[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / utils / TableGen / FastISelEmitter.cpp
blobb773a6b91ee2e9233d2d340ff8b37944e730bdf9
1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
17 //===----------------------------------------------------------------------===//
19 #include "CodeGenDAGPatterns.h"
20 #include "CodeGenInstruction.h"
21 #include "CodeGenRegisters.h"
22 #include "CodeGenTarget.h"
23 #include "InfoByHwMode.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <set>
30 #include <utility>
31 using namespace llvm;
34 /// InstructionMemo - This class holds additional information about an
35 /// instruction needed to emit code for it.
36 ///
37 namespace {
38 struct InstructionMemo {
39 std::string Name;
40 const CodeGenRegisterClass *RC;
41 std::string SubRegNo;
42 std::vector<std::string> PhysRegs;
43 std::string PredicateCheck;
45 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
46 std::string SubRegNo, std::vector<std::string> PhysRegs,
47 std::string PredicateCheck)
48 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
49 PhysRegs(std::move(PhysRegs)),
50 PredicateCheck(std::move(PredicateCheck)) {}
52 // Make sure we do not copy InstructionMemo.
53 InstructionMemo(const InstructionMemo &Other) = delete;
54 InstructionMemo(InstructionMemo &&Other) = default;
56 } // End anonymous namespace
58 /// ImmPredicateSet - This uniques predicates (represented as a string) and
59 /// gives them unique (small) integer ID's that start at 0.
60 namespace {
61 class ImmPredicateSet {
62 DenseMap<TreePattern *, unsigned> ImmIDs;
63 std::vector<TreePredicateFn> PredsByName;
64 public:
66 unsigned getIDFor(TreePredicateFn Pred) {
67 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
68 if (Entry == 0) {
69 PredsByName.push_back(Pred);
70 Entry = PredsByName.size();
72 return Entry-1;
75 const TreePredicateFn &getPredicate(unsigned i) {
76 assert(i < PredsByName.size());
77 return PredsByName[i];
80 typedef std::vector<TreePredicateFn>::const_iterator iterator;
81 iterator begin() const { return PredsByName.begin(); }
82 iterator end() const { return PredsByName.end(); }
85 } // End anonymous namespace
87 /// OperandsSignature - This class holds a description of a list of operand
88 /// types. It has utility methods for emitting text based on the operands.
89 ///
90 namespace {
91 struct OperandsSignature {
92 class OpKind {
93 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
94 char Repr;
95 public:
97 OpKind() : Repr(OK_Invalid) {}
99 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
100 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
102 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
103 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
104 static OpKind getImm(unsigned V) {
105 assert((unsigned)OK_Imm+V < 128 &&
106 "Too many integer predicates for the 'Repr' char");
107 OpKind K; K.Repr = OK_Imm+V; return K;
110 bool isReg() const { return Repr == OK_Reg; }
111 bool isFP() const { return Repr == OK_FP; }
112 bool isImm() const { return Repr >= OK_Imm; }
114 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
116 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
117 bool StripImmCodes) const {
118 if (isReg())
119 OS << 'r';
120 else if (isFP())
121 OS << 'f';
122 else {
123 OS << 'i';
124 if (!StripImmCodes)
125 if (unsigned Code = getImmCode())
126 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
132 SmallVector<OpKind, 3> Operands;
134 bool operator<(const OperandsSignature &O) const {
135 return Operands < O.Operands;
137 bool operator==(const OperandsSignature &O) const {
138 return Operands == O.Operands;
141 bool empty() const { return Operands.empty(); }
143 bool hasAnyImmediateCodes() const {
144 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
145 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
146 return true;
147 return false;
150 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
151 /// to zero.
152 OperandsSignature getWithoutImmCodes() const {
153 OperandsSignature Result;
154 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
155 if (!Operands[i].isImm())
156 Result.Operands.push_back(Operands[i]);
157 else
158 Result.Operands.push_back(OpKind::getImm(0));
159 return Result;
162 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
163 bool EmittedAnything = false;
164 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
165 if (!Operands[i].isImm()) continue;
167 unsigned Code = Operands[i].getImmCode();
168 if (Code == 0) continue;
170 if (EmittedAnything)
171 OS << " &&\n ";
173 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
175 // Emit the type check.
