[clang-tidy][NFC]remove deps of clang in clang tidy test (#116588)
[llvm-project.git] / mlir / tools / mlir-linalg-ods-gen / mlir-linalg-ods-yaml-gen.cpp
blob80d979864921d6ac52f8e2436a5655c5a5f98bdd
1 //===- mlir-linalg-ods-yaml-gen.cpp - Linalg ODS generation from yaml ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an ODS (and C++) generator from a YAML form
10 // derived from the mathematical expression of linalg named ops. Typically a
11 // math oriented DSL will be used to export the essential representation to
12 // this form, and maintaining the SOT at the math level (versus recreating it
13 // in MLIR) is deemed to have systemic value.
15 //===----------------------------------------------------------------------===//
17 #include "mlir/AsmParser/AsmParser.h"
18 #include "mlir/IR/AffineMap.h"
19 #include "mlir/IR/Diagnostics.h"
20 #include "mlir/IR/MLIRContext.h"
21 #include "mlir/Support/FileUtilities.h"
22 #include "mlir/Support/LLVM.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormatVariadic.h"
27 #include "llvm/Support/ToolOutputFile.h"
28 #include "llvm/Support/YAMLTraits.h"
29 #include <optional>
31 using namespace mlir;
33 using llvm::yaml::Input;
35 #define DEBUG_TYPE "linalg-ods-gen"
37 //===----------------------------------------------------------------------===//
38 // Mapping structs (correspond to data types in the YAML description).
39 // TODO: Since this is a schema/part of the contract, it should be moved to
40 // a real header.
41 //===----------------------------------------------------------------------===//
43 namespace {
45 struct LinalgYAMLContext {
46 MLIRContext *mlirContext;
49 struct LinalgOpMetadata {
50 std::string name;
51 std::string cppClassName;
52 std::optional<std::string> doc;
53 SmallVector<std::string> implements;
54 SmallVector<std::string> defines;
57 struct SerializedAffineMap {
58 AffineMapAttr affineMapAttr;
60 AffineMap affineMap() { return affineMapAttr.getValue(); }
63 enum class LinalgOperandDefKind {
64 InputTensor,
65 Scalar,
66 OutputTensor,
67 IndexAttr,
68 UnaryFnAttr,
69 BinaryFnAttr,
70 TernaryFnAttr,
71 TypeFnAttr
74 struct LinalgOperandDef {
75 std::string name;
76 LinalgOperandDefKind kind;
77 std::optional<std::string> typeVar;
78 std::optional<SerializedAffineMap> shapeMap;
79 std::optional<SerializedAffineMap> indexAttrMap;
80 std::optional<SmallVector<int64_t>> defaultIndices;
81 std::optional<std::string> defaultFn;
84 enum class LinalgIteratorTypeDef {
85 parallel,
86 reduction,
89 struct LinalgIndexingMapsConfig {
90 std::optional<SmallVector<SerializedAffineMap>> staticIndexingMaps;
93 struct ScalarExpression;
95 enum class ScalarFnKind { Unary, Binary, Ternary, Type };
97 struct ScalarFn {
98 ScalarFnKind kind;
99 std::optional<std::string> fnName;
100 std::optional<std::string> attrName;
101 std::optional<std::string> typeVar;
102 // NOTE: This must be of arity 1, but to break the self-referential cycle,
103 // we use a heap allocated vector.
104 std::vector<ScalarExpression> operands;
107 struct ScalarExpression {
108 std::optional<std::string> arg;
109 std::optional<std::string> constant;
110 std::optional<int64_t> index;
111 std::optional<ScalarFn> scalarFn;
114 struct ScalarAssign {
115 std::string arg;
116 ScalarExpression value;
119 struct LinalgStructuredOpConfig {
120 SmallVector<LinalgOperandDef> args;
121 LinalgIndexingMapsConfig indexingMaps;
122 SmallVector<LinalgIteratorTypeDef> iteratorTypes;
123 std::vector<ScalarAssign> assignments;
126 struct LinalgOpConfig {
127 std::optional<LinalgOpMetadata> metadata;
128 std::optional<LinalgStructuredOpConfig> structuredOp;
131 } // namespace
133 //===----------------------------------------------------------------------===//
134 // Mapping traits.
135 //===----------------------------------------------------------------------===//
137 LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgOperandDef)
138 LLVM_YAML_IS_SEQUENCE_VECTOR(SerializedAffineMap)
139 LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgIteratorTypeDef)
140 LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarAssign)
141 LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarExpression)
142 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(LinalgOpConfig)
144 namespace llvm {
145 namespace yaml {
147 /// Top-level type containing op metadata and one of a concrete op type.
148 /// Currently, the only defined op type is `structured_op` (maps to
149 /// `LinalgStructuredOpConfig`).
150 template <>
151 struct MappingTraits<LinalgOpConfig> {
152 static void mapping(IO &io, LinalgOpConfig &info) {
153 io.mapOptional("metadata", info.metadata);
154 io.mapOptional("structured_op", info.structuredOp);
158 /// A structured op models (at most) a single contraction by modeling
159 /// - A list of named arguments (`LinalgOperandDef`), which can be inputs,
160 /// outputs, or index attributes.
161 /// - List of indexing maps (see `LinalgIndexingMaps`).
162 /// - Iterator types (see `LinalgIteratorTypeDef`).
163 /// - List of scalar level assignment (see `ScalarAssign`).
164 template <>
165 struct MappingTraits<LinalgStructuredOpConfig> {
166 static void mapping(IO &io, LinalgStructuredOpConfig &info) {
167 io.mapRequired("args", info.args);
168 io.mapRequired("indexing_maps", info.indexingMaps);
169 io.mapRequired("iterator_types", info.iteratorTypes);
170 io.mapRequired("assignments", info.assignments);
174 /// Maps a named tensor, scalar or attribute argument to an operation,
175 /// consisting of:
176 /// - `name`: Must be unique within the operation.
177 /// - `usage`: How the argument is used (input, output, attribute, etc).
178 /// - `type_var`: The symbolic type variable that binds to the element or self
179 /// type of the tensor or scalar argument, respectively.
