1 # RUN: %PYTHON %s 2>&1 | FileCheck %s
6 from mlir
.dialects
import builtin
7 from mlir
.dialects
import func
8 from mlir
.dialects
import linalg
9 from mlir
.passmanager
import *
10 from mlir
.execution_engine
import *
12 from mlir
.dialects
.linalg
.opdsl
.lang
import *
15 # Log everything to stderr and flush so that we have a unified stream to match
16 # errors/info emitted by MLIR to stderr.
18 print(*args
, file=sys
.stderr
)
23 func.func @main() -> f32 attributes {llvm.emit_c_interface} {
24 %v0 = arith.constant 0.0 : f32
25 %v1 = arith.constant 1.0 : f32
26 %v2 = arith.constant 2.0 : f32
28 %lhs = memref.alloc() : memref<f32>
29 %rhs = memref.alloc() : memref<4x8xf32>
30 %O0 = memref.alloc() : memref<4x8xf32>
31 %O1 = memref.alloc() : memref<4x8xf32>
32 linalg.fill ins(%v1 : f32) outs(%lhs : memref<f32>)
33 linalg.fill ins(%v2 : f32) outs(%rhs : memref<4x8xf32>)
34 linalg.fill ins(%v0 : f32) outs(%O0 : memref<4x8xf32>)
35 linalg.fill ins(%v0 : f32) outs(%O1 : memref<4x8xf32>)
37 call @elemwise_exp_add_on_buffers(%lhs, %rhs, %O0) :
38 (memref<f32>, memref<4x8xf32>, memref<4x8xf32>) -> ()
39 call @elemwise_log_mul_on_buffers(%lhs, %rhs, %O1) :
40 (memref<f32>, memref<4x8xf32>, memref<4x8xf32>) -> ()
42 %c0 = arith.constant 0 : index
43 %res0 = memref.load %O0[%c0, %c0] : memref<4x8xf32>
44 %res1 = memref.load %O1[%c0, %c0] : memref<4x8xf32>
46 %0 = arith.addf %res0, %res1 : f32
48 // TODO: FFI-based solution to allow testing and printing with python code.
54 func.func @main() -> i32 attributes {llvm.emit_c_interface} {
55 %O0 = memref.alloc() : memref<i32>
56 %O1 = memref.alloc() : memref<16xi32>
57 %O2 = memref.alloc() : memref<4x16xi32>
59 %val0 = arith.constant 1.0 : f32
60 %val1 = arith.constant 2.0 : f32
61 %val2 = arith.constant 3.0 : f32
63 call @fill_0d_on_buffers(%val0, %O0) : (f32, memref<i32>) -> ()
64 call @fill_1d_on_buffers(%val1, %O1) : (f32, memref<16xi32>) -> ()
65 call @fill_2d_on_buffers(%val2, %O2) : (f32, memref<4x16xi32>) -> ()
67 %c0 = arith.constant 0 : index
68 %res0 = memref.load %O0[] : memref<i32>
69 %c8 = arith.constant 8 : index
70 %res1 = memref.load %O1[%c8] : memref<16xi32>
71 %c2 = arith.constant 2 : index
72 %res2 = memref.load %O2[%c2, %c8] : memref<4x16xi32>
74 %0 = arith.addi %res0, %res1 : i32
75 %1 = arith.addi %0, %res2 : i32
77 // TODO: FFI-based solution to allow testing and printing with python code.
83 func.func @main() -> i32 attributes {llvm.emit_c_interface} {
84 %O = memref.alloc() : memref<4x16xi32>
85 %min = arith.constant -1000.0 : f64
86 %max = arith.constant 1000.0 : f64
87 %seed = arith.constant 42 : i32
89 call @fill_rng_on_buffers(%min, %max, %seed, %O) :
90 (f64, f64, i32, memref<4x16xi32>) -> ()
92 %c0 = arith.constant 0 : index
93 %0 = memref.load %O[%c0, %c0] : memref<4x16xi32>
95 // TODO: FFI-based solution to allow testing and printing with python code.