176 TreePattern *TP = PredFn.getOrigPatFragRecord();
177 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
178 assert(VVT.isSimple() &&
179 "Cannot use variable value types with fast isel");
180 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
182 OS << PredFn.getFnName() << "(imm" << i <<')';
183 EmittedAnything = true;
187 /// initialize - Examine the given pattern and initialize the contents
188 /// of the Operands array accordingly. Return true if all the operands
189 /// are supported, false otherwise.
191 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
192 MVT::SimpleValueType VT,
193 ImmPredicateSet &ImmediatePredicates,
194 const CodeGenRegisterClass *OrigDstRC) {
195 if (InstPatNode->isLeaf())
196 return false;
198 if (InstPatNode->getOperator()->getName() == "imm") {
199 Operands.push_back(OpKind::getImm(0));
200 return true;
203 if (InstPatNode->getOperator()->getName() == "fpimm") {
204 Operands.push_back(OpKind::getFP());
205 return true;
208 const CodeGenRegisterClass *DstRC = nullptr;
210 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
211 TreePatternNode *Op = InstPatNode->getChild(i);
213 // Handle imm operands specially.
214 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
215 unsigned PredNo = 0;
216 if (!Op->getPredicateCalls().empty()) {
217 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
218 // If there is more than one predicate weighing in on this operand
219 // then we don't handle it. This doesn't typically happen for
220 // immediates anyway.
221 if (Op->getPredicateCalls().size() > 1 ||
222 !PredFn.isImmediatePattern() || PredFn.usesOperands())
223 return false;
224 // Ignore any instruction with 'FastIselShouldIgnore', these are
225 // not needed and just bloat the fast instruction selector. For
226 // example, X86 doesn't need to generate code to match ADD16ri8 since
227 // ADD16ri will do just fine.
228 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
229 if (Rec->getValueAsBit("FastIselShouldIgnore"))
230 return false;
232 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
235 Operands.push_back(OpKind::getImm(PredNo));
236 continue;
240 // For now, filter out any operand with a predicate.
241 // For now, filter out any operand with multiple values.
242 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
243 return false;
245 if (!Op->isLeaf()) {
246 if (Op->getOperator()->getName() == "fpimm") {
247 Operands.push_back(OpKind::getFP());
248 continue;
250 // For now, ignore other non-leaf nodes.
251 return false;
254 assert(Op->hasConcreteType(0) && "Type infererence not done?");
256 // For now, all the operands must have the same type (if they aren't
257 // immediates). Note that this causes us to reject variable sized shifts
258 // on X86.
259 if (Op->getSimpleType(0) != VT)
260 return false;
262 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
263 if (!OpDI)
264 return false;
265 Record *OpLeafRec = OpDI->getDef();
267 // For now, the only other thing we accept is register operands.
268 const CodeGenRegisterClass *RC = nullptr;
269 if (OpLeafRec->isSubClassOf("RegisterOperand"))
270 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
271 if (OpLeafRec->isSubClassOf("RegisterClass"))
272 RC = &Target.getRegisterClass(OpLeafRec);
273 else if (OpLeafRec->isSubClassOf("Register"))
274 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
275 else if (OpLeafRec->isSubClassOf("ValueType")) {
276 RC = OrigDstRC;
277 } else
278 return false;
280 // For now, this needs to be a register class of some sort.
281 if (!RC)
282 return false;
284 // For now, all the operands must have the same register class or be
285 // a strict subclass of the destination.
286 if (DstRC) {
287 if (DstRC != RC && !DstRC->hasSubClass(RC))
288 return false;
289 } else
290 DstRC = RC;
291 Operands.push_back(OpKind::getReg());
293 return true;
296 void PrintParameters(raw_ostream &OS) const {
297 ListSeparator LS;
298 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
299 OS << LS;
300 if (Operands[i].isReg()) {
301 OS << "unsigned Op" << i;
302 } else if (Operands[i].isImm()) {
303 OS << "uint64_t imm" << i;
304 } else if (Operands[i].isFP()) {
305 OS << "const ConstantFP *f" << i;
306 } else {
307 llvm_unreachable("Unknown operand kind!");
312 void PrintArguments(raw_ostream &OS,
313 const std::vector<std::string> &PR) const {
314 assert(PR.size() == Operands.size());
315 ListSeparator LS;
316 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
317 if (PR[i] != "")
318 // Implicit physical register operand.
