[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / utils / TableGen / AsmMatcherEmitter.cpp
blob73724e662f9e878c103fb1bafe8e35f1265f0592
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
23 // Some example inputs, for X86:
24 // 'addl' (immediate ...) (register ...)
25 // 'add' (immediate ...) (memory ...)
26 // 'call' '*' %epc
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
32 // - It may be ambiguous; many architectures can legally encode particular
33 // variants of an instruction in different ways (for example, using a smaller
34 // encoding for small immediates). Such ambiguities should never be
35 // arbitrarily resolved by the assembler, the assembler is always responsible
36 // for choosing the "best" available instruction.
38 // - It may depend on the subtarget or the assembler context. Instructions
39 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 // an SSE instruction in a file being assembled for i486) should be accepted
41 // and rejected by the assembler front end. However, if the proper encoding
42 // for an instruction is dependent on the assembler context then the matcher
43 // is responsible for selecting the correct machine instruction for the
44 // current mode.
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
51 // The matching is divided into two distinct phases:
53 // 1. Classification: Each operand is mapped to the unique set which (a)
54 // contains it, and (b) is the largest such subset for which a single
55 // instruction could match all members.
57 // For register classes, we can generate these subgroups automatically. For
58 // arbitrary operands, we expect the user to define the classes and their
59 // relations to one another (for example, 8-bit signed immediates as a
60 // subset of 32-bit immediates).
62 // By partitioning the operands in this way, we guarantee that for any
63 // tuple of classes, any single instruction must match either all or none
64 // of the sets of operands which could classify to that tuple.
66 // In addition, the subset relation amongst classes induces a partial order
67 // on such tuples, which we use to resolve ambiguities.
69 // 2. The input can now be treated as a tuple of classes (static tokens are
70 // simple singleton sets). Each such tuple should generally map to a single
71 // instruction (we currently ignore cases where this isn't true, whee!!!),
72 // which we can emit a simple matcher for.
74 // Custom Operand Parsing
75 // ----------------------
77 // Some targets need a custom way to parse operands, some specific instructions
78 // can contain arguments that can represent processor flags and other kinds of
79 // identifiers that need to be mapped to specific values in the final encoded
80 // instructions. The target specific custom operand parsing works in the
81 // following way:
83 // 1. A operand match table is built, each entry contains a mnemonic, an
84 // operand class, a mask for all operand positions for that same
85 // class/mnemonic and target features to be checked while trying to match.
87 // 2. The operand matcher will try every possible entry with the same
88 // mnemonic and will check if the target feature for this mnemonic also
89 // matches. After that, if the operand to be matched has its index
90 // present in the mask, a successful match occurs. Otherwise, fallback
91 // to the regular operand parsing.
93 // 3. For a match success, each operand class that has a 'ParserMethod'
94 // becomes part of a switch from where the custom method is called.
96 //===----------------------------------------------------------------------===//
98 #include "CodeGenInstAlias.h"
99 #include "CodeGenInstruction.h"
100 #include "CodeGenRegisters.h"
101 #include "CodeGenTarget.h"
102 #include "SubtargetFeatureInfo.h"
103 #include "Types.h"
104 #include "llvm/ADT/CachedHashString.h"
105 #include "llvm/ADT/PointerUnion.h"
106 #include "llvm/ADT/STLExtras.h"
107 #include "llvm/ADT/SmallPtrSet.h"
108 #include "llvm/ADT/SmallVector.h"
109 #include "llvm/ADT/StringExtras.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Debug.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/TableGen/Error.h"
114 #include "llvm/TableGen/Record.h"
115 #include "llvm/TableGen/StringMatcher.h"
116 #include "llvm/TableGen/StringToOffsetTable.h"
117 #include "llvm/TableGen/TableGenBackend.h"
118 #include <cassert>
119 #include <cctype>
120 #include <forward_list>
121 #include <map>
122 #include <set>
124 using namespace llvm;
126 #define DEBUG_TYPE "asm-matcher-emitter"
128 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
130 static cl::opt<std::string>
131 MatchPrefix("match-prefix", cl::init(""),
132 cl::desc("Only match instructions with the given prefix"),
133 cl::cat(AsmMatcherEmitterCat));
135 namespace {
136 class AsmMatcherInfo;
138 // Register sets are used as keys in some second-order sets TableGen creates
139 // when generating its data structures. This means that the order of two
140 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
141 // can even affect compiler output (at least seen in diagnostics produced when
142 // all matches fail). So we use a type that sorts them consistently.
143 typedef std::set<Record*, LessRecordByID> RegisterSet;
145 class AsmMatcherEmitter {
146 RecordKeeper &Records;
147 public:
148 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
150 void run(raw_ostream &o);
153 /// ClassInfo - Helper class for storing the information about a particular
154 /// class of operands which can be matched.
155 struct ClassInfo {
156 enum ClassInfoKind {
157 /// Invalid kind, for use as a sentinel value.
158 Invalid = 0,
160 /// The class for a particular token.
161 Token,
163 /// The (first) register class, subsequent register classes are
164 /// RegisterClass0+1, and so on.
165 RegisterClass0,
167 /// The (first) user defined class, subsequent user defined classes are
168 /// UserClass0+1, and so on.
169 UserClass0 = 1<<16
172 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
173 /// N) for the Nth user defined class.
174 unsigned Kind;
176 /// SuperClasses - The super classes of this class. Note that for simplicities
177 /// sake user operands only record their immediate super class, while register
178 /// operands include all superclasses.
179 std::vector<ClassInfo*> SuperClasses;
181 /// Name - The full class name, suitable for use in an enum.
182 std::string Name;
184 /// ClassName - The unadorned generic name for this class (e.g., Token).
185 std::string ClassName;
187 /// ValueName - The name of the value this class represents; for a token this
188 /// is the literal token string, for an operand it is the TableGen class (or
189 /// empty if this is a derived class).
190 std::string ValueName;
192 /// PredicateMethod - The name of the operand method to test whether the
193 /// operand matches this class; this is not valid for Token or register kinds.
194 std::string PredicateMethod;
196 /// RenderMethod - The name of the operand method to add this operand to an
197 /// MCInst; this is not valid for Token or register kinds.
198 std::string RenderMethod;
200 /// ParserMethod - The name of the operand method to do a target specific
201 /// parsing on the operand.
202 std::string ParserMethod;
204 /// For register classes: the records for all the registers in this class.
205 RegisterSet Registers;
207 /// For custom match classes: the diagnostic kind for when the predicate fails.
208 std::string DiagnosticType;
210 /// For custom match classes: the diagnostic string for when the predicate fails.
211 std::string DiagnosticString;
213 /// Is this operand optional and not always required.
214 bool IsOptional;
216 /// DefaultMethod - The name of the method that returns the default operand
217 /// for optional operand
218 std::string DefaultMethod;
220 public:
221 /// isRegisterClass() - Check if this is a register class.
222 bool isRegisterClass() const {
223 return Kind >= RegisterClass0 && Kind < UserClass0;
226 /// isUserClass() - Check if this is a user defined class.
227 bool isUserClass() const {
228 return Kind >= UserClass0;
231 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
232 /// are related if they are in the same class hierarchy.
233 bool isRelatedTo(const ClassInfo &RHS) const {
234 // Tokens are only related to tokens.
235 if (Kind == Token || RHS.Kind == Token)
236 return Kind == Token && RHS.Kind == Token;
238 // Registers classes are only related to registers classes, and only if
239 // their intersection is non-empty.
240 if (isRegisterClass() || RHS.isRegisterClass()) {
241 if (!isRegisterClass() || !RHS.isRegisterClass())
242 return false;
244 RegisterSet Tmp;
245 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
246 std::set_intersection(Registers.begin(), Registers.end(),
247 RHS.Registers.begin(), RHS.Registers.end(),
248 II, LessRecordByID());
250 return !Tmp.empty();
253 // Otherwise we have two users operands; they are related if they are in the
254 // same class hierarchy.
256 // FIXME: This is an oversimplification, they should only be related if they
257 // intersect, however we don't have that information.
258 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
259 const ClassInfo *Root = this;
260 while (!Root->SuperClasses.empty())
261 Root = Root->SuperClasses.front();
263 const ClassInfo *RHSRoot = &RHS;
264 while (!RHSRoot->SuperClasses.empty())
265 RHSRoot = RHSRoot->SuperClasses.front();
267 return Root == RHSRoot;
270 /// isSubsetOf - Test whether this class is a subset of \p RHS.
271 bool isSubsetOf(const ClassInfo &RHS) const {
272 // This is a subset of RHS if it is the same class...
273 if (this == &RHS)
274 return true;
276 // ... or if any of its super classes are a subset of RHS.
277 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
278 SuperClasses.end());
279 SmallPtrSet<const ClassInfo *, 16> Visited;
280 while (!Worklist.empty()) {
281 auto *CI = Worklist.pop_back_val();
282 if (CI == &RHS)
283 return true;
284 for (auto *Super : CI->SuperClasses)
285 if (Visited.insert(Super).second)
286 Worklist.push_back(Super);
289 return false;
292 int getTreeDepth() const {
293 int Depth = 0;
294 const ClassInfo *Root = this;
295 while (!Root->SuperClasses.empty()) {
296 Depth++;
297 Root = Root->SuperClasses.front();
299 return Depth;
302 const ClassInfo *findRoot() const {
303 const ClassInfo *Root = this;
304 while (!Root->SuperClasses.empty())
305 Root = Root->SuperClasses.front();
306 return Root;
309 /// Compare two classes. This does not produce a total ordering, but does
310 /// guarantee that subclasses are sorted before their parents, and that the
311 /// ordering is transitive.
312 bool operator<(const ClassInfo &RHS) const {
313 if (this == &RHS)
314 return false;
316 // First, enforce the ordering between the three different types of class.
317 // Tokens sort before registers, which sort before user classes.
318 if (Kind == Token) {
319 if (RHS.Kind != Token)
320 return true;
321 assert(RHS.Kind == Token);
322 } else if (isRegisterClass()) {
323 if (RHS.Kind == Token)
324 return false;
325 else if (RHS.isUserClass())
326 return true;
327 assert(RHS.isRegisterClass());
328 } else if (isUserClass()) {
329 if (!RHS.isUserClass())
330 return false;
331 assert(RHS.isUserClass());
332 } else {
333 llvm_unreachable("Unknown ClassInfoKind");
336 if (Kind == Token || isUserClass()) {
337 // Related tokens and user classes get sorted by depth in the inheritence
338 // tree (so that subclasses are before their parents).
339 if (isRelatedTo(RHS)) {
340 if (getTreeDepth() > RHS.getTreeDepth())
341 return true;
342 if (getTreeDepth() < RHS.getTreeDepth())
343 return false;
344 } else {
345 // Unrelated tokens and user classes are ordered by the name of their
346 // root nodes, so that there is a consistent ordering between
347 // unconnected trees.
348 return findRoot()->ValueName < RHS.findRoot()->ValueName;
350 } else if (isRegisterClass()) {
351 // For register sets, sort by number of registers. This guarantees that
352 // a set will always sort before all of it's strict supersets.
353 if (Registers.size() != RHS.Registers.size())
354 return Registers.size() < RHS.Registers.size();
355 } else {
356 llvm_unreachable("Unknown ClassInfoKind");
359 // FIXME: We should be able to just return false here, as we only need a
360 // partial order (we use stable sorts, so this is deterministic) and the
361 // name of a class shouldn't be significant. However, some of the backends
362 // accidentally rely on this behaviour, so it will have to stay like this
363 // until they are fixed.
364 return ValueName < RHS.ValueName;
368 class AsmVariantInfo {
369 public:
370 StringRef RegisterPrefix;
371 StringRef TokenizingCharacters;
372 StringRef SeparatorCharacters;
373 StringRef BreakCharacters;
374 StringRef Name;
375 int AsmVariantNo;
378 /// MatchableInfo - Helper class for storing the necessary information for an
379 /// instruction or alias which is capable of being matched.
380 struct MatchableInfo {
381 struct AsmOperand {
382 /// Token - This is the token that the operand came from.
383 StringRef Token;
385 /// The unique class instance this operand should match.
386 ClassInfo *Class;
388 /// The operand name this is, if anything.
389 StringRef SrcOpName;
391 /// The operand name this is, before renaming for tied operands.
392 StringRef OrigSrcOpName;
394 /// The suboperand index within SrcOpName, or -1 for the entire operand.
395 int SubOpIdx;
397 /// Whether the token is "isolated", i.e., it is preceded and followed
398 /// by separators.
399 bool IsIsolatedToken;
401 /// Register record if this token is singleton register.
402 Record *SingletonReg;
404 explicit AsmOperand(bool IsIsolatedToken, StringRef T)
405 : Token(T), Class(nullptr), SubOpIdx(-1),
406 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
409 /// ResOperand - This represents a single operand in the result instruction
410 /// generated by the match. In cases (like addressing modes) where a single
411 /// assembler operand expands to multiple MCOperands, this represents the
412 /// single assembler operand, not the MCOperand.
413 struct ResOperand {
414 enum {
415 /// RenderAsmOperand - This represents an operand result that is
416 /// generated by calling the render method on the assembly operand. The
417 /// corresponding AsmOperand is specified by AsmOperandNum.
418 RenderAsmOperand,
420 /// TiedOperand - This represents a result operand that is a duplicate of
421 /// a previous result operand.
422 TiedOperand,
424 /// ImmOperand - This represents an immediate value that is dumped into
425 /// the operand.
426 ImmOperand,
428 /// RegOperand - This represents a fixed register that is dumped in.
429 RegOperand
430 } Kind;
432 /// Tuple containing the index of the (earlier) result operand that should
433 /// be copied from, as well as the indices of the corresponding (parsed)
434 /// operands in the asm string.
435 struct TiedOperandsTuple {
436 unsigned ResOpnd;
437 unsigned SrcOpnd1Idx;
438 unsigned SrcOpnd2Idx;
441 union {
442 /// This is the operand # in the AsmOperands list that this should be
443 /// copied from.
444 unsigned AsmOperandNum;
446 /// Description of tied operands.
447 TiedOperandsTuple TiedOperands;
449 /// ImmVal - This is the immediate value added to the instruction.
450 int64_t ImmVal;
452 /// Register - This is the register record.
453 Record *Register;
456 /// MINumOperands - The number of MCInst operands populated by this
457 /// operand.
458 unsigned MINumOperands;
460 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
461 ResOperand X;
462 X.Kind = RenderAsmOperand;
463 X.AsmOperandNum = AsmOpNum;
464 X.MINumOperands = NumOperands;
465 return X;
468 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
469 unsigned SrcOperand2) {
470 ResOperand X;
471 X.Kind = TiedOperand;
472 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
473 X.MINumOperands = 1;
474 return X;
477 static ResOperand getImmOp(int64_t Val) {
478 ResOperand X;
479 X.Kind = ImmOperand;
480 X.ImmVal = Val;
481 X.MINumOperands = 1;
482 return X;
485 static ResOperand getRegOp(Record *Reg) {
486 ResOperand X;
487 X.Kind = RegOperand;
488 X.Register = Reg;
489 X.MINumOperands = 1;
490 return X;
494 /// AsmVariantID - Target's assembly syntax variant no.
495 int AsmVariantID;
497 /// AsmString - The assembly string for this instruction (with variants
498 /// removed), e.g. "movsx $src, $dst".
499 std::string AsmString;
501 /// TheDef - This is the definition of the instruction or InstAlias that this
502 /// matchable came from.
503 Record *const TheDef;
505 /// DefRec - This is the definition that it came from.
