1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
36 #define DEBUG_TYPE "dag-patterns"
38 static inline bool isIntegerOrPtr(MVT VT
) {
39 return VT
.isInteger() || VT
== MVT::iPTR
;
41 static inline bool isFloatingPoint(MVT VT
) {
42 return VT
.isFloatingPoint();
44 static inline bool isVector(MVT VT
) {
47 static inline bool isScalar(MVT VT
) {
48 return !VT
.isVector();
50 static inline bool isScalarInteger(MVT VT
) {
51 return VT
.isScalarInteger();
54 template <typename Predicate
>
55 static bool berase_if(MachineValueTypeSet
&S
, Predicate P
) {
57 // It is ok to iterate over MachineValueTypeSet and remove elements from it
68 void MachineValueTypeSet::writeToStream(raw_ostream
&OS
) const {
69 SmallVector
<MVT
, 4> Types(begin(), end());
70 array_pod_sort(Types
.begin(), Types
.end());
73 ListSeparator
LS(" ");
74 for (const MVT
&T
: Types
)
75 OS
<< LS
<< ValueTypeByHwMode::getMVTName(T
);
79 // --- TypeSetByHwMode
81 // This is a parameterized type-set class. For each mode there is a list
82 // of types that are currently possible for a given tree node. Type
83 // inference will apply to each mode separately.
85 TypeSetByHwMode::TypeSetByHwMode(ArrayRef
<ValueTypeByHwMode
> VTList
) {
86 // Take the address space from the first type in the list.
88 AddrSpace
= VTList
[0].PtrAddrSpace
;
90 for (const ValueTypeByHwMode
&VVT
: VTList
)
94 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty
) const {
95 for (const auto &I
: *this) {
96 if (I
.second
.size() > 1)
98 if (!AllowEmpty
&& I
.second
.empty())
104 ValueTypeByHwMode
TypeSetByHwMode::getValueTypeByHwMode() const {
105 assert(isValueTypeByHwMode(true) &&
106 "The type set has multiple types for at least one HW mode");
107 ValueTypeByHwMode VVT
;
108 VVT
.PtrAddrSpace
= AddrSpace
;
110 for (const auto &I
: *this) {
111 MVT T
= I
.second
.empty() ? MVT::Other
: *I
.second
.begin();
112 VVT
.getOrCreateTypeForMode(I
.first
, T
);
117 bool TypeSetByHwMode::isPossible() const {
118 for (const auto &I
: *this)
119 if (!I
.second
.empty())
124 bool TypeSetByHwMode::insert(const ValueTypeByHwMode
&VVT
) {
125 bool Changed
= false;
126 bool ContainsDefault
= false;
129 for (const auto &P
: VVT
) {
130 unsigned M
= P
.first
;
131 // Make sure there exists a set for each specific mode from VVT.
132 Changed
|= getOrCreate(M
).insert(P
.second
).second
;
133 // Cache VVT's default mode.
134 if (DefaultMode
== M
) {
135 ContainsDefault
= true;
140 // If VVT has a default mode, add the corresponding type to all
141 // modes in "this" that do not exist in VVT.
143 for (auto &I
: *this)
144 if (!VVT
.hasMode(I
.first
))
145 Changed
|= I
.second
.insert(DT
).second
;
150 // Constrain the type set to be the intersection with VTS.
151 bool TypeSetByHwMode::constrain(const TypeSetByHwMode
&VTS
) {
152 bool Changed
= false;
154 for (const auto &I
: VTS
) {
155 unsigned M
= I
.first
;
156 if (M
== DefaultMode
|| hasMode(M
))
158 Map
.insert({M
, Map
.at(DefaultMode
)});
163 for (auto &I
: *this) {
164 unsigned M
= I
.first
;
165 SetType
&S
= I
.second
;
166 if (VTS
.hasMode(M
) || VTS
.hasDefault()) {
167 Changed
|= intersect(I
.second
, VTS
.get(M
));
168 } else if (!S
.empty()) {
176 template <typename Predicate
>
177 bool TypeSetByHwMode::constrain(Predicate P
) {
178 bool Changed
= false;
179 for (auto &I
: *this)
180 Changed
|= berase_if(I
.second
, [&P
](MVT VT
) { return !P(VT
); });
184 template <typename Predicate
>
185 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode
&VTS
, Predicate P
) {
187 for (const auto &I
: VTS
) {
188 SetType
&S
= getOrCreate(I
.first
);
189 for (auto J
: I
.second
)
196 void TypeSetByHwMode::writeToStream(raw_ostream
&OS
) const {
197 SmallVector
<unsigned, 4> Modes
;
198 Modes
.reserve(Map
.size());
200 for (const auto &I
: *this)
201 Modes
.push_back(I
.first
);
206 array_pod_sort(Modes
.begin(), Modes
.end());
209 for (unsigned M
: Modes
) {
210 OS
<< ' ' << getModeName(M
) << ':';
211 get(M
).writeToStream(OS
);
216 bool TypeSetByHwMode::operator==(const TypeSetByHwMode
&VTS
) const {
217 // The isSimple call is much quicker than hasDefault - check this first.
218 bool IsSimple
= isSimple();
219 bool VTSIsSimple
= VTS
.isSimple();
220 if (IsSimple
&& VTSIsSimple
)
221 return getSimple() == VTS
.getSimple();
223 // Speedup: We have a default if the set is simple.
224 bool HaveDefault
= IsSimple
|| hasDefault();
225 bool VTSHaveDefault
= VTSIsSimple
|| VTS
.hasDefault();
226 if (HaveDefault
!= VTSHaveDefault
)
229 SmallSet
<unsigned, 4> Modes
;
230 for (auto &I
: *this)
231 Modes
.insert(I
.first
);
232 for (const auto &I
: VTS
)
233 Modes
.insert(I
.first
);
236 // Both sets have default mode.
237 for (unsigned M
: Modes
) {
238 if (get(M
) != VTS
.get(M
))
242 // Neither set has default mode.
243 for (unsigned M
: Modes
) {
244 // If there is no default mode, an empty set is equivalent to not having
245 // the corresponding mode.
246 bool NoModeThis
= !hasMode(M
) || get(M
).empty();
247 bool NoModeVTS
= !VTS
.hasMode(M
) || VTS
.get(M
).empty();
248 if (NoModeThis
!= NoModeVTS
)
251 if (get(M
) != VTS
.get(M
))
260 raw_ostream
&operator<<(raw_ostream
&OS
, const MachineValueTypeSet
&T
) {
264 raw_ostream
&operator<<(raw_ostream
&OS
, const TypeSetByHwMode
&T
) {
271 void TypeSetByHwMode::dump() const {
272 dbgs() << *this << '\n';
275 bool TypeSetByHwMode::intersect(SetType
&Out
, const SetType
&In
) {
276 bool OutP
= Out
.count(MVT::iPTR
), InP
= In
.count(MVT::iPTR
);
278 auto CompIn
= [&In
](MVT T
) -> bool { return !In
.count(T
); };
281 return berase_if(Out
, CompIn
);
283 // Compute the intersection of scalars separately to account for only
284 // one set containing iPTR.
285 // The intersection of iPTR with a set of integer scalar types that does not
286 // include iPTR will result in the most specific scalar type:
287 // - iPTR is more specific than any set with two elements or more
288 // - iPTR is less specific than any single integer scalar type.
290 // { iPTR } * { i32 } -> { i32 }
291 // { iPTR } * { i32 i64 } -> { iPTR }
293 // { iPTR i32 } * { i32 } -> { i32 }
294 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
295 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
297 // Let In' = elements only in In, Out' = elements only in Out, and
298 // IO = elements common to both. Normally IO would be returned as the result
299 // of the intersection, but we need to account for iPTR being a "wildcard" of
300 // sorts. Since elements in IO are those that match both sets exactly, they
301 // will all belong to the output. If any of the "leftovers" (i.e. In' or
302 // Out') contain iPTR, it means that the other set doesn't have it, but it
303 // could have (1) a more specific type, or (2) a set of types that is less
304 // specific. The "leftovers" from the other set is what we want to examine
307 auto subtract
= [](const SetType
&A
, const SetType
&B
) {
309 berase_if(Diff
, [&B
](MVT T
) { return B
.count(T
); });
314 SetType OutOnly
= subtract(Out
, In
);
315 if (OutOnly
.empty()) {
316 // This means that Out \subset In, so no change to Out.
319 unsigned NumI
= llvm::count_if(OutOnly
, isScalarInteger
);
320 if (NumI
== 1 && OutOnly
.size() == 1) {
321 // There is only one element in Out', and it happens to be a scalar
322 // integer that should be kept as a match for iPTR in In.
325 berase_if(Out
, CompIn
);
327 // Replace the iPTR with the leftover scalar integer.
328 Out
.insert(*llvm::find_if(OutOnly
, isScalarInteger
));
329 } else if (NumI
> 1) {
330 Out
.insert(MVT::iPTR
);
336 SetType InOnly
= subtract(In
, Out
);
337 unsigned SizeOut
= Out
.size();
338 berase_if(Out
, CompIn
); // This will remove at least the iPTR.
339 unsigned NumI
= llvm::count_if(InOnly
, isScalarInteger
);
341 // iPTR deleted from Out.
345 // Replace the iPTR with the leftover scalar integer.
346 Out
.insert(*llvm::find_if(InOnly
, isScalarInteger
));
350 // NumI > 1: Keep the iPTR in Out.
351 Out
.insert(MVT::iPTR
);
352 // If iPTR was the only element initially removed from Out, then Out
354 return SizeOut
!= Out
.size();
357 bool TypeSetByHwMode::validate() const {
360 bool AllEmpty
= true;
361 for (const auto &I
: *this)
362 AllEmpty
&= I
.second
.empty();
368 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode
&Out
,
369 const TypeSetByHwMode
&In
) const {
370 ValidateOnExit
_1(Out
, *this);
372 if (In
.empty() || Out
== In
|| TP
.hasError())
379 bool Changed
= Out
.constrain(In
);
380 if (Changed
&& Out
.empty())
381 TP
.error("Type contradiction");
386 bool TypeInfer::forceArbitrary(TypeSetByHwMode
&Out
) {
387 ValidateOnExit
_1(Out
, *this);
390 assert(!Out
.empty() && "cannot pick from an empty set");
392 bool Changed
= false;
393 for (auto &I
: Out
) {
394 TypeSetByHwMode::SetType
&S
= I
.second
;
397 MVT T
= *S
.begin(); // Pick the first element.
405 bool TypeInfer::EnforceInteger(TypeSetByHwMode
&Out
) {
406 ValidateOnExit
_1(Out
, *this);
410 return Out
.constrain(isIntegerOrPtr
);
412 return Out
.assign_if(getLegalTypes(), isIntegerOrPtr
);
415 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode
&Out
) {
416 ValidateOnExit
_1(Out
, *this);
420 return Out
.constrain(isFloatingPoint
);
422 return Out
.assign_if(getLegalTypes(), isFloatingPoint
);
425 bool TypeInfer::EnforceScalar(TypeSetByHwMode
&Out
) {
426 ValidateOnExit
_1(Out
, *this);
430 return Out
.constrain(isScalar
);
432 return Out
.assign_if(getLegalTypes(), isScalar
);
435 bool TypeInfer::EnforceVector(TypeSetByHwMode
&Out
) {
436 ValidateOnExit
_1(Out
, *this);
440 return Out
.constrain(isVector
);
442 return Out
.assign_if(getLegalTypes(), isVector
);
445 bool TypeInfer::EnforceAny(TypeSetByHwMode
&Out
) {
446 ValidateOnExit
_1(Out
, *this);
447 if (TP
.hasError() || !Out
.empty())
450 Out
= getLegalTypes();
454 template <typename Iter
, typename Pred
, typename Less
>
455 static Iter
min_if(Iter B
, Iter E
, Pred P
, Less L
) {
459 for (Iter I
= B
; I
!= E
; ++I
) {
462 if (Min
== E
|| L(*I
, *Min
))
468 template <typename Iter
, typename Pred
, typename Less
>
469 static Iter
max_if(Iter B
, Iter E
, Pred P
, Less L
) {
473 for (Iter I
= B
; I
!= E
; ++I
) {
476 if (Max
== E
|| L(*Max
, *I
))
482 /// Make sure that for each type in Small, there exists a larger type in Big.
483 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode
&Small
, TypeSetByHwMode
&Big
,
485 ValidateOnExit
_1(Small
, *this), _2(Big
, *this);
488 bool Changed
= false;
490 assert((!SmallIsVT
|| !Small
.empty()) &&
491 "Small should not be empty for SDTCisVTSmallerThanOp");
494 Changed
|= EnforceAny(Small
);
496 Changed
|= EnforceAny(Big
);
498 assert(Small
.hasDefault() && Big
.hasDefault());
500 SmallVector
<unsigned, 4> Modes
;
501 union_modes(Small
, Big
, Modes
);
503 // 1. Only allow integer or floating point types and make sure that
504 // both sides are both integer or both floating point.
505 // 2. Make sure that either both sides have vector types, or neither
507 for (unsigned M
: Modes
) {
508 TypeSetByHwMode::SetType
&S
= Small
.get(M
);
509 TypeSetByHwMode::SetType
&B
= Big
.get(M
);
511 assert((!SmallIsVT
|| !S
.empty()) && "Expected non-empty type");
513 if (any_of(S
, isIntegerOrPtr
) && any_of(B
, isIntegerOrPtr
)) {
514 auto NotInt
= [](MVT VT
) { return !isIntegerOrPtr(VT
); };
515 Changed
|= berase_if(S
, NotInt
);
516 Changed
|= berase_if(B
, NotInt
);
517 } else if (any_of(S
, isFloatingPoint
) && any_of(B
, isFloatingPoint
)) {
518 auto NotFP
= [](MVT VT
) { return !isFloatingPoint(VT
); };
519 Changed
|= berase_if(S
, NotFP
);
520 Changed
|= berase_if(B
, NotFP
);
521 } else if (SmallIsVT
&& B
.empty()) {
522 // B is empty and since S is a specific VT, it will never be empty. Don't
523 // report this as a change, just clear S and continue. This prevents an
526 } else if (S
.empty() || B
.empty()) {
527 Changed
= !S
.empty() || !B
.empty();
531 TP
.error("Incompatible types");
535 if (none_of(S
, isVector
) || none_of(B
, isVector
)) {
536 Changed
|= berase_if(S
, isVector
);
537 Changed
|= berase_if(B
, isVector
);
541 auto LT
= [](MVT A
, MVT B
) -> bool {
542 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
543 // purposes of ordering.
544 auto ASize
= std::make_tuple(A
.isScalableVector(), A
.getScalarSizeInBits(),
545 A
.getSizeInBits().getKnownMinValue());
546 auto BSize
= std::make_tuple(B
.isScalableVector(), B
.getScalarSizeInBits(),
547 B
.getSizeInBits().getKnownMinValue());
548 return ASize
< BSize
;
550 auto SameKindLE
= [](MVT A
, MVT B
) -> bool {
551 // This function is used when removing elements: when a vector is compared
552 // to a non-vector or a scalable vector to any non-scalable MVT, it should
553 // return false (to avoid removal).
554 if (std::make_tuple(A
.isVector(), A
.isScalableVector()) !=
555 std::make_tuple(B
.isVector(), B
.isScalableVector()))
558 return std::make_tuple(A
.getScalarSizeInBits(),
559 A
.getSizeInBits().getKnownMinValue()) <=
560 std::make_tuple(B
.getScalarSizeInBits(),
561 B
.getSizeInBits().getKnownMinValue());
564 for (unsigned M
: Modes
) {
565 TypeSetByHwMode::SetType
&S
= Small
.get(M
);
566 TypeSetByHwMode::SetType
&B
= Big
.get(M
);
567 // MinS = min scalar in Small, remove all scalars from Big that are
568 // smaller-or-equal than MinS.
569 auto MinS
= min_if(S
.begin(), S
.end(), isScalar
, LT
);
571 Changed
|= berase_if(B
, std::bind(SameKindLE
,
572 std::placeholders::_1
, *MinS
));
574 // MaxS = max scalar in Big, remove all scalars from Small that are
576 auto MaxS
= max_if(B
.begin(), B
.end(), isScalar
, LT
);
578 Changed
|= berase_if(S
, std::bind(SameKindLE
,
579 *MaxS
, std::placeholders::_1
));
581 // MinV = min vector in Small, remove all vectors from Big that are
582 // smaller-or-equal than MinV.
583 auto MinV
= min_if(S
.begin(), S
.end(), isVector
, LT
);
585 Changed
|= berase_if(B
, std::bind(SameKindLE
,
586 std::placeholders::_1
, *MinV
));
588 // MaxV = max vector in Big, remove all vectors from Small that are
590 auto MaxV
= max_if(B
.begin(), B
.end(), isVector
, LT
);
592 Changed
|= berase_if(S
, std::bind(SameKindLE
,
593 *MaxV
, std::placeholders::_1
));
599 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
600 /// for each type U in Elem, U is a scalar type.
601 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
602 /// type T in Vec, such that U is the element type of T.
603 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
,
604 TypeSetByHwMode
&Elem
) {
605 ValidateOnExit
_1(Vec
, *this), _2(Elem
, *this);
608 bool Changed
= false;
611 Changed
|= EnforceVector(Vec
);
613 Changed
|= EnforceScalar(Elem
);
615 SmallVector
<unsigned, 4> Modes
;
616 union_modes(Vec
, Elem
, Modes
);
617 for (unsigned M
: Modes
) {
618 TypeSetByHwMode::SetType
&V
= Vec
.get(M
);
619 TypeSetByHwMode::SetType
&E
= Elem
.get(M
);
621 Changed
|= berase_if(V
, isScalar
); // Scalar = !vector
622 Changed
|= berase_if(E
, isVector
); // Vector = !scalar
623 assert(!V
.empty() && !E
.empty());
625 MachineValueTypeSet VT
, ST
;
626 // Collect element types from the "vector" set.
628 VT
.insert(T
.getVectorElementType());
629 // Collect scalar types from the "element" set.
633 // Remove from V all (vector) types whose element type is not in S.
634 Changed
|= berase_if(V
, [&ST
](MVT T
) -> bool {
635 return !ST
.count(T
.getVectorElementType());
637 // Remove from E all (scalar) types, for which there is no corresponding
639 Changed
|= berase_if(E
, [&VT
](MVT T
) -> bool { return !VT
.count(T
); });
645 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
,
646 const ValueTypeByHwMode
&VVT
) {
647 TypeSetByHwMode
Tmp(VVT
);
648 ValidateOnExit
_1(Vec
, *this), _2(Tmp
, *this);
649 return EnforceVectorEltTypeIs(Vec
, Tmp
);
652 /// Ensure that for each type T in Sub, T is a vector type, and there
653 /// exists a type U in Vec such that U is a vector type with the same
654 /// element type as T and at least as many elements as T.
655 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode
&Vec
,
656 TypeSetByHwMode
&Sub
) {
657 ValidateOnExit
_1(Vec
, *this), _2(Sub
, *this);
661 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
662 auto IsSubVec
= [](MVT B
, MVT P
) -> bool {
663 if (!B
.isVector() || !P
.isVector())
665 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
666 // but until there are obvious use-cases for this, keep the
668 if (B
.isScalableVector() != P
.isScalableVector())
670 if (B
.getVectorElementType() != P
.getVectorElementType())
672 return B
.getVectorMinNumElements() < P
.getVectorMinNumElements();
675 /// Return true if S has no element (vector type) that T is a sub-vector of,
676 /// i.e. has the same element type as T and more elements.
677 auto NoSubV
= [&IsSubVec
](const TypeSetByHwMode::SetType
&S
, MVT T
) -> bool {
684 /// Return true if S has no element (vector type) that T is a super-vector
685 /// of, i.e. has the same element type as T and fewer elements.
686 auto NoSupV
= [&IsSubVec
](const TypeSetByHwMode::SetType
&S
, MVT T
) -> bool {
693 bool Changed
= false;
696 Changed
|= EnforceVector(Vec
);
698 Changed
|= EnforceVector(Sub
);
700 SmallVector
<unsigned, 4> Modes
;
701 union_modes(Vec
, Sub
, Modes
);
702 for (unsigned M
: Modes
) {
703 TypeSetByHwMode::SetType
&S
= Sub
.get(M
);
704 TypeSetByHwMode::SetType
&V
= Vec
.get(M
);
706 Changed
|= berase_if(S
, isScalar
);
708 // Erase all types from S that are not sub-vectors of a type in V.