319 continue;
321 OS << LS;
322 if (Operands[i].isReg()) {
323 OS << "Op" << i;
324 } else if (Operands[i].isImm()) {
325 OS << "imm" << i;
326 } else if (Operands[i].isFP()) {
327 OS << "f" << i;
328 } else {
329 llvm_unreachable("Unknown operand kind!");
334 void PrintArguments(raw_ostream &OS) const {
335 ListSeparator LS;
336 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
337 OS << LS;
338 if (Operands[i].isReg()) {
339 OS << "Op" << i;
340 } else if (Operands[i].isImm()) {
341 OS << "imm" << i;
342 } else if (Operands[i].isFP()) {
343 OS << "f" << i;
344 } else {
345 llvm_unreachable("Unknown operand kind!");
351 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
352 ImmPredicateSet &ImmPredicates,
353 bool StripImmCodes = false) const {
354 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
355 if (PR[i] != "")
356 // Implicit physical register operand. e.g. Instruction::Mul expect to
357 // select to a binary op. On x86, mul may take a single operand with
358 // the other operand being implicit. We must emit something that looks
359 // like a binary instruction except for the very inner fastEmitInst_*
360 // call.
361 continue;
362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
366 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
367 bool StripImmCodes = false) const {
368 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
369 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
372 } // End anonymous namespace
374 namespace {
375 class FastISelMap {
376 // A multimap is needed instead of a "plain" map because the key is
377 // the instruction's complexity (an int) and they are not unique.
378 typedef std::multimap<int, InstructionMemo> PredMap;
379 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
380 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
381 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
382 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
383 OperandsOpcodeTypeRetPredMap;
385 OperandsOpcodeTypeRetPredMap SimplePatterns;
387 // This is used to check that there are no duplicate predicates
388 std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType,
389 MVT::SimpleValueType, std::string>>
390 SimplePatternsCheck;
392 std::map<OperandsSignature, std::vector<OperandsSignature> >
393 SignaturesWithConstantForms;
395 StringRef InstNS;
396 ImmPredicateSet ImmediatePredicates;
397 public:
398 explicit FastISelMap(StringRef InstNS);
400 void collectPatterns(CodeGenDAGPatterns &CGP);
401 void printImmediatePredicates(raw_ostream &OS);
402 void printFunctionDefinitions(raw_ostream &OS);
403 private:
404 void emitInstructionCode(raw_ostream &OS,
405 const OperandsSignature &Operands,
406 const PredMap &PM,
407 const std::string &RetVTName);
409 } // End anonymous namespace
411 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
412 return std::string(CGP.getSDNodeInfo(Op).getEnumName());
415 static std::string getLegalCName(std::string OpName) {
416 std::string::size_type pos = OpName.find("::");
417 if (pos != std::string::npos)
418 OpName.replace(pos, 2, "_");
419 return OpName;
422 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
424 static std::string PhyRegForNode(TreePatternNode *Op,
425 const CodeGenTarget &Target) {
426 std::string PhysReg;
428 if (!Op->isLeaf())
429 return PhysReg;
431 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
432 if (!OpLeafRec->isSubClassOf("Register"))
433 return PhysReg;
435 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
436 ->getValue();
437 PhysReg += "::";
438 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
439 return PhysReg;
442 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
443 const CodeGenTarget &Target = CGP.getTargetInfo();
445 // Scan through all the patterns and record the simple ones.
446 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
447 E = CGP.ptm_end(); I != E; ++I) {
448 const PatternToMatch &Pattern = *I;
450 // For now, just look at Instructions, so that we don't have to worry
451 // about emitting multiple instructions for a pattern.
452 TreePatternNode *Dst = Pattern.getDstPattern();
453 if (Dst->isLeaf()) continue;
454 Record *Op = Dst->getOperator();
455 if (!Op->isSubClassOf("Instruction"))
456 continue;
457 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
458 if (II.Operands.empty())
459 continue;
461 // Allow instructions to be marked as unavailable for FastISel for
462 // certain cases, i.e. an ISA has two 'and' instruction which differ
463 // by what registers they can use but are otherwise identical for
464 // codegen purposes.