506 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
508 const CodeGenInstruction *getResultInst() const {
509 if (isa<const CodeGenInstruction *>(DefRec))
510 return cast<const CodeGenInstruction *>(DefRec);
511 return cast<const CodeGenInstAlias *>(DefRec)->ResultInst;
514 /// ResOperands - This is the operand list that should be built for the result
515 /// MCInst.
516 SmallVector<ResOperand, 8> ResOperands;
518 /// Mnemonic - This is the first token of the matched instruction, its
519 /// mnemonic.
520 StringRef Mnemonic;
522 /// AsmOperands - The textual operands that this instruction matches,
523 /// annotated with a class and where in the OperandList they were defined.
524 /// This directly corresponds to the tokenized AsmString after the mnemonic is
525 /// removed.
526 SmallVector<AsmOperand, 8> AsmOperands;
528 /// Predicates - The required subtarget features to match this instruction.
529 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
531 /// ConversionFnKind - The enum value which is passed to the generated
532 /// convertToMCInst to convert parsed operands into an MCInst for this
533 /// function.
534 std::string ConversionFnKind;
536 /// If this instruction is deprecated in some form.
537 bool HasDeprecation = false;
539 /// If this is an alias, this is use to determine whether or not to using
540 /// the conversion function defined by the instruction's AsmMatchConverter
541 /// or to use the function generated by the alias.
542 bool UseInstAsmMatchConverter;
544 MatchableInfo(const CodeGenInstruction &CGI)
545 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
546 UseInstAsmMatchConverter(true) {
549 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
550 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
551 DefRec(Alias.release()),
552 UseInstAsmMatchConverter(
553 TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
556 // Could remove this and the dtor if PointerUnion supported unique_ptr
557 // elements with a dynamic failure/assertion (like the one below) in the case
558 // where it was copied while being in an owning state.
559 MatchableInfo(const MatchableInfo &RHS)
560 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
561 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
562 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
563 RequiredFeatures(RHS.RequiredFeatures),
564 ConversionFnKind(RHS.ConversionFnKind),
565 HasDeprecation(RHS.HasDeprecation),
566 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
567 assert(!isa<const CodeGenInstAlias *>(DefRec));
570 ~MatchableInfo() {
571 delete dyn_cast_if_present<const CodeGenInstAlias *>(DefRec);
574 // Two-operand aliases clone from the main matchable, but mark the second
575 // operand as a tied operand of the first for purposes of the assembler.
576 void formTwoOperandAlias(StringRef Constraint);
578 void initialize(const AsmMatcherInfo &Info,
579 SmallPtrSetImpl<Record*> &SingletonRegisters,
580 AsmVariantInfo const &Variant,
581 bool HasMnemonicFirst);
583 /// validate - Return true if this matchable is a valid thing to match against
584 /// and perform a bunch of validity checking.
585 bool validate(StringRef CommentDelimiter, bool IsAlias) const;
587 /// findAsmOperand - Find the AsmOperand with the specified name and
588 /// suboperand index.
589 int findAsmOperand(StringRef N, int SubOpIdx) const {
590 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
591 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
593 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
596 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
597 /// This does not check the suboperand index.
598 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
599 auto I =
600 llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1),
601 [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
602 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
605 int findAsmOperandOriginallyNamed(StringRef N) const {
606 auto I =
607 find_if(AsmOperands,
608 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
609 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
612 void buildInstructionResultOperands();
613 void buildAliasResultOperands(bool AliasConstraintsAreChecked);
615 /// operator< - Compare two matchables.
616 bool operator<(const MatchableInfo &RHS) const {
617 // The primary comparator is the instruction mnemonic.
618 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic))
619 return Cmp == -1;
621 if (AsmOperands.size() != RHS.AsmOperands.size())
622 return AsmOperands.size() < RHS.AsmOperands.size();
624 // Compare lexicographically by operand. The matcher validates that other
625 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
626 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
627 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
628 return true;
629 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
630 return false;
633 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the
634 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead
635 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID.
636 // We use the ID to sort AVX instruction before AVX512 instruction in
637 // matching table.
638 if (TheDef->isSubClassOf("Instruction") &&
639 TheDef->getValueAsBit("HasPositionOrder") &&
640 RHS.TheDef->isSubClassOf("Instruction") &&
641 RHS.TheDef->getValueAsBit("HasPositionOrder"))
642 return TheDef->getID() < RHS.TheDef->getID();
644 // Give matches that require more features higher precedence. This is useful
645 // because we cannot define AssemblerPredicates with the negation of
646 // processor features. For example, ARM v6 "nop" may be either a HINT or
647 // MOV. With v6, we want to match HINT. The assembler has no way to
648 // predicate MOV under "NoV6", but HINT will always match first because it
649 // requires V6 while MOV does not.
650 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
651 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
653 return false;
656 /// couldMatchAmbiguouslyWith - Check whether this matchable could
657 /// ambiguously match the same set of operands as \p RHS (without being a
658 /// strictly superior match).
659 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
660 // The primary comparator is the instruction mnemonic.
661 if (Mnemonic != RHS.Mnemonic)
662 return false;
664 // Different variants can't conflict.
665 if (AsmVariantID != RHS.AsmVariantID)
666 return false;
668 // The number of operands is unambiguous.
669 if (AsmOperands.size() != RHS.AsmOperands.size())
670 return false;
672 // Otherwise, make sure the ordering of the two instructions is unambiguous
673 // by checking that either (a) a token or operand kind discriminates them,
674 // or (b) the ordering among equivalent kinds is consistent.
676 // Tokens and operand kinds are unambiguous (assuming a correct target
677 // specific parser).
678 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
679 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
680 AsmOperands[i].Class->Kind == ClassInfo::Token)
681 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
682 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
683 return false;
685 // Otherwise, this operand could commute if all operands are equivalent, or
686 // there is a pair of operands that compare less than and a pair that
687 // compare greater than.
688 bool HasLT = false, HasGT = false;
689 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
690 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
691 HasLT = true;
692 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
693 HasGT = true;
696 return HasLT == HasGT;
699 void dump() const;
701 private:
702 void tokenizeAsmString(AsmMatcherInfo const &Info,
703 AsmVariantInfo const &Variant);
704 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
707 struct OperandMatchEntry {
708 unsigned OperandMask;
709 const MatchableInfo* MI;
710 ClassInfo *CI;
712 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
713 unsigned opMask) {
714 OperandMatchEntry X;
715 X.OperandMask = opMask;
716 X.CI = ci;
717 X.MI = mi;
718 return X;
722 class AsmMatcherInfo {
723 public:
724 /// Tracked Records
725 RecordKeeper &Records;
727 /// The tablegen AsmParser record.
728 Record *AsmParser;
730 /// Target - The target information.
731 CodeGenTarget &Target;
733 /// The classes which are needed for matching.
734 std::forward_list<ClassInfo> Classes;
736 /// The information on the matchables to match.
737 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
739 /// Info for custom matching operands by user defined methods.
740 std::vector<OperandMatchEntry> OperandMatchInfo;
742 /// Map of Register records to their class information.
743 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
744 RegisterClassesTy RegisterClasses;
746 /// Map of Predicate records to their subtarget information.
747 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
749 /// Map of AsmOperandClass records to their class information.
750 std::map<Record*, ClassInfo*> AsmOperandClasses;
752 /// Map of RegisterClass records to their class information.
753 std::map<Record*, ClassInfo*> RegisterClassClasses;
755 private:
756 /// Map of token to class information which has already been constructed.
757 std::map<std::string, ClassInfo*> TokenClasses;
759 private:
760 /// getTokenClass - Lookup or create the class for the given token.
761 ClassInfo *getTokenClass(StringRef Token);
763 /// getOperandClass - Lookup or create the class for the given operand.
764 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
765 int SubOpIdx);
766 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
768 /// buildRegisterClasses - Build the ClassInfo* instances for register
769 /// classes.
770 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
772 /// buildOperandClasses - Build the ClassInfo* instances for user defined
773 /// operand classes.
774 void buildOperandClasses();
776 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
777 unsigned AsmOpIdx);
778 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
779 MatchableInfo::AsmOperand &Op);
781 public:
782 AsmMatcherInfo(Record *AsmParser,
783 CodeGenTarget &Target,
784 RecordKeeper &Records);
786 /// Construct the various tables used during matching.
787 void buildInfo();
789 /// buildOperandMatchInfo - Build the necessary information to handle user
790 /// defined operand parsing methods.
791 void buildOperandMatchInfo();
793 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
794 /// given operand.
795 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
796 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
797 const auto &I = SubtargetFeatures.find(Def);
798 return I == SubtargetFeatures.end() ? nullptr : &I->second;
801 RecordKeeper &getRecords() const {
802 return Records;
805 bool hasOptionalOperands() const {
806 return any_of(Classes,
807 [](const ClassInfo &Class) { return Class.IsOptional; });
811 } // end anonymous namespace
813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
814 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
815 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
817 errs() << " variant: " << AsmVariantID << "\n";
819 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
820 const AsmOperand &Op = AsmOperands[i];
821 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
822 errs() << '\"' << Op.Token << "\"\n";
825 #endif
827 static std::pair<StringRef, StringRef>
828 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
829 // Split via the '='.
830 std::pair<StringRef, StringRef> Ops = S.split('=');
831 if (Ops.second == "")
832 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
833 // Trim whitespace and the leading '$' on the operand names.
834 size_t start = Ops.first.find_first_of('$');
835 if (start == std::string::npos)
836 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
837 Ops.first = Ops.first.slice(start + 1, std::string::npos);
838 size_t end = Ops.first.find_last_of(" \t");
839 Ops.first = Ops.first.slice(0, end);
840 // Now the second operand.
841 start = Ops.second.find_first_of('$');
842 if (start == std::string::npos)
843 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
844 Ops.second = Ops.second.slice(start + 1, std::string::npos);
845 end = Ops.second.find_last_of(" \t");
846 Ops.first = Ops.first.slice(0, end);
847 return Ops;
850 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
851 // Figure out which operands are aliased and mark them as tied.
852 std::pair<StringRef, StringRef> Ops =
853 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
855 // Find the AsmOperands that refer to the operands we're aliasing.
856 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
857 int DstAsmOperand = findAsmOperandNamed(Ops.second);
858 if (SrcAsmOperand == -1)
859 PrintFatalError(TheDef->getLoc(),
860 "unknown source two-operand alias operand '" + Ops.first +
861 "'.");
862 if (DstAsmOperand == -1)
863 PrintFatalError(TheDef->getLoc(),
864 "unknown destination two-operand alias operand '" +
865 Ops.second + "'.");
867 // Find the ResOperand that refers to the operand we're aliasing away
868 // and update it to refer to the combined operand instead.
869 for (ResOperand &Op : ResOperands) {
870 if (Op.Kind == ResOperand::RenderAsmOperand &&
871 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
872 Op.AsmOperandNum = DstAsmOperand;
873 break;
876 // Remove the AsmOperand for the alias operand.
877 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
878 // Adjust the ResOperand references to any AsmOperands that followed
879 // the one we just deleted.
880 for (ResOperand &Op : ResOperands) {
881 switch(Op.Kind) {
882 default:
883 // Nothing to do for operands that don't reference AsmOperands.
884 break;
885 case ResOperand::RenderAsmOperand:
886 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
887 --Op.AsmOperandNum;
888 break;
893 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
894 /// if present, from specified token.
895 static void
896 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
897 const AsmMatcherInfo &Info,
898 StringRef RegisterPrefix) {
899 StringRef Tok = Op.Token;
901 // If this token is not an isolated token, i.e., it isn't separated from
902 // other tokens (e.g. with whitespace), don't interpret it as a register name.
903 if (!Op.IsIsolatedToken)
904 return;
906 if (RegisterPrefix.empty()) {
907 std::string LoweredTok = Tok.lower();
908 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
909 Op.SingletonReg = Reg->TheDef;
910 return;
913 if (!Tok.starts_with(RegisterPrefix))
914 return;
916 StringRef RegName = Tok.substr(RegisterPrefix.size());
917 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
918 Op.SingletonReg = Reg->TheDef;
920 // If there is no register prefix (i.e. "%" in "%eax"), then this may
921 // be some random non-register token, just ignore it.
924 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
925 SmallPtrSetImpl<Record*> &SingletonRegisters,
926 AsmVariantInfo const &Variant,
927 bool HasMnemonicFirst) {
928 AsmVariantID = Variant.AsmVariantNo;
929 AsmString =
930 CodeGenInstruction::FlattenAsmStringVariants(AsmString,
931 Variant.AsmVariantNo);
933 tokenizeAsmString(Info, Variant);
935 // The first token of the instruction is the mnemonic, which must be a
936 // simple string, not a $foo variable or a singleton register.
937 if (AsmOperands.empty())
938 PrintFatalError(TheDef->getLoc(),
939 "Instruction '" + TheDef->getName() + "' has no tokens");
941 assert(!AsmOperands[0].Token.empty());
942 if (HasMnemonicFirst) {
943 Mnemonic = AsmOperands[0].Token;
944 if (Mnemonic[0] == '$')
945 PrintFatalError(TheDef->getLoc(),
946 "Invalid instruction mnemonic '" + Mnemonic + "'!");
948 // Remove the first operand, it is tracked in the mnemonic field.
949 AsmOperands.erase(AsmOperands.begin());
950 } else if (AsmOperands[0].Token[0] != '$')
951 Mnemonic = AsmOperands[0].Token;
953 // Compute the require features.
954 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
955 if (const SubtargetFeatureInfo *Feature =
956 Info.getSubtargetFeature(Predicate))
957 RequiredFeatures.push_back(Feature);
959 // Collect singleton registers, if used.
960 for (MatchableInfo::AsmOperand &Op : AsmOperands) {
961 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
962 if (Record *Reg = Op.SingletonReg)
963 SingletonRegisters.insert(Reg);
966 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
967 if (!DepMask)
968 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
970 HasDeprecation =
971 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
974 /// Append an AsmOperand for the given substring of AsmString.
975 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
976 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
979 /// tokenizeAsmString - Tokenize a simplified assembly string.
980 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
981 AsmVariantInfo const &Variant) {
982 StringRef String = AsmString;
983 size_t Prev = 0;
984 bool InTok = false;
985 bool IsIsolatedToken = true;
986 for (size_t i = 0, e = String.size(); i != e; ++i) {
987 char Char = String[i];
988 if (Variant.BreakCharacters.contains(Char)) {
989 if (InTok) {
990 addAsmOperand(String.slice(Prev, i), false);
991 Prev = i;
992 IsIsolatedToken = false;
994 InTok = true;
995 continue;
997 if (Variant.TokenizingCharacters.contains(Char)) {
998 if (InTok) {
999 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1000 InTok = false;
1001 IsIsolatedToken = false;
1003 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1004 Prev = i + 1;
1005 IsIsolatedToken = true;
1006 continue;
1008 if (Variant.SeparatorCharacters.contains(Char)) {
1009 if (InTok) {
1010 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1011 InTok = false;
1013 Prev = i + 1;
1014 IsIsolatedToken = true;
1015 continue;
1018 switch (Char) {
1019 case '\\':
1020 if (InTok) {
1021 addAsmOperand(String.slice(Prev, i), false);
1022 InTok = false;
1023 IsIsolatedToken = false;
1025 ++i;
1026 assert(i != String.size() && "Invalid quoted character");
1027 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1028 Prev = i + 1;
1029 IsIsolatedToken = false;
1030 break;
1032 case '$': {
1033 if (InTok) {
1034 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1035 InTok = false;
1036 IsIsolatedToken = false;
1039 // If this isn't "${", start new identifier looking like "$xxx"
1040 if (i + 1 == String.size() || String[i + 1] != '{') {
1041 Prev = i;
1042 break;
1045 size_t EndPos = String.find('}', i);
1046 assert(EndPos != StringRef::npos &&
1047 "Missing brace in operand reference!");
1048 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1049 Prev = EndPos + 1;
1050 i = EndPos;
1051 IsIsolatedToken = false;
1052 break;
1055 default:
1056 InTok = true;
1057 break;
1060 if (InTok && Prev != String.size())
1061 addAsmOperand(String.substr(Prev), IsIsolatedToken);
1064 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1065 // Reject matchables with no .s string.