709 Changed
|= berase_if(S
, std::bind(NoSubV
, V
, std::placeholders::_1
));
711 // Erase all types from V that are not super-vectors of a type in S.
712 Changed
|= berase_if(V
, std::bind(NoSupV
, S
, std::placeholders::_1
));
718 /// 1. Ensure that V has a scalar type iff W has a scalar type.
719 /// 2. Ensure that for each vector type T in V, there exists a vector
720 /// type U in W, such that T and U have the same number of elements.
721 /// 3. Ensure that for each vector type U in W, there exists a vector
722 /// type T in V, such that T and U have the same number of elements
724 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode
&V
, TypeSetByHwMode
&W
) {
725 ValidateOnExit
_1(V
, *this), _2(W
, *this);
729 bool Changed
= false;
731 Changed
|= EnforceAny(V
);
733 Changed
|= EnforceAny(W
);
735 // An actual vector type cannot have 0 elements, so we can treat scalars
736 // as zero-length vectors. This way both vectors and scalars can be
737 // processed identically.
738 auto NoLength
= [](const SmallDenseSet
<ElementCount
> &Lengths
,
740 return !Lengths
.count(T
.isVector() ? T
.getVectorElementCount()
744 SmallVector
<unsigned, 4> Modes
;
745 union_modes(V
, W
, Modes
);
746 for (unsigned M
: Modes
) {
747 TypeSetByHwMode::SetType
&VS
= V
.get(M
);
748 TypeSetByHwMode::SetType
&WS
= W
.get(M
);
750 SmallDenseSet
<ElementCount
> VN
, WN
;
752 VN
.insert(T
.isVector() ? T
.getVectorElementCount() : ElementCount());
754 WN
.insert(T
.isVector() ? T
.getVectorElementCount() : ElementCount());
756 Changed
|= berase_if(VS
, std::bind(NoLength
, WN
, std::placeholders::_1
));
757 Changed
|= berase_if(WS
, std::bind(NoLength
, VN
, std::placeholders::_1
));
763 struct TypeSizeComparator
{
764 bool operator()(const TypeSize
&LHS
, const TypeSize
&RHS
) const {
765 return std::make_tuple(LHS
.isScalable(), LHS
.getKnownMinValue()) <
766 std::make_tuple(RHS
.isScalable(), RHS
.getKnownMinValue());
769 } // end anonymous namespace
771 /// 1. Ensure that for each type T in A, there exists a type U in B,
772 /// such that T and U have equal size in bits.
773 /// 2. Ensure that for each type U in B, there exists a type T in A
774 /// such that T and U have equal size in bits (reverse of 1).
775 bool TypeInfer::EnforceSameSize(TypeSetByHwMode
&A
, TypeSetByHwMode
&B
) {
776 ValidateOnExit
_1(A
, *this), _2(B
, *this);
779 bool Changed
= false;
781 Changed
|= EnforceAny(A
);
783 Changed
|= EnforceAny(B
);
785 typedef SmallSet
<TypeSize
, 2, TypeSizeComparator
> TypeSizeSet
;
787 auto NoSize
= [](const TypeSizeSet
&Sizes
, MVT T
) -> bool {
788 return !Sizes
.count(T
.getSizeInBits());
791 SmallVector
<unsigned, 4> Modes
;
792 union_modes(A
, B
, Modes
);
793 for (unsigned M
: Modes
) {
794 TypeSetByHwMode::SetType
&AS
= A
.get(M
);
795 TypeSetByHwMode::SetType
&BS
= B
.get(M
);
799 AN
.insert(T
.getSizeInBits());
801 BN
.insert(T
.getSizeInBits());
803 Changed
|= berase_if(AS
, std::bind(NoSize
, BN
, std::placeholders::_1
));
804 Changed
|= berase_if(BS
, std::bind(NoSize
, AN
, std::placeholders::_1
));
810 void TypeInfer::expandOverloads(TypeSetByHwMode
&VTS
) const {
811 ValidateOnExit
_1(VTS
, *this);
812 const TypeSetByHwMode
&Legal
= getLegalTypes();
813 assert(Legal
.isSimple() && "Default-mode only expected");
814 const TypeSetByHwMode::SetType
&LegalTypes
= Legal
.getSimple();
817 expandOverloads(I
.second
, LegalTypes
);
820 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType
&Out
,
821 const TypeSetByHwMode::SetType
&Legal
) const {
822 if (Out
.count(MVT::iPTRAny
)) {
823 Out
.erase(MVT::iPTRAny
);
824 Out
.insert(MVT::iPTR
);
825 } else if (Out
.count(MVT::iAny
)) {
826 Out
.erase(MVT::iAny
);
827 for (MVT T
: MVT::integer_valuetypes())
830 for (MVT T
: MVT::integer_fixedlen_vector_valuetypes())
833 for (MVT T
: MVT::integer_scalable_vector_valuetypes())
836 } else if (Out
.count(MVT::fAny
)) {
837 Out
.erase(MVT::fAny
);
838 for (MVT T
: MVT::fp_valuetypes())
841 for (MVT T
: MVT::fp_fixedlen_vector_valuetypes())
844 for (MVT T
: MVT::fp_scalable_vector_valuetypes())
847 } else if (Out
.count(MVT::vAny
)) {
848 Out
.erase(MVT::vAny
);
849 for (MVT T
: MVT::vector_valuetypes())
852 } else if (Out
.count(MVT::Any
)) {
854 for (MVT T
: MVT::all_valuetypes())
860 const TypeSetByHwMode
&TypeInfer::getLegalTypes() const {
861 if (!LegalTypesCached
) {
862 TypeSetByHwMode::SetType
&LegalTypes
= LegalCache
.getOrCreate(DefaultMode
);
863 // Stuff all types from all modes into the default mode.
864 const TypeSetByHwMode
<S
= TP
.getDAGPatterns().getLegalTypes();
865 for (const auto &I
: LTS
)
866 LegalTypes
.insert(I
.second
);
867 LegalTypesCached
= true;
869 assert(LegalCache
.isSimple() && "Default-mode only expected");
873 TypeInfer::ValidateOnExit::~ValidateOnExit() {
874 if (Infer
.Validate
&& !VTS
.validate()) {
875 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
876 errs() << "Type set is empty for each HW mode:\n"
877 "possible type contradiction in the pattern below "
878 "(use -print-records with llvm-tblgen to see all "
879 "expanded records).\n";
881 errs() << "Generated from record:\n";
882 Infer
.TP
.getRecord()->dump();
884 PrintFatalError(Infer
.TP
.getRecord()->getLoc(),
885 "Type set is empty for each HW mode in '" +
886 Infer
.TP
.getRecord()->getName() + "'");
891 //===----------------------------------------------------------------------===//
892 // ScopedName Implementation
893 //===----------------------------------------------------------------------===//
895 bool ScopedName::operator==(const ScopedName
&o
) const {
896 return Scope
== o
.Scope
&& Identifier
== o
.Identifier
;
899 bool ScopedName::operator!=(const ScopedName
&o
) const {
900 return !(*this == o
);
904 //===----------------------------------------------------------------------===//
905 // TreePredicateFn Implementation
906 //===----------------------------------------------------------------------===//
908 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
909 TreePredicateFn::TreePredicateFn(TreePattern
*N
) : PatFragRec(N
) {
911 (!hasPredCode() || !hasImmCode()) &&
912 ".td file corrupt: can't have a node predicate *and* an imm predicate");
915 bool TreePredicateFn::hasPredCode() const {
916 return isLoad() || isStore() || isAtomic() || hasNoUse() ||
917 !PatFragRec
->getRecord()->getValueAsString("PredicateCode").empty();
920 std::string
TreePredicateFn::getPredCode() const {
923 if (!isLoad() && !isStore() && !isAtomic()) {
924 Record
*MemoryVT
= getMemoryVT();
927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928 "MemoryVT requires IsLoad or IsStore");
931 if (!isLoad() && !isStore()) {
933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934 "IsUnindexed requires IsLoad or IsStore");
936 Record
*ScalarMemoryVT
= getScalarMemoryVT();
939 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940 "ScalarMemoryVT requires IsLoad or IsStore");
943 if (isLoad() + isStore() + isAtomic() > 1)
944 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
945 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
948 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
949 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
950 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
951 getMinAlignment() < 1)
952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953 "IsLoad cannot be used by itself");
956 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
957 "IsNonExtLoad requires IsLoad");
959 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
960 "IsAnyExtLoad requires IsLoad");
964 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
965 "IsSignExtLoad requires IsLoad or IsAtomic");
967 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
968 "IsZeroExtLoad requires IsLoad or IsAtomic");
973 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
974 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
975 getAddressSpaces() == nullptr && getMinAlignment() < 1)
976 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977 "IsStore cannot be used by itself");
979 if (isNonTruncStore())
980 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
981 "IsNonTruncStore requires IsStore");
983 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
984 "IsTruncStore requires IsStore");
988 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
989 getAddressSpaces() == nullptr &&
990 // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
991 !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
992 !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
993 !isAtomicOrderingSequentiallyConsistent() &&
994 !isAtomicOrderingAcquireOrStronger() &&
995 !isAtomicOrderingReleaseOrStronger() &&
996 !isAtomicOrderingWeakerThanAcquire() &&
997 !isAtomicOrderingWeakerThanRelease())
998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999 "IsAtomic cannot be used by itself");
1001 if (isAtomicOrderingMonotonic())
1002 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003 "IsAtomicOrderingMonotonic requires IsAtomic");
1004 if (isAtomicOrderingAcquire())
1005 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006 "IsAtomicOrderingAcquire requires IsAtomic");
1007 if (isAtomicOrderingRelease())
1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009 "IsAtomicOrderingRelease requires IsAtomic");
1010 if (isAtomicOrderingAcquireRelease())
1011 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012 "IsAtomicOrderingAcquireRelease requires IsAtomic");
1013 if (isAtomicOrderingSequentiallyConsistent())
1014 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1016 if (isAtomicOrderingAcquireOrStronger())
1017 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1018 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1019 if (isAtomicOrderingReleaseOrStronger())
1020 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1021 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1022 if (isAtomicOrderingWeakerThanAcquire())
1023 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1027 if (isLoad() || isStore() || isAtomic()) {
1028 if (ListInit
*AddressSpaces
= getAddressSpaces()) {
1029 Code
+= "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1032 ListSeparator
LS(" && ");
1033 for (Init
*Val
: AddressSpaces
->getValues()) {
1036 IntInit
*IntVal
= dyn_cast
<IntInit
>(Val
);
1038 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1039 "AddressSpaces element must be integer");
1042 Code
+= "AddrSpace != " + utostr(IntVal
->getValue());
1045 Code
+= ")\nreturn false;\n";
1048 int64_t MinAlign
= getMinAlignment();
1050 Code
+= "if (cast<MemSDNode>(N)->getAlign() < Align(";
1051 Code
+= utostr(MinAlign
);
1052 Code
+= "))\nreturn false;\n";
1055 Record
*MemoryVT
= getMemoryVT();
1058 Code
+= ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1059 MemoryVT
->getName() + ") return false;\n")
1063 if (isAtomic() && isAtomicOrderingMonotonic())
1064 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065 "AtomicOrdering::Monotonic) return false;\n";
1066 if (isAtomic() && isAtomicOrderingAcquire())
1067 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068 "AtomicOrdering::Acquire) return false;\n";
1069 if (isAtomic() && isAtomicOrderingRelease())
1070 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1071 "AtomicOrdering::Release) return false;\n";
1072 if (isAtomic() && isAtomicOrderingAcquireRelease())
1073 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1074 "AtomicOrdering::AcquireRelease) return false;\n";
1075 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1076 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1077 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1079 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1080 Code
+= "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1082 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1083 Code
+= "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1086 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1087 Code
+= "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1089 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1090 Code
+= "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1093 // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1094 if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1095 Code
+= "return false;\n";
1097 if (isLoad() || isStore()) {
1098 StringRef SDNodeName
= isLoad() ? "LoadSDNode" : "StoreSDNode";
1101 Code
+= ("if (cast<" + SDNodeName
+
1102 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1107 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1108 isZeroExtLoad()) > 1)
1109 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1110 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1111 "IsZeroExtLoad are mutually exclusive");
1113 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != "
1114 "ISD::NON_EXTLOAD) return false;\n";
1116 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1118 if (isSignExtLoad())
1119 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1121 if (isZeroExtLoad())
1122 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1125 if ((isNonTruncStore() + isTruncStore()) > 1)
1127 getOrigPatFragRecord()->getRecord()->getLoc(),
1128 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1129 if (isNonTruncStore())
1131 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1134 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1137 Record
*ScalarMemoryVT
= getScalarMemoryVT();
1140 Code
+= ("if (cast<" + SDNodeName
+
1141 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1142 ScalarMemoryVT
->getName() + ") return false;\n")
1147 Code
+= "if (!SDValue(N, 0).use_empty()) return false;\n";
1149 std::string PredicateCode
=
1150 std::string(PatFragRec
->getRecord()->getValueAsString("PredicateCode"));
1152 Code
+= PredicateCode
;
1154 if (PredicateCode
.empty() && !Code
.empty())
1155 Code
+= "return true;\n";
1160 bool TreePredicateFn::hasImmCode() const {
1161 return !PatFragRec
->getRecord()->getValueAsString("ImmediateCode").empty();
1164 std::string
TreePredicateFn::getImmCode() const {
1166 PatFragRec
->getRecord()->getValueAsString("ImmediateCode"));
1169 bool TreePredicateFn::immCodeUsesAPInt() const {
1170 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1173 bool TreePredicateFn::immCodeUsesAPFloat() const {
1175 // The return value will be false when IsAPFloat is unset.
1176 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1180 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field
,
1184 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field
, Unset
);
1187 return Result
== Value
;
1189 bool TreePredicateFn::usesOperands() const {
1190 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1192 bool TreePredicateFn::hasNoUse() const {
1193 return isPredefinedPredicateEqualTo("HasNoUse", true);
1195 bool TreePredicateFn::isLoad() const {
1196 return isPredefinedPredicateEqualTo("IsLoad", true);
1198 bool TreePredicateFn::isStore() const {
1199 return isPredefinedPredicateEqualTo("IsStore", true);
1201 bool TreePredicateFn::isAtomic() const {
1202 return isPredefinedPredicateEqualTo("IsAtomic", true);
1204 bool TreePredicateFn::isUnindexed() const {
1205 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1207 bool TreePredicateFn::isNonExtLoad() const {
1208 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1210 bool TreePredicateFn::isAnyExtLoad() const {
1211 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1213 bool TreePredicateFn::isSignExtLoad() const {
1214 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1216 bool TreePredicateFn::isZeroExtLoad() const {
1217 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1219 bool TreePredicateFn::isNonTruncStore() const {
1220 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1222 bool TreePredicateFn::isTruncStore() const {
1223 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1228 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1231 bool TreePredicateFn::isAtomicOrderingRelease() const {
1232 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1244 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1245 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1247 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1248 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1250 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1251 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1253 Record
*TreePredicateFn::getMemoryVT() const {
1254 Record
*R
= getOrigPatFragRecord()->getRecord();
1255 if (R
->isValueUnset("MemoryVT"))
1257 return R
->getValueAsDef("MemoryVT");
1260 ListInit
*TreePredicateFn::getAddressSpaces() const {
1261 Record
*R
= getOrigPatFragRecord()->getRecord();
1262 if (R
->isValueUnset("AddressSpaces"))
1264 return R
->getValueAsListInit("AddressSpaces");
1267 int64_t TreePredicateFn::getMinAlignment() const {
1268 Record
*R
= getOrigPatFragRecord()->getRecord();
1269 if (R
->isValueUnset("MinAlignment"))
1271 return R
->getValueAsInt("MinAlignment");
1274 Record
*TreePredicateFn::getScalarMemoryVT() const {
1275 Record
*R
= getOrigPatFragRecord()->getRecord();
1276 if (R
->isValueUnset("ScalarMemoryVT"))
1278 return R
->getValueAsDef("ScalarMemoryVT");
1280 bool TreePredicateFn::hasGISelPredicateCode() const {
1281 return !PatFragRec
->getRecord()
1282 ->getValueAsString("GISelPredicateCode")
1285 std::string
TreePredicateFn::getGISelPredicateCode() const {
1287 PatFragRec
->getRecord()->getValueAsString("GISelPredicateCode"));
1290 StringRef
TreePredicateFn::getImmType() const {
1291 if (immCodeUsesAPInt())
1292 return "const APInt &";
1293 if (immCodeUsesAPFloat())
1294 return "const APFloat &";
1298 StringRef
TreePredicateFn::getImmTypeIdentifier() const {
1299 if (immCodeUsesAPInt())
1301 if (immCodeUsesAPFloat())
1306 /// isAlwaysTrue - Return true if this is a noop predicate.
1307 bool TreePredicateFn::isAlwaysTrue() const {
1308 return !hasPredCode() && !hasImmCode();
1311 /// Return the name to use in the generated code to reference this, this is
1312 /// "Predicate_foo" if from a pattern fragment "foo".
1313 std::string
TreePredicateFn::getFnName() const {
1314 return "Predicate_" + PatFragRec
->getRecord()->getName().str();
1317 /// getCodeToRunOnSDNode - Return the code for the function body that
1318 /// evaluates this predicate. The argument is expected to be in "Node",
1319 /// not N. This handles casting and conversion to a concrete node type as
1321 std::string
TreePredicateFn::getCodeToRunOnSDNode() const {
1322 // Handle immediate predicates first.
1323 std::string ImmCode
= getImmCode();
1324 if (!ImmCode
.empty()) {
1326 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1327 "IsLoad cannot be used with ImmLeaf or its subclasses");
1329 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1330 "IsStore cannot be used with ImmLeaf or its subclasses");
1333 getOrigPatFragRecord()->getRecord()->getLoc(),
1334 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1337 getOrigPatFragRecord()->getRecord()->getLoc(),
1338 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1341 getOrigPatFragRecord()->getRecord()->getLoc(),
1342 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1343 if (isSignExtLoad())
1345 getOrigPatFragRecord()->getRecord()->getLoc(),
1346 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1347 if (isZeroExtLoad())
1349 getOrigPatFragRecord()->getRecord()->getLoc(),
1350 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1351 if (isNonTruncStore())
1353 getOrigPatFragRecord()->getRecord()->getLoc(),
1354 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1357 getOrigPatFragRecord()->getRecord()->getLoc(),
1358 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1360 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1361 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1362 if (getScalarMemoryVT())
1364 getOrigPatFragRecord()->getRecord()->getLoc(),
1365 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1367 std::string Result
= (" " + getImmType() + " Imm = ").str();
1368 if (immCodeUsesAPFloat())
1369 Result
+= "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1370 else if (immCodeUsesAPInt())
1371 Result
+= "Node->getAsAPIntVal();\n";
1373 Result
+= "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1374 return Result
+ ImmCode
;
1377 // Handle arbitrary node predicates.
1378 assert(hasPredCode() && "Don't have any predicate code!");
1380 // If this is using PatFrags, there are multiple trees to search. They should
1381 // all have the same class. FIXME: Is there a way to find a common
1383 StringRef ClassName
;
1384 for (const auto &Tree
: PatFragRec
->getTrees()) {
1385 StringRef TreeClassName
;
1387 TreeClassName
= "SDNode";
1389 Record
*Op
= Tree
->getOperator();
1390 const SDNodeInfo
&Info
= PatFragRec
->getDAGPatterns().getSDNodeInfo(Op
);
1391 TreeClassName
= Info
.getSDClassName();
1394 if (ClassName
.empty())
1395 ClassName
= TreeClassName
;
1396 else if (ClassName
!= TreeClassName
) {
1397 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1398 "PatFrags trees do not have consistent class");
1403 if (ClassName
== "SDNode")
1404 Result
= " SDNode *N = Node;\n";
1406 Result
= " auto *N = cast<" + ClassName
.str() + ">(Node);\n";
1408 return (Twine(Result
) + " (void)N;\n" + getPredCode()).str();
1411 //===----------------------------------------------------------------------===//
1412 // PatternToMatch implementation
1415 static bool isImmAllOnesAllZerosMatch(const TreePatternNode
*P
) {
1418 DefInit
*DI
= dyn_cast
<DefInit
>(P
->getLeafValue());
1422 Record
*R
= DI
->getDef();
1423 return R
->getName() == "immAllOnesV" || R
->getName() == "immAllZerosV";
1426 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1427 /// patterns before small ones. This is used to determine the size of a
1429 static unsigned getPatternSize(const TreePatternNode
*P
,
1430 const CodeGenDAGPatterns
&CGP
) {
1431 unsigned Size
= 3; // The node itself.