180 /// - `shape_map`: An optional AffineMap from all op symbols to the shape of
181 /// the argument. Only tensor arguments have a `shape_map`. Each shape must
182 /// be normalized over the same list of symbols and have no dimension
183 /// inputs.
184 /// - `index_attr_map`: An optional AffineMap from all op symbols to the
185 /// index attribute symbols. During op creation these symbols are replaced
186 /// by the corresponding `name` index attribue values. Only index attribute
187 /// arguments have an `index_attr_map`.
188 /// - `default_indices`: An optional default initialization for index
189 /// attribute arguments.
190 /// - `default_fn`: An optional default initialization for function attribute
191 /// arguments.
192 template <>
193 struct MappingTraits<LinalgOperandDef> {
194 static void mapping(IO &io, LinalgOperandDef &info) {
195 io.mapRequired("name", info.name);
196 io.mapRequired("kind", info.kind);
197 io.mapOptional("type_var", info.typeVar);
198 io.mapOptional("shape_map", info.shapeMap);
199 io.mapOptional("index_attr_map", info.indexAttrMap);
200 io.mapOptional("default_indices", info.defaultIndices);
201 io.mapOptional("default_fn", info.defaultFn);
205 /// Usage enum for a named argument.
206 template <>
207 struct ScalarEnumerationTraits<LinalgOperandDefKind> {
208 static void enumeration(IO &io, LinalgOperandDefKind &value) {
209 io.enumCase(value, "input_tensor", LinalgOperandDefKind::InputTensor);
210 io.enumCase(value, "scalar", LinalgOperandDefKind::Scalar);
211 io.enumCase(value, "output_tensor", LinalgOperandDefKind::OutputTensor);
212 io.enumCase(value, "index_attr", LinalgOperandDefKind::IndexAttr);
213 io.enumCase(value, "unary_fn_attr", LinalgOperandDefKind::UnaryFnAttr);
214 io.enumCase(value, "binary_fn_attr", LinalgOperandDefKind::BinaryFnAttr);
215 io.enumCase(value, "ternary_fn_attr", LinalgOperandDefKind::TernaryFnAttr);
216 io.enumCase(value, "type_fn_attr", LinalgOperandDefKind::TypeFnAttr);
220 /// Iterator type enum.
221 template <>
222 struct ScalarEnumerationTraits<LinalgIteratorTypeDef> {
223 static void enumeration(IO &io, LinalgIteratorTypeDef &value) {
224 io.enumCase(value, "parallel", LinalgIteratorTypeDef::parallel);
225 io.enumCase(value, "reduction", LinalgIteratorTypeDef::reduction);
229 /// Metadata about the op (name, C++ name, and documentation).
230 template <>
231 struct MappingTraits<LinalgOpMetadata> {
232 static void mapping(IO &io, LinalgOpMetadata &info) {
233 io.mapRequired("name", info.name);
234 io.mapRequired("cpp_class_name", info.cppClassName);
235 io.mapOptional("doc", info.doc);
236 io.mapOptional("implements", info.implements);
237 io.mapOptional("defines", info.defines);
241 /// How the ops indexing maps are produced. Must be one of:
242 /// - static_indexing_maps: A static list of AffineMaps, possibly with
243 /// some symbols that bind to attributes of the op. Each indexing map must
244 /// be normalized over the same list of dimensions, and its symbols must
245 /// match the symbols for argument shapes.
246 template <>
247 struct MappingTraits<LinalgIndexingMapsConfig> {
248 static void mapping(IO &io, LinalgIndexingMapsConfig &info) {
249 io.mapOptional("static_indexing_maps", info.staticIndexingMaps);
253 /// Models an assignment to a named output.
254 /// - The `arg` name must match a named output.
255 /// - The `value` is a scalar expression for computing the value to
256 /// assign (see `ScalarExpression`).
257 template <>
258 struct MappingTraits<ScalarAssign> {
259 static void mapping(IO &io, ScalarAssign &info) {
260 io.mapRequired("arg", info.arg);
261 io.mapRequired("value", info.value);
265 /// A scalar expression (RHS of an assignment). Must be one of:
266 /// - `scalar_arg`: An operation argument.
267 /// - `scalar_const`: A constant definition.
268 /// - `scalar_index`: An iteration index.
269 /// - `scalar_fn`: A named function (see `ScalarFn`).
270 template <>
271 struct MappingTraits<ScalarExpression> {
272 static void mapping(IO &io, ScalarExpression &info) {
273 io.mapOptional("scalar_arg", info.arg);
274 io.mapOptional("scalar_const", info.constant);
275 io.mapOptional("scalar_index", info.index);
276 io.mapOptional("scalar_fn", info.scalarFn);
280 /// Scalar function kind enum.
281 template <>
282 struct ScalarEnumerationTraits<ScalarFnKind> {
283 static void enumeration(IO &io, ScalarFnKind &value) {
284 io.enumCase(value, "unary", ScalarFnKind::Unary);
285 io.enumCase(value, "binary", ScalarFnKind::Binary);
286 io.enumCase(value, "ternary", ScalarFnKind::Ternary);
287 io.enumCase(value, "type", ScalarFnKind::Type);
291 /// A scalar expression that evaluates a named function.
292 /// Functions are generally "math" level and type polymorphic. Builtin
293 /// functions include:
294 /// - `add(lhs, rhs)`
295 /// - `mul(lhs, rhs)`
296 template <>
297 struct MappingTraits<ScalarFn> {
298 static void mapping(IO &io, ScalarFn &info) {
299 io.mapRequired("kind", info.kind);
300 io.mapOptional("fn_name", info.fnName);
301 io.mapOptional("attr_name", info.attrName);
302 io.mapOptional("type_var", info.typeVar);
303 io.mapRequired("operands", info.operands);
307 /// Helper mapping which accesses an AffineMapAttr as a serialized string of
308 /// the same.
