 16 : 8;
4475 for (const Elf_Shdr &S : Sections) {
4476 StringRef Name = "<?>";
4477 if (Expected<StringRef> NameOrErr =
4478 this->Obj.getSectionName(S, SecStrTable))
4479 Name = *NameOrErr;
4480 else
4481 this->reportUniqueWarning(NameOrErr.takeError());
4483 OS.PadToColumn(2);
4484 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4485 PrintFields({{Name, 7}});
4486 PrintFields(
4487 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4488 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4489 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4490 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4491 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4492 {to_string(S.sh_link), Is64 ? 59 : 51},
4493 {to_string(S.sh_info), Is64 ? 63 : 55},
4494 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4496 OS.PadToColumn(7);
4497 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4499 DenseMap<unsigned, StringRef> FlagToName = {
4500 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4501 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4502 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4503 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4504 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4505 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4507 uint64_t Flags = S.sh_flags;
4508 uint64_t UnknownFlags = 0;
4509 ListSeparator LS;
4510 while (Flags) {
4511 // Take the least significant bit as a flag.
4512 uint64_t Flag = Flags & -Flags;
4513 Flags -= Flag;
4515 auto It = FlagToName.find(Flag);
4516 if (It != FlagToName.end())
4517 OS << LS << It->second;
4518 else
4519 UnknownFlags |= Flag;
4522 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4523 uint64_t FlagsToPrint = UnknownFlags & Mask;
4524 if (!FlagsToPrint)
4525 return;
4527 OS << LS << Name << " ("
4528 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4529 UnknownFlags &= ~Mask;
4532 PrintUnknownFlags(SHF_MASKOS, "OS");
4533 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4534 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4536 OS << "\n";
4537 ++SectionIndex;
4539 if (!(S.sh_flags & SHF_COMPRESSED))
4540 continue;
4541 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4542 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4543 consumeError(Data.takeError());
4544 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4545 "' does not have an Elf_Chdr header"),
4546 this->FileName);
4547 OS.indent(7);
4548 OS << "[<corrupt>]";
4549 } else {
4550 OS.indent(7);
4551 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4552 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4553 OS << "ZLIB";
4554 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4555 OS << "ZSTD";
4556 else
4557 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4558 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4559 << ", " << Chdr->ch_addralign;
4561 OS << '\n';
4565 static inline std::string printPhdrFlags(unsigned Flag) {
4566 std::string Str;
4567 Str = (Flag & PF_R) ? "R" : " ";
4568 Str += (Flag & PF_W) ? "W" : " ";
4569 Str += (Flag & PF_X) ? "E" : " ";
4570 return Str;
4573 template <class ELFT>
4574 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4575 const typename ELFT::Shdr &Sec) {
4576 if (Sec.sh_flags & ELF::SHF_TLS) {
4577 // .tbss must only be shown in the PT_TLS segment.
4578 if (Sec.sh_type == ELF::SHT_NOBITS)
4579 return Phdr.p_type == ELF::PT_TLS;
4581 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4582 // segments.
4583 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4584 (Phdr.p_type == ELF::PT_GNU_RELRO);
4587 // PT_TLS must only have SHF_TLS sections.
4588 return Phdr.p_type != ELF::PT_TLS;
4591 template <class ELFT>
4592 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4593 const typename ELFT::Shdr &Sec) {
4594 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4595 return true;
4597 // We get here when we have an empty section. Only non-empty sections can be
4598 // at the start or at the end of PT_DYNAMIC.
4599 // Is section within the phdr both based on offset and VMA?
4600 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4601 (Sec.sh_offset > Phdr.p_offset &&
4602 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4603 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4604 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4605 return CheckOffset && CheckVA;
4608 template <class ELFT>
4609 void GNUELFDumper<ELFT>::printProgramHeaders(
4610 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4611 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4612 // Exit early if no program header or section mapping details were requested.
4613 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4614 return;
4616 if (PrintProgramHeaders) {
4617 const Elf_Ehdr &Header = this->Obj.getHeader();
4618 if (Header.e_phnum == 0) {
4619 OS << "\nThere are no program headers in this file.\n";
4620 } else {
4621 printProgramHeaders();
4625 if (ShouldPrintSectionMapping)
4626 printSectionMapping();
4629 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4630 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4631 const Elf_Ehdr &Header = this->Obj.getHeader();
4632 Field Fields[8] = {2, 17, 26, 37 + Bias,
4633 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4634 OS << "\nElf file type is "
4635 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4636 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4637 << "There are " << Header.e_phnum << " program headers,"
4638 << " starting at offset " << Header.e_phoff << "\n\n"
4639 << "Program Headers:\n";
4640 if (ELFT::Is64Bits)
4641 OS << " Type Offset VirtAddr PhysAddr "
4642 << " FileSiz MemSiz Flg Align\n";
4643 else
4644 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4645 << "MemSiz Flg Align\n";
4647 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4648 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4650 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4651 if (!PhdrsOrErr) {
4652 this->reportUniqueWarning("unable to dump program headers: " +
4653 toString(PhdrsOrErr.takeError()));
4654 return;
4657 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4658 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4659 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4660 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4661 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4662 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4663 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4664 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4665 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4666 for (const Field &F : Fields)
4667 printField(F);
4668 if (Phdr.p_type == ELF::PT_INTERP) {
4669 OS << "\n";
4670 auto ReportBadInterp = [&](const Twine &Msg) {
4671 this->reportUniqueWarning(
4672 "unable to read program interpreter name at offset 0x" +
4673 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4676 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4677 ReportBadInterp("it goes past the end of the file (0x" +
4678 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4679 continue;
4682 const char *Data =
4683 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4684 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4685 size_t Len = strnlen(Data, MaxSize);
4686 if (Len == MaxSize) {
4687 ReportBadInterp("it is not null-terminated");
4688 continue;
4691 OS << " [Requesting program interpreter: ";
4692 OS << StringRef(Data, Len) << "]";
4694 OS << "\n";
4698 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4699 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4700 DenseSet<const Elf_Shdr *> BelongsToSegment;
4701 int Phnum = 0;
4703 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4704 if (!PhdrsOrErr) {
4705 this->reportUniqueWarning(
4706 "can't read program headers to build section to segment mapping: " +
4707 toString(PhdrsOrErr.takeError()));
4708 return;
4711 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4712 std::string Sections;
4713 OS << format(" %2.2d ", Phnum++);
4714 // Check if each section is in a segment and then print mapping.
4715 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4716 if (Sec.sh_type == ELF::SHT_NULL)
4717 continue;
4719 // readelf additionally makes sure it does not print zero sized sections
4720 // at end of segments and for PT_DYNAMIC both start and end of section
4721 // .tbss must only be shown in PT_TLS section.
4722 if (isSectionInSegment<ELFT>(Phdr, Sec) &&
4723 checkTLSSections<ELFT>(Phdr, Sec) &&
4724 checkPTDynamic<ELFT>(Phdr, Sec)) {
4725 Sections +=
4726 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4727 " ";
4728 BelongsToSegment.insert(&Sec);
4731 OS << Sections << "\n";
4732 OS.flush();
4735 // Display sections that do not belong to a segment.
4736 std::string Sections;
4737 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4738 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4739 Sections +=
4740 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4741 ' ';
4743 if (!Sections.empty()) {
4744 OS << " None " << Sections << '\n';
4745 OS.flush();
4749 namespace {
4751 template <class ELFT>
4752 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4753 const Relocation<ELFT> &Reloc) {
4754 using Elf_Sym = typename ELFT::Sym;
4755 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4756 const Twine &Reason) -> RelSymbol<ELFT> {
4757 Dumper.reportUniqueWarning(
4758 "unable to get name of the dynamic symbol with index " +
4759 Twine(Reloc.Symbol) + ": " + Reason);
4760 return {Sym, "<corrupt>"};
4763 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4764 const Elf_Sym *FirstSym = Symbols.begin();
4765 if (!FirstSym)
4766 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4768 // We might have an object without a section header. In this case the size of
4769 // Symbols is zero, because there is no way to know the size of the dynamic
4770 // table. We should allow this case and not print a warning.
4771 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4772 return WarnAndReturn(
4773 nullptr,
4774 "index is greater than or equal to the number of dynamic symbols (" +
4775 Twine(Symbols.size()) + ")");
4777 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4778 const uint64_t FileSize = Obj.getBufSize();
4779 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4780 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4781 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4782 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4783 " goes past the end of the file (0x" +
4784 Twine::utohexstr(FileSize) + ")");
4786 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4787 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4788 if (!ErrOrName)
4789 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4791 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4793 } // namespace
4795 template <class ELFT>
4796 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4797 typename ELFT::DynRange Tags) {
4798 size_t Max = 0;
4799 for (const typename ELFT::Dyn &Dyn : Tags)
4800 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4801 return Max;
4804 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4805 Elf_Dyn_Range Table = this->dynamic_table();
4806 if (Table.empty())
4807 return;
4809 OS << "Dynamic section at offset "
4810 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4811 this->Obj.base(),
4813 << " contains " << Table.size() << " entries:\n";
4815 // The type name is surrounded with round brackets, hence add 2.
4816 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4817 // The "Name/Value" column should be indented from the "Type" column by N
4818 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4819 // space (1) = 3.
4820 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4821 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4823 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4824 for (auto Entry : Table) {
4825 uintX_t Tag = Entry.getTag();
4826 std::string Type =
4827 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4828 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4829 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4830 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4834 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4835 this->printDynamicRelocationsHelper();
4838 template <class ELFT>
4839 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4840 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4843 template <class ELFT>
4844 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4845 this->forEachRelocationDo(
4846 Sec, opts::RawRelr,
4847 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4848 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4849 [&](const Elf_Relr &R) { printRelrReloc(R); });
4852 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4853 const bool IsMips64EL = this->Obj.isMips64EL();
4854 if (this->DynRelaRegion.Size > 0) {
4855 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4856 for (const Elf_Rela &Rela :
4857 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4858 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4861 if (this->DynRelRegion.Size > 0) {
4862 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4863 for (const Elf_Rel &Rel :
4864 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4865 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4868 if (this->DynRelrRegion.Size > 0) {
4869 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4870 Elf_Relr_Range Relrs =
4871 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4872 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4873 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4876 if (this->DynPLTRelRegion.Size) {
4877 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4878 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4879 for (const Elf_Rela &Rela :
4880 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4881 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4882 } else {
4883 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4884 for (const Elf_Rel &Rel :
4885 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4886 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4891 template <class ELFT>
4892 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4893 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4894 // Don't inline the SecName, because it might report a warning to stderr and
4895 // corrupt the output.
4896 StringRef SecName = this->getPrintableSectionName(Sec);
4897 OS << Label << " section '" << SecName << "' "
4898 << "contains " << EntriesNum << " entries:\n";
4900 StringRef LinkedSecName = "<corrupt>";
4901 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4902 this->Obj.getSection(Sec.sh_link))
4903 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4904 else
4905 this->reportUniqueWarning("invalid section linked to " +
4906 this->describe(Sec) + ": " +
4907 toString(LinkedSecOrErr.takeError()));
4909 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4910 << " Offset: " << format_hex(Sec.sh_offset, 8)
4911 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4914 template <class ELFT>
4915 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4916 if (!Sec)
4917 return;
4919 printGNUVersionSectionProlog(*Sec, "Version symbols",
4920 Sec->sh_size / sizeof(Elf_Versym));
4921 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4922 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4923 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4924 if (!VerTableOrErr) {
4925 this->reportUniqueWarning(VerTableOrErr.takeError());
4926 return;
4929 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4930 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4931 this->getVersionMap())
4932 VersionMap = *MapOrErr;
4933 else
4934 this->reportUniqueWarning(MapOrErr.takeError());
4936 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4937 std::vector<StringRef> Versions;
4938 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4939 unsigned Ndx = VerTable[I].vs_index;
4940 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4941 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4942 continue;
4945 if (!VersionMap) {
4946 Versions.emplace_back("<corrupt>");
4947 continue;
4950 bool IsDefault;
4951 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4952 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4953 if (!NameOrErr) {
4954 this->reportUniqueWarning("unable to get a version for entry " +
4955 Twine(I) + " of " + this->describe(*Sec) +
4956 ": " + toString(NameOrErr.takeError()));
4957 Versions.emplace_back("<corrupt>");
4958 continue;
4960 Versions.emplace_back(*NameOrErr);
4963 // readelf prints 4 entries per line.