1432 // If the root node is a ConstantSDNode, increases its size.
1433 // e.g. (set R32:$dst, 0).
1434 if (P
->isLeaf() && isa
<IntInit
>(P
->getLeafValue()))
1437 if (const ComplexPattern
*AM
= P
->getComplexPatternInfo(CGP
)) {
1438 Size
+= AM
->getComplexity();
1439 // We don't want to count any children twice, so return early.
1443 // If this node has some predicate function that must match, it adds to the
1444 // complexity of this node.
1445 if (!P
->getPredicateCalls().empty())
1448 // Count children in the count if they are also nodes.
1449 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
) {
1450 const TreePatternNode
*Child
= P
->getChild(i
);
1451 if (!Child
->isLeaf() && Child
->getNumTypes()) {
1452 const TypeSetByHwMode
&T0
= Child
->getExtType(0);
1453 // At this point, all variable type sets should be simple, i.e. only
1454 // have a default mode.
1455 if (T0
.getMachineValueType() != MVT::Other
) {
1456 Size
+= getPatternSize(Child
, CGP
);
1460 if (Child
->isLeaf()) {
1461 if (isa
<IntInit
>(Child
->getLeafValue()))
1462 Size
+= 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1463 else if (Child
->getComplexPatternInfo(CGP
))
1464 Size
+= getPatternSize(Child
, CGP
);
1465 else if (isImmAllOnesAllZerosMatch(Child
))
1466 Size
+= 4; // Matches a build_vector(+3) and a predicate (+1).
1467 else if (!Child
->getPredicateCalls().empty())
1475 /// Compute the complexity metric for the input pattern. This roughly
1476 /// corresponds to the number of nodes that are covered.
1477 int PatternToMatch::
1478 getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const {
1479 return getPatternSize(getSrcPattern(), CGP
) + getAddedComplexity();
1482 void PatternToMatch::getPredicateRecords(
1483 SmallVectorImpl
<Record
*> &PredicateRecs
) const {
1484 for (Init
*I
: Predicates
->getValues()) {
1485 if (DefInit
*Pred
= dyn_cast
<DefInit
>(I
)) {
1486 Record
*Def
= Pred
->getDef();
1487 if (!Def
->isSubClassOf("Predicate")) {
1491 llvm_unreachable("Unknown predicate type!");
1493 PredicateRecs
.push_back(Def
);
1496 // Sort so that different orders get canonicalized to the same string.
1497 llvm::sort(PredicateRecs
, LessRecord());
1498 // Remove duplicate predicates.
1499 PredicateRecs
.erase(std::unique(PredicateRecs
.begin(), PredicateRecs
.end()),
1500 PredicateRecs
.end());
1503 /// getPredicateCheck - Return a single string containing all of this
1504 /// pattern's predicates concatenated with "&&" operators.
1506 std::string
PatternToMatch::getPredicateCheck() const {
1507 SmallVector
<Record
*, 4> PredicateRecs
;
1508 getPredicateRecords(PredicateRecs
);
1510 SmallString
<128> PredicateCheck
;
1511 raw_svector_ostream
OS(PredicateCheck
);
1512 ListSeparator
LS(" && ");
1513 for (Record
*Pred
: PredicateRecs
) {
1514 StringRef CondString
= Pred
->getValueAsString("CondString");
1515 if (CondString
.empty())
1517 OS
<< LS
<< '(' << CondString
<< ')';
1520 if (!HwModeFeatures
.empty())
1521 OS
<< LS
<< HwModeFeatures
;
1523 return std::string(PredicateCheck
);
1526 //===----------------------------------------------------------------------===//
1527 // SDTypeConstraint implementation
1530 SDTypeConstraint::SDTypeConstraint(Record
*R
, const CodeGenHwModes
&CGH
) {
1531 OperandNo
= R
->getValueAsInt("OperandNum");
1533 if (R
->isSubClassOf("SDTCisVT")) {
1534 ConstraintType
= SDTCisVT
;
1535 VVT
= getValueTypeByHwMode(R
->getValueAsDef("VT"), CGH
);
1536 for (const auto &P
: VVT
)
1537 if (P
.second
== MVT::isVoid
)
1538 PrintFatalError(R
->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1539 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
1540 ConstraintType
= SDTCisPtrTy
;
1541 } else if (R
->isSubClassOf("SDTCisInt")) {
1542 ConstraintType
= SDTCisInt
;
1543 } else if (R
->isSubClassOf("SDTCisFP")) {
1544 ConstraintType
= SDTCisFP
;
1545 } else if (R
->isSubClassOf("SDTCisVec")) {
1546 ConstraintType
= SDTCisVec
;
1547 } else if (R
->isSubClassOf("SDTCisSameAs")) {
1548 ConstraintType
= SDTCisSameAs
;
1549 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
1550 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
1551 ConstraintType
= SDTCisVTSmallerThanOp
;
1552 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
1553 R
->getValueAsInt("OtherOperandNum");
1554 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
1555 ConstraintType
= SDTCisOpSmallerThanOp
;
1556 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
1557 R
->getValueAsInt("BigOperandNum");
1558 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
1559 ConstraintType
= SDTCisEltOfVec
;
1560 x
.SDTCisEltOfVec_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOpNum");
1561 } else if (R
->isSubClassOf("SDTCisSubVecOfVec")) {
1562 ConstraintType
= SDTCisSubVecOfVec
;
1563 x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
=
1564 R
->getValueAsInt("OtherOpNum");
1565 } else if (R
->isSubClassOf("SDTCVecEltisVT")) {
1566 ConstraintType
= SDTCVecEltisVT
;
1567 VVT
= getValueTypeByHwMode(R
->getValueAsDef("VT"), CGH
);
1568 for (const auto &P
: VVT
) {
1571 PrintFatalError(R
->getLoc(),
1572 "Cannot use vector type as SDTCVecEltisVT");
1573 if (!T
.isInteger() && !T
.isFloatingPoint())
1574 PrintFatalError(R
->getLoc(), "Must use integer or floating point type "
1575 "as SDTCVecEltisVT");
1577 } else if (R
->isSubClassOf("SDTCisSameNumEltsAs")) {
1578 ConstraintType
= SDTCisSameNumEltsAs
;
1579 x
.SDTCisSameNumEltsAs_Info
.OtherOperandNum
=
1580 R
->getValueAsInt("OtherOperandNum");
1581 } else if (R
->isSubClassOf("SDTCisSameSizeAs")) {
1582 ConstraintType
= SDTCisSameSizeAs
;
1583 x
.SDTCisSameSizeAs_Info
.OtherOperandNum
=
1584 R
->getValueAsInt("OtherOperandNum");
1586 PrintFatalError(R
->getLoc(),
1587 "Unrecognized SDTypeConstraint '" + R
->getName() + "'!\n");
1591 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1592 /// N, and the result number in ResNo.
1593 static TreePatternNode
*getOperandNum(unsigned OpNo
, TreePatternNode
*N
,
1594 const SDNodeInfo
&NodeInfo
,
1596 unsigned NumResults
= NodeInfo
.getNumResults();
1597 if (OpNo
< NumResults
) {
1604 if (OpNo
>= N
->getNumChildren()) {
1606 raw_string_ostream
OS(S
);
1607 OS
<< "Invalid operand number in type constraint "
1608 << (OpNo
+NumResults
) << " ";
1613 return N
->getChild(OpNo
);
1616 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1617 /// constraint to the nodes operands. This returns true if it makes a
1618 /// change, false otherwise. If a type contradiction is found, flag an error.
1619 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
1620 const SDNodeInfo
&NodeInfo
,
1621 TreePattern
&TP
) const {
1625 unsigned ResNo
= 0; // The result number being referenced.
1626 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NodeInfo
, ResNo
);
1627 TypeInfer
&TI
= TP
.getInfer();
1629 switch (ConstraintType
) {
1631 // Operand must be a particular type.
1632 return NodeToApply
->UpdateNodeType(ResNo
, VVT
, TP
);
1634 // Operand must be same as target pointer type.
1635 return NodeToApply
->UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1637 // Require it to be one of the legal integer VTs.
1638 return TI
.EnforceInteger(NodeToApply
->getExtType(ResNo
));
1640 // Require it to be one of the legal fp VTs.
1641 return TI
.EnforceFloatingPoint(NodeToApply
->getExtType(ResNo
));
1643 // Require it to be one of the legal vector VTs.
1644 return TI
.EnforceVector(NodeToApply
->getExtType(ResNo
));
1645 case SDTCisSameAs
: {
1646 unsigned OResNo
= 0;
1647 TreePatternNode
*OtherNode
=
1648 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NodeInfo
, OResNo
);
1649 return (int)NodeToApply
->UpdateNodeType(ResNo
,
1650 OtherNode
->getExtType(OResNo
), TP
) |
1651 (int)OtherNode
->UpdateNodeType(OResNo
,
1652 NodeToApply
->getExtType(ResNo
), TP
);
1654 case SDTCisVTSmallerThanOp
: {
1655 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1656 // have an integer type that is smaller than the VT.
1657 if (!NodeToApply
->isLeaf() ||
1658 !isa
<DefInit
>(NodeToApply
->getLeafValue()) ||
1659 !cast
<DefInit
>(NodeToApply
->getLeafValue())->getDef()
1660 ->isSubClassOf("ValueType")) {
1661 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
1664 DefInit
*DI
= cast
<DefInit
>(NodeToApply
->getLeafValue());
1665 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1666 auto VVT
= getValueTypeByHwMode(DI
->getDef(), T
.getHwModes());
1667 TypeSetByHwMode
TypeListTmp(VVT
);
1669 unsigned OResNo
= 0;
1670 TreePatternNode
*OtherNode
=
1671 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
, NodeInfo
,
1674 return TI
.EnforceSmallerThan(TypeListTmp
, OtherNode
->getExtType(OResNo
),
1675 /*SmallIsVT*/ true);
1677 case SDTCisOpSmallerThanOp
: {
1678 unsigned BResNo
= 0;
1679 TreePatternNode
*BigOperand
=
1680 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NodeInfo
,
1682 return TI
.EnforceSmallerThan(NodeToApply
->getExtType(ResNo
),
1683 BigOperand
->getExtType(BResNo
));
1685 case SDTCisEltOfVec
: {
1686 unsigned VResNo
= 0;
1687 TreePatternNode
*VecOperand
=
1688 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
1690 // Filter vector types out of VecOperand that don't have the right element
1692 return TI
.EnforceVectorEltTypeIs(VecOperand
->getExtType(VResNo
),
1693 NodeToApply
->getExtType(ResNo
));
1695 case SDTCisSubVecOfVec
: {
1696 unsigned VResNo
= 0;
1697 TreePatternNode
*BigVecOperand
=
1698 getOperandNum(x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
1701 // Filter vector types out of BigVecOperand that don't have the
1702 // right subvector type.
1703 return TI
.EnforceVectorSubVectorTypeIs(BigVecOperand
->getExtType(VResNo
),
1704 NodeToApply
->getExtType(ResNo
));
1706 case SDTCVecEltisVT
: {
1707 return TI
.EnforceVectorEltTypeIs(NodeToApply
->getExtType(ResNo
), VVT
);
1709 case SDTCisSameNumEltsAs
: {
1710 unsigned OResNo
= 0;
1711 TreePatternNode
*OtherNode
=
1712 getOperandNum(x
.SDTCisSameNumEltsAs_Info
.OtherOperandNum
,
1713 N
, NodeInfo
, OResNo
);
1714 return TI
.EnforceSameNumElts(OtherNode
->getExtType(OResNo
),
1715 NodeToApply
->getExtType(ResNo
));
1717 case SDTCisSameSizeAs
: {
1718 unsigned OResNo
= 0;
1719 TreePatternNode
*OtherNode
=
1720 getOperandNum(x
.SDTCisSameSizeAs_Info
.OtherOperandNum
,
1721 N
, NodeInfo
, OResNo
);
1722 return TI
.EnforceSameSize(OtherNode
->getExtType(OResNo
),
1723 NodeToApply
->getExtType(ResNo
));
1726 llvm_unreachable("Invalid ConstraintType!");
1729 // Update the node type to match an instruction operand or result as specified
1730 // in the ins or outs lists on the instruction definition. Return true if the
1731 // type was actually changed.
1732 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo
,
1735 // The 'unknown' operand indicates that types should be inferred from the
1737 if (Operand
->isSubClassOf("unknown_class"))
1740 // The Operand class specifies a type directly.
1741 if (Operand
->isSubClassOf("Operand")) {
1742 Record
*R
= Operand
->getValueAsDef("Type");
1743 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1744 return UpdateNodeType(ResNo
, getValueTypeByHwMode(R
, T
.getHwModes()), TP
);
1747 // PointerLikeRegClass has a type that is determined at runtime.
1748 if (Operand
->isSubClassOf("PointerLikeRegClass"))
1749 return UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1751 // Both RegisterClass and RegisterOperand operands derive their types from a
1752 // register class def.
1753 Record
*RC
= nullptr;
1754 if (Operand
->isSubClassOf("RegisterClass"))
1756 else if (Operand
->isSubClassOf("RegisterOperand"))
1757 RC
= Operand
->getValueAsDef("RegClass");
1759 assert(RC
&& "Unknown operand type");
1760 CodeGenTarget
&Tgt
= TP
.getDAGPatterns().getTargetInfo();
1761 return UpdateNodeType(ResNo
, Tgt
.getRegisterClass(RC
).getValueTypes(), TP
);
1764 bool TreePatternNode::ContainsUnresolvedType(TreePattern
&TP
) const {
1765 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1766 if (!TP
.getInfer().isConcrete(Types
[i
], true))
1768 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1769 if (getChild(i
)->ContainsUnresolvedType(TP
))
1774 bool TreePatternNode::hasProperTypeByHwMode() const {
1775 for (const TypeSetByHwMode
&S
: Types
)
1778 for (const TreePatternNodePtr
&C
: Children
)
1779 if (C
->hasProperTypeByHwMode())
1784 bool TreePatternNode::hasPossibleType() const {
1785 for (const TypeSetByHwMode
&S
: Types
)
1786 if (!S
.isPossible())
1788 for (const TreePatternNodePtr
&C
: Children
)
1789 if (!C
->hasPossibleType())
1794 bool TreePatternNode::setDefaultMode(unsigned Mode
) {
1795 for (TypeSetByHwMode
&S
: Types
) {
1797 // Check if the selected mode had a type conflict.
1798 if (S
.get(DefaultMode
).empty())
1801 for (const TreePatternNodePtr
&C
: Children
)
1802 if (!C
->setDefaultMode(Mode
))
1807 //===----------------------------------------------------------------------===//
1808 // SDNodeInfo implementation
1810 SDNodeInfo::SDNodeInfo(Record
*R
, const CodeGenHwModes
&CGH
) : Def(R
) {
1811 EnumName
= R
->getValueAsString("Opcode");
1812 SDClassName
= R
->getValueAsString("SDClass");
1813 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
1814 NumResults
= TypeProfile
->getValueAsInt("NumResults");
1815 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
1817 // Parse the properties.
1818 Properties
= parseSDPatternOperatorProperties(R
);
1820 // Parse the type constraints.
1821 std::vector
<Record
*> ConstraintList
=
1822 TypeProfile
->getValueAsListOfDefs("Constraints");
1823 for (Record
*R
: ConstraintList
)
1824 TypeConstraints
.emplace_back(R
, CGH
);
1827 /// getKnownType - If the type constraints on this node imply a fixed type
1828 /// (e.g. all stores return void, etc), then return it as an
1829 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1830 MVT::SimpleValueType
SDNodeInfo::getKnownType(unsigned ResNo
) const {
1831 unsigned NumResults
= getNumResults();
1832 assert(NumResults
<= 1 &&
1833 "We only work with nodes with zero or one result so far!");
1834 assert(ResNo
== 0 && "Only handles single result nodes so far");
1836 for (const SDTypeConstraint
&Constraint
: TypeConstraints
) {
1837 // Make sure that this applies to the correct node result.
1838 if (Constraint
.OperandNo
>= NumResults
) // FIXME: need value #
1841 switch (Constraint
.ConstraintType
) {
1843 case SDTypeConstraint::SDTCisVT
:
1844 if (Constraint
.VVT
.isSimple())
1845 return Constraint
.VVT
.getSimple().SimpleTy
;
1847 case SDTypeConstraint::SDTCisPtrTy
:
1854 //===----------------------------------------------------------------------===//
1855 // TreePatternNode implementation
1858 static unsigned GetNumNodeResults(Record
*Operator
, CodeGenDAGPatterns
&CDP
) {
1859 if (Operator
->getName() == "set" ||
1860 Operator
->getName() == "implicit")
1861 return 0; // All return nothing.
1863 if (Operator
->isSubClassOf("Intrinsic"))
1864 return CDP
.getIntrinsic(Operator
).IS
.RetTys
.size();
1866 if (Operator
->isSubClassOf("SDNode"))
1867 return CDP
.getSDNodeInfo(Operator
).getNumResults();
1869 if (Operator
->isSubClassOf("PatFrags")) {
1870 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1871 // the forward reference case where one pattern fragment references another
1872 // before it is processed.
1873 if (TreePattern
*PFRec
= CDP
.getPatternFragmentIfRead(Operator
)) {
1874 // The number of results of a fragment with alternative records is the
1875 // maximum number of results across all alternatives.
1876 unsigned NumResults
= 0;
1877 for (const auto &T
: PFRec
->getTrees())
1878 NumResults
= std::max(NumResults
, T
->getNumTypes());
1882 ListInit
*LI
= Operator
->getValueAsListInit("Fragments");
1883 assert(LI
&& "Invalid Fragment");
1884 unsigned NumResults
= 0;
1885 for (Init
*I
: LI
->getValues()) {
1886 Record
*Op
= nullptr;
1887 if (DagInit
*Dag
= dyn_cast
<DagInit
>(I
))
1888 if (DefInit
*DI
= dyn_cast
<DefInit
>(Dag
->getOperator()))
1890 assert(Op
&& "Invalid Fragment");
1891 NumResults
= std::max(NumResults
, GetNumNodeResults(Op
, CDP
));
1896 if (Operator
->isSubClassOf("Instruction")) {
1897 CodeGenInstruction
&InstInfo
= CDP
.getTargetInfo().getInstruction(Operator
);
1899 unsigned NumDefsToAdd
= InstInfo
.Operands
.NumDefs
;
1901 // Subtract any defaulted outputs.
1902 for (unsigned i
= 0; i
!= InstInfo
.Operands
.NumDefs
; ++i
) {
1903 Record
*OperandNode
= InstInfo
.Operands
[i
].Rec
;
1905 if (OperandNode
->isSubClassOf("OperandWithDefaultOps") &&
1906 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1910 // Add on one implicit def if it has a resolvable type.
1911 if (InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo()) !=MVT::Other
)
1913 return NumDefsToAdd
;
1916 if (Operator
->isSubClassOf("SDNodeXForm"))
1917 return 1; // FIXME: Generalize SDNodeXForm
1919 if (Operator
->isSubClassOf("ValueType"))
1920 return 1; // A type-cast of one result.
1922 if (Operator
->isSubClassOf("ComplexPattern"))
1925 errs() << *Operator
;
1926 PrintFatalError("Unhandled node in GetNumNodeResults");
1929 void TreePatternNode::print(raw_ostream
&OS
) const {
1931 OS
<< *getLeafValue();
1933 OS
<< '(' << getOperator()->getName();
1935 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
) {
1937 getExtType(i
).writeToStream(OS
);
1941 if (getNumChildren() != 0) {
1944 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1946 getChild(i
)->print(OS
);
1952 for (const TreePredicateCall
&Pred
: PredicateCalls
) {
1955 OS
<< Pred
.Scope
<< ":";
1956 OS
<< Pred
.Fn
.getFnName() << ">>";
1959 OS
<< "<<X:" << TransformFn
->getName() << ">>";
1960 if (!getName().empty())
1961 OS
<< ":$" << getName();
1963 for (const ScopedName
&Name
: NamesAsPredicateArg
)
1964 OS
<< ":$pred:" << Name
.getScope() << ":" << Name
.getIdentifier();
1966 void TreePatternNode::dump() const {
1970 /// isIsomorphicTo - Return true if this node is recursively
1971 /// isomorphic to the specified node. For this comparison, the node's
1972 /// entire state is considered. The assigned name is ignored, since
1973 /// nodes with differing names are considered isomorphic. However, if
1974 /// the assigned name is present in the dependent variable set, then
1975 /// the assigned name is considered significant and the node is
1976 /// isomorphic if the names match.
