1 // RUN: mlir-opt %s --one-shot-bufferize="dialect-filter=tensor,bufferization copy-before-write unknown-type-conversion=identity-layout-map" -cse -split-input-file | FileCheck %s
3 // CHECK-LABEL: func @dim(
4 // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>,
5 // CHECK-SAME: %[[INDEX:.*]]: index) -> index {
6 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<*xf32>
7 // CHECK: %[[EXTENT:.*]] = memref.dim %[[MEMREF]], %[[INDEX]] : memref<*xf32>
8 // CHECK: return %[[EXTENT]] : index
9 func.func @dim(%arg0: tensor<*xf32>, %arg1: index) -> index {
10 %0 = tensor.dim %arg0, %arg1 : tensor<*xf32>
16 // CHECK-LABEL: func @rank(
17 // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>) -> index {
18 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]]
19 // CHECK: %[[EXTENT:.*]] = memref.rank %[[MEMREF]] : memref<*xf32>
20 func.func @rank(%arg0: tensor<*xf32>) -> index {
21 %0 = tensor.rank %arg0 : tensor<*xf32>
27 // CHECK-LABEL: func @tensor.cast(
28 // CHECK-SAME: %[[TENSOR:.*]]: tensor<?xindex>) -> tensor<2xindex> {
29 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]]
30 // CHECK: %[[CASTED:.*]] = memref.cast %[[MEMREF]] : memref<?xindex> to memref<2xindex>
31 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED]]
32 // CHECK: return %[[RET]] : tensor<2xindex>
33 func.func @tensor.cast(%arg0: tensor<?xindex>) -> tensor<2xindex> {
34 %0 = tensor.cast %arg0 : tensor<?xindex> to tensor<2xindex>
35 return %0 : tensor<2xindex>
40 // CHECK-LABEL: func @tensor.cast_from_unranked(
41 // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>) -> tensor<2xf32> {
42 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<*xf32>
43 // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<*xf32> to memref<2xf32, strided<[?], offset: ?>>
44 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<2xf32, strided<[?], offset: ?>>
45 // CHECK: return %[[RET]] : tensor<2xf32>
46 func.func @tensor.cast_from_unranked(%arg0: tensor<*xf32>) -> tensor<2xf32> {
47 %0 = tensor.cast %arg0 : tensor<*xf32> to tensor<2xf32>
48 return %0 : tensor<2xf32>
53 // CHECK-LABEL: func @tensor.cast_to_unranked(
54 // CHECK-SAME: %[[TENSOR:.*]]: tensor<2xf32>) -> tensor<*xf32> {
55 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<2xf32>
56 // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<2xf32> to memref<*xf32>
57 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<*xf32>
58 // CHECK: return %[[RET]] : tensor<*xf32>
59 func.func @tensor.cast_to_unranked(%arg0: tensor<2xf32>) -> tensor<*xf32> {
60 %0 = tensor.cast %arg0 : tensor<2xf32> to tensor<*xf32>
61 return %0 : tensor<*xf32>
66 // CHECK-LABEL: func @tensor.empty(
67 // CHECK: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<5xf32>
68 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] : memref<5xf32>
69 // CHECK: return %[[RET]] : tensor<5xf32>
70 func.func @tensor.empty() -> tensor<5xf32> {
71 %0 = tensor.empty() : tensor<5xf32>
72 return %0 : tensor<5xf32>
77 // CHECK-LABEL: func @tensor.extract(
78 // CHECK-SAME: %[[TENSOR:.*]]: tensor<?xf32>,
79 // CHECK-SAME: %[[IDX:.*]]: index) -> f32 {
80 // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<?xf32>
81 // CHECK: %[[RET:.*]] = memref.load %[[MEMREF]][%[[IDX]]] : memref<?xf32>
82 // CHECK: return %[[RET]] : f32
84 func.func @tensor.extract(%arg0: tensor<?xf32>, %arg1: index) -> f32 {
85 %0 = tensor.extract %arg0[%arg1] : tensor<?xf32>
91 // CHECK-LABEL: func @tensor.from_elements_0d(
92 // CHECK-SAME: %[[ELEM0:.*]]: index) -> tensor<index> {
93 // CHECK: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<index>
