[clang-tidy][NFC]remove deps of clang in clang tidy test (#116588)
[llvm-project.git] / mlir / tools / mlir-tblgen / OpFormatGen.cpp
blob7e2b0694a860a32383991136715a6deae4be28e0
1 //===- OpFormatGen.cpp - MLIR operation asm format generator --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "OpFormatGen.h"
10 #include "FormatGen.h"
11 #include "OpClass.h"
12 #include "mlir/Support/LLVM.h"
13 #include "mlir/TableGen/Class.h"
14 #include "mlir/TableGen/Format.h"
15 #include "mlir/TableGen/Operator.h"
16 #include "mlir/TableGen/Trait.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/TypeSwitch.h"
23 #include "llvm/Support/Signals.h"
24 #include "llvm/Support/SourceMgr.h"
25 #include "llvm/TableGen/Record.h"
27 #define DEBUG_TYPE "mlir-tblgen-opformatgen"
29 using namespace mlir;
30 using namespace mlir::tblgen;
31 using llvm::formatv;
32 using llvm::Record;
33 using llvm::StringMap;
35 //===----------------------------------------------------------------------===//
36 // VariableElement
38 namespace {
39 /// This class represents an instance of an op variable element. A variable
40 /// refers to something registered on the operation itself, e.g. an operand,
41 /// result, attribute, region, or successor.
42 template <typename VarT, VariableElement::Kind VariableKind>
43 class OpVariableElement : public VariableElementBase<VariableKind> {
44 public:
45 using Base = OpVariableElement<VarT, VariableKind>;
47 /// Create an op variable element with the variable value.
48 OpVariableElement(const VarT *var) : var(var) {}
50 /// Get the variable.
51 const VarT *getVar() const { return var; }
53 protected:
54 /// The op variable, e.g. a type or attribute constraint.
55 const VarT *var;
58 /// This class represents a variable that refers to an attribute argument.
59 struct AttributeVariable
60 : public OpVariableElement<NamedAttribute, VariableElement::Attribute> {
61 using Base::Base;
63 /// Return the constant builder call for the type of this attribute, or
64 /// std::nullopt if it doesn't have one.
65 std::optional<StringRef> getTypeBuilder() const {
66 std::optional<Type> attrType = var->attr.getValueType();
67 return attrType ? attrType->getBuilderCall() : std::nullopt;
70 /// Indicate if this attribute is printed "qualified" (that is it is
71 /// prefixed with the `#dialect.mnemonic`).
72 bool shouldBeQualified() { return shouldBeQualifiedFlag; }
73 void setShouldBeQualified(bool qualified = true) {
74 shouldBeQualifiedFlag = qualified;
77 private:
78 bool shouldBeQualifiedFlag = false;
81 /// This class represents a variable that refers to an operand argument.
82 using OperandVariable =
83 OpVariableElement<NamedTypeConstraint, VariableElement::Operand>;
85 /// This class represents a variable that refers to a result.
86 using ResultVariable =
87 OpVariableElement<NamedTypeConstraint, VariableElement::Result>;
89 /// This class represents a variable that refers to a region.
90 using RegionVariable = OpVariableElement<NamedRegion, VariableElement::Region>;
92 /// This class represents a variable that refers to a successor.
93 using SuccessorVariable =
94 OpVariableElement<NamedSuccessor, VariableElement::Successor>;
96 /// This class represents a variable that refers to a property argument.
97 using PropertyVariable =
98 OpVariableElement<NamedProperty, VariableElement::Property>;
100 /// LLVM RTTI helper for attribute-like variables, that is, attributes or
101 /// properties. This allows for common handling of attributes and properties in
102 /// parts of the code that are oblivious to whether something is stored as an
103 /// attribute or a property.
104 struct AttributeLikeVariable : public VariableElement {
105 enum { AttributeLike = 1 << 0 };
107 static bool classof(const VariableElement *ve) {
108 return ve->getKind() == VariableElement::Attribute ||
109 ve->getKind() == VariableElement::Property;
112 static bool classof(const FormatElement *fe) {
113 return isa<VariableElement>(fe) && classof(cast<VariableElement>(fe));
116 /// Returns true if the variable is a UnitAttr or a UnitProperty.
117 bool isUnit() const {
118 if (const auto *attr = dyn_cast<AttributeVariable>(this))
119 return attr->getVar()->attr.getBaseAttr().getAttrDefName() == "UnitAttr";
120 if (const auto *prop = dyn_cast<PropertyVariable>(this)) {
121 return prop->getVar()->prop.getBaseProperty().getPropertyDefName() ==
122 "UnitProperty";
124 llvm_unreachable("Type that wasn't listed in classof()");
127 StringRef getName() const {
128 if (const auto *attr = dyn_cast<AttributeVariable>(this))
129 return attr->getVar()->name;
130 if (const auto *prop = dyn_cast<PropertyVariable>(this))
131 return prop->getVar()->name;
132 llvm_unreachable("Type that wasn't listed in classof()");
135 } // namespace
137 //===----------------------------------------------------------------------===//
138 // DirectiveElement
140 namespace {
141 /// This class represents the `operands` directive. This directive represents
142 /// all of the operands of an operation.
143 using OperandsDirective = DirectiveElementBase<DirectiveElement::Operands>;
145 /// This class represents the `results` directive. This directive represents
146 /// all of the results of an operation.
147 using ResultsDirective = DirectiveElementBase<DirectiveElement::Results>;
149 /// This class represents the `regions` directive. This directive represents
150 /// all of the regions of an operation.
151 using RegionsDirective = DirectiveElementBase<DirectiveElement::Regions>;
153 /// This class represents the `successors` directive. This directive represents
154 /// all of the successors of an operation.
155 using SuccessorsDirective = DirectiveElementBase<DirectiveElement::Successors>;
157 /// This class represents the `attr-dict` directive. This directive represents
158 /// the attribute dictionary of the operation.
159 class AttrDictDirective
160 : public DirectiveElementBase<DirectiveElement::AttrDict> {
161 public:
162 explicit AttrDictDirective(bool withKeyword) : withKeyword(withKeyword) {}
164 /// Return whether the dictionary should be printed with the 'attributes'
165 /// keyword.
166 bool isWithKeyword() const { return withKeyword; }
168 private:
169 /// If the dictionary should be printed with the 'attributes' keyword.
170 bool withKeyword;
173 /// This class represents the `prop-dict` directive. This directive represents
174 /// the properties of the operation, expressed as a directionary.
175 class PropDictDirective
176 : public DirectiveElementBase<DirectiveElement::PropDict> {
177 public:
178 explicit PropDictDirective() = default;
181 /// This class represents the `functional-type` directive. This directive takes
182 /// two arguments and formats them, respectively, as the inputs and results of a
183 /// FunctionType.
184 class FunctionalTypeDirective
185 : public DirectiveElementBase<DirectiveElement::FunctionalType> {
186 public:
187 FunctionalTypeDirective(FormatElement *inputs, FormatElement *results)
188 : inputs(inputs), results(results) {}
190 FormatElement *getInputs() const { return inputs; }
191 FormatElement *getResults() const { return results; }
193 private:
194 /// The input and result arguments.
195 FormatElement *inputs, *results;
198 /// This class represents the `type` directive.
199 class TypeDirective : public DirectiveElementBase<DirectiveElement::Type> {
200 public:
201 TypeDirective(FormatElement *arg) : arg(arg) {}
203 FormatElement *getArg() const { return arg; }
205 /// Indicate if this type is printed "qualified" (that is it is
206 /// prefixed with the `!dialect.mnemonic`).
207 bool shouldBeQualified() { return shouldBeQualifiedFlag; }
208 void setShouldBeQualified(bool qualified = true) {
209 shouldBeQualifiedFlag = qualified;
212 private:
213 /// The argument that is used to format the directive.
214 FormatElement *arg;
216 bool shouldBeQualifiedFlag = false;
219 /// This class represents a group of order-independent optional clauses. Each
220 /// clause starts with a literal element and has a coressponding parsing
221 /// element. A parsing element is a continous sequence of format elements.
222 /// Each clause can appear 0 or 1 time.
223 class OIListElement : public DirectiveElementBase<DirectiveElement::OIList> {
224 public:
225 OIListElement(std::vector<FormatElement *> &&literalElements,
226 std::vector<std::vector<FormatElement *>> &&parsingElements)
227 : literalElements(std::move(literalElements)),
228 parsingElements(std::move(parsingElements)) {}
230 /// Returns a range to iterate over the LiteralElements.
231 auto getLiteralElements() const {
232 return llvm::map_range(literalElements, [](FormatElement *el) {
233 return cast<LiteralElement>(el);
237 /// Returns a range to iterate over the parsing elements corresponding to the
238 /// clauses.
239 ArrayRef<std::vector<FormatElement *>> getParsingElements() const {
240 return parsingElements;
243 /// Returns a range to iterate over tuples of parsing and literal elements.
244 auto getClauses() const {
245 return llvm::zip(getLiteralElements(), getParsingElements());
248 /// If the parsing element is a single UnitAttr element, then it returns the
249 /// attribute variable. Otherwise, returns nullptr.
250 AttributeLikeVariable *
251 getUnitVariableParsingElement(ArrayRef<FormatElement *> pelement) {
252 if (pelement.size() == 1) {
253 auto *attrElem = dyn_cast<AttributeLikeVariable>(pelement[0]);
254 if (attrElem && attrElem->isUnit())
255 return attrElem;
257 return nullptr;
260 private:
261 /// A vector of `LiteralElement` objects. Each element stores the keyword
262 /// for one case of oilist element. For example, an oilist element along with
263 /// the `literalElements` vector:
264 /// ```
265 /// oilist [ `keyword` `=` `(` $arg0 `)` | `otherKeyword` `<` $arg1 `>`]
266 /// literalElements = { `keyword`, `otherKeyword` }
267 /// ```
268 std::vector<FormatElement *> literalElements;
270 /// A vector of valid declarative assembly format vectors. Each object in
271 /// parsing elements is a vector of elements in assembly format syntax.
272 /// For example, an oilist element along with the parsingElements vector:
273 /// ```
274 /// oilist [ `keyword` `=` `(` $arg0 `)` | `otherKeyword` `<` $arg1 `>`]
275 /// parsingElements = {
276 /// { `=`, `(`, $arg0, `)` },
277 /// { `<`, $arg1, `>` }
278 /// }
279 /// ```
280 std::vector<std::vector<FormatElement *>> parsingElements;
282 } // namespace
284 //===----------------------------------------------------------------------===//
285 // OperationFormat
286 //===----------------------------------------------------------------------===//
288 namespace {
290 using ConstArgument =
291 llvm::PointerUnion<const NamedAttribute *, const NamedTypeConstraint *>;
293 struct OperationFormat {
294 /// This class represents a specific resolver for an operand or result type.
295 class TypeResolution {
296 public:
297 TypeResolution() = default;
299 /// Get the index into the buildable types for this type, or std::nullopt.
300 std::optional<int> getBuilderIdx() const { return builderIdx; }
301 void setBuilderIdx(int idx) { builderIdx = idx; }
303 /// Get the variable this type is resolved to, or nullptr.
304 const NamedTypeConstraint *getVariable() const {
305 return llvm::dyn_cast_if_present<const NamedTypeConstraint *>(resolver);
307 /// Get the attribute this type is resolved to, or nullptr.
308 const NamedAttribute *getAttribute() const {
309 return llvm::dyn_cast_if_present<const NamedAttribute *>(resolver);
311 /// Get the transformer for the type of the variable, or std::nullopt.
312 std::optional<StringRef> getVarTransformer() const {
313 return variableTransformer;
315 void setResolver(ConstArgument arg, std::optional<StringRef> transformer) {
316 resolver = arg;
317 variableTransformer = transformer;
318 assert(getVariable() || getAttribute());
321 private:
322 /// If the type is resolved with a buildable type, this is the index into
323 /// 'buildableTypes' in the parent format.
324 std::optional<int> builderIdx;
325 /// If the type is resolved based upon another operand or result, this is
326 /// the variable or the attribute that this type is resolved to.
327 ConstArgument resolver;
328 /// If the type is resolved based upon another operand or result, this is
329 /// a transformer to apply to the variable when resolving.
330 std::optional<StringRef> variableTransformer;
333 /// The context in which an element is generated.
334 enum class GenContext {
335 /// The element is generated at the top-level or with the same behaviour.
336 Normal,
337 /// The element is generated inside an optional group.
338 Optional
341 OperationFormat(const Operator &op, bool hasProperties)
342 : useProperties(hasProperties), opCppClassName(op.getCppClassName()) {
343 operandTypes.resize(op.getNumOperands(), TypeResolution());
344 resultTypes.resize(op.getNumResults(), TypeResolution());
346 hasImplicitTermTrait = llvm::any_of(op.getTraits(), [](const Trait &trait) {
347 return trait.getDef().isSubClassOf("SingleBlockImplicitTerminatorImpl");
350 hasSingleBlockTrait = op.getTrait("::mlir::OpTrait::SingleBlock");
353 /// Generate the operation parser from this format.
354 void genParser(Operator &op, OpClass &opClass);
355 /// Generate the parser code for a specific format element.
356 void genElementParser(FormatElement *element, MethodBody &body,
357 FmtContext &attrTypeCtx,
358 GenContext genCtx = GenContext::Normal);
359 /// Generate the C++ to resolve the types of operands and results during
360 /// parsing.
361 void genParserTypeResolution(Operator &op, MethodBody &body);
362 /// Generate the C++ to resolve the types of the operands during parsing.
363 void genParserOperandTypeResolution(
364 Operator &op, MethodBody &body,
365 function_ref<void(TypeResolution &, StringRef)> emitTypeResolver);
366 /// Generate the C++ to resolve regions during parsing.
367 void genParserRegionResolution(Operator &op, MethodBody &body);
368 /// Generate the C++ to resolve successors during parsing.
369 void genParserSuccessorResolution(Operator &op, MethodBody &body);
370 /// Generate the C++ to handling variadic segment size traits.
371 void genParserVariadicSegmentResolution(Operator &op, MethodBody &body);
373 /// Generate the operation printer from this format.
374 void genPrinter(Operator &op, OpClass &opClass);
376 /// Generate the printer code for a specific format element.
377 void genElementPrinter(FormatElement *element, MethodBody &body, Operator &op,
378 bool &shouldEmitSpace, bool &lastWasPunctuation);
380 /// The various elements in this format.
381 std::vector<FormatElement *> elements;
383 /// A flag indicating if all operand/result types were seen. If the format
384 /// contains these, it can not contain individual type resolvers.
385 bool allOperands = false, allOperandTypes = false, allResultTypes = false;
387 /// A flag indicating if this operation infers its result types
388 bool infersResultTypes = false;
390 /// A flag indicating if this operation has the SingleBlockImplicitTerminator
391 /// trait.