101 func.func @main() -> i32 attributes {llvm.emit_c_interface} {
102 %v0 = arith.constant 0 : i32
103 %v1 = arith.constant 1.0 : f64
104 %v2 = arith.constant 2.0 : f64
106 %input = memref.alloc() : memref<1x4x16x1xf64>
107 %filter = memref.alloc() : memref<2x2x1xf64>
108 %output = memref.alloc() : memref<1x2x4x1xi32>
109 linalg.fill ins(%v1 : f64) outs(%input : memref<1x4x16x1xf64>)
110 linalg.fill ins(%v2 : f64) outs(%filter : memref<2x2x1xf64>)
111 linalg.fill ins(%v0 : i32) outs(%output : memref<1x2x4x1xi32>)
113 call @conv_on_buffers(%input, %filter, %output) :
114 (memref<1x4x16x1xf64>, memref<2x2x1xf64>, memref<1x2x4x1xi32>) -> ()
116 %c0 = arith.constant 0 : index
117 %0 = memref.load %output[%c0, %c0, %c0, %c0] : memref<1x2x4x1xi32>
119 // TODO: FFI-based solution to allow testing and printing with python code.
125 func.func @main() -> i32 attributes {llvm.emit_c_interface} {
126 %v0 = arith.constant 0 : i32
127 %v42 = arith.constant 42.0 : f64
128 %v77 = arith.constant 77.0 : f64
129 %v-13 = arith.constant -13.0 : f64
130 %v1 = arith.constant 1.0 : f64
132 %input = memref.alloc() : memref<1x4x16x1xf64>
133 %shape = memref.alloc() : memref<2x2xf64>
134 %output = memref.alloc() : memref<1x2x4x1xi32>
135 linalg.fill ins(%v1 : f64) outs(%input : memref<1x4x16x1xf64>)
136 linalg.fill ins(%v1 : f64) outs(%shape : memref<2x2xf64>)
137 linalg.fill ins(%v0 : i32) outs(%output : memref<1x2x4x1xi32>)
139 %c0 = arith.constant 0 : index
140 %c1 = arith.constant 1 : index
141 %c2 = arith.constant 2 : index
142 memref.store %v42, %input[%c0, %c0, %c0, %c0] : memref<1x4x16x1xf64>
143 memref.store %v77, %input[%c0, %c0, %c1, %c0] : memref<1x4x16x1xf64>
144 memref.store %v-13, %input[%c0, %c1, %c0, %c0] : memref<1x4x16x1xf64>
146 call @pooling_on_buffers(%input, %shape, %output) :
147 (memref<1x4x16x1xf64>, memref<2x2xf64>, memref<1x2x4x1xi32>) -> ()
149 %0 = memref.load %output[%c0, %c0, %c0, %c0] : memref<1x2x4x1xi32>
151 // TODO: FFI-based solution to allow testing and printing with python code.
157 def transform(module
, boilerplate
):
158 # TODO: Allow cloning functions from one module to another.
159 # Atm we have to resort to string concatenation.
160 ops
= module
.operation
.regions
[0].blocks
[0].operations
161 mod
= Module
.parse("\n".join([str(op
) for op
in ops
]) + boilerplate
)
163 pm
= PassManager("builtin.module")
164 pm
.add("func.func(convert-linalg-to-loops)")
165 pm
.add("func.func(lower-affine)")
166 pm
.add("func.func(convert-math-to-llvm)")
167 pm
.add("func.func(convert-scf-to-cf)")
168 pm
.add("func.func(arith-expand)")
169 pm
.add("func.func(memref-expand)")
170 pm
.add("convert-vector-to-llvm")
171 pm
.add("finalize-memref-to-llvm")
172 pm
.add("convert-func-to-llvm")
173 pm
.add("reconcile-unrealized-casts")
174 pm
.run(mod
.operation
)
178 def test_elemwise_builtin():
179 with
Context() as ctx
, Location
.unknown():
180 module
= Module
.create()
182 i8
= IntegerType
.get_signless(8)
183 with
InsertionPoint(module
.body
):
185 @func.FuncOp
.from_py_func(
186 MemRefType
.get((), f32
),
187 MemRefType
.get((4, 8), f32
),
188 MemRefType
.get((4, 8), f32
),
190 def elemwise_exp_add_on_buffers(lhs
, rhs
, out
):
191 linalg
.elemwise_unary(lhs
, outs
=[out
])
192 linalg
.elemwise_binary(out
, rhs
, outs
=[out
])
194 @func.FuncOp
.from_py_func(
195 MemRefType
.get((), f32
),
196 MemRefType
.get((4, 8), f32
),
197 MemRefType
.get((4, 8), f32
),
199 def elemwise_log_mul_on_buffers(lhs
, rhs
, out
):
200 linalg
.elemwise_unary(lhs
, outs
=[out
], fun
=UnaryFn
.log
)
201 linalg
.elemwise_binary(out
, rhs
, outs
=[out
], fun
=BinaryFn
.mul
)
203 execution_engine
= ExecutionEngine(transform(module
, elemwise_boiler
))
205 # TODO: FFI-based solution to allow testing and printing with python code.