1066 if (AsmString.empty())
1067 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1069 // Reject any matchables with a newline in them, they should be marked
1070 // isCodeGenOnly if they are pseudo instructions.
1071 if (AsmString.find('\n') != std::string::npos)
1072 PrintFatalError(TheDef->getLoc(),
1073 "multiline instruction is not valid for the asmparser, "
1074 "mark it isCodeGenOnly");
1076 // Remove comments from the asm string. We know that the asmstring only
1077 // has one line.
1078 if (!CommentDelimiter.empty() &&
1079 StringRef(AsmString).contains(CommentDelimiter))
1080 PrintFatalError(TheDef->getLoc(),
1081 "asmstring for instruction has comment character in it, "
1082 "mark it isCodeGenOnly");
1084 // Reject matchables with operand modifiers, these aren't something we can
1085 // handle, the target should be refactored to use operands instead of
1086 // modifiers.
1088 // Also, check for instructions which reference the operand multiple times,
1089 // if they don't define a custom AsmMatcher: this implies a constraint that
1090 // the built-in matching code would not honor.
1091 std::set<std::string> OperandNames;
1092 for (const AsmOperand &Op : AsmOperands) {
1093 StringRef Tok = Op.Token;
1094 if (Tok[0] == '$' && Tok.contains(':'))
1095 PrintFatalError(TheDef->getLoc(),
1096 "matchable with operand modifier '" + Tok +
1097 "' not supported by asm matcher. Mark isCodeGenOnly!");
1098 // Verify that any operand is only mentioned once.
1099 // We reject aliases and ignore instructions for now.
1100 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1101 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1102 LLVM_DEBUG({
1103 errs() << "warning: '" << TheDef->getName() << "': "
1104 << "ignoring instruction with tied operand '"
1105 << Tok << "'\n";
1107 return false;
1111 return true;
1114 static std::string getEnumNameForToken(StringRef Str) {
1115 std::string Res;
1117 for (char C : Str) {
1118 switch (C) {
1119 case '*': Res += "_STAR_"; break;
1120 case '%': Res += "_PCT_"; break;
1121 case ':': Res += "_COLON_"; break;
1122 case '!': Res += "_EXCLAIM_"; break;
1123 case '.': Res += "_DOT_"; break;
1124 case '<': Res += "_LT_"; break;
1125 case '>': Res += "_GT_"; break;
1126 case '-': Res += "_MINUS_"; break;
1127 case '#': Res += "_HASH_"; break;
1128 default:
1129 if (isAlnum(C))
1130 Res += C;
1131 else
1132 Res += "_" + utostr((unsigned)C) + "_";
1136 return Res;
1139 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1140 ClassInfo *&Entry = TokenClasses[std::string(Token)];
1142 if (!Entry) {
1143 Classes.emplace_front();
1144 Entry = &Classes.front();
1145 Entry->Kind = ClassInfo::Token;
1146 Entry->ClassName = "Token";
1147 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1148 Entry->ValueName = std::string(Token);
1149 Entry->PredicateMethod = "<invalid>";
1150 Entry->RenderMethod = "<invalid>";
1151 Entry->ParserMethod = "";
1152 Entry->DiagnosticType = "";
1153 Entry->IsOptional = false;
1154 Entry->DefaultMethod = "<invalid>";
1157 return Entry;
1160 ClassInfo *
1161 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1162 int SubOpIdx) {
1163 Record *Rec = OI.Rec;
1164 if (SubOpIdx != -1)
1165 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1166 return getOperandClass(Rec, SubOpIdx);
1169 ClassInfo *
1170 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1171 if (Rec->isSubClassOf("RegisterOperand")) {
1172 // RegisterOperand may have an associated ParserMatchClass. If it does,
1173 // use it, else just fall back to the underlying register class.
1174 const RecordVal *R = Rec->getValue("ParserMatchClass");
1175 if (!R || !R->getValue())
1176 PrintFatalError(Rec->getLoc(),
1177 "Record `" + Rec->getName() +
1178 "' does not have a ParserMatchClass!\n");
1180 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1181 Record *MatchClass = DI->getDef();
1182 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1183 return CI;
1186 // No custom match class. Just use the register class.
1187 Record *ClassRec = Rec->getValueAsDef("RegClass");
1188 if (!ClassRec)
1189 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1190 "' has no associated register class!\n");
1191 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1192 return CI;
1193 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1196 if (Rec->isSubClassOf("RegisterClass")) {
1197 if (ClassInfo *CI = RegisterClassClasses[Rec])
1198 return CI;
1199 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1202 if (!Rec->isSubClassOf("Operand"))
1203 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1204 "' does not derive from class Operand!\n");
1205 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1206 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1207 return CI;
1209 PrintFatalError(Rec->getLoc(), "operand has no match class!");
1212 struct LessRegisterSet {
1213 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1214 // std::set<T> defines its own compariso "operator<", but it
1215 // performs a lexicographical comparison by T's innate comparison
1216 // for some reason. We don't want non-deterministic pointer
1217 // comparisons so use this instead.
1218 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1219 RHS.begin(), RHS.end(),
1220 LessRecordByID());
1224 void AsmMatcherInfo::
1225 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1226 const auto &Registers = Target.getRegBank().getRegisters();
1227 auto &RegClassList = Target.getRegBank().getRegClasses();
1229 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1231 // The register sets used for matching.
1232 RegisterSetSet RegisterSets;
1234 // Gather the defined sets.
1235 for (const CodeGenRegisterClass &RC : RegClassList)
1236 RegisterSets.insert(
1237 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1239 // Add any required singleton sets.
1240 for (Record *Rec : SingletonRegisters) {
1241 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1244 // Introduce derived sets where necessary (when a register does not determine
1245 // a unique register set class), and build the mapping of registers to the set
1246 // they should classify to.
1247 std::map<Record*, RegisterSet> RegisterMap;
1248 for (const CodeGenRegister &CGR : Registers) {
1249 // Compute the intersection of all sets containing this register.
1250 RegisterSet ContainingSet;
1252 for (const RegisterSet &RS : RegisterSets) {
1253 if (!RS.count(CGR.TheDef))
1254 continue;
1256 if (ContainingSet.empty()) {
1257 ContainingSet = RS;
1258 continue;
1261 RegisterSet Tmp;
1262 std::swap(Tmp, ContainingSet);
1263 std::insert_iterator<RegisterSet> II(ContainingSet,
1264 ContainingSet.begin());
1265 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1266 LessRecordByID());
1269 if (!ContainingSet.empty()) {
1270 RegisterSets.insert(ContainingSet);
1271 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1275 // Construct the register classes.
1276 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1277 unsigned Index = 0;
1278 for (const RegisterSet &RS : RegisterSets) {
1279 Classes.emplace_front();
1280 ClassInfo *CI = &Classes.front();
1281 CI->Kind = ClassInfo::RegisterClass0 + Index;
1282 CI->ClassName = "Reg" + utostr(Index);
1283 CI->Name = "MCK_Reg" + utostr(Index);
1284 CI->ValueName = "";
1285 CI->PredicateMethod = ""; // unused
1286 CI->RenderMethod = "addRegOperands";
1287 CI->Registers = RS;
1288 // FIXME: diagnostic type.
1289 CI->DiagnosticType = "";
1290 CI->IsOptional = false;
1291 CI->DefaultMethod = ""; // unused
1292 RegisterSetClasses.insert(std::make_pair(RS, CI));
1293 ++Index;
1296 // Find the superclasses; we could compute only the subgroup lattice edges,
1297 // but there isn't really a point.
1298 for (const RegisterSet &RS : RegisterSets) {
1299 ClassInfo *CI = RegisterSetClasses[RS];
1300 for (const RegisterSet &RS2 : RegisterSets)
1301 if (RS != RS2 &&
1302 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1303 LessRecordByID()))
1304 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1307 // Name the register classes which correspond to a user defined RegisterClass.
1308 for (const CodeGenRegisterClass &RC : RegClassList) {
1309 // Def will be NULL for non-user defined register classes.
1310 Record *Def = RC.getDef();
1311 if (!Def)
1312 continue;
1313 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1314 RC.getOrder().end())];
1315 if (CI->ValueName.empty()) {
1316 CI->ClassName = RC.getName();
1317 CI->Name = "MCK_" + RC.getName();
1318 CI->ValueName = RC.getName();
1319 } else
1320 CI->ValueName = CI->ValueName + "," + RC.getName();
1322 Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1323 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1324 CI->DiagnosticType = std::string(SI->getValue());
1326 Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1327 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1328 CI->DiagnosticString = std::string(SI->getValue());
1330 // If we have a diagnostic string but the diagnostic type is not specified
1331 // explicitly, create an anonymous diagnostic type.
1332 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1333 CI->DiagnosticType = RC.getName();
1335 RegisterClassClasses.insert(std::make_pair(Def, CI));
1338 // Populate the map for individual registers.
1339 for (auto &It : RegisterMap)
1340 RegisterClasses[It.first] = RegisterSetClasses[It.second];
1342 // Name the register classes which correspond to singleton registers.
1343 for (Record *Rec : SingletonRegisters) {
1344 ClassInfo *CI = RegisterClasses[Rec];
1345 assert(CI && "Missing singleton register class info!");
1347 if (CI->ValueName.empty()) {
1348 CI->ClassName = std::string(Rec->getName());
1349 CI->Name = "MCK_" + Rec->getName().str();
1350 CI->ValueName = std::string(Rec->getName());
1351 } else
1352 CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1356 void AsmMatcherInfo::buildOperandClasses() {
1357 std::vector<Record*> AsmOperands =
1358 Records.getAllDerivedDefinitions("AsmOperandClass");
1360 // Pre-populate AsmOperandClasses map.
1361 for (Record *Rec : AsmOperands) {
1362 Classes.emplace_front();
1363 AsmOperandClasses[Rec] = &Classes.front();
1366 unsigned Index = 0;
1367 for (Record *Rec : AsmOperands) {
1368 ClassInfo *CI = AsmOperandClasses[Rec];
1369 CI->Kind = ClassInfo::UserClass0 + Index;
1371 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1372 for (Init *I : Supers->getValues()) {
1373 DefInit *DI = dyn_cast<DefInit>(I);
1374 if (!DI) {
1375 PrintError(Rec->getLoc(), "Invalid super class reference!");
1376 continue;
1379 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1380 if (!SC)
1381 PrintError(Rec->getLoc(), "Invalid super class reference!");
1382 else
1383 CI->SuperClasses.push_back(SC);
1385 CI->ClassName = std::string(Rec->getValueAsString("Name"));
1386 CI->Name = "MCK_" + CI->ClassName;
1387 CI->ValueName = std::string(Rec->getName());
1389 // Get or construct the predicate method name.
1390 Init *PMName = Rec->getValueInit("PredicateMethod");
1391 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1392 CI->PredicateMethod = std::string(SI->getValue());
1393 } else {
1394 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1395 CI->PredicateMethod = "is" + CI->ClassName;
1398 // Get or construct the render method name.
1399 Init *RMName = Rec->getValueInit("RenderMethod");
1400 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1401 CI->RenderMethod = std::string(SI->getValue());
1402 } else {
1403 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1404 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1407 // Get the parse method name or leave it as empty.
1408 Init *PRMName = Rec->getValueInit("ParserMethod");
1409 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1410 CI->ParserMethod = std::string(SI->getValue());
1412 // Get the diagnostic type and string or leave them as empty.
1413 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1414 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1415 CI->DiagnosticType = std::string(SI->getValue());
1416 Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1417 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1418 CI->DiagnosticString = std::string(SI->getValue());
1419 // If we have a DiagnosticString, we need a DiagnosticType for use within
1420 // the matcher.
1421 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1422 CI->DiagnosticType = CI->ClassName;
1424 Init *IsOptional = Rec->getValueInit("IsOptional");
1425 if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1426 CI->IsOptional = BI->getValue();
1428 // Get or construct the default method name.
1429 Init *DMName = Rec->getValueInit("DefaultMethod");
1430 if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1431 CI->DefaultMethod = std::string(SI->getValue());
1432 } else {
1433 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1434 CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1437 ++Index;
1441 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1442 CodeGenTarget &target,
1443 RecordKeeper &records)
1444 : Records(records), AsmParser(asmParser), Target(target) {
1447 /// buildOperandMatchInfo - Build the necessary information to handle user
1448 /// defined operand parsing methods.
1449 void AsmMatcherInfo::buildOperandMatchInfo() {
1451 /// Map containing a mask with all operands indices that can be found for
1452 /// that class inside a instruction.
1453 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1454 OpClassMaskTy OpClassMask;
1456 bool CallCustomParserForAllOperands =
1457 AsmParser->getValueAsBit("CallCustomParserForAllOperands");
1458 for (const auto &MI : Matchables) {
1459 OpClassMask.clear();
1461 // Keep track of all operands of this instructions which belong to the
1462 // same class.
1463 unsigned NumOptionalOps = 0;
1464 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1465 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1466 if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) {
1467 unsigned &OperandMask = OpClassMask[Op.Class];
1468 OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1)
1469 << (i - NumOptionalOps);
1471 if (Op.Class->IsOptional)
1472 ++NumOptionalOps;
1475 // Generate operand match info for each mnemonic/operand class pair.
1476 for (const auto &OCM : OpClassMask) {
1477 unsigned OpMask = OCM.second;
1478 ClassInfo *CI = OCM.first;
1479 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1480 OpMask));
1485 void AsmMatcherInfo::buildInfo() {
1486 // Build information about all of the AssemblerPredicates.
1487 const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1488 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1489 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1490 SubtargetFeaturePairs.end());
1491 #ifndef NDEBUG
1492 for (const auto &Pair : SubtargetFeatures)
1493 LLVM_DEBUG(Pair.second.dump());
1494 #endif // NDEBUG
1496 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1497 bool ReportMultipleNearMisses =
1498 AsmParser->getValueAsBit("ReportMultipleNearMisses");
1500 // Parse the instructions; we need to do this first so that we can gather the
1501 // singleton register classes.
1502 SmallPtrSet<Record*, 16> SingletonRegisters;
1503 unsigned VariantCount = Target.getAsmParserVariantCount();
1504 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1505 Record *AsmVariant = Target.getAsmParserVariant(VC);
1506 StringRef CommentDelimiter =
1507 AsmVariant->getValueAsString("CommentDelimiter");
1508 AsmVariantInfo Variant;
1509 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1510 Variant.TokenizingCharacters =
1511 AsmVariant->getValueAsString("TokenizingCharacters");
1512 Variant.SeparatorCharacters =
1513 AsmVariant->getValueAsString("SeparatorCharacters");
1514 Variant.BreakCharacters =
1515 AsmVariant->getValueAsString("BreakCharacters");
1516 Variant.Name = AsmVariant->getValueAsString("Name");
1517 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1519 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1521 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1522 // filter the set of instructions we consider.
1523 if (!StringRef(CGI->TheDef->getName()).starts_with(MatchPrefix))
1524 continue;
1526 // Ignore "codegen only" instructions.
1527 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1528 continue;
1530 // Ignore instructions for different instructions
1531 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1532 if (!V.empty() && V != Variant.Name)
1533 continue;
1535 auto II = std::make_unique<MatchableInfo>(*CGI);
1537 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1539 // Ignore instructions which shouldn't be matched and diagnose invalid
1540 // instruction definitions with an error.