392 bool hasImplicitTermTrait;
394 /// A flag indicating if this operation has the SingleBlock trait.
395 bool hasSingleBlockTrait;
397 /// Indicate whether we need to use properties for the current operator.
398 bool useProperties;
400 /// Indicate whether prop-dict is used in the format
401 bool hasPropDict;
403 /// The Operation class name
404 StringRef opCppClassName;
406 /// A map of buildable types to indices.
407 llvm::MapVector<StringRef, int, StringMap<int>> buildableTypes;
409 /// The index of the buildable type, if valid, for every operand and result.
410 std::vector<TypeResolution> operandTypes, resultTypes;
412 /// The set of attributes explicitly used within the format.
413 llvm::SmallSetVector<const NamedAttribute *, 8> usedAttributes;
414 llvm::StringSet<> inferredAttributes;
416 /// The set of properties explicitly used within the format.
417 llvm::SmallSetVector<const NamedProperty *, 8> usedProperties;
419 } // namespace
421 //===----------------------------------------------------------------------===//
422 // Parser Gen
424 /// Returns true if we can format the given attribute as an EnumAttr in the
425 /// parser format.
426 static bool canFormatEnumAttr(const NamedAttribute *attr) {
427 Attribute baseAttr = attr->attr.getBaseAttr();
428 const EnumAttr *enumAttr = dyn_cast<EnumAttr>(&baseAttr);
429 if (!enumAttr)
430 return false;
432 // The attribute must have a valid underlying type and a constant builder.
433 return !enumAttr->getUnderlyingType().empty() &&
434 !enumAttr->getConstBuilderTemplate().empty();
437 /// Returns if we should format the given attribute as an SymbolNameAttr.
438 static bool shouldFormatSymbolNameAttr(const NamedAttribute *attr) {
439 return attr->attr.getBaseAttr().getAttrDefName() == "SymbolNameAttr";
442 /// The code snippet used to generate a parser call for an attribute.
444 /// {0}: The name of the attribute.
445 /// {1}: The type for the attribute.
446 const char *const attrParserCode = R"(
447 if (parser.parseCustomAttributeWithFallback({0}Attr, {1})) {{
448 return ::mlir::failure();
452 /// The code snippet used to generate a parser call for an attribute.
454 /// {0}: The name of the attribute.
455 /// {1}: The type for the attribute.
456 const char *const genericAttrParserCode = R"(
457 if (parser.parseAttribute({0}Attr, {1}))
458 return ::mlir::failure();
461 const char *const optionalAttrParserCode = R"(
462 ::mlir::OptionalParseResult parseResult{0}Attr =
463 parser.parseOptionalAttribute({0}Attr, {1});
464 if (parseResult{0}Attr.has_value() && failed(*parseResult{0}Attr))
465 return ::mlir::failure();
466 if (parseResult{0}Attr.has_value() && succeeded(*parseResult{0}Attr))
469 /// The code snippet used to generate a parser call for a symbol name attribute.
471 /// {0}: The name of the attribute.
472 const char *const symbolNameAttrParserCode = R"(
473 if (parser.parseSymbolName({0}Attr))
474 return ::mlir::failure();
476 const char *const optionalSymbolNameAttrParserCode = R"(
477 // Parsing an optional symbol name doesn't fail, so no need to check the
478 // result.
479 (void)parser.parseOptionalSymbolName({0}Attr);
482 /// The code snippet used to generate a parser call for an enum attribute.
484 /// {0}: The name of the attribute.
485 /// {1}: The c++ namespace for the enum symbolize functions.
486 /// {2}: The function to symbolize a string of the enum.
487 /// {3}: The constant builder call to create an attribute of the enum type.
488 /// {4}: The set of allowed enum keywords.
489 /// {5}: The error message on failure when the enum isn't present.
490 /// {6}: The attribute assignment expression
491 const char *const enumAttrParserCode = R"(
493 ::llvm::StringRef attrStr;
494 ::mlir::NamedAttrList attrStorage;
495 auto loc = parser.getCurrentLocation();
496 if (parser.parseOptionalKeyword(&attrStr, {4})) {
497 ::mlir::StringAttr attrVal;
498 ::mlir::OptionalParseResult parseResult =
499 parser.parseOptionalAttribute(attrVal,
500 parser.getBuilder().getNoneType(),
501 "{0}", attrStorage);
502 if (parseResult.has_value()) {{
503 if (failed(*parseResult))
504 return ::mlir::failure();
505 attrStr = attrVal.getValue();
506 } else {
510 if (!attrStr.empty()) {
511 auto attrOptional = {1}::{2}(attrStr);
512 if (!attrOptional)
513 return parser.emitError(loc, "invalid ")
514 << "{0} attribute specification: \"" << attrStr << '"';;
516 {0}Attr = {3};
522 /// The code snippet used to generate a parser call for a property.
523 /// {0}: The name of the property
524 /// {1}: The C++ class name of the operation
525 /// {2}: The property's parser code with appropriate substitutions performed
526 /// {3}: The description of the expected property for the error message.
527 const char *const propertyParserCode = R"(
528 auto {0}PropLoc = parser.getCurrentLocation();
529 auto {0}PropParseResult = [&](auto& propStorage) -> ::mlir::ParseResult {{
531 return ::mlir::success();
532 }(result.getOrAddProperties<{1}::Properties>().{0});
533 if (failed({0}PropParseResult)) {{
534 return parser.emitError({0}PropLoc, "invalid value for property {0}, expected {3}");
538 /// The code snippet used to generate a parser call for a property.
539 /// {0}: The name of the property
540 /// {1}: The C++ class name of the operation
541 /// {2}: The property's parser code with appropriate substitutions performed
542 const char *const optionalPropertyParserCode = R"(
543 auto {0}PropParseResult = [&](auto& propStorage) -> ::mlir::OptionalParseResult {{
545 return ::mlir::success();
546 }(result.getOrAddProperties<{1}::Properties>().{0});
547 if ({0}PropParseResult.has_value() && failed(*{0}PropParseResult)) {{
548 return ::mlir::failure();
552 /// The code snippet used to generate a parser call for an operand.
554 /// {0}: The name of the operand.
555 const char *const variadicOperandParserCode = R"(
556 {0}OperandsLoc = parser.getCurrentLocation();
557 if (parser.parseOperandList({0}Operands))
558 return ::mlir::failure();
560 const char *const optionalOperandParserCode = R"(
562 {0}OperandsLoc = parser.getCurrentLocation();
563 ::mlir::OpAsmParser::UnresolvedOperand operand;
564 ::mlir::OptionalParseResult parseResult =
565 parser.parseOptionalOperand(operand);
566 if (parseResult.has_value()) {
567 if (failed(*parseResult))
568 return ::mlir::failure();
569 {0}Operands.push_back(operand);
573 const char *const operandParserCode = R"(
574 {0}OperandsLoc = parser.getCurrentLocation();
575 if (parser.parseOperand({0}RawOperand))
576 return ::mlir::failure();
578 /// The code snippet used to generate a parser call for a VariadicOfVariadic
579 /// operand.
581 /// {0}: The name of the operand.
582 /// {1}: The name of segment size attribute.
583 const char *const variadicOfVariadicOperandParserCode = R"(
585 {0}OperandsLoc = parser.getCurrentLocation();
586 int32_t curSize = 0;
587 do {
588 if (parser.parseOptionalLParen())
589 break;
590 if (parser.parseOperandList({0}Operands) || parser.parseRParen())
591 return ::mlir::failure();
592 {0}OperandGroupSizes.push_back({0}Operands.size() - curSize);
593 curSize = {0}Operands.size();
594 } while (succeeded(parser.parseOptionalComma()));
598 /// The code snippet used to generate a parser call for a type list.
600 /// {0}: The name for the type list.
601 const char *const variadicOfVariadicTypeParserCode = R"(
602 do {
603 if (parser.parseOptionalLParen())
604 break;
605 if (parser.parseOptionalRParen() &&
606 (parser.parseTypeList({0}Types) || parser.parseRParen()))
607 return ::mlir::failure();
608 } while (succeeded(parser.parseOptionalComma()));
610 const char *const variadicTypeParserCode = R"(
611 if (parser.parseTypeList({0}Types))
612 return ::mlir::failure();
614 const char *const optionalTypeParserCode = R"(
616 ::mlir::Type optionalType;
617 ::mlir::OptionalParseResult parseResult =
618 parser.parseOptionalType(optionalType);
619 if (parseResult.has_value()) {
620 if (failed(*parseResult))
621 return ::mlir::failure();
622 {0}Types.push_back(optionalType);
626 const char *const typeParserCode = R"(
628 {0} type;
629 if (parser.parseCustomTypeWithFallback(type))
630 return ::mlir::failure();
631 {1}RawType = type;
634 const char *const qualifiedTypeParserCode = R"(
635 if (parser.parseType({1}RawType))
636 return ::mlir::failure();
639 /// The code snippet used to generate a parser call for a functional type.
641 /// {0}: The name for the input type list.
642 /// {1}: The name for the result type list.
643 const char *const functionalTypeParserCode = R"(
644 ::mlir::FunctionType {0}__{1}_functionType;
645 if (parser.parseType({0}__{1}_functionType))
646 return ::mlir::failure();
647 {0}Types = {0}__{1}_functionType.getInputs();
648 {1}Types = {0}__{1}_functionType.getResults();
651 /// The code snippet used to generate a parser call to infer return types.
653 /// {0}: The operation class name
654 const char *const inferReturnTypesParserCode = R"(
655 ::llvm::SmallVector<::mlir::Type> inferredReturnTypes;
656 if (::mlir::failed({0}::inferReturnTypes(parser.getContext(),
657 result.location, result.operands,
658 result.attributes.getDictionary(parser.getContext()),
659 result.getRawProperties(),
660 result.regions, inferredReturnTypes)))
661 return ::mlir::failure();
662 result.addTypes(inferredReturnTypes);
665 /// The code snippet used to generate a parser call for a region list.
667 /// {0}: The name for the region list.
668 const char *regionListParserCode = R"(
670 std::unique_ptr<::mlir::Region> region;
671 auto firstRegionResult = parser.parseOptionalRegion(region);
672 if (firstRegionResult.has_value()) {
673 if (failed(*firstRegionResult))
674 return ::mlir::failure();
675 {0}Regions.emplace_back(std::move(region));
677 // Parse any trailing regions.
678 while (succeeded(parser.parseOptionalComma())) {
679 region = std::make_unique<::mlir::Region>();
680 if (parser.parseRegion(*region))
681 return ::mlir::failure();
682 {0}Regions.emplace_back(std::move(region));
688 /// The code snippet used to ensure a list of regions have terminators.
690 /// {0}: The name of the region list.
691 const char *regionListEnsureTerminatorParserCode = R"(
692 for (auto &region : {0}Regions)
693 ensureTerminator(*region, parser.getBuilder(), result.location);
696 /// The code snippet used to ensure a list of regions have a block.
698 /// {0}: The name of the region list.
699 const char *regionListEnsureSingleBlockParserCode = R"(
700 for (auto &region : {0}Regions)
701 if (region->empty()) region->emplaceBlock();
704 /// The code snippet used to generate a parser call for an optional region.
706 /// {0}: The name of the region.
707 const char *optionalRegionParserCode = R"(
709 auto parseResult = parser.parseOptionalRegion(*{0}Region);
710 if (parseResult.has_value() && failed(*parseResult))
711 return ::mlir::failure();
715 /// The code snippet used to generate a parser call for a region.
717 /// {0}: The name of the region.
718 const char *regionParserCode = R"(
719 if (parser.parseRegion(*{0}Region))
720 return ::mlir::failure();
723 /// The code snippet used to ensure a region has a terminator.
725 /// {0}: The name of the region.
726 const char *regionEnsureTerminatorParserCode = R"(
727 ensureTerminator(*{0}Region, parser.getBuilder(), result.location);
730 /// The code snippet used to ensure a region has a block.
732 /// {0}: The name of the region.
733 const char *regionEnsureSingleBlockParserCode = R"(
734 if ({0}Region->empty()) {0}Region->emplaceBlock();
737 /// The code snippet used to generate a parser call for a successor list.
739 /// {0}: The name for the successor list.
740 const char *successorListParserCode = R"(
742 ::mlir::Block *succ;
743 auto firstSucc = parser.parseOptionalSuccessor(succ);
744 if (firstSucc.has_value()) {
745 if (failed(*firstSucc))
746 return ::mlir::failure();
747 {0}Successors.emplace_back(succ);
749 // Parse any trailing successors.
750 while (succeeded(parser.parseOptionalComma())) {
751 if (parser.parseSuccessor(succ))
752 return ::mlir::failure();
753 {0}Successors.emplace_back(succ);
759 /// The code snippet used to generate a parser call for a successor.
761 /// {0}: The name of the successor.
762 const char *successorParserCode = R"(
763 if (parser.parseSuccessor({0}Successor))
764 return ::mlir::failure();
767 /// The code snippet used to generate a parser for OIList
769 /// {0}: literal keyword corresponding to a case for oilist
770 const char *oilistParserCode = R"(
771 if ({0}Clause) {
772 return parser.emitError(parser.getNameLoc())
773 << "`{0}` clause can appear at most once in the expansion of the "
774 "oilist directive";
776 {0}Clause = true;
779 namespace {
780 /// The type of length for a given parse argument.
781 enum class ArgumentLengthKind {
782 /// The argument is a variadic of a variadic, and may contain 0->N range
783 /// elements.
784 VariadicOfVariadic,
785 /// The argument is variadic, and may contain 0->N elements.
786 Variadic,
787 /// The argument is optional, and may contain 0 or 1 elements.
788 Optional,
789 /// The argument is a single element, i.e. always represents 1 element.
790 Single
792 } // namespace
794 /// Get the length kind for the given constraint.
795 static ArgumentLengthKind
796 getArgumentLengthKind(const NamedTypeConstraint *var) {
797 if (var->isOptional())
798 return ArgumentLengthKind::Optional;
799 if (var->isVariadicOfVariadic())
800 return ArgumentLengthKind::VariadicOfVariadic;
801 if (var->isVariadic())
802 return ArgumentLengthKind::Variadic;
803 return ArgumentLengthKind::Single;
806 /// Get the name used for the type list for the given type directive operand.
807 /// 'lengthKind' to the corresponding kind for the given argument.
808 static StringRef getTypeListName(FormatElement *arg,
809 ArgumentLengthKind &lengthKind) {
810 if (auto *operand = dyn_cast<OperandVariable>(arg)) {
811 lengthKind = getArgumentLengthKind(operand->getVar());
812 return operand->getVar()->name;
814 if (auto *result = dyn_cast<ResultVariable>(arg)) {
815 lengthKind = getArgumentLengthKind(result->getVar());
816 return result->getVar()->name;
818 lengthKind = ArgumentLengthKind::Variadic;
819 if (isa<OperandsDirective>(arg))
820 return "allOperand";
821 if (isa<ResultsDirective>(arg))
822 return "allResult";
823 llvm_unreachable("unknown 'type' directive argument");
826 /// Generate the parser for a literal value.