4964 uint64_t Entries = VerTable.size();
4965 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4966 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4967 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4968 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4969 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4970 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4971 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4973 OS << '\n';
4975 OS << '\n';
4978 static std::string versionFlagToString(unsigned Flags) {
4979 if (Flags == 0)
4980 return "none";
4982 std::string Ret;
4983 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4984 if (!(Flags & Flag))
4985 return;
4986 if (!Ret.empty())
4987 Ret += " | ";
4988 Ret += Name;
4989 Flags &= ~Flag;
4992 AddFlag(VER_FLG_BASE, "BASE");
4993 AddFlag(VER_FLG_WEAK, "WEAK");
4994 AddFlag(VER_FLG_INFO, "INFO");
4995 AddFlag(~0, "<unknown>");
4996 return Ret;
4999 template <class ELFT>
5000 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
5001 if (!Sec)
5002 return;
5004 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
5006 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
5007 if (!V) {
5008 this->reportUniqueWarning(V.takeError());
5009 return;
5012 for (const VerDef &Def : *V) {
5013 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
5014 Def.Offset, Def.Version,
5015 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
5016 Def.Name.data());
5017 unsigned I = 0;
5018 for (const VerdAux &Aux : Def.AuxV)
5019 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
5020 Aux.Name.data());
5023 OS << '\n';
5026 template <class ELFT>
5027 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
5028 if (!Sec)
5029 return;
5031 unsigned VerneedNum = Sec->sh_info;
5032 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
5034 Expected<std::vector<VerNeed>> V =
5035 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
5036 if (!V) {
5037 this->reportUniqueWarning(V.takeError());
5038 return;
5041 for (const VerNeed &VN : *V) {
5042 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
5043 VN.Version, VN.File.data(), VN.Cnt);
5044 for (const VernAux &Aux : VN.AuxV)
5045 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
5046 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
5047 Aux.Other);
5049 OS << '\n';
5052 template <class ELFT>
5053 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
5054 size_t MaxChain,
5055 size_t TotalSyms,
5056 ArrayRef<size_t> Count,
5057 bool IsGnu) const {
5058 size_t CumulativeNonZero = 0;
5059 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
5060 << " bucket list length (total of " << NBucket << " buckets)\n"
5061 << " Length Number % of total Coverage\n";
5062 for (size_t I = 0; I < MaxChain; ++I) {
5063 CumulativeNonZero += Count[I] * I;
5064 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
5065 (Count[I] * 100.0) / NBucket,
5066 (CumulativeNonZero * 100.0) / TotalSyms);
5070 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
5071 OS << "GNUStyle::printCGProfile not implemented\n";
5074 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
5075 OS << "GNUStyle::printBBAddrMaps not implemented\n";
5078 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5079 std::vector<uint64_t> Ret;
5080 const uint8_t *Cur = Data.begin();
5081 const uint8_t *End = Data.end();
5082 while (Cur != End) {
5083 unsigned Size;
5084 const char *Err = nullptr;
5085 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5086 if (Err)
5087 return createError(Err);
5088 Cur += Size;
5090 return Ret;
5093 template <class ELFT>
5094 static Expected<std::vector<uint64_t>>
5095 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5096 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5097 if (!ContentsOrErr)
5098 return ContentsOrErr.takeError();
5100 if (Expected<std::vector<uint64_t>> SymsOrErr =
5101 toULEB128Array(*ContentsOrErr))
5102 return *SymsOrErr;
5103 else
5104 return createError("unable to decode " + describe(Obj, Sec) + ": " +
5105 toString(SymsOrErr.takeError()));
5108 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5109 if (!this->DotAddrsigSec)
5110 return;
5112 Expected<std::vector<uint64_t>> SymsOrErr =
5113 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5114 if (!SymsOrErr) {
5115 this->reportUniqueWarning(SymsOrErr.takeError());
5116 return;
5119 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5120 OS << "\nAddress-significant symbols section '" << Name << "'"
5121 << " contains " << SymsOrErr->size() << " entries:\n";
5122 OS << " Num: Name\n";
5124 Field Fields[2] = {0, 8};
5125 size_t SymIndex = 0;
5126 for (uint64_t Sym : *SymsOrErr) {
5127 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5128 Fields[1].Str = this->getStaticSymbolName(Sym);
5129 for (const Field &Entry : Fields)
5130 printField(Entry);
5131 OS << "\n";
5135 template <typename ELFT>
5136 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5137 ArrayRef<uint8_t> Data) {
5138 std::string str;
5139 raw_string_ostream OS(str);
5140 uint32_t PrData;
5141 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5142 if (PrData & Flag) {
5143 PrData &= ~Flag;
5144 OS << Name;
5145 if (PrData)
5146 OS << ", ";
5150 switch (Type) {
5151 default:
5152 OS << format("<application-specific type 0x%x>", Type);
5153 return OS.str();
5154 case GNU_PROPERTY_STACK_SIZE: {
5155 OS << "stack size: ";
5156 if (DataSize == sizeof(typename ELFT::uint))
5157 OS << formatv("{0:x}",
5158 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5159 else
5160 OS << format("<corrupt length: 0x%x>", DataSize);
5161 return OS.str();
5163 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5164 OS << "no copy on protected";
5165 if (DataSize)
5166 OS << format(" <corrupt length: 0x%x>", DataSize);
5167 return OS.str();
5168 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5169 case GNU_PROPERTY_X86_FEATURE_1_AND:
5170 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5171 : "x86 feature: ");
5172 if (DataSize != 4) {
5173 OS << format("<corrupt length: 0x%x>", DataSize);
5174 return OS.str();
5176 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5177 if (PrData == 0) {
5178 OS << "<None>";
5179 return OS.str();
5181 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5182 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5183 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5184 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS");
5185 } else {
5186 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5187 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5189 if (PrData)
5190 OS << format("<unknown flags: 0x%x>", PrData);
5191 return OS.str();
5192 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5193 case GNU_PROPERTY_X86_FEATURE_2_USED:
5194 OS << "x86 feature "
5195 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5196 if (DataSize != 4) {
5197 OS << format("<corrupt length: 0x%x>", DataSize);
5198 return OS.str();
5200 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5201 if (PrData == 0) {
5202 OS << "<None>";
5203 return OS.str();
5205 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5206 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5207 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5208 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5209 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5210 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5211 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5212 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5213 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5214 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5215 if (PrData)
5216 OS << format("<unknown flags: 0x%x>", PrData);
5217 return OS.str();
5218 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5219 case GNU_PROPERTY_X86_ISA_1_USED:
5220 OS << "x86 ISA "
5221 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5222 if (DataSize != 4) {
5223 OS << format("<corrupt length: 0x%x>", DataSize);
5224 return OS.str();
5226 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5227 if (PrData == 0) {
5228 OS << "<None>";
5229 return OS.str();
5231 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5232 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5233 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5234 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5235 if (PrData)
5236 OS << format("<unknown flags: 0x%x>", PrData);
5237 return OS.str();
5241 template <typename ELFT>
5242 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5243 using Elf_Word = typename ELFT::Word;
5245 SmallVector<std::string, 4> Properties;
5246 while (Arr.size() >= 8) {
5247 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5248 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5249 Arr = Arr.drop_front(8);
5251 // Take padding size into account if present.
5252 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5253 std::string str;
5254 raw_string_ostream OS(str);
5255 if (Arr.size() < PaddedSize) {
5256 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5257 Properties.push_back(OS.str());
5258 break;
5260 Properties.push_back(
5261 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5262 Arr = Arr.drop_front(PaddedSize);
5265 if (!Arr.empty())
5266 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5268 return Properties;
5271 struct GNUAbiTag {
5272 std::string OSName;
5273 std::string ABI;
5274 bool IsValid;
5277 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5278 typedef typename ELFT::Word Elf_Word;
5280 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5281 reinterpret_cast<const Elf_Word *>(Desc.end()));
5283 if (Words.size() < 4)
5284 return {"", "", /*IsValid=*/false};
5286 static const char *OSNames[] = {
5287 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5289 StringRef OSName = "Unknown";
5290 if (Words[0] < std::size(OSNames))
5291 OSName = OSNames[Words[0]];
5292 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5293 std::string str;
5294 raw_string_ostream ABI(str);
5295 ABI << Major << "." << Minor << "." << Patch;
5296 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5299 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5300 std::string str;
5301 raw_string_ostream OS(str);
5302 for (uint8_t B : Desc)
5303 OS << format_hex_no_prefix(B, 2);
5304 return OS.str();
5307 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5308 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5311 template <typename ELFT>
5312 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5313 ArrayRef<uint8_t> Desc) {
5314 // Return true if we were able to pretty-print the note, false otherwise.
5315 switch (NoteType) {
5316 default:
5317 return false;
5318 case ELF::NT_GNU_ABI_TAG: {
5319 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5320 if (!AbiTag.IsValid)
5321 OS << " <corrupt GNU_ABI_TAG>";
5322 else
5323 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5324 break;
5326 case ELF::NT_GNU_BUILD_ID: {
5327 OS << " Build ID: " << getGNUBuildId(Desc);
5328 break;
5330 case ELF::NT_GNU_GOLD_VERSION:
5331 OS << " Version: " << getDescAsStringRef(Desc);
5332 break;
5333 case ELF::NT_GNU_PROPERTY_TYPE_0:
5334 OS << " Properties:";
5335 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5336 OS << " " << Property << "\n";
5337 break;
5339 OS << '\n';
5340 return true;
5343 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5344 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5345 ArrayRef<uint8_t> Desc) {
5346 AndroidNoteProperties Props;
5347 switch (NoteType) {
5348 case ELF::NT_ANDROID_TYPE_MEMTAG:
5349 if (Desc.empty()) {
5350 Props.emplace_back("Invalid .note.android.memtag", "");
5351 return Props;
5354 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5355 case NT_MEMTAG_LEVEL_NONE:
5356 Props.emplace_back("Tagging Mode", "NONE");
5357 break;
5358 case NT_MEMTAG_LEVEL_ASYNC:
5359 Props.emplace_back("Tagging Mode", "ASYNC");
5360 break;
5361 case NT_MEMTAG_LEVEL_SYNC:
5362 Props.emplace_back("Tagging Mode", "SYNC");
5363 break;
5364 default:
5365 Props.emplace_back(
5366 "Tagging Mode",
5367 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5368 .str());
5369 break;
5371 Props.emplace_back("Heap",
5372 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5373 Props.emplace_back("Stack",
5374 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5375 break;
5376 default:
5377 return Props;
5379 return Props;
5382 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5383 ArrayRef<uint8_t> Desc) {
5384 // Return true if we were able to pretty-print the note, false otherwise.
5385 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5386 if (Props.empty())
5387 return false;
5388 for (const auto &KV : Props)
5389 OS << " " << KV.first << ": " << KV.second << '\n';
5390 return true;
5393 template <class ELFT>
5394 static bool printAArch64Note(raw_ostream &OS, uint32_t NoteType,
5395 ArrayRef<uint8_t> Desc) {
5396 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
5397 return false;
5399 OS << " AArch64 PAuth ABI tag: ";
5400 if (Desc.size() < 16) {
5401 OS << format("<corrupted size: expected at least 16, got %d>", Desc.size());
5402 return false;
5405 uint64_t Platform =
5406 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
5407 uint64_t Version =
5408 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
5409 OS << format("platform 0x%" PRIx64 ", version 0x%" PRIx64, Platform, Version);
5411 if (Desc.size() > 16)
5412 OS << ", additional info 0x"
5413 << toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16));
5415 return true;
5418 template <class ELFT>
5419 void GNUELFDumper<ELFT>::printMemtag(
5420 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5421 const ArrayRef<uint8_t> AndroidNoteDesc,
5422 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5423 OS << "Memtag Dynamic Entries:\n";
5424 if (DynamicEntries.empty())
5425 OS << " < none found >\n";
5426 for (const auto &DynamicEntryKV : DynamicEntries)
5427 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5428 << "\n";
5430 if (!AndroidNoteDesc.empty()) {
5431 OS << "Memtag Android Note:\n";
5432 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5435 if (Descriptors.empty())
5436 return;
5438 OS << "Memtag Global Descriptors:\n";
5439 for (const auto &[Addr, BytesToTag] : Descriptors) {
5440 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5441 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5445 template <typename ELFT>
5446 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5447 ArrayRef<uint8_t> Desc) {
5448 switch (NoteType) {
5449 default:
5450 return false;
5451 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5452 OS << " Version: " << getDescAsStringRef(Desc);
5453 break;
5454 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5455 OS << " Producer: " << getDescAsStringRef(Desc);
5456 break;
5457 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5458 OS << " Producer version: " << getDescAsStringRef(Desc);
5459 break;
5461 OS << '\n';
5462 return true;
5465 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5466 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5467 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5468 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5469 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5470 {"LA48", NT_FREEBSD_FCTL_LA48},
5471 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5474 struct FreeBSDNote {
5475 std::string Type;
5476 std::string Value;
5479 template <typename ELFT>
5480 static std::optional<FreeBSDNote>
5481 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5482 if (IsCore)
5483 return std::nullopt; // No pretty-printing yet.