94 // CHECK: store %[[ELEM0]], %[[MEMREF]]
95 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]]
96 // CHECK: return %[[RET]] : tensor<index>
97 func.func @tensor.from_elements_0d(%arg0: index) -> tensor<index> {
98 %0 = tensor.from_elements %arg0 : tensor<index>
99 return %0 : tensor<index>
104 // CHECK-LABEL: func @tensor.from_elements_1d(
105 // CHECK-SAME: %[[ELEM0:.*]]: index,
106 // CHECK-SAME: %[[ELEM1:.*]]: index) -> tensor<2xindex> {
107 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
108 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
109 // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<2xindex>
110 // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C0]]]
111 // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C1]]]
112 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]]
113 // CHECK: return %[[RET]] : tensor<2xindex>
114 func.func @tensor.from_elements_1d(%arg0: index, %arg1: index) -> tensor<2xindex> {
115 %0 = tensor.from_elements %arg0, %arg1 : tensor<2xindex>
116 return %0 : tensor<2xindex>
121 // CHECK-LABEL: func @tensor.from_elements_2d(
122 // CHECK-SAME: %[[ELEM0:.*]]: index, %[[ELEM1:.*]]: index)
123 // CHECK-SAME: -> tensor<3x2xindex> {
124 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
125 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
126 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
127 // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<3x2xindex>
128 // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C0]], %[[C0]]]
129 // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C0]], %[[C1]]]
130 // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C1]], %[[C0]]]
131 // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C1]], %[[C1]]]
132 // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C2]], %[[C0]]]
133 // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C2]], %[[C1]]]
134 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]]
135 // CHECK: return %[[RET]] : tensor<3x2xindex>
136 func.func @tensor.from_elements_2d(%arg0: index, %arg1: index) -> tensor<3x2xindex> {
137 %0 = tensor.from_elements %arg0, %arg1, %arg0, %arg1, %arg0, %arg1
139 return %0 : tensor<3x2xindex>
144 // CHECK-LABEL: func @tensor.from_elements_3d(
145 // CHECK-SAME: %[[F0:.*]]: f32
147 // CHECK-DAG: %[[F1:.*]] = arith.constant 1.0{{0+}}e+00
148 // CHECK-DAG: %[[F2:.*]] = arith.constant 2.0
149 // CHECK-DAG: %[[F3:.*]] = arith.constant 3.0
150 // CHECK-DAG: %[[F4:.*]] = arith.constant 4.0
151 // CHECK-DAG: %[[F5:.*]] = arith.constant 5.0
152 // CHECK-DAG: %[[F6:.*]] = arith.constant 6.0
153 // CHECK-DAG: %[[F7:.*]] = arith.constant 7.0
154 // CHECK-DAG: %[[F8:.*]] = arith.constant 8.0
155 // CHECK-DAG: %[[F9:.*]] = arith.constant 9.0
156 // CHECK-DAG: %[[F10:.*]] = arith.constant 1.0{{0+}}e+01
157 // CHECK-DAG: %[[F11:.*]] = arith.constant 1.1{{0+}}e+01
159 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
160 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
161 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
163 // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<3x2x2xf32>
165 // CHECK: store %[[F0]], %[[MEMREF]][%[[C0]], %[[C0]], %[[C0]]]
166 // CHECK: store %[[F1]], %[[MEMREF]][%[[C0]], %[[C0]], %[[C1]]]
167 // CHECK: store %[[F2]], %[[MEMREF]][%[[C0]], %[[C1]], %[[C0]]]
168 // CHECK: store %[[F3]], %[[MEMREF]][%[[C0]], %[[C1]], %[[C1]]]
169 // CHECK: store %[[F4]], %[[MEMREF]][%[[C1]], %[[C0]], %[[C0]]]
170 // CHECK: store %[[F5]], %[[MEMREF]][%[[C1]], %[[C0]], %[[C1]]]