309 template <>
310 struct ScalarTraits<SerializedAffineMap> {
311 static void output(const SerializedAffineMap &value, void *rawYamlContext,
312 raw_ostream &out) {
313 assert(value.affineMapAttr);
314 value.affineMapAttr.print(out);
316 static StringRef input(StringRef scalar, void *rawYamlContext,
317 SerializedAffineMap &value) {
318 assert(rawYamlContext);
319 auto *yamlContext = static_cast<LinalgYAMLContext *>(rawYamlContext);
320 if (auto attr = dyn_cast_or_null<AffineMapAttr>(
321 mlir::parseAttribute(scalar, yamlContext->mlirContext)))
322 value.affineMapAttr = attr;
323 else if (!value.affineMapAttr || !isa<AffineMapAttr>(value.affineMapAttr))
324 return "could not parse as an affine map attribute";
325 return StringRef();
327 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
330 } // namespace yaml
331 } // namespace llvm
333 namespace {
335 //===----------------------------------------------------------------------===//
336 // Generation utilities
337 //===----------------------------------------------------------------------===//
339 class GenerationContext {
340 public:
341 GenerationContext(MLIRContext *context, raw_ostream *odsOut,
342 raw_ostream *defnOut)
343 : context(context), loc(UnknownLoc::get(context)), odsOut(odsOut),
344 defnOut(defnOut) {}
346 MLIRContext *getContext() { return context; }
348 void setLoc(Location loc) { this->loc = loc; }
349 Location getLoc() { return loc; }
351 bool shouldGenerateOds() { return odsOut; }
352 bool shouldGenerateDefns() { return defnOut; }
354 raw_ostream &odss() {
355 assert(odsOut && "ODS stream not defined");
356 return *odsOut;
359 raw_ostream &defns() {
360 assert(defnOut && "Definition stream not defined");
361 return *defnOut;
364 private:
365 MLIRContext *context;
366 Location loc;
367 raw_ostream *odsOut;
368 raw_ostream *defnOut;
371 } // namespace
373 static std::string generateCppExpression(SerializedAffineMap self,
374 StringRef contextName) {
375 std::string printedStr;
376 llvm::raw_string_ostream printedSs(printedStr);
377 self.affineMapAttr.print(printedSs);
379 static const char exprFormat[] =
380 R"FMT(llvm::cast<AffineMapAttr>(mlir::parseAttribute("{0}", {1})).getValue())FMT";
381 return llvm::formatv(exprFormat, printedStr, contextName);
384 template <typename Container>
385 static std::string interleaveToString(Container &container,
386 StringRef separator) {
387 std::string result;
388 llvm::raw_string_ostream ss(result);
389 llvm::interleave(container, ss, separator);
390 return result;
393 static std::optional<int>
394 findTensorDefArgIndex(StringRef name, SmallVectorImpl<LinalgOperandDef> &args) {
395 for (const auto &it : llvm::enumerate(args)) {
396 if (it.value().name == name)
397 return it.index();
399 return std::nullopt;
402 // Try to map the TypeVar to a predefined or an argument type.
403 static std::optional<std::string>
404 findTypeValue(StringRef typeVar, SmallVectorImpl<LinalgOperandDef> &args) {
405 // Handle all predefined types.
406 if (typeVar == "I32")
407 return std::string("helper.getIntegerType(32)");
408 if (typeVar == "I64")
409 return std::string("helper.getIntegerType(64)");
410 if (typeVar == "F32")
411 return std::string("helper.getFloat32Type()");
412 if (typeVar == "F64")
413 return std::string("helper.getFloat64Type()");
415 // Search all argument types.
416 for (const auto &it : llvm::enumerate(args)) {
417 if (it.value().kind != LinalgOperandDefKind::InputTensor &&
418 it.value().kind != LinalgOperandDefKind::Scalar &&
419 it.value().kind != LinalgOperandDefKind::OutputTensor)
420 continue;
421 if (*it.value().typeVar == typeVar)
422 return llvm::formatv("block.getArgument({0}).getType()", it.index())
423 .str();
426 return std::nullopt;
429 static ScalarAssign *findAssignment(StringRef name,
430 std::vector<ScalarAssign> &assignments) {
431 for (auto &assign : assignments) {
432 if (assign.arg == name)
433 return &assign;
435 return nullptr;
438 // Return true if the operand is a function attribute.
439 static bool isFunctionAttribute(LinalgOperandDefKind kind) {
440 return kind == LinalgOperandDefKind::UnaryFnAttr ||
441 kind == LinalgOperandDefKind::BinaryFnAttr ||
442 kind == LinalgOperandDefKind::TernaryFnAttr ||
443 kind == LinalgOperandDefKind::TypeFnAttr;
446 // Return true if the operand is an attribute.
447 static bool isAttribute(LinalgOperandDefKind kind) {
448 return kind == LinalgOperandDefKind::IndexAttr || isFunctionAttribute(kind);
451 // Get the enum name for the given operand kind.
452 std::string convertOperandKindToEnumName(LinalgOperandDefKind kind) {
453 switch (kind) {
454 case LinalgOperandDefKind::UnaryFnAttr:
455 return std::string("UnaryFn");
456 case LinalgOperandDefKind::BinaryFnAttr:
457 return std::string("BinaryFn");
458 case LinalgOperandDefKind::TernaryFnAttr:
459 return std::string("TernaryFn");
460 case LinalgOperandDefKind::TypeFnAttr:
461 return std::string("TypeFn");
462 default:
463 break;
465 llvm_unreachable("unsupported function attribute kind");
468 // Get the enum name for the given function kind.
469 std::string convertFunctionKindToEnumName(ScalarFnKind kind) {
470 switch (kind) {
471 case ScalarFnKind::Unary:
472 return std::string("UnaryFn");
473 case ScalarFnKind::Binary:
474 return std::string("BinaryFn");
475 case ScalarFnKind::Ternary:
476 return std::string("TernaryFn");
477 case ScalarFnKind::Type:
478 return std::string("TypeFn");
480 llvm_unreachable("unsupported function kind");
483 //===----------------------------------------------------------------------===//
484 // Templates
485 //===----------------------------------------------------------------------===//
487 // A single line banner format. Parameters:
488 // {0}: Single line comment
489 static const char bannerFormat[] = R"FMT(
490 //===----------------------------------------------------------------------===//
491 // {0}
492 //===----------------------------------------------------------------------===//
493 )FMT";
495 //===----------------------------------------------------------------------===//
496 // Named generic op generation.