206 # Prepare arguments: one result f32.
207 # Arguments must be passed as pointers.
208 c_float_p
= ctypes
.c_float
* 1
209 res
= c_float_p(-1.0)
210 execution_engine
.invoke("main", res
)
212 log("RESULT: ", res
[0])
213 # elemwise_exp_add_on_buffers: exp(1.0) + 2.0 = 4.71828182846
214 # elemwise_log_mul_on_buffers: log(1.0) * 2.0 = 0.0
215 # CHECK: RESULT: 4.71828
218 test_elemwise_builtin()
221 def test_elemwise_generic():
222 with
Context() as ctx
, Location
.unknown():
223 module
= Module
.create()
225 i8
= IntegerType
.get_signless(8)
226 with
InsertionPoint(module
.body
):
228 @func.FuncOp
.from_py_func(
229 MemRefType
.get((), f32
),
230 MemRefType
.get((4, 8), f32
),
231 MemRefType
.get((4, 8), f32
),
233 def elemwise_exp_add_on_buffers(lhs
, rhs
, out
):
234 linalg
.elemwise_unary(lhs
, outs
=[out
], emit_generic
=True)
235 linalg
.elemwise_binary(out
, rhs
, outs
=[out
], emit_generic
=True)
237 @func.FuncOp
.from_py_func(
238 MemRefType
.get((), f32
),
239 MemRefType
.get((4, 8), f32
),
240 MemRefType
.get((4, 8), f32
),
242 def elemwise_log_mul_on_buffers(lhs
, rhs
, out
):
243 linalg
.elemwise_unary(
244 lhs
, outs
=[out
], fun
=UnaryFn
.log
, emit_generic
=True
246 linalg
.elemwise_binary(
247 out
, rhs
, outs
=[out
], fun
=BinaryFn
.mul
, emit_generic
=True
250 execution_engine
= ExecutionEngine(transform(module
, elemwise_boiler
))
252 # TODO: FFI-based solution to allow testing and printing with python code.
253 # Prepare arguments: one result f32.
254 # Arguments must be passed as pointers.
255 c_float_p
= ctypes
.c_float
* 1
256 res
= c_float_p(-1.0)
257 execution_engine
.invoke("main", res
)
259 log("RESULT: ", res
[0])
260 # elemwise_exp_add_on_buffers: exp(1.0) + 2.0 = 4.71828182846
261 # elemwise_log_mul_on_buffers: log(1.0) * 2.0 = 0.0
262 # CHECK: RESULT: 4.71828
265 test_elemwise_generic()
268 def test_fill_builtin():
269 with
Context() as ctx
, Location
.unknown():
270 module
= Module
.create()
272 i32
= IntegerType
.get_signless(32)
273 with
InsertionPoint(module
.body
):
275 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([], i32
))
276 def fill_0d_on_buffers(value
, out
):
277 linalg
.fill(value
, outs
=[out
])
279 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([16], i32
))
280 def fill_1d_on_buffers(value
, out
):
281 linalg
.fill(value
, outs
=[out
])
283 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([4, 16], i32
))
284 def fill_2d_on_buffers(value
, out
):
285 linalg
.fill(value
, outs
=[out
])
287 execution_engine
= ExecutionEngine(transform(module
, fill_boiler
))
289 # TODO: FFI-based solution to allow testing and printing with python code.