171 // CHECK: store %[[F6]], %[[MEMREF]][%[[C1]], %[[C1]], %[[C0]]]
172 // CHECK: store %[[F7]], %[[MEMREF]][%[[C1]], %[[C1]], %[[C1]]]
173 // CHECK: store %[[F8]], %[[MEMREF]][%[[C2]], %[[C0]], %[[C0]]]
174 // CHECK: store %[[F9]], %[[MEMREF]][%[[C2]], %[[C0]], %[[C1]]]
175 // CHECK: store %[[F10]], %[[MEMREF]][%[[C2]], %[[C1]], %[[C0]]]
176 // CHECK: store %[[F11]], %[[MEMREF]][%[[C2]], %[[C1]], %[[C1]]]
178 // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]]
179 // CHECK: return %[[RET]] : tensor<3x2x2xf32>
180 func.func @tensor.from_elements_3d(%f0 : f32) -> tensor<3x2x2xf32> {
181 %f1 = arith.constant 1.0 : f32
182 %f2 = arith.constant 2.0 : f32
183 %f3 = arith.constant 3.0 : f32
184 %f4 = arith.constant 4.0 : f32
185 %f5 = arith.constant 5.0 : f32
186 %f6 = arith.constant 6.0 : f32
187 %f7 = arith.constant 7.0 : f32
188 %f8 = arith.constant 8.0 : f32
189 %f9 = arith.constant 9.0 : f32
190 %f10 = arith.constant 10.0 : f32
191 %f11 = arith.constant 11.0 : f32
192 %0 = tensor.from_elements %f0,%f1,%f2,%f3,%f4,%f5,%f6,%f7,%f8,%f9,%f10,%f11
194 return %0 : tensor<3x2x2xf32>
199 // CHECK-LABEL: func @tensor.generate(
200 // CHECK-SAME: %[[ARG:.*]]: tensor<*xf32>,
201 // CHECK-SAME: %[[DYNAMIC_EXTENT:.*]]: index) -> tensor<?xindex> {
202 // CHECK-DAG: %[[ARG_M:.*]] = bufferization.to_memref %[[ARG]] : memref<*xf32>
203 // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc(%[[DYNAMIC_EXTENT]]) {{.*}} : memref<?xindex>
204 // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]]
205 // CHECK: %[[MAPPED:.*]] = linalg.map
206 // CHECK: outs(%[[ALLOC_T]] : tensor<?xindex>)
207 // CHECK: %[[INDEX:.*]] = linalg.index 0 : index
208 // CHECK: %[[ELEM:.*]] = memref.dim %[[ARG_M]], %[[INDEX]] : memref<*xf32>
209 // CHECK: linalg.yield %[[ELEM]]
211 // CHECK: return %[[MAPPED]] : tensor<?xindex>
213 func.func @tensor.generate(%arg: tensor<*xf32>, %dynamic_extent: index) -> tensor<?xindex> {
214 %result = tensor.generate %dynamic_extent {
216 %elem = tensor.dim %arg, %i : tensor<*xf32>
217 tensor.yield %elem : index
219 return %result : tensor<?xindex>
224 // Additional test that checks the logic for intermixed static and dynamic
227 // CHECK-LABEL: func @tensor.generate_static_and_dynamic(
228 // CHECK-SAME: %[[DYNAMIC_EXTENT:.*]]: index) -> tensor<16x?xindex> {
229 // CHECK: %[[ALLOC:.*]] = memref.alloc(%[[DYNAMIC_EXTENT]]) {{.*}} : memref<16x?xindex>
230 // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]]
231 // CHECK: %[[MAPPED:.*]] = linalg.map
232 // CHECK: outs(%[[ALLOC_T]] : tensor<16x?xindex>)
233 // CHECK: %[[INDEX0:.*]] = linalg.index 0
234 // CHECK: %[[INDEX1:.*]] = linalg.index 1
235 // CHECK: %[[ADD:.*]] = arith.addi %[[INDEX0]], %[[INDEX1]]
236 // CHECK: linalg.yield %[[ADD]]
238 // CHECK: return %[[MAPPED]] : tensor<16x?xindex>
240 func.func @tensor.generate_static_and_dynamic(%arg0: index) -> tensor<16x?xindex> {
241 %result = tensor.generate %arg0 {
242 ^bb0(%i: index, %j: index):
243 %sum = arith.addi %i, %j : index
244 tensor.yield %sum : index
245 } : tensor<16x?xindex>
246 return %result : tensor<16x?xindex>
251 // CHECK-LABEL: func @tensor.generate_unknown_ops_in_body
252 func.func @tensor.generate_unknown_ops_in_body(%arg0: index) -> tensor<?xindex> {
253 // CHECK-NOT: tensor.generate
254 %tensor = tensor.generate %arg0 {
256 // CHECK: test.source
257 %0 = "test.source"() : () -> index
258 tensor.yield %0 : index
260 return %tensor : tensor<?xindex>
265 // CHECK-LABEL: func @tensor.extract_slice(
266 // CHECK-SAME: %[[t1:.*]]: tensor<?x?xf32>, %[[idx1:.*]]: index, %[[idx2:.*]]: index