5484 switch (NoteType) {
5485 case ELF::NT_FREEBSD_ABI_TAG:
5486 if (Desc.size() != 4)
5487 return std::nullopt;
5488 return FreeBSDNote{
5489 "ABI tag",
5490 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5491 case ELF::NT_FREEBSD_ARCH_TAG:
5492 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5493 case ELF::NT_FREEBSD_FEATURE_CTL: {
5494 if (Desc.size() != 4)
5495 return std::nullopt;
5496 unsigned Value =
5497 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5498 std::string FlagsStr;
5499 raw_string_ostream OS(FlagsStr);
5500 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5501 if (OS.str().empty())
5502 OS << "0x" << utohexstr(Value);
5503 else
5504 OS << "(0x" << utohexstr(Value) << ")";
5505 return FreeBSDNote{"Feature flags", OS.str()};
5507 default:
5508 return std::nullopt;
5512 struct AMDNote {
5513 std::string Type;
5514 std::string Value;
5517 template <typename ELFT>
5518 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5519 switch (NoteType) {
5520 default:
5521 return {"", ""};
5522 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5523 struct CodeObjectVersion {
5524 support::aligned_ulittle32_t MajorVersion;
5525 support::aligned_ulittle32_t MinorVersion;
5527 if (Desc.size() != sizeof(CodeObjectVersion))
5528 return {"AMD HSA Code Object Version",
5529 "Invalid AMD HSA Code Object Version"};
5530 std::string VersionString;
5531 raw_string_ostream StrOS(VersionString);
5532 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5533 StrOS << "[Major: " << Version->MajorVersion
5534 << ", Minor: " << Version->MinorVersion << "]";
5535 return {"AMD HSA Code Object Version", VersionString};
5537 case ELF::NT_AMD_HSA_HSAIL: {
5538 struct HSAILProperties {
5539 support::aligned_ulittle32_t HSAILMajorVersion;
5540 support::aligned_ulittle32_t HSAILMinorVersion;
5541 uint8_t Profile;
5542 uint8_t MachineModel;
5543 uint8_t DefaultFloatRound;
5545 if (Desc.size() != sizeof(HSAILProperties))
5546 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5547 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5548 std::string HSAILPropetiesString;
5549 raw_string_ostream StrOS(HSAILPropetiesString);
5550 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5551 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5552 << ", Profile: " << uint32_t(Properties->Profile)
5553 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5554 << ", Default Float Round: "
5555 << uint32_t(Properties->DefaultFloatRound) << "]";
5556 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5558 case ELF::NT_AMD_HSA_ISA_VERSION: {
5559 struct IsaVersion {
5560 support::aligned_ulittle16_t VendorNameSize;
5561 support::aligned_ulittle16_t ArchitectureNameSize;
5562 support::aligned_ulittle32_t Major;
5563 support::aligned_ulittle32_t Minor;
5564 support::aligned_ulittle32_t Stepping;
5566 if (Desc.size() < sizeof(IsaVersion))
5567 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5568 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5569 if (Desc.size() < sizeof(IsaVersion) +
5570 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5571 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5572 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5573 std::string IsaString;
5574 raw_string_ostream StrOS(IsaString);
5575 StrOS << "[Vendor: "
5576 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5577 << ", Architecture: "
5578 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5579 Isa->ArchitectureNameSize - 1)
5580 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5581 << ", Stepping: " << Isa->Stepping << "]";
5582 return {"AMD HSA ISA Version", IsaString};
5584 case ELF::NT_AMD_HSA_METADATA: {
5585 if (Desc.size() == 0)
5586 return {"AMD HSA Metadata", ""};
5587 return {
5588 "AMD HSA Metadata",
5589 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5591 case ELF::NT_AMD_HSA_ISA_NAME: {
5592 if (Desc.size() == 0)
5593 return {"AMD HSA ISA Name", ""};
5594 return {
5595 "AMD HSA ISA Name",
5596 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5598 case ELF::NT_AMD_PAL_METADATA: {
5599 struct PALMetadata {
5600 support::aligned_ulittle32_t Key;
5601 support::aligned_ulittle32_t Value;
5603 if (Desc.size() % sizeof(PALMetadata) != 0)
5604 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5605 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5606 std::string MetadataString;
5607 raw_string_ostream StrOS(MetadataString);
5608 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5609 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5611 return {"AMD PAL Metadata", MetadataString};
5616 struct AMDGPUNote {
5617 std::string Type;
5618 std::string Value;
5621 template <typename ELFT>
5622 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5623 switch (NoteType) {
5624 default:
5625 return {"", ""};
5626 case ELF::NT_AMDGPU_METADATA: {
5627 StringRef MsgPackString =
5628 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5629 msgpack::Document MsgPackDoc;
5630 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5631 return {"", ""};
5633 std::string MetadataString;
5635 // FIXME: Metadata Verifier only works with AMDHSA.
5636 // This is an ugly workaround to avoid the verifier for other MD
5637 // formats (e.g. amdpal)
5638 if (MsgPackString.contains("amdhsa.")) {
5639 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5640 if (!Verifier.verify(MsgPackDoc.getRoot()))
5641 MetadataString = "Invalid AMDGPU Metadata\n";
5644 raw_string_ostream StrOS(MetadataString);
5645 if (MsgPackDoc.getRoot().isScalar()) {
5646 // TODO: passing a scalar root to toYAML() asserts:
5647 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5648 // "plain scalar documents are not supported")
5649 // To avoid this crash we print the raw data instead.
5650 return {"", ""};
5652 MsgPackDoc.toYAML(StrOS);
5653 return {"AMDGPU Metadata", StrOS.str()};
5658 struct CoreFileMapping {
5659 uint64_t Start, End, Offset;
5660 StringRef Filename;
5663 struct CoreNote {
5664 uint64_t PageSize;
5665 std::vector<CoreFileMapping> Mappings;
5668 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5669 // Expected format of the NT_FILE note description:
5670 // 1. # of file mappings (call it N)
5671 // 2. Page size
5672 // 3. N (start, end, offset) triples
5673 // 4. N packed filenames (null delimited)
5674 // Each field is an Elf_Addr, except for filenames which are char* strings.
5676 CoreNote Ret;
5677 const int Bytes = Desc.getAddressSize();
5679 if (!Desc.isValidOffsetForAddress(2))
5680 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5681 " is too short, expected at least 0x" +
5682 Twine::utohexstr(Bytes * 2));
5683 if (Desc.getData().back() != 0)
5684 return createError("the note is not NUL terminated");
5686 uint64_t DescOffset = 0;
5687 uint64_t FileCount = Desc.getAddress(&DescOffset);
5688 Ret.PageSize = Desc.getAddress(&DescOffset);
5690 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5691 return createError("unable to read file mappings (found " +
5692 Twine(FileCount) + "): the note of size 0x" +
5693 Twine::utohexstr(Desc.size()) + " is too short");
5695 uint64_t FilenamesOffset = 0;
5696 DataExtractor Filenames(
5697 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5698 Desc.isLittleEndian(), Desc.getAddressSize());
5700 Ret.Mappings.resize(FileCount);
5701 size_t I = 0;
5702 for (CoreFileMapping &Mapping : Ret.Mappings) {
5703 ++I;
5704 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5705 return createError(
5706 "unable to read the file name for the mapping with index " +
5707 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5708 " is truncated");
5709 Mapping.Start = Desc.getAddress(&DescOffset);
5710 Mapping.End = Desc.getAddress(&DescOffset);
5711 Mapping.Offset = Desc.getAddress(&DescOffset);
5712 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5715 return Ret;
5718 template <typename ELFT>
5719 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5720 // Length of "0x<address>" string.
5721 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5723 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5724 OS << " " << right_justify("Start", FieldWidth) << " "
5725 << right_justify("End", FieldWidth) << " "
5726 << right_justify("Page Offset", FieldWidth) << '\n';
5727 for (const CoreFileMapping &Mapping : Note.Mappings) {
5728 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5729 << format_hex(Mapping.End, FieldWidth) << " "
5730 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5731 << Mapping.Filename << '\n';
5735 const NoteType GenericNoteTypes[] = {
5736 {ELF::NT_VERSION, "NT_VERSION (version)"},
5737 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5738 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5739 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5742 const NoteType GNUNoteTypes[] = {
5743 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5744 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5745 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5746 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5747 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5750 const NoteType FreeBSDCoreNoteTypes[] = {
5751 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5752 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5753 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5754 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5755 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5756 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5757 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5758 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5759 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5760 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5761 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5764 const NoteType FreeBSDNoteTypes[] = {
5765 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5766 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5767 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5768 {ELF::NT_FREEBSD_FEATURE_CTL,
5769 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5772 const NoteType NetBSDCoreNoteTypes[] = {
5773 {ELF::NT_NETBSDCORE_PROCINFO,
5774 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5775 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5776 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5779 const NoteType OpenBSDCoreNoteTypes[] = {
5780 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5781 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5782 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5783 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5784 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5787 const NoteType AMDNoteTypes[] = {
5788 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5789 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5790 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5791 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5792 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5793 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5794 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5797 const NoteType AMDGPUNoteTypes[] = {
5798 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5801 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5802 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5803 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5804 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5805 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5806 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5807 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5810 const NoteType AndroidNoteTypes[] = {
5811 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5812 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5813 {ELF::NT_ANDROID_TYPE_MEMTAG,
5814 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5817 const NoteType ARMNoteTypes[] = {
5818 {ELF::NT_ARM_TYPE_PAUTH_ABI_TAG, "NT_ARM_TYPE_PAUTH_ABI_TAG"},
5821 const NoteType CoreNoteTypes[] = {
5822 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5823 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5824 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5825 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5826 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5827 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5828 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5829 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5830 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5831 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5832 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5834 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5835 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5836 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5837 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5838 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5839 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5840 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5841 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5842 {ELF::NT_PPC_TM_CFPR,
5843 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5844 {ELF::NT_PPC_TM_CVMX,
5845 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5846 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5847 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5848 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5849 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5850 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5852 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5853 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5854 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5856 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5857 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5858 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5859 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5860 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5861 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5862 {ELF::NT_S390_LAST_BREAK,
5863 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5864 {ELF::NT_S390_SYSTEM_CALL,
5865 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5866 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5867 {ELF::NT_S390_VXRS_LOW,
5868 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5869 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5870 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5871 {ELF::NT_S390_GS_BC,
5872 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5874 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5875 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5876 {ELF::NT_ARM_HW_BREAK,
5877 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5878 {ELF::NT_ARM_HW_WATCH,
5879 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5880 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
5881 {ELF::NT_ARM_PAC_MASK,
5882 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5883 {ELF::NT_ARM_TAGGED_ADDR_CTRL,
5884 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
5885 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5886 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5887 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5889 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5890 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5891 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5894 template <class ELFT>
5895 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5896 uint32_t Type = Note.getType();
5897 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5898 for (const NoteType &N : V)
5899 if (N.ID == Type)
5900 return N.Name;
5901 return "";
5904 StringRef Name = Note.getName();
5905 if (Name == "GNU")
5906 return FindNote(GNUNoteTypes);
5907 if (Name == "FreeBSD") {
5908 if (ELFType == ELF::ET_CORE) {
5909 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5910 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5911 if (!Result.empty())
5912 return Result;
5913 return FindNote(CoreNoteTypes);
5914 } else {
5915 return FindNote(FreeBSDNoteTypes);
5918 if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) {
5919 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5920 if (!Result.empty())
5921 return Result;
5922 return FindNote(CoreNoteTypes);
5924 if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) {
5925 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5926 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5927 if (!Result.empty())
5928 return Result;
5929 return FindNote(CoreNoteTypes);
5931 if (Name == "AMD")
5932 return FindNote(AMDNoteTypes);
5933 if (Name == "AMDGPU")
5934 return FindNote(AMDGPUNoteTypes);
5935 if (Name == "LLVMOMPOFFLOAD")
5936 return FindNote(LLVMOMPOFFLOADNoteTypes);
5937 if (Name == "Android")
5938 return FindNote(AndroidNoteTypes);
5939 if (Name == "ARM")
5940 return FindNote(ARMNoteTypes);
5942 if (ELFType == ELF::ET_CORE)
5943 return FindNote(CoreNoteTypes);
5944 return FindNote(GenericNoteTypes);
5947 template <class ELFT>
5948 static void processNotesHelper(
5949 const ELFDumper<ELFT> &Dumper,
5950 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5951 typename ELFT::Addr, size_t)>
5952 StartNotesFn,
5953 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5954 llvm::function_ref<void()> FinishNotesFn) {
5955 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5956 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5958 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5959 if (!IsCoreFile && !Sections.empty()) {
5960 for (const typename ELFT::Shdr &S : Sections) {
5961 if (S.sh_type != SHT_NOTE)
5962 continue;
5963 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5964 S.sh_size, S.sh_addralign);
5965 Error Err = Error::success();
5966 size_t I = 0;
5967 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5968 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5969 Dumper.reportUniqueWarning(
5970 "unable to read note with index " + Twine(I) + " from the " +
5971 describe(Obj, S) + ": " + toString(std::move(E)));
5972 ++I;
5974 if (Err)
5975 Dumper.reportUniqueWarning("unable to read notes from the " +
5976 describe(Obj, S) + ": " +
5977 toString(std::move(Err)));
5978 FinishNotesFn();
5980 return;
5983 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5984 if (!PhdrsOrErr) {
5985 Dumper.reportUniqueWarning(
5986 "unable to read program headers to locate the PT_NOTE segment: " +
5987 toString(PhdrsOrErr.takeError()));
5988 return;
5991 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5992 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5993 if (P.p_type != PT_NOTE)
5994 continue;
5995 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align);
5996 Error Err = Error::success();
5997 size_t Index = 0;
5998 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5999 if (Error E = ProcessNoteFn(Note, IsCoreFile))
6000 Dumper.reportUniqueWarning("unable to read note with index " +
6001 Twine(Index) +
6002 " from the PT_NOTE segment with index " +
6003 Twine(I) + ": " + toString(std::move(E)));
6004 ++Index;
6006 if (Err)
6007 Dumper.reportUniqueWarning(
6008 "unable to read notes from the PT_NOTE segment with index " +
6009 Twine(I) + ": " + toString(std::move(Err)));
6010 FinishNotesFn();
6014 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
6015 size_t Align = 0;
6016 bool IsFirstHeader = true;
6017 auto PrintHeader = [&](std::optional<StringRef> SecName,
6018 const typename ELFT::Off Offset,
6019 const typename ELFT::Addr Size, size_t Al) {
6020 Align = std::max<size_t>(Al, 4);
6021 // Print a newline between notes sections to match GNU readelf.