827 static void genLiteralParser(StringRef value, MethodBody &body) {
828 // Handle the case of a keyword/identifier.
829 if (value.front() == '_' || isalpha(value.front())) {
830 body << "Keyword(\"" << value << "\")";
831 return;
833 body << (StringRef)StringSwitch<StringRef>(value)
834 .Case("->", "Arrow()")
835 .Case(":", "Colon()")
836 .Case(",", "Comma()")
837 .Case("=", "Equal()")
838 .Case("<", "Less()")
839 .Case(">", "Greater()")
840 .Case("{", "LBrace()")
841 .Case("}", "RBrace()")
842 .Case("(", "LParen()")
843 .Case(")", "RParen()")
844 .Case("[", "LSquare()")
845 .Case("]", "RSquare()")
846 .Case("?", "Question()")
847 .Case("+", "Plus()")
848 .Case("*", "Star()")
849 .Case("...", "Ellipsis()");
852 /// Generate the storage code required for parsing the given element.
853 static void genElementParserStorage(FormatElement *element, const Operator &op,
854 MethodBody &body) {
855 if (auto *optional = dyn_cast<OptionalElement>(element)) {
856 ArrayRef<FormatElement *> elements = optional->getThenElements();
858 // If the anchor is a unit attribute, it won't be parsed directly so elide
859 // it.
860 auto *anchor = dyn_cast<AttributeLikeVariable>(optional->getAnchor());
861 FormatElement *elidedAnchorElement = nullptr;
862 if (anchor && anchor != elements.front() && anchor->isUnit())
863 elidedAnchorElement = anchor;
864 for (FormatElement *childElement : elements)
865 if (childElement != elidedAnchorElement)
866 genElementParserStorage(childElement, op, body);
867 for (FormatElement *childElement : optional->getElseElements())
868 genElementParserStorage(childElement, op, body);
870 } else if (auto *oilist = dyn_cast<OIListElement>(element)) {
871 for (ArrayRef<FormatElement *> pelement : oilist->getParsingElements()) {
872 if (!oilist->getUnitVariableParsingElement(pelement))
873 for (FormatElement *element : pelement)
874 genElementParserStorage(element, op, body);
877 } else if (auto *custom = dyn_cast<CustomDirective>(element)) {
878 for (FormatElement *paramElement : custom->getArguments())
879 genElementParserStorage(paramElement, op, body);
881 } else if (isa<OperandsDirective>(element)) {
882 body << " ::llvm::SmallVector<::mlir::OpAsmParser::UnresolvedOperand, 4> "
883 "allOperands;\n";
885 } else if (isa<RegionsDirective>(element)) {
886 body << " ::llvm::SmallVector<std::unique_ptr<::mlir::Region>, 2> "
887 "fullRegions;\n";
889 } else if (isa<SuccessorsDirective>(element)) {
890 body << " ::llvm::SmallVector<::mlir::Block *, 2> fullSuccessors;\n";
892 } else if (auto *attr = dyn_cast<AttributeVariable>(element)) {
893 const NamedAttribute *var = attr->getVar();
894 body << formatv(" {0} {1}Attr;\n", var->attr.getStorageType(), var->name);
896 } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
897 StringRef name = operand->getVar()->name;
898 if (operand->getVar()->isVariableLength()) {
899 body
900 << " ::llvm::SmallVector<::mlir::OpAsmParser::UnresolvedOperand, 4> "
901 << name << "Operands;\n";
902 if (operand->getVar()->isVariadicOfVariadic()) {
903 body << " llvm::SmallVector<int32_t> " << name
904 << "OperandGroupSizes;\n";
906 } else {
907 body << " ::mlir::OpAsmParser::UnresolvedOperand " << name
908 << "RawOperand{};\n"
909 << " ::llvm::ArrayRef<::mlir::OpAsmParser::UnresolvedOperand> "
910 << name << "Operands(&" << name << "RawOperand, 1);";
912 body << formatv(" ::llvm::SMLoc {0}OperandsLoc;\n"
913 " (void){0}OperandsLoc;\n",
914 name);
916 } else if (auto *region = dyn_cast<RegionVariable>(element)) {
917 StringRef name = region->getVar()->name;
918 if (region->getVar()->isVariadic()) {
919 body << formatv(
920 " ::llvm::SmallVector<std::unique_ptr<::mlir::Region>, 2> "
921 "{0}Regions;\n",
922 name);
923 } else {
924 body << formatv(" std::unique_ptr<::mlir::Region> {0}Region = "
925 "std::make_unique<::mlir::Region>();\n",
926 name);
929 } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
930 StringRef name = successor->getVar()->name;
931 if (successor->getVar()->isVariadic()) {
932 body << formatv(" ::llvm::SmallVector<::mlir::Block *, 2> "
933 "{0}Successors;\n",
934 name);
935 } else {
936 body << formatv(" ::mlir::Block *{0}Successor = nullptr;\n", name);
939 } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
940 ArgumentLengthKind lengthKind;
941 StringRef name = getTypeListName(dir->getArg(), lengthKind);
942 if (lengthKind != ArgumentLengthKind::Single)
943 body << " ::llvm::SmallVector<::mlir::Type, 1> " << name << "Types;\n";
944 else
945 body
946 << formatv(" ::mlir::Type {0}RawType{{};\n", name)
947 << formatv(
948 " ::llvm::ArrayRef<::mlir::Type> {0}Types(&{0}RawType, 1);\n",
949 name);
950 } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
951 ArgumentLengthKind ignored;
952 body << " ::llvm::ArrayRef<::mlir::Type> "
953 << getTypeListName(dir->getInputs(), ignored) << "Types;\n";
954 body << " ::llvm::ArrayRef<::mlir::Type> "
955 << getTypeListName(dir->getResults(), ignored) << "Types;\n";
959 /// Generate the parser for a parameter to a custom directive.
960 static void genCustomParameterParser(FormatElement *param, MethodBody &body) {
961 if (auto *attr = dyn_cast<AttributeVariable>(param)) {
962 body << attr->getVar()->name << "Attr";
963 } else if (isa<AttrDictDirective>(param)) {
964 body << "result.attributes";
965 } else if (isa<PropDictDirective>(param)) {
966 body << "result";
967 } else if (auto *operand = dyn_cast<OperandVariable>(param)) {
968 StringRef name = operand->getVar()->name;
969 ArgumentLengthKind lengthKind = getArgumentLengthKind(operand->getVar());
970 if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
971 body << formatv("{0}OperandGroups", name);
972 else if (lengthKind == ArgumentLengthKind::Variadic)
973 body << formatv("{0}Operands", name);
974 else if (lengthKind == ArgumentLengthKind::Optional)
975 body << formatv("{0}Operand", name);
976 else
977 body << formatv("{0}RawOperand", name);
979 } else if (auto *region = dyn_cast<RegionVariable>(param)) {
980 StringRef name = region->getVar()->name;
981 if (region->getVar()->isVariadic())
982 body << formatv("{0}Regions", name);
983 else
984 body << formatv("*{0}Region", name);
986 } else if (auto *successor = dyn_cast<SuccessorVariable>(param)) {
987 StringRef name = successor->getVar()->name;
988 if (successor->getVar()->isVariadic())
989 body << formatv("{0}Successors", name);
990 else
991 body << formatv("{0}Successor", name);
993 } else if (auto *dir = dyn_cast<RefDirective>(param)) {
994 genCustomParameterParser(dir->getArg(), body);
996 } else if (auto *dir = dyn_cast<TypeDirective>(param)) {
997 ArgumentLengthKind lengthKind;
998 StringRef listName = getTypeListName(dir->getArg(), lengthKind);
999 if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
1000 body << formatv("{0}TypeGroups", listName);
1001 else if (lengthKind == ArgumentLengthKind::Variadic)
1002 body << formatv("{0}Types", listName);
1003 else if (lengthKind == ArgumentLengthKind::Optional)
1004 body << formatv("{0}Type", listName);
1005 else
1006 body << formatv("{0}RawType", listName);
1008 } else if (auto *string = dyn_cast<StringElement>(param)) {
1009 FmtContext ctx;
1010 ctx.withBuilder("parser.getBuilder()");
1011 ctx.addSubst("_ctxt", "parser.getContext()");
1012 body << tgfmt(string->getValue(), &ctx);
1014 } else if (auto *property = dyn_cast<PropertyVariable>(param)) {
1015 body << formatv("result.getOrAddProperties<Properties>().{0}",
1016 property->getVar()->name);
1017 } else {
1018 llvm_unreachable("unknown custom directive parameter");
1022 /// Generate the parser for a custom directive.
1023 static void genCustomDirectiveParser(CustomDirective *dir, MethodBody &body,
1024 bool useProperties,
1025 StringRef opCppClassName,
1026 bool isOptional = false) {
1027 body << " {\n";
1029 // Preprocess the directive variables.
1030 // * Add a local variable for optional operands and types. This provides a
1031 // better API to the user defined parser methods.
1032 // * Set the location of operand variables.
1033 for (FormatElement *param : dir->getArguments()) {
1034 if (auto *operand = dyn_cast<OperandVariable>(param)) {
1035 auto *var = operand->getVar();
1036 body << " " << var->name
1037 << "OperandsLoc = parser.getCurrentLocation();\n";
1038 if (var->isOptional()) {
1039 body << formatv(
1040 " ::std::optional<::mlir::OpAsmParser::UnresolvedOperand> "
1041 "{0}Operand;\n",
1042 var->name);
1043 } else if (var->isVariadicOfVariadic()) {
1044 body << formatv(" "
1045 "::llvm::SmallVector<::llvm::SmallVector<::mlir::"
1046 "OpAsmParser::UnresolvedOperand>> "
1047 "{0}OperandGroups;\n",
1048 var->name);
1050 } else if (auto *dir = dyn_cast<TypeDirective>(param)) {
1051 ArgumentLengthKind lengthKind;
1052 StringRef listName = getTypeListName(dir->getArg(), lengthKind);
1053 if (lengthKind == ArgumentLengthKind::Optional) {
1054 body << formatv(" ::mlir::Type {0}Type;\n", listName);
1055 } else if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
1056 body << formatv(
1057 " ::llvm::SmallVector<llvm::SmallVector<::mlir::Type>> "
1058 "{0}TypeGroups;\n",
1059 listName);
1061 } else if (auto *dir = dyn_cast<RefDirective>(param)) {
1062 FormatElement *input = dir->getArg();
1063 if (auto *operand = dyn_cast<OperandVariable>(input)) {
1064 if (!operand->getVar()->isOptional())
1065 continue;
1066 body << formatv(
1067 " {0} {1}Operand = {1}Operands.empty() ? {0}() : "
1068 "{1}Operands[0];\n",
1069 "::std::optional<::mlir::OpAsmParser::UnresolvedOperand>",
1070 operand->getVar()->name);
1072 } else if (auto *type = dyn_cast<TypeDirective>(input)) {
1073 ArgumentLengthKind lengthKind;
1074 StringRef listName = getTypeListName(type->getArg(), lengthKind);
1075 if (lengthKind == ArgumentLengthKind::Optional) {
1076 body << formatv(" ::mlir::Type {0}Type = {0}Types.empty() ? "
1077 "::mlir::Type() : {0}Types[0];\n",
1078 listName);
1084 body << " auto odsResult = parse" << dir->getName() << "(parser";
1085 for (FormatElement *param : dir->getArguments()) {
1086 body << ", ";
1087 genCustomParameterParser(param, body);
1089 body << ");\n";
1091 if (isOptional) {
1092 body << " if (!odsResult.has_value()) return {};\n"
1093 << " if (::mlir::failed(*odsResult)) return ::mlir::failure();\n";
1094 } else {
1095 body << " if (odsResult) return ::mlir::failure();\n";
1098 // After parsing, add handling for any of the optional constructs.
1099 for (FormatElement *param : dir->getArguments()) {
1100 if (auto *attr = dyn_cast<AttributeVariable>(param)) {
1101 const NamedAttribute *var = attr->getVar();
1102 if (var->attr.isOptional() || var->attr.hasDefaultValue())
1103 body << formatv(" if ({0}Attr)\n ", var->name);
1104 if (useProperties) {
1105 body << formatv(
1106 " result.getOrAddProperties<{1}::Properties>().{0} = {0}Attr;\n",
1107 var->name, opCppClassName);
1108 } else {
1109 body << formatv(" result.addAttribute(\"{0}\", {0}Attr);\n",
1110 var->name);
1112 } else if (auto *operand = dyn_cast<OperandVariable>(param)) {
1113 const NamedTypeConstraint *var = operand->getVar();
1114 if (var->isOptional()) {
1115 body << formatv(" if ({0}Operand.has_value())\n"
1116 " {0}Operands.push_back(*{0}Operand);\n",
1117 var->name);
1118 } else if (var->isVariadicOfVariadic()) {
1119 body << formatv(
1120 " for (const auto &subRange : {0}OperandGroups) {{\n"
1121 " {0}Operands.append(subRange.begin(), subRange.end());\n"
1122 " {0}OperandGroupSizes.push_back(subRange.size());\n"
1123 " }\n",
1124 var->name);
1126 } else if (auto *dir = dyn_cast<TypeDirective>(param)) {
1127 ArgumentLengthKind lengthKind;
1128 StringRef listName = getTypeListName(dir->getArg(), lengthKind);
1129 if (lengthKind == ArgumentLengthKind::Optional) {
1130 body << formatv(" if ({0}Type)\n"
1131 " {0}Types.push_back({0}Type);\n",
1132 listName);
1133 } else if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
1134 body << formatv(
1135 " for (const auto &subRange : {0}TypeGroups)\n"
1136 " {0}Types.append(subRange.begin(), subRange.end());\n",
1137 listName);
1142 body << " }\n";
1145 /// Generate the parser for a enum attribute.
1146 static void genEnumAttrParser(const NamedAttribute *var, MethodBody &body,
1147 FmtContext &attrTypeCtx, bool parseAsOptional,
1148 bool useProperties, StringRef opCppClassName) {
1149 Attribute baseAttr = var->attr.getBaseAttr();
1150 const EnumAttr &enumAttr = cast<EnumAttr>(baseAttr);
1151 std::vector<EnumAttrCase> cases = enumAttr.getAllCases();
1153 // Generate the code for building an attribute for this enum.
1154 std::string attrBuilderStr;
1156 llvm::raw_string_ostream os(attrBuilderStr);
1157 os << tgfmt(enumAttr.getConstBuilderTemplate(), &attrTypeCtx,
1158 "*attrOptional");
1161 // Build a string containing the cases that can be formatted as a keyword.