267 func.func @tensor.extract_slice(
268 %t1: tensor<?x?xf32>, %idx1: index, %idx2: index) -> tensor<?x10xf32> {
269 // CHECK: %[[m:.*]] = bufferization.to_memref %[[t1]] : memref<?x?xf32>
270 // CHECK: %[[r:.*]] = memref.subview %[[m]][5, %[[idx2]]] [%[[idx1]], 10] [1, 1] : memref<?x?xf32> to memref<?x10xf32, strided<[?, 1], offset: ?>>
271 %0 = tensor.extract_slice %t1[5, %idx2][%idx1, 10][1, 1]
272 : tensor<?x?xf32> to tensor<?x10xf32>
273 // CHECK: %[[r_tensor:.*]] = bufferization.to_tensor %[[r]]
274 // CHECK: return %[[r_tensor]]
275 return %0 : tensor<?x10xf32>
280 // CHECK-LABEL: func @tensor.extract_slice_rank_reducing(
281 // CHECK-SAME: %[[t1:.*]]: tensor<?x10x?xf32>, %[[idx1:.*]]: index,
282 // CHECK-SAME: %[[idx2:.*]]: index
283 func.func @tensor.extract_slice_rank_reducing(
284 %t1: tensor<?x10x?xf32>, %idx1: index, %idx2: index) -> tensor<?x15xf32> {
285 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x10x?xf32>
286 // CHECK: %[[r:.*]] = memref.subview %[[m1]][5, %[[idx1]], 10] [%[[idx2]], 1, 15] [1, 1, 1] : memref<?x10x?xf32> to memref<?x15xf32, strided<[?, 1], offset: ?>>
287 %0 = tensor.extract_slice %t1[5, %idx1, 10][%idx2, 1, 15][1, 1, 1]
288 : tensor<?x10x?xf32> to tensor<?x15xf32>
289 // CHECK: %[[r_tensor:.*]] = bufferization.to_tensor %[[r]]
290 // CHECK: return %[[r_tensor]]
291 return %0 : tensor<?x15xf32>
296 // CHECK-LABEL: func @tensor.insert_slice(
297 // CHECK-SAME: %[[t1:.*]]: tensor<?x?xf32>, %[[t2:.*]]: tensor<?x10xf32>,
298 // CHECK-SAME: %[[idx1:.*]]: index, %[[idx2:.*]]: index
299 func.func @tensor.insert_slice(%t1: tensor<?x?xf32>, %t2: tensor<?x10xf32>,
300 %idx1: index, %idx2: index) -> tensor<?x?xf32> {
301 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
302 // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
303 // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x?xf32>
304 // CHECK-DAG: %[[m2:.*]] = bufferization.to_memref %[[t2]] : memref<?x10xf32>
305 // CHECK-DAG: %[[dim0:.*]] = memref.dim %[[m1]], %[[c0]]
306 // CHECK-DAG: %[[dim1:.*]] = memref.dim %[[m1]], %[[c1]]
307 // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim0]], %[[dim1]])
308 // CHECK: memref.copy %[[m1]], %[[alloc]]
309 // CHECK: %[[subview:.*]] = memref.subview %[[alloc]][%[[idx1]], 5] [%[[idx2]], 10] [1, 1]
310 // CHECK: memref.copy %[[m2]], %[[subview]]
311 %0 = tensor.insert_slice %t2 into %t1[%idx1, 5][%idx2, 10][1, 1]
312 : tensor<?x10xf32> into tensor<?x?xf32>
314 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]]
315 // CHECK: return %[[r]]
316 return %0 : tensor<?x?xf32>
321 // CHECK-LABEL: func @tensor.insert_slice_rank_reducing_1(
322 func.func @tensor.insert_slice_rank_reducing_1(
323 %t1: tensor<?x?xf32>, %f: tensor<f32>, %idx1: index, %idx2: index)
326 // CHECK: %[[alloc:.*]] = memref.alloc{{.*}} : memref<?x?xf32>
327 // CHECK: memref.subview %[[alloc]][%{{.*}}, %{{.*}}] [1, 1] [1, 1] : memref<?x?xf32> to memref<f32, strided<[], offset: ?>>
328 // CHECK: memref.copy {{.*}} : memref<f32> to memref<f32, strided<[], offset: ?>>
329 %0 = tensor.insert_slice %f into %t1[%idx1, %idx2][1, 1][1, 1]
330 : tensor<f32> into tensor<?x?xf32>
331 return %0 : tensor<?x?xf32>
336 // CHECK-LABEL: func @tensor.insert_slice_rank_reducing_2(
337 func.func @tensor.insert_slice_rank_reducing_2(
338 %t1: tensor<?x?x?x?x?x?x?xf32>, %t2: tensor<2x1x4x1x1xf32>, %i: index)
339 -> tensor<?x?x?x?x?x?x?xf32>
341 // CHECK: %[[alloc:.*]] = memref.alloc{{.*}} : memref<?x?x?x?x?x?x?xf32>
342 // CHECK: memref.subview %[[alloc]][{{.*}}] [1, 2, 1, 4, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1] : memref<?x?x?x?x?x?x?xf32> to memref<2x1x4x1x1xf32, strided<[?, ?, ?, ?, ?], offset: ?>>