1977 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
1978 const MultipleUseVarSet
&DepVars
) const {
1979 if (N
== this) return true;
1980 if (N
->isLeaf() != isLeaf())
1983 // Check operator of non-leaves early since it can be cheaper than checking
1986 if (N
->getOperator() != getOperator() ||
1987 N
->getNumChildren() != getNumChildren())
1990 if (getExtTypes() != N
->getExtTypes() ||
1991 getPredicateCalls() != N
->getPredicateCalls() ||
1992 getTransformFn() != N
->getTransformFn())
1996 if (DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue())) {
1997 if (DefInit
*NDI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
1998 return ((DI
->getDef() == NDI
->getDef()) &&
1999 (!DepVars
.contains(getName()) || getName() == N
->getName()));
2002 return getLeafValue() == N
->getLeafValue();
2005 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2006 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
2011 /// clone - Make a copy of this tree and all of its children.
2013 TreePatternNodePtr
TreePatternNode::clone() const {
2014 TreePatternNodePtr New
;
2016 New
= makeIntrusiveRefCnt
<TreePatternNode
>(getLeafValue(), getNumTypes());
2018 std::vector
<TreePatternNodePtr
> CChildren
;
2019 CChildren
.reserve(Children
.size());
2020 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2021 CChildren
.push_back(getChild(i
)->clone());
2022 New
= makeIntrusiveRefCnt
<TreePatternNode
>(
2023 getOperator(), std::move(CChildren
), getNumTypes());
2025 New
->setName(getName());
2026 New
->setNamesAsPredicateArg(getNamesAsPredicateArg());
2028 New
->setPredicateCalls(getPredicateCalls());
2029 New
->setGISelFlagsRecord(getGISelFlagsRecord());
2030 New
->setTransformFn(getTransformFn());
2034 /// RemoveAllTypes - Recursively strip all the types of this tree.
2035 void TreePatternNode::RemoveAllTypes() {
2036 // Reset to unknown type.
2037 std::fill(Types
.begin(), Types
.end(), TypeSetByHwMode());
2038 if (isLeaf()) return;
2039 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2040 getChild(i
)->RemoveAllTypes();
2044 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2045 /// with actual values specified by ArgMap.
2046 void TreePatternNode::SubstituteFormalArguments(
2047 std::map
<std::string
, TreePatternNodePtr
> &ArgMap
) {
2048 if (isLeaf()) return;
2050 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
2051 TreePatternNode
*Child
= getChild(i
);
2052 if (Child
->isLeaf()) {
2053 Init
*Val
= Child
->getLeafValue();
2054 // Note that, when substituting into an output pattern, Val might be an
2056 if (isa
<UnsetInit
>(Val
) || (isa
<DefInit
>(Val
) &&
2057 cast
<DefInit
>(Val
)->getDef()->getName() == "node")) {
2058 // We found a use of a formal argument, replace it with its value.
2059 TreePatternNodePtr NewChild
= ArgMap
[Child
->getName()];
2060 assert(NewChild
&& "Couldn't find formal argument!");
2061 assert((Child
->getPredicateCalls().empty() ||
2062 NewChild
->getPredicateCalls() == Child
->getPredicateCalls()) &&
2063 "Non-empty child predicate clobbered!");
2064 setChild(i
, std::move(NewChild
));
2067 getChild(i
)->SubstituteFormalArguments(ArgMap
);
2073 /// InlinePatternFragments - If this pattern refers to any pattern
2074 /// fragments, return the set of inlined versions (this can be more than
2075 /// one if a PatFrags record has multiple alternatives).
2076 void TreePatternNode::InlinePatternFragments(
2077 TreePattern
&TP
, std::vector
<TreePatternNodePtr
> &OutAlternatives
) {
2083 OutAlternatives
.push_back(this); // nothing to do.
2087 Record
*Op
= getOperator();
2089 if (!Op
->isSubClassOf("PatFrags")) {
2090 if (getNumChildren() == 0) {
2091 OutAlternatives
.push_back(this);
2095 // Recursively inline children nodes.
2096 std::vector
<std::vector
<TreePatternNodePtr
>> ChildAlternatives(
2098 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
2099 TreePatternNodePtr Child
= getChildShared(i
);
2100 Child
->InlinePatternFragments(TP
, ChildAlternatives
[i
]);
2101 // If there are no alternatives for any child, there are no
2102 // alternatives for this expression as whole.
2103 if (ChildAlternatives
[i
].empty())
2106 assert((Child
->getPredicateCalls().empty() ||
2107 llvm::all_of(ChildAlternatives
[i
],
2108 [&](const TreePatternNodePtr
&NewChild
) {
2109 return NewChild
->getPredicateCalls() ==
2110 Child
->getPredicateCalls();
2112 "Non-empty child predicate clobbered!");
2115 // The end result is an all-pairs construction of the resultant pattern.
2116 std::vector
<unsigned> Idxs(ChildAlternatives
.size());
2119 // Create the variant and add it to the output list.
2120 std::vector
<TreePatternNodePtr
> NewChildren
;
2121 NewChildren
.reserve(ChildAlternatives
.size());
2122 for (unsigned i
= 0, e
= ChildAlternatives
.size(); i
!= e
; ++i
)
2123 NewChildren
.push_back(ChildAlternatives
[i
][Idxs
[i
]]);
2124 TreePatternNodePtr R
= makeIntrusiveRefCnt
<TreePatternNode
>(
2125 getOperator(), std::move(NewChildren
), getNumTypes());
2127 // Copy over properties.
2128 R
->setName(getName());
2129 R
->setNamesAsPredicateArg(getNamesAsPredicateArg());
2130 R
->setPredicateCalls(getPredicateCalls());
2131 R
->setGISelFlagsRecord(getGISelFlagsRecord());
2132 R
->setTransformFn(getTransformFn());
2133 for (unsigned i
= 0, e
= getNumTypes(); i
!= e
; ++i
)
2134 R
->setType(i
, getExtType(i
));
2135 for (unsigned i
= 0, e
= getNumResults(); i
!= e
; ++i
)
2136 R
->setResultIndex(i
, getResultIndex(i
));
2138 // Register alternative.
2139 OutAlternatives
.push_back(R
);
2141 // Increment indices to the next permutation by incrementing the
2142 // indices from last index backward, e.g., generate the sequence
2143 // [0, 0], [0, 1], [1, 0], [1, 1].
2145 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
2146 if (++Idxs
[IdxsIdx
] == ChildAlternatives
[IdxsIdx
].size())
2151 NotDone
= (IdxsIdx
>= 0);
2157 // Otherwise, we found a reference to a fragment. First, look up its
2158 // TreePattern record.
2159 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
2161 // Verify that we are passing the right number of operands.
2162 if (Frag
->getNumArgs() != getNumChildren()) {
2163 TP
.error("'" + Op
->getName() + "' fragment requires " +
2164 Twine(Frag
->getNumArgs()) + " operands!");
2168 TreePredicateFn
PredFn(Frag
);
2170 if (TreePredicateFn(Frag
).usesOperands())
2171 Scope
= TP
.getDAGPatterns().allocateScope();
2173 // Compute the map of formal to actual arguments.
2174 std::map
<std::string
, TreePatternNodePtr
> ArgMap
;
2175 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
) {
2176 TreePatternNodePtr Child
= getChildShared(i
);
2178 Child
= Child
->clone();
2179 Child
->addNameAsPredicateArg(ScopedName(Scope
, Frag
->getArgName(i
)));
2181 ArgMap
[Frag
->getArgName(i
)] = Child
;
2184 // Loop over all fragment alternatives.
2185 for (const auto &Alternative
: Frag
->getTrees()) {
2186 TreePatternNodePtr FragTree
= Alternative
->clone();
2188 if (!PredFn
.isAlwaysTrue())
2189 FragTree
->addPredicateCall(PredFn
, Scope
);
2191 // Resolve formal arguments to their actual value.
2192 if (Frag
->getNumArgs())
2193 FragTree
->SubstituteFormalArguments(ArgMap
);
2195 // Transfer types. Note that the resolved alternative may have fewer
2196 // (but not more) results than the PatFrags node.
2197 FragTree
->setName(getName());
2198 for (unsigned i
= 0, e
= FragTree
->getNumTypes(); i
!= e
; ++i
)
2199 FragTree
->UpdateNodeType(i
, getExtType(i
), TP
);
2201 if (Op
->isSubClassOf("GISelFlags"))
2202 FragTree
->setGISelFlagsRecord(Op
);
2204 // Transfer in the old predicates.
2205 for (const TreePredicateCall
&Pred
: getPredicateCalls())
2206 FragTree
->addPredicateCall(Pred
);
2208 // The fragment we inlined could have recursive inlining that is needed. See
2209 // if there are any pattern fragments in it and inline them as needed.
2210 FragTree
->InlinePatternFragments(TP
, OutAlternatives
);
2214 /// getImplicitType - Check to see if the specified record has an implicit
2215 /// type which should be applied to it. This will infer the type of register
2216 /// references from the register file information, for example.
2218 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2219 /// the F8RC register class argument in:
2221 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
2223 /// When Unnamed is false, return the type of a named DAG operand such as the
2224 /// GPR:$src operand above.
2226 static TypeSetByHwMode
getImplicitType(Record
*R
, unsigned ResNo
,
2230 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
2232 // Check to see if this is a register operand.
2233 if (R
->isSubClassOf("RegisterOperand")) {
2234 assert(ResNo
== 0 && "Regoperand ref only has one result!");
2236 return TypeSetByHwMode(); // Unknown.
2237 Record
*RegClass
= R
->getValueAsDef("RegClass");
2238 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2239 return TypeSetByHwMode(T
.getRegisterClass(RegClass
).getValueTypes());
2242 // Check to see if this is a register or a register class.
2243 if (R
->isSubClassOf("RegisterClass")) {
2244 assert(ResNo
== 0 && "Regclass ref only has one result!");
2245 // An unnamed register class represents itself as an i32 immediate, for
2246 // example on a COPY_TO_REGCLASS instruction.
2248 return TypeSetByHwMode(MVT::i32
);
2250 // In a named operand, the register class provides the possible set of
2253 return TypeSetByHwMode(); // Unknown.
2254 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2255 return TypeSetByHwMode(T
.getRegisterClass(R
).getValueTypes());
2258 if (R
->isSubClassOf("PatFrags")) {
2259 assert(ResNo
== 0 && "FIXME: PatFrag with multiple results?");
2260 // Pattern fragment types will be resolved when they are inlined.
2261 return TypeSetByHwMode(); // Unknown.
2264 if (R
->isSubClassOf("Register")) {
2265 assert(ResNo
== 0 && "Registers only produce one result!");
2267 return TypeSetByHwMode(); // Unknown.
2268 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2269 return TypeSetByHwMode(T
.getRegisterVTs(R
));
2272 if (R
->isSubClassOf("SubRegIndex")) {
2273 assert(ResNo
== 0 && "SubRegisterIndices only produce one result!");
2274 return TypeSetByHwMode(MVT::i32
);
2277 if (R
->isSubClassOf("ValueType")) {
2278 assert(ResNo
== 0 && "This node only has one result!");
2279 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2281 // (sext_inreg GPR:$src, i16)
2284 return TypeSetByHwMode(MVT::Other
);
2285 // With a name, the ValueType simply provides the type of the named
2288 // (sext_inreg i32:$src, i16)
2291 return TypeSetByHwMode(); // Unknown.
2292 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2293 return TypeSetByHwMode(getValueTypeByHwMode(R
, CGH
));
2296 if (R
->isSubClassOf("CondCode")) {
2297 assert(ResNo
== 0 && "This node only has one result!");
2298 // Using a CondCodeSDNode.
2299 return TypeSetByHwMode(MVT::Other
);
2302 if (R
->isSubClassOf("ComplexPattern")) {
2303 assert(ResNo
== 0 && "FIXME: ComplexPattern with multiple results?");
2305 return TypeSetByHwMode(); // Unknown.
2306 Record
*T
= CDP
.getComplexPattern(R
).getValueType();
2307 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2308 return TypeSetByHwMode(getValueTypeByHwMode(T
, CGH
));
2310 if (R
->isSubClassOf("PointerLikeRegClass")) {
2311 assert(ResNo
== 0 && "Regclass can only have one result!");
2312 TypeSetByHwMode
VTS(MVT::iPTR
);
2313 TP
.getInfer().expandOverloads(VTS
);
2317 if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
2318 R
->getName() == "zero_reg" || R
->getName() == "immAllOnesV" ||
2319 R
->getName() == "immAllZerosV" || R
->getName() == "undef_tied_input") {
2321 return TypeSetByHwMode(); // Unknown.
2324 if (R
->isSubClassOf("Operand")) {
2325 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2326 Record
*T
= R
->getValueAsDef("Type");
2327 return TypeSetByHwMode(getValueTypeByHwMode(T
, CGH
));
2330 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
2331 return TypeSetByHwMode(MVT::Other
);
2335 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2336 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2337 const CodeGenIntrinsic
*TreePatternNode::
2338 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
2339 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
2340 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
2341 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
2344 unsigned IID
= cast
<IntInit
>(getChild(0)->getLeafValue())->getValue();
2345 return &CDP
.getIntrinsicInfo(IID
);
2348 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2349 /// return the ComplexPattern information, otherwise return null.
2350 const ComplexPattern
*
2351 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const {
2354 DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue());
2359 Rec
= getOperator();
2361 if (!Rec
->isSubClassOf("ComplexPattern"))
2363 return &CGP
.getComplexPattern(Rec
);
2366 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns
&CGP
) const {
2367 // A ComplexPattern specifically declares how many results it fills in.
2368 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
2369 return CP
->getNumOperands();
2371 // If MIOperandInfo is specified, that gives the count.
2373 DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue());
2374 if (DI
&& DI
->getDef()->isSubClassOf("Operand")) {
2375 DagInit
*MIOps
= DI
->getDef()->getValueAsDag("MIOperandInfo");
2376 if (MIOps
->getNumArgs())
2377 return MIOps
->getNumArgs();
2381 // Otherwise there is just one result.
2385 /// NodeHasProperty - Return true if this node has the specified property.
2386 bool TreePatternNode::NodeHasProperty(SDNP Property
,
2387 const CodeGenDAGPatterns
&CGP
) const {
2389 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
2390 return CP
->hasProperty(Property
);
2395 if (Property
!= SDNPHasChain
) {
2396 // The chain proprety is already present on the different intrinsic node
2397 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2398 // on the intrinsic. Anything else is specific to the individual intrinsic.
2399 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CGP
))
2400 return Int
->hasProperty(Property
);
2403 if (!getOperator()->isSubClassOf("SDPatternOperator"))
2406 return CGP
.getSDNodeInfo(getOperator()).hasProperty(Property
);
2412 /// TreeHasProperty - Return true if any node in this tree has the specified
2414 bool TreePatternNode::TreeHasProperty(SDNP Property
,
2415 const CodeGenDAGPatterns
&CGP
) const {
2416 if (NodeHasProperty(Property
, CGP
))
2418 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2419 if (getChild(i
)->TreeHasProperty(Property
, CGP
))
2424 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2425 /// commutative intrinsic.
2427 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
2428 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
2429 return Int
->isCommutative
;
2433 static bool isOperandClass(const TreePatternNode
*N
, StringRef Class
) {
2435 return N
->getOperator()->isSubClassOf(Class
);
2437 DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue());
2438 if (DI
&& DI
->getDef()->isSubClassOf(Class
))
2444 static void emitTooManyOperandsError(TreePattern
&TP
,
2448 TP
.error("Instruction '" + InstName
+ "' was provided " + Twine(Actual
) +
2449 " operands but expected only " + Twine(Expected
) + "!");
2452 static void emitTooFewOperandsError(TreePattern
&TP
,
2455 TP
.error("Instruction '" + InstName
+
2456 "' expects more than the provided " + Twine(Actual
) + " operands!");
2459 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2460 /// this node and its children in the tree. This returns true if it makes a
2461 /// change, false otherwise. If a type contradiction is found, flag an error.
2462 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
2466 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
2468 if (DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue())) {
2469 // If it's a regclass or something else known, include the type.
2470 bool MadeChange
= false;
2471 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
2472 MadeChange
|= UpdateNodeType(i
, getImplicitType(DI
->getDef(), i
,
2474 !hasName(), TP
), TP
);
2478 if (IntInit
*II
= dyn_cast
<IntInit
>(getLeafValue())) {
2479 assert(Types
.size() == 1 && "Invalid IntInit");
2481 // Int inits are always integers. :)
2482 bool MadeChange
= TP
.getInfer().EnforceInteger(Types
[0]);
2484 if (!TP
.getInfer().isConcrete(Types
[0], false))
2487 ValueTypeByHwMode VVT
= TP
.getInfer().getConcrete(Types
[0], false);
2488 for (auto &P
: VVT
) {
2489 MVT::SimpleValueType VT
= P
.second
.SimpleTy
;
2490 if (VT
== MVT::iPTR
|| VT
== MVT::iPTRAny
)
2492 unsigned Size
= MVT(VT
).getFixedSizeInBits();
2493 // Make sure that the value is representable for this type.
2496 // Check that the value doesn't use more bits than we have. It must
2497 // either be a sign- or zero-extended equivalent of the original.
2498 int64_t SignBitAndAbove
= II
->getValue() >> (Size
- 1);
2499 if (SignBitAndAbove
== -1 || SignBitAndAbove
== 0 ||
2500 SignBitAndAbove
== 1)
2503 TP
.error("Integer value '" + Twine(II
->getValue()) +
2504 "' is out of range for type '" + getEnumName(VT
) + "'!");
2513 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
2514 bool MadeChange
= false;
2516 // Apply the result type to the node.
2517 unsigned NumRetVTs
= Int
->IS
.RetTys
.size();
2518 unsigned NumParamVTs
= Int
->IS
.ParamTys
.size();
2520 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
2521 MadeChange
|= UpdateNodeType(
2522 i
, getValueType(Int
->IS
.RetTys
[i
]->getValueAsDef("VT")), TP
);
2524 if (getNumChildren() != NumParamVTs
+ 1) {
2525 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " + Twine(NumParamVTs
) +
2526 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2530 // Apply type info to the intrinsic ID.
2531 MadeChange
|= getChild(0)->UpdateNodeType(0, MVT::iPTR
, TP
);
2533 for (unsigned i
= 0, e
= getNumChildren()-1; i
!= e
; ++i
) {
2534 MadeChange
|= getChild(i
+1)->ApplyTypeConstraints(TP
, NotRegisters
);
2536 MVT::SimpleValueType OpVT
=
2537 getValueType(Int
->IS
.ParamTys
[i
]->getValueAsDef("VT"));
2538 assert(getChild(i
+ 1)->getNumTypes() == 1 && "Unhandled case");
2539 MadeChange
|= getChild(i
+ 1)->UpdateNodeType(0, OpVT
, TP
);
2544 if (getOperator()->isSubClassOf("SDNode")) {
2545 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
2547 // Check that the number of operands is sane. Negative operands -> varargs.
2548 if (NI
.getNumOperands() >= 0 &&
2549 getNumChildren() != (unsigned)NI
.getNumOperands()) {
2550 TP
.error(getOperator()->getName() + " node requires exactly " +
2551 Twine(NI
.getNumOperands()) + " operands!");
2555 bool MadeChange
= false;
2556 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2557 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2558 MadeChange
|= NI
.ApplyTypeConstraints(this, TP
);
2562 if (getOperator()->isSubClassOf("Instruction")) {
2563 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
2564 CodeGenInstruction
&InstInfo
=
2565 CDP
.getTargetInfo().getInstruction(getOperator());
2567 bool MadeChange
= false;
2569 // Apply the result types to the node, these come from the things in the
2570 // (outs) list of the instruction.
2571 unsigned NumResultsToAdd
= std::min(InstInfo
.Operands
.NumDefs
,
2572 Inst
.getNumResults());
2573 for (unsigned ResNo
= 0; ResNo
!= NumResultsToAdd
; ++ResNo
)
2574 MadeChange
|= UpdateNodeTypeFromInst(ResNo
, Inst
.getResult(ResNo
), TP
);
2576 // If the instruction has implicit defs, we apply the first one as a result.
