1 // RUN: mlir-opt %s -split-input-file -verify-diagnostics
3 // Verify that ops with broadcastable trait verifies operand and result type
4 // combinations and emits an error for invalid combinations.
6 func.func @broadcast_scalar_scalar_scalar(tensor<i32>, tensor<i32>) -> tensor<i32> {
7 ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
8 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
9 return %0 : tensor<i32>
14 func.func @broadcast_tensor_scalar_tensor(tensor<4xi32>, tensor<i32>) -> tensor<4xi32> {
15 ^bb0(%arg0: tensor<4xi32>, %arg1: tensor<i32>):
16 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<i32>) -> tensor<4xi32>
17 return %0 : tensor<4xi32>
22 // Check only one dimension has size 1
23 func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32> {
24 ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>):
25 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32>
26 return %0 : tensor<4x3x2xi32>
31 // Check multiple dimensions have size 1
32 func.func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> {
33 ^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
34 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32>
35 return %0 : tensor<8x7x6x5xi32>
40 // Check leading unknown dimension
41 func.func @broadcast_tensor_tensor_tensor(tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> {
42 ^bb0(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
43 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32>
44 return %0 : tensor<?x7x6x5xi32>
49 // Check unknown dimension in the middle
50 func.func @broadcast_tensor_tensor_tensor(tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32> {
51 ^bb0(%arg0: tensor<8x1x?x1xi32>, %arg1: tensor<7x1x5xi32>):
52 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32>
53 return %0 : tensor<8x7x?x5xi32>
58 // Check incompatible vector and tensor result type
59 func.func @broadcast_scalar_vector_vector(tensor<4xf32>, tensor<4xf32>) -> vector<4xf32> {
60 ^bb0(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>):
61 // expected-error @+1 {{op result #0 must be tensor of any type values, but got 'vector<4xf32>'}}
62 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> vector<4xf32>
63 return %0 : vector<4xf32>
68 // Check incompatible operand types with known dimension
69 func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32> {
70 ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x3xi32>):
71 // expected-error @+1 {{operands don't have broadcast-compatible shapes}}
72 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32>
73 return %0 : tensor<4x3x2xi32>
78 // Check incompatible result type with known dimension
79 func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32> {
80 ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>):
81 // expected-error @+1 {{op result type '4x3x3' not broadcast compatible with broadcasted operands's shapes '4x3x2'}}
82 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32>
83 return %0 : tensor<4x3x3xi32>
88 // Check incompatible result type with known dimension
89 func.func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32> {
90 ^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
91 // expected-error @+1 {{op result type '8x7x6x1' not broadcast compatible with broadcasted operands's shapes '8x7x6x5'}}
92 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32>
93 return %0 : tensor<8x7x6x1xi32>
98 func.func @broadcast_tensor_tensor_tensor(tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32> {
99 ^bb0(%arg0: tensor<2xi32>, %arg1: tensor<2xi32>):
100 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32>
101 return %0 : tensor<*xi32>
106 func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32> {
107 ^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<?xi32>):
108 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32>
109 return %0 : tensor<4x3x2xi32>
114 // It is alright to have an implicit dynamic-to-static cast in a dimension size
115 // as long as the runtime result size is consistent with the result tensor's
117 func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?xi32>, %arg1: tensor<?xi32>) -> tensor<2xi32> {
118 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?xi32>, tensor<?xi32>) -> tensor<2xi32>
119 return %0 : tensor<2xi32>
124 func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?x6x1xi32>, %arg1: tensor<*xi32>) -> tensor<?x6x?xi32> {
125 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x6x1xi32>, tensor<*xi32>) -> tensor<?x6x?xi32>
126 return %0 : tensor<?x6x?xi32>
131 // Unranked operands but ranked result
132 func.func @broadcast_tensor_tensor_tensor(tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32> {
133 ^bb0(%arg0: tensor<*xi32>, %arg1: tensor<*xi32>):
134 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32>
135 return %0 : tensor<2xi32>
140 // Unranked operand and compatible ranked result
141 func.func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32> {
142 ^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>):
143 %0 = "test.broadcastable"(%arg0, %arg0, %arg1) : (tensor<3x2xi32>, tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32>
144 return %0 : tensor<4x3x2xi32>
149 func.func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32> {
150 ^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>):
151 // expected-error @+1 {{op result type '2' not broadcast compatible with broadcasted operands's shapes '3x2'}}
152 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32>
153 return %0 : tensor<2xi32>
158 // Correct use of broadcast semantics for input dimensions
159 func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> {
160 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32>
161 return %0 : tensor<?x7x6x5xi32>
166 // Incorrect attempt to use broadcast semantics for result
167 func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<1xi32>, %arg1: tensor<1xi32>) -> tensor<5xi32> {
168 // expected-error @+1 {{op result type '5' not broadcast compatible with broadcasted operands's shapes '1'}}
169 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<1xi32>, tensor<1xi32>) -> tensor<5xi32>
170 return %0 : tensor<5xi32>
175 func.func @broadcastDifferentResultType(tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> {
176 ^bb0(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>):
177 %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
178 return %0 : tensor<4xi1>