290 # Prepare arguments: one result i32.
291 # Arguments must be passed as pointers.
292 c_int_p
= ctypes
.c_int
* 1
294 execution_engine
.invoke("main", res
)
296 log("RESULT: ", res
[0])
303 def test_fill_generic():
304 with
Context() as ctx
, Location
.unknown():
305 module
= Module
.create()
307 i32
= IntegerType
.get_signless(32)
308 with
InsertionPoint(module
.body
):
310 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([], i32
))
311 def fill_0d_on_buffers(value
, out
):
312 linalg
.fill(value
, outs
=[out
], emit_generic
=True)
314 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([16], i32
))
315 def fill_1d_on_buffers(value
, out
):
316 linalg
.fill(value
, outs
=[out
], emit_generic
=True)
318 @func.FuncOp
.from_py_func(f32
, MemRefType
.get([4, 16], i32
))
319 def fill_2d_on_buffers(value
, out
):
320 linalg
.fill(value
, outs
=[out
], emit_generic
=True)
322 execution_engine
= ExecutionEngine(transform(module
, fill_boiler
))
324 # TODO: FFI-based solution to allow testing and printing with python code.
325 # Prepare arguments: one result i32.
326 # Arguments must be passed as pointers.
327 c_int_p
= ctypes
.c_int
* 1
329 execution_engine
.invoke("main", res
)
331 log("RESULT: ", res
[0])
338 def test_fill_rng_builtin():
339 with
Context() as ctx
, Location
.unknown():
340 module
= Module
.create()
342 i32
= IntegerType
.get_signless(32)
343 with
InsertionPoint(module
.body
):
345 @func.FuncOp
.from_py_func(f64
, f64
, i32
, MemRefType
.get((4, 16), i32
))
346 def fill_rng_on_buffers(min, max, seed
, out
):
347 linalg
.fill_rng_2d(min, max, seed
, outs
=[out
])
349 execution_engine
= ExecutionEngine(transform(module
, fill_rng_boiler
))
351 # TODO: FFI-based solution to allow testing and printing with python code.
352 # Prepare arguments: one result i32.
353 # Arguments must be passed as pointers.
354 c_int_p
= ctypes
.c_int
* 1
356 execution_engine
.invoke("main", res
)
358 log("RESULT: ", res
[0])
359 # CHECK: RESULT: -480
362 test_fill_rng_builtin()
365 def test_fill_rng_generic():
366 with
Context() as ctx
, Location
.unknown():
367 module
= Module
.create()
369 i32
= IntegerType
.get_signless(32)
370 with
InsertionPoint(module
.body
):
372 @func.FuncOp
.from_py_func(f64
, f64
, i32
, MemRefType
.get((4, 16), i32
))
373 def fill_rng_on_buffers(min, max, seed
, out
):
374 linalg
.fill_rng_2d(min, max, seed
, outs
=[out
], emit_generic
=True)
376 execution_engine
= ExecutionEngine(transform(module
, fill_rng_boiler
))
378 # TODO: FFI-based solution to allow testing and printing with python code.
379 # Prepare arguments: one result i32.
380 # Arguments must be passed as pointers.
381 c_int_p
= ctypes
.c_int
* 1
383 execution_engine
.invoke("main", res
)
385 log("RESULT: ", res
[0])
386 # CHECK: RESULT: -480
389 test_fill_rng_generic()
392 def test_max_pooling_builtin():
393 with
Context() as ctx
, Location
.unknown():
394 module
= Module
.create()
396 i32
= IntegerType
.get_signless(32)
397 with
InsertionPoint(module
.body
):
399 @func.FuncOp
.from_py_func(
400 MemRefType
.get((1, 4, 16, 1), f64
),
401 MemRefType
.get((2, 2), f64
),
402 MemRefType
.get((1, 2, 4, 1), i32
),
404 def pooling_on_buffers(input, shape
, output
):
405 linalg
.pooling_nhwc_max(
406 input, shape
, outs
=[output
], strides
=[2, 4], dilations
=[1, 2]
409 execution_engine
= ExecutionEngine(transform(module
, pooling_boiler
))
411 # TODO: FFI-based solution to allow testing and printing with python code.