6022 if (!IsFirstHeader) {
6023 OS << '\n';
6024 } else {
6025 IsFirstHeader = false;
6028 OS << "Displaying notes found ";
6030 if (SecName)
6031 OS << "in: " << *SecName << "\n";
6032 else
6033 OS << "at file offset " << format_hex(Offset, 10) << " with length "
6034 << format_hex(Size, 10) << ":\n";
6036 OS << " Owner Data size \tDescription\n";
6039 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6040 StringRef Name = Note.getName();
6041 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
6042 Elf_Word Type = Note.getType();
6044 // Print the note owner/type.
6045 OS << " " << left_justify(Name, 20) << ' '
6046 << format_hex(Descriptor.size(), 10) << '\t';
6048 StringRef NoteType =
6049 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6050 if (!NoteType.empty())
6051 OS << NoteType << '\n';
6052 else
6053 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
6055 // Print the description, or fallback to printing raw bytes for unknown
6056 // owners/if we fail to pretty-print the contents.
6057 if (Name == "GNU") {
6058 if (printGNUNote<ELFT>(OS, Type, Descriptor))
6059 return Error::success();
6060 } else if (Name == "FreeBSD") {
6061 if (std::optional<FreeBSDNote> N =
6062 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6063 OS << " " << N->Type << ": " << N->Value << '\n';
6064 return Error::success();
6066 } else if (Name == "AMD") {
6067 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6068 if (!N.Type.empty()) {
6069 OS << " " << N.Type << ":\n " << N.Value << '\n';
6070 return Error::success();
6072 } else if (Name == "AMDGPU") {
6073 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6074 if (!N.Type.empty()) {
6075 OS << " " << N.Type << ":\n " << N.Value << '\n';
6076 return Error::success();
6078 } else if (Name == "LLVMOMPOFFLOAD") {
6079 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
6080 return Error::success();
6081 } else if (Name == "CORE") {
6082 if (Type == ELF::NT_FILE) {
6083 DataExtractor DescExtractor(
6084 Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
6085 sizeof(Elf_Addr));
6086 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
6087 printCoreNote<ELFT>(OS, *NoteOrErr);
6088 return Error::success();
6089 } else {
6090 return NoteOrErr.takeError();
6093 } else if (Name == "Android") {
6094 if (printAndroidNote(OS, Type, Descriptor))
6095 return Error::success();
6096 } else if (Name == "ARM") {
6097 if (printAArch64Note<ELFT>(OS, Type, Descriptor))
6098 return Error::success();
6100 if (!Descriptor.empty()) {
6101 OS << " description data:";
6102 for (uint8_t B : Descriptor)
6103 OS << " " << format("%02x", B);
6104 OS << '\n';
6106 return Error::success();
6109 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
6110 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
6113 template <class ELFT>
6114 ArrayRef<uint8_t>
6115 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
6116 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
6117 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
6118 continue;
6119 if (Sec.sh_addr != ExpectedAddr) {
6120 reportUniqueWarning(
6121 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6122 Twine::utohexstr(Sec.sh_addr) +
6123 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6124 Twine::utohexstr(ExpectedAddr));
6125 return ArrayRef<uint8_t>();
6127 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
6128 if (auto E = Contents.takeError()) {
6129 reportUniqueWarning(
6130 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6131 toString(std::move(E)));
6132 return ArrayRef<uint8_t>();
6134 return Contents.get();
6136 return ArrayRef<uint8_t>();
6139 // Reserve the lower three bits of the first byte of the step distance when
6140 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6141 // when compiling Android T with full MTE globals enabled.
6142 constexpr uint64_t MemtagStepVarintReservedBits = 3;
6143 constexpr uint64_t MemtagGranuleSize = 16;
6145 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6146 if (Obj.getHeader().e_machine != EM_AARCH64) return;
6147 std::vector<std::pair<std::string, std::string>> DynamicEntries;
6148 uint64_t MemtagGlobalsSz = 0;
6149 uint64_t MemtagGlobals = 0;
6150 for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6151 uintX_t Tag = Entry.getTag();
6152 switch (Tag) {
6153 case DT_AARCH64_MEMTAG_GLOBALSSZ:
6154 MemtagGlobalsSz = Entry.getVal();
6155 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6156 getDynamicEntry(Tag, Entry.getVal()));
6157 break;
6158 case DT_AARCH64_MEMTAG_GLOBALS:
6159 MemtagGlobals = Entry.getVal();
6160 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6161 getDynamicEntry(Tag, Entry.getVal()));
6162 break;
6163 case DT_AARCH64_MEMTAG_MODE:
6164 case DT_AARCH64_MEMTAG_HEAP:
6165 case DT_AARCH64_MEMTAG_STACK:
6166 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6167 getDynamicEntry(Tag, Entry.getVal()));
6168 break;
6172 ArrayRef<uint8_t> AndroidNoteDesc;
6173 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6174 if (Note.getName() == "Android" &&
6175 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6176 AndroidNoteDesc = Note.getDesc(4);
6177 return Error::success();
6180 processNotesHelper(
6181 *this,
6182 /*StartNotesFn=*/
6183 [](std::optional<StringRef>, const typename ELFT::Off,
6184 const typename ELFT::Addr, size_t) {},
6185 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6187 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6188 if (Contents.size() != MemtagGlobalsSz) {
6189 reportUniqueWarning(
6190 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6191 Twine::utohexstr(MemtagGlobalsSz) +
6192 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6193 Twine::utohexstr(Contents.size()) + ")");
6194 Contents = ArrayRef<uint8_t>();
6197 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6198 uint64_t Address = 0;
6199 // See the AArch64 MemtagABI document for a description of encoding scheme:
6200 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6201 for (size_t I = 0; I < Contents.size();) {
6202 const char *Error = nullptr;
6203 unsigned DecodedBytes = 0;
6204 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6205 Contents.end(), &Error);
6206 I += DecodedBytes;
6207 if (Error) {
6208 reportUniqueWarning(
6209 "error decoding distance uleb, " + Twine(DecodedBytes) +
6210 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6211 GlobalDescriptors.clear();
6212 break;
6214 uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6215 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6216 if (GranulesToTag == 0) {
6217 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6218 Contents.end(), &Error) +
6220 I += DecodedBytes;
6221 if (Error) {
6222 reportUniqueWarning(
6223 "error decoding size-only uleb, " + Twine(DecodedBytes) +
6224 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6225 GlobalDescriptors.clear();
6226 break;
6229 Address += Distance * MemtagGranuleSize;
6230 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6231 Address += GranulesToTag * MemtagGranuleSize;
6234 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6237 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6238 OS << "printELFLinkerOptions not implemented!\n";
6241 template <class ELFT>
6242 void ELFDumper<ELFT>::printDependentLibsHelper(
6243 function_ref<void(const Elf_Shdr &)> OnSectionStart,
6244 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6245 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6246 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6247 Twine(SecNdx) + " is broken: " + Msg);
6250 unsigned I = -1;
6251 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6252 ++I;
6253 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6254 continue;
6256 OnSectionStart(Shdr);
6258 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6259 if (!ContentsOrErr) {
6260 Warn(I, toString(ContentsOrErr.takeError()));
6261 continue;
6264 ArrayRef<uint8_t> Contents = *ContentsOrErr;
6265 if (!Contents.empty() && Contents.back() != 0) {
6266 Warn(I, "the content is not null-terminated");
6267 continue;
6270 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6271 StringRef Lib((const char *)I);
6272 OnLibEntry(Lib, I - Contents.begin());
6273 I += Lib.size() + 1;
6278 template <class ELFT>
6279 void ELFDumper<ELFT>::forEachRelocationDo(
6280 const Elf_Shdr &Sec, bool RawRelr,
6281 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6282 const Elf_Shdr &, const Elf_Shdr *)>
6283 RelRelaFn,
6284 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
6285 auto Warn = [&](Error &&E,
6286 const Twine &Prefix = "unable to read relocations from") {
6287 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6288 toString(std::move(E)));
6291 // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an
6292 // associated symbol table. For them we should not treat the value of the
6293 // sh_link field as an index of a symbol table.
6294 const Elf_Shdr *SymTab;
6295 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR &&
6296 !(Obj.getHeader().e_machine == EM_AARCH64 &&
6297 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) {
6298 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6299 if (!SymTabOrErr) {
6300 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6301 return;
6303 SymTab = *SymTabOrErr;
6306 unsigned RelNdx = 0;
6307 const bool IsMips64EL = this->Obj.isMips64EL();
6308 switch (Sec.sh_type) {
6309 case ELF::SHT_REL:
6310 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6311 for (const Elf_Rel &R : *RangeOrErr)
6312 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6313 } else {
6314 Warn(RangeOrErr.takeError());
6316 break;
6317 case ELF::SHT_RELA:
6318 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6319 for (const Elf_Rela &R : *RangeOrErr)
6320 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6321 } else {
6322 Warn(RangeOrErr.takeError());
6324 break;
6325 case ELF::SHT_AARCH64_AUTH_RELR:
6326 if (Obj.getHeader().e_machine != EM_AARCH64)
6327 break;
6328 [[fallthrough]];
6329 case ELF::SHT_RELR:
6330 case ELF::SHT_ANDROID_RELR: {
6331 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6332 if (!RangeOrErr) {
6333 Warn(RangeOrErr.takeError());
6334 break;
6336 if (RawRelr) {
6337 for (const Elf_Relr &R : *RangeOrErr)
6338 RelrFn(R);
6339 break;
6342 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6343 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6344 /*SymTab=*/nullptr);
6345 break;
6347 case ELF::SHT_ANDROID_REL:
6348 case ELF::SHT_ANDROID_RELA:
6349 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6350 for (const Elf_Rela &R : *RelasOrErr)
6351 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6352 } else {
6353 Warn(RelasOrErr.takeError());
6355 break;
6359 template <class ELFT>
6360 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6361 StringRef Name = "<?>";
6362 if (Expected<StringRef> SecNameOrErr =
6363 Obj.getSectionName(Sec, this->WarningHandler))
6364 Name = *SecNameOrErr;
6365 else
6366 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6367 ": " + toString(SecNameOrErr.takeError()));
6368 return Name;
6371 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6372 bool SectionStarted = false;
6373 struct NameOffset {
6374 StringRef Name;
6375 uint64_t Offset;
6377 std::vector<NameOffset> SecEntries;
6378 NameOffset Current;
6379 auto PrintSection = [&]() {
6380 OS << "Dependent libraries section " << Current.Name << " at offset "
6381 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6382 << " entries:\n";
6383 for (NameOffset Entry : SecEntries)
6384 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
6385 << "\n";
6386 OS << "\n";
6387 SecEntries.clear();
6390 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6391 if (SectionStarted)
6392 PrintSection();
6393 SectionStarted = true;
6394 Current.Offset = Shdr.sh_offset;
6395 Current.Name = this->getPrintableSectionName(Shdr);
6397 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6398 SecEntries.push_back(NameOffset{Lib, Offset});
6401 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6402 if (SectionStarted)
6403 PrintSection();
6406 template <class ELFT>
6407 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6408 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6409 SmallVector<uint32_t> SymbolIndexes;
6410 if (!this->AddressToIndexMap) {
6411 // Populate the address to index map upon the first invocation of this
6412 // function.