343 // CHECK: memref.copy {{.*}} : memref<2x1x4x1x1xf32> to memref<2x1x4x1x1xf32, strided<[?, ?, ?, ?, ?], offset: ?>>
344 %0 = tensor.insert_slice %t2 into %t1[%i, %i, %i, %i, %i, %i, %i][1, 2, 1, 4, 1, 1, 1][1, 1, 1, 1, 1, 1, 1]
345 : tensor<2x1x4x1x1xf32> into tensor<?x?x?x?x?x?x?xf32>
346 return %0 : tensor<?x?x?x?x?x?x?xf32>
351 // CHECK-LABEL: func @tensor.insert(
352 // CHECK-SAME: %[[t1:.*]]: tensor<5xf32>, %[[idx1:.*]]: index,
353 // CHECK-SAME: %[[f:.*]]: f32
354 func.func @tensor.insert(%t1: tensor<5xf32>, %idx1: index, %f: f32) -> tensor<5xf32> {
355 // CHECK-DAG: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32>
356 // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<5xf32>
357 // CHECK: memref.copy %[[m1]], %[[alloc]]
358 // CHECK: memref.store %[[f]], %[[alloc]][%[[idx1]]]
359 %0 = tensor.insert %f into %t1[%idx1] : tensor<5xf32>
361 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]]
362 // CHECK: return %[[r]]
363 return %0 : tensor<5xf32>
368 // CHECK-LABEL: func @tensor.expand_shape(
369 // CHECK-SAME: %[[t1:.*]]: tensor<?x10xf32>
370 func.func @tensor.expand_shape(%t1: tensor<?x10xf32>, %sz0: index) -> tensor<2x?x10xf32> {
371 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x10xf32>
372 // CHECK: %[[C0:.*]] = arith.constant 0 : index
373 // CHECK: %[[DIM:.*]] = memref.dim %[[m1]], %[[C0]] : memref<?x10xf32>
374 // CHECK: %[[C2:.*]] = arith.constant 2 : index
375 // CHECK: %[[VAL_1:.*]] = arith.divui %[[DIM]], %[[C2]] : index
376 // CHECK: %[[expanded:.*]] = memref.expand_shape %[[m1]] {{\[\[}}0, 1], [2]] output_shape [2, %[[VAL_1]], 10] : memref<?x10xf32> into memref<2x?x10xf32>
377 %0 = tensor.expand_shape %t1 [[0, 1], [2]] output_shape [2, %sz0, 10]
378 : tensor<?x10xf32> into tensor<2x?x10xf32>
380 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]]
381 // CHECK: return %[[r]]
382 return %0 : tensor<2x?x10xf32>
387 // CHECK-LABEL: func @tensor.expand_shape_of_slice(
388 // CHECK-SAME: %[[t1:.*]]: tensor<?x20xf32>
389 func.func @tensor.expand_shape_of_slice(
390 %t1: tensor<?x20xf32>, %o1: index, %s1: index, %sz0: index) -> tensor<?x7x2x5xf32> {
391 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x20xf32>
392 // CHECK: %[[subview:.*]] = memref.subview %[[m1]][%{{.*}}, 5] [%{{.*}}, 10] [1, 1] : memref<?x20xf32> to memref<?x10xf32, strided<[20, 1], offset: ?>>
393 %0 = tensor.extract_slice %t1[%o1, 5][%s1, 10][1, 1] :
394 tensor<?x20xf32> to tensor<?x10xf32>
395 // CHECK: %[[C7:.*]] = arith.constant 7 : index
396 // CHECK: %[[VAL_1:.*]] = arith.divui %{{.*}}, %[[C7]] : index
397 // CHECK: %[[expanded:.*]] = memref.expand_shape %[[subview]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[VAL_1]], 7, 2, 5] : memref<?x10xf32, strided<[20, 1], offset: ?>> into memref<?x7x2x5xf32, strided<[140, 20, 5, 1], offset: ?>>
398 %1 = tensor.expand_shape %0 [[0, 1], [2, 3]] output_shape [%sz0, 7, 2, 5] :
399 tensor<?x10xf32> into tensor<?x7x2x5xf32>
400 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]]
401 // CHECK: return %[[r]]
402 return %1 : tensor<?x7x2x5xf32>
407 // CHECK-LABEL: func @tensor.expand_shape_of_scalar_slice(
408 // CHECK-SAME: %[[t1:.*]]: tensor<?xf32>
409 func.func @tensor.expand_shape_of_scalar_slice(
410 %t1: tensor<?xf32>, %o1: index, %s1: index) -> tensor<1xf32> {
411 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?xf32>
412 // CHECK: %[[subview:.*]] = memref.subview %[[m1]][%{{.*}}] [1] [1] : memref<?xf32> to memref<f32, strided<[], offset: ?>>