497 // These ops map at most a single contraction that complies with the limitations
498 // of a linalg.generic.
499 //===----------------------------------------------------------------------===//
501 // Template for Linalg named ops' ODS definitions. Parameters:
502 // {0}: ODS/C++ op name
503 // {1}: assembly op mnemonic
504 // {2}: op interface list
505 // {3}: documentation (summary + description)
506 // {4}: op attribute list
507 // {5}: builder methods taking standalone attribute parameters
508 // {6}: additional method defintions
509 // {7}: additional methods for attributes used by indexing maps
510 static const char structuredOpOdsHeaderFormat[] = R"FMT(
511 //===----------------------------------------------------------------------===//
512 // Op definition for {0}
513 //===----------------------------------------------------------------------===//
515 def {0} : LinalgStructuredBase_Op<"{1}", !listconcat([AttrSizedOperandSegments],
516 /*extraInterfaces=*/[{2}])> {
518 let arguments = (ins
519 Variadic<AnyType>:$inputs,
520 Variadic<AnyShaped>:$outputs{4}
522 let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
523 let regions = (region AnyRegion:$region);
525 let skipDefaultBuilders = 1;
526 let builders = [
527 OpBuilder<
528 (ins "ValueRange":$inputs, "ValueRange":$outputs,
529 CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
531 buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
532 attributes, {0}::getRegionBuilder());
533 }]>,
534 OpBuilder<
535 (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
536 "ValueRange":$outputs,
537 CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
539 buildStructuredOp($_builder, $_state, resultTensorTypes,
540 inputs, outputs, attributes, {0}::getRegionBuilder());
541 }]>,
542 OpBuilder<
543 (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
544 CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
546 $_state.addOperands(operands);
547 $_state.addAttributes(attributes);
548 $_state.addTypes(resultTensorTypes);
549 (void)$_state.addRegion();
553 let hasCustomAssemblyFormat = 1;
554 let hasFolder = 1;
557 let extraClassDeclaration = structuredOpsBaseDecls # [{{
558 // Auto-generated.
559 SmallVector<utils::IteratorType> getIteratorTypesArray();
560 ArrayAttr getIndexingMaps();
561 static void regionBuilder(ImplicitLocOpBuilder &b,
562 Block &block, ArrayRef<NamedAttribute> attrs);
563 static std::function<void(ImplicitLocOpBuilder &,
564 Block &, ArrayRef<NamedAttribute>)>
565 getRegionBuilder() {{
566 return regionBuilder;
569 ::mlir::MutableOperandRange getDpsInitsMutable() {{
570 return getOutputsMutable();
573 // Generic methods.
574 static unsigned getNumRegionArgs();
575 std::string getLibraryCallName();
579 )FMT";
581 // Builder method taking attribute parameters. Parameters:
582 // {0}: Class name
583 // {1}: Comma interleaved attribute parameters
584 // {2}: Attribute initialization
585 static const char structuredOpBuilderFormat[] = R"FMT(
586 , OpBuilder<
587 (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
588 "ValueRange":$outputs, {1},
589 CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
592 buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
593 attributes, {0}::getRegionBuilder());
595 )FMT";
597 // The getIteratorTypesArray() method for structured ops. Parameters:
598 // {0}: Class name
599 // {1}: Comma interleaved iterator type names.
600 static const char structuredOpIteratorTypesFormat[] =
601 R"FMT(
602 SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{
603 return SmallVector<utils::IteratorType>{{ {1} };
605 )FMT";
607 // The getIteratorTypesArray() method for rank polymorphic structured ops.
608 // Parameters:
609 // {0}: Class name
610 static const char rankPolyStructuredOpIteratorTypesFormat[] =
611 R"FMT(
612 SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{
613 int64_t rank = getRank(getDpsInitOperand(0));
614 return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel);
616 )FMT";
618 // The indexing_maps() method for structured ops. Parameters:
619 // {0}: Class name
620 // {1}: Comma-separated list of dimension variable names.
621 // {2}: Statements
622 static const char structuredOpIndexingMapsFormat[] = R"FMT(
623 ArrayAttr {0}::getIndexingMaps() {{
624 static const char memoizeAttr[] = "linalg.memoized_indexing_maps";
625 ArrayAttr cached = getOperation()->getAttrOfType<ArrayAttr>(memoizeAttr);
626 if (cached)
627 return cached;
629 MLIRContext *context = getContext();
630 auto symbolBindings = getSymbolBindings(*this);
631 SmallVector<AffineMap> maps;
633 cached = Builder(context).getAffineMapArrayAttr(maps);
634 getOperation()->setAttr(memoizeAttr, cached);
635 return cached;
637 )FMT";
639 // The indexing_maps() method for rank polymorphic structured ops. Parameters:
640 // {0}: Class name
641 static const char rankPolyStructuredOpIndexingMapsFormat[] = R"FMT(
642 ArrayAttr {0}::getIndexingMaps() {{
643 MLIRContext *context = getContext();
644 AffineMap scalarMap = AffineMap::get(getNumParallelLoops(), 0, context);
645 AffineMap tensorMap = AffineMap::getMultiDimIdentityMap(
646 getNumParallelLoops(), context);
647 SmallVector<AffineMap> indexingMaps;
648 for (OpOperand &opOperand : getOperation()->getOpOperands())
649 indexingMaps.push_back(getRank(&opOperand) == 0 ? scalarMap : tensorMap);
650 return Builder(getContext()).getAffineMapArrayAttr(indexingMaps);
652 )FMT";
654 // Implementations of fold, getEffects and getSpeculatability.
655 // Parameters:
656 // {0}: Class name
657 const char structuredOpFoldersFormat[] = R"FMT(
658 LogicalResult {0}::fold(FoldAdaptor,
659 SmallVectorImpl<OpFoldResult> &) {{
660 return memref::foldMemRefCast(*this);
662 void {0}::getEffects(SmallVectorImpl<
663 SideEffects::EffectInstance<MemoryEffects::Effect> >&effects) {{
664 if (hasPureTensorSemantics()) return;
665 getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation()));
667 Speculation::Speculatability {0}::getSpeculatability() {{
668 return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation()));
670 )FMT";
672 // Implementation of parse/print.