2577 // FIXME: This sucks, it should apply all implicit defs.
2578 if (!InstInfo
.ImplicitDefs
.empty()) {
2579 unsigned ResNo
= NumResultsToAdd
;
2581 // FIXME: Generalize to multiple possible types and multiple possible
2583 MVT::SimpleValueType VT
=
2584 InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo());
2586 if (VT
!= MVT::Other
)
2587 MadeChange
|= UpdateNodeType(ResNo
, VT
, TP
);
2590 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2592 if (getOperator()->getName() == "INSERT_SUBREG") {
2593 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2594 MadeChange
|= UpdateNodeType(0, getChild(0)->getExtType(0), TP
);
2595 MadeChange
|= getChild(0)->UpdateNodeType(0, getExtType(0), TP
);
2596 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2597 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2600 unsigned NChild
= getNumChildren();
2602 TP
.error("REG_SEQUENCE requires at least 3 operands!");
2606 if (NChild
% 2 == 0) {
2607 TP
.error("REG_SEQUENCE requires an odd number of operands!");
2611 if (!isOperandClass(getChild(0), "RegisterClass")) {
2612 TP
.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2616 for (unsigned I
= 1; I
< NChild
; I
+= 2) {
2617 TreePatternNode
*SubIdxChild
= getChild(I
+ 1);
2618 if (!isOperandClass(SubIdxChild
, "SubRegIndex")) {
2619 TP
.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2620 Twine(I
+ 1) + "!");
2626 unsigned NumResults
= Inst
.getNumResults();
2627 unsigned NumFixedOperands
= InstInfo
.Operands
.size();
2629 // If one or more operands with a default value appear at the end of the
2630 // formal operand list for an instruction, we allow them to be overridden
2631 // by optional operands provided in the pattern.
2633 // But if an operand B without a default appears at any point after an
2634 // operand A with a default, then we don't allow A to be overridden,
2635 // because there would be no way to specify whether the next operand in
2636 // the pattern was intended to override A or skip it.
2637 unsigned NonOverridableOperands
= NumFixedOperands
;
2638 while (NonOverridableOperands
> NumResults
&&
2639 CDP
.operandHasDefault(InstInfo
.Operands
[NonOverridableOperands
-1].Rec
))
2640 --NonOverridableOperands
;
2642 unsigned ChildNo
= 0;
2643 assert(NumResults
<= NumFixedOperands
);
2644 for (unsigned i
= NumResults
, e
= NumFixedOperands
; i
!= e
; ++i
) {
2645 Record
*OperandNode
= InstInfo
.Operands
[i
].Rec
;
2647 // If the operand has a default value, do we use it? We must use the
2648 // default if we've run out of children of the pattern DAG to consume,
2649 // or if the operand is followed by a non-defaulted one.
2650 if (CDP
.operandHasDefault(OperandNode
) &&
2651 (i
< NonOverridableOperands
|| ChildNo
>= getNumChildren()))
2654 // If we have run out of child nodes and there _isn't_ a default
2655 // value we can use for the next operand, give an error.
2656 if (ChildNo
>= getNumChildren()) {
2657 emitTooFewOperandsError(TP
, getOperator()->getName(), getNumChildren());
2661 TreePatternNode
*Child
= getChild(ChildNo
++);
2662 unsigned ChildResNo
= 0; // Instructions always use res #0 of their op.
2664 // If the operand has sub-operands, they may be provided by distinct
2665 // child patterns, so attempt to match each sub-operand separately.
2666 if (OperandNode
->isSubClassOf("Operand")) {
2667 DagInit
*MIOpInfo
= OperandNode
->getValueAsDag("MIOperandInfo");
2668 if (unsigned NumArgs
= MIOpInfo
->getNumArgs()) {
2669 // But don't do that if the whole operand is being provided by
2670 // a single ComplexPattern-related Operand.
2672 if (Child
->getNumMIResults(CDP
) < NumArgs
) {
2673 // Match first sub-operand against the child we already have.
2674 Record
*SubRec
= cast
<DefInit
>(MIOpInfo
->getArg(0))->getDef();
2676 Child
->UpdateNodeTypeFromInst(ChildResNo
, SubRec
, TP
);
2678 // And the remaining sub-operands against subsequent children.
2679 for (unsigned Arg
= 1; Arg
< NumArgs
; ++Arg
) {
2680 if (ChildNo
>= getNumChildren()) {
2681 emitTooFewOperandsError(TP
, getOperator()->getName(),
2685 Child
= getChild(ChildNo
++);
2687 SubRec
= cast
<DefInit
>(MIOpInfo
->getArg(Arg
))->getDef();
2689 Child
->UpdateNodeTypeFromInst(ChildResNo
, SubRec
, TP
);
2696 // If we didn't match by pieces above, attempt to match the whole
2698 MadeChange
|= Child
->UpdateNodeTypeFromInst(ChildResNo
, OperandNode
, TP
);
2701 if (!InstInfo
.Operands
.isVariadic
&& ChildNo
!= getNumChildren()) {
2702 emitTooManyOperandsError(TP
, getOperator()->getName(),
2703 ChildNo
, getNumChildren());
2707 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2708 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2712 if (getOperator()->isSubClassOf("ComplexPattern")) {
2713 bool MadeChange
= false;
2715 if (!NotRegisters
) {
2716 assert(Types
.size() == 1 && "ComplexPatterns only produce one result!");
2717 Record
*T
= CDP
.getComplexPattern(getOperator()).getValueType();
2718 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2719 const ValueTypeByHwMode VVT
= getValueTypeByHwMode(T
, CGH
);
2720 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2721 // exclusively use those as non-leaf nodes with explicit type casts, so
2722 // for backwards compatibility we do no inference in that case. This is
2723 // not supported when the ComplexPattern is used as a leaf value,
2724 // however; this inconsistency should be resolved, either by adding this
2725 // case there or by altering the backends to not do this (e.g. using Any
2726 // instead may work).
2727 if (!VVT
.isSimple() || VVT
.getSimple() != MVT::Untyped
)
2728 MadeChange
|= UpdateNodeType(0, VVT
, TP
);
2731 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
2732 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2737 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2739 // Node transforms always take one operand.
2740 if (getNumChildren() != 1) {
2741 TP
.error("Node transform '" + getOperator()->getName() +
2742 "' requires one operand!");
2746 bool MadeChange
= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
2750 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2751 /// RHS of a commutative operation, not the on LHS.
2752 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
2753 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
2755 if (N
->isLeaf() && isa
<IntInit
>(N
->getLeafValue()))
2757 if (isImmAllOnesAllZerosMatch(N
))
2763 /// canPatternMatch - If it is impossible for this pattern to match on this
2764 /// target, fill in Reason and return false. Otherwise, return true. This is
2765 /// used as a sanity check for .td files (to prevent people from writing stuff
2766 /// that can never possibly work), and to prevent the pattern permuter from
2767 /// generating stuff that is useless.
2768 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
2769 const CodeGenDAGPatterns
&CDP
) {
2770 if (isLeaf()) return true;
2772 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2773 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
2776 // If this is an intrinsic, handle cases that would make it not match. For
2777 // example, if an operand is required to be an immediate.
2778 if (getOperator()->isSubClassOf("Intrinsic")) {
2783 if (getOperator()->isSubClassOf("ComplexPattern"))
2786 // If this node is a commutative operator, check that the LHS isn't an
2788 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
2789 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
2790 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
2791 // Scan all of the operands of the node and make sure that only the last one
2792 // is a constant node, unless the RHS also is.
2793 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2794 unsigned Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
2795 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
2796 if (OnlyOnRHSOfCommutative(getChild(i
))) {
2797 Reason
="Immediate value must be on the RHS of commutative operators!";
2806 //===----------------------------------------------------------------------===//
2807 // TreePattern implementation
2810 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
2811 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
),
2812 isInputPattern(isInput
), HasError(false),
2814 for (Init
*I
: RawPat
->getValues())
2815 Trees
.push_back(ParseTreePattern(I
, ""));
2818 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
2819 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
),
2820 isInputPattern(isInput
), HasError(false),
2822 Trees
.push_back(ParseTreePattern(Pat
, ""));
2825 TreePattern::TreePattern(Record
*TheRec
, TreePatternNodePtr Pat
, bool isInput
,
2826 CodeGenDAGPatterns
&cdp
)
2827 : TheRecord(TheRec
), CDP(cdp
), isInputPattern(isInput
), HasError(false),
2829 Trees
.push_back(Pat
);
2832 void TreePattern::error(const Twine
&Msg
) {
2836 PrintError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
2840 void TreePattern::ComputeNamedNodes() {
2841 for (TreePatternNodePtr
&Tree
: Trees
)
2842 ComputeNamedNodes(Tree
.get());
2845 void TreePattern::ComputeNamedNodes(TreePatternNode
*N
) {
2846 if (!N
->getName().empty())
2847 NamedNodes
[N
->getName()].push_back(N
);
2849 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2850 ComputeNamedNodes(N
->getChild(i
));
2853 TreePatternNodePtr
TreePattern::ParseTreePattern(Init
*TheInit
,
2855 RecordKeeper
&RK
= TheInit
->getRecordKeeper();
2856 if (DefInit
*DI
= dyn_cast
<DefInit
>(TheInit
)) {
2857 Record
*R
= DI
->getDef();
2859 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2860 // TreePatternNode of its own. For example:
2861 /// (foo GPR, imm) -> (foo GPR, (imm))
2862 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrags"))
2863 return ParseTreePattern(
2864 DagInit::get(DI
, nullptr,
2865 std::vector
<std::pair
<Init
*, StringInit
*> >()),
2869 TreePatternNodePtr Res
= makeIntrusiveRefCnt
<TreePatternNode
>(DI
, 1);
2870 if (R
->getName() == "node" && !OpName
.empty()) {
2872 error("'node' argument requires a name to match with operand list");
2873 Args
.push_back(std::string(OpName
));
2876 Res
->setName(OpName
);
2880 // ?:$name or just $name.
2881 if (isa
<UnsetInit
>(TheInit
)) {
2883 error("'?' argument requires a name to match with operand list");
2884 TreePatternNodePtr Res
= makeIntrusiveRefCnt
<TreePatternNode
>(TheInit
, 1);
2885 Args
.push_back(std::string(OpName
));
2886 Res
->setName(OpName
);
2890 if (isa
<IntInit
>(TheInit
) || isa
<BitInit
>(TheInit
)) {
2891 if (!OpName
.empty())
2892 error("Constant int or bit argument should not have a name!");
2893 if (isa
<BitInit
>(TheInit
))
2894 TheInit
= TheInit
->convertInitializerTo(IntRecTy::get(RK
));
2895 return makeIntrusiveRefCnt
<TreePatternNode
>(TheInit
, 1);
2898 if (BitsInit
*BI
= dyn_cast
<BitsInit
>(TheInit
)) {
2899 // Turn this into an IntInit.
2900 Init
*II
= BI
->convertInitializerTo(IntRecTy::get(RK
));
2901 if (!II
|| !isa
<IntInit
>(II
))
2902 error("Bits value must be constants!");
2903 return II
? ParseTreePattern(II
, OpName
) : nullptr;
2906 DagInit
*Dag
= dyn_cast
<DagInit
>(TheInit
);
2908 TheInit
->print(errs());
2909 error("Pattern has unexpected init kind!");
2912 DefInit
*OpDef
= dyn_cast
<DefInit
>(Dag
->getOperator());
2914 error("Pattern has unexpected operator type!");
2917 Record
*Operator
= OpDef
->getDef();
2919 if (Operator
->isSubClassOf("ValueType")) {
2920 // If the operator is a ValueType, then this must be "type cast" of a leaf
2922 if (Dag
->getNumArgs() != 1)
2923 error("Type cast only takes one operand!");
2925 TreePatternNodePtr New
=
2926 ParseTreePattern(Dag
->getArg(0), Dag
->getArgNameStr(0));
2928 // Apply the type cast.
2929 if (New
->getNumTypes() != 1)
2930 error("Type cast can only have one type!");
2931 const CodeGenHwModes
&CGH
= getDAGPatterns().getTargetInfo().getHwModes();
2932 New
->UpdateNodeType(0, getValueTypeByHwMode(Operator
, CGH
), *this);
2934 if (!OpName
.empty())
2935 error("ValueType cast should not have a name!");
2939 // Verify that this is something that makes sense for an operator.
2940 if (!Operator
->isSubClassOf("PatFrags") &&
2941 !Operator
->isSubClassOf("SDNode") &&
2942 !Operator
->isSubClassOf("Instruction") &&
2943 !Operator
->isSubClassOf("SDNodeXForm") &&
2944 !Operator
->isSubClassOf("Intrinsic") &&
2945 !Operator
->isSubClassOf("ComplexPattern") &&
2946 Operator
->getName() != "set" &&
2947 Operator
->getName() != "implicit")
2948 error("Unrecognized node '" + Operator
->getName() + "'!");
2950 // Check to see if this is something that is illegal in an input pattern.
2951 if (isInputPattern
) {
2952 if (Operator
->isSubClassOf("Instruction") ||
2953 Operator
->isSubClassOf("SDNodeXForm"))
2954 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
2956 if (Operator
->isSubClassOf("Intrinsic"))
2957 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
2959 if (Operator
->isSubClassOf("SDNode") &&
2960 Operator
->getName() != "imm" &&
2961 Operator
->getName() != "timm" &&
2962 Operator
->getName() != "fpimm" &&
2963 Operator
->getName() != "tglobaltlsaddr" &&
2964 Operator
->getName() != "tconstpool" &&
2965 Operator
->getName() != "tjumptable" &&
2966 Operator
->getName() != "tframeindex" &&
2967 Operator
->getName() != "texternalsym" &&
2968 Operator
->getName() != "tblockaddress" &&
2969 Operator
->getName() != "tglobaladdr" &&
2970 Operator
->getName() != "bb" &&
2971 Operator
->getName() != "vt" &&
2972 Operator
->getName() != "mcsym")
2973 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
2976 std::vector
<TreePatternNodePtr
> Children
;
2978 // Parse all the operands.
2979 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
)
2980 Children
.push_back(ParseTreePattern(Dag
->getArg(i
), Dag
->getArgNameStr(i
)));
2982 // Get the actual number of results before Operator is converted to an intrinsic
2983 // node (which is hard-coded to have either zero or one result).
2984 unsigned NumResults
= GetNumNodeResults(Operator
, CDP
);
2986 // If the operator is an intrinsic, then this is just syntactic sugar for
2987 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2988 // convert the intrinsic name to a number.
2989 if (Operator
->isSubClassOf("Intrinsic")) {
2990 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
2991 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
2993 // If this intrinsic returns void, it must have side-effects and thus a
2995 if (Int
.IS
.RetTys
.empty())
2996 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
2997 else if (!Int
.ME
.doesNotAccessMemory() || Int
.hasSideEffects
)
2998 // Has side-effects, requires chain.
2999 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
3000 else // Otherwise, no chain.
3001 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
3003 Children
.insert(Children
.begin(), makeIntrusiveRefCnt
<TreePatternNode
>(
3004 IntInit::get(RK
, IID
), 1));
3007 if (Operator
->isSubClassOf("ComplexPattern")) {
3008 for (unsigned i
= 0; i
< Children
.size(); ++i
) {
3009 TreePatternNodePtr Child
= Children
[i
];
3011 if (Child
->getName().empty())
3012 error("All arguments to a ComplexPattern must be named");
3014 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3015 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3016 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3017 auto OperandId
= std::make_pair(Operator
, i
);
3018 auto PrevOp
= ComplexPatternOperands
.find(Child
->getName());
3019 if (PrevOp
!= ComplexPatternOperands
.end()) {
3020 if (PrevOp
->getValue() != OperandId
)
3021 error("All ComplexPattern operands must appear consistently: "
3022 "in the same order in just one ComplexPattern instance.");
3024 ComplexPatternOperands
[Child
->getName()] = OperandId
;
3028 TreePatternNodePtr Result
= makeIntrusiveRefCnt
<TreePatternNode
>(
3029 Operator
, std::move(Children
), NumResults
);
3030 Result
->setName(OpName
);
3032 if (Dag
->getName()) {
3033 assert(Result
->getName().empty());
3034 Result
->setName(Dag
->getNameStr());
3039 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3040 /// will never match in favor of something obvious that will. This is here
3041 /// strictly as a convenience to target authors because it allows them to write
3042 /// more type generic things and have useless type casts fold away.
3044 /// This returns true if any change is made.
3045 static bool SimplifyTree(TreePatternNodePtr
&N
) {
3049 // If we have a bitconvert with a resolved type and if the source and
3050 // destination types are the same, then the bitconvert is useless, remove it.
3052 // We make an exception if the types are completely empty. This can come up
3053 // when the pattern being simplified is in the Fragments list of a PatFrags,
3054 // so that the operand is just an untyped "node". In that situation we leave
3055 // bitconverts unsimplified, and simplify them later once the fragment is
3056 // expanded into its true context.
3057 if (N
->getOperator()->getName() == "bitconvert" &&
3058 N
->getExtType(0).isValueTypeByHwMode(false) &&
3059 !N
->getExtType(0).empty() &&
3060 N
->getExtType(0) == N
->getChild(0)->getExtType(0) &&
3061 N
->getName().empty()) {
3062 N
= N
->getChildShared(0);
3067 // Walk all children.
3068 bool MadeChange
= false;
3069 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3070 MadeChange
|= SimplifyTree(N
->getChildSharedPtr(i
));
3077 /// InferAllTypes - Infer/propagate as many types throughout the expression
3078 /// patterns as possible. Return true if all types are inferred, false
3079 /// otherwise. Flags an error if a type contradiction is found.
3081 InferAllTypes(const StringMap
<SmallVector
<TreePatternNode
*,1> > *InNamedTypes
) {
3082 if (NamedNodes
.empty())
3083 ComputeNamedNodes();
3085 bool MadeChange
= true;
3086 while (MadeChange
) {
3088 for (TreePatternNodePtr
&Tree
: Trees
) {
3089 MadeChange
|= Tree
->ApplyTypeConstraints(*this, false);
3090 MadeChange
|= SimplifyTree(Tree
);
3093 // If there are constraints on our named nodes, apply them.
3094 for (auto &Entry
: NamedNodes
) {
3095 SmallVectorImpl
<TreePatternNode
*> &Nodes
= Entry
.second
;
3097 // If we have input named node types, propagate their types to the named
3100 if (!InNamedTypes
->count(Entry
.getKey())) {
3101 error("Node '" + std::string(Entry
.getKey()) +
3102 "' in output pattern but not input pattern");
3106 const SmallVectorImpl
<TreePatternNode
*> &InNodes
=
3107 InNamedTypes
->find(Entry
.getKey())->second
;
3109 // The input types should be fully resolved by now.
3110 for (TreePatternNode
*Node
: Nodes
) {
3111 // If this node is a register class, and it is the root of the pattern
3112 // then we're mapping something onto an input register. We allow
3113 // changing the type of the input register in this case. This allows
3114 // us to match things like:
3115 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3116 if (Node
== Trees
[0].get() && Node
->isLeaf()) {
3117 DefInit
*DI
= dyn_cast
<DefInit
>(Node
->getLeafValue());
3118 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
3119 DI
->getDef()->isSubClassOf("RegisterOperand")))
3123 assert(Node
->getNumTypes() == 1 &&
3124 InNodes
[0]->getNumTypes() == 1 &&
3125 "FIXME: cannot name multiple result nodes yet");
3126 MadeChange
|= Node
->UpdateNodeType(0, InNodes
[0]->getExtType(0),
3131 // If there are multiple nodes with the same name, they must all have the
3133 if (Entry
.second
.size() > 1) {
3134 for (unsigned i
= 0, e
= Nodes
.size()-1; i
!= e
; ++i
) {
3135 TreePatternNode
*N1
= Nodes
[i
], *N2
= Nodes
[i
+1];
3136 assert(N1
->getNumTypes() == 1 && N2
->getNumTypes() == 1 &&
3137 "FIXME: cannot name multiple result nodes yet");
3139 MadeChange
|= N1
->UpdateNodeType(0, N2
->getExtType(0), *this);
3140 MadeChange
|= N2
->UpdateNodeType(0, N1
->getExtType(0), *this);
3146 bool HasUnresolvedTypes
= false;
3147 for (const TreePatternNodePtr
&Tree
: Trees
)
3148 HasUnresolvedTypes
|= Tree
->ContainsUnresolvedType(*this);
3149 return !HasUnresolvedTypes
;
3152 void TreePattern::print(raw_ostream
&OS
) const {
3153 OS
<< getRecord()->getName();
3154 if (!Args
.empty()) {
3157 for (const std::string
&Arg
: Args
)
3163 if (Trees
.size() > 1)
3165 for (const TreePatternNodePtr
&Tree
: Trees
) {
3171 if (Trees
.size() > 1)
3175 void TreePattern::dump() const { print(errs()); }
3177 //===----------------------------------------------------------------------===//
3178 // CodeGenDAGPatterns implementation
3181 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
,
3182 PatternRewriterFn PatternRewriter
)
3183 : Records(R
), Target(R
), LegalVTS(Target
.getLegalValueTypes()),
3184 PatternRewriter(PatternRewriter
) {
3186 Intrinsics
= CodeGenIntrinsicTable(Records
);
3188 ParseNodeTransforms();
3189 ParseComplexPatterns();
3190 ParsePatternFragments();
3191 ParseDefaultOperands();
3192 ParseInstructions();
3193 ParsePatternFragments(/*OutFrags*/true);
3196 // Generate variants. For example, commutative patterns can match
3197 // multiple ways. Add them to PatternsToMatch as well.