6413 this->AddressToIndexMap.emplace();
6414 if (this->DotSymtabSec) {
6415 if (Expected<Elf_Sym_Range> SymsOrError =
6416 Obj.symbols(this->DotSymtabSec)) {
6417 uint32_t Index = (uint32_t)-1;
6418 for (const Elf_Sym &Sym : *SymsOrError) {
6419 ++Index;
6421 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6422 continue;
6424 Expected<uint64_t> SymAddrOrErr =
6425 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6426 if (!SymAddrOrErr) {
6427 std::string Name = this->getStaticSymbolName(Index);
6428 reportUniqueWarning("unable to get address of symbol '" + Name +
6429 "': " + toString(SymAddrOrErr.takeError()));
6430 return SymbolIndexes;
6433 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6435 } else {
6436 reportUniqueWarning("unable to read the symbol table: " +
6437 toString(SymsOrError.takeError()));
6442 auto Symbols = this->AddressToIndexMap->find(SymValue);
6443 if (Symbols == this->AddressToIndexMap->end())
6444 return SymbolIndexes;
6446 for (uint32_t Index : Symbols->second) {
6447 // Check if the symbol is in the right section. FunctionSec == None
6448 // means "any section".
6449 if (FunctionSec) {
6450 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6451 if (Expected<const Elf_Shdr *> SecOrErr =
6452 Obj.getSection(Sym, this->DotSymtabSec,
6453 this->getShndxTable(this->DotSymtabSec))) {
6454 if (*FunctionSec != *SecOrErr)
6455 continue;
6456 } else {
6457 std::string Name = this->getStaticSymbolName(Index);
6458 // Note: it is impossible to trigger this error currently, it is
6459 // untested.
6460 reportUniqueWarning("unable to get section of symbol '" + Name +
6461 "': " + toString(SecOrErr.takeError()));
6462 return SymbolIndexes;
6466 SymbolIndexes.push_back(Index);
6469 return SymbolIndexes;
6472 template <class ELFT>
6473 bool ELFDumper<ELFT>::printFunctionStackSize(
6474 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6475 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6476 SmallVector<uint32_t> FuncSymIndexes =
6477 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6478 if (FuncSymIndexes.empty())
6479 reportUniqueWarning(
6480 "could not identify function symbol for stack size entry in " +
6481 describe(StackSizeSec));
6483 // Extract the size. The expectation is that Offset is pointing to the right
6484 // place, i.e. past the function address.
6485 Error Err = Error::success();
6486 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6487 if (Err) {
6488 reportUniqueWarning("could not extract a valid stack size from " +
6489 describe(StackSizeSec) + ": " +
6490 toString(std::move(Err)));
6491 return false;
6494 if (FuncSymIndexes.empty()) {
6495 printStackSizeEntry(StackSize, {"?"});
6496 } else {
6497 SmallVector<std::string> FuncSymNames;
6498 for (uint32_t Index : FuncSymIndexes)
6499 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6500 printStackSizeEntry(StackSize, FuncSymNames);
6503 return true;
6506 template <class ELFT>
6507 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6508 ArrayRef<std::string> FuncNames) {
6509 OS.PadToColumn(2);
6510 OS << format_decimal(Size, 11);
6511 OS.PadToColumn(18);
6513 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6516 template <class ELFT>
6517 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6518 const Elf_Shdr &RelocSec, unsigned Ndx,
6519 const Elf_Shdr *SymTab,
6520 const Elf_Shdr *FunctionSec,
6521 const Elf_Shdr &StackSizeSec,
6522 const RelocationResolver &Resolver,
6523 DataExtractor Data) {
6524 // This function ignores potentially erroneous input, unless it is directly
6525 // related to stack size reporting.
6526 const Elf_Sym *Sym = nullptr;
6527 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6528 if (!TargetOrErr)
6529 reportUniqueWarning("unable to get the target of relocation with index " +
6530 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6531 toString(TargetOrErr.takeError()));
6532 else
6533 Sym = TargetOrErr->Sym;
6535 uint64_t RelocSymValue = 0;
6536 if (Sym) {
6537 Expected<const Elf_Shdr *> SectionOrErr =
6538 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6539 if (!SectionOrErr) {
6540 reportUniqueWarning(
6541 "cannot identify the section for relocation symbol '" +
6542 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6543 } else if (*SectionOrErr != FunctionSec) {
6544 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6545 "' is not in the expected section");
6546 // Pretend that the symbol is in the correct section and report its
6547 // stack size anyway.
6548 FunctionSec = *SectionOrErr;
6551 RelocSymValue = Sym->st_value;
6554 uint64_t Offset = R.Offset;
6555 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6556 reportUniqueWarning("found invalid relocation offset (0x" +
6557 Twine::utohexstr(Offset) + ") into " +
6558 describe(StackSizeSec) +
6559 " while trying to extract a stack size entry");
6560 return;
6563 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6564 Data.getAddress(&Offset), R.Addend.value_or(0));
6565 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6566 &Offset);
6569 template <class ELFT>
6570 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6571 std::function<void()> PrintHeader) {
6572 // This function ignores potentially erroneous input, unless it is directly
6573 // related to stack size reporting.
6574 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6575 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6576 continue;
6577 PrintHeader();
6578 ArrayRef<uint8_t> Contents =
6579 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6580 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6581 uint64_t Offset = 0;
6582 while (Offset < Contents.size()) {
6583 // The function address is followed by a ULEB representing the stack
6584 // size. Check for an extra byte before we try to process the entry.
6585 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6586 reportUniqueWarning(
6587 describe(Sec) +
6588 " ended while trying to extract a stack size entry");
6589 break;
6591 uint64_t SymValue = Data.getAddress(&Offset);
6592 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6593 Data, &Offset))
6594 break;
6599 template <class ELFT>
6600 void ELFDumper<ELFT>::printRelocatableStackSizes(
6601 std::function<void()> PrintHeader) {
6602 // Build a map between stack size sections and their corresponding relocation
6603 // sections.
6604 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6605 StringRef SectionName;
6606 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6607 SectionName = *NameOrErr;
6608 else
6609 consumeError(NameOrErr.takeError());
6611 return SectionName == ".stack_sizes";
6614 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6615 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6616 if (!StackSizeRelocMapOrErr) {
6617 reportUniqueWarning("unable to get stack size map section(s): " +
6618 toString(StackSizeRelocMapOrErr.takeError()));
6619 return;
6622 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6623 PrintHeader();
6624 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6625 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6627 // Warn about stack size sections without a relocation section.
6628 if (!RelocSec) {
6629 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6630 ") does not have a corresponding "
6631 "relocation section"),
6632 FileName);
6633 continue;
6636 // A .stack_sizes section header's sh_link field is supposed to point
6637 // to the section that contains the functions whose stack sizes are
6638 // described in it.
6639 const Elf_Shdr *FunctionSec = unwrapOrError(
6640 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6642 SupportsRelocation IsSupportedFn;
6643 RelocationResolver Resolver;
6644 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6645 ArrayRef<uint8_t> Contents =
6646 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6647 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6649 forEachRelocationDo(
6650 *RelocSec, /*RawRelr=*/false,
6651 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6652 const Elf_Shdr *SymTab) {
6653 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6654 reportUniqueWarning(
6655 describe(*RelocSec) +
6656 " contains an unsupported relocation with index " + Twine(Ndx) +
6657 ": " + Obj.getRelocationTypeName(R.Type));
6658 return;
6661 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6662 *StackSizesELFSec, Resolver, Data);
6664 [](const Elf_Relr &) {
6665 llvm_unreachable("can't get here, because we only support "
6666 "SHT_REL/SHT_RELA sections");
6671 template <class ELFT>
6672 void GNUELFDumper<ELFT>::printStackSizes() {
6673 bool HeaderHasBeenPrinted = false;
6674 auto PrintHeader = [&]() {
6675 if (HeaderHasBeenPrinted)
6676 return;
6677 OS << "\nStack Sizes:\n";
6678 OS.PadToColumn(9);
6679 OS << "Size";
6680 OS.PadToColumn(18);
6681 OS << "Functions\n";
6682 HeaderHasBeenPrinted = true;
6685 // For non-relocatable objects, look directly for sections whose name starts
6686 // with .stack_sizes and process the contents.
6687 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6688 this->printRelocatableStackSizes(PrintHeader);
6689 else
6690 this->printNonRelocatableStackSizes(PrintHeader);
6693 template <class ELFT>
6694 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6695 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6696 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6697 OS.PadToColumn(2);
6698 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6699 OS.PadToColumn(11 + Bias);
6700 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6701 OS.PadToColumn(22 + Bias);
6702 OS << format_hex_no_prefix(*E, 8 + Bias);
6703 OS.PadToColumn(31 + 2 * Bias);
6704 OS << Purpose << "\n";
6707 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6708 OS << " Canonical gp value: "
6709 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6711 OS << " Reserved entries:\n";
6712 if (ELFT::Is64Bits)
6713 OS << " Address Access Initial Purpose\n";
6714 else
6715 OS << " Address Access Initial Purpose\n";
6716 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6717 if (Parser.getGotModulePointer())
6718 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6720 if (!Parser.getLocalEntries().empty()) {
6721 OS << "\n";
6722 OS << " Local entries:\n";
6723 if (ELFT::Is64Bits)
6724 OS << " Address Access Initial\n";
6725 else
6726 OS << " Address Access Initial\n";
6727 for (auto &E : Parser.getLocalEntries())
6728 PrintEntry(&E, "");
6731 if (Parser.IsStatic)
6732 return;
6734 if (!Parser.getGlobalEntries().empty()) {
6735 OS << "\n";
6736 OS << " Global entries:\n";
6737 if (ELFT::Is64Bits)