465 if (II.FastISelShouldIgnore)
466 continue;
468 // For now, ignore multi-instruction patterns.
469 bool MultiInsts = false;
470 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
471 TreePatternNode *ChildOp = Dst->getChild(i);
472 if (ChildOp->isLeaf())
473 continue;
474 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
475 MultiInsts = true;
476 break;
479 if (MultiInsts)
480 continue;
482 // For now, ignore instructions where the first operand is not an
483 // output register.
484 const CodeGenRegisterClass *DstRC = nullptr;
485 std::string SubRegNo;
486 if (Op->getName() != "EXTRACT_SUBREG") {
487 Record *Op0Rec = II.Operands[0].Rec;
488 if (Op0Rec->isSubClassOf("RegisterOperand"))
489 Op0Rec = Op0Rec->getValueAsDef("RegClass");
490 if (!Op0Rec->isSubClassOf("RegisterClass"))
491 continue;
492 DstRC = &Target.getRegisterClass(Op0Rec);
493 if (!DstRC)
494 continue;
495 } else {
496 // If this isn't a leaf, then continue since the register classes are
497 // a bit too complicated for now.
498 if (!Dst->getChild(1)->isLeaf()) continue;
500 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
501 if (SR)
502 SubRegNo = getQualifiedName(SR->getDef());
503 else
504 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
507 // Inspect the pattern.
508 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
509 if (!InstPatNode) continue;
510 if (InstPatNode->isLeaf()) continue;
512 // Ignore multiple result nodes for now.
513 if (InstPatNode->getNumTypes() > 1) continue;
515 Record *InstPatOp = InstPatNode->getOperator();
516 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
517 MVT::SimpleValueType RetVT = MVT::isVoid;
518 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
519 MVT::SimpleValueType VT = RetVT;
520 if (InstPatNode->getNumChildren()) {
521 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
522 VT = InstPatNode->getChild(0)->getSimpleType(0);
525 // For now, filter out any instructions with predicates.
526 if (!InstPatNode->getPredicateCalls().empty())
527 continue;
529 // Check all the operands.
530 OperandsSignature Operands;
531 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
532 DstRC))
533 continue;
535 std::vector<std::string> PhysRegInputs;
536 if (InstPatNode->getOperator()->getName() == "imm" ||
537 InstPatNode->getOperator()->getName() == "fpimm")
538 PhysRegInputs.push_back("");
539 else {
540 // Compute the PhysRegs used by the given pattern, and check that
541 // the mapping from the src to dst patterns is simple.
542 bool FoundNonSimplePattern = false;
543 unsigned DstIndex = 0;
544 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
545 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
546 if (PhysReg.empty()) {
547 if (DstIndex >= Dst->getNumChildren() ||
548 Dst->getChild(DstIndex)->getName() !=
549 InstPatNode->getChild(i)->getName()) {
550 FoundNonSimplePattern = true;
551 break;
553 ++DstIndex;
556 PhysRegInputs.push_back(PhysReg);
559 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
560 FoundNonSimplePattern = true;
562 if (FoundNonSimplePattern)
563 continue;
566 // Check if the operands match one of the patterns handled by FastISel.
567 std::string ManglingSuffix;
568 raw_string_ostream SuffixOS(ManglingSuffix);
569 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
570 if (!StringSwitch<bool>(ManglingSuffix)
571 .Cases("", "r", "rr", "ri", "i", "f", true)
572 .Default(false))
573 continue;
575 // Get the predicate that guards this pattern.
576 std::string PredicateCheck = Pattern.getPredicateCheck();
578 // Ok, we found a pattern that we can handle. Remember it.
579 InstructionMemo Memo(
580 Pattern.getDstPattern()->getOperator()->getName(),
581 DstRC,
582 SubRegNo,
583 PhysRegInputs,
584 PredicateCheck
587 int complexity = Pattern.getPatternComplexity(CGP);
589 auto inserted_simple_pattern = SimplePatternsCheck.insert(
590 std::make_tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck));
591 if (!inserted_simple_pattern.second) {
592 PrintFatalError(Pattern.getSrcRecord()->getLoc(),
593 "Duplicate predicate in FastISel table!");
596 // Note: Instructions with the same complexity will appear in the order
597 // that they are encountered.