673 // Parameters:
674 // {0}: Class name
675 static const char structuredOpParserFormat[] = R"FMT(
676 ParseResult {0}::parse(OpAsmParser &parser, OperationState &result) {{
677 return ::parseNamedStructuredOp(parser, result,
678 {0}::getNumRegionArgs(), {0}::getRegionBuilder());
680 void {0}::print(OpAsmPrinter &p) {{
681 SmallVector<StringRef, 3> elidedAttrs = {{"operandSegmentSizes",
682 "linalg.memoized_indexing_maps"};
683 ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
684 elidedAttrs);
686 )FMT";
688 static LogicalResult generateNamedGenericOpOds(LinalgOpConfig &opConfig,
689 GenerationContext &genContext) {
690 if (!genContext.shouldGenerateOds())
691 return success();
693 raw_ostream &os = genContext.odss();
695 std::string interfaceNameList;
696 std::string attrList;
697 std::string attrMethods;
698 std::string attrBuilder;
700 std::string doc;
701 if (opConfig.metadata->doc) {
702 static const char structuredOpDocFmt[] = R"FMT(
703 let summary = [{{{0}}];
704 let description = [{{{1}}];
705 )FMT";
706 StringRef summary, description;
707 std::tie(summary, description) =
708 StringRef(*opConfig.metadata->doc).trim().split("\n\n");
710 doc = llvm::formatv(structuredOpDocFmt, summary.trim(), description.trim());
713 interfaceNameList = interleaveToString(opConfig.metadata->implements, ", ");
715 std::string definitionList;
716 for (const std::string &definition : opConfig.metadata->defines) {
717 static const char definitionFmt[] = "let {0} = 1;\n";
718 definitionList.append(llvm::formatv(definitionFmt, definition));
721 if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
722 return isAttribute(arg.kind);
723 })) {
724 SmallVector<std::string> attrDefs;
725 SmallVector<std::string> attrParams;
726 SmallVector<std::string> attrStmts;
727 for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
728 static const char paramFmt[] = "\"Attribute\":${0}";
729 static const char stmtFmt[] = "$_state.addAttribute(\"{0}\", {0});";
730 // Add the type conversion attributes to the op definition and builders.
731 if (isFunctionAttribute(arg.kind)) {
732 assert(arg.defaultFn);
733 std::string enumName = convertOperandKindToEnumName(arg.kind);
734 static const char typeFmt[] = "{0}::{1}";
735 static const char defFmt[] =
736 "DefaultValuedOptionalAttr<{0}, \"{1}\">:${2}";
737 attrDefs.push_back(llvm::formatv(
738 defFmt, llvm::formatv("{0}Attr", enumName),
739 llvm::formatv(typeFmt, enumName, arg.defaultFn), arg.name));
740 attrParams.push_back(llvm::formatv(paramFmt, arg.name));
741 attrStmts.push_back(llvm::formatv(stmtFmt, arg.name));
743 // Add the index attributes to the op definition and builders.
744 if (arg.kind == LinalgOperandDefKind::IndexAttr) {
745 assert(arg.indexAttrMap.has_value());
746 assert(arg.defaultIndices.has_value());
747 size_t size = arg.indexAttrMap->affineMap().getNumResults();
748 assert(arg.defaultIndices->size() == size);
749 static const char typeFmt[] = "RankedI64ElementsAttr<[{0}]>";
750 static const char defFmt[] =
751 "DefaultValuedOptionalAttr<{0}, \"{ {1} }\">:${2}";
752 std::string defaultVals;
753 llvm::raw_string_ostream ss(defaultVals);
754 llvm::interleave(
755 *arg.defaultIndices, ss,
756 [&](int64_t val) { ss << "static_cast<int64_t>(" << val << ")"; },
757 ", ");
758 attrDefs.push_back(llvm::formatv(defFmt, llvm::formatv(typeFmt, size),
759 ss.str(), arg.name));
760 attrParams.push_back(llvm::formatv(paramFmt, arg.name));
761 attrStmts.push_back(llvm::formatv(stmtFmt, arg.name));
764 if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
765 return arg.kind == LinalgOperandDefKind::IndexAttr;
766 })) {
767 attrMethods = R"(
768 bool hasDynamicIndexingMaps();
769 LogicalResult verifyIndexingMapRequiredAttributes();
772 attrList = ",\n" + llvm::join(attrDefs, ",\n");
773 attrBuilder = llvm::formatv(
774 structuredOpBuilderFormat, opConfig.metadata->cppClassName,
775 llvm::join(attrParams, ", "), llvm::join(attrStmts, "\n"));
778 os << llvm::formatv(structuredOpOdsHeaderFormat,
779 opConfig.metadata->cppClassName, opConfig.metadata->name,
780 interfaceNameList, doc, attrList, attrBuilder,
781 definitionList, attrMethods);
783 return success();
786 static LogicalResult
787 generateNamedGenericOpDefns(LinalgOpConfig &opConfig,
788 GenerationContext &genContext) {
789 if (!genContext.shouldGenerateDefns())
790 return success();
792 raw_ostream &os = genContext.defns();
793 StringRef className = opConfig.metadata->cppClassName;
795 // Implementation banner.
796 std::string bannerComment = llvm::formatv("Implementation of {0}", className);
797 os << llvm::formatv(bannerFormat, bannerComment);
799 // Compute the number of scalar and tensor arguments.
800 int64_t numOfArgs =
801 llvm::count_if(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
802 return arg.kind == LinalgOperandDefKind::InputTensor ||
803 arg.kind == LinalgOperandDefKind::Scalar ||
804 arg.kind == LinalgOperandDefKind::OutputTensor;
807 // An operation that accesses only scalars and scalar/rank zero tensors is
808 // rank polymorhpic. We implement rank polymorphism by generating different
809 // indexing maps and iterators that match the rank of the first output tensor.