6738 OS << " Address Access Initial Sym.Val."
6739 << " Type Ndx Name\n";
6740 else
6741 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6743 DataRegion<Elf_Word> ShndxTable(
6744 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6745 for (auto &E : Parser.getGlobalEntries()) {
6746 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6747 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6748 std::string SymName = this->getFullSymbolName(
6749 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6751 OS.PadToColumn(2);
6752 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6753 OS.PadToColumn(11 + Bias);
6754 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6755 OS.PadToColumn(22 + Bias);
6756 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6757 OS.PadToColumn(31 + 2 * Bias);
6758 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6759 OS.PadToColumn(40 + 3 * Bias);
6760 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6761 OS.PadToColumn(48 + 3 * Bias);
6762 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6763 ShndxTable);
6764 OS.PadToColumn(52 + 3 * Bias);
6765 OS << SymName << "\n";
6769 if (!Parser.getOtherEntries().empty())
6770 OS << "\n Number of TLS and multi-GOT entries "
6771 << Parser.getOtherEntries().size() << "\n";
6774 template <class ELFT>
6775 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6776 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6777 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6778 OS.PadToColumn(2);
6779 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6780 OS.PadToColumn(11 + Bias);
6781 OS << format_hex_no_prefix(*E, 8 + Bias);
6782 OS.PadToColumn(20 + 2 * Bias);
6783 OS << Purpose << "\n";
6786 OS << "PLT GOT:\n\n";
6788 OS << " Reserved entries:\n";
6789 OS << " Address Initial Purpose\n";
6790 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6791 if (Parser.getPltModulePointer())
6792 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6794 if (!Parser.getPltEntries().empty()) {
6795 OS << "\n";
6796 OS << " Entries:\n";
6797 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6798 DataRegion<Elf_Word> ShndxTable(
6799 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6800 for (auto &E : Parser.getPltEntries()) {
6801 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6802 const Elf_Sym &FirstSym = *cantFail(
6803 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6804 std::string SymName = this->getFullSymbolName(
6805 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6807 OS.PadToColumn(2);
6808 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6809 OS.PadToColumn(11 + Bias);
6810 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6811 OS.PadToColumn(20 + 2 * Bias);
6812 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6813 OS.PadToColumn(29 + 3 * Bias);
6814 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6815 OS.PadToColumn(37 + 3 * Bias);
6816 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6817 ShndxTable);
6818 OS.PadToColumn(41 + 3 * Bias);
6819 OS << SymName << "\n";
6824 template <class ELFT>
6825 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6826 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6827 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6828 if (Sec == nullptr)
6829 return nullptr;
6831 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6832 Expected<ArrayRef<uint8_t>> DataOrErr =
6833 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6834 if (!DataOrErr)
6835 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6837 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6838 return createError(ErrPrefix + "it has a wrong size (" +
6839 Twine(DataOrErr->size()) + ")");
6840 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6843 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6844 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6845 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6846 getMipsAbiFlagsSection(*this))
6847 Flags = *SecOrErr;
6848 else
6849 this->reportUniqueWarning(SecOrErr.takeError());
6850 if (!Flags)
6851 return;
6853 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6854 OS << "ISA: MIPS" << int(Flags->isa_level);
6855 if (Flags->isa_rev > 1)
6856 OS << "r" << int(Flags->isa_rev);
6857 OS << "\n";
6858 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6859 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6860 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6861 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6862 << "\n";
6863 OS << "ISA Extension: "
6864 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6865 if (Flags->ases == 0)
6866 OS << "ASEs: None\n";
6867 else
6868 // FIXME: Print each flag on a separate line.
6869 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6870 << "\n";
6871 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6872 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6873 OS << "\n";
6876 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6877 const Elf_Ehdr &E = this->Obj.getHeader();
6879 DictScope D(W, "ElfHeader");
6881 DictScope D(W, "Ident");
6882 W.printBinary("Magic",
6883 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6884 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6885 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6886 ArrayRef(ElfDataEncoding));
6887 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6889 auto OSABI = ArrayRef(ElfOSABI);
6890 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6891 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6892 switch (E.e_machine) {
6893 case ELF::EM_AMDGPU:
6894 OSABI = ArrayRef(AMDGPUElfOSABI);
6895 break;
6896 case ELF::EM_ARM:
6897 OSABI = ArrayRef(ARMElfOSABI);
6898 break;
6899 case ELF::EM_TI_C6000:
6900 OSABI = ArrayRef(C6000ElfOSABI);
6901 break;
6904 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6905 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6906 W.printBinary("Unused",
6907 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6910 std::string TypeStr;
6911 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6912 TypeStr = Ent->Name.str();
6913 } else {
6914 if (E.e_type >= ET_LOPROC)
6915 TypeStr = "Processor Specific";
6916 else if (E.e_type >= ET_LOOS)
6917 TypeStr = "OS Specific";
6918 else
6919 TypeStr = "Unknown";
6921 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6923 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6924 W.printNumber("Version", E.e_version);
6925 W.printHex("Entry", E.e_entry);
6926 W.printHex("ProgramHeaderOffset", E.e_phoff);
6927 W.printHex("SectionHeaderOffset", E.e_shoff);
6928 if (E.e_machine == EM_MIPS)
6929 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6930 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6931 unsigned(ELF::EF_MIPS_MACH));
6932 else if (E.e_machine == EM_AMDGPU) {
6933 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6934 default:
6935 W.printHex("Flags", E.e_flags);
6936 break;
6937 case 0:
6938 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6939 [[fallthrough]];
6940 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6941 W.printFlags("Flags", E.e_flags,
6942 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6943 unsigned(ELF::EF_AMDGPU_MACH));
6944 break;
6945 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6946 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6947 W.printFlags("Flags", E.e_flags,
6948 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6949 unsigned(ELF::EF_AMDGPU_MACH),
6950 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6951 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6952 break;
6954 } else if (E.e_machine == EM_RISCV)
6955 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6956 else if (E.e_machine == EM_AVR)
6957 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6958 unsigned(ELF::EF_AVR_ARCH_MASK));
6959 else if (E.e_machine == EM_LOONGARCH)
6960 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6961 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6962 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6963 else if (E.e_machine == EM_XTENSA)
6964 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6965 unsigned(ELF::EF_XTENSA_MACH));
6966 else if (E.e_machine == EM_CUDA)
6967 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
6968 unsigned(ELF::EF_CUDA_SM));
6969 else
6970 W.printFlags("Flags", E.e_flags);
6971 W.printNumber("HeaderSize", E.e_ehsize);
6972 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6973 W.printNumber("ProgramHeaderCount", E.e_phnum);
6974 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6975 W.printString("SectionHeaderCount",
6976 getSectionHeadersNumString(this->Obj, this->FileName));
6977 W.printString("StringTableSectionIndex",
6978 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6982 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6983 DictScope Lists(W, "Groups");
6984 std::vector<GroupSection> V = this->getGroups();
6985 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6986 for (const GroupSection &G : V) {
6987 DictScope D(W, "Group");
6988 W.printNumber("Name", G.Name, G.ShName);
6989 W.printNumber("Index", G.Index);
6990 W.printNumber("Link", G.Link);
6991 W.printNumber("Info", G.Info);
6992 W.printHex("Type", getGroupType(G.Type), G.Type);
6993 W.printString("Signature", G.Signature);
6995 ListScope L(W, getGroupSectionHeaderName());
6996 for (const GroupMember &GM : G.Members) {
6997 const GroupSection *MainGroup = Map[GM.Index];
6998 if (MainGroup != &G)
6999 this->reportUniqueWarning(
7000 "section with index " + Twine(GM.Index) +
7001 ", included in the group section with index " +
7002 Twine(MainGroup->Index) +
7003 ", was also found in the group section with index " +
7004 Twine(G.Index));
7005 printSectionGroupMembers(GM.Name, GM.Index);
7009 if (V.empty())
7010 printEmptyGroupMessage();
7013 template <class ELFT>
7014 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
7015 return "Section(s) in group";
7018 template <class ELFT>
7019 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
7020 uint64_t Idx) const {
7021 W.startLine() << Name << " (" << Idx << ")\n";
7024 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
7025 ListScope D(W, "Relocations");
7027 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7028 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
7029 continue;
7031 StringRef Name = this->getPrintableSectionName(Sec);
7032 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
7033 printRelocationSectionInfo(Sec, Name, SecNdx);
7037 template <class ELFT>
7038 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
7039 W.startLine() << W.hex(R) << "\n";
7042 template <class ELFT>
7043 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
7044 StringRef SymbolName,
7045 StringRef RelocName) {
7046 DictScope Group(W, "Relocation");
7047 W.printHex("Offset", R.Offset);
7048 W.printNumber("Type", RelocName, R.Type);
7049 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
7050 if (R.Addend)
7051 W.printHex("Addend", (uintX_t)*R.Addend);
7054 template <class ELFT>
7055 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7056 StringRef SymbolName,
7057 StringRef RelocName) {
7058 raw_ostream &OS = W.startLine();
7059 OS << W.hex(R.Offset) << " " << RelocName << " "
7060 << (!SymbolName.empty() ? SymbolName : "-");
7061 if (R.Addend)
7062 OS << " " << W.hex((uintX_t)*R.Addend);
7063 OS << "\n";
7066 template <class ELFT>
7067 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7068 StringRef Name,
7069 const unsigned SecNdx) {
7070 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
7071 this->printRelocationsHelper(Sec);
7074 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
7075 W.startLine() << "There are no group sections in the file.\n";
7078 template <class ELFT>
7079 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
7080 const RelSymbol<ELFT> &RelSym) {
7081 StringRef SymbolName = RelSym.Name;
7082 if (RelSym.Sym && RelSym.Name.empty())
7083 SymbolName = "<null>";
7084 SmallString<32> RelocName;
7085 this->Obj.getRelocationTypeName(R.Type, RelocName);
7087 if (opts::ExpandRelocs) {
7088 printExpandedRelRelaReloc(R, SymbolName, RelocName);
7089 } else {
7090 printDefaultRelRelaReloc(R, SymbolName, RelocName);
7094 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
7095 ListScope SectionsD(W, "Sections");
7097 int SectionIndex = -1;
7098 std::vector<EnumEntry<unsigned>> FlagsList =
7099 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
7100 this->Obj.getHeader().e_machine);
7101 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7102 DictScope SectionD(W, "Section");
7103 W.printNumber("Index", ++SectionIndex);
7104 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
7105 W.printHex("Type",
7106 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
7107 Sec.sh_type),
7108 Sec.sh_type);
7109 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
7110 W.printHex("Address", Sec.sh_addr);
7111 W.printHex("Offset", Sec.sh_offset);
7112 W.printNumber("Size", Sec.sh_size);
7113 W.printNumber("Link", Sec.sh_link);
7114 W.printNumber("Info", Sec.sh_info);
7115 W.printNumber("AddressAlignment", Sec.sh_addralign);
7116 W.printNumber("EntrySize", Sec.sh_entsize);
7118 if (opts::SectionRelocations) {
7119 ListScope D(W, "Relocations");
7120 this->printRelocationsHelper(Sec);
7123 if (opts::SectionSymbols) {
7124 ListScope D(W, "Symbols");
7125 if (this->DotSymtabSec) {
7126 StringRef StrTable = unwrapOrError(
7127 this->FileName,
7128 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
7129 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
7131 typename ELFT::SymRange Symbols = unwrapOrError(
7132 this->FileName, this->Obj.symbols(this->DotSymtabSec));
7133 for (const Elf_Sym &Sym : Symbols) {
7134 const Elf_Shdr *SymSec = unwrapOrError(
7135 this->FileName,
7136 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
7137 if (SymSec == &Sec)
7138 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
7139 /*NonVisibilityBitsUsed=*/false,
7140 /*ExtraSymInfo=*/false);
7145 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7146 ArrayRef<uint8_t> Data =
7147 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7148 W.printBinaryBlock(
7149 "SectionData",
7150 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7155 template <class ELFT>
7156 void LLVMELFDumper<ELFT>::printSymbolSection(
7157 const Elf_Sym &Symbol, unsigned SymIndex,
7158 DataRegion<Elf_Word> ShndxTable) const {
7159 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7160 if (Symbol.isUndefined())
7161 return StringRef("Undefined");
7162 if (Symbol.isProcessorSpecific())
7163 return StringRef("Processor Specific");
7164 if (Symbol.isOSSpecific())
7165 return StringRef("Operating System Specific");
7166 if (Symbol.isAbsolute())
7167 return StringRef("Absolute");
7168 if (Symbol.isCommon())
7169 return StringRef("Common");
7170 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7171 return StringRef("Reserved");
7172 return std::nullopt;
7175 if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7176 W.printHex("Section", *Type, Symbol.st_shndx);
7177 return;
7180 Expected<unsigned> SectionIndex =
7181 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7182 if (!SectionIndex) {
7183 assert(Symbol.st_shndx == SHN_XINDEX &&
7184 "getSymbolSectionIndex should only fail due to an invalid "
7185 "SHT_SYMTAB_SHNDX table/reference");
7186 this->reportUniqueWarning(SectionIndex.takeError());
7187 W.printHex("Section", "Reserved", SHN_XINDEX);
7188 return;
7191 Expected<StringRef> SectionName =
7192 this->getSymbolSectionName(Symbol, *SectionIndex);
7193 if (!SectionName) {
7194 // Don't report an invalid section name if the section headers are missing.
7195 // In such situations, all sections will be "invalid".
7196 if (!this->ObjF.sections().empty())
7197 this->reportUniqueWarning(SectionName.takeError());
7198 else
7199 consumeError(SectionName.takeError());
7200 W.printHex("Section", "<?>", *SectionIndex);
7201 } else {
7202 W.printHex("Section", *SectionName, *SectionIndex);
7206 template <class ELFT>
7207 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7208 std::vector<EnumEntry<unsigned>> SymOtherFlags =
7209 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7210 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7213 template <class ELFT>
7214 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7215 const Elf_Sym &Symbol) const {
7216 assert(Symbol.st_other == 0 && "non-zero Other Field");
7217 // Usually st_other flag is zero. Do not pollute the output
7218 // by flags enumeration in that case.