413 %0 = tensor.extract_slice %t1[%o1][1][1] : tensor<?xf32> to tensor<f32>
414 // CHECK: %[[expanded:.*]] = memref.expand_shape %[[subview]] [] output_shape [1] : memref<f32, strided{{.*}}> into memref<1xf32, strided<[1], offset: ?>>
415 %1 = tensor.expand_shape %0 [] output_shape [1] : tensor<f32> into tensor<1xf32>
416 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]]
417 // CHECK: return %[[r]]
418 return %1 : tensor<1xf32>
423 // CHECK-LABEL: func @tensor.collapse_shape(
424 // CHECK-SAME: %[[t1:.*]]: tensor<2x?x?xf32>
425 func.func @tensor.collapse_shape(%t1: tensor<2x?x?xf32>) -> tensor<?x?xf32> {
426 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<2x?x?xf32>
427 // CHECK: %[[collapsed:.*]] = memref.collapse_shape %[[m1]] [
428 // CHECK-SAME: [0, 1], [2]] : memref<2x?x?xf32> into memref<?x?xf32>
429 %0 = tensor.collapse_shape %t1 [[0, 1], [2]]
430 : tensor<2x?x?xf32> into tensor<?x?xf32>
432 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[collapsed]]
433 // CHECK: return %[[r]]
434 return %0 : tensor<?x?xf32>
439 // CHECK-LABEL: func @tensor.collapse_shape_to_scalar(
440 // CHECK-SAME: %[[t1:.*]]: tensor<1x1x1xf32>
441 func.func @tensor.collapse_shape_to_scalar(%t1: tensor<1x1x1xf32>) -> tensor<f32> {
442 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<1x1x1xf32>
443 // CHECK: %[[collapsed:.*]] = memref.collapse_shape %[[m1]] [] : memref<1x1x1xf32> into memref<f32>
444 %0 = tensor.collapse_shape %t1 []
445 : tensor<1x1x1xf32> into tensor<f32>
447 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[collapsed]]
448 // CHECK: return %[[r]]
449 return %0 : tensor<f32>
454 // CHECK-LABEL: func @tensor.collapse_shape_of_slice(
455 func.func @tensor.collapse_shape_of_slice(%arg0: tensor<2xi32>) -> tensor<i32> {
456 // CHECK: memref.subview %{{.*}}[1] [1] [1] : memref<2xi32> to memref<1xi32, strided<[1], offset: 1>>
457 %0 = tensor.extract_slice %arg0[1] [1] [1] : tensor<2xi32> to tensor<1xi32>
458 // CHECK: memref.collapse_shape %{{.*}} [] : memref<1xi32, strided<[1], offset: 1>> into memref<i32, strided<[], offset: 1>>
459 %1 = tensor.collapse_shape %0 [] : tensor<1xi32> into tensor<i32>
460 return %1 : tensor<i32>
465 // CHECK-LABEL: func @tensor.collapse_shape_of_slice2(
466 func.func @tensor.collapse_shape_of_slice2(
467 %arg0: tensor<?x?x?x?xi64>, %o1: index, %o2: index, %o3: index, %o4: index)
468 -> tensor<87x63648xi64> {
469 // CHECK: %[[subview:.*]] = memref.subview %{{.*}} : memref<?x?x?x?xi64> to memref<87x78x68x12xi64, strided{{.*}}>
470 %0 = tensor.extract_slice %arg0[%o1, %o2, %o3, %o4] [87, 78, 68, 12] [1, 1, 1, 1] : tensor<?x?x?x?xi64> to tensor<87x78x68x12xi64>
472 // This memref may not be collapsible, so the buffer must be copied to get rid
473 // of the layout map.
474 // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<87x78x68x12xi64>
475 // CHECK: memref.copy %[[subview]], %[[alloc]]
476 // CHECK: memref.collapse_shape %[[alloc]] [
477 // CHECK-SAME: [0], [1, 2, 3]] : memref<87x78x68x12xi64> into memref<87x63648xi64>
478 %1 = tensor.collapse_shape %0 [[0], [1, 2, 3]] : tensor<87x78x68x12xi64> into tensor<87x63648xi64>
479 return %1 : tensor<87x63648xi64>
484 // CHECK-LABEL: func @tensor.collapse_shape_of_slice3(
485 // CHECK-SAME: %[[t1:.*]]: tensor<1x2xf32>
486 func.func @tensor.collapse_shape_of_slice3(%t1: tensor<1x2xf32>) -> tensor<1xf32> {
487 // CHECK: memref.subview {{.*}} : memref<1x2xf32> to memref<1x1xf32, strided<[2, 1]>>
488 %0 = tensor.extract_slice %t1[0, 0][1, 1][1, 1] : tensor<1x2xf32> to tensor<1x1xf32>