1541 if (!II->validate(CommentDelimiter, false))
1542 continue;
1544 Matchables.push_back(std::move(II));
1547 // Parse all of the InstAlias definitions and stick them in the list of
1548 // matchables.
1549 std::vector<Record*> AllInstAliases =
1550 Records.getAllDerivedDefinitions("InstAlias");
1551 for (Record *InstAlias : AllInstAliases) {
1552 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1554 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1555 // filter the set of instruction aliases we consider, based on the target
1556 // instruction.
1557 if (!StringRef(Alias->ResultInst->TheDef->getName())
1558 .starts_with(MatchPrefix))
1559 continue;
1561 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1562 if (!V.empty() && V != Variant.Name)
1563 continue;
1565 auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1567 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1569 // Validate the alias definitions.
1570 II->validate(CommentDelimiter, true);
1572 Matchables.push_back(std::move(II));
1576 // Build info for the register classes.
1577 buildRegisterClasses(SingletonRegisters);
1579 // Build info for the user defined assembly operand classes.
1580 buildOperandClasses();
1582 // Build the information about matchables, now that we have fully formed
1583 // classes.
1584 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1585 for (auto &II : Matchables) {
1586 // Parse the tokens after the mnemonic.
1587 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1588 // don't precompute the loop bound.
1589 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1590 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1591 StringRef Token = Op.Token;
1593 // Check for singleton registers.
1594 if (Record *RegRecord = Op.SingletonReg) {
1595 Op.Class = RegisterClasses[RegRecord];
1596 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1597 "Unexpected class for singleton register");
1598 continue;
1601 // Check for simple tokens.
1602 if (Token[0] != '$') {
1603 Op.Class = getTokenClass(Token);
1604 continue;
1607 if (Token.size() > 1 && isdigit(Token[1])) {
1608 Op.Class = getTokenClass(Token);
1609 continue;
1612 // Otherwise this is an operand reference.
1613 StringRef OperandName;
1614 if (Token[1] == '{')
1615 OperandName = Token.substr(2, Token.size() - 3);
1616 else
1617 OperandName = Token.substr(1);
1619 if (isa<const CodeGenInstruction *>(II->DefRec))
1620 buildInstructionOperandReference(II.get(), OperandName, i);
1621 else
1622 buildAliasOperandReference(II.get(), OperandName, Op);
1625 if (isa<const CodeGenInstruction *>(II->DefRec)) {
1626 II->buildInstructionResultOperands();
1627 // If the instruction has a two-operand alias, build up the
1628 // matchable here. We'll add them in bulk at the end to avoid
1629 // confusing this loop.
1630 StringRef Constraint =
1631 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1632 if (Constraint != "") {
1633 // Start by making a copy of the original matchable.
1634 auto AliasII = std::make_unique<MatchableInfo>(*II);
1636 // Adjust it to be a two-operand alias.
1637 AliasII->formTwoOperandAlias(Constraint);
1639 // Add the alias to the matchables list.
1640 NewMatchables.push_back(std::move(AliasII));
1642 } else
1643 // FIXME: The tied operands checking is not yet integrated with the
1644 // framework for reporting multiple near misses. To prevent invalid
1645 // formats from being matched with an alias if a tied-operands check
1646 // would otherwise have disallowed it, we just disallow such constructs
1647 // in TableGen completely.
1648 II->buildAliasResultOperands(!ReportMultipleNearMisses);
1650 if (!NewMatchables.empty())
1651 Matchables.insert(Matchables.end(),
1652 std::make_move_iterator(NewMatchables.begin()),
1653 std::make_move_iterator(NewMatchables.end()));
1655 // Process token alias definitions and set up the associated superclass
1656 // information.
1657 std::vector<Record*> AllTokenAliases =
1658 Records.getAllDerivedDefinitions("TokenAlias");
1659 for (Record *Rec : AllTokenAliases) {
1660 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1661 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1662 if (FromClass == ToClass)
1663 PrintFatalError(Rec->getLoc(),
1664 "error: Destination value identical to source value.");
1665 FromClass->SuperClasses.push_back(ToClass);
1668 // Reorder classes so that classes precede super classes.
1669 Classes.sort();
1671 #ifdef EXPENSIVE_CHECKS
1672 // Verify that the table is sorted and operator < works transitively.
1673 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1674 for (auto J = I; J != E; ++J) {
1675 assert(!(*J < *I));
1676 assert(I == J || !J->isSubsetOf(*I));
1679 #endif
1682 /// buildInstructionOperandReference - The specified operand is a reference to a
1683 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1684 void AsmMatcherInfo::
1685 buildInstructionOperandReference(MatchableInfo *II,
1686 StringRef OperandName,
1687 unsigned AsmOpIdx) {
1688 const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(II->DefRec);
1689 const CGIOperandList &Operands = CGI.Operands;
1690 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1692 // Map this token to an operand.
1693 unsigned Idx;
1694 if (!Operands.hasOperandNamed(OperandName, Idx))
1695 PrintFatalError(II->TheDef->getLoc(),
1696 "error: unable to find operand: '" + OperandName + "'");
1698 // If the instruction operand has multiple suboperands, but the parser
1699 // match class for the asm operand is still the default "ImmAsmOperand",
1700 // then handle each suboperand separately.
1701 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1702 Record *Rec = Operands[Idx].Rec;
1703 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1704 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1705 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1706 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1707 StringRef Token = Op->Token; // save this in case Op gets moved
1708 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1709 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1710 NewAsmOp.SubOpIdx = SI;
1711 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1713 // Replace Op with first suboperand.
1714 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1715 Op->SubOpIdx = 0;
1719 // Set up the operand class.
1720 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1721 Op->OrigSrcOpName = OperandName;
1723 // If the named operand is tied, canonicalize it to the untied operand.
1724 // For example, something like:
1725 // (outs GPR:$dst), (ins GPR:$src)
1726 // with an asmstring of
1727 // "inc $src"
1728 // we want to canonicalize to:
1729 // "inc $dst"
1730 // so that we know how to provide the $dst operand when filling in the result.
1731 int OITied = -1;
1732 if (Operands[Idx].MINumOperands == 1)
1733 OITied = Operands[Idx].getTiedRegister();
1734 if (OITied != -1) {
1735 // The tied operand index is an MIOperand index, find the operand that
1736 // contains it.
1737 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1738 OperandName = Operands[Idx.first].Name;
1739 Op->SubOpIdx = Idx.second;
1742 Op->SrcOpName = OperandName;
1745 /// buildAliasOperandReference - When parsing an operand reference out of the
1746 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1747 /// operand reference is by looking it up in the result pattern definition.
1748 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1749 StringRef OperandName,
1750 MatchableInfo::AsmOperand &Op) {
1751 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(II->DefRec);
1753 // Set up the operand class.
1754 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1755 if (CGA.ResultOperands[i].isRecord() &&
1756 CGA.ResultOperands[i].getName() == OperandName) {
1757 // It's safe to go with the first one we find, because CodeGenInstAlias
1758 // validates that all operands with the same name have the same record.
1759 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1760 // Use the match class from the Alias definition, not the
1761 // destination instruction, as we may have an immediate that's
1762 // being munged by the match class.
1763 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1764 Op.SubOpIdx);
1765 Op.SrcOpName = OperandName;
1766 Op.OrigSrcOpName = OperandName;
1767 return;
1770 PrintFatalError(II->TheDef->getLoc(),
1771 "error: unable to find operand: '" + OperandName + "'");
1774 void MatchableInfo::buildInstructionResultOperands() {
1775 const CodeGenInstruction *ResultInst = getResultInst();
1777 // Loop over all operands of the result instruction, determining how to
1778 // populate them.
1779 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1780 // If this is a tied operand, just copy from the previously handled operand.
1781 int TiedOp = -1;
1782 if (OpInfo.MINumOperands == 1)
1783 TiedOp = OpInfo.getTiedRegister();
1784 if (TiedOp != -1) {
1785 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1786 if (TiedSrcOperand != -1 &&
1787 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1788 ResOperands.push_back(ResOperand::getTiedOp(
1789 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1790 else
1791 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1792 continue;
1795 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1796 if (OpInfo.Name.empty() || SrcOperand == -1) {
1797 // This may happen for operands that are tied to a suboperand of a
1798 // complex operand. Simply use a dummy value here; nobody should
1799 // use this operand slot.
1800 // FIXME: The long term goal is for the MCOperand list to not contain
1801 // tied operands at all.
1802 ResOperands.push_back(ResOperand::getImmOp(0));
1803 continue;
1806 // Check if the one AsmOperand populates the entire operand.
1807 unsigned NumOperands = OpInfo.MINumOperands;
1808 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1809 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1810 continue;
1813 // Add a separate ResOperand for each suboperand.
1814 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1815 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1816 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1817 "unexpected AsmOperands for suboperands");
1818 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1823 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1824 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(DefRec);
1825 const CodeGenInstruction *ResultInst = getResultInst();
1827 // Map of: $reg -> #lastref
1828 // where $reg is the name of the operand in the asm string
1829 // where #lastref is the last processed index where $reg was referenced in
1830 // the asm string.
1831 SmallDenseMap<StringRef, int> OperandRefs;
1833 // Loop over all operands of the result instruction, determining how to
1834 // populate them.
1835 unsigned AliasOpNo = 0;
1836 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1837 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1838 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1840 // If this is a tied operand, just copy from the previously handled operand.
1841 int TiedOp = -1;
1842 if (OpInfo->MINumOperands == 1)
1843 TiedOp = OpInfo->getTiedRegister();
1844 if (TiedOp != -1) {
1845 unsigned SrcOp1 = 0;
1846 unsigned SrcOp2 = 0;
1848 // If an operand has been specified twice in the asm string,
1849 // add the two source operand's indices to the TiedOp so that
1850 // at runtime the 'tied' constraint is checked.
1851 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1852 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1854 // Find the next operand (similarly named operand) in the string.
1855 StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1856 auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1857 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1859 // Not updating the record in OperandRefs will cause TableGen
1860 // to fail with an error at the end of this function.
1861 if (AliasConstraintsAreChecked)
1862 Insert.first->second = SrcOp2;
1864 // In case it only has one reference in the asm string,
1865 // it doesn't need to be checked for tied constraints.
1866 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1869 // If the alias operand is of a different operand class, we only want
1870 // to benefit from the tied-operands check and just match the operand
1871 // as a normal, but not copy the original (TiedOp) to the result
1872 // instruction. We do this by passing -1 as the tied operand to copy.
1873 if (ResultInst->Operands[i].Rec->getName() !=
1874 ResultInst->Operands[TiedOp].Rec->getName()) {
1875 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1876 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1877 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1878 SrcOp2 = findAsmOperand(Name, SubIdx);
1879 ResOperands.push_back(
1880 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1881 } else {
1882 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1883 continue;
1887 // Handle all the suboperands for this operand.
1888 const std::string &OpName = OpInfo->Name;
1889 for ( ; AliasOpNo < LastOpNo &&
1890 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1891 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1893 // Find out what operand from the asmparser that this MCInst operand
1894 // comes from.
1895 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1896 case CodeGenInstAlias::ResultOperand::K_Record: {
1897 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1898 int SrcOperand = findAsmOperand(Name, SubIdx);
1899 if (SrcOperand == -1)
1900 PrintFatalError(TheDef->getLoc(), "Instruction '" +
1901 TheDef->getName() + "' has operand '" + OpName +
1902 "' that doesn't appear in asm string!");
1904 // Add it to the operand references. If it is added a second time, the
1905 // record won't be updated and it will fail later on.
1906 OperandRefs.try_emplace(Name, SrcOperand);
1908 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1909 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1910 NumOperands));
1911 break;
1913 case CodeGenInstAlias::ResultOperand::K_Imm: {
1914 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1915 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1916 break;
1918 case CodeGenInstAlias::ResultOperand::K_Reg: {
1919 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1920 ResOperands.push_back(ResOperand::getRegOp(Reg));
1921 break;
1927 // Check that operands are not repeated more times than is supported.
1928 for (auto &T : OperandRefs) {
1929 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1930 PrintFatalError(TheDef->getLoc(),
1931 "Operand '" + T.first + "' can never be matched");
1935 static unsigned
1936 getConverterOperandID(const std::string &Name,
1937 SmallSetVector<CachedHashString, 16> &Table,
1938 bool &IsNew) {
1939 IsNew = Table.insert(CachedHashString(Name));
1941 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1943 assert(ID < Table.size());
1945 return ID;
1948 static unsigned
1949 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1950 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1951 bool HasMnemonicFirst, bool HasOptionalOperands,
1952 raw_ostream &OS) {
1953 SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1954 SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1955 std::vector<std::vector<uint8_t> > ConversionTable;
1956 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1958 // TargetOperandClass - This is the target's operand class, like X86Operand.
1959 std::string TargetOperandClass = Target.getName().str() + "Operand";
1961 // Write the convert function to a separate stream, so we can drop it after
1962 // the enum. We'll build up the conversion handlers for the individual
1963 // operand types opportunistically as we encounter them.
1964 std::string ConvertFnBody;
1965 raw_string_ostream CvtOS(ConvertFnBody);
1966 // Start the unified conversion function.
1967 if (HasOptionalOperands) {
1968 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1969 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1970 << "unsigned Opcode,\n"
1971 << " const OperandVector &Operands,\n"
1972 << " const SmallBitVector &OptionalOperandsMask) {\n";
1973 } else {
1974 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1975 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1976 << "unsigned Opcode,\n"
1977 << " const OperandVector &Operands) {\n";
1979 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1980 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
1981 if (HasOptionalOperands) {
1982 size_t MaxNumOperands = 0;
1983 for (const auto &MI : Infos) {
1984 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1986 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1987 << "] = { 0 };\n";
1988 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1989 << ");\n";
1990 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1991 << "; ++i) {\n";
1992 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n";
1993 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1994 CvtOS << " }\n";
1996 CvtOS << " unsigned OpIdx;\n";
1997 CvtOS << " Inst.setOpcode(Opcode);\n";
1998 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
1999 if (HasOptionalOperands) {
2000 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
2001 } else {
2002 CvtOS << " OpIdx = *(p + 1);\n";
2004 CvtOS << " switch (*p) {\n";
2005 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
2006 CvtOS << " case CVT_Reg:\n";
2007 CvtOS << " static_cast<" << TargetOperandClass
2008 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
2009 CvtOS << " break;\n";
2010 CvtOS << " case CVT_Tied: {\n";
2011 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
2012 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n";
2013 CvtOS << " \"Tied operand not found\");\n";
2014 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
2015 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
2016 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2017 CvtOS << " break;\n";
2018 CvtOS << " }\n";
2020 std::string OperandFnBody;
2021 raw_string_ostream OpOS(OperandFnBody);
2022 // Start the operand number lookup function.
2023 OpOS << "void " << Target.getName() << ClassName << "::\n"
2024 << "convertToMapAndConstraints(unsigned Kind,\n";
2025 OpOS.indent(27);
2026 OpOS << "const OperandVector &Operands) {\n"
2027 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2028 << " unsigned NumMCOperands = 0;\n"
2029 << " const uint8_t *Converter = ConversionTable[Kind];\n"
2030 << " for (const uint8_t *p = Converter; *p; p += 2) {\n"
2031 << " switch (*p) {\n"
2032 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
2033 << " case CVT_Reg:\n"
2034 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2035 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
2036 << " ++NumMCOperands;\n"
2037 << " break;\n"
2038 << " case CVT_Tied:\n"
2039 << " ++NumMCOperands;\n"
2040 << " break;\n";
2042 // Pre-populate the operand conversion kinds with the standard always
2043 // available entries.