7219 W.printNumber("Other", 0);
7222 template <class ELFT>
7223 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7224 DataRegion<Elf_Word> ShndxTable,
7225 std::optional<StringRef> StrTable,
7226 bool IsDynamic,
7227 bool /*NonVisibilityBitsUsed*/,
7228 bool /*ExtraSymInfo*/) const {
7229 std::string FullSymbolName = this->getFullSymbolName(
7230 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7231 unsigned char SymbolType = Symbol.getType();
7233 DictScope D(W, "Symbol");
7234 W.printNumber("Name", FullSymbolName, Symbol.st_name);
7235 W.printHex("Value", Symbol.st_value);
7236 W.printNumber("Size", Symbol.st_size);
7237 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7238 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7239 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7240 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7241 else
7242 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7243 if (Symbol.st_other == 0)
7244 printZeroSymbolOtherField(Symbol);
7245 else
7246 printSymbolOtherField(Symbol);
7247 printSymbolSection(Symbol, SymIndex, ShndxTable);
7250 template <class ELFT>
7251 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7252 bool PrintDynamicSymbols,
7253 bool ExtraSymInfo) {
7254 if (PrintSymbols) {
7255 ListScope Group(W, "Symbols");
7256 this->printSymbolsHelper(false, ExtraSymInfo);
7258 if (PrintDynamicSymbols) {
7259 ListScope Group(W, "DynamicSymbols");
7260 this->printSymbolsHelper(true, ExtraSymInfo);
7264 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7265 Elf_Dyn_Range Table = this->dynamic_table();
7266 if (Table.empty())
7267 return;
7269 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7271 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7272 // The "Name/Value" column should be indented from the "Type" column by N
7273 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7274 // space (1) = -3.
7275 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7276 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7278 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7279 for (auto Entry : Table) {
7280 uintX_t Tag = Entry.getTag();
7281 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7282 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7283 << " "
7284 << format(ValueFmt.c_str(),
7285 this->Obj.getDynamicTagAsString(Tag).c_str())
7286 << Value << "\n";
7288 W.startLine() << "]\n";
7291 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7292 W.startLine() << "Dynamic Relocations {\n";
7293 W.indent();
7294 this->printDynamicRelocationsHelper();
7295 W.unindent();
7296 W.startLine() << "}\n";
7299 template <class ELFT>
7300 void LLVMELFDumper<ELFT>::printProgramHeaders(
7301 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7302 if (PrintProgramHeaders)
7303 printProgramHeaders();
7304 if (PrintSectionMapping == cl::BOU_TRUE)
7305 printSectionMapping();
7308 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7309 ListScope L(W, "ProgramHeaders");
7311 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7312 if (!PhdrsOrErr) {
7313 this->reportUniqueWarning("unable to dump program headers: " +
7314 toString(PhdrsOrErr.takeError()));
7315 return;
7318 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7319 DictScope P(W, "ProgramHeader");
7320 StringRef Type =
7321 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7323 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7324 W.printHex("Offset", Phdr.p_offset);
7325 W.printHex("VirtualAddress", Phdr.p_vaddr);
7326 W.printHex("PhysicalAddress", Phdr.p_paddr);
7327 W.printNumber("FileSize", Phdr.p_filesz);
7328 W.printNumber("MemSize", Phdr.p_memsz);
7329 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7330 W.printNumber("Alignment", Phdr.p_align);
7334 template <class ELFT>
7335 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7336 ListScope SS(W, "VersionSymbols");
7337 if (!Sec)
7338 return;
7340 StringRef StrTable;
7341 ArrayRef<Elf_Sym> Syms;
7342 const Elf_Shdr *SymTabSec;
7343 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7344 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7345 if (!VerTableOrErr) {
7346 this->reportUniqueWarning(VerTableOrErr.takeError());
7347 return;
7350 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7351 return;
7353 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7354 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7355 DictScope S(W, "Symbol");
7356 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7357 W.printString("Name",
7358 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7359 /*IsDynamic=*/true));
7363 const EnumEntry<unsigned> SymVersionFlags[] = {
7364 {"Base", "BASE", VER_FLG_BASE},
7365 {"Weak", "WEAK", VER_FLG_WEAK},
7366 {"Info", "INFO", VER_FLG_INFO}};
7368 template <class ELFT>
7369 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7370 ListScope SD(W, "VersionDefinitions");
7371 if (!Sec)
7372 return;
7374 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7375 if (!V) {
7376 this->reportUniqueWarning(V.takeError());
7377 return;
7380 for (const VerDef &D : *V) {
7381 DictScope Def(W, "Definition");
7382 W.printNumber("Version", D.Version);
7383 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7384 W.printNumber("Index", D.Ndx);
7385 W.printNumber("Hash", D.Hash);
7386 W.printString("Name", D.Name.c_str());
7387 W.printList(
7388 "Predecessors", D.AuxV,
7389 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7393 template <class ELFT>
7394 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7395 ListScope SD(W, "VersionRequirements");
7396 if (!Sec)
7397 return;
7399 Expected<std::vector<VerNeed>> V =
7400 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7401 if (!V) {
7402 this->reportUniqueWarning(V.takeError());
7403 return;
7406 for (const VerNeed &VN : *V) {
7407 DictScope Entry(W, "Dependency");
7408 W.printNumber("Version", VN.Version);
7409 W.printNumber("Count", VN.Cnt);
7410 W.printString("FileName", VN.File.c_str());
7412 ListScope L(W, "Entries");
7413 for (const VernAux &Aux : VN.AuxV) {
7414 DictScope Entry(W, "Entry");
7415 W.printNumber("Hash", Aux.Hash);
7416 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7417 W.printNumber("Index", Aux.Other);
7418 W.printString("Name", Aux.Name.c_str());
7423 template <class ELFT>
7424 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7425 size_t MaxChain,
7426 size_t TotalSyms,
7427 ArrayRef<size_t> Count,
7428 bool IsGnu) const {
7429 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7430 StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7431 StringRef ListName = IsGnu ? "Buckets" : "Chains";
7432 DictScope Outer(W, HistName);
7433 W.printNumber("TotalBuckets", NBucket);
7434 ListScope Buckets(W, ListName);
7435 size_t CumulativeNonZero = 0;
7436 for (size_t I = 0; I < MaxChain; ++I) {
7437 CumulativeNonZero += Count[I] * I;
7438 DictScope Bucket(W, BucketName);
7439 W.printNumber("Length", I);
7440 W.printNumber("Count", Count[I]);
7441 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7442 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7446 // Returns true if rel/rela section exists, and populates SymbolIndices.
7447 // Otherwise returns false.
7448 template <class ELFT>
7449 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7450 const ELFFile<ELFT> &Obj,
7451 const LLVMELFDumper<ELFT> *Dumper,
7452 SmallVector<uint32_t, 128> &SymbolIndices) {
7453 if (!CGRelSection) {
7454 Dumper->reportUniqueWarning(
7455 "relocation section for a call graph section doesn't exist");
7456 return false;
7459 if (CGRelSection->sh_type == SHT_REL) {
7460 typename ELFT::RelRange CGProfileRel;
7461 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7462 Obj.rels(*CGRelSection);
7463 if (!CGProfileRelOrError) {
7464 Dumper->reportUniqueWarning("unable to load relocations for "
7465 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7466 toString(CGProfileRelOrError.takeError()));
7467 return false;
7470 CGProfileRel = *CGProfileRelOrError;
7471 for (const typename ELFT::Rel &Rel : CGProfileRel)
7472 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7473 } else {
7474 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7475 // the format to SHT_RELA
7476 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7477 typename ELFT::RelaRange CGProfileRela;
7478 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7479 Obj.relas(*CGRelSection);
7480 if (!CGProfileRelaOrError) {
7481 Dumper->reportUniqueWarning("unable to load relocations for "
7482 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7483 toString(CGProfileRelaOrError.takeError()));
7484 return false;
7487 CGProfileRela = *CGProfileRelaOrError;
7488 for (const typename ELFT::Rela &Rela : CGProfileRela)
7489 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7492 return true;
7495 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7496 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7497 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7500 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7501 this->Obj.getSectionAndRelocations(IsMatch);
7502 if (!SecToRelocMapOrErr) {
7503 this->reportUniqueWarning("unable to get CG Profile section(s): " +
7504 toString(SecToRelocMapOrErr.takeError()));
7505 return;
7508 for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7509 const Elf_Shdr *CGSection = CGMapEntry.first;
7510 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7512 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7513 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7514 if (!CGProfileOrErr) {
7515 this->reportUniqueWarning(
7516 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7517 toString(CGProfileOrErr.takeError()));
7518 return;
7521 SmallVector<uint32_t, 128> SymbolIndices;
7522 bool UseReloc =
7523 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7524 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7525 this->reportUniqueWarning(
7526 "number of from/to pairs does not match number of frequencies");
7527 UseReloc = false;
7530 ListScope L(W, "CGProfile");
7531 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7532 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7533 DictScope D(W, "CGProfileEntry");
7534 if (UseReloc) {
7535 uint32_t From = SymbolIndices[I * 2];
7536 uint32_t To = SymbolIndices[I * 2 + 1];
7537 W.printNumber("From", this->getStaticSymbolName(From), From);
7538 W.printNumber("To", this->getStaticSymbolName(To), To);
7540 W.printNumber("Weight", CGPE.cgp_weight);
7545 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7546 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7547 using Elf_Shdr = typename ELFT::Shdr;
7548 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7549 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP ||
7550 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0;
7552 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7553 this->Obj.getSectionAndRelocations(IsMatch);
7554 if (!SecRelocMapOrErr) {
7555 this->reportUniqueWarning(
7556 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7557 toString(SecRelocMapOrErr.takeError()));
7558 return;
7560 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7561 std::optional<const Elf_Shdr *> FunctionSec;
7562 if (IsRelocatable)
7563 FunctionSec =
7564 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7565 ListScope L(W, "BBAddrMap");
7566 if (IsRelocatable && !RelocSec) {
7567 this->reportUniqueWarning("unable to get relocation section for " +
7568 this->describe(*Sec));
7569 continue;
7571 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7572 this->Obj.decodeBBAddrMap(*Sec, RelocSec);
7573 if (!BBAddrMapOrErr) {
7574 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7575 ": " + toString(BBAddrMapOrErr.takeError()));
7576 continue;
7578 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7579 DictScope D(W, "Function");
7580 W.printHex("At", AM.Addr);
7581 SmallVector<uint32_t> FuncSymIndex =
7582 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7583 std::string FuncName = "<?>";
7584 if (FuncSymIndex.empty())
7585 this->reportUniqueWarning(
7586 "could not identify function symbol for address (0x" +
7587 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec));
7588 else
7589 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7590 W.printString("Name", FuncName);
7592 ListScope L(W, "BB entries");
7593 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7594 DictScope L(W);
7595 W.printNumber("ID", BBE.ID);
7596 W.printHex("Offset", BBE.Offset);
7597 W.printHex("Size", BBE.Size);
7598 W.printBoolean("HasReturn", BBE.hasReturn());
7599 W.printBoolean("HasTailCall", BBE.hasTailCall());
7600 W.printBoolean("IsEHPad", BBE.isEHPad());
7601 W.printBoolean("CanFallThrough", BBE.canFallThrough());
7602 W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch());
7608 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7609 ListScope L(W, "Addrsig");
7610 if (!this->DotAddrsigSec)
7611 return;
7613 Expected<std::vector<uint64_t>> SymsOrErr =
7614 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7615 if (!SymsOrErr) {
7616 this->reportUniqueWarning(SymsOrErr.takeError());
7617 return;
7620 for (uint64_t Sym : *SymsOrErr)
7621 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7624 template <typename ELFT>
7625 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7626 ScopedPrinter &W) {
7627 // Return true if we were able to pretty-print the note, false otherwise.