810 // An operation is rank polymorphic if the iteration domain has rank zero.
811 bool isRankPolymorphic = opConfig.structuredOp->iteratorTypes.empty();
813 // Generate the iterator_types() method.
814 if (!isRankPolymorphic) {
815 std::string iteratorsStr;
816 llvm::raw_string_ostream ss(iteratorsStr);
817 llvm::interleaveComma(opConfig.structuredOp->iteratorTypes, ss,
818 [&](LinalgIteratorTypeDef it) {
819 switch (it) {
820 case LinalgIteratorTypeDef::parallel:
821 ss << "utils::IteratorType::parallel";
822 break;
823 case LinalgIteratorTypeDef::reduction:
824 ss << "utils::IteratorType::reduction";
825 break;
828 os << llvm::formatv(structuredOpIteratorTypesFormat, className,
829 iteratorsStr);
830 } else {
831 os << llvm::formatv(rankPolyStructuredOpIteratorTypesFormat, className);
834 // Generating the getIndexingMaps() method.
835 if (auto &staticMaps =
836 opConfig.structuredOp->indexingMaps.staticIndexingMaps) {
837 if (staticMaps->empty())
838 return emitError(genContext.getLoc()) << "op has no indexing maps";
839 if (!isRankPolymorphic) {
840 AffineMap firstMap = staticMaps->front().affineMap();
842 // Symbol bindings.
844 // For each symbol, generate a declaration for it, either with an
845 // AffineSymbolExpr or an AffineConstantExpr (if the symbol derives from
846 // an attribute).
847 // TODO: Possibly lift into a top-level method.
848 static const char structuredOpSymbolBindingsFormat[] = R"FMT(
849 static SmallVector<AffineExpr> getSymbolBindings({0} self) {
850 MLIRContext *context = self.getContext();
851 SmallVector<AffineExpr> exprs;
853 return exprs;
855 )FMT";
857 unsigned symbolCount = firstMap.getNumSymbols();
858 SmallVector<std::string> symbolBindings;
859 for (unsigned i = 0; i < symbolCount; ++i) {
860 symbolBindings.push_back(llvm::formatv(
861 " exprs.push_back(getAffineSymbolExpr({0}, context));", i));
864 // Access an index attribute. Parameters:
865 // {0}: Attribute name
866 // {1}: Symbol position
867 // {2}: Attribute index
868 static const char structuredOpAccessAttrFormat[] = R"FMT(
869 int64_t cst{1} = self.get{0}().getValues<int64_t>()[{2}];
870 exprs.push_back(getAffineConstantExpr(cst{1}, context));
871 )FMT";
872 // Update all symbol bindings mapped to an attribute.
873 for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
874 if (arg.kind != LinalgOperandDefKind::IndexAttr)
875 continue;
876 assert(arg.indexAttrMap);
877 for (auto [idx, result] :
878 llvm::enumerate(arg.indexAttrMap->affineMap().getResults())) {
879 if (auto symbol = dyn_cast<AffineSymbolExpr>(result)) {
880 std::string argName = arg.name;
881 argName[0] = toupper(argName[0]);
882 symbolBindings[symbol.getPosition()] =
883 llvm::formatv(structuredOpAccessAttrFormat, argName,
884 symbol.getPosition(), idx);
889 std::string symbolBindingsStr;
890 llvm::raw_string_ostream symbolBindingsSs(symbolBindingsStr);
891 llvm::interleave(symbolBindings, symbolBindingsSs, "\n");
893 os << llvm::formatv(structuredOpSymbolBindingsFormat, className,
894 symbolBindingsStr);
897 // Indexing maps.
899 unsigned dimCount = firstMap.getNumDims();
901 // Generate a comma-separated list of dim identifiers to be passed to
902 // bindDims, ensuring tht AffineExpr identifiers are bound in the right
903 // order to the proper AffineDimExpr.
904 // This results in vars in scope like: d0, d1, d2...
905 SmallVector<unsigned> dimIndices;
906 for (unsigned i = 0; i < dimCount; ++i)
907 dimIndices.push_back(i);
908 std::string dimIdentsStr;
909 llvm::raw_string_ostream dimIdentsSs(dimIdentsStr);
910 llvm::interleaveComma(dimIndices, dimIdentsSs,
911 [&](unsigned i) { dimIdentsSs << "d" << i; });
913 // Statements to add and simplify each affine map.
914 SmallVector<std::string> stmts;
915 for (auto &indexingMap : *staticMaps) {
916 // TODO: Assert that dim and symbol count match the first.
917 stmts.push_back(
918 llvm::formatv("maps.push_back({0});",
919 generateCppExpression(indexingMap, "context")));
920 stmts.push_back(llvm::formatv(
921 "maps.back() = "
922 "simplifyAffineMap(maps.back().replaceDimsAndSymbols({{}, "
923 "symbolBindings, {0}, 0));",
924 dimCount));
927 // TODO: This needs to be memoized and/or converted to non-parser based
928 // C++ codegen prior to real use.