412 # Prepare arguments: one result i32.
413 # Arguments must be passed as pointers.
414 c_int_p
= ctypes
.c_int
* 1
416 execution_engine
.invoke("main", res
)
418 log("RESULT: ", res
[0])
419 # 77 is not selected due to the dilation 2 in the second dimension.
423 test_max_pooling_builtin()
426 def test_max_pooling_generic():
427 with
Context() as ctx
, Location
.unknown():
428 module
= Module
.create()
430 i32
= IntegerType
.get_signless(32)
431 with
InsertionPoint(module
.body
):
433 @func.FuncOp
.from_py_func(
434 MemRefType
.get((1, 4, 16, 1), f64
),
435 MemRefType
.get((2, 2), f64
),
436 MemRefType
.get((1, 2, 4, 1), i32
),
438 def pooling_on_buffers(input, shape
, output
):
439 linalg
.pooling_nhwc_max(
448 execution_engine
= ExecutionEngine(transform(module
, pooling_boiler
))
450 # TODO: FFI-based solution to allow testing and printing with python code.
451 # Prepare arguments: one result i32.
452 # Arguments must be passed as pointers.
453 c_int_p
= ctypes
.c_int
* 1
455 execution_engine
.invoke("main", res
)
457 log("RESULT: ", res
[0])
458 # 77 is not selected due to the dilation 2 in the second dimension.
462 test_max_pooling_generic()
465 def test_min_pooling_builtin():
466 with
Context() as ctx
, Location
.unknown():
467 module
= Module
.create()
469 i32
= IntegerType
.get_signless(32)
470 with
InsertionPoint(module
.body
):
472 @func.FuncOp
.from_py_func(
473 MemRefType
.get((1, 4, 16, 1), f64
),
474 MemRefType
.get((2, 2), f64
),
475 MemRefType
.get((1, 2, 4, 1), i32
),
477 # Set the strides and use the default dilations.
478 def pooling_on_buffers(input, shape
, output
):
479 linalg
.pooling_nhwc_min(input, shape
, outs
=[output
], strides
=[2, 4])
481 execution_engine
= ExecutionEngine(transform(module
, pooling_boiler
))
483 # TODO: FFI-based solution to allow testing and printing with python code.
484 # Prepare arguments: one result i32.
485 # Arguments must be passed as pointers.
486 c_int_p
= ctypes
.c_int
* 1
488 execution_engine
.invoke("main", res
)
490 log("RESULT: ", res
[0])
494 test_min_pooling_builtin()
497 def test_min_pooling_generic():
498 with
Context() as ctx
, Location
.unknown():
499 module
= Module
.create()
501 i32
= IntegerType
.get_signless(32)
502 with
InsertionPoint(module
.body
):
504 @func.FuncOp
.from_py_func(
505 MemRefType
.get((1, 4, 16, 1), f64
),
506 MemRefType
.get((2, 2), f64
),
507 MemRefType
.get((1, 2, 4, 1), i32
),
509 # Set the strides and use the default dilations.
510 def pooling_on_buffers(input, shape
, output
):
511 linalg
.pooling_nhwc_min(
512 input, shape
, outs
=[output
], strides
=[2, 4], emit_generic
=True
515 execution_engine
= ExecutionEngine(transform(module
, pooling_boiler
))
517 # TODO: FFI-based solution to allow testing and printing with python code.
518 # Prepare arguments: one result i32.
519 # Arguments must be passed as pointers.
520 c_int_p
= ctypes
.c_int
* 1
522 execution_engine
.invoke("main", res
)
524 log("RESULT: ", res
[0])
528 test_min_pooling_generic()