7628 switch (NoteType) {
7629 default:
7630 return false;
7631 case ELF::NT_GNU_ABI_TAG: {
7632 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7633 if (!AbiTag.IsValid) {
7634 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7635 return false;
7636 } else {
7637 W.printString("OS", AbiTag.OSName);
7638 W.printString("ABI", AbiTag.ABI);
7640 break;
7642 case ELF::NT_GNU_BUILD_ID: {
7643 W.printString("Build ID", getGNUBuildId(Desc));
7644 break;
7646 case ELF::NT_GNU_GOLD_VERSION:
7647 W.printString("Version", getDescAsStringRef(Desc));
7648 break;
7649 case ELF::NT_GNU_PROPERTY_TYPE_0:
7650 ListScope D(W, "Property");
7651 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7652 W.printString(Property);
7653 break;
7655 return true;
7658 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7659 ScopedPrinter &W) {
7660 // Return true if we were able to pretty-print the note, false otherwise.
7661 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7662 if (Props.empty())
7663 return false;
7664 for (const auto &KV : Props)
7665 W.printString(KV.first, KV.second);
7666 return true;
7669 template <class ELFT>
7670 static bool printAarch64NoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7671 ScopedPrinter &W) {
7672 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
7673 return false;
7675 if (Desc.size() < 16)
7676 return false;
7678 uint64_t platform =
7679 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
7680 uint64_t version =
7681 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
7682 W.printNumber("Platform", platform);
7683 W.printNumber("Version", version);
7685 if (Desc.size() > 16)
7686 W.printString("Additional info",
7687 toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16)));
7689 return true;
7692 template <class ELFT>
7693 void LLVMELFDumper<ELFT>::printMemtag(
7694 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7695 const ArrayRef<uint8_t> AndroidNoteDesc,
7696 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7698 ListScope L(W, "Memtag Dynamic Entries:");
7699 if (DynamicEntries.empty())
7700 W.printString("< none found >");
7701 for (const auto &DynamicEntryKV : DynamicEntries)
7702 W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7705 if (!AndroidNoteDesc.empty()) {
7706 ListScope L(W, "Memtag Android Note:");
7707 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7710 if (Descriptors.empty())
7711 return;
7714 ListScope L(W, "Memtag Global Descriptors:");
7715 for (const auto &[Addr, BytesToTag] : Descriptors) {
7716 W.printHex("0x" + utohexstr(Addr), BytesToTag);
7721 template <typename ELFT>
7722 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7723 ArrayRef<uint8_t> Desc,
7724 ScopedPrinter &W) {
7725 switch (NoteType) {
7726 default:
7727 return false;
7728 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7729 W.printString("Version", getDescAsStringRef(Desc));
7730 break;
7731 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7732 W.printString("Producer", getDescAsStringRef(Desc));
7733 break;
7734 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7735 W.printString("Producer version", getDescAsStringRef(Desc));
7736 break;
7738 return true;
7741 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7742 W.printNumber("Page Size", Note.PageSize);
7743 for (const CoreFileMapping &Mapping : Note.Mappings) {
7744 ListScope D(W, "Mapping");
7745 W.printHex("Start", Mapping.Start);
7746 W.printHex("End", Mapping.End);
7747 W.printHex("Offset", Mapping.Offset);
7748 W.printString("Filename", Mapping.Filename);
7752 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7753 ListScope L(W, "Notes");
7755 std::unique_ptr<DictScope> NoteScope;
7756 size_t Align = 0;
7757 auto StartNotes = [&](std::optional<StringRef> SecName,
7758 const typename ELFT::Off Offset,
7759 const typename ELFT::Addr Size, size_t Al) {
7760 Align = std::max<size_t>(Al, 4);
7761 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7762 W.printString("Name", SecName ? *SecName : "<?>");
7763 W.printHex("Offset", Offset);
7764 W.printHex("Size", Size);
7767 auto EndNotes = [&] { NoteScope.reset(); };
7769 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7770 DictScope D2(W, "Note");
7771 StringRef Name = Note.getName();
7772 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
7773 Elf_Word Type = Note.getType();
7775 // Print the note owner/type.
7776 W.printString("Owner", Name);
7777 W.printHex("Data size", Descriptor.size());
7779 StringRef NoteType =
7780 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7781 if (!NoteType.empty())
7782 W.printString("Type", NoteType);
7783 else
7784 W.printString("Type",
7785 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7787 // Print the description, or fallback to printing raw bytes for unknown
7788 // owners/if we fail to pretty-print the contents.
7789 if (Name == "GNU") {
7790 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7791 return Error::success();
7792 } else if (Name == "FreeBSD") {
7793 if (std::optional<FreeBSDNote> N =
7794 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7795 W.printString(N->Type, N->Value);
7796 return Error::success();
7798 } else if (Name == "AMD") {
7799 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7800 if (!N.Type.empty()) {
7801 W.printString(N.Type, N.Value);
7802 return Error::success();
7804 } else if (Name == "AMDGPU") {
7805 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7806 if (!N.Type.empty()) {
7807 W.printString(N.Type, N.Value);
7808 return Error::success();
7810 } else if (Name == "LLVMOMPOFFLOAD") {
7811 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7812 return Error::success();
7813 } else if (Name == "CORE") {
7814 if (Type == ELF::NT_FILE) {
7815 DataExtractor DescExtractor(
7816 Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
7817 sizeof(Elf_Addr));
7818 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7819 printCoreNoteLLVMStyle(*N, W);
7820 return Error::success();
7821 } else {
7822 return N.takeError();
7825 } else if (Name == "Android") {
7826 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7827 return Error::success();
7828 } else if (Name == "ARM") {
7829 if (printAarch64NoteLLVMStyle<ELFT>(Type, Descriptor, W))
7830 return Error::success();
7832 if (!Descriptor.empty()) {
7833 W.printBinaryBlock("Description data", Descriptor);
7835 return Error::success();
7838 processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
7839 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
7842 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7843 ListScope L(W, "LinkerOptions");
7845 unsigned I = -1;
7846 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7847 ++I;
7848 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7849 continue;
7851 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7852 this->Obj.getSectionContents(Shdr);
7853 if (!ContentsOrErr) {
7854 this->reportUniqueWarning("unable to read the content of the "
7855 "SHT_LLVM_LINKER_OPTIONS section: " +
7856 toString(ContentsOrErr.takeError()));
7857 continue;
7859 if (ContentsOrErr->empty())
7860 continue;
7862 if (ContentsOrErr->back() != 0) {
7863 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7864 Twine(I) +
7865 " is broken: the "
7866 "content is not null-terminated");
7867 continue;
7870 SmallVector<StringRef, 16> Strings;
7871 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7872 if (Strings.size() % 2 != 0) {
7873 this->reportUniqueWarning(
7874 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7875 " is broken: an incomplete "
7876 "key-value pair was found. The last possible key was: \"" +
7877 Strings.back() + "\"");
7878 continue;
7881 for (size_t I = 0; I < Strings.size(); I += 2)
7882 W.printString(Strings[I], Strings[I + 1]);
7886 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7887 ListScope L(W, "DependentLibs");
7888 this->printDependentLibsHelper(
7889 [](const Elf_Shdr &) {},
7890 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7893 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7894 ListScope L(W, "StackSizes");
7895 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7896 this->printRelocatableStackSizes([]() {});
7897 else
7898 this->printNonRelocatableStackSizes([]() {});
7901 template <class ELFT>
7902 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7903 ArrayRef<std::string> FuncNames) {
7904 DictScope D(W, "Entry");
7905 W.printList("Functions", FuncNames);
7906 W.printHex("Size", Size);
7909 template <class ELFT>
7910 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7911 auto PrintEntry = [&](const Elf_Addr *E) {
7912 W.printHex("Address", Parser.getGotAddress(E));
7913 W.printNumber("Access", Parser.getGotOffset(E));
7914 W.printHex("Initial", *E);
7917 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7919 W.printHex("Canonical gp value", Parser.getGp());
7921 ListScope RS(W, "Reserved entries");
7923 DictScope D(W, "Entry");
7924 PrintEntry(Parser.getGotLazyResolver());
7925 W.printString("Purpose", StringRef("Lazy resolver"));
7928 if (Parser.getGotModulePointer()) {
7929 DictScope D(W, "Entry");
7930 PrintEntry(Parser.getGotModulePointer());
7931 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7935 ListScope LS(W, "Local entries");
7936 for (auto &E : Parser.getLocalEntries()) {
7937 DictScope D(W, "Entry");
7938 PrintEntry(&E);
7942 if (Parser.IsStatic)
7943 return;
7946 ListScope GS(W, "Global entries");
7947 for (auto &E : Parser.getGlobalEntries()) {
7948 DictScope D(W, "Entry");
7950 PrintEntry(&E);
7952 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7953 W.printHex("Value", Sym.st_value);
7954 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7956 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7957 DataRegion<Elf_Word> ShndxTable(
7958 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7959 printSymbolSection(Sym, SymIndex, ShndxTable);
7961 std::string SymName = this->getFullSymbolName(
7962 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7963 W.printNumber("Name", SymName, Sym.st_name);
7967 W.printNumber("Number of TLS and multi-GOT entries",
7968 uint64_t(Parser.getOtherEntries().size()));
7971 template <class ELFT>
7972 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7973 auto PrintEntry = [&](const Elf_Addr *E) {
7974 W.printHex("Address", Parser.getPltAddress(E));
7975 W.printHex("Initial", *E);
7978 DictScope GS(W, "PLT GOT");
7981 ListScope RS(W, "Reserved entries");
7983 DictScope D(W, "Entry");
7984 PrintEntry(Parser.getPltLazyResolver());
7985 W.printString("Purpose", StringRef("PLT lazy resolver"));
7988 if (auto E = Parser.getPltModulePointer()) {
7989 DictScope D(W, "Entry");
7990 PrintEntry(E);
7991 W.printString("Purpose", StringRef("Module pointer"));
7995 ListScope LS(W, "Entries");
7996 DataRegion<Elf_Word> ShndxTable(
7997 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7998 for (auto &E : Parser.getPltEntries()) {
7999 DictScope D(W, "Entry");
8000 PrintEntry(&E);
8002 const Elf_Sym &Sym = *Parser.getPltSym(&E);
8003 W.printHex("Value", Sym.st_value);
8004 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
8005 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
8006 ShndxTable);
8008 const Elf_Sym *FirstSym = cantFail(
8009 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
8010 std::string SymName = this->getFullSymbolName(
8011 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
8012 W.printNumber("Name", SymName, Sym.st_name);
8017 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
8018 const Elf_Mips_ABIFlags<ELFT> *Flags;
8019 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
8020 getMipsAbiFlagsSection(*this)) {
8021 Flags = *SecOrErr;
8022 if (!Flags) {
8023 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
8024 return;
8026 } else {
8027 this->reportUniqueWarning(SecOrErr.takeError());
8028 return;
8031 raw_ostream &OS = W.getOStream();
8032 DictScope GS(W, "MIPS ABI Flags");
8034 W.printNumber("Version", Flags->version);
8035 W.startLine() << "ISA: ";
8036 if (Flags->isa_rev <= 1)
8037 OS << format("MIPS%u", Flags->isa_level);
8038 else
8039 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
8040 OS << "\n";
8041 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
8042 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
8043 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
8044 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
8045 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
8046 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
8047 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
8048 W.printHex("Flags 2", Flags->flags2);
8051 template <class ELFT>
8052 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
8053 ArrayRef<std::string> InputFilenames,
8054 const Archive *A) {
8055 FileScope = std::make_unique<DictScope>(this->W);
8056 DictScope D(this->W, "FileSummary");
8057 this->W.printString("File", FileStr);
8058 this->W.printString("Format", Obj.getFileFormatName());
8059 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
8060 this->W.printString(
8061 "AddressSize",
8062 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
8063 this->printLoadName();
8066 template <class ELFT>
8067 void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
8068 const Elf_Sym &Symbol) const {
8069 // We want the JSON format to be uniform, since it is machine readable, so
8070 // always print the `Other` field the same way.
8071 this->printSymbolOtherField(Symbol);
8074 template <class ELFT>
8075 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
8076 StringRef SymbolName,
8077 StringRef RelocName) {
8078 this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
8081 template <class ELFT>
8082 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
8083 StringRef Name,
8084 const unsigned SecNdx) {
8085 DictScope Group(this->W);
8086 this->W.printNumber("SectionIndex", SecNdx);
8087 ListScope D(this->W, "Relocs");
8088 this->printRelocationsHelper(Sec);
8091 template <class ELFT>
8092 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
8093 return "GroupSections";
8096 template <class ELFT>
8097 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
8098 uint64_t Idx) const {
8099 DictScope Grp(this->W);
8100 this->W.printString("Name", Name);
8101 this->W.printNumber("Index", Idx);
8104 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
8105 // JSON output does not need to print anything for empty groups