929 os << llvm::formatv(structuredOpIndexingMapsFormat, className,
930 interleaveToString(stmts, "\n "));
932 } else {
933 os << llvm::formatv(rankPolyStructuredOpIndexingMapsFormat, className);
935 } else {
936 return emitError(genContext.getLoc())
937 << "generating code for non static indexing maps not currently "
938 "supported";
941 // getNumRegionArgs()
943 // Generates a getNumRegionArgs() method. Parameters:
944 // {0}: Class name
945 // {1}: Number of region args
946 static const char structuredOpGetNumRegionArgsFormat[] = R"FMT(
947 unsigned {0}::getNumRegionArgs() {{ return {1}; }
948 )FMT";
949 os << llvm::formatv(structuredOpGetNumRegionArgsFormat, className,
950 numOfArgs);
953 // getLibraryCallName()
955 // Generates a getLibraryCallName method. Parameters:
956 // {0}: Class name
957 static const char structuredOpGetLibraryCallFormat[] = R"FMT(
958 std::string {0}::getLibraryCallName() {{
959 return generateLibraryCallName(getOperation());
961 )FMT";
962 os << llvm::formatv(structuredOpGetLibraryCallFormat, className);
965 // hasDynamicIndexingMaps() and verifyIndexingMapRequiredAttributes()
966 if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
967 return arg.kind == LinalgOperandDefKind::IndexAttr;
968 })) {
969 std::vector<std::string> attrVerifications;
970 for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
971 if (arg.kind != LinalgOperandDefKind::IndexAttr)
972 continue;
973 assert(arg.indexAttrMap);
974 // Verify index attribute. Paramters:
975 // {0}: Attribute name
976 // {1}: Attribute size
977 static const char attrFmt[] = R"FMT(
978 if (auto attr = op->getAttrOfType<DenseElementsAttr>("{0}")) {{
979 if (!attr.getType().getElementType().isInteger(64))
980 return op->emitError("incorrect element type for index attribute '{0}'");
981 if (attr.getType().getShape() != ArrayRef<int64_t>{{ {1} })
982 return op->emitError("incorrect shape for index attribute '{0}'");
984 )FMT";
985 attrVerifications.push_back(llvm::formatv(
986 attrFmt, arg.name, arg.indexAttrMap->affineMap().getNumResults()));
989 // Generates the verifyIndexingMapRequiredAttributes method. Parameters:
990 // {0}: Class name
991 // {1}: Attribute verification
992 static const char structuredOpVerifyIndexingMapRequiredAttributes[] = R"FMT(
993 bool {0}::hasDynamicIndexingMaps() {{ return true; }
994 LogicalResult {0}::verifyIndexingMapRequiredAttributes() {{
995 Operation *op = getOperation();
997 return success();
999 )FMT";
1000 os << llvm::formatv(structuredOpVerifyIndexingMapRequiredAttributes,
1001 className, llvm::join(attrVerifications, "\n"));
1004 // regionBuilder()
1006 // Generates a regionBuilder method. Parameters.
1007 // {0}: Class name
1008 // {1}: Number of args
1009 // {2}: Attributes
1010 // {3}: Statements
1011 static const char structuredOpRegionBuilderFormat[] = R"FMT(
1012 void {0}::regionBuilder(ImplicitLocOpBuilder &b,
1013 Block &block, ArrayRef<NamedAttribute> attrs) {{
1014 assert({1} > 0 && block.getNumArguments() == {1} &&
1015 "{0} regionBuilder expects {1} (>=0) args");
1016 RegionBuilderHelper helper(b, block);
1017 SmallVector<Value> yields;
1020 helper.yieldOutputs(yields);
1022 )FMT";
1023 auto &args = opConfig.structuredOp->args;
1024 auto &assignments = opConfig.structuredOp->assignments;
1025 size_t generatedAssignmentCount = 0;
1026 int localCounter = 0;
1027 SmallVector<std::string> attrs;
1028 SmallVector<std::string> stmts;
1029 for (LinalgOperandDef &arg : args) {
1030 if (!isFunctionAttribute(arg.kind))
1031 continue;
1032 // Obtain the type function attribute values. Parameters.
1033 // {0}: enum name
1034 // {1}: attribute name
1035 // {2}: default type function name
1036 static const char attrDef[] = R"FMT(
1037 {0} {1}Val = {0}::{2};
1038 auto {1}Iter = llvm::find_if(attrs, [&](const NamedAttribute &attr) {{
1039 return attr.getName() == "{1}"; });
1040 if ({1}Iter != attrs.end()) {{
1041 if (auto attr = llvm::dyn_cast<{0}Attr>({1}Iter->getValue()))
1042 {1}Val = attr.getValue();
1044 )FMT";
1045 std::string enumName = convertOperandKindToEnumName(arg.kind);
1046 attrs.push_back(
1047 llvm::formatv(attrDef, enumName, arg.name, arg.defaultFn));
1049 for (LinalgOperandDef &arg : args) {
1050 if (arg.kind != LinalgOperandDefKind::OutputTensor)
1051 continue;
1053 // Find the assignment that correlates with the argument.
1054 ScalarAssign *assignment = findAssignment(arg.name, assignments);
1055 if (!assignment)
1056 return emitError(genContext.getLoc())
1057 << "no assignment found for output argument " << arg.name;
1058 ++generatedAssignmentCount;
1060 // Recursively generate the expression.
1061 std::function<std::optional<std::string>(ScalarExpression &)>
1062 generateExpression =
1063 [&](ScalarExpression &expression) -> std::optional<std::string> {
1064 if (expression.arg) {
1065 // Argument reference.
1066 std::optional<int> argIndex =
1067 findTensorDefArgIndex(*expression.arg, args);
1068 if (!argIndex) {
1069 emitError(genContext.getLoc())
1070 << "scalar argument not defined on the op: " << *expression.arg;
1071 return std::nullopt;
1073 return std::string(
1074 llvm::formatv("block.getArgument({0})", *argIndex));
1076 if (expression.constant) {
1077 std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
1078 stmts.push_back(
1079 llvm::formatv(R"FMT(Value {0} = helper.constant("{1}");)FMT",
1080 cppIdent, expression.constant));
1081 return cppIdent;
1083 if (expression.index) {
1084 // Access an iteration index.
1085 std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
1086 stmts.push_back(llvm::formatv("Value {0} = helper.index({1});",
1087 cppIdent, *expression.index));
1088 return cppIdent;
1090 if (expression.scalarFn) {
1091 std::string enumName =
1092 convertFunctionKindToEnumName(expression.scalarFn->kind);
1094 // Get the function or attribute name.
1095 assert(expression.scalarFn->fnName || expression.scalarFn->attrName);
1096 std::string funcType;
1097 if (expression.scalarFn->fnName) {
1098 funcType = llvm::formatv("{0}::{1}", enumName,
1099 *expression.scalarFn->fnName);
1101 if (expression.scalarFn->attrName) {
1102 if (llvm::none_of(args, [&](LinalgOperandDef &arg) {
1103 return isFunctionAttribute(arg.kind) &&
1104 arg.name == *expression.scalarFn->attrName;
1105 })) {
1106 emitError(genContext.getLoc()) << "missing function attribute "
1107 << *expression.scalarFn->attrName;
1109 funcType = llvm::formatv("{0}Val", *expression.scalarFn->attrName);
1111 assert(!funcType.empty());
1113 // Add the optional type parameter to the operands.