3200 // Break patterns with parameterized types into a series of patterns,
3201 // where each one has a fixed type and is predicated on the conditions
3202 // of the associated HW mode.
3203 ExpandHwModeBasedTypes();
3205 // Infer instruction flags. For example, we can detect loads,
3206 // stores, and side effects in many cases by examining an
3207 // instruction's pattern.
3208 InferInstructionFlags();
3210 // Verify that instruction flags match the patterns.
3211 VerifyInstructionFlags();
3214 Record
*CodeGenDAGPatterns::getSDNodeNamed(StringRef Name
) const {
3215 Record
*N
= Records
.getDef(Name
);
3216 if (!N
|| !N
->isSubClassOf("SDNode"))
3217 PrintFatalError("Error getting SDNode '" + Name
+ "'!");
3222 // Parse all of the SDNode definitions for the target, populating SDNodes.
3223 void CodeGenDAGPatterns::ParseNodeInfo() {
3224 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
3225 const CodeGenHwModes
&CGH
= getTargetInfo().getHwModes();
3227 while (!Nodes
.empty()) {
3228 Record
*R
= Nodes
.back();
3229 SDNodes
.insert(std::make_pair(R
, SDNodeInfo(R
, CGH
)));
3233 // Get the builtin intrinsic nodes.
3234 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
3235 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
3236 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
3239 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3240 /// map, and emit them to the file as functions.
3241 void CodeGenDAGPatterns::ParseNodeTransforms() {
3242 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
3243 while (!Xforms
.empty()) {
3244 Record
*XFormNode
= Xforms
.back();
3245 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
3246 StringRef Code
= XFormNode
->getValueAsString("XFormFunction");
3247 SDNodeXForms
.insert(
3248 std::make_pair(XFormNode
, NodeXForm(SDNode
, std::string(Code
))));
3254 void CodeGenDAGPatterns::ParseComplexPatterns() {
3255 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
3256 while (!AMs
.empty()) {
3257 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
3263 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3264 /// file, building up the PatternFragments map. After we've collected them all,
3265 /// inline fragments together as necessary, so that there are no references left
3266 /// inside a pattern fragment to a pattern fragment.
3268 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags
) {
3269 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrags");
3271 // First step, parse all of the fragments.
3272 for (Record
*Frag
: Fragments
) {
3273 if (OutFrags
!= Frag
->isSubClassOf("OutPatFrag"))
3276 ListInit
*LI
= Frag
->getValueAsListInit("Fragments");
3278 (PatternFragments
[Frag
] = std::make_unique
<TreePattern
>(
3279 Frag
, LI
, !Frag
->isSubClassOf("OutPatFrag"),
3282 // Validate the argument list, converting it to set, to discard duplicates.
3283 std::vector
<std::string
> &Args
= P
->getArgList();
3284 // Copy the args so we can take StringRefs to them.
3285 auto ArgsCopy
= Args
;
3286 SmallDenseSet
<StringRef
, 4> OperandsSet
;
3287 OperandsSet
.insert(ArgsCopy
.begin(), ArgsCopy
.end());
3289 if (OperandsSet
.count(""))
3290 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
3292 // Parse the operands list.
3293 DagInit
*OpsList
= Frag
->getValueAsDag("Operands");
3294 DefInit
*OpsOp
= dyn_cast
<DefInit
>(OpsList
->getOperator());
3295 // Special cases: ops == outs == ins. Different names are used to
3296 // improve readability.
3298 (OpsOp
->getDef()->getName() != "ops" &&
3299 OpsOp
->getDef()->getName() != "outs" &&
3300 OpsOp
->getDef()->getName() != "ins"))
3301 P
->error("Operands list should start with '(ops ... '!");
3303 // Copy over the arguments.
3305 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
3306 if (!isa
<DefInit
>(OpsList
->getArg(j
)) ||
3307 cast
<DefInit
>(OpsList
->getArg(j
))->getDef()->getName() != "node")
3308 P
->error("Operands list should all be 'node' values.");
3309 if (!OpsList
->getArgName(j
))
3310 P
->error("Operands list should have names for each operand!");
3311 StringRef ArgNameStr
= OpsList
->getArgNameStr(j
);
3312 if (!OperandsSet
.count(ArgNameStr
))
3313 P
->error("'" + ArgNameStr
+
3314 "' does not occur in pattern or was multiply specified!");
3315 OperandsSet
.erase(ArgNameStr
);
3316 Args
.push_back(std::string(ArgNameStr
));
3319 if (!OperandsSet
.empty())
3320 P
->error("Operands list does not contain an entry for operand '" +
3321 *OperandsSet
.begin() + "'!");
3323 // If there is a node transformation corresponding to this, keep track of
3325 Record
*Transform
= Frag
->getValueAsDef("OperandTransform");
3326 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
3327 for (const auto &T
: P
->getTrees())
3328 T
->setTransformFn(Transform
);
3331 // Now that we've parsed all of the tree fragments, do a closure on them so
3332 // that there are not references to PatFrags left inside of them.
3333 for (Record
*Frag
: Fragments
) {
3334 if (OutFrags
!= Frag
->isSubClassOf("OutPatFrag"))
3337 TreePattern
&ThePat
= *PatternFragments
[Frag
];
3338 ThePat
.InlinePatternFragments();
3340 // Infer as many types as possible. Don't worry about it if we don't infer
3341 // all of them, some may depend on the inputs of the pattern. Also, don't
3342 // validate type sets; validation may cause spurious failures e.g. if a
3343 // fragment needs floating-point types but the current target does not have
3344 // any (this is only an error if that fragment is ever used!).
3346 TypeInfer::SuppressValidation
SV(ThePat
.getInfer());
3347 ThePat
.InferAllTypes();
3348 ThePat
.resetError();
3351 // If debugging, print out the pattern fragment result.
3352 LLVM_DEBUG(ThePat
.dump());
3356 void CodeGenDAGPatterns::ParseDefaultOperands() {
3357 std::vector
<Record
*> DefaultOps
;
3358 DefaultOps
= Records
.getAllDerivedDefinitions("OperandWithDefaultOps");
3360 // Find some SDNode.
3361 assert(!SDNodes
.empty() && "No SDNodes parsed?");
3362 Init
*SomeSDNode
= DefInit::get(SDNodes
.begin()->first
);
3364 for (unsigned i
= 0, e
= DefaultOps
.size(); i
!= e
; ++i
) {
3365 DagInit
*DefaultInfo
= DefaultOps
[i
]->getValueAsDag("DefaultOps");
3367 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3368 // SomeSDnode so that we can parse this.
3369 std::vector
<std::pair
<Init
*, StringInit
*> > Ops
;
3370 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
3371 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
3372 DefaultInfo
->getArgName(op
)));
3373 DagInit
*DI
= DagInit::get(SomeSDNode
, nullptr, Ops
);
3375 // Create a TreePattern to parse this.
3376 TreePattern
P(DefaultOps
[i
], DI
, false, *this);
3377 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
3379 // Copy the operands over into a DAGDefaultOperand.
3380 DAGDefaultOperand DefaultOpInfo
;
3382 const TreePatternNodePtr
&T
= P
.getTree(0);
3383 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
3384 TreePatternNodePtr TPN
= T
->getChildShared(op
);
3385 while (TPN
->ApplyTypeConstraints(P
, false))
3386 /* Resolve all types */;
3388 if (TPN
->ContainsUnresolvedType(P
)) {
3389 PrintFatalError("Value #" + Twine(i
) + " of OperandWithDefaultOps '" +
3390 DefaultOps
[i
]->getName() +
3391 "' doesn't have a concrete type!");
3393 DefaultOpInfo
.DefaultOps
.push_back(std::move(TPN
));
3396 // Insert it into the DefaultOperands map so we can find it later.
3397 DefaultOperands
[DefaultOps
[i
]] = DefaultOpInfo
;
3401 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3402 /// instruction input. Return true if this is a real use.
3403 static bool HandleUse(TreePattern
&I
, TreePatternNodePtr Pat
,
3404 std::map
<std::string
, TreePatternNodePtr
> &InstInputs
) {
3405 // No name -> not interesting.
3406 if (Pat
->getName().empty()) {
3407 if (Pat
->isLeaf()) {
3408 DefInit
*DI
= dyn_cast
<DefInit
>(Pat
->getLeafValue());
3409 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
3410 DI
->getDef()->isSubClassOf("RegisterOperand")))
3411 I
.error("Input " + DI
->getDef()->getName() + " must be named!");
3417 if (Pat
->isLeaf()) {
3418 DefInit
*DI
= dyn_cast
<DefInit
>(Pat
->getLeafValue());
3420 I
.error("Input $" + Pat
->getName() + " must be an identifier!");
3423 Rec
= Pat
->getOperator();
3426 // SRCVALUE nodes are ignored.
3427 if (Rec
->getName() == "srcvalue")
3430 TreePatternNodePtr
&Slot
= InstInputs
[Pat
->getName()];
3436 if (Slot
->isLeaf()) {
3437 SlotRec
= cast
<DefInit
>(Slot
->getLeafValue())->getDef();
3439 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
3440 SlotRec
= Slot
->getOperator();
3443 // Ensure that the inputs agree if we've already seen this input.
3445 I
.error("All $" + Pat
->getName() + " inputs must agree with each other");
3446 // Ensure that the types can agree as well.
3447 Slot
->UpdateNodeType(0, Pat
->getExtType(0), I
);
3448 Pat
->UpdateNodeType(0, Slot
->getExtType(0), I
);
3449 if (Slot
->getExtTypes() != Pat
->getExtTypes())
3450 I
.error("All $" + Pat
->getName() + " inputs must agree with each other");
3454 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3455 /// part of "I", the instruction), computing the set of inputs and outputs of
3456 /// the pattern. Report errors if we see anything naughty.
3457 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3458 TreePattern
&I
, TreePatternNodePtr Pat
,
3459 std::map
<std::string
, TreePatternNodePtr
> &InstInputs
,
3460 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
3462 std::vector
<Record
*> &InstImpResults
) {
3464 // The instruction pattern still has unresolved fragments. For *named*
3465 // nodes we must resolve those here. This may not result in multiple
3467 if (!Pat
->getName().empty()) {
3468 TreePattern
SrcPattern(I
.getRecord(), Pat
, true, *this);
3469 SrcPattern
.InlinePatternFragments();
3470 SrcPattern
.InferAllTypes();
3471 Pat
= SrcPattern
.getOnlyTree();
3474 if (Pat
->isLeaf()) {
3475 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
3476 if (!isUse
&& Pat
->getTransformFn())
3477 I
.error("Cannot specify a transform function for a non-input value!");
3481 if (Pat
->getOperator()->getName() == "implicit") {
3482 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
3483 TreePatternNode
*Dest
= Pat
->getChild(i
);
3484 if (!Dest
->isLeaf())
3485 I
.error("implicitly defined value should be a register!");
3487 DefInit
*Val
= dyn_cast
<DefInit
>(Dest
->getLeafValue());
3488 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
3489 I
.error("implicitly defined value should be a register!");
3491 InstImpResults
.push_back(Val
->getDef());
3496 if (Pat
->getOperator()->getName() != "set") {
3497 // If this is not a set, verify that the children nodes are not void typed,
3499 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
3500 if (Pat
->getChild(i
)->getNumTypes() == 0)
3501 I
.error("Cannot have void nodes inside of patterns!");
3502 FindPatternInputsAndOutputs(I
, Pat
->getChildShared(i
), InstInputs
,
3503 InstResults
, InstImpResults
);
3506 // If this is a non-leaf node with no children, treat it basically as if
3507 // it were a leaf. This handles nodes like (imm).
3508 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
3510 if (!isUse
&& Pat
->getTransformFn())
3511 I
.error("Cannot specify a transform function for a non-input value!");
3515 // Otherwise, this is a set, validate and collect instruction results.
3516 if (Pat
->getNumChildren() == 0)
3517 I
.error("set requires operands!");
3519 if (Pat
->getTransformFn())
3520 I
.error("Cannot specify a transform function on a set node!");
3522 // Check the set destinations.
3523 unsigned NumDests
= Pat
->getNumChildren()-1;
3524 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
3525 TreePatternNodePtr Dest
= Pat
->getChildShared(i
);
3526 // For set destinations we also must resolve fragments here.
3527 TreePattern
DestPattern(I
.getRecord(), Dest
, false, *this);
3528 DestPattern
.InlinePatternFragments();
3529 DestPattern
.InferAllTypes();
3530 Dest
= DestPattern
.getOnlyTree();
3532 if (!Dest
->isLeaf())
3533 I
.error("set destination should be a register!");
3535 DefInit
*Val
= dyn_cast
<DefInit
>(Dest
->getLeafValue());
3537 I
.error("set destination should be a register!");
3541 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
3542 Val
->getDef()->isSubClassOf("ValueType") ||
3543 Val
->getDef()->isSubClassOf("RegisterOperand") ||
3544 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
3545 if (Dest
->getName().empty())
3546 I
.error("set destination must have a name!");
3547 if (InstResults
.count(Dest
->getName()))
3548 I
.error("cannot set '" + Dest
->getName() + "' multiple times");
3549 InstResults
[Dest
->getName()] = Dest
;
3550 } else if (Val
->getDef()->isSubClassOf("Register")) {
3551 InstImpResults
.push_back(Val
->getDef());
3553 I
.error("set destination should be a register!");
3557 // Verify and collect info from the computation.
3558 FindPatternInputsAndOutputs(I
, Pat
->getChildShared(NumDests
), InstInputs
,
3559 InstResults
, InstImpResults
);
3562 //===----------------------------------------------------------------------===//
3563 // Instruction Analysis
3564 //===----------------------------------------------------------------------===//
3566 class InstAnalyzer
{
3567 const CodeGenDAGPatterns
&CDP
;
3569 bool hasSideEffects
;
3576 InstAnalyzer(const CodeGenDAGPatterns
&cdp
)
3577 : CDP(cdp
), hasSideEffects(false), mayStore(false), mayLoad(false),
3578 isBitcast(false), isVariadic(false), hasChain(false) {}
3580 void Analyze(const PatternToMatch
&Pat
) {
3581 const TreePatternNode
*N
= Pat
.getSrcPattern();
3583 // These properties are detected only on the root node.
3584 isBitcast
= IsNodeBitcast(N
);
3588 bool IsNodeBitcast(const TreePatternNode
*N
) const {
3589 if (hasSideEffects
|| mayLoad
|| mayStore
|| isVariadic
)
3594 if (N
->getNumChildren() != 1 || !N
->getChild(0)->isLeaf())
3597 if (N
->getOperator()->isSubClassOf("ComplexPattern"))
3600 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
3601 if (OpInfo
.getNumResults() != 1 || OpInfo
.getNumOperands() != 1)
3603 return OpInfo
.getEnumName() == "ISD::BITCAST";
3607 void AnalyzeNode(const TreePatternNode
*N
) {
3609 if (DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
3610 Record
*LeafRec
= DI
->getDef();
3611 // Handle ComplexPattern leaves.
3612 if (LeafRec
->isSubClassOf("ComplexPattern")) {
3613 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
3614 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
3615 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
3616 if (CP
.hasProperty(SDNPSideEffect
)) hasSideEffects
= true;
3622 // Analyze children.
3623 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3624 AnalyzeNode(N
->getChild(i
));
3626 // Notice properties of the node.
3627 if (N
->NodeHasProperty(SDNPMayStore
, CDP
)) mayStore
= true;
3628 if (N
->NodeHasProperty(SDNPMayLoad
, CDP
)) mayLoad
= true;
3629 if (N
->NodeHasProperty(SDNPSideEffect
, CDP
)) hasSideEffects
= true;
3630 if (N
->NodeHasProperty(SDNPVariadic
, CDP
)) isVariadic
= true;
3631 if (N
->NodeHasProperty(SDNPHasChain
, CDP
)) hasChain
= true;
3633 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
3634 ModRefInfo MR
= IntInfo
->ME
.getModRef();
3635 // If this is an intrinsic, analyze it.
3637 mayLoad
= true; // These may load memory.
3640 mayStore
= true; // Intrinsics that can write to memory are 'mayStore'.
3642 // Consider intrinsics that don't specify any restrictions on memory
3643 // effects as having a side-effect.
3644 if (IntInfo
->ME
== MemoryEffects::unknown() || IntInfo
->hasSideEffects
)
3645 hasSideEffects
= true;
3651 static bool InferFromPattern(CodeGenInstruction
&InstInfo
,
3652 const InstAnalyzer
&PatInfo
,
3656 // Remember where InstInfo got its flags.
3657 if (InstInfo
.hasUndefFlags())
3658 InstInfo
.InferredFrom
= PatDef
;
3660 // Check explicitly set flags for consistency.
3661 if (InstInfo
.hasSideEffects
!= PatInfo
.hasSideEffects
&&
3662 !InstInfo
.hasSideEffects_Unset
) {
3663 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3664 // the pattern has no side effects. That could be useful for div/rem
3665 // instructions that may trap.
3666 if (!InstInfo
.hasSideEffects
) {
3668 PrintError(PatDef
->getLoc(), "Pattern doesn't match hasSideEffects = " +
3669 Twine(InstInfo
.hasSideEffects
));
3673 if (InstInfo
.mayStore
!= PatInfo
.mayStore
&& !InstInfo
.mayStore_Unset
) {
3675 PrintError(PatDef
->getLoc(), "Pattern doesn't match mayStore = " +
3676 Twine(InstInfo
.mayStore
));
3679 if (InstInfo
.mayLoad
!= PatInfo
.mayLoad
&& !InstInfo
.mayLoad_Unset
) {
3680 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3681 // Some targets translate immediates to loads.
3682 if (!InstInfo
.mayLoad
) {
3684 PrintError(PatDef
->getLoc(), "Pattern doesn't match mayLoad = " +
3685 Twine(InstInfo
.mayLoad
));
3689 // Transfer inferred flags.
3690 InstInfo
.hasSideEffects
|= PatInfo
.hasSideEffects
;
3691 InstInfo
.mayStore
|= PatInfo
.mayStore
;
3692 InstInfo
.mayLoad
|= PatInfo
.mayLoad
;
3694 // These flags are silently added without any verification.
3695 // FIXME: To match historical behavior of TableGen, for now add those flags
3696 // only when we're inferring from the primary instruction pattern.
3697 if (PatDef
->isSubClassOf("Instruction")) {
3698 InstInfo
.isBitcast
|= PatInfo
.isBitcast
;
3699 InstInfo
.hasChain
|= PatInfo
.hasChain
;
3700 InstInfo
.hasChain_Inferred
= true;
3703 // Don't infer isVariadic. This flag means something different on SDNodes and
3704 // instructions. For example, a CALL SDNode is variadic because it has the
3705 // call arguments as operands, but a CALL instruction is not variadic - it
3706 // has argument registers as implicit, not explicit uses.
3711 /// hasNullFragReference - Return true if the DAG has any reference to the
3712 /// null_frag operator.
3713 static bool hasNullFragReference(DagInit
*DI
) {
3714 DefInit
*OpDef
= dyn_cast
<DefInit
>(DI
->getOperator());
3715 if (!OpDef
) return false;
3716 Record
*Operator
= OpDef
->getDef();
3718 // If this is the null fragment, return true.