2044 OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2045 OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2046 OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2047 enum { CVT_Done, CVT_Reg, CVT_Tied };
2049 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2050 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2051 TiedOperandsEnumMap;
2053 for (auto &II : Infos) {
2054 // Check if we have a custom match function.
2055 StringRef AsmMatchConverter =
2056 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2057 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2058 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2059 II->ConversionFnKind = Signature;
2061 // Check if we have already generated this signature.
2062 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2063 continue;
2065 // Remember this converter for the kind enum.
2066 unsigned KindID = OperandConversionKinds.size();
2067 OperandConversionKinds.insert(
2068 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2070 // Add the converter row for this instruction.
2071 ConversionTable.emplace_back();
2072 ConversionTable.back().push_back(KindID);
2073 ConversionTable.back().push_back(CVT_Done);
2075 // Add the handler to the conversion driver function.
2076 CvtOS << " case CVT_"
2077 << getEnumNameForToken(AsmMatchConverter) << ":\n"
2078 << " " << AsmMatchConverter << "(Inst, Operands);\n"
2079 << " break;\n";
2081 // FIXME: Handle the operand number lookup for custom match functions.
2082 continue;
2085 // Build the conversion function signature.
2086 std::string Signature = "Convert";
2088 std::vector<uint8_t> ConversionRow;
2090 // Compute the convert enum and the case body.
2091 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2093 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2094 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2096 // Generate code to populate each result operand.
2097 switch (OpInfo.Kind) {
2098 case MatchableInfo::ResOperand::RenderAsmOperand: {
2099 // This comes from something we parsed.
2100 const MatchableInfo::AsmOperand &Op =
2101 II->AsmOperands[OpInfo.AsmOperandNum];
2103 // Registers are always converted the same, don't duplicate the
2104 // conversion function based on them.
2105 Signature += "__";
2106 std::string Class;
2107 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2108 Signature += Class;
2109 Signature += utostr(OpInfo.MINumOperands);
2110 Signature += "_" + itostr(OpInfo.AsmOperandNum);
2112 // Add the conversion kind, if necessary, and get the associated ID
2113 // the index of its entry in the vector).
2114 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2115 Op.Class->RenderMethod);
2116 if (Op.Class->IsOptional) {
2117 // For optional operands we must also care about DefaultMethod
2118 assert(HasOptionalOperands);
2119 Name += "_" + Op.Class->DefaultMethod;
2121 Name = getEnumNameForToken(Name);
2123 bool IsNewConverter = false;
2124 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2125 IsNewConverter);
2127 // Add the operand entry to the instruction kind conversion row.
2128 ConversionRow.push_back(ID);
2129 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2131 if (!IsNewConverter)
2132 break;
2134 // This is a new operand kind. Add a handler for it to the
2135 // converter driver.
2136 CvtOS << " case " << Name << ":\n";
2137 if (Op.Class->IsOptional) {
2138 // If optional operand is not present in actual instruction then we
2139 // should call its DefaultMethod before RenderMethod
2140 assert(HasOptionalOperands);
2141 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2142 << " " << Op.Class->DefaultMethod << "()"
2143 << "->" << Op.Class->RenderMethod << "(Inst, "
2144 << OpInfo.MINumOperands << ");\n"
2145 << " } else {\n"
2146 << " static_cast<" << TargetOperandClass
2147 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2148 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2149 << " }\n";
2150 } else {
2151 CvtOS << " static_cast<" << TargetOperandClass
2152 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2153 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2155 CvtOS << " break;\n";
2157 // Add a handler for the operand number lookup.
2158 OpOS << " case " << Name << ":\n"
2159 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2161 if (Op.Class->isRegisterClass())
2162 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2163 else
2164 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2165 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2166 << " break;\n";
2167 break;
2169 case MatchableInfo::ResOperand::TiedOperand: {
2170 // If this operand is tied to a previous one, just copy the MCInst
2171 // operand from the earlier one.We can only tie single MCOperand values.
2172 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2173 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2174 uint8_t SrcOp1 =
2175 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2176 uint8_t SrcOp2 =
2177 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2178 assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2179 "Tied operand precedes its target!");
2180 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2181 utostr(SrcOp1) + '_' + utostr(SrcOp2);
2182 Signature += "__" + TiedTupleName;
2183 ConversionRow.push_back(CVT_Tied);
2184 ConversionRow.push_back(TiedOp);
2185 ConversionRow.push_back(SrcOp1);
2186 ConversionRow.push_back(SrcOp2);
2188 // Also create an 'enum' for this combination of tied operands.
2189 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2190 TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2191 break;
2193 case MatchableInfo::ResOperand::ImmOperand: {
2194 int64_t Val = OpInfo.ImmVal;
2195 std::string Ty = "imm_" + itostr(Val);
2196 Ty = getEnumNameForToken(Ty);
2197 Signature += "__" + Ty;
2199 std::string Name = "CVT_" + Ty;
2200 bool IsNewConverter = false;
2201 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2202 IsNewConverter);
2203 // Add the operand entry to the instruction kind conversion row.
2204 ConversionRow.push_back(ID);
2205 ConversionRow.push_back(0);
2207 if (!IsNewConverter)
2208 break;
2210 CvtOS << " case " << Name << ":\n"
2211 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2212 << " break;\n";
2214 OpOS << " case " << Name << ":\n"
2215 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2216 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
2217 << " ++NumMCOperands;\n"
2218 << " break;\n";
2219 break;
2221 case MatchableInfo::ResOperand::RegOperand: {
2222 std::string Reg, Name;
2223 if (!OpInfo.Register) {
2224 Name = "reg0";
2225 Reg = "0";
2226 } else {
2227 Reg = getQualifiedName(OpInfo.Register);
2228 Name = "reg" + OpInfo.Register->getName().str();
2230 Signature += "__" + Name;
2231 Name = "CVT_" + Name;
2232 bool IsNewConverter = false;
2233 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2234 IsNewConverter);
2235 // Add the operand entry to the instruction kind conversion row.
2236 ConversionRow.push_back(ID);
2237 ConversionRow.push_back(0);
2239 if (!IsNewConverter)
2240 break;
2241 CvtOS << " case " << Name << ":\n"
2242 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2243 << " break;\n";
2245 OpOS << " case " << Name << ":\n"
2246 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2247 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2248 << " ++NumMCOperands;\n"
2249 << " break;\n";
2254 // If there were no operands, add to the signature to that effect
2255 if (Signature == "Convert")
2256 Signature += "_NoOperands";
2258 II->ConversionFnKind = Signature;
2260 // Save the signature. If we already have it, don't add a new row
2261 // to the table.
2262 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2263 continue;
2265 // Add the row to the table.
2266 ConversionTable.push_back(std::move(ConversionRow));
2269 // Finish up the converter driver function.
2270 CvtOS << " }\n }\n}\n\n";
2272 // Finish up the operand number lookup function.
2273 OpOS << " }\n }\n}\n\n";
2275 // Output a static table for tied operands.
2276 if (TiedOperandsEnumMap.size()) {
2277 // The number of tied operand combinations will be small in practice,
2278 // but just add the assert to be sure.
2279 assert(TiedOperandsEnumMap.size() <= 254 &&
2280 "Too many tied-operand combinations to reference with "
2281 "an 8bit offset from the conversion table, where index "
2282 "'255' is reserved as operand not to be copied.");
2284 OS << "enum {\n";
2285 for (auto &KV : TiedOperandsEnumMap) {
2286 OS << " " << KV.second << ",\n";
2288 OS << "};\n\n";
2290 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2291 for (auto &KV : TiedOperandsEnumMap) {
2292 OS << " /* " << KV.second << " */ { "
2293 << utostr(std::get<0>(KV.first)) << ", "
2294 << utostr(std::get<1>(KV.first)) << ", "
2295 << utostr(std::get<2>(KV.first)) << " },\n";
2297 OS << "};\n\n";
2298 } else
2299 OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2300 "{ /* empty */ {0, 0, 0} };\n\n";
2302 OS << "namespace {\n";
2304 // Output the operand conversion kind enum.
2305 OS << "enum OperatorConversionKind {\n";
2306 for (const auto &Converter : OperandConversionKinds)
2307 OS << " " << Converter << ",\n";
2308 OS << " CVT_NUM_CONVERTERS\n";
2309 OS << "};\n\n";
2311 // Output the instruction conversion kind enum.
2312 OS << "enum InstructionConversionKind {\n";
2313 for (const auto &Signature : InstructionConversionKinds)
2314 OS << " " << Signature << ",\n";
2315 OS << " CVT_NUM_SIGNATURES\n";
2316 OS << "};\n\n";
2318 OS << "} // end anonymous namespace\n\n";
2320 // Output the conversion table.
2321 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2322 << MaxRowLength << "] = {\n";
2324 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2325 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2326 OS << " // " << InstructionConversionKinds[Row] << "\n";
2327 OS << " { ";
2328 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2329 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2330 if (OperandConversionKinds[ConversionTable[Row][i]] !=
2331 CachedHashString("CVT_Tied")) {
2332 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2333 continue;
2336 // For a tied operand, emit a reference to the TiedAsmOperandTable
2337 // that contains the operand to copy, and the parsed operands to
2338 // check for their tied constraints.
2339 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2340 (uint8_t)ConversionTable[Row][i + 2],
2341 (uint8_t)ConversionTable[Row][i + 3]);
2342 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2343 assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2344 "No record for tied operand pair");
2345 OS << TiedOpndEnum->second << ", ";
2346 i += 2;
2348 OS << "CVT_Done },\n";
2351 OS << "};\n\n";
2353 // Spit out the conversion driver function.
2354 OS << CvtOS.str();
2356 // Spit out the operand number lookup function.
2357 OS << OpOS.str();
2359 return ConversionTable.size();
2362 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2363 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2364 std::forward_list<ClassInfo> &Infos,
2365 raw_ostream &OS) {
2366 OS << "namespace {\n\n";
2368 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2369 << "/// instruction matching.\n";
2370 OS << "enum MatchClassKind {\n";
2371 OS << " InvalidMatchClass = 0,\n";
2372 OS << " OptionalMatchClass = 1,\n";
2373 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2374 StringRef LastName = "OptionalMatchClass";
2375 for (const auto &CI : Infos) {
2376 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2377 OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
2378 } else if (LastKind < ClassInfo::UserClass0 &&
2379 CI.Kind >= ClassInfo::UserClass0) {
2380 OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
2382 LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2383 LastName = CI.Name;
2385 OS << " " << CI.Name << ", // ";
2386 if (CI.Kind == ClassInfo::Token) {
2387 OS << "'" << CI.ValueName << "'\n";
2388 } else if (CI.isRegisterClass()) {
2389 if (!CI.ValueName.empty())
2390 OS << "register class '" << CI.ValueName << "'\n";
2391 else
2392 OS << "derived register class\n";
2393 } else {
2394 OS << "user defined class '" << CI.ValueName << "'\n";
2397 OS << " NumMatchClassKinds\n";
2398 OS << "};\n\n";
2400 OS << "} // end anonymous namespace\n\n";
2403 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2404 /// used when an assembly operand does not match the expected operand class.
2405 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2406 // If the target does not use DiagnosticString for any operands, don't emit
2407 // an unused function.
2408 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2409 return CI.DiagnosticString.empty();
2411 return;
2413 OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2414 << "AsmParser::" << Info.Target.getName()
2415 << "MatchResultTy MatchResult) {\n";
2416 OS << " switch (MatchResult) {\n";
2418 for (const auto &CI: Info.Classes) {
2419 if (!CI.DiagnosticString.empty()) {
2420 assert(!CI.DiagnosticType.empty() &&
2421 "DiagnosticString set without DiagnosticType");
2422 OS << " case " << Info.Target.getName()
2423 << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2424 OS << " return \"" << CI.DiagnosticString << "\";\n";
2428 OS << " default:\n";
2429 OS << " return nullptr;\n";
2431 OS << " }\n";
2432 OS << "}\n\n";
2435 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2436 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2437 "RegisterClass) {\n";
2438 if (none_of(Info.Classes, [](const ClassInfo &CI) {
2439 return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2440 })) {
2441 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2442 } else {
2443 OS << " switch (RegisterClass) {\n";
2444 for (const auto &CI: Info.Classes) {
2445 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2446 OS << " case " << CI.Name << ":\n";
2447 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2448 << CI.DiagnosticType << ";\n";
2452 OS << " default:\n";
2453 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2455 OS << " }\n";
2457 OS << "}\n\n";
2460 /// emitValidateOperandClass - Emit the function to validate an operand class.
2461 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2462 raw_ostream &OS) {
2463 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2464 << "MatchClassKind Kind) {\n";
2465 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2466 << Info.Target.getName() << "Operand &)GOp;\n";
2468 // The InvalidMatchClass is not to match any operand.
2469 OS << " if (Kind == InvalidMatchClass)\n";
2470 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2472 // Check for Token operands first.
2473 // FIXME: Use a more specific diagnostic type.
2474 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2475 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2476 << " MCTargetAsmParser::Match_Success :\n"
2477 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2479 // Check the user classes. We don't care what order since we're only
2480 // actually matching against one of them.
2481 OS << " switch (Kind) {\n"
2482 " default: break;\n";
2483 for (const auto &CI : Info.Classes) {
2484 if (!CI.isUserClass())
2485 continue;
2487 OS << " // '" << CI.ClassName << "' class\n";
2488 OS << " case " << CI.Name << ": {\n";
2489 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2490 << "());\n";
2491 OS << " if (DP.isMatch())\n";
2492 OS << " return MCTargetAsmParser::Match_Success;\n";
2493 if (!CI.DiagnosticType.empty()) {
2494 OS << " if (DP.isNearMatch())\n";
2495 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2496 << CI.DiagnosticType << ";\n";
2497 OS << " break;\n";
2499 else
2500 OS << " break;\n";
2501 OS << " }\n";
2503 OS << " } // end switch (Kind)\n\n";
2505 // Check for register operands, including sub-classes.
2506 OS << " if (Operand.isReg()) {\n";
2507 OS << " MatchClassKind OpKind;\n";
2508 OS << " switch (Operand.getReg()) {\n";
2509 OS << " default: OpKind = InvalidMatchClass; break;\n";
2510 for (const auto &RC : Info.RegisterClasses)
2511 OS << " case " << RC.first->getValueAsString("Namespace") << "::"
2512 << RC.first->getName() << ": OpKind = " << RC.second->Name
2513 << "; break;\n";
2514 OS << " }\n";
2515 OS << " return isSubclass(OpKind, Kind) ? "
2516 << "(unsigned)MCTargetAsmParser::Match_Success :\n "
2517 << " getDiagKindFromRegisterClass(Kind);\n }\n\n";
2519 // Expected operand is a register, but actual is not.
2520 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2521 OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
2523 // Generic fallthrough match failure case for operands that don't have
2524 // specialized diagnostic types.
2525 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2526 OS << "}\n\n";
2529 /// emitIsSubclass - Emit the subclass predicate function.
2530 static void emitIsSubclass(CodeGenTarget &Target,
2531 std::forward_list<ClassInfo> &Infos,
2532 raw_ostream &OS) {
2533 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2534 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2535 OS << " if (A == B)\n";
2536 OS << " return true;\n\n";
2538 bool EmittedSwitch = false;
2539 for (const auto &A : Infos) {
2540 std::vector<StringRef> SuperClasses;
2541 if (A.IsOptional)
2542 SuperClasses.push_back("OptionalMatchClass");
2543 for (const auto &B : Infos) {
2544 if (&A != &B && A.isSubsetOf(B))
2545 SuperClasses.push_back(B.Name);
2548 if (SuperClasses.empty())
2549 continue;
2551 // If this is the first SuperClass, emit the switch header.