598 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
599 std::move(Memo));
601 // If any of the operands were immediates with predicates on them, strip
602 // them down to a signature that doesn't have predicates so that we can
603 // associate them with the stripped predicate version.
604 if (Operands.hasAnyImmediateCodes()) {
605 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
606 .push_back(Operands);
611 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
612 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
613 return;
615 OS << "\n// FastEmit Immediate Predicate functions.\n";
616 for (auto ImmediatePredicate : ImmediatePredicates) {
617 OS << "static bool " << ImmediatePredicate.getFnName()
618 << "(int64_t Imm) {\n";
619 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
622 OS << "\n\n";
625 void FastISelMap::emitInstructionCode(raw_ostream &OS,
626 const OperandsSignature &Operands,
627 const PredMap &PM,
628 const std::string &RetVTName) {
629 // Emit code for each possible instruction. There may be
630 // multiple if there are subtarget concerns. A reverse iterator
631 // is used to produce the ones with highest complexity first.
633 bool OneHadNoPredicate = false;
634 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
635 PI != PE; ++PI) {
636 const InstructionMemo &Memo = PI->second;
637 std::string PredicateCheck = Memo.PredicateCheck;
639 if (PredicateCheck.empty()) {
640 assert(!OneHadNoPredicate &&
641 "Multiple instructions match and more than one had "
642 "no predicate!");
643 OneHadNoPredicate = true;
644 } else {
645 if (OneHadNoPredicate) {
646 PrintFatalError("Multiple instructions match and one with no "
647 "predicate came before one with a predicate! "
648 "name:" + Memo.Name + " predicate: " + PredicateCheck);
650 OS << " if (" + PredicateCheck + ") {\n";
651 OS << " ";
654 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
655 if (Memo.PhysRegs[i] != "")
656 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, "
657 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
658 << ").addReg(Op" << i << ");\n";
661 OS << " return fastEmitInst_";
662 if (Memo.SubRegNo.empty()) {
663 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
664 true);
665 OS << "(" << InstNS << "::" << Memo.Name << ", ";
666 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
667 if (!Operands.empty())
668 OS << ", ";
669 Operands.PrintArguments(OS, Memo.PhysRegs);
670 OS << ");\n";
671 } else {
672 OS << "extractsubreg(" << RetVTName
673 << ", Op0, " << Memo.SubRegNo << ");\n";
676 if (!PredicateCheck.empty()) {
677 OS << " }\n";
680 // Return 0 if all of the possibilities had predicates but none
681 // were satisfied.
682 if (!OneHadNoPredicate)
683 OS << " return 0;\n";
684 OS << "}\n";
685 OS << "\n";
689 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
690 // Now emit code for all the patterns that we collected.
691 for (const auto &SimplePattern : SimplePatterns) {
692 const OperandsSignature &Operands = SimplePattern.first;
693 const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
695 for (const auto &I : OTM) {
696 const std::string &Opcode = I.first;
697 const TypeRetPredMap &TM = I.second;
699 OS << "// FastEmit functions for " << Opcode << ".\n";
700 OS << "\n";
702 // Emit one function for each opcode,type pair.
703 for (const auto &TI : TM) {
704 MVT::SimpleValueType VT = TI.first;
705 const RetPredMap &RM = TI.second;
706 if (RM.size() != 1) {
707 for (const auto &RI : RM) {
708 MVT::SimpleValueType RetVT = RI.first;
709 const PredMap &PM = RI.second;
711 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
712 << getLegalCName(std::string(getName(VT))) << "_"
713 << getLegalCName(std::string(getName(RetVT))) << "_";
714 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
715 OS << "(";
716 Operands.PrintParameters(OS);
717 OS << ") {\n";
719 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
722 // Emit one function for the type that demultiplexes on return type.
723 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
724 << getLegalCName(std::string(getName(VT))) << "_";
725 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
726 OS << "(MVT RetVT";
727 if (!Operands.empty())
728 OS << ", ";
729 Operands.PrintParameters(OS);
730 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
731 for (const auto &RI : RM) {
732 MVT::SimpleValueType RetVT = RI.first;
733 OS << " case " << getName(RetVT) << ": return fastEmit_"
734 << getLegalCName(Opcode) << "_"
735 << getLegalCName(std::string(getName(VT))) << "_"
736 << getLegalCName(std::string(getName(RetVT))) << "_";
737 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
738 OS << "(";
739 Operands.PrintArguments(OS);
740 OS << ");\n";
742 OS << " default: return 0;\n}\n}\n\n";
744 } else {
745 // Non-variadic return type.