3719 if (Operator
->getName() == "null_frag") return true;
3720 // If any of the arguments reference the null fragment, return true.
3721 for (unsigned i
= 0, e
= DI
->getNumArgs(); i
!= e
; ++i
) {
3722 if (auto Arg
= dyn_cast
<DefInit
>(DI
->getArg(i
)))
3723 if (Arg
->getDef()->getName() == "null_frag")
3725 DagInit
*Arg
= dyn_cast
<DagInit
>(DI
->getArg(i
));
3726 if (Arg
&& hasNullFragReference(Arg
))
3733 /// hasNullFragReference - Return true if any DAG in the list references
3734 /// the null_frag operator.
3735 static bool hasNullFragReference(ListInit
*LI
) {
3736 for (Init
*I
: LI
->getValues()) {
3737 DagInit
*DI
= dyn_cast
<DagInit
>(I
);
3738 assert(DI
&& "non-dag in an instruction Pattern list?!");
3739 if (hasNullFragReference(DI
))
3745 /// Get all the instructions in a tree.
3747 getInstructionsInTree(TreePatternNode
*Tree
, SmallVectorImpl
<Record
*> &Instrs
) {
3750 if (Tree
->getOperator()->isSubClassOf("Instruction"))
3751 Instrs
.push_back(Tree
->getOperator());
3752 for (unsigned i
= 0, e
= Tree
->getNumChildren(); i
!= e
; ++i
)
3753 getInstructionsInTree(Tree
->getChild(i
), Instrs
);
3756 /// Check the class of a pattern leaf node against the instruction operand it
3758 static bool checkOperandClass(CGIOperandList::OperandInfo
&OI
,
3763 // Allow direct value types to be used in instruction set patterns.
3764 // The type will be checked later.
3765 if (Leaf
->isSubClassOf("ValueType"))
3768 // Patterns can also be ComplexPattern instances.
3769 if (Leaf
->isSubClassOf("ComplexPattern"))
3775 void CodeGenDAGPatterns::parseInstructionPattern(
3776 CodeGenInstruction
&CGI
, ListInit
*Pat
, DAGInstMap
&DAGInsts
) {
3778 assert(!DAGInsts
.count(CGI
.TheDef
) && "Instruction already parsed!");
3780 // Parse the instruction.
3781 TreePattern
I(CGI
.TheDef
, Pat
, true, *this);
3783 // InstInputs - Keep track of all of the inputs of the instruction, along
3784 // with the record they are declared as.
3785 std::map
<std::string
, TreePatternNodePtr
> InstInputs
;
3787 // InstResults - Keep track of all the virtual registers that are 'set'
3788 // in the instruction, including what reg class they are.
3789 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
3792 std::vector
<Record
*> InstImpResults
;
3794 // Verify that the top-level forms in the instruction are of void type, and
3795 // fill in the InstResults map.
3796 SmallString
<32> TypesString
;
3797 for (unsigned j
= 0, e
= I
.getNumTrees(); j
!= e
; ++j
) {
3798 TypesString
.clear();
3799 TreePatternNodePtr Pat
= I
.getTree(j
);
3800 if (Pat
->getNumTypes() != 0) {
3801 raw_svector_ostream
OS(TypesString
);
3803 for (unsigned k
= 0, ke
= Pat
->getNumTypes(); k
!= ke
; ++k
) {
3805 Pat
->getExtType(k
).writeToStream(OS
);
3807 I
.error("Top-level forms in instruction pattern should have"
3808 " void types, has types " +
3812 // Find inputs and outputs, and verify the structure of the uses/defs.
3813 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
3817 // Now that we have inputs and outputs of the pattern, inspect the operands
3818 // list for the instruction. This determines the order that operands are
3819 // added to the machine instruction the node corresponds to.
3820 unsigned NumResults
= InstResults
.size();
3822 // Parse the operands list from the (ops) list, validating it.
3823 assert(I
.getArgList().empty() && "Args list should still be empty here!");
3825 // Check that all of the results occur first in the list.
3826 std::vector
<Record
*> Results
;
3827 std::vector
<unsigned> ResultIndices
;
3828 SmallVector
<TreePatternNodePtr
, 2> ResNodes
;
3829 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3830 if (i
== CGI
.Operands
.size()) {
3831 const std::string
&OpName
=
3834 [](const std::pair
<std::string
, TreePatternNodePtr
> &P
) {
3839 I
.error("'" + OpName
+ "' set but does not appear in operand list!");
3842 const std::string
&OpName
= CGI
.Operands
[i
].Name
;
3844 // Check that it exists in InstResults.
3845 auto InstResultIter
= InstResults
.find(OpName
);
3846 if (InstResultIter
== InstResults
.end() || !InstResultIter
->second
)
3847 I
.error("Operand $" + OpName
+ " does not exist in operand list!");
3849 TreePatternNodePtr RNode
= InstResultIter
->second
;
3850 Record
*R
= cast
<DefInit
>(RNode
->getLeafValue())->getDef();
3851 ResNodes
.push_back(std::move(RNode
));
3853 I
.error("Operand $" + OpName
+ " should be a set destination: all "
3854 "outputs must occur before inputs in operand list!");
3856 if (!checkOperandClass(CGI
.Operands
[i
], R
))
3857 I
.error("Operand $" + OpName
+ " class mismatch!");
3859 // Remember the return type.
3860 Results
.push_back(CGI
.Operands
[i
].Rec
);
3862 // Remember the result index.
3863 ResultIndices
.push_back(std::distance(InstResults
.begin(), InstResultIter
));
3865 // Okay, this one checks out.
3866 InstResultIter
->second
= nullptr;
3869 // Loop over the inputs next.
3870 std::vector
<TreePatternNodePtr
> ResultNodeOperands
;
3871 std::vector
<Record
*> Operands
;
3872 for (unsigned i
= NumResults
, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
3873 CGIOperandList::OperandInfo
&Op
= CGI
.Operands
[i
];
3874 const std::string
&OpName
= Op
.Name
;
3876 I
.error("Operand #" + Twine(i
) + " in operands list has no name!");
3878 if (!InstInputs
.count(OpName
)) {
3879 // If this is an operand with a DefaultOps set filled in, we can ignore
3880 // this. When we codegen it, we will do so as always executed.
3881 if (Op
.Rec
->isSubClassOf("OperandWithDefaultOps")) {
3882 // Does it have a non-empty DefaultOps field? If so, ignore this
3884 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
3887 I
.error("Operand $" + OpName
+
3888 " does not appear in the instruction pattern");
3890 TreePatternNodePtr InVal
= InstInputs
[OpName
];
3891 InstInputs
.erase(OpName
); // It occurred, remove from map.
3893 if (InVal
->isLeaf() && isa
<DefInit
>(InVal
->getLeafValue())) {
3894 Record
*InRec
= cast
<DefInit
>(InVal
->getLeafValue())->getDef();
3895 if (!checkOperandClass(Op
, InRec
))
3896 I
.error("Operand $" + OpName
+ "'s register class disagrees"
3897 " between the operand and pattern");
3899 Operands
.push_back(Op
.Rec
);
3901 // Construct the result for the dest-pattern operand list.
3902 TreePatternNodePtr OpNode
= InVal
->clone();
3904 // No predicate is useful on the result.
3905 OpNode
->clearPredicateCalls();
3907 // Promote the xform function to be an explicit node if set.
3908 if (Record
*Xform
= OpNode
->getTransformFn()) {
3909 OpNode
->setTransformFn(nullptr);
3910 std::vector
<TreePatternNodePtr
> Children
;
3911 Children
.push_back(OpNode
);
3912 OpNode
= makeIntrusiveRefCnt
<TreePatternNode
>(Xform
, std::move(Children
),
3913 OpNode
->getNumTypes());
3916 ResultNodeOperands
.push_back(std::move(OpNode
));
3919 if (!InstInputs
.empty())
3920 I
.error("Input operand $" + InstInputs
.begin()->first
+
3921 " occurs in pattern but not in operands list!");
3923 TreePatternNodePtr ResultPattern
= makeIntrusiveRefCnt
<TreePatternNode
>(
3924 I
.getRecord(), std::move(ResultNodeOperands
),
3925 GetNumNodeResults(I
.getRecord(), *this));
3926 // Copy fully inferred output node types to instruction result pattern.
3927 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3928 assert(ResNodes
[i
]->getNumTypes() == 1 && "FIXME: Unhandled");
3929 ResultPattern
->setType(i
, ResNodes
[i
]->getExtType(0));
3930 ResultPattern
->setResultIndex(i
, ResultIndices
[i
]);
3933 // FIXME: Assume only the first tree is the pattern. The others are clobber
3935 TreePatternNodePtr Pattern
= I
.getTree(0);
3936 TreePatternNodePtr SrcPattern
;
3937 if (Pattern
->getOperator()->getName() == "set") {
3938 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
3940 // Not a set (store or something?)
3941 SrcPattern
= Pattern
;
3944 // Create and insert the instruction.
3945 // FIXME: InstImpResults should not be part of DAGInstruction.
3946 Record
*R
= I
.getRecord();
3947 DAGInsts
.try_emplace(R
, std::move(Results
), std::move(Operands
),
3948 std::move(InstImpResults
), SrcPattern
, ResultPattern
);
3950 LLVM_DEBUG(I
.dump());
3953 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3954 /// any fragments involved. This populates the Instructions list with fully
3955 /// resolved instructions.
3956 void CodeGenDAGPatterns::ParseInstructions() {
3957 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
3959 for (Record
*Instr
: Instrs
) {
3960 ListInit
*LI
= nullptr;
3962 if (isa
<ListInit
>(Instr
->getValueInit("Pattern")))
3963 LI
= Instr
->getValueAsListInit("Pattern");
3965 // If there is no pattern, only collect minimal information about the
3966 // instruction for its operand list. We have to assume that there is one
3967 // result, as we have no detailed info. A pattern which references the
3968 // null_frag operator is as-if no pattern were specified. Normally this
3969 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3971 if (!LI
|| LI
->empty() || hasNullFragReference(LI
)) {
3972 std::vector
<Record
*> Results
;
3973 std::vector
<Record
*> Operands
;
3975 CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
3977 if (InstInfo
.Operands
.size() != 0) {
3978 for (unsigned j
= 0, e
= InstInfo
.Operands
.NumDefs
; j
< e
; ++j
)
3979 Results
.push_back(InstInfo
.Operands
[j
].Rec
);
3981 // The rest are inputs.
3982 for (unsigned j
= InstInfo
.Operands
.NumDefs
,
3983 e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
3984 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
3987 // Create and insert the instruction.
3988 Instructions
.try_emplace(Instr
, std::move(Results
), std::move(Operands
),
3989 std::vector
<Record
*>());
3990 continue; // no pattern.
3993 CodeGenInstruction
&CGI
= Target
.getInstruction(Instr
);
3994 parseInstructionPattern(CGI
, LI
, Instructions
);
3997 // If we can, convert the instructions to be patterns that are matched!
3998 for (auto &Entry
: Instructions
) {
3999 Record
*Instr
= Entry
.first
;
4000 DAGInstruction
&TheInst
= Entry
.second
;
4001 TreePatternNodePtr SrcPattern
= TheInst
.getSrcPattern();
4002 TreePatternNodePtr ResultPattern
= TheInst
.getResultPattern();
4004 if (SrcPattern
&& ResultPattern
) {
4005 TreePattern
Pattern(Instr
, SrcPattern
, true, *this);
4006 TreePattern
Result(Instr
, ResultPattern
, false, *this);
4007 ParseOnePattern(Instr
, Pattern
, Result
, TheInst
.getImpResults());
4012 typedef std::pair
<TreePatternNode
*, unsigned> NameRecord
;
4014 static void FindNames(TreePatternNode
*P
,
4015 std::map
<std::string
, NameRecord
> &Names
,
4016 TreePattern
*PatternTop
) {
4017 if (!P
->getName().empty()) {
4018 NameRecord
&Rec
= Names
[P
->getName()];
4019 // If this is the first instance of the name, remember the node.
4020 if (Rec
.second
++ == 0)
4022 else if (Rec
.first
->getExtTypes() != P
->getExtTypes())
4023 PatternTop
->error("repetition of value: $" + P
->getName() +
4024 " where different uses have different types!");
4028 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
)
4029 FindNames(P
->getChild(i
), Names
, PatternTop
);
4033 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern
*Pattern
,
4034 PatternToMatch
&&PTM
) {
4035 // Do some sanity checking on the pattern we're about to match.
4037 if (!PTM
.getSrcPattern()->canPatternMatch(Reason
, *this)) {
4038 PrintWarning(Pattern
->getRecord()->getLoc(),
4039 Twine("Pattern can never match: ") + Reason
);
4043 // If the source pattern's root is a complex pattern, that complex pattern
4044 // must specify the nodes it can potentially match.
4045 if (const ComplexPattern
*CP
=
4046 PTM
.getSrcPattern()->getComplexPatternInfo(*this))
4047 if (CP
->getRootNodes().empty())
4048 Pattern
->error("ComplexPattern at root must specify list of opcodes it"
4052 // Find all of the named values in the input and output, ensure they have the
4054 std::map
<std::string
, NameRecord
> SrcNames
, DstNames
;
4055 FindNames(PTM
.getSrcPattern(), SrcNames
, Pattern
);
4056 FindNames(PTM
.getDstPattern(), DstNames
, Pattern
);
4058 // Scan all of the named values in the destination pattern, rejecting them if
4059 // they don't exist in the input pattern.
4060 for (const auto &Entry
: DstNames
) {
4061 if (SrcNames
[Entry
.first
].first
== nullptr)
4062 Pattern
->error("Pattern has input without matching name in output: $" +
4066 // Scan all of the named values in the source pattern, rejecting them if the
4067 // name isn't used in the dest, and isn't used to tie two values together.
4068 for (const auto &Entry
: SrcNames
)
4069 if (DstNames
[Entry
.first
].first
== nullptr &&
4070 SrcNames
[Entry
.first
].second
== 1)
4071 Pattern
->error("Pattern has dead named input: $" + Entry
.first
);
4073 PatternsToMatch
.push_back(std::move(PTM
));
4076 void CodeGenDAGPatterns::InferInstructionFlags() {
4077 ArrayRef
<const CodeGenInstruction
*> Instructions
=
4078 Target
.getInstructionsByEnumValue();
4080 unsigned Errors
= 0;
4082 // Try to infer flags from all patterns in PatternToMatch. These include
4083 // both the primary instruction patterns (which always come first) and
4084 // patterns defined outside the instruction.
4085 for (const PatternToMatch
&PTM
: ptms()) {
4086 // We can only infer from single-instruction patterns, otherwise we won't
4087 // know which instruction should get the flags.
4088 SmallVector
<Record
*, 8> PatInstrs
;
4089 getInstructionsInTree(PTM
.getDstPattern(), PatInstrs
);
4090 if (PatInstrs
.size() != 1)
4093 // Get the single instruction.
4094 CodeGenInstruction
&InstInfo
= Target
.getInstruction(PatInstrs
.front());
4096 // Only infer properties from the first pattern. We'll verify the others.
4097 if (InstInfo
.InferredFrom
)
4100 InstAnalyzer
PatInfo(*this);
4101 PatInfo
.Analyze(PTM
);
4102 Errors
+= InferFromPattern(InstInfo
, PatInfo
, PTM
.getSrcRecord());
4106 PrintFatalError("pattern conflicts");
4108 // If requested by the target, guess any undefined properties.
4109 if (Target
.guessInstructionProperties()) {
4110 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
4111 CodeGenInstruction
*InstInfo
=
4112 const_cast<CodeGenInstruction
*>(Instructions
[i
]);
4113 if (InstInfo
->InferredFrom
)
4115 // The mayLoad and mayStore flags default to false.
4116 // Conservatively assume hasSideEffects if it wasn't explicit.
4117 if (InstInfo
->hasSideEffects_Unset
)
4118 InstInfo
->hasSideEffects
= true;
4123 // Complain about any flags that are still undefined.
4124 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
4125 CodeGenInstruction
*InstInfo
=
4126 const_cast<CodeGenInstruction
*>(Instructions
[i
]);
4127 if (InstInfo
->InferredFrom
)
4129 if (InstInfo
->hasSideEffects_Unset
)
4130 PrintError(InstInfo
->TheDef
->getLoc(),
4131 "Can't infer hasSideEffects from patterns");
4132 if (InstInfo
->mayStore_Unset
)
4133 PrintError(InstInfo
->TheDef
->getLoc(),
4134 "Can't infer mayStore from patterns");
4135 if (InstInfo
->mayLoad_Unset
)
4136 PrintError(InstInfo
->TheDef
->getLoc(),
4137 "Can't infer mayLoad from patterns");
4142 /// Verify instruction flags against pattern node properties.
4143 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4144 unsigned Errors
= 0;
4145 for (const PatternToMatch
&PTM
: ptms()) {
4146 SmallVector
<Record
*, 8> Instrs
;
4147 getInstructionsInTree(PTM
.getDstPattern(), Instrs
);
4151 // Count the number of instructions with each flag set.
4152 unsigned NumSideEffects
= 0;
4153 unsigned NumStores
= 0;
4154 unsigned NumLoads
= 0;
4155 for (const Record
*Instr
: Instrs
) {
4156 const CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
4157 NumSideEffects
+= InstInfo
.hasSideEffects
;
4158 NumStores
+= InstInfo
.mayStore
;
4159 NumLoads
+= InstInfo
.mayLoad
;
4162 // Analyze the source pattern.
4163 InstAnalyzer
PatInfo(*this);
4164 PatInfo
.Analyze(PTM
);
4166 // Collect error messages.
4167 SmallVector
<std::string
, 4> Msgs
;
4169 // Check for missing flags in the output.
4170 // Permit extra flags for now at least.
4171 if (PatInfo
.hasSideEffects
&& !NumSideEffects
)
4172 Msgs
.push_back("pattern has side effects, but hasSideEffects isn't set");
4174 // Don't verify store flags on instructions with side effects. At least for
4175 // intrinsics, side effects implies mayStore.
4176 if (!PatInfo
.hasSideEffects
&& PatInfo
.mayStore
&& !NumStores
)
4177 Msgs
.push_back("pattern may store, but mayStore isn't set");
4179 // Similarly, mayStore implies mayLoad on intrinsics.
4180 if (!PatInfo
.mayStore
&& PatInfo
.mayLoad
&& !NumLoads
)
4181 Msgs
.push_back("pattern may load, but mayLoad isn't set");
4183 // Print error messages.
4188 for (const std::string
&Msg
: Msgs
)
4189 PrintError(PTM
.getSrcRecord()->getLoc(), Twine(Msg
) + " on the " +
4190 (Instrs
.size() == 1 ?
4191 "instruction" : "output instructions"));
4192 // Provide the location of the relevant instruction definitions.
4193 for (const Record
*Instr
: Instrs
) {
4194 if (Instr
!= PTM
.getSrcRecord())
4195 PrintError(Instr
->getLoc(), "defined here");
4196 const CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
4197 if (InstInfo
.InferredFrom
&&
4198 InstInfo
.InferredFrom
!= InstInfo
.TheDef
&&
4199 InstInfo
.InferredFrom
!= PTM
.getSrcRecord())
4200 PrintError(InstInfo
.InferredFrom
->getLoc(), "inferred from pattern");
4204 PrintFatalError("Errors in DAG patterns");
4207 /// Given a pattern result with an unresolved type, see if we can find one
4208 /// instruction with an unresolved result type. Force this result type to an
4209 /// arbitrary element if it's possible types to converge results.
4210 static bool ForceArbitraryInstResultType(TreePatternNode
*N
, TreePattern
&TP
) {
4214 // Analyze children.
4215 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4216 if (ForceArbitraryInstResultType(N
->getChild(i
), TP
))
4219 if (!N
->getOperator()->isSubClassOf("Instruction"))
4222 // If this type is already concrete or completely unknown we can't do
4224 TypeInfer
&TI
= TP
.getInfer();
4225 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
) {
4226 if (N
->getExtType(i
).empty() || TI
.isConcrete(N
->getExtType(i
), false))
4229 // Otherwise, force its type to an arbitrary choice.
4230 if (TI
.forceArbitrary(N
->getExtType(i
)))
4237 // Promote xform function to be an explicit node wherever set.