2552 if (!EmittedSwitch) {
2553 OS << " switch (A) {\n";
2554 OS << " default:\n";
2555 OS << " return false;\n";
2556 EmittedSwitch = true;
2559 OS << "\n case " << A.Name << ":\n";
2561 if (SuperClasses.size() == 1) {
2562 OS << " return B == " << SuperClasses.back() << ";\n";
2563 continue;
2566 if (!SuperClasses.empty()) {
2567 OS << " switch (B) {\n";
2568 OS << " default: return false;\n";
2569 for (StringRef SC : SuperClasses)
2570 OS << " case " << SC << ": return true;\n";
2571 OS << " }\n";
2572 } else {
2573 // No case statement to emit
2574 OS << " return false;\n";
2578 // If there were case statements emitted into the string stream write the
2579 // default.
2580 if (EmittedSwitch)
2581 OS << " }\n";
2582 else
2583 OS << " return false;\n";
2585 OS << "}\n\n";
2588 /// emitMatchTokenString - Emit the function to match a token string to the
2589 /// appropriate match class value.
2590 static void emitMatchTokenString(CodeGenTarget &Target,
2591 std::forward_list<ClassInfo> &Infos,
2592 raw_ostream &OS) {
2593 // Construct the match list.
2594 std::vector<StringMatcher::StringPair> Matches;
2595 for (const auto &CI : Infos) {
2596 if (CI.Kind == ClassInfo::Token)
2597 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2600 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2602 StringMatcher("Name", Matches, OS).Emit();
2604 OS << " return InvalidMatchClass;\n";
2605 OS << "}\n\n";
2608 /// emitMatchRegisterName - Emit the function to match a string to the target
2609 /// specific register enum.
2610 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2611 raw_ostream &OS) {
2612 // Construct the match list.
2613 std::vector<StringMatcher::StringPair> Matches;
2614 const auto &Regs = Target.getRegBank().getRegisters();
2615 for (const CodeGenRegister &Reg : Regs) {
2616 if (Reg.TheDef->getValueAsString("AsmName").empty())
2617 continue;
2619 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
2620 "return " + utostr(Reg.EnumValue) + ";");
2623 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2625 bool IgnoreDuplicates =
2626 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2627 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2629 OS << " return 0;\n";
2630 OS << "}\n\n";
2633 /// Emit the function to match a string to the target
2634 /// specific register enum.
2635 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2636 raw_ostream &OS) {
2637 // Construct the match list.
2638 std::vector<StringMatcher::StringPair> Matches;
2639 const auto &Regs = Target.getRegBank().getRegisters();
2640 for (const CodeGenRegister &Reg : Regs) {
2642 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2644 for (auto AltName : AltNames) {
2645 AltName = StringRef(AltName).trim();
2647 // don't handle empty alternative names
2648 if (AltName.empty())
2649 continue;
2651 Matches.emplace_back(std::string(AltName),
2652 "return " + utostr(Reg.EnumValue) + ";");
2656 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2658 bool IgnoreDuplicates =
2659 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2660 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2662 OS << " return 0;\n";
2663 OS << "}\n\n";
2666 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2667 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2668 // Get the set of diagnostic types from all of the operand classes.
2669 std::set<StringRef> Types;
2670 for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2671 if (!OpClassEntry.second->DiagnosticType.empty())
2672 Types.insert(OpClassEntry.second->DiagnosticType);
2674 for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2675 if (!OpClassEntry.second->DiagnosticType.empty())
2676 Types.insert(OpClassEntry.second->DiagnosticType);
2679 if (Types.empty()) return;
2681 // Now emit the enum entries.
2682 for (StringRef Type : Types)
2683 OS << " Match_" << Type << ",\n";
2684 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2687 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2688 /// user-level name for a subtarget feature.
2689 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2690 OS << "// User-level names for subtarget features that participate in\n"
2691 << "// instruction matching.\n"
2692 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2693 if (!Info.SubtargetFeatures.empty()) {
2694 OS << " switch(Val) {\n";
2695 for (const auto &SF : Info.SubtargetFeatures) {
2696 const SubtargetFeatureInfo &SFI = SF.second;
2697 // FIXME: Totally just a placeholder name to get the algorithm working.
2698 OS << " case " << SFI.getEnumBitName() << ": return \""
2699 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2701 OS << " default: return \"(unknown)\";\n";
2702 OS << " }\n";
2703 } else {
2704 // Nothing to emit, so skip the switch
2705 OS << " return \"(unknown)\";\n";
2707 OS << "}\n\n";
2710 static std::string GetAliasRequiredFeatures(Record *R,
2711 const AsmMatcherInfo &Info) {
2712 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2713 std::string Result;
2715 if (ReqFeatures.empty())
2716 return Result;
2718 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2719 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2721 if (!F)
2722 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2723 "' is not marked as an AssemblerPredicate!");
2725 if (i)
2726 Result += " && ";
2728 Result += "Features.test(" + F->getEnumBitName() + ')';
2731 return Result;
2734 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2735 std::vector<Record*> &Aliases,
2736 unsigned Indent = 0,
2737 StringRef AsmParserVariantName = StringRef()){
2738 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2739 // iteration order of the map is stable.
2740 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2742 for (Record *R : Aliases) {
2743 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2744 StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2745 if (AsmVariantName != AsmParserVariantName)
2746 continue;
2747 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()]
2748 .push_back(R);
2750 if (AliasesFromMnemonic.empty())
2751 return;
2753 // Process each alias a "from" mnemonic at a time, building the code executed
2754 // by the string remapper.
2755 std::vector<StringMatcher::StringPair> Cases;
2756 for (const auto &AliasEntry : AliasesFromMnemonic) {
2757 const std::vector<Record*> &ToVec = AliasEntry.second;
2759 // Loop through each alias and emit code that handles each case. If there
2760 // are two instructions without predicates, emit an error. If there is one,
2761 // emit it last.
2762 std::string MatchCode;
2763 int AliasWithNoPredicate = -1;
2765 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2766 Record *R = ToVec[i];
2767 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2769 // If this unconditionally matches, remember it for later and diagnose
2770 // duplicates.
2771 if (FeatureMask.empty()) {
2772 if (AliasWithNoPredicate != -1 &&
2773 R->getValueAsString("ToMnemonic") !=
2774 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) {
2775 // We can't have two different aliases from the same mnemonic with no
2776 // predicate.
2777 PrintError(
2778 ToVec[AliasWithNoPredicate]->getLoc(),
2779 "two different MnemonicAliases with the same 'from' mnemonic!");
2780 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2783 AliasWithNoPredicate = i;
2784 continue;
2786 if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2787 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2789 if (!MatchCode.empty())
2790 MatchCode += "else ";
2791 MatchCode += "if (" + FeatureMask + ")\n";
2792 MatchCode += " Mnemonic = \"";
2793 MatchCode += R->getValueAsString("ToMnemonic").lower();
2794 MatchCode += "\";\n";
2797 if (AliasWithNoPredicate != -1) {
2798 Record *R = ToVec[AliasWithNoPredicate];
2799 if (!MatchCode.empty())
2800 MatchCode += "else\n ";
2801 MatchCode += "Mnemonic = \"";
2802 MatchCode += R->getValueAsString("ToMnemonic").lower();
2803 MatchCode += "\";\n";
2806 MatchCode += "return;";
2808 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2810 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2813 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2814 /// emit a function for them and return true, otherwise return false.
2815 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2816 CodeGenTarget &Target) {
2817 // Ignore aliases when match-prefix is set.
2818 if (!MatchPrefix.empty())
2819 return false;
2821 std::vector<Record*> Aliases =
2822 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2823 if (Aliases.empty()) return false;
2825 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2826 "const FeatureBitset &Features, unsigned VariantID) {\n";
2827 OS << " switch (VariantID) {\n";
2828 unsigned VariantCount = Target.getAsmParserVariantCount();
2829 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2830 Record *AsmVariant = Target.getAsmParserVariant(VC);
2831 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2832 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2833 OS << " case " << AsmParserVariantNo << ":\n";
2834 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2835 AsmParserVariantName);
2836 OS << " break;\n";
2838 OS << " }\n";
2840 // Emit aliases that apply to all variants.
2841 emitMnemonicAliasVariant(OS, Info, Aliases);
2843 OS << "}\n\n";
2845 return true;
2848 static void
2849 emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2850 const AsmMatcherInfo &Info, StringRef ClassName,
2851 StringToOffsetTable &StringTable,
2852 unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex,
2853 bool HasMnemonicFirst, const Record &AsmParser) {
2854 unsigned MaxMask = 0;
2855 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2856 MaxMask |= OMI.OperandMask;
2859 // Emit the static custom operand parsing table;
2860 OS << "namespace {\n";
2861 OS << " struct OperandMatchEntry {\n";
2862 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2863 << " Mnemonic;\n";
2864 OS << " " << getMinimalTypeForRange(MaxMask)
2865 << " OperandMask;\n";
2866 OS << " " << getMinimalTypeForRange(std::distance(
2867 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2868 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex)
2869 << " RequiredFeaturesIdx;\n\n";
2870 OS << " StringRef getMnemonic() const {\n";
2871 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2872 OS << " MnemonicTable[Mnemonic]);\n";
2873 OS << " }\n";
2874 OS << " };\n\n";
2876 OS << " // Predicate for searching for an opcode.\n";
2877 OS << " struct LessOpcodeOperand {\n";
2878 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2879 OS << " return LHS.getMnemonic() < RHS;\n";
2880 OS << " }\n";
2881 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2882 OS << " return LHS < RHS.getMnemonic();\n";
2883 OS << " }\n";
2884 OS << " bool operator()(const OperandMatchEntry &LHS,";
2885 OS << " const OperandMatchEntry &RHS) {\n";
2886 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2887 OS << " }\n";
2888 OS << " };\n";
2890 OS << "} // end anonymous namespace\n\n";
2892 OS << "static const OperandMatchEntry OperandMatchTable["
2893 << Info.OperandMatchInfo.size() << "] = {\n";
2895 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2896 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2897 const MatchableInfo &II = *OMI.MI;
2899 OS << " { ";
2901 // Store a pascal-style length byte in the mnemonic.
2902 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2903 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2904 << " /* " << II.Mnemonic << " */, ";
2906 OS << OMI.OperandMask;
2907 OS << " /* ";
2908 ListSeparator LS;
2909 for (int i = 0, e = 31; i !=e; ++i)
2910 if (OMI.OperandMask & (1 << i))
2911 OS << LS << i;
2912 OS << " */, ";
2914 OS << OMI.CI->Name;
2916 // Write the required features mask.
2917 OS << ", AMFBS";
2918 if (II.RequiredFeatures.empty())
2919 OS << "_None";
2920 else
2921 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2922 OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2924 OS << " },\n";
2926 OS << "};\n\n";
2928 // Emit the operand class switch to call the correct custom parser for
2929 // the found operand class.
2930 OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2931 << "tryCustomParseOperand(OperandVector"
2932 << " &Operands,\n unsigned MCK) {\n\n"
2933 << " switch(MCK) {\n";
2935 for (const auto &CI : Info.Classes) {
2936 if (CI.ParserMethod.empty())
2937 continue;
2938 OS << " case " << CI.Name << ":\n"
2939 << " return " << CI.ParserMethod << "(Operands);\n";
2942 OS << " default:\n";
2943 OS << " return ParseStatus::NoMatch;\n";
2944 OS << " }\n";
2945 OS << " return ParseStatus::NoMatch;\n";
2946 OS << "}\n\n";
2948 // Emit the static custom operand parser. This code is very similar with
2949 // the other matcher. Also use MatchResultTy here just in case we go for
2950 // a better error handling.
2951 OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2952 << "MatchOperandParserImpl(OperandVector"
2953 << " &Operands,\n StringRef Mnemonic,\n"
2954 << " bool ParseForAllFeatures) {\n";
2956 // Emit code to get the available features.
2957 OS << " // Get the current feature set.\n";
2958 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2960 OS << " // Get the next operand index.\n";
2961 OS << " unsigned NextOpNum = Operands.size()"
2962 << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2964 // Emit code to search the table.
2965 OS << " // Search the table.\n";
2966 if (HasMnemonicFirst) {
2967 OS << " auto MnemonicRange =\n";
2968 OS << " std::equal_range(std::begin(OperandMatchTable), "
2969 "std::end(OperandMatchTable),\n";
2970 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2971 } else {
2972 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2973 " std::end(OperandMatchTable));\n";
2974 OS << " if (!Mnemonic.empty())\n";
2975 OS << " MnemonicRange =\n";
2976 OS << " std::equal_range(std::begin(OperandMatchTable), "
2977 "std::end(OperandMatchTable),\n";
2978 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2981 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2982 OS << " return ParseStatus::NoMatch;\n\n";
2984 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2985 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2987 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2988 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2990 // Emit check that the required features are available.
2991 OS << " // check if the available features match\n";
2992 OS << " const FeatureBitset &RequiredFeatures = "
2993 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2994 OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
2995 "RequiredFeatures) != RequiredFeatures)\n";
2996 OS << " continue;\n\n";
2998 // Emit check to ensure the operand number matches.