746 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
747 << getLegalCName(std::string(getName(VT))) << "_";
748 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
749 OS << "(MVT RetVT";
750 if (!Operands.empty())
751 OS << ", ";
752 Operands.PrintParameters(OS);
753 OS << ") {\n";
755 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
756 << ")\n return 0;\n";
758 const PredMap &PM = RM.begin()->second;
760 emitInstructionCode(OS, Operands, PM, "RetVT");
764 // Emit one function for the opcode that demultiplexes based on the type.
765 OS << "unsigned fastEmit_"
766 << getLegalCName(Opcode) << "_";
767 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
768 OS << "(MVT VT, MVT RetVT";
769 if (!Operands.empty())
770 OS << ", ";
771 Operands.PrintParameters(OS);
772 OS << ") {\n";
773 OS << " switch (VT.SimpleTy) {\n";
774 for (const auto &TI : TM) {
775 MVT::SimpleValueType VT = TI.first;
776 std::string TypeName = std::string(getName(VT));
777 OS << " case " << TypeName << ": return fastEmit_"
778 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
779 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
780 OS << "(RetVT";
781 if (!Operands.empty())
782 OS << ", ";
783 Operands.PrintArguments(OS);
784 OS << ");\n";
786 OS << " default: return 0;\n";
787 OS << " }\n";
788 OS << "}\n";
789 OS << "\n";
792 OS << "// Top-level FastEmit function.\n";
793 OS << "\n";
795 // Emit one function for the operand signature that demultiplexes based
796 // on opcode and type.
797 OS << "unsigned fastEmit_";
798 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
799 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
800 if (!Operands.empty())
801 OS << ", ";
802 Operands.PrintParameters(OS);
803 OS << ") ";
804 if (!Operands.hasAnyImmediateCodes())
805 OS << "override ";
806 OS << "{\n";
808 // If there are any forms of this signature available that operate on
809 // constrained forms of the immediate (e.g., 32-bit sext immediate in a
810 // 64-bit operand), check them first.
812 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
813 = SignaturesWithConstantForms.find(Operands);
814 if (MI != SignaturesWithConstantForms.end()) {
815 // Unique any duplicates out of the list.
816 llvm::sort(MI->second);
817 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
818 MI->second.end());
820 // Check each in order it was seen. It would be nice to have a good
821 // relative ordering between them, but we're not going for optimality
822 // here.
823 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
824 OS << " if (";
825 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
826 OS << ")\n if (unsigned Reg = fastEmit_";
827 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
828 OS << "(VT, RetVT, Opcode";
829 if (!MI->second[i].empty())
830 OS << ", ";
831 MI->second[i].PrintArguments(OS);
832 OS << "))\n return Reg;\n\n";
835 // Done with this, remove it.
836 SignaturesWithConstantForms.erase(MI);
839 OS << " switch (Opcode) {\n";
840 for (const auto &I : OTM) {
841 const std::string &Opcode = I.first;
843 OS << " case " << Opcode << ": return fastEmit_"
844 << getLegalCName(Opcode) << "_";
845 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
846 OS << "(VT, RetVT";
847 if (!Operands.empty())
848 OS << ", ";
849 Operands.PrintArguments(OS);
850 OS << ");\n";
852 OS << " default: return 0;\n";
853 OS << " }\n";
854 OS << "}\n";
855 OS << "\n";
858 // TODO: SignaturesWithConstantForms should be empty here.
861 static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
862 CodeGenDAGPatterns CGP(RK);
863 const CodeGenTarget &Target = CGP.getTargetInfo();
864 emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
865 Target.getName().str() + " target", OS);
867 // Determine the target's namespace name.
868 StringRef InstNS = Target.getInstNamespace();
869 assert(!InstNS.empty() && "Can't determine target-specific namespace!");
871 FastISelMap F(InstNS);
872 F.collectPatterns(CGP);
873 F.printImmediatePredicates(OS);
874 F.printFunctionDefinitions(OS);
877 static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel,
878 "Generate a \"fast\" instruction selector");