1162 std::string validCaseKeywordsStr = "{";
1163 llvm::raw_string_ostream validCaseKeywordsOS(validCaseKeywordsStr);
1164 for (const EnumAttrCase &attrCase : cases)
1165 if (canFormatStringAsKeyword(attrCase.getStr()))
1166 validCaseKeywordsOS << '"' << attrCase.getStr() << "\",";
1167 validCaseKeywordsOS.str().back() = '}';
1169 // If the attribute is not optional, build an error message for the missing
1170 // attribute.
1171 std::string errorMessage;
1172 if (!parseAsOptional) {
1173 llvm::raw_string_ostream errorMessageOS(errorMessage);
1174 errorMessageOS
1175 << "return parser.emitError(loc, \"expected string or "
1176 "keyword containing one of the following enum values for attribute '"
1177 << var->name << "' [";
1178 llvm::interleaveComma(cases, errorMessageOS, [&](const auto &attrCase) {
1179 errorMessageOS << attrCase.getStr();
1181 errorMessageOS << "]\");";
1183 std::string attrAssignment;
1184 if (useProperties) {
1185 attrAssignment =
1186 formatv(" "
1187 "result.getOrAddProperties<{1}::Properties>().{0} = {0}Attr;",
1188 var->name, opCppClassName);
1189 } else {
1190 attrAssignment =
1191 formatv("result.addAttribute(\"{0}\", {0}Attr);", var->name);
1194 body << formatv(enumAttrParserCode, var->name, enumAttr.getCppNamespace(),
1195 enumAttr.getStringToSymbolFnName(), attrBuilderStr,
1196 validCaseKeywordsStr, errorMessage, attrAssignment);
1199 // Generate the parser for a property.
1200 static void genPropertyParser(PropertyVariable *propVar, MethodBody &body,
1201 StringRef opCppClassName,
1202 bool requireParse = true) {
1203 StringRef name = propVar->getVar()->name;
1204 const Property &prop = propVar->getVar()->prop;
1205 bool parseOptionally =
1206 prop.hasDefaultValue() && !requireParse && prop.hasOptionalParser();
1207 FmtContext fmtContext;
1208 fmtContext.addSubst("_parser", "parser");
1209 fmtContext.addSubst("_ctxt", "parser.getContext()");
1210 fmtContext.addSubst("_storage", "propStorage");
1212 if (parseOptionally) {
1213 body << formatv(optionalPropertyParserCode, name, opCppClassName,
1214 tgfmt(prop.getOptionalParserCall(), &fmtContext));
1215 } else {
1216 body << formatv(propertyParserCode, name, opCppClassName,
1217 tgfmt(prop.getParserCall(), &fmtContext),
1218 prop.getSummary());
1222 // Generate the parser for an attribute.
1223 static void genAttrParser(AttributeVariable *attr, MethodBody &body,
1224 FmtContext &attrTypeCtx, bool parseAsOptional,
1225 bool useProperties, StringRef opCppClassName) {
1226 const NamedAttribute *var = attr->getVar();
1228 // Check to see if we can parse this as an enum attribute.
1229 if (canFormatEnumAttr(var))
1230 return genEnumAttrParser(var, body, attrTypeCtx, parseAsOptional,
1231 useProperties, opCppClassName);
1233 // Check to see if we should parse this as a symbol name attribute.
1234 if (shouldFormatSymbolNameAttr(var)) {
1235 body << formatv(parseAsOptional ? optionalSymbolNameAttrParserCode
1236 : symbolNameAttrParserCode,
1237 var->name);
1238 } else {
1240 // If this attribute has a buildable type, use that when parsing the
1241 // attribute.
1242 std::string attrTypeStr;
1243 if (std::optional<StringRef> typeBuilder = attr->getTypeBuilder()) {
1244 llvm::raw_string_ostream os(attrTypeStr);
1245 os << tgfmt(*typeBuilder, &attrTypeCtx);
1246 } else {
1247 attrTypeStr = "::mlir::Type{}";
1249 if (parseAsOptional) {
1250 body << formatv(optionalAttrParserCode, var->name, attrTypeStr);
1251 } else {
1252 if (attr->shouldBeQualified() ||
1253 var->attr.getStorageType() == "::mlir::Attribute")
1254 body << formatv(genericAttrParserCode, var->name, attrTypeStr);
1255 else
1256 body << formatv(attrParserCode, var->name, attrTypeStr);
1259 if (useProperties) {
1260 body << formatv(
1261 " if ({0}Attr) result.getOrAddProperties<{1}::Properties>().{0} = "
1262 "{0}Attr;\n",
1263 var->name, opCppClassName);
1264 } else {
1265 body << formatv(
1266 " if ({0}Attr) result.attributes.append(\"{0}\", {0}Attr);\n",
1267 var->name);
1271 // Generates the 'setPropertiesFromParsedAttr' used to set properties from a
1272 // 'prop-dict' dictionary attr.
1273 static void genParsedAttrPropertiesSetter(OperationFormat &fmt, Operator &op,
1274 OpClass &opClass) {
1275 // Not required unless 'prop-dict' is present or we are not using properties.
1276 if (!fmt.hasPropDict || !fmt.useProperties)
1277 return;
1279 SmallVector<MethodParameter> paramList;
1280 paramList.emplace_back("Properties &", "prop");
1281 paramList.emplace_back("::mlir::Attribute", "attr");
1282 paramList.emplace_back("::llvm::function_ref<::mlir::InFlightDiagnostic()>",
1283 "emitError");
1285 Method *method = opClass.addStaticMethod("::llvm::LogicalResult",
1286 "setPropertiesFromParsedAttr",
1287 std::move(paramList));
1288 MethodBody &body = method->body().indent();
1290 body << R"decl(
1291 ::mlir::DictionaryAttr dict = ::llvm::dyn_cast<::mlir::DictionaryAttr>(attr);
1292 if (!dict) {
1293 emitError() << "expected DictionaryAttr to set properties";
1294 return ::mlir::failure();
1296 )decl";
1298 // {0}: fromAttribute call
1299 // {1}: property name
1300 // {2}: isRequired
1301 const char *propFromAttrFmt = R"decl(
1302 auto setFromAttr = [] (auto &propStorage, ::mlir::Attribute propAttr,
1303 ::llvm::function_ref<::mlir::InFlightDiagnostic()> emitError) -> ::mlir::LogicalResult {{
1304 {0};
1306 auto attr = dict.get("{1}");
1307 if (!attr && {2}) {{
1308 emitError() << "expected key entry for {1} in DictionaryAttr to set "
1309 "Properties.";
1310 return ::mlir::failure();
1312 if (::mlir::failed(setFromAttr(prop.{1}, attr, emitError)))
1313 return ::mlir::failure();
1314 )decl";
1316 // Generate the setter for any property not parsed elsewhere.
1317 for (const NamedProperty &namedProperty : op.getProperties()) {
1318 if (fmt.usedProperties.contains(&namedProperty))
1319 continue;
1321 auto scope = body.scope("{\n", "}\n", /*indent=*/true);
1323 StringRef name = namedProperty.name;
1324 const Property &prop = namedProperty.prop;
1325 bool isRequired = !prop.hasDefaultValue();
1326 FmtContext fctx;
1327 body << formatv(propFromAttrFmt,
1328 tgfmt(prop.getConvertFromAttributeCall(),
1329 &fctx.addSubst("_attr", "propAttr")
1330 .addSubst("_storage", "propStorage")
1331 .addSubst("_diag", "emitError")),
1332 name, isRequired);
1335 // Generate the setter for any attribute not parsed elsewhere.
1336 for (const NamedAttribute &namedAttr : op.getAttributes()) {
1337 if (fmt.usedAttributes.contains(&namedAttr))
1338 continue;
1340 const Attribute &attr = namedAttr.attr;
1341 // Derived attributes do not need to be parsed.
1342 if (attr.isDerivedAttr())
1343 continue;
1345 auto scope = body.scope("{\n", "}\n", /*indent=*/true);
1347 // If the attribute has a default value or is optional, it does not need to
1348 // be present in the parsed dictionary attribute.
1349 bool isRequired = !attr.isOptional() && !attr.hasDefaultValue();
1350 body << formatv(R"decl(
1351 auto &propStorage = prop.{0};
1352 auto attr = dict.get("{0}");
1353 if (attr || /*isRequired=*/{1}) {{
1354 if (!attr) {{
1355 emitError() << "expected key entry for {0} in DictionaryAttr to set "
1356 "Properties.";
1357 return ::mlir::failure();
1359 auto convertedAttr = ::llvm::dyn_cast<std::remove_reference_t<decltype(propStorage)>>(attr);
1360 if (convertedAttr) {{
1361 propStorage = convertedAttr;
1362 } else {{
1363 emitError() << "Invalid attribute `{0}` in property conversion: " << attr;
1364 return ::mlir::failure();
1367 )decl",
1368 namedAttr.name, isRequired);
1370 body << "return ::mlir::success();\n";
1373 void OperationFormat::genParser(Operator &op, OpClass &opClass) {
1374 SmallVector<MethodParameter> paramList;
1375 paramList.emplace_back("::mlir::OpAsmParser &", "parser");
1376 paramList.emplace_back("::mlir::OperationState &", "result");
1378 auto *method = opClass.addStaticMethod("::mlir::ParseResult", "parse",
1379 std::move(paramList));
1380 auto &body = method->body();
1382 // Generate variables to store the operands and type within the format. This
1383 // allows for referencing these variables in the presence of optional
1384 // groupings.
1385 for (FormatElement *element : elements)
1386 genElementParserStorage(element, op, body);
1388 // A format context used when parsing attributes with buildable types.
1389 FmtContext attrTypeCtx;
1390 attrTypeCtx.withBuilder("parser.getBuilder()");
1392 // Generate parsers for each of the elements.
1393 for (FormatElement *element : elements)
1394 genElementParser(element, body, attrTypeCtx);
1396 // Generate the code to resolve the operand/result types and successors now
1397 // that they have been parsed.
1398 genParserRegionResolution(op, body);
1399 genParserSuccessorResolution(op, body);
1400 genParserVariadicSegmentResolution(op, body);
1401 genParserTypeResolution(op, body);
1403 body << " return ::mlir::success();\n";
1405 genParsedAttrPropertiesSetter(*this, op, opClass);
1408 void OperationFormat::genElementParser(FormatElement *element, MethodBody &body,
1409 FmtContext &attrTypeCtx,
1410 GenContext genCtx) {
1411 /// Optional Group.
1412 if (auto *optional = dyn_cast<OptionalElement>(element)) {
1413 auto genElementParsers = [&](FormatElement *firstElement,
1414 ArrayRef<FormatElement *> elements,
1415 bool thenGroup) {
1416 // If the anchor is a unit attribute, we don't need to print it. When
1417 // parsing, we will add this attribute if this group is present.
1418 FormatElement *elidedAnchorElement = nullptr;
1419 auto *anchorVar = dyn_cast<AttributeLikeVariable>(optional->getAnchor());
1420 if (anchorVar && anchorVar != firstElement && anchorVar->isUnit()) {
1421 elidedAnchorElement = anchorVar;
1423 if (!thenGroup == optional->isInverted()) {
1424 // Add the anchor unit attribute or property to the operation state
1425 // or set the property to true.
1426 if (isa<PropertyVariable>(anchorVar)) {
1427 body << formatv(
1428 " result.getOrAddProperties<{1}::Properties>().{0} = true;",
1429 anchorVar->getName(), opCppClassName);
1430 } else if (useProperties) {
1431 body << formatv(
1432 " result.getOrAddProperties<{1}::Properties>().{0} = "
1433 "parser.getBuilder().getUnitAttr();",
1434 anchorVar->getName(), opCppClassName);
1435 } else {
1436 body << " result.addAttribute(\"" << anchorVar->getName()
1437 << "\", parser.getBuilder().getUnitAttr());\n";
1442 // Generate the rest of the elements inside an optional group. Elements in
1443 // an optional group after the guard are parsed as required.
1444 for (FormatElement *childElement : elements)
1445 if (childElement != elidedAnchorElement)
1446 genElementParser(childElement, body, attrTypeCtx,
1447 GenContext::Optional);
1450 ArrayRef<FormatElement *> thenElements =
1451 optional->getThenElements(/*parseable=*/true);
1453 // Generate a special optional parser for the first element to gate the
1454 // parsing of the rest of the elements.
1455 FormatElement *firstElement = thenElements.front();
1456 if (auto *attrVar = dyn_cast<AttributeVariable>(firstElement)) {
1457 genAttrParser(attrVar, body, attrTypeCtx, /*parseAsOptional=*/true,
1458 useProperties, opCppClassName);
1459 body << " if (" << attrVar->getVar()->name << "Attr) {\n";
1460 } else if (auto *propVar = dyn_cast<PropertyVariable>(firstElement)) {
1461 genPropertyParser(propVar, body, opCppClassName, /*requireParse=*/false);
1462 body << formatv("if ({0}PropParseResult.has_value() && "
1463 "succeeded(*{0}PropParseResult)) ",
1464 propVar->getVar()->name)
1465 << " {\n";
1466 } else if (auto *literal = dyn_cast<LiteralElement>(firstElement)) {
1467 body << " if (::mlir::succeeded(parser.parseOptional";
1468 genLiteralParser(literal->getSpelling(), body);
1469 body << ")) {\n";
1470 } else if (auto *opVar = dyn_cast<OperandVariable>(firstElement)) {
1471 genElementParser(opVar, body, attrTypeCtx);
1472 body << " if (!" << opVar->getVar()->name << "Operands.empty()) {\n";
1473 } else if (auto *regionVar = dyn_cast<RegionVariable>(firstElement)) {
1474 const NamedRegion *region = regionVar->getVar();
1475 if (region->isVariadic()) {
1476 genElementParser(regionVar, body, attrTypeCtx);
1477 body << " if (!" << region->name << "Regions.empty()) {\n";
1478 } else {
1479 body << formatv(optionalRegionParserCode, region->name);
1480 body << " if (!" << region->name << "Region->empty()) {\n ";
1481 if (hasImplicitTermTrait)
1482 body << formatv(regionEnsureTerminatorParserCode, region->name);
1483 else if (hasSingleBlockTrait)
1484 body << formatv(regionEnsureSingleBlockParserCode, region->name);
1486 } else if (auto *custom = dyn_cast<CustomDirective>(firstElement)) {
1487 body << " if (auto optResult = [&]() -> ::mlir::OptionalParseResult {\n";
1488 genCustomDirectiveParser(custom, body, useProperties, opCppClassName,
1489 /*isOptional=*/true);
1490 body << " return ::mlir::success();\n"
1491 << " }(); optResult.has_value() && ::mlir::failed(*optResult)) {\n"
1492 << " return ::mlir::failure();\n"
1493 << " } else if (optResult.has_value()) {\n";
1496 genElementParsers(firstElement, thenElements.drop_front(),
1497 /*thenGroup=*/true);
1498 body << " }";
1500 // Generate the else elements.