2999 OS << " // check if the operand in question has a custom parser.\n";
3000 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
3001 OS << " continue;\n\n";
3003 // Emit call to the custom parser method
3004 StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod");
3005 if (ParserName.empty())
3006 ParserName = "tryCustomParseOperand";
3007 OS << " // call custom parse method to handle the operand\n";
3008 OS << " ParseStatus Result = " << ParserName << "(Operands, it->Class);\n";
3009 OS << " if (!Result.isNoMatch())\n";
3010 OS << " return Result;\n";
3011 OS << " }\n\n";
3013 OS << " // Okay, we had no match.\n";
3014 OS << " return ParseStatus::NoMatch;\n";
3015 OS << "}\n\n";
3018 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3019 AsmMatcherInfo &Info,
3020 raw_ostream &OS) {
3021 std::string AsmParserName =
3022 std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3023 OS << "static bool ";
3024 OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3025 << AsmParserName << "&AsmParser,\n";
3026 OS << " unsigned Kind,\n";
3027 OS << " const OperandVector &Operands,\n";
3028 OS << " uint64_t &ErrorInfo) {\n";
3029 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3030 OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
3031 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
3032 OS << " switch (*p) {\n";
3033 OS << " case CVT_Tied: {\n";
3034 OS << " unsigned OpIdx = *(p + 1);\n";
3035 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3036 OS << " std::begin(TiedAsmOperandTable)) &&\n";
3037 OS << " \"Tied operand not found\");\n";
3038 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3039 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3040 OS << " if (OpndNum1 != OpndNum2) {\n";
3041 OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
3042 OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
3043 OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n";
3044 OS << " ErrorInfo = OpndNum2;\n";
3045 OS << " return false;\n";
3046 OS << " }\n";
3047 OS << " }\n";
3048 OS << " break;\n";
3049 OS << " }\n";
3050 OS << " default:\n";
3051 OS << " break;\n";
3052 OS << " }\n";
3053 OS << " }\n";
3054 OS << " return true;\n";
3055 OS << "}\n\n";
3058 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3059 unsigned VariantCount) {
3060 OS << "static std::string " << Target.getName()
3061 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3062 << " unsigned VariantID) {\n";
3063 if (!VariantCount)
3064 OS << " return \"\";";
3065 else {
3066 OS << " const unsigned MaxEditDist = 2;\n";
3067 OS << " std::vector<StringRef> Candidates;\n";
3068 OS << " StringRef Prev = \"\";\n\n";
3070 OS << " // Find the appropriate table for this asm variant.\n";
3071 OS << " const MatchEntry *Start, *End;\n";
3072 OS << " switch (VariantID) {\n";
3073 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3074 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3075 Record *AsmVariant = Target.getAsmParserVariant(VC);
3076 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3077 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3078 << "); End = std::end(MatchTable" << VC << "); break;\n";
3080 OS << " }\n\n";
3081 OS << " for (auto I = Start; I < End; I++) {\n";
3082 OS << " // Ignore unsupported instructions.\n";
3083 OS << " const FeatureBitset &RequiredFeatures = "
3084 "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3085 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3086 OS << " continue;\n";
3087 OS << "\n";
3088 OS << " StringRef T = I->getMnemonic();\n";
3089 OS << " // Avoid recomputing the edit distance for the same string.\n";
3090 OS << " if (T.equals(Prev))\n";
3091 OS << " continue;\n";
3092 OS << "\n";
3093 OS << " Prev = T;\n";
3094 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3095 OS << " if (Dist <= MaxEditDist)\n";
3096 OS << " Candidates.push_back(T);\n";
3097 OS << " }\n";
3098 OS << "\n";
3099 OS << " if (Candidates.empty())\n";
3100 OS << " return \"\";\n";
3101 OS << "\n";
3102 OS << " std::string Res = \", did you mean: \";\n";
3103 OS << " unsigned i = 0;\n";
3104 OS << " for (; i < Candidates.size() - 1; i++)\n";
3105 OS << " Res += Candidates[i].str() + \", \";\n";
3106 OS << " return Res + Candidates[i].str() + \"?\";\n";
3108 OS << "}\n";
3109 OS << "\n";
3112 static void emitMnemonicChecker(raw_ostream &OS,
3113 CodeGenTarget &Target,
3114 unsigned VariantCount,
3115 bool HasMnemonicFirst,
3116 bool HasMnemonicAliases) {
3117 OS << "static bool " << Target.getName()
3118 << "CheckMnemonic(StringRef Mnemonic,\n";
3119 OS << " "
3120 << "const FeatureBitset &AvailableFeatures,\n";
3121 OS << " "
3122 << "unsigned VariantID) {\n";
3124 if (!VariantCount) {
3125 OS << " return false;\n";
3126 } else {
3127 if (HasMnemonicAliases) {
3128 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3129 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3130 OS << "\n\n";
3132 OS << " // Find the appropriate table for this asm variant.\n";
3133 OS << " const MatchEntry *Start, *End;\n";
3134 OS << " switch (VariantID) {\n";
3135 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3136 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3137 Record *AsmVariant = Target.getAsmParserVariant(VC);
3138 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3139 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3140 << "); End = std::end(MatchTable" << VC << "); break;\n";
3142 OS << " }\n\n";
3144 OS << " // Search the table.\n";
3145 if (HasMnemonicFirst) {
3146 OS << " auto MnemonicRange = "
3147 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3148 } else {
3149 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3150 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3151 OS << " if (!Mnemonic.empty())\n";
3152 OS << " MnemonicRange = "
3153 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3156 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3157 OS << " return false;\n\n";
3159 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3160 << "*ie = MnemonicRange.second;\n";
3161 OS << " it != ie; ++it) {\n";
3162 OS << " const FeatureBitset &RequiredFeatures =\n";
3163 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
3164 OS << " if ((AvailableFeatures & RequiredFeatures) == ";
3165 OS << "RequiredFeatures)\n";
3166 OS << " return true;\n";
3167 OS << " }\n";
3168 OS << " return false;\n";
3170 OS << "}\n";
3171 OS << "\n";
3174 // Emit a function mapping match classes to strings, for debugging.
3175 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3176 raw_ostream &OS) {
3177 OS << "#ifndef NDEBUG\n";
3178 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3179 OS << " switch (Kind) {\n";
3181 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3182 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3183 for (const auto &CI : Infos) {
3184 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3186 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3188 OS << " }\n";
3189 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3190 OS << "}\n\n";
3191 OS << "#endif // NDEBUG\n";
3194 static std::string
3195 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3196 std::string Name = "AMFBS";
3197 for (const auto &Feature : FeatureBitset)
3198 Name += ("_" + Feature->getName()).str();
3199 return Name;
3202 void AsmMatcherEmitter::run(raw_ostream &OS) {
3203 CodeGenTarget Target(Records);
3204 Record *AsmParser = Target.getAsmParser();
3205 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3207 emitSourceFileHeader("Assembly Matcher Source Fragment", OS, Records);
3209 // Compute the information on the instructions to match.
3210 AsmMatcherInfo Info(AsmParser, Target, Records);
3211 Info.buildInfo();
3213 // Sort the instruction table using the partial order on classes. We use
3214 // stable_sort to ensure that ambiguous instructions are still
3215 // deterministically ordered.
3216 llvm::stable_sort(
3217 Info.Matchables,
3218 [](const std::unique_ptr<MatchableInfo> &a,
3219 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3221 #ifdef EXPENSIVE_CHECKS
3222 // Verify that the table is sorted and operator < works transitively.
3223 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3224 ++I) {
3225 for (auto J = I; J != E; ++J) {
3226 assert(!(**J < **I));
3229 #endif
3231 DEBUG_WITH_TYPE("instruction_info", {
3232 for (const auto &MI : Info.Matchables)
3233 MI->dump();
3236 // Check for ambiguous matchables.
3237 DEBUG_WITH_TYPE("ambiguous_instrs", {
3238 unsigned NumAmbiguous = 0;
3239 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3240 ++I) {
3241 for (auto J = std::next(I); J != E; ++J) {
3242 const MatchableInfo &A = **I;
3243 const MatchableInfo &B = **J;
3245 if (A.couldMatchAmbiguouslyWith(B)) {
3246 errs() << "warning: ambiguous matchables:\n";
3247 A.dump();
3248 errs() << "\nis incomparable with:\n";
3249 B.dump();
3250 errs() << "\n\n";
3251 ++NumAmbiguous;
3255 if (NumAmbiguous)
3256 errs() << "warning: " << NumAmbiguous
3257 << " ambiguous matchables!\n";
3260 // Compute the information on the custom operand parsing.
3261 Info.buildOperandMatchInfo();
3263 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3264 bool HasOptionalOperands = Info.hasOptionalOperands();
3265 bool ReportMultipleNearMisses =
3266 AsmParser->getValueAsBit("ReportMultipleNearMisses");
3268 // Write the output.
3270 // Information for the class declaration.
3271 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3272 OS << "#undef GET_ASSEMBLER_HEADER\n";
3273 OS << " // This should be included into the middle of the declaration of\n";
3274 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
3275 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
3276 if (HasOptionalOperands) {
3277 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3278 << "unsigned Opcode,\n"
3279 << " const OperandVector &Operands,\n"
3280 << " const SmallBitVector &OptionalOperandsMask);\n";
3281 } else {
3282 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3283 << "unsigned Opcode,\n"
3284 << " const OperandVector &Operands);\n";
3286 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
3287 OS << " const OperandVector &Operands) override;\n";
3288 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3289 << " MCInst &Inst,\n";
3290 if (ReportMultipleNearMisses)
3291 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3292 else
3293 OS << " uint64_t &ErrorInfo,\n"
3294 << " FeatureBitset &MissingFeatures,\n";
3295 OS << " bool matchingInlineAsm,\n"
3296 << " unsigned VariantID = 0);\n";
3297 if (!ReportMultipleNearMisses)
3298 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3299 << " MCInst &Inst,\n"
3300 << " uint64_t &ErrorInfo,\n"
3301 << " bool matchingInlineAsm,\n"
3302 << " unsigned VariantID = 0) {\n"
3303 << " FeatureBitset MissingFeatures;\n"
3304 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3305 << " matchingInlineAsm, VariantID);\n"
3306 << " }\n\n";
3309 if (!Info.OperandMatchInfo.empty()) {
3310 OS << " ParseStatus MatchOperandParserImpl(\n";
3311 OS << " OperandVector &Operands,\n";
3312 OS << " StringRef Mnemonic,\n";
3313 OS << " bool ParseForAllFeatures = false);\n";
3315 OS << " ParseStatus tryCustomParseOperand(\n";
3316 OS << " OperandVector &Operands,\n";
3317 OS << " unsigned MCK);\n\n";
3320 OS << "#endif // GET_ASSEMBLER_HEADER\n\n";
3322 // Emit the operand match diagnostic enum names.
3323 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3324 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3325 emitOperandDiagnosticTypes(Info, OS);
3326 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3328 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3329 OS << "#undef GET_REGISTER_MATCHER\n\n";
3331 // Emit the subtarget feature enumeration.
3332 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3333 Info.SubtargetFeatures, OS);
3335 // Emit the function to match a register name to number.
3336 // This should be omitted for Mips target
3337 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3338 emitMatchRegisterName(Target, AsmParser, OS);
3340 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3341 emitMatchRegisterAltName(Target, AsmParser, OS);
3343 OS << "#endif // GET_REGISTER_MATCHER\n\n";
3345 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3346 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3348 // Generate the helper function to get the names for subtarget features.
3349 emitGetSubtargetFeatureName(Info, OS);
3351 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3353 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3354 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3356 // Generate the function that remaps for mnemonic aliases.
3357 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3359 // Generate the convertToMCInst function to convert operands into an MCInst.
3360 // Also, generate the convertToMapAndConstraints function for MS-style inline
3361 // assembly. The latter doesn't actually generate a MCInst.
3362 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3363 HasMnemonicFirst,
3364 HasOptionalOperands, OS);
3366 // Emit the enumeration for classes which participate in matching.
3367 emitMatchClassEnumeration(Target, Info.Classes, OS);
3369 // Emit a function to get the user-visible string to describe an operand
3370 // match failure in diagnostics.
3371 emitOperandMatchErrorDiagStrings(Info, OS);
3373 // Emit a function to map register classes to operand match failure codes.
3374 emitRegisterMatchErrorFunc(Info, OS);
3376 // Emit the routine to match token strings to their match class.
3377 emitMatchTokenString(Target, Info.Classes, OS);
3379 // Emit the subclass predicate routine.
3380 emitIsSubclass(Target, Info.Classes, OS);
3382 // Emit the routine to validate an operand against a match class.
3383 emitValidateOperandClass(Info, OS);
3385 emitMatchClassKindNames(Info.Classes, OS);
3387 // Emit the available features compute function.
3388 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3389 Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3390 Info.SubtargetFeatures, OS);
3392 if (!ReportMultipleNearMisses)
3393 emitAsmTiedOperandConstraints(Target, Info, OS);
3395 StringToOffsetTable StringTable;
3397 size_t MaxNumOperands = 0;
3398 unsigned MaxMnemonicIndex = 0;
3399 bool HasDeprecation = false;
3400 for (const auto &MI : Info.Matchables) {
3401 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3402 HasDeprecation |= MI->HasDeprecation;
3404 // Store a pascal-style length byte in the mnemonic.
3405 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3406 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3407 StringTable.GetOrAddStringOffset(LenMnemonic, false));
3410 OS << "static const char MnemonicTable[] =\n";
3411 StringTable.EmitString(OS);
3412 OS << ";\n\n";
3414 std::vector<std::vector<Record *>> FeatureBitsets;
3415 for (const auto &MI : Info.Matchables) {
3416 if (MI->RequiredFeatures.empty())
3417 continue;
3418 FeatureBitsets.emplace_back();
3419 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3420 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3423 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3424 const std::vector<Record *> &B) {
3425 if (A.size() < B.size())
3426 return true;
3427 if (A.size() > B.size())
3428 return false;
3429 for (auto Pair : zip(A, B)) {
3430 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3431 return true;
3432 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3433 return false;
3435 return false;
3437 FeatureBitsets.erase(
3438 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3439 FeatureBitsets.end());
3440 OS << "// Feature bitsets.\n"
3441 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3442 << " AMFBS_None,\n";
3443 for (const auto &FeatureBitset : FeatureBitsets) {
3444 if (FeatureBitset.empty())
3445 continue;
3446 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3448 OS << "};\n\n"
3449 << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3450 << " {}, // AMFBS_None\n";
3451 for (const auto &FeatureBitset : FeatureBitsets) {
3452 if (FeatureBitset.empty())
3453 continue;
3454 OS << " {";
3455 for (const auto &Feature : FeatureBitset) {
3456 const auto &I = Info.SubtargetFeatures.find(Feature);
3457 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3458 OS << I->second.getEnumBitName() << ", ";
3460 OS << "},\n";
3462 OS << "};\n\n";
3464 // Emit the static match table; unused classes get initialized to 0 which is
3465 // guaranteed to be InvalidMatchClass.
3467 // FIXME: We can reduce the size of this table very easily. First, we change
3468 // it so that store the kinds in separate bit-fields for each index, which
3469 // only needs to be the max width used for classes at that index (we also need
3470 // to reject based on this during classification). If we then make sure to
3471 // order the match kinds appropriately (putting mnemonics last), then we
3472 // should only end up using a few bits for each class, especially the ones
3473 // following the mnemonic.
3474 OS << "namespace {\n";
3475 OS << " struct MatchEntry {\n";
3476 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
3477 << " Mnemonic;\n";
3478 OS << " uint16_t Opcode;\n";
3479 OS << " " << getMinimalTypeForRange(NumConverters)
3480 << " ConvertFn;\n";
3481 OS << " " << getMinimalTypeForRange(FeatureBitsets.size())
3482 << " RequiredFeaturesIdx;\n";
3483 OS << " " << getMinimalTypeForRange(
3484 std::distance(Info.Classes.begin(), Info.Classes.end()))
3485 << " Classes[" << MaxNumOperands << "];\n";
3486 OS << " StringRef getMnemonic() const {\n";
3487 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3488 OS << " MnemonicTable[Mnemonic]);\n";
3489 OS << " }\n";
3490 OS << " };\n\n";
3492 OS << " // Predicate for searching for an opcode.\n";
3493 OS << " struct LessOpcode {\n";
3494 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3495 OS << " return LHS.getMnemonic() < RHS;\n";
3496 OS << " }\n";
3497 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3498 OS << " return LHS < RHS.getMnemonic();\n";
3499 OS << " }\n";
3500 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3501 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3502 OS << " }\n";
3503 OS << " };\n";
3505 OS << "} // end anonymous namespace\n\n";
3507 unsigned VariantCount = Target.getAsmParserVariantCount();
3508 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3509 Record *AsmVariant = Target.getAsmParserVariant(VC);
3510 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3512 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3514 for (const auto &MI : Info.Matchables) {
3515 if (MI->AsmVariantID != AsmVariantNo)
3516 continue;
3518 // Store a pascal-style length byte in the mnemonic.
3519 std::string LenMnemonic =
3520 char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3521 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3522 << " /* " << MI->Mnemonic << " */, "
3523 << Target.getInstNamespace() << "::"
3524 << MI->getResultInst()->TheDef->getName() << ", "
3525 << MI->ConversionFnKind << ", ";
3527 // Write the required features mask.
3528 OS << "AMFBS";
3529 if (MI->RequiredFeatures.empty())
3530 OS << "_None";
3531 else
3532 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3533 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3535 OS << ", { ";
3536 ListSeparator LS;
3537 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3538 OS << LS << Op.Class->Name;
3539 OS << " }, },\n";
3542 OS << "};\n\n";
3545 OS << "#include \"llvm/Support/Debug.h\"\n";
3546 OS << "#include \"llvm/Support/Format.h\"\n\n";
3548 // Finally, build the match function.
3549 OS << "unsigned " << Target.getName() << ClassName << "::\n"
3550 << "MatchInstructionImpl(const OperandVector &Operands,\n";
3551 OS << " MCInst &Inst,\n";
3552 if (ReportMultipleNearMisses)
3553 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3554 else
3555 OS << " uint64_t &ErrorInfo,\n"
3556 << " FeatureBitset &MissingFeatures,\n";
3557 OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
3559 if (!ReportMultipleNearMisses) {
3560 OS << " // Eliminate obvious mismatches.\n";
3561 OS << " if (Operands.size() > "
3562 << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3563 OS << " ErrorInfo = "
3564 << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3565 OS << " return Match_InvalidOperand;\n";
3566 OS << " }\n\n";
3569 // Emit code to get the available features.