1114 SmallVector<std::string> operandCppValues;
1115 if (expression.scalarFn->kind == ScalarFnKind::Type) {
1116 assert(expression.scalarFn->typeVar.has_value());
1117 std::optional<std::string> typeCppValue =
1118 findTypeValue(*expression.scalarFn->typeVar, args);
1119 if (!typeCppValue) {
1120 emitError(genContext.getLoc())
1121 << "type variable " << *expression.scalarFn->typeVar
1122 << ", used in a type conversion, must map to a predefined or "
1123 << "an argument type but it does not";
1124 return std::nullopt;
1126 operandCppValues.push_back(*typeCppValue);
1129 // Collect the scalar operands.
1130 for (ScalarExpression &operand : expression.scalarFn->operands) {
1131 auto operandCppValue = generateExpression(operand);
1132 if (!operandCppValue)
1133 return std::nullopt;
1134 operandCppValues.push_back(*operandCppValue);
1137 // Call the function builder.
1138 std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
1139 stmts.push_back(llvm::formatv(
1140 "Value {0} = helper.build{1}({2}, {3});", cppIdent, enumName,
1141 funcType, interleaveToString(operandCppValues, ", ")));
1142 return cppIdent;
1144 emitError(genContext.getLoc()) << "unknown ScalarExpression type";
1145 return std::nullopt;
1147 std::optional<std::string> cppValue =
1148 generateExpression(assignment->value);
1149 if (!cppValue)
1150 return failure();
1151 stmts.push_back(llvm::formatv("yields.push_back({0});", *cppValue));
1154 if (generatedAssignmentCount != assignments.size())
1155 return emitError(genContext.getLoc())
1156 << "mismatched number of assignments vs output arguments";
1158 os << llvm::formatv(structuredOpRegionBuilderFormat, className, numOfArgs,
1159 interleaveToString(attrs, "\n "),
1160 interleaveToString(stmts, "\n "));
1163 // Parser and printer.
1164 os << llvm::formatv(structuredOpParserFormat, className);
1166 // Canonicalizers and folders.
1167 os << llvm::formatv(structuredOpFoldersFormat, className);
1169 return success();
1172 static LogicalResult generateOp(LinalgOpConfig &opConfig,
1173 GenerationContext &genContext) {
1174 // Switch on op type being generated.
1175 if (opConfig.structuredOp) {
1176 return success(
1177 succeeded(generateNamedGenericOpOds(opConfig, genContext)) &&
1178 succeeded(generateNamedGenericOpDefns(opConfig, genContext)));
1180 return emitError(genContext.getLoc()) << "unsupported operation type";
1183 //===----------------------------------------------------------------------===//
1184 // Command line options and main
1185 //===----------------------------------------------------------------------===//
1187 static llvm::cl::opt<std::string>
1188 inputFilename(llvm::cl::Positional, llvm::cl::desc("<input file>"),
1189 llvm::cl::init("-"), llvm::cl::value_desc("YAML filename"));
1191 static llvm::cl::opt<std::string>
1192 outputOdsDeclFilename("o-ods-decl", llvm::cl::desc("ODS output filename"),
1193 llvm::cl::value_desc("filename"), llvm::cl::init(""));
1195 static llvm::cl::opt<std::string>
1196 outputCppImplFilename("o-impl",
1197 llvm::cl::desc("C++ implementation file name"),
1198 llvm::cl::value_desc("filename"), llvm::cl::init(""));
1200 int main(int argc, char **argv) {
1201 llvm::cl::ParseCommandLineOptions(argc, argv, "Linalg ODS Gen from YAML");
1203 // Set up the input file.
1204 std::string errorMessage;
1205 std::unique_ptr<llvm::MemoryBuffer> file =
1206 mlir::openInputFile(inputFilename, &errorMessage);
1207 if (!file) {
1208 llvm::errs() << errorMessage << "\n";
1209 return 1;
1212 MLIRContext mlirContext;
1213 LinalgYAMLContext yamlContext{&mlirContext};
1215 std::vector<LinalgOpConfig> opConfigs;
1217 // Parse input.
1218 Input yin(file->getBuffer(), &yamlContext);
1219 yin >> opConfigs;
1221 if (yin.error())
1222 return 1;
1224 // Open output files.
1225 std::unique_ptr<llvm::ToolOutputFile> outputOdsDecl;
1226 if (!outputOdsDeclFilename.empty()) {
1227 outputOdsDecl = openOutputFile(outputOdsDeclFilename, &errorMessage);
1228 if (!outputOdsDecl) {
1229 llvm::errs() << errorMessage << "\n";
1230 return 1;
1234 std::unique_ptr<llvm::ToolOutputFile> outputCppImpl;
1235 if (!outputCppImplFilename.empty()) {
1236 outputCppImpl = openOutputFile(outputCppImplFilename, &errorMessage);
1237 if (!outputCppImpl) {
1238 llvm::errs() << errorMessage << "\n";
1239 return 1;
1243 if (!outputOdsDecl && !outputCppImpl) {
1244 llvm::errs() << "error: No output files specified\n";
1245 return 1;
1248 // Generate.
1249 GenerationContext genContext(&mlirContext,
1250 outputOdsDecl ? &outputOdsDecl->os() : nullptr,
1251 outputCppImpl ? &outputCppImpl->os() : nullptr);
1253 for (auto &opConfig : opConfigs) {
1254 if (!opConfig.metadata) {
1255 emitError(genContext.getLoc())
1256 << "missing operation metadata on subsequent op";
1257 return 1;
1260 genContext.setLoc(NameLoc::get(
1261 StringAttr::get(&mlirContext, opConfig.metadata->cppClassName)));
1262 if (failed(generateOp(opConfig, genContext))) {
1263 return 1;
1267 if (outputOdsDecl)
1268 outputOdsDecl->keep();
1269 if (outputCppImpl)
1270 outputCppImpl->keep();
1272 return 0;