1501 auto elseElements = optional->getElseElements();
1502 if (!elseElements.empty()) {
1503 body << " else {\n";
1504 ArrayRef<FormatElement *> elseElements =
1505 optional->getElseElements(/*parseable=*/true);
1506 genElementParsers(elseElements.front(), elseElements,
1507 /*thenGroup=*/false);
1508 body << " }";
1510 body << "\n";
1512 /// OIList Directive
1513 } else if (OIListElement *oilist = dyn_cast<OIListElement>(element)) {
1514 for (LiteralElement *le : oilist->getLiteralElements())
1515 body << " bool " << le->getSpelling() << "Clause = false;\n";
1517 // Generate the parsing loop
1518 body << " while(true) {\n";
1519 for (auto clause : oilist->getClauses()) {
1520 LiteralElement *lelement = std::get<0>(clause);
1521 ArrayRef<FormatElement *> pelement = std::get<1>(clause);
1522 body << "if (succeeded(parser.parseOptional";
1523 genLiteralParser(lelement->getSpelling(), body);
1524 body << ")) {\n";
1525 StringRef lelementName = lelement->getSpelling();
1526 body << formatv(oilistParserCode, lelementName);
1527 if (AttributeLikeVariable *unitVarElem =
1528 oilist->getUnitVariableParsingElement(pelement)) {
1529 if (isa<PropertyVariable>(unitVarElem)) {
1530 body << formatv(
1531 " result.getOrAddProperties<{1}::Properties>().{0} = true;",
1532 unitVarElem->getName(), opCppClassName);
1533 } else if (useProperties) {
1534 body << formatv(
1535 " result.getOrAddProperties<{1}::Properties>().{0} = "
1536 "parser.getBuilder().getUnitAttr();",
1537 unitVarElem->getName(), opCppClassName);
1538 } else {
1539 body << " result.addAttribute(\"" << unitVarElem->getName()
1540 << "\", UnitAttr::get(parser.getContext()));\n";
1542 } else {
1543 for (FormatElement *el : pelement)
1544 genElementParser(el, body, attrTypeCtx);
1546 body << " } else ";
1548 body << " {\n";
1549 body << " break;\n";
1550 body << " }\n";
1551 body << "}\n";
1553 /// Literals.
1554 } else if (LiteralElement *literal = dyn_cast<LiteralElement>(element)) {
1555 body << " if (parser.parse";
1556 genLiteralParser(literal->getSpelling(), body);
1557 body << ")\n return ::mlir::failure();\n";
1559 /// Whitespaces.
1560 } else if (isa<WhitespaceElement>(element)) {
1561 // Nothing to parse.
1563 /// Arguments.
1564 } else if (auto *attr = dyn_cast<AttributeVariable>(element)) {
1565 bool parseAsOptional =
1566 (genCtx == GenContext::Normal && attr->getVar()->attr.isOptional());
1567 genAttrParser(attr, body, attrTypeCtx, parseAsOptional, useProperties,
1568 opCppClassName);
1569 } else if (auto *prop = dyn_cast<PropertyVariable>(element)) {
1570 genPropertyParser(prop, body, opCppClassName);
1572 } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
1573 ArgumentLengthKind lengthKind = getArgumentLengthKind(operand->getVar());
1574 StringRef name = operand->getVar()->name;
1575 if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
1576 body << formatv(variadicOfVariadicOperandParserCode, name);
1577 else if (lengthKind == ArgumentLengthKind::Variadic)
1578 body << formatv(variadicOperandParserCode, name);
1579 else if (lengthKind == ArgumentLengthKind::Optional)
1580 body << formatv(optionalOperandParserCode, name);
1581 else
1582 body << formatv(operandParserCode, name);
1584 } else if (auto *region = dyn_cast<RegionVariable>(element)) {
1585 bool isVariadic = region->getVar()->isVariadic();
1586 body << formatv(isVariadic ? regionListParserCode : regionParserCode,
1587 region->getVar()->name);
1588 if (hasImplicitTermTrait)
1589 body << formatv(isVariadic ? regionListEnsureTerminatorParserCode
1590 : regionEnsureTerminatorParserCode,
1591 region->getVar()->name);
1592 else if (hasSingleBlockTrait)
1593 body << formatv(isVariadic ? regionListEnsureSingleBlockParserCode
1594 : regionEnsureSingleBlockParserCode,
1595 region->getVar()->name);
1597 } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
1598 bool isVariadic = successor->getVar()->isVariadic();
1599 body << formatv(isVariadic ? successorListParserCode : successorParserCode,
1600 successor->getVar()->name);
1602 /// Directives.
1603 } else if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
1604 body.indent() << "{\n";
1605 body.indent() << "auto loc = parser.getCurrentLocation();(void)loc;\n"
1606 << "if (parser.parseOptionalAttrDict"
1607 << (attrDict->isWithKeyword() ? "WithKeyword" : "")
1608 << "(result.attributes))\n"
1609 << " return ::mlir::failure();\n";
1610 if (useProperties) {
1611 body << "if (failed(verifyInherentAttrs(result.name, result.attributes, "
1612 "[&]() {\n"
1613 << " return parser.emitError(loc) << \"'\" << "
1614 "result.name.getStringRef() << \"' op \";\n"
1615 << " })))\n"
1616 << " return ::mlir::failure();\n";
1618 body.unindent() << "}\n";
1619 body.unindent();
1620 } else if (isa<PropDictDirective>(element)) {
1621 if (useProperties) {
1622 body << " if (parseProperties(parser, result))\n"
1623 << " return ::mlir::failure();\n";
1625 } else if (auto *customDir = dyn_cast<CustomDirective>(element)) {
1626 genCustomDirectiveParser(customDir, body, useProperties, opCppClassName);
1627 } else if (isa<OperandsDirective>(element)) {
1628 body << " [[maybe_unused]] ::llvm::SMLoc allOperandLoc ="
1629 << " parser.getCurrentLocation();\n"
1630 << " if (parser.parseOperandList(allOperands))\n"
1631 << " return ::mlir::failure();\n";
1633 } else if (isa<RegionsDirective>(element)) {
1634 body << formatv(regionListParserCode, "full");
1635 if (hasImplicitTermTrait)
1636 body << formatv(regionListEnsureTerminatorParserCode, "full");
1637 else if (hasSingleBlockTrait)
1638 body << formatv(regionListEnsureSingleBlockParserCode, "full");
1640 } else if (isa<SuccessorsDirective>(element)) {
1641 body << formatv(successorListParserCode, "full");
1643 } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
1644 ArgumentLengthKind lengthKind;
1645 StringRef listName = getTypeListName(dir->getArg(), lengthKind);
1646 if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
1647 body << formatv(variadicOfVariadicTypeParserCode, listName);
1648 } else if (lengthKind == ArgumentLengthKind::Variadic) {
1649 body << formatv(variadicTypeParserCode, listName);
1650 } else if (lengthKind == ArgumentLengthKind::Optional) {
1651 body << formatv(optionalTypeParserCode, listName);
1652 } else {
1653 const char *parserCode =
1654 dir->shouldBeQualified() ? qualifiedTypeParserCode : typeParserCode;
1655 TypeSwitch<FormatElement *>(dir->getArg())
1656 .Case<OperandVariable, ResultVariable>([&](auto operand) {
1657 body << formatv(false, parserCode,
1658 operand->getVar()->constraint.getCppType(),
1659 listName);
1661 .Default([&](auto operand) {
1662 body << formatv(false, parserCode, "::mlir::Type", listName);
1665 } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
1666 ArgumentLengthKind ignored;
1667 body << formatv(functionalTypeParserCode,
1668 getTypeListName(dir->getInputs(), ignored),
1669 getTypeListName(dir->getResults(), ignored));
1670 } else {
1671 llvm_unreachable("unknown format element");
1675 void OperationFormat::genParserTypeResolution(Operator &op, MethodBody &body) {
1676 // If any of type resolutions use transformed variables, make sure that the
1677 // types of those variables are resolved.
1678 SmallPtrSet<const NamedTypeConstraint *, 8> verifiedVariables;
1679 FmtContext verifierFCtx;
1680 for (TypeResolution &resolver :
1681 llvm::concat<TypeResolution>(resultTypes, operandTypes)) {
1682 std::optional<StringRef> transformer = resolver.getVarTransformer();
1683 if (!transformer)
1684 continue;
1685 // Ensure that we don't verify the same variables twice.
1686 const NamedTypeConstraint *variable = resolver.getVariable();
1687 if (!variable || !verifiedVariables.insert(variable).second)
1688 continue;
1690 auto constraint = variable->constraint;
1691 body << " for (::mlir::Type type : " << variable->name << "Types) {\n"
1692 << " (void)type;\n"
1693 << " if (!("
1694 << tgfmt(constraint.getConditionTemplate(),
1695 &verifierFCtx.withSelf("type"))
1696 << ")) {\n"
1697 << formatv(" return parser.emitError(parser.getNameLoc()) << "
1698 "\"'{0}' must be {1}, but got \" << type;\n",
1699 variable->name, constraint.getSummary())
1700 << " }\n"
1701 << " }\n";
1704 // Initialize the set of buildable types.
1705 if (!buildableTypes.empty()) {
1706 FmtContext typeBuilderCtx;
1707 typeBuilderCtx.withBuilder("parser.getBuilder()");
1708 for (auto &it : buildableTypes)
1709 body << " ::mlir::Type odsBuildableType" << it.second << " = "
1710 << tgfmt(it.first, &typeBuilderCtx) << ";\n";
1713 // Emit the code necessary for a type resolver.
1714 auto emitTypeResolver = [&](TypeResolution &resolver, StringRef curVar) {
1715 if (std::optional<int> val = resolver.getBuilderIdx()) {
1716 body << "odsBuildableType" << *val;
1717 } else if (const NamedTypeConstraint *var = resolver.getVariable()) {
1718 if (std::optional<StringRef> tform = resolver.getVarTransformer()) {
1719 FmtContext fmtContext;
1720 fmtContext.addSubst("_ctxt", "parser.getContext()");
1721 if (var->isVariadic())
1722 fmtContext.withSelf(var->name + "Types");
1723 else
1724 fmtContext.withSelf(var->name + "Types[0]");
1725 body << tgfmt(*tform, &fmtContext);
1726 } else {
1727 body << var->name << "Types";
1728 if (!var->isVariadic())
1729 body << "[0]";
1731 } else if (const NamedAttribute *attr = resolver.getAttribute()) {
1732 if (std::optional<StringRef> tform = resolver.getVarTransformer())
1733 body << tgfmt(*tform,
1734 &FmtContext().withSelf(attr->name + "Attr.getType()"));
1735 else
1736 body << attr->name << "Attr.getType()";
1737 } else {
1738 body << curVar << "Types";
1742 // Resolve each of the result types.
1743 if (!infersResultTypes) {
1744 if (allResultTypes) {
1745 body << " result.addTypes(allResultTypes);\n";
1746 } else {
1747 for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
1748 body << " result.addTypes(";
1749 emitTypeResolver(resultTypes[i], op.getResultName(i));
1750 body << ");\n";
1755 // Emit the operand type resolutions.
1756 genParserOperandTypeResolution(op, body, emitTypeResolver);
1758 // Handle return type inference once all operands have been resolved
1759 if (infersResultTypes)
1760 body << formatv(inferReturnTypesParserCode, op.getCppClassName());
1763 void OperationFormat::genParserOperandTypeResolution(
1764 Operator &op, MethodBody &body,
1765 function_ref<void(TypeResolution &, StringRef)> emitTypeResolver) {
1766 // Early exit if there are no operands.
1767 if (op.getNumOperands() == 0)
1768 return;
1770 // Handle the case where all operand types are grouped together with
1771 // "types(operands)".
1772 if (allOperandTypes) {
1773 // If `operands` was specified, use the full operand list directly.
1774 if (allOperands) {
1775 body << " if (parser.resolveOperands(allOperands, allOperandTypes, "
1776 "allOperandLoc, result.operands))\n"
1777 " return ::mlir::failure();\n";
1778 return;
1781 // Otherwise, use llvm::concat to merge the disjoint operand lists together.
1782 // llvm::concat does not allow the case of a single range, so guard it here.
1783 body << " if (parser.resolveOperands(";
1784 if (op.getNumOperands() > 1) {
1785 body << "::llvm::concat<const ::mlir::OpAsmParser::UnresolvedOperand>(";
1786 llvm::interleaveComma(op.getOperands(), body, [&](auto &operand) {
1787 body << operand.name << "Operands";
1789 body << ")";
1790 } else {
1791 body << op.operand_begin()->name << "Operands";
1793 body << ", allOperandTypes, parser.getNameLoc(), result.operands))\n"
1794 << " return ::mlir::failure();\n";
1795 return;
1798 // Handle the case where all operands are grouped together with "operands".
1799 if (allOperands) {
1800 body << " if (parser.resolveOperands(allOperands, ";
1802 // Group all of the operand types together to perform the resolution all at
1803 // once. Use llvm::concat to perform the merge. llvm::concat does not allow
1804 // the case of a single range, so guard it here.
1805 if (op.getNumOperands() > 1) {
1806 body << "::llvm::concat<const ::mlir::Type>(";
1807 llvm::interleaveComma(
1808 llvm::seq<int>(0, op.getNumOperands()), body, [&](int i) {
1809 body << "::llvm::ArrayRef<::mlir::Type>(";
1810 emitTypeResolver(operandTypes[i], op.getOperand(i).name);
1811 body << ")";
1813 body << ")";
1814 } else {
1815 emitTypeResolver(operandTypes.front(), op.getOperand(0).name);
1818 body << ", allOperandLoc, result.operands))\n return "
1819 "::mlir::failure();\n";
1820 return;
1823 // The final case is the one where each of the operands types are resolved
1824 // separately.
1825 for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
1826 NamedTypeConstraint &operand = op.getOperand(i);
1827 body << " if (parser.resolveOperands(" << operand.name << "Operands, ";
1829 // Resolve the type of this operand.
1830 TypeResolution &operandType = operandTypes[i];
1831 emitTypeResolver(operandType, operand.name);
1833 body << ", " << operand.name
1834 << "OperandsLoc, result.operands))\n return ::mlir::failure();\n";
1838 void OperationFormat::genParserRegionResolution(Operator &op,
1839 MethodBody &body) {
1840 // Check for the case where all regions were parsed.
1841 bool hasAllRegions = llvm::any_of(
1842 elements, [](FormatElement *elt) { return isa<RegionsDirective>(elt); });
1843 if (hasAllRegions) {
1844 body << " result.addRegions(fullRegions);\n";
1845 return;
1848 // Otherwise, handle each region individually.