489 // CHECK: memref.collapse_shape %{{.*}} [
490 // CHECK-SAME: [0, 1]] : memref<1x1xf32, strided<[2, 1]>> into memref<1xf32, strided<[2]>>
491 %1 = tensor.collapse_shape %0 [[0, 1]] : tensor<1x1xf32> into tensor<1xf32>
492 return %1 : tensor<1xf32>
497 // CHECK-LABEL: func @tensor.collapse_shape_of_slice4(
498 // CHECK-SAME: %[[t1:.*]]: tensor<?x2x4xf32>,
499 // CHECK-SAME: %[[OFFSET:.*]]: index) -> tensor<8xf32> {
500 func.func @tensor.collapse_shape_of_slice4(%arg0: tensor<?x2x4xf32>, %offset: index, %size: index) -> tensor<8xf32> {
501 // CHECK: memref.subview %{{.*}} : memref<?x2x4xf32> to memref<4x2x1xf32, strided<[8, 4, 1], offset: ?>>
502 %0 = tensor.extract_slice %arg0[0, 0, %offset] [4, 2, 1] [1, 1, 1] : tensor<?x2x4xf32> to tensor<4x2x1xf32>
503 // CHECK: memref.collapse_shape %{{.*}} [
504 // CHECK-SAME: [0, 1, 2]] : memref<4x2x1xf32, strided<[8, 4, 1], offset: ?>> into memref<8xf32, strided<[4], offset: ?>>
505 %ret = tensor.collapse_shape %0 [[0, 1, 2]] : tensor<4x2x1xf32> into tensor<8xf32>
506 return %ret: tensor<8xf32>
511 // CHECK-LABEL: func @tensor.collapse_shape_of_slice5(
512 func.func @tensor.collapse_shape_of_slice5(%arg0: tensor<2x2x2xi64>) -> tensor<4xi64> {
513 // CHECK: %[[subview:.*]] = memref.subview %{{.*}} : memref<2x2x2xi64> to memref<2x1x2xi64, {{.*}}>
514 %0 = tensor.extract_slice %arg0[0, 0, 0] [2, 1, 2] [1, 1, 1] : tensor<2x2x2xi64> to tensor<2x1x2xi64>
516 // This memref is not collapsible, so the buffer must be copied to get rid of
518 // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<2x1x2xi64>
519 // CHECK: memref.copy %[[subview]], %[[alloc]]
520 // CHECK: memref.collapse_shape %[[alloc]] [
521 // CHECK-SAME: [0, 1, 2]] : memref<2x1x2xi64> into memref<4xi64>
522 %1 = tensor.collapse_shape %0 [[0, 1, 2]] : tensor<2x1x2xi64> into tensor<4xi64>
523 return %1 : tensor<4xi64>
528 // CHECK-LABEL: func @tensor.reshape(
529 // CHECK-SAME: %[[t1:.*]]: tensor<?x10xf32>
530 func.func @tensor.reshape(%t1: tensor<?x10xf32>) -> tensor<2x2x5xf32> {
531 // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x10xf32>
533 // CHECK: %[[two:.*]] = arith.constant 2 : i64
534 %two = arith.constant 2 : i64
535 // CHECK: %[[five:.*]] = arith.constant 5 : i64
536 %five = arith.constant 5 : i64
538 // CHECK: %[[alloc:.*]] = memref.alloc() {alignment = 64 : i64} : memref<3xi64>
539 // CHECK: %[[zero_idx:.*]] = arith.constant 0 : index
540 // CHECK: %[[one_idx:.*]] = arith.constant 1 : index
541 // CHECK: %[[two_idx:.*]] = arith.constant 2 : index
542 // CHECK: memref.store %[[two]], %[[alloc]][%[[zero_idx]]] : memref<3xi64>
543 // CHECK: memref.store %[[two]], %[[alloc]][%[[one_idx]]] : memref<3xi64>
544 // CHECK: memref.store %[[five]], %[[alloc]][%[[two_idx]]] : memref<3xi64>
545 %shape = tensor.from_elements %two, %two, %five : tensor<3xi64>
547 // CHECK: %[[reshaped:.*]] = memref.reshape %[[m1]](%[[alloc]]) : (memref<?x10xf32>, memref<3xi64>) -> memref<2x2x5xf32>
548 %reshaped = tensor.reshape %t1(%shape) : (tensor<?x10xf32>, tensor<3xi64>) -> tensor<2x2x5xf32>
550 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[reshaped]]
551 // CHECK: return %[[r]]
552 return %reshaped : tensor<2x2x5xf32>
557 // CHECK: #[[$sum_map_1:.+]] = affine_map<()[s0, s1] -> (s0 + s1 + 5)>
558 // CHECK: #[[$sum_map_2:.+]] = affine_map<()[s0, s1] -> (s0 + s1 + 10)>
559 // CHECK-LABEL: func @tensor.pad(
560 // CHECK-SAME: %[[t1:.*]]: tensor<?x10xindex>, %[[l2:.*]]: index, %[[h1:.*]]: index, %[[h2:.*]]: index
561 func.func @tensor.pad(%t1: tensor<?x10xindex>, %l2: index, %h1: index,
562 %h2: index) -> tensor<?x?xindex> {