3570 OS << " // Get the current feature set.\n";
3571 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3573 OS << " // Get the instruction mnemonic, which is the first token.\n";
3574 if (HasMnemonicFirst) {
3575 OS << " StringRef Mnemonic = ((" << Target.getName()
3576 << "Operand &)*Operands[0]).getToken();\n\n";
3577 } else {
3578 OS << " StringRef Mnemonic;\n";
3579 OS << " if (Operands[0]->isToken())\n";
3580 OS << " Mnemonic = ((" << Target.getName()
3581 << "Operand &)*Operands[0]).getToken();\n\n";
3584 if (HasMnemonicAliases) {
3585 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3586 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3589 // Emit code to compute the class list for this operand vector.
3590 if (!ReportMultipleNearMisses) {
3591 OS << " // Some state to try to produce better error messages.\n";
3592 OS << " bool HadMatchOtherThanFeatures = false;\n";
3593 OS << " bool HadMatchOtherThanPredicate = false;\n";
3594 OS << " unsigned RetCode = Match_InvalidOperand;\n";
3595 OS << " MissingFeatures.set();\n";
3596 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3597 OS << " // wrong for all instances of the instruction.\n";
3598 OS << " ErrorInfo = ~0ULL;\n";
3601 if (HasOptionalOperands) {
3602 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3605 // Emit code to search the table.
3606 OS << " // Find the appropriate table for this asm variant.\n";
3607 OS << " const MatchEntry *Start, *End;\n";
3608 OS << " switch (VariantID) {\n";
3609 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3610 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3611 Record *AsmVariant = Target.getAsmParserVariant(VC);
3612 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3613 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3614 << "); End = std::end(MatchTable" << VC << "); break;\n";
3616 OS << " }\n";
3618 OS << " // Search the table.\n";
3619 if (HasMnemonicFirst) {
3620 OS << " auto MnemonicRange = "
3621 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3622 } else {
3623 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3624 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3625 OS << " if (!Mnemonic.empty())\n";
3626 OS << " MnemonicRange = "
3627 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3630 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3631 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3632 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3634 OS << " // Return a more specific error code if no mnemonics match.\n";
3635 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3636 OS << " return Match_MnemonicFail;\n\n";
3638 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3639 << "*ie = MnemonicRange.second;\n";
3640 OS << " it != ie; ++it) {\n";
3641 OS << " const FeatureBitset &RequiredFeatures = "
3642 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3643 OS << " bool HasRequiredFeatures =\n";
3644 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3645 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3646 OS << " << MII.getName(it->Opcode) << \"\\n\");\n";
3648 if (ReportMultipleNearMisses) {
3649 OS << " // Some state to record ways in which this instruction did not match.\n";
3650 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3651 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3652 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3653 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3654 OS << " bool MultipleInvalidOperands = false;\n";
3657 if (HasMnemonicFirst) {
3658 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3659 OS << " assert(Mnemonic == it->getMnemonic());\n";
3662 // Emit check that the subclasses match.
3663 if (!ReportMultipleNearMisses)
3664 OS << " bool OperandsValid = true;\n";
3665 if (HasOptionalOperands) {
3666 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3668 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3669 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3670 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3671 OS << " auto Formal = "
3672 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3673 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3674 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n";
3675 OS << " << \" against actual operand at index \" << ActualIdx);\n";
3676 OS << " if (ActualIdx < Operands.size())\n";
3677 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3678 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3679 OS << " else\n";
3680 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3681 OS << " if (ActualIdx >= Operands.size()) {\n";
3682 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand "
3683 "index out of range\\n\");\n";
3684 if (ReportMultipleNearMisses) {
3685 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3686 "isSubclass(Formal, OptionalMatchClass);\n";
3687 OS << " if (!ThisOperandValid) {\n";
3688 OS << " if (!OperandNearMiss) {\n";
3689 OS << " // Record info about match failure for later use.\n";
3690 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3691 OS << " OperandNearMiss =\n";
3692 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3693 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3694 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3695 OS << " DEBUG_WITH_TYPE(\n";
3696 OS << " \"asm-matcher\",\n";
3697 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3698 OS << " MultipleInvalidOperands = true;\n";
3699 OS << " break;\n";
3700 OS << " }\n";
3701 OS << " } else {\n";
3702 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal "
3703 "operand not required\\n\");\n";
3704 OS << " }\n";
3705 OS << " continue;\n";
3706 } else {
3707 OS << " if (Formal == InvalidMatchClass) {\n";
3708 if (HasOptionalOperands) {
3709 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3710 << ");\n";
3712 OS << " break;\n";
3713 OS << " }\n";
3714 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n";
3715 if (HasOptionalOperands) {
3716 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3718 OS << " continue;\n";
3719 OS << " }\n";
3720 OS << " OperandsValid = false;\n";
3721 OS << " ErrorInfo = ActualIdx;\n";
3722 OS << " break;\n";
3724 OS << " }\n";
3725 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3726 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3727 OS << " if (Diag == Match_Success) {\n";
3728 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3729 OS << " dbgs() << \"match success using generic matcher\\n\");\n";
3730 OS << " ++ActualIdx;\n";
3731 OS << " continue;\n";
3732 OS << " }\n";
3733 OS << " // If the generic handler indicates an invalid operand\n";
3734 OS << " // failure, check for a special case.\n";
3735 OS << " if (Diag != Match_Success) {\n";
3736 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3737 OS << " if (TargetDiag == Match_Success) {\n";
3738 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3739 OS << " dbgs() << \"match success using target matcher\\n\");\n";
3740 OS << " ++ActualIdx;\n";
3741 OS << " continue;\n";
3742 OS << " }\n";
3743 OS << " // If the target matcher returned a specific error code use\n";
3744 OS << " // that, else use the one from the generic matcher.\n";
3745 OS << " if (TargetDiag != Match_InvalidOperand && "
3746 "HasRequiredFeatures)\n";
3747 OS << " Diag = TargetDiag;\n";
3748 OS << " }\n";
3749 OS << " // If current formal operand wasn't matched and it is optional\n"
3750 << " // then try to match next formal operand\n";
3751 OS << " if (Diag == Match_InvalidOperand "
3752 << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3753 if (HasOptionalOperands) {
3754 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3756 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3757 OS << " continue;\n";
3758 OS << " }\n";
3760 if (ReportMultipleNearMisses) {
3761 OS << " if (!OperandNearMiss) {\n";
3762 OS << " // If this is the first invalid operand we have seen, record some\n";
3763 OS << " // information about it.\n";
3764 OS << " DEBUG_WITH_TYPE(\n";
3765 OS << " \"asm-matcher\",\n";
3766 OS << " dbgs()\n";
3767 OS << " << \"operand match failed, recording near-miss with diag code \"\n";
3768 OS << " << Diag << \"\\n\");\n";
3769 OS << " OperandNearMiss =\n";
3770 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3771 OS << " ++ActualIdx;\n";
3772 OS << " } else {\n";
3773 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3774 OS << " DEBUG_WITH_TYPE(\n";
3775 OS << " \"asm-matcher\",\n";
3776 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3777 OS << " MultipleInvalidOperands = true;\n";
3778 OS << " break;\n";
3779 OS << " }\n";
3780 OS << " }\n\n";
3781 } else {
3782 OS << " // If this operand is broken for all of the instances of this\n";
3783 OS << " // mnemonic, keep track of it so we can report loc info.\n";
3784 OS << " // If we already had a match that only failed due to a\n";
3785 OS << " // target predicate, that diagnostic is preferred.\n";
3786 OS << " if (!HadMatchOtherThanPredicate &&\n";
3787 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3788 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3789 "!= Match_InvalidOperand))\n";
3790 OS << " RetCode = Diag;\n";
3791 OS << " ErrorInfo = ActualIdx;\n";
3792 OS << " }\n";
3793 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3794 OS << " OperandsValid = false;\n";
3795 OS << " break;\n";
3796 OS << " }\n\n";
3799 if (ReportMultipleNearMisses)
3800 OS << " if (MultipleInvalidOperands) {\n";
3801 else
3802 OS << " if (!OperandsValid) {\n";
3803 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3804 OS << " \"operand mismatches, ignoring \"\n";
3805 OS << " \"this opcode\\n\");\n";
3806 OS << " continue;\n";
3807 OS << " }\n";
3809 // Emit check that the required features are available.
3810 OS << " if (!HasRequiredFeatures) {\n";
3811 if (!ReportMultipleNearMisses)
3812 OS << " HadMatchOtherThanFeatures = true;\n";
3813 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
3814 "~AvailableFeatures;\n";
3815 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3816 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3817 OS << " if (NewMissingFeatures[I])\n";
3818 OS << " dbgs() << ' ' << I;\n";
3819 OS << " dbgs() << \"\\n\");\n";
3820 if (ReportMultipleNearMisses) {
3821 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3822 } else {
3823 OS << " if (NewMissingFeatures.count() <=\n"
3824 " MissingFeatures.count())\n";
3825 OS << " MissingFeatures = NewMissingFeatures;\n";
3826 OS << " continue;\n";
3828 OS << " }\n";
3829 OS << "\n";
3830 OS << " Inst.clear();\n\n";
3831 OS << " Inst.setOpcode(it->Opcode);\n";
3832 // Verify the instruction with the target-specific match predicate function.
3833 OS << " // We have a potential match but have not rendered the operands.\n"
3834 << " // Check the target predicate to handle any context sensitive\n"
3835 " // constraints.\n"
3836 << " // For example, Ties that are referenced multiple times must be\n"
3837 " // checked here to ensure the input is the same for each match\n"
3838 " // constraints. If we leave it any later the ties will have been\n"
3839 " // canonicalized\n"
3840 << " unsigned MatchResult;\n"
3841 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3842 "Operands)) != Match_Success) {\n"
3843 << " Inst.clear();\n";
3844 OS << " DEBUG_WITH_TYPE(\n";
3845 OS << " \"asm-matcher\",\n";
3846 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n";
3847 OS << " << MatchResult << \"\\n\");\n";
3848 if (ReportMultipleNearMisses) {
3849 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3850 } else {
3851 OS << " RetCode = MatchResult;\n"
3852 << " HadMatchOtherThanPredicate = true;\n"
3853 << " continue;\n";
3855 OS << " }\n\n";
3857 if (ReportMultipleNearMisses) {
3858 OS << " // If we did not successfully match the operands, then we can't convert to\n";
3859 OS << " // an MCInst, so bail out on this instruction variant now.\n";
3860 OS << " if (OperandNearMiss) {\n";
3861 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3862 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3863 OS << " DEBUG_WITH_TYPE(\n";
3864 OS << " \"asm-matcher\",\n";
3865 OS << " dbgs()\n";
3866 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3867 OS << " NearMisses->push_back(OperandNearMiss);\n";
3868 OS << " } else {\n";
3869 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3870 OS << " \"types of mismatch, so not \"\n";
3871 OS << " \"reporting near-miss\\n\");\n";
3872 OS << " }\n";
3873 OS << " continue;\n";
3874 OS << " }\n\n";
3877 OS << " if (matchingInlineAsm) {\n";
3878 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3879 if (!ReportMultipleNearMisses) {
3880 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3881 "Operands, ErrorInfo))\n";
3882 OS << " return Match_InvalidTiedOperand;\n";
3883 OS << "\n";
3885 OS << " return Match_Success;\n";
3886 OS << " }\n\n";
3887 OS << " // We have selected a definite instruction, convert the parsed\n"
3888 << " // operands into the appropriate MCInst.\n";
3889 if (HasOptionalOperands) {
3890 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3891 << " OptionalOperandsMask);\n";
3892 } else {
3893 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3895 OS << "\n";
3897 // Verify the instruction with the target-specific match predicate function.
3898 OS << " // We have a potential match. Check the target predicate to\n"
3899 << " // handle any context sensitive constraints.\n"
3900 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3901 << " Match_Success) {\n"
3902 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3903 << " dbgs() << \"Target match predicate failed with diag code \"\n"
3904 << " << MatchResult << \"\\n\");\n"
3905 << " Inst.clear();\n";
3906 if (ReportMultipleNearMisses) {
3907 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3908 } else {
3909 OS << " RetCode = MatchResult;\n"
3910 << " HadMatchOtherThanPredicate = true;\n"
3911 << " continue;\n";
3913 OS << " }\n\n";
3915 if (ReportMultipleNearMisses) {
3916 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3917 OS << " (int)(bool)FeaturesNearMiss +\n";
3918 OS << " (int)(bool)EarlyPredicateNearMiss +\n";
3919 OS << " (int)(bool)LatePredicateNearMiss);\n";
3920 OS << " if (NumNearMisses == 1) {\n";
3921 OS << " // We had exactly one type of near-miss, so add that to the list.\n";
3922 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3923 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3924 OS << " \"mismatch, so reporting a \"\n";
3925 OS << " \"near-miss\\n\");\n";
3926 OS << " if (NearMisses && FeaturesNearMiss)\n";
3927 OS << " NearMisses->push_back(FeaturesNearMiss);\n";
3928 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
3929 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
3930 OS << " else if (NearMisses && LatePredicateNearMiss)\n";
3931 OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
3932 OS << "\n";
3933 OS << " continue;\n";
3934 OS << " } else if (NumNearMisses > 1) {\n";
3935 OS << " // This instruction missed in more than one way, so ignore it.\n";
3936 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3937 OS << " \"types of mismatch, so not \"\n";
3938 OS << " \"reporting near-miss\\n\");\n";
3939 OS << " continue;\n";
3940 OS << " }\n";
3943 // Call the post-processing function, if used.
3944 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3945 if (!InsnCleanupFn.empty())
3946 OS << " " << InsnCleanupFn << "(Inst);\n";
3948 if (HasDeprecation) {
3949 OS << " std::string Info;\n";
3950 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n";
3951 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3952 OS << " SMLoc Loc = ((" << Target.getName()
3953 << "Operand &)*Operands[0]).getStartLoc();\n";
3954 OS << " getParser().Warning(Loc, Info, std::nullopt);\n";
3955 OS << " }\n";
3958 if (!ReportMultipleNearMisses) {
3959 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3960 "Operands, ErrorInfo))\n";
3961 OS << " return Match_InvalidTiedOperand;\n";
3962 OS << "\n";
3965 OS << " DEBUG_WITH_TYPE(\n";
3966 OS << " \"asm-matcher\",\n";
3967 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3968 OS << " return Match_Success;\n";
3969 OS << " }\n\n";
3971 if (ReportMultipleNearMisses) {
3972 OS << " // No instruction variants matched exactly.\n";
3973 OS << " return Match_NearMisses;\n";
3974 } else {
3975 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3976 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3977 OS << " return RetCode;\n\n";
3978 OS << " ErrorInfo = 0;\n";
3979 OS << " return Match_MissingFeature;\n";
3981 OS << "}\n\n";
3983 if (!Info.OperandMatchInfo.empty())
3984 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3985 MaxMnemonicIndex, FeatureBitsets.size(),
3986 HasMnemonicFirst, *AsmParser);
3988 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3990 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3991 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3993 emitMnemonicSpellChecker(OS, Target, VariantCount);
3995 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3997 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
3998 OS << "#undef GET_MNEMONIC_CHECKER\n\n";
4000 emitMnemonicChecker(OS, Target, VariantCount,
4001 HasMnemonicFirst, HasMnemonicAliases);
4003 OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
4006 static TableGen::Emitter::OptClass<AsmMatcherEmitter>
4007 X("gen-asm-matcher", "Generate assembly instruction matcher");