1849 for (const NamedRegion &region : op.getRegions()) {
1850 if (region.isVariadic())
1851 body << " result.addRegions(" << region.name << "Regions);\n";
1852 else
1853 body << " result.addRegion(std::move(" << region.name << "Region));\n";
1857 void OperationFormat::genParserSuccessorResolution(Operator &op,
1858 MethodBody &body) {
1859 // Check for the case where all successors were parsed.
1860 bool hasAllSuccessors = llvm::any_of(elements, [](FormatElement *elt) {
1861 return isa<SuccessorsDirective>(elt);
1863 if (hasAllSuccessors) {
1864 body << " result.addSuccessors(fullSuccessors);\n";
1865 return;
1868 // Otherwise, handle each successor individually.
1869 for (const NamedSuccessor &successor : op.getSuccessors()) {
1870 if (successor.isVariadic())
1871 body << " result.addSuccessors(" << successor.name << "Successors);\n";
1872 else
1873 body << " result.addSuccessors(" << successor.name << "Successor);\n";
1877 void OperationFormat::genParserVariadicSegmentResolution(Operator &op,
1878 MethodBody &body) {
1879 if (!allOperands) {
1880 if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
1881 auto interleaveFn = [&](const NamedTypeConstraint &operand) {
1882 // If the operand is variadic emit the parsed size.
1883 if (operand.isVariableLength())
1884 body << "static_cast<int32_t>(" << operand.name << "Operands.size())";
1885 else
1886 body << "1";
1888 if (op.getDialect().usePropertiesForAttributes()) {
1889 body << "::llvm::copy(::llvm::ArrayRef<int32_t>({";
1890 llvm::interleaveComma(op.getOperands(), body, interleaveFn);
1891 body << formatv("}), "
1892 "result.getOrAddProperties<{0}::Properties>()."
1893 "operandSegmentSizes.begin());\n",
1894 op.getCppClassName());
1895 } else {
1896 body << " result.addAttribute(\"operandSegmentSizes\", "
1897 << "parser.getBuilder().getDenseI32ArrayAttr({";
1898 llvm::interleaveComma(op.getOperands(), body, interleaveFn);
1899 body << "}));\n";
1902 for (const NamedTypeConstraint &operand : op.getOperands()) {
1903 if (!operand.isVariadicOfVariadic())
1904 continue;
1905 if (op.getDialect().usePropertiesForAttributes()) {
1906 body << formatv(
1907 " result.getOrAddProperties<{0}::Properties>().{1} = "
1908 "parser.getBuilder().getDenseI32ArrayAttr({2}OperandGroupSizes);\n",
1909 op.getCppClassName(),
1910 operand.constraint.getVariadicOfVariadicSegmentSizeAttr(),
1911 operand.name);
1912 } else {
1913 body << formatv(
1914 " result.addAttribute(\"{0}\", "
1915 "parser.getBuilder().getDenseI32ArrayAttr({1}OperandGroupSizes));"
1916 "\n",
1917 operand.constraint.getVariadicOfVariadicSegmentSizeAttr(),
1918 operand.name);
1923 if (!allResultTypes &&
1924 op.getTrait("::mlir::OpTrait::AttrSizedResultSegments")) {
1925 auto interleaveFn = [&](const NamedTypeConstraint &result) {
1926 // If the result is variadic emit the parsed size.
1927 if (result.isVariableLength())
1928 body << "static_cast<int32_t>(" << result.name << "Types.size())";
1929 else
1930 body << "1";
1932 if (op.getDialect().usePropertiesForAttributes()) {
1933 body << "::llvm::copy(::llvm::ArrayRef<int32_t>({";
1934 llvm::interleaveComma(op.getResults(), body, interleaveFn);
1935 body << formatv("}), "
1936 "result.getOrAddProperties<{0}::Properties>()."
1937 "resultSegmentSizes.begin());\n",
1938 op.getCppClassName());
1939 } else {
1940 body << " result.addAttribute(\"resultSegmentSizes\", "
1941 << "parser.getBuilder().getDenseI32ArrayAttr({";
1942 llvm::interleaveComma(op.getResults(), body, interleaveFn);
1943 body << "}));\n";
1948 //===----------------------------------------------------------------------===//
1949 // PrinterGen
1951 /// The code snippet used to generate a printer call for a region of an
1952 // operation that has the SingleBlockImplicitTerminator trait.
1954 /// {0}: The name of the region.
1955 const char *regionSingleBlockImplicitTerminatorPrinterCode = R"(
1957 bool printTerminator = true;
1958 if (auto *term = {0}.empty() ? nullptr : {0}.begin()->getTerminator()) {{
1959 printTerminator = !term->getAttrDictionary().empty() ||
1960 term->getNumOperands() != 0 ||
1961 term->getNumResults() != 0;
1963 _odsPrinter.printRegion({0}, /*printEntryBlockArgs=*/true,
1964 /*printBlockTerminators=*/printTerminator);
1968 /// The code snippet used to generate a printer call for an enum that has cases
1969 /// that can't be represented with a keyword.
1971 /// {0}: The name of the enum attribute.
1972 /// {1}: The name of the enum attributes symbolToString function.
1973 const char *enumAttrBeginPrinterCode = R"(
1975 auto caseValue = {0}();
1976 auto caseValueStr = {1}(caseValue);
1979 /// Generate a check that an optional or default-valued attribute or property
1980 /// has a non-default value. For these purposes, the default value of an
1981 /// optional attribute is its presence, even if the attribute itself has a
1982 /// default value.
1983 static void genNonDefaultValueCheck(MethodBody &body, const Operator &op,
1984 AttributeVariable &attrElement) {
1985 Attribute attr = attrElement.getVar()->attr;
1986 std::string getter = op.getGetterName(attrElement.getVar()->name);
1987 bool optionalAndDefault = attr.isOptional() && attr.hasDefaultValue();
1988 if (optionalAndDefault)
1989 body << "(";
1990 if (attr.isOptional())
1991 body << getter << "Attr()";
1992 if (optionalAndDefault)
1993 body << " && ";
1994 if (attr.hasDefaultValue()) {
1995 FmtContext fctx;
1996 fctx.withBuilder("::mlir::OpBuilder((*this)->getContext())");
1997 body << getter << "Attr() != "
1998 << tgfmt(attr.getConstBuilderTemplate(), &fctx,
1999 attr.getDefaultValue());
2001 if (optionalAndDefault)
2002 body << ")";
2005 static void genNonDefaultValueCheck(MethodBody &body, const Operator &op,
2006 PropertyVariable &propElement) {
2007 body << op.getGetterName(propElement.getVar()->name)
2008 << "() != " << propElement.getVar()->prop.getDefaultValue();
2011 /// Generate the printer for the 'prop-dict' directive.
2012 static void genPropDictPrinter(OperationFormat &fmt, Operator &op,
2013 MethodBody &body) {
2014 body << " ::llvm::SmallVector<::llvm::StringRef, 2> elidedProps;\n";
2015 for (const NamedProperty *namedProperty : fmt.usedProperties)
2016 body << " elidedProps.push_back(\"" << namedProperty->name << "\");\n";
2017 for (const NamedAttribute *namedAttr : fmt.usedAttributes)
2018 body << " elidedProps.push_back(\"" << namedAttr->name << "\");\n";
2020 // Add code to check attributes for equality with the default value
2021 // for attributes with the elidePrintingDefaultValue bit set.
2022 for (const NamedAttribute &namedAttr : op.getAttributes()) {
2023 const Attribute &attr = namedAttr.attr;
2024 if (!attr.isDerivedAttr() && attr.hasDefaultValue()) {
2025 const StringRef &name = namedAttr.name;
2026 FmtContext fctx;
2027 fctx.withBuilder("odsBuilder");
2028 std::string defaultValue = std::string(
2029 tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue()));
2030 body << " {\n";
2031 body << " ::mlir::Builder odsBuilder(getContext());\n";
2032 body << " ::mlir::Attribute attr = " << op.getGetterName(name)
2033 << "Attr();\n";
2034 body << " if(attr && (attr == " << defaultValue << "))\n";
2035 body << " elidedProps.push_back(\"" << name << "\");\n";
2036 body << " }\n";
2039 // Similarly, elide default-valued properties.
2040 for (const NamedProperty &prop : op.getProperties()) {
2041 if (prop.prop.hasDefaultValue()) {
2042 body << " if (" << op.getGetterName(prop.name)
2043 << "() == " << prop.prop.getDefaultValue() << ") {";
2044 body << " elidedProps.push_back(\"" << prop.name << "\");\n";
2045 body << " }\n";
2049 if (fmt.useProperties) {
2050 body << " _odsPrinter << \" \";\n"
2051 << " printProperties(this->getContext(), _odsPrinter, "
2052 "getProperties(), elidedProps);\n";
2056 /// Generate the printer for the 'attr-dict' directive.
2057 static void genAttrDictPrinter(OperationFormat &fmt, Operator &op,
2058 MethodBody &body, bool withKeyword) {
2059 body << " ::llvm::SmallVector<::llvm::StringRef, 2> elidedAttrs;\n";
2060 // Elide the variadic segment size attributes if necessary.
2061 if (!fmt.allOperands &&
2062 op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments"))
2063 body << " elidedAttrs.push_back(\"operandSegmentSizes\");\n";
2064 if (!fmt.allResultTypes &&
2065 op.getTrait("::mlir::OpTrait::AttrSizedResultSegments"))
2066 body << " elidedAttrs.push_back(\"resultSegmentSizes\");\n";
2067 for (const StringRef key : fmt.inferredAttributes.keys())
2068 body << " elidedAttrs.push_back(\"" << key << "\");\n";
2069 for (const NamedAttribute *attr : fmt.usedAttributes)
2070 body << " elidedAttrs.push_back(\"" << attr->name << "\");\n";
2071 // Add code to check attributes for equality with the default value
2072 // for attributes with the elidePrintingDefaultValue bit set.
2073 for (const NamedAttribute &namedAttr : op.getAttributes()) {
2074 const Attribute &attr = namedAttr.attr;
2075 if (!attr.isDerivedAttr() && attr.hasDefaultValue()) {
2076 const StringRef &name = namedAttr.name;
2077 FmtContext fctx;
2078 fctx.withBuilder("odsBuilder");
2079 std::string defaultValue = std::string(
2080 tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue()));
2081 body << " {\n";
2082 body << " ::mlir::Builder odsBuilder(getContext());\n";
2083 body << " ::mlir::Attribute attr = " << op.getGetterName(name)
2084 << "Attr();\n";
2085 body << " if(attr && (attr == " << defaultValue << "))\n";
2086 body << " elidedAttrs.push_back(\"" << name << "\");\n";
2087 body << " }\n";
2090 if (fmt.hasPropDict)
2091 body << " _odsPrinter.printOptionalAttrDict"
2092 << (withKeyword ? "WithKeyword" : "")
2093 << "(llvm::to_vector((*this)->getDiscardableAttrs()), elidedAttrs);\n";
2094 else
2095 body << " _odsPrinter.printOptionalAttrDict"
2096 << (withKeyword ? "WithKeyword" : "")
2097 << "((*this)->getAttrs(), elidedAttrs);\n";
2100 /// Generate the printer for a literal value. `shouldEmitSpace` is true if a
2101 /// space should be emitted before this element. `lastWasPunctuation` is true if
2102 /// the previous element was a punctuation literal.
2103 static void genLiteralPrinter(StringRef value, MethodBody &body,
2104 bool &shouldEmitSpace, bool &lastWasPunctuation) {
2105 body << " _odsPrinter";
2107 // Don't insert a space for certain punctuation.
2108 if (shouldEmitSpace && shouldEmitSpaceBefore(value, lastWasPunctuation))
2109 body << " << ' '";
2110 body << " << \"" << value << "\";\n";
2112 // Insert a space after certain literals.
2113 shouldEmitSpace =
2114 value.size() != 1 || !StringRef("<({[").contains(value.front());
2115 lastWasPunctuation = value.front() != '_' && !isalpha(value.front());
2118 /// Generate the printer for a space. `shouldEmitSpace` and `lastWasPunctuation`
2119 /// are set to false.
2120 static void genSpacePrinter(bool value, MethodBody &body, bool &shouldEmitSpace,
2121 bool &lastWasPunctuation) {
2122 if (value) {
2123 body << " _odsPrinter << ' ';\n";
2124 lastWasPunctuation = false;
2125 } else {
2126 lastWasPunctuation = true;
2128 shouldEmitSpace = false;
2131 /// Generate the printer for a custom directive parameter.
2132 static void genCustomDirectiveParameterPrinter(FormatElement *element,
2133 const Operator &op,
2134 MethodBody &body) {
2135 if (auto *attr = dyn_cast<AttributeVariable>(element)) {
2136 body << op.getGetterName(attr->getVar()->name) << "Attr()";
2138 } else if (isa<AttrDictDirective>(element)) {
2139 body << "getOperation()->getAttrDictionary()";
2141 } else if (isa<PropDictDirective>(element)) {
2142 body << "getProperties()";
2144 } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
2145 body << op.getGetterName(operand->getVar()->name) << "()";
2147 } else if (auto *region = dyn_cast<RegionVariable>(element)) {
2148 body << op.getGetterName(region->getVar()->name) << "()";
2150 } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
2151 body << op.getGetterName(successor->getVar()->name) << "()";
2153 } else if (auto *dir = dyn_cast<RefDirective>(element)) {
2154 genCustomDirectiveParameterPrinter(dir->getArg(), op, body);
2156 } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
2157 auto *typeOperand = dir->getArg();
2158 auto *operand = dyn_cast<OperandVariable>(typeOperand);
2159 auto *var = operand ? operand->getVar()
2160 : cast<ResultVariable>(typeOperand)->getVar();
2161 std::string name = op.getGetterName(var->name);
2162 if (var->isVariadic())
2163 body << name << "().getTypes()";
2164 else if (var->isOptional())
2165 body << formatv("({0}() ? {0}().getType() : ::mlir::Type())", name);
2166 else
2167 body << name << "().getType()";
2169 } else if (auto *string = dyn_cast<StringElement>(element)) {
2170 FmtContext ctx;
2171 ctx.withBuilder("::mlir::Builder(getContext())");
2172 ctx.addSubst("_ctxt", "getContext()");
2173 body << tgfmt(string->getValue(), &ctx);
2175 } else if (auto *property = dyn_cast<PropertyVariable>(element)) {
2176 FmtContext ctx;
2177 const NamedProperty *namedProperty = property->getVar();
2178 ctx.addSubst("_storage", "getProperties()." + namedProperty->name);
2179 body << tgfmt(namedProperty->prop.getConvertFromStorageCall(), &ctx);
2180 } else {
2181 llvm_unreachable("unknown custom directive parameter");
2185 /// Generate the printer for a custom directive.