4238 static TreePatternNodePtr
PromoteXForms(TreePatternNodePtr N
) {
4239 if (Record
*Xform
= N
->getTransformFn()) {
4240 N
->setTransformFn(nullptr);
4241 std::vector
<TreePatternNodePtr
> Children
;
4242 Children
.push_back(PromoteXForms(N
));
4243 return makeIntrusiveRefCnt
<TreePatternNode
>(Xform
, std::move(Children
),
4248 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
4249 TreePatternNodePtr Child
= N
->getChildShared(i
);
4250 N
->setChild(i
, PromoteXForms(Child
));
4255 void CodeGenDAGPatterns::ParseOnePattern(Record
*TheDef
,
4256 TreePattern
&Pattern
, TreePattern
&Result
,
4257 const std::vector
<Record
*> &InstImpResults
) {
4259 // Inline pattern fragments and expand multiple alternatives.
4260 Pattern
.InlinePatternFragments();
4261 Result
.InlinePatternFragments();
4263 if (Result
.getNumTrees() != 1)
4264 Result
.error("Cannot use multi-alternative fragments in result pattern!");
4267 bool IterateInference
;
4268 bool InferredAllPatternTypes
, InferredAllResultTypes
;
4270 // Infer as many types as possible. If we cannot infer all of them, we
4271 // can never do anything with this pattern: report it to the user.
4272 InferredAllPatternTypes
=
4273 Pattern
.InferAllTypes(&Pattern
.getNamedNodesMap());
4275 // Infer as many types as possible. If we cannot infer all of them, we
4276 // can never do anything with this pattern: report it to the user.
4277 InferredAllResultTypes
=
4278 Result
.InferAllTypes(&Pattern
.getNamedNodesMap());
4280 IterateInference
= false;
4282 // Apply the type of the result to the source pattern. This helps us
4283 // resolve cases where the input type is known to be a pointer type (which
4284 // is considered resolved), but the result knows it needs to be 32- or
4285 // 64-bits. Infer the other way for good measure.
4286 for (const auto &T
: Pattern
.getTrees())
4287 for (unsigned i
= 0, e
= std::min(Result
.getOnlyTree()->getNumTypes(),
4290 IterateInference
|= T
->UpdateNodeType(
4291 i
, Result
.getOnlyTree()->getExtType(i
), Result
);
4292 IterateInference
|= Result
.getOnlyTree()->UpdateNodeType(
4293 i
, T
->getExtType(i
), Result
);
4296 // If our iteration has converged and the input pattern's types are fully
4297 // resolved but the result pattern is not fully resolved, we may have a
4298 // situation where we have two instructions in the result pattern and
4299 // the instructions require a common register class, but don't care about
4300 // what actual MVT is used. This is actually a bug in our modelling:
4301 // output patterns should have register classes, not MVTs.
4303 // In any case, to handle this, we just go through and disambiguate some
4304 // arbitrary types to the result pattern's nodes.
4305 if (!IterateInference
&& InferredAllPatternTypes
&&
4306 !InferredAllResultTypes
)
4308 ForceArbitraryInstResultType(Result
.getTree(0).get(), Result
);
4309 } while (IterateInference
);
4311 // Verify that we inferred enough types that we can do something with the
4312 // pattern and result. If these fire the user has to add type casts.
4313 if (!InferredAllPatternTypes
)
4314 Pattern
.error("Could not infer all types in pattern!");
4315 if (!InferredAllResultTypes
) {
4317 Result
.error("Could not infer all types in pattern result!");
4320 // Promote xform function to be an explicit node wherever set.
4321 TreePatternNodePtr DstShared
= PromoteXForms(Result
.getOnlyTree());
4323 TreePattern
Temp(Result
.getRecord(), DstShared
, false, *this);
4324 Temp
.InferAllTypes();
4326 ListInit
*Preds
= TheDef
->getValueAsListInit("Predicates");
4327 int Complexity
= TheDef
->getValueAsInt("AddedComplexity");
4329 if (PatternRewriter
)
4330 PatternRewriter(&Pattern
);
4332 // A pattern may end up with an "impossible" type, i.e. a situation
4333 // where all types have been eliminated for some node in this pattern.
4334 // This could occur for intrinsics that only make sense for a specific
4335 // value type, and use a specific register class. If, for some mode,
4336 // that register class does not accept that type, the type inference
4337 // will lead to a contradiction, which is not an error however, but
4338 // a sign that this pattern will simply never match.
4339 if (Temp
.getOnlyTree()->hasPossibleType()) {
4340 for (const auto &T
: Pattern
.getTrees()) {
4341 if (T
->hasPossibleType())
4342 AddPatternToMatch(&Pattern
,
4343 PatternToMatch(TheDef
, Preds
, T
, Temp
.getOnlyTree(),
4344 InstImpResults
, Complexity
,
4348 // Show a message about a dropped pattern with some info to make it
4349 // easier to identify it in the .td files.
4351 dbgs() << "Dropping: ";
4353 Temp
.getOnlyTree()->dump();
4359 void CodeGenDAGPatterns::ParsePatterns() {
4360 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
4362 for (Record
*CurPattern
: Patterns
) {
4363 DagInit
*Tree
= CurPattern
->getValueAsDag("PatternToMatch");
4365 // If the pattern references the null_frag, there's nothing to do.
4366 if (hasNullFragReference(Tree
))
4369 TreePattern
Pattern(CurPattern
, Tree
, true, *this);
4371 ListInit
*LI
= CurPattern
->getValueAsListInit("ResultInstrs");
4372 if (LI
->empty()) continue; // no pattern.
4374 // Parse the instruction.
4375 TreePattern
Result(CurPattern
, LI
, false, *this);
4377 if (Result
.getNumTrees() != 1)
4378 Result
.error("Cannot handle instructions producing instructions "
4379 "with temporaries yet!");
4381 // Validate that the input pattern is correct.
4382 std::map
<std::string
, TreePatternNodePtr
> InstInputs
;
4383 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
4385 std::vector
<Record
*> InstImpResults
;
4386 for (unsigned j
= 0, ee
= Pattern
.getNumTrees(); j
!= ee
; ++j
)
4387 FindPatternInputsAndOutputs(Pattern
, Pattern
.getTree(j
), InstInputs
,
4388 InstResults
, InstImpResults
);
4390 ParseOnePattern(CurPattern
, Pattern
, Result
, InstImpResults
);
4394 static void collectModes(std::set
<unsigned> &Modes
, const TreePatternNode
*N
) {
4395 for (const TypeSetByHwMode
&VTS
: N
->getExtTypes())
4396 for (const auto &I
: VTS
)
4397 Modes
.insert(I
.first
);
4399 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4400 collectModes(Modes
, N
->getChild(i
));
4403 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4404 const CodeGenHwModes
&CGH
= getTargetInfo().getHwModes();
4405 if (CGH
.getNumModeIds() == 1)
4408 std::vector
<PatternToMatch
> Copy
;
4409 PatternsToMatch
.swap(Copy
);
4411 auto AppendPattern
= [this](PatternToMatch
&P
, unsigned Mode
,
4413 TreePatternNodePtr NewSrc
= P
.getSrcPattern()->clone();
4414 TreePatternNodePtr NewDst
= P
.getDstPattern()->clone();
4415 if (!NewSrc
->setDefaultMode(Mode
) || !NewDst
->setDefaultMode(Mode
)) {
4419 PatternsToMatch
.emplace_back(P
.getSrcRecord(), P
.getPredicates(),
4420 std::move(NewSrc
), std::move(NewDst
),
4421 P
.getDstRegs(), P
.getAddedComplexity(),
4422 Record::getNewUID(Records
), Check
);
4425 for (PatternToMatch
&P
: Copy
) {
4426 const TreePatternNode
*SrcP
= nullptr, *DstP
= nullptr;
4427 if (P
.getSrcPattern()->hasProperTypeByHwMode())
4428 SrcP
= P
.getSrcPattern();
4429 if (P
.getDstPattern()->hasProperTypeByHwMode())
4430 DstP
= P
.getDstPattern();
4431 if (!SrcP
&& !DstP
) {
4432 PatternsToMatch
.push_back(P
);
4436 std::set
<unsigned> Modes
;
4438 collectModes(Modes
, SrcP
);
4440 collectModes(Modes
, DstP
);
4442 // The predicate for the default mode needs to be constructed for each
4443 // pattern separately.
4444 // Since not all modes must be present in each pattern, if a mode m is
4445 // absent, then there is no point in constructing a check for m. If such
4446 // a check was created, it would be equivalent to checking the default
4447 // mode, except not all modes' predicates would be a part of the checking
4448 // code. The subsequently generated check for the default mode would then
4449 // have the exact same patterns, but a different predicate code. To avoid
4450 // duplicated patterns with different predicate checks, construct the
4451 // default check as a negation of all predicates that are actually present
4452 // in the source/destination patterns.
4453 SmallString
<128> DefaultCheck
;
4455 for (unsigned M
: Modes
) {
4456 if (M
== DefaultMode
)
4459 // Fill the map entry for this mode.
4460 const HwMode
&HM
= CGH
.getMode(M
);
4461 AppendPattern(P
, M
, HM
.Predicates
);
4463 // Add negations of the HM's predicates to the default predicate.
4464 if (!DefaultCheck
.empty())
4465 DefaultCheck
+= " && ";
4466 DefaultCheck
+= "!(";
4467 DefaultCheck
+= HM
.Predicates
;
4468 DefaultCheck
+= ")";
4471 bool HasDefault
= Modes
.count(DefaultMode
);
4473 AppendPattern(P
, DefaultMode
, DefaultCheck
);
4477 /// Dependent variable map for CodeGenDAGPattern variant generation
4478 typedef StringMap
<int> DepVarMap
;
4480 static void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
4482 if (N
->hasName() && isa
<DefInit
>(N
->getLeafValue()))
4483 DepMap
[N
->getName()]++;
4485 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4486 FindDepVarsOf(N
->getChild(i
), DepMap
);
4490 /// Find dependent variables within child patterns
4491 static void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
4492 DepVarMap depcounts
;
4493 FindDepVarsOf(N
, depcounts
);
4494 for (const auto &Pair
: depcounts
) {
4495 if (Pair
.getValue() > 1)
4496 DepVars
.insert(Pair
.getKey());
4501 /// Dump the dependent variable set:
4502 static void DumpDepVars(MultipleUseVarSet
&DepVars
) {
4503 if (DepVars
.empty()) {
4504 LLVM_DEBUG(errs() << "<empty set>");
4506 LLVM_DEBUG(errs() << "[ ");
4507 for (const auto &DepVar
: DepVars
) {
4508 LLVM_DEBUG(errs() << DepVar
.getKey() << " ");
4510 LLVM_DEBUG(errs() << "]");
4516 /// CombineChildVariants - Given a bunch of permutations of each child of the
4517 /// 'operator' node, put them together in all possible ways.
4518 static void CombineChildVariants(
4519 TreePatternNodePtr Orig
,
4520 const std::vector
<std::vector
<TreePatternNodePtr
>> &ChildVariants
,
4521 std::vector
<TreePatternNodePtr
> &OutVariants
, CodeGenDAGPatterns
&CDP
,
4522 const MultipleUseVarSet
&DepVars
) {
4523 // Make sure that each operand has at least one variant to choose from.
4524 for (const auto &Variants
: ChildVariants
)
4525 if (Variants
.empty())
4528 // The end result is an all-pairs construction of the resultant pattern.
4529 std::vector
<unsigned> Idxs(ChildVariants
.size());
4533 LLVM_DEBUG(if (!Idxs
.empty()) {
4534 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
4535 for (unsigned Idx
: Idxs
) {
4536 errs() << Idx
<< " ";
4541 // Create the variant and add it to the output list.
4542 std::vector
<TreePatternNodePtr
> NewChildren
;
4543 NewChildren
.reserve(ChildVariants
.size());
4544 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
4545 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
4546 TreePatternNodePtr R
= makeIntrusiveRefCnt
<TreePatternNode
>(
4547 Orig
->getOperator(), std::move(NewChildren
), Orig
->getNumTypes());
4549 // Copy over properties.
4550 R
->setName(Orig
->getName());
4551 R
->setNamesAsPredicateArg(Orig
->getNamesAsPredicateArg());
4552 R
->setPredicateCalls(Orig
->getPredicateCalls());
4553 R
->setGISelFlagsRecord(Orig
->getGISelFlagsRecord());
4554 R
->setTransformFn(Orig
->getTransformFn());
4555 for (unsigned i
= 0, e
= Orig
->getNumTypes(); i
!= e
; ++i
)
4556 R
->setType(i
, Orig
->getExtType(i
));
4558 // If this pattern cannot match, do not include it as a variant.
4559 std::string ErrString
;
4560 // Scan to see if this pattern has already been emitted. We can get
4561 // duplication due to things like commuting:
4562 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4563 // which are the same pattern. Ignore the dups.
4564 if (R
->canPatternMatch(ErrString
, CDP
) &&
4565 none_of(OutVariants
, [&](TreePatternNodePtr Variant
) {
4566 return R
->isIsomorphicTo(Variant
.get(), DepVars
);
4568 OutVariants
.push_back(R
);
4570 // Increment indices to the next permutation by incrementing the
4571 // indices from last index backward, e.g., generate the sequence
4572 // [0, 0], [0, 1], [1, 0], [1, 1].
4574 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
4575 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
4580 NotDone
= (IdxsIdx
>= 0);
4584 /// CombineChildVariants - A helper function for binary operators.
4586 static void CombineChildVariants(TreePatternNodePtr Orig
,
4587 const std::vector
<TreePatternNodePtr
> &LHS
,
4588 const std::vector
<TreePatternNodePtr
> &RHS
,
4589 std::vector
<TreePatternNodePtr
> &OutVariants
,
4590 CodeGenDAGPatterns
&CDP
,
4591 const MultipleUseVarSet
&DepVars
) {
4592 std::vector
<std::vector
<TreePatternNodePtr
>> ChildVariants
;
4593 ChildVariants
.push_back(LHS
);
4594 ChildVariants
.push_back(RHS
);
4595 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
4599 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N
,
4600 std::vector
<TreePatternNodePtr
> &Children
) {
4601 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4602 Record
*Operator
= N
->getOperator();
4604 // Only permit raw nodes.
4605 if (!N
->getName().empty() || !N
->getPredicateCalls().empty() ||
4606 N
->getTransformFn()) {
4607 Children
.push_back(N
);
4611 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
4612 Children
.push_back(N
->getChildShared(0));
4614 GatherChildrenOfAssociativeOpcode(N
->getChildShared(0), Children
);
4616 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
4617 Children
.push_back(N
->getChildShared(1));
4619 GatherChildrenOfAssociativeOpcode(N
->getChildShared(1), Children
);
4622 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4623 /// the (potentially recursive) pattern by using algebraic laws.
4625 static void GenerateVariantsOf(TreePatternNodePtr N
,
4626 std::vector
<TreePatternNodePtr
> &OutVariants
,
4627 CodeGenDAGPatterns
&CDP
,
4628 const MultipleUseVarSet
&DepVars
) {
4629 // We cannot permute leaves or ComplexPattern uses.
4630 if (N
->isLeaf() || N
->getOperator()->isSubClassOf("ComplexPattern")) {
4631 OutVariants
.push_back(N
);
4635 // Look up interesting info about the node.
4636 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
4638 // If this node is associative, re-associate.
4639 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
4640 // Re-associate by pulling together all of the linked operators
4641 std::vector
<TreePatternNodePtr
> MaximalChildren
;
4642 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
4644 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4646 if (MaximalChildren
.size() == 3) {
4647 // Find the variants of all of our maximal children.
4648 std::vector
<TreePatternNodePtr
> AVariants
, BVariants
, CVariants
;
4649 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
4650 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
4651 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
4653 // There are only two ways we can permute the tree:
4654 // (A op B) op C and A op (B op C)
4655 // Within these forms, we can also permute A/B/C.
4657 // Generate legal pair permutations of A/B/C.
4658 std::vector
<TreePatternNodePtr
> ABVariants
;
4659 std::vector
<TreePatternNodePtr
> BAVariants
;
4660 std::vector
<TreePatternNodePtr
> ACVariants
;
4661 std::vector
<TreePatternNodePtr
> CAVariants
;
4662 std::vector
<TreePatternNodePtr
> BCVariants
;
4663 std::vector
<TreePatternNodePtr
> CBVariants
;
4664 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
4665 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
4666 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
4667 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
4668 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
4669 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
4671 // Combine those into the result: (x op x) op x
4672 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
4673 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
4674 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
4675 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
4676 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
4677 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
4679 // Combine those into the result: x op (x op x)
4680 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
4681 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
4682 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
4683 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
4684 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
4685 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
4690 // Compute permutations of all children.
4691 std::vector
<std::vector
<TreePatternNodePtr
>> ChildVariants(
4692 N
->getNumChildren());
4693 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4694 GenerateVariantsOf(N
->getChildShared(i
), ChildVariants
[i
], CDP
, DepVars
);
4696 // Build all permutations based on how the children were formed.
4697 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
4699 // If this node is commutative, consider the commuted order.
4700 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
4701 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
4702 unsigned Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
4703 assert(N
->getNumChildren() >= (2 + Skip
) &&
4704 "Commutative but doesn't have 2 children!");
4705 // Don't allow commuting children which are actually register references.
4706 bool NoRegisters
= true;
4707 unsigned i
= 0 + Skip
;
4708 unsigned e
= 2 + Skip
;
4709 for (; i
!= e
; ++i
) {
4710 TreePatternNode
*Child
= N
->getChild(i
);
4711 if (Child
->isLeaf())
4712 if (DefInit
*DI
= dyn_cast
<DefInit
>(Child
->getLeafValue())) {
4713 Record
*RR
= DI
->getDef();
4714 if (RR
->isSubClassOf("Register"))
4715 NoRegisters
= false;
4718 // Consider the commuted order.
4720 // Swap the first two operands after the intrinsic id, if present.
4721 unsigned i
= isCommIntrinsic
? 1 : 0;
4722 std::swap(ChildVariants
[i
], ChildVariants
[i
+ 1]);
4723 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
4729 // GenerateVariants - Generate variants. For example, commutative patterns can
4730 // match multiple ways. Add them to PatternsToMatch as well.
4731 void CodeGenDAGPatterns::GenerateVariants() {
4732 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4734 // Loop over all of the patterns we've collected, checking to see if we can
4735 // generate variants of the instruction, through the exploitation of
4736 // identities. This permits the target to provide aggressive matching without
4737 // the .td file having to contain tons of variants of instructions.
4739 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4740 // intentionally do not reconsider these. Any variants of added patterns have
4741 // already been added.
4743 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
4744 MultipleUseVarSet DepVars
;
4745 std::vector
<TreePatternNodePtr
> Variants
;
4746 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
4747 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4748 LLVM_DEBUG(DumpDepVars(DepVars
));
4749 LLVM_DEBUG(errs() << "\n");
4750 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPatternShared(), Variants
,
4753 assert(PatternsToMatch
[i
].getHwModeFeatures().empty() &&
4754 "HwModes should not have been expanded yet!");
4756 assert(!Variants
.empty() && "Must create at least original variant!");
4757 if (Variants
.size() == 1) // No additional variants for this pattern.
4760 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4761 PatternsToMatch
[i
].getSrcPattern()->dump(); errs() << "\n");
4763 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
4764 TreePatternNodePtr Variant
= Variants
[v
];
4766 LLVM_DEBUG(errs() << " VAR#" << v
<< ": "; Variant
->dump();
4769 // Scan to see if an instruction or explicit pattern already matches this.
4770 bool AlreadyExists
= false;
4771 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
4772 // Skip if the top level predicates do not match.
4773 if ((i
!= p
) && (PatternsToMatch
[i
].getPredicates() !=
4774 PatternsToMatch
[p
].getPredicates()))
4776 // Check to see if this variant already exists.
4777 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(),
4779 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4780 AlreadyExists
= true;
4784 // If we already have it, ignore the variant.
4785 if (AlreadyExists
) continue;
4787 // Otherwise, add it to the list of patterns we have.
4788 PatternsToMatch
.emplace_back(
4789 PatternsToMatch
[i
].getSrcRecord(), PatternsToMatch
[i
].getPredicates(),
4790 Variant
, PatternsToMatch
[i
].getDstPatternShared(),
4791 PatternsToMatch
[i
].getDstRegs(),
4792 PatternsToMatch
[i
].getAddedComplexity(), Record::getNewUID(Records
),
4793 PatternsToMatch
[i
].getHwModeFeatures());
4796 LLVM_DEBUG(errs() << "\n");