563 // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<?x10xindex>
564 // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
565 // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
566 // CHECK-DAG: %[[dim0:.*]] = memref.dim %[[m1]], %[[c0]]
567 // CHECK-DAG: %[[dim1:.*]] = memref.dim %[[m1]], %[[c1]]
568 // CHECK-DAG: %[[size0:.*]] = affine.apply #[[$sum_map_1]]()[%[[h1]], %[[dim0]]]
569 // CHECK-DAG: %[[size1:.*]] = affine.apply #[[$sum_map_2]]()[%[[l2]], %[[h2]]]
570 // CHECK: %[[alloc:.*]] = memref.alloc(%[[size0]], %[[size1]]) {{.*}} : memref<?x?xindex>
571 // CHECK: %[[alloc_t:.*]] = bufferization.to_tensor %[[alloc]]
572 // CHECK: %[[mapped:.*]] = linalg.map
573 // CHECK: outs(%[[alloc_t]] : tensor<?x?xindex>)
574 // CHECK: %[[index0:.*]] = linalg.index 0
575 // CHECK: %[[index1:.*]] = linalg.index 1
576 // CHECK: %[[mul:.*]] = arith.muli %[[index0]], %[[index1]]
577 // CHECK: linalg.yield %[[mul]]
579 // CHECK: %[[mapped_m:.*]] = bufferization.to_memref %[[mapped]]
580 // CHECK: %[[subview:.*]] = memref.subview %[[mapped_m]][5, %[[l2]]] [%[[dim0]], 10] [1, 1]
581 // CHECK: memref.copy %[[m1]], %[[subview]]
582 %0 = tensor.pad %t1 low[5, %l2] high[%h1, %h2] {
583 ^bb0(%arg0: index, %arg1: index):
584 %m = arith.muli %arg0, %arg1 : index
585 tensor.yield %m : index
586 } : tensor<?x10xindex> to tensor<?x?xindex>
588 // CHECK: %[[r:.*]] = bufferization.to_tensor %[[mapped_m]]
589 // CHECK: return %[[r]] : tensor<?x?xindex>
590 return %0 : tensor<?x?xindex>
595 // CHECK-LABEL: func @tensor.splat(
596 // CHECK-SAME: %[[F:.*]]: f32)
597 // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<10x2x4xf32>
598 // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]]
599 // CHECK: %[[MAPPED:.*]] = linalg.map
600 // CHECK: outs(%[[ALLOC_T]] : tensor<10x2x4xf32>)
601 // CHECK: linalg.yield %[[F]]
603 // CHECK: return %[[MAPPED]] : tensor<10x2x4xf32>
605 func.func @tensor.splat(%f: f32) -> tensor<10x2x4xf32> {
606 %t = tensor.splat %f : tensor<10x2x4xf32>
607 return %t : tensor<10x2x4xf32>
612 // CHECK-LABEL: func @tensor.splat_dynamic(
613 // CHECK-SAME: %[[F:[a-zA-Z0-9_]+]]: f32
614 // CHECK-SAME: %[[M:[a-zA-Z0-9_]+]]: index
615 // CHECK-SAME: %[[N:[a-zA-Z0-9_]+]]: index
616 // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc(%[[M]], %[[N]]) {{.*}} : memref<?x3x?xf32>
617 // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]]
618 // CHECK: %[[MAPPED:.*]] = linalg.map outs(%[[ALLOC_T]] : tensor<?x3x?xf32>)
620 // CHECK: linalg.yield %[[F]] : f32
622 // CHECK: return %[[MAPPED]] : tensor<?x3x?xf32>
624 func.func @tensor.splat_dynamic(%f: f32, %m: index, %n: index) -> tensor<?x3x?xf32> {
625 %0 = tensor.splat %f[%m, %n] : tensor<?x3x?xf32>
626 return %0 : tensor<?x3x?xf32>
631 // CHECK-LABEL: func.func @parallel_insert_slice_copy_before_write
632 func.func @parallel_insert_slice_copy_before_write(%in: tensor<4xf32>, %out: tensor<4xf32>) {
633 %c1 = arith.constant 1 : index
634 %num_threads = arith.constant 4 : index
636 // CHECK: scf.forall {{.*}} {
637 %result = scf.forall (%thread_idx) in (%num_threads) shared_outs (%o = %out) -> tensor<4xf32> {
638 %1 = tensor.extract_slice %in[%thread_idx][1][1] : tensor<4xf32> to tensor<1xf32>
639 scf.forall.in_parallel {
640 // CHECK: memref.subview %{{.*}}[%{{.*}}] [1] [1] : memref<4xf32> to memref<1xf32, strided<[1], offset: ?>>
641 // CHECK: memref.subview %{{.*}}[%{{.*}}] [1] [1] : memref<4xf32> to memref<1xf32, strided<[1], offset: ?>>
642 tensor.parallel_insert_slice %1 into %o[%thread_idx][1][1] :
643 tensor<1xf32> into tensor<4xf32>