2186 static void genCustomDirectivePrinter(CustomDirective *customDir,
2187 const Operator &op, MethodBody &body) {
2188 body << " print" << customDir->getName() << "(_odsPrinter, *this";
2189 for (FormatElement *param : customDir->getArguments()) {
2190 body << ", ";
2191 genCustomDirectiveParameterPrinter(param, op, body);
2193 body << ");\n";
2196 /// Generate the printer for a region with the given variable name.
2197 static void genRegionPrinter(const Twine &regionName, MethodBody &body,
2198 bool hasImplicitTermTrait) {
2199 if (hasImplicitTermTrait)
2200 body << formatv(regionSingleBlockImplicitTerminatorPrinterCode, regionName);
2201 else
2202 body << " _odsPrinter.printRegion(" << regionName << ");\n";
2204 static void genVariadicRegionPrinter(const Twine &regionListName,
2205 MethodBody &body,
2206 bool hasImplicitTermTrait) {
2207 body << " llvm::interleaveComma(" << regionListName
2208 << ", _odsPrinter, [&](::mlir::Region &region) {\n ";
2209 genRegionPrinter("region", body, hasImplicitTermTrait);
2210 body << " });\n";
2213 /// Generate the C++ for an operand to a (*-)type directive.
2214 static MethodBody &genTypeOperandPrinter(FormatElement *arg, const Operator &op,
2215 MethodBody &body,
2216 bool useArrayRef = true) {
2217 if (isa<OperandsDirective>(arg))
2218 return body << "getOperation()->getOperandTypes()";
2219 if (isa<ResultsDirective>(arg))
2220 return body << "getOperation()->getResultTypes()";
2221 auto *operand = dyn_cast<OperandVariable>(arg);
2222 auto *var = operand ? operand->getVar() : cast<ResultVariable>(arg)->getVar();
2223 if (var->isVariadicOfVariadic())
2224 return body << formatv("{0}().join().getTypes()",
2225 op.getGetterName(var->name));
2226 if (var->isVariadic())
2227 return body << op.getGetterName(var->name) << "().getTypes()";
2228 if (var->isOptional())
2229 return body << formatv(
2230 "({0}() ? ::llvm::ArrayRef<::mlir::Type>({0}().getType()) : "
2231 "::llvm::ArrayRef<::mlir::Type>())",
2232 op.getGetterName(var->name));
2233 if (useArrayRef)
2234 return body << "::llvm::ArrayRef<::mlir::Type>("
2235 << op.getGetterName(var->name) << "().getType())";
2236 return body << op.getGetterName(var->name) << "().getType()";
2239 /// Generate the printer for an enum attribute.
2240 static void genEnumAttrPrinter(const NamedAttribute *var, const Operator &op,
2241 MethodBody &body) {
2242 Attribute baseAttr = var->attr.getBaseAttr();
2243 const EnumAttr &enumAttr = cast<EnumAttr>(baseAttr);
2244 std::vector<EnumAttrCase> cases = enumAttr.getAllCases();
2246 body << formatv(enumAttrBeginPrinterCode,
2247 (var->attr.isOptional() ? "*" : "") +
2248 op.getGetterName(var->name),
2249 enumAttr.getSymbolToStringFnName());
2251 // Get a string containing all of the cases that can't be represented with a
2252 // keyword.
2253 BitVector nonKeywordCases(cases.size());
2254 for (auto it : llvm::enumerate(cases)) {
2255 if (!canFormatStringAsKeyword(it.value().getStr()))
2256 nonKeywordCases.set(it.index());
2259 // Otherwise if this is a bit enum attribute, don't allow cases that may
2260 // overlap with other cases. For simplicity sake, only allow cases with a
2261 // single bit value.
2262 if (enumAttr.isBitEnum()) {
2263 for (auto it : llvm::enumerate(cases)) {
2264 int64_t value = it.value().getValue();
2265 if (value < 0 || !llvm::isPowerOf2_64(value))
2266 nonKeywordCases.set(it.index());
2270 // If there are any cases that can't be used with a keyword, switch on the
2271 // case value to determine when to print in the string form.
2272 if (nonKeywordCases.any()) {
2273 body << " switch (caseValue) {\n";
2274 StringRef cppNamespace = enumAttr.getCppNamespace();
2275 StringRef enumName = enumAttr.getEnumClassName();
2276 for (auto it : llvm::enumerate(cases)) {
2277 if (nonKeywordCases.test(it.index()))
2278 continue;
2279 StringRef symbol = it.value().getSymbol();
2280 body << formatv(" case {0}::{1}::{2}:\n", cppNamespace, enumName,
2281 llvm::isDigit(symbol.front()) ? ("_" + symbol) : symbol);
2283 body << " _odsPrinter << caseValueStr;\n"
2284 " break;\n"
2285 " default:\n"
2286 " _odsPrinter << '\"' << caseValueStr << '\"';\n"
2287 " break;\n"
2288 " }\n"
2289 " }\n";
2290 return;
2293 body << " _odsPrinter << caseValueStr;\n"
2294 " }\n";
2297 /// Generate the check for the anchor of an optional group.
2298 static void genOptionalGroupPrinterAnchor(FormatElement *anchor,
2299 const Operator &op,
2300 MethodBody &body) {
2301 TypeSwitch<FormatElement *>(anchor)
2302 .Case<OperandVariable, ResultVariable>([&](auto *element) {
2303 const NamedTypeConstraint *var = element->getVar();
2304 std::string name = op.getGetterName(var->name);
2305 if (var->isOptional())
2306 body << name << "()";
2307 else if (var->isVariadic())
2308 body << "!" << name << "().empty()";
2310 .Case([&](RegionVariable *element) {
2311 const NamedRegion *var = element->getVar();
2312 std::string name = op.getGetterName(var->name);
2313 // TODO: Add a check for optional regions here when ODS supports it.
2314 body << "!" << name << "().empty()";
2316 .Case([&](TypeDirective *element) {
2317 genOptionalGroupPrinterAnchor(element->getArg(), op, body);
2319 .Case([&](FunctionalTypeDirective *element) {
2320 genOptionalGroupPrinterAnchor(element->getInputs(), op, body);
2322 .Case([&](AttributeVariable *element) {
2323 // Consider a default-valued attribute as present if it's not the
2324 // default value and an optional one present if it is set.
2325 genNonDefaultValueCheck(body, op, *element);
2327 .Case([&](PropertyVariable *element) {
2328 genNonDefaultValueCheck(body, op, *element);
2330 .Case([&](CustomDirective *ele) {
2331 body << '(';
2332 llvm::interleave(
2333 ele->getArguments(), body,
2334 [&](FormatElement *child) {
2335 body << '(';
2336 genOptionalGroupPrinterAnchor(child, op, body);
2337 body << ')';
2339 " || ");
2340 body << ')';
2344 void collect(FormatElement *element,
2345 SmallVectorImpl<VariableElement *> &variables) {
2346 TypeSwitch<FormatElement *>(element)
2347 .Case([&](VariableElement *var) { variables.emplace_back(var); })
2348 .Case([&](CustomDirective *ele) {
2349 for (FormatElement *arg : ele->getArguments())
2350 collect(arg, variables);
2352 .Case([&](OptionalElement *ele) {
2353 for (FormatElement *arg : ele->getThenElements())
2354 collect(arg, variables);
2355 for (FormatElement *arg : ele->getElseElements())
2356 collect(arg, variables);
2358 .Case([&](FunctionalTypeDirective *funcType) {
2359 collect(funcType->getInputs(), variables);
2360 collect(funcType->getResults(), variables);
2362 .Case([&](OIListElement *oilist) {
2363 for (ArrayRef<FormatElement *> arg : oilist->getParsingElements())
2364 for (FormatElement *arg : arg)
2365 collect(arg, variables);
2369 void OperationFormat::genElementPrinter(FormatElement *element,
2370 MethodBody &body, Operator &op,
2371 bool &shouldEmitSpace,
2372 bool &lastWasPunctuation) {
2373 if (LiteralElement *literal = dyn_cast<LiteralElement>(element))
2374 return genLiteralPrinter(literal->getSpelling(), body, shouldEmitSpace,
2375 lastWasPunctuation);
2377 // Emit a whitespace element.
2378 if (auto *space = dyn_cast<WhitespaceElement>(element)) {
2379 if (space->getValue() == "\\n") {
2380 body << " _odsPrinter.printNewline();\n";
2381 } else {
2382 genSpacePrinter(!space->getValue().empty(), body, shouldEmitSpace,
2383 lastWasPunctuation);
2385 return;
2388 // Emit an optional group.
2389 if (OptionalElement *optional = dyn_cast<OptionalElement>(element)) {
2390 // Emit the check for the presence of the anchor element.
2391 FormatElement *anchor = optional->getAnchor();
2392 body << " if (";
2393 if (optional->isInverted())
2394 body << "!";
2395 genOptionalGroupPrinterAnchor(anchor, op, body);
2396 body << ") {\n";
2397 body.indent();
2399 // If the anchor is a unit attribute, we don't need to print it. When
2400 // parsing, we will add this attribute if this group is present.
2401 ArrayRef<FormatElement *> thenElements = optional->getThenElements();
2402 ArrayRef<FormatElement *> elseElements = optional->getElseElements();
2403 FormatElement *elidedAnchorElement = nullptr;
2404 auto *anchorAttr = dyn_cast<AttributeLikeVariable>(anchor);
2405 if (anchorAttr && anchorAttr != thenElements.front() &&
2406 (elseElements.empty() || anchorAttr != elseElements.front()) &&
2407 anchorAttr->isUnit()) {
2408 elidedAnchorElement = anchorAttr;
2410 auto genElementPrinters = [&](ArrayRef<FormatElement *> elements) {
2411 for (FormatElement *childElement : elements) {
2412 if (childElement != elidedAnchorElement) {
2413 genElementPrinter(childElement, body, op, shouldEmitSpace,
2414 lastWasPunctuation);
2419 // Emit each of the elements.
2420 genElementPrinters(thenElements);
2421 body << "}";
2423 // Emit each of the else elements.
2424 if (!elseElements.empty()) {
2425 body << " else {\n";
2426 genElementPrinters(elseElements);
2427 body << "}";
2430 body.unindent() << "\n";
2431 return;
2434 // Emit the OIList
2435 if (auto *oilist = dyn_cast<OIListElement>(element)) {
2436 for (auto clause : oilist->getClauses()) {
2437 LiteralElement *lelement = std::get<0>(clause);
2438 ArrayRef<FormatElement *> pelement = std::get<1>(clause);
2440 SmallVector<VariableElement *> vars;
2441 for (FormatElement *el : pelement)
2442 collect(el, vars);
2443 body << " if (false";
2444 for (VariableElement *var : vars) {
2445 TypeSwitch<FormatElement *>(var)
2446 .Case([&](AttributeVariable *attrEle) {
2447 body << " || (";
2448 genNonDefaultValueCheck(body, op, *attrEle);
2449 body << ")";
2451 .Case([&](PropertyVariable *propEle) {
2452 body << " || (";
2453 genNonDefaultValueCheck(body, op, *propEle);
2454 body << ")";
2456 .Case([&](OperandVariable *ele) {
2457 if (ele->getVar()->isVariadic()) {
2458 body << " || " << op.getGetterName(ele->getVar()->name)
2459 << "().size()";
2460 } else {
2461 body << " || " << op.getGetterName(ele->getVar()->name) << "()";
2464 .Case([&](ResultVariable *ele) {
2465 if (ele->getVar()->isVariadic()) {
2466 body << " || " << op.getGetterName(ele->getVar()->name)
2467 << "().size()";
2468 } else {
2469 body << " || " << op.getGetterName(ele->getVar()->name) << "()";
2472 .Case([&](RegionVariable *reg) {
2473 body << " || " << op.getGetterName(reg->getVar()->name) << "()";
2477 body << ") {\n";
2478 genLiteralPrinter(lelement->getSpelling(), body, shouldEmitSpace,
2479 lastWasPunctuation);
2480 if (oilist->getUnitVariableParsingElement(pelement) == nullptr) {
2481 for (FormatElement *element : pelement)
2482 genElementPrinter(element, body, op, shouldEmitSpace,
2483 lastWasPunctuation);
2485 body << " }\n";
2487 return;
2490 // Emit the attribute dictionary.
2491 if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
2492 genAttrDictPrinter(*this, op, body, attrDict->isWithKeyword());
2493 lastWasPunctuation = false;
2494 return;
2497 // Emit the property dictionary.
2498 if (isa<PropDictDirective>(element)) {
2499 genPropDictPrinter(*this, op, body);
2500 lastWasPunctuation = false;
2501 return;
2504 // Optionally insert a space before the next element. The AttrDict printer
2505 // already adds a space as necessary.
2506 if (shouldEmitSpace || !lastWasPunctuation)
2507 body << " _odsPrinter << ' ';\n";
2508 lastWasPunctuation = false;
2509 shouldEmitSpace = true;
2511 if (auto *attr = dyn_cast<AttributeVariable>(element)) {
2512 const NamedAttribute *var = attr->getVar();
2514 // If we are formatting as an enum, symbolize the attribute as a string.
2515 if (canFormatEnumAttr(var))
2516 return genEnumAttrPrinter(var, op, body);
2518 // If we are formatting as a symbol name, handle it as a symbol name.
2519 if (shouldFormatSymbolNameAttr(var)) {
2520 body << " _odsPrinter.printSymbolName(" << op.getGetterName(var->name)
2521 << "Attr().getValue());\n";
2522 return;
2525 // Elide the attribute type if it is buildable.
2526 if (attr->getTypeBuilder())
2527 body << " _odsPrinter.printAttributeWithoutType("
2528 << op.getGetterName(var->name) << "Attr());\n";
2529 else if (attr->shouldBeQualified() ||
2530 var->attr.getStorageType() == "::mlir::Attribute")
2531 body << " _odsPrinter.printAttribute(" << op.getGetterName(var->name)
2532 << "Attr());\n";
2533 else
2534 body << "_odsPrinter.printStrippedAttrOrType("
2535 << op.getGetterName(var->name) << "Attr());\n";
2536 } else if (auto *property = dyn_cast<PropertyVariable>(element)) {
2537 const NamedProperty *var = property->getVar();
2538 FmtContext fmtContext;
2539 fmtContext.addSubst("_printer", "_odsPrinter");
2540 fmtContext.addSubst("_ctxt", "getContext()");
2541 fmtContext.addSubst("_storage", "getProperties()." + var->name);
2542 body << tgfmt(var->prop.getPrinterCall(), &fmtContext) << ";\n";
2543 } else if (auto *operand = dyn_cast<OperandVariable>(element)) {
2544 if (operand->getVar()->isVariadicOfVariadic()) {
2545 body << " ::llvm::interleaveComma("
2546 << op.getGetterName(operand->getVar()->name)
2547 << "(), _odsPrinter, [&](const auto &operands) { _odsPrinter << "
2548 "\"(\" << operands << "
2549 "\")\"; });\n";
2551 } else if (operand->getVar()->isOptional()) {
2552 body << " if (::mlir::Value value = "
2553 << op.getGetterName(operand->getVar()->name) << "())\n"
2554 << " _odsPrinter << value;\n";
2555 } else {
2556 body << " _odsPrinter << " << op.getGetterName(operand->getVar()->name)
2557 << "();\n";
2559 } else if (auto *region = dyn_cast<RegionVariable>(element)) {
2560 const NamedRegion *var = region->getVar();
2561 std::string name = op.getGetterName(var->name);
2562 if (var->isVariadic()) {
2563 genVariadicRegionPrinter(name + "()", body, hasImplicitTermTrait);
2564 } else {
2565 genRegionPrinter(name + "()", body, hasImplicitTermTrait);
2567 } else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
2568 const NamedSuccessor *var = successor->getVar();
2569 std::string name = op.getGetterName(var->name);
2570 if (var->isVariadic())
2571 body << " ::llvm::interleaveComma(" << name << "(), _odsPrinter);\n";
2572 else
2573 body << " _odsPrinter << " << name << "();\n";
2574 } else if (auto *dir = dyn_cast<CustomDirective>(element)) {
2575 genCustomDirectivePrinter(dir, op, body);
2576 } else if (isa<OperandsDirective>(element)) {
2577 body << " _odsPrinter << getOperation()->getOperands();\n";
2578 } else if (isa<RegionsDirective>(element)) {
2579 genVariadicRegionPrinter("getOperation()->getRegions()", body,
2580 hasImplicitTermTrait);
2581 } else if (isa<SuccessorsDirective>(element)) {
2582 body << " ::llvm::interleaveComma(getOperation()->getSuccessors(), "
2583 "_odsPrinter);\n";
2584 } else if (auto *dir = dyn_cast<TypeDirective>(element)) {
2585 if (auto *operand = dyn_cast<OperandVariable>(dir->getArg())) {
2586 if (operand->getVar()->isVariadicOfVariadic()) {
2587 body << formatv(
2588 " ::llvm::interleaveComma({0}().getTypes(), _odsPrinter, "
2589 "[&](::mlir::TypeRange types) {{ _odsPrinter << \"(\" << "
2590 "types << \")\"; });\n",
2591 op.getGetterName(operand->getVar()->name));
2592 return;
2595 const NamedTypeConstraint *var = nullptr;
2597 if (auto *operand = dyn_cast<OperandVariable>(dir->getArg()))
2598 var = operand->getVar();
2599 else if (auto *operand = dyn_cast<ResultVariable>(dir->getArg()))
2600 var = operand->getVar();
2602 if (var && !var->isVariadicOfVariadic() && !var->isVariadic() &&
2603 !var->isOptional()) {
2604 StringRef cppType = var->constraint.getCppType();
2605 if (dir->shouldBeQualified()) {
2606 body << " _odsPrinter << " << op.getGetterName(var->name)
2607 << "().getType();\n";
2608 return;
2610 body << " {\n"
2611 << " auto type = " << op.getGetterName(var->name)
2612 << "().getType();\n"
2613 << " if (auto validType = ::llvm::dyn_cast<" << cppType
2614 << ">(type))\n"
2615 << " _odsPrinter.printStrippedAttrOrType(validType);\n"
2616 << " else\n"
2617 << " _odsPrinter << type;\n"
2618 << " }\n";
2619 return;
2621 body << " _odsPrinter << ";
2622 genTypeOperandPrinter(dir->getArg(), op, body, /*useArrayRef=*/false)
2623 << ";\n";
2624 } else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
2625 body << " _odsPrinter.printFunctionalType(";
2626 genTypeOperandPrinter(dir->getInputs(), op, body) << ", ";
2627 genTypeOperandPrinter(dir->getResults(), op, body) << ");\n";
2628 } else {
2629 llvm_unreachable("unknown format element");
2633 void OperationFormat::genPrinter(Operator &op, OpClass &opClass) {
2634 auto *method = opClass.addMethod(
2635 "void", "print",
2636 MethodParameter("::mlir::OpAsmPrinter &", "_odsPrinter"));
2637 auto &body = method->body();
2639 // Flags for if we should emit a space, and if the last element was
2640 // punctuation.
2641 bool shouldEmitSpace = true, lastWasPunctuation = false;
2642 for (FormatElement *element : elements)
2643 genElementPrinter(element, body, op, shouldEmitSpace, lastWasPunctuation);
2646 //===----------------------------------------------------------------------===//
2647 // OpFormatParser
2648 //===----------------------------------------------------------------------===//
2650 /// Function to find an element within the given range that has the same name as
2651 /// 'name'.
2652 template <typename RangeT>
2653 static auto findArg(RangeT &&range, StringRef name) {
2654 auto it = llvm::find_if(range, [=](auto &arg) { return arg.name == name; });
2655 return it != range.end() ? &*it : nullptr;
2658 namespace {
2659 /// This class implements a parser for an instance of an operation assembly
2660 /// format.
2661 class OpFormatParser : public FormatParser {
2662 public:
2663 OpFormatParser(llvm::SourceMgr &mgr, OperationFormat &format, Operator &op)
2664 : FormatParser(mgr, op.getLoc()[0]), fmt(format), op(op),
2665 seenOperandTypes(op.getNumOperands()),
2666 seenResultTypes(op.getNumResults()) {}
2668 protected:
2669 /// Verify the format elements.
2670 LogicalResult verify(SMLoc loc, ArrayRef<FormatElement *> elements) override;
2671 /// Verify the arguments to a custom directive.
2672 LogicalResult
2673 verifyCustomDirectiveArguments(SMLoc loc,
2674 ArrayRef<FormatElement *> arguments) override;
2675 /// Verify the elements of an optional group.
2676 LogicalResult verifyOptionalGroupElements(SMLoc loc,
2677 ArrayRef<FormatElement *> elements,
2678 FormatElement *anchor) override;
2679 LogicalResult verifyOptionalGroupElement(SMLoc loc, FormatElement *element,
2680 bool isAnchor);
2682 LogicalResult markQualified(SMLoc loc, FormatElement *element) override;
2684 /// Parse an operation variable.
2685 FailureOr<FormatElement *> parseVariableImpl(SMLoc loc, StringRef name,
2686 Context ctx) override;
2687 /// Parse an operation format directive.
2688 FailureOr<FormatElement *>
2689 parseDirectiveImpl(SMLoc loc, FormatToken::Kind kind, Context ctx) override;
2691 private:
2692 /// This struct represents a type resolution instance. It includes a specific
2693 /// type as well as an optional transformer to apply to that type in order to
2694 /// properly resolve the type of a variable.
2695 struct TypeResolutionInstance {
2696 ConstArgument resolver;
2697 std::optional<StringRef> transformer;
2700 /// Verify the state of operation attributes within the format.
2701 LogicalResult verifyAttributes(SMLoc loc, ArrayRef<FormatElement *> elements);
2703 /// Verify that attributes elements aren't followed by colon literals.
2704 LogicalResult verifyAttributeColonType(SMLoc loc,
2705 ArrayRef<FormatElement *> elements);
2706 /// Verify that the attribute dictionary directive isn't followed by a region.
2707 LogicalResult verifyAttrDictRegion(SMLoc loc,
2708 ArrayRef<FormatElement *> elements);
2710 /// Verify the state of operation operands within the format.
2711 LogicalResult
2712 verifyOperands(SMLoc loc,
2713 StringMap<TypeResolutionInstance> &variableTyResolver);
2715 /// Verify the state of operation regions within the format.
2716 LogicalResult verifyRegions(SMLoc loc);
2718 /// Verify the state of operation results within the format.
2719 LogicalResult
2720 verifyResults(SMLoc loc,
2721 StringMap<TypeResolutionInstance> &variableTyResolver);
2723 /// Verify the state of operation successors within the format.
2724 LogicalResult verifySuccessors(SMLoc loc);
2726 LogicalResult verifyOIListElements(SMLoc loc,
2727 ArrayRef<FormatElement *> elements);
2729 /// Given the values of an `AllTypesMatch` trait, check for inferable type
2730 /// resolution.
2731 void handleAllTypesMatchConstraint(
2732 ArrayRef<StringRef> values,
2733 StringMap<TypeResolutionInstance> &variableTyResolver);
2734 /// Check for inferable type resolution given all operands, and or results,
2735 /// have the same type. If 'includeResults' is true, the results also have the
2736 /// same type as all of the operands.
2737 void handleSameTypesConstraint(
2738 StringMap<TypeResolutionInstance> &variableTyResolver,
2739 bool includeResults);
2740 /// Check for inferable type resolution based on another operand, result, or
2741 /// attribute.
2742 void handleTypesMatchConstraint(
2743 StringMap<TypeResolutionInstance> &variableTyResolver, const Record &def);
2745 /// Returns an argument or attribute with the given name that has been seen
2746 /// within the format.
2747 ConstArgument findSeenArg(StringRef name);
2749 /// Parse the various different directives.
2750 FailureOr<FormatElement *> parsePropDictDirective(SMLoc loc, Context context);
2751 FailureOr<FormatElement *> parseAttrDictDirective(SMLoc loc, Context context,
2752 bool withKeyword);
2753 FailureOr<FormatElement *> parseFunctionalTypeDirective(SMLoc loc,
2754 Context context);
2755 FailureOr<FormatElement *> parseOIListDirective(SMLoc loc, Context context);
2756 LogicalResult verifyOIListParsingElement(FormatElement *element, SMLoc loc);
2757 FailureOr<FormatElement *> parseOperandsDirective(SMLoc loc, Context context);
2758 FailureOr<FormatElement *> parseRegionsDirective(SMLoc loc, Context context);
2759 FailureOr<FormatElement *> parseResultsDirective(SMLoc loc, Context context);
2760 FailureOr<FormatElement *> parseSuccessorsDirective(SMLoc loc,
2761 Context context);
2762 FailureOr<FormatElement *> parseTypeDirective(SMLoc loc, Context context);
2763 FailureOr<FormatElement *> parseTypeDirectiveOperand(SMLoc loc,
2764 bool isRefChild = false);
2766 //===--------------------------------------------------------------------===//
2767 // Fields
2768 //===--------------------------------------------------------------------===//
2770 OperationFormat &fmt;
2771 Operator &op;
2773 // The following are various bits of format state used for verification
2774 // during parsing.
2775 bool hasAttrDict = false;
2776 bool hasPropDict = false;
2777 bool hasAllRegions = false, hasAllSuccessors = false;
2778 bool canInferResultTypes = false;
2779 llvm::SmallBitVector seenOperandTypes, seenResultTypes;
2780 llvm::SmallSetVector<const NamedAttribute *, 8> seenAttrs;
2781 llvm::DenseSet<const NamedTypeConstraint *> seenOperands;
2782 llvm::DenseSet<const NamedRegion *> seenRegions;
2783 llvm::DenseSet<const NamedSuccessor *> seenSuccessors;
2784 llvm::SmallSetVector<const NamedProperty *, 8> seenProperties;
2786 } // namespace
2788 LogicalResult OpFormatParser::verify(SMLoc loc,
2789 ArrayRef<FormatElement *> elements) {
2790 // Check that the attribute dictionary is in the format.
2791 if (!hasAttrDict)
2792 return emitError(loc, "'attr-dict' directive not found in "
2793 "custom assembly format");
2795 // Check for any type traits that we can use for inferring types.
2796 StringMap<TypeResolutionInstance> variableTyResolver;
2797 for (const Trait &trait : op.getTraits()) {
2798 const Record &def = trait.getDef();
2799 if (def.isSubClassOf("AllTypesMatch")) {
2800 handleAllTypesMatchConstraint(def.getValueAsListOfStrings("values"),
2801 variableTyResolver);
2802 } else if (def.getName() == "SameTypeOperands") {
2803 handleSameTypesConstraint(variableTyResolver, /*includeResults=*/false);
2804 } else if (def.getName() == "SameOperandsAndResultType") {
2805 handleSameTypesConstraint(variableTyResolver, /*includeResults=*/true);
2806 } else if (def.isSubClassOf("TypesMatchWith")) {
2807 handleTypesMatchConstraint(variableTyResolver, def);
2808 } else if (!op.allResultTypesKnown()) {
2809 // This doesn't check the name directly to handle
2810 // DeclareOpInterfaceMethods<InferTypeOpInterface>
2811 // and the like.
2812 // TODO: Add hasCppInterface check.
2813 if (auto name = def.getValueAsOptionalString("cppInterfaceName")) {
2814 if (*name == "InferTypeOpInterface" &&
2815 def.getValueAsString("cppNamespace") == "::mlir")
2816 canInferResultTypes = true;
2821 // Verify the state of the various operation components.
2822 if (failed(verifyAttributes(loc, elements)) ||
2823 failed(verifyResults(loc, variableTyResolver)) ||
2824 failed(verifyOperands(loc, variableTyResolver)) ||
2825 failed(verifyRegions(loc)) || failed(verifySuccessors(loc)) ||
2826 failed(verifyOIListElements(loc, elements)))
2827 return failure();
2829 // Collect the set of used attributes in the format.
2830 fmt.usedAttributes = std::move(seenAttrs);
2831 fmt.usedProperties = std::move(seenProperties);
2833 // Set whether prop-dict is used in the format
2834 fmt.hasPropDict = hasPropDict;
2835 return success();
2838 LogicalResult
2839 OpFormatParser::verifyAttributes(SMLoc loc,
2840 ArrayRef<FormatElement *> elements) {
2841 // Check that there are no `:` literals after an attribute without a constant
2842 // type. The attribute grammar contains an optional trailing colon type, which
2843 // can lead to unexpected and generally unintended behavior. Given that, it is
2844 // better to just error out here instead.
2845 if (failed(verifyAttributeColonType(loc, elements)))
2846 return failure();
2847 // Check that there are no region variables following an attribute dicitonary.
2848 // Both start with `{` and so the optional attribute dictionary can cause
2849 // format ambiguities.
2850 if (failed(verifyAttrDictRegion(loc, elements)))
2851 return failure();
2853 // Check for VariadicOfVariadic variables. The segment attribute of those
2854 // variables will be infered.
2855 for (const NamedTypeConstraint *var : seenOperands) {
2856 if (var->constraint.isVariadicOfVariadic()) {
2857 fmt.inferredAttributes.insert(
2858 var->constraint.getVariadicOfVariadicSegmentSizeAttr());
2862 return success();
2865 /// Returns whether the single format element is optionally parsed.
2866 static bool isOptionallyParsed(FormatElement *el) {
2867 if (auto *attrVar = dyn_cast<AttributeVariable>(el)) {
2868 Attribute attr = attrVar->getVar()->attr;
2869 return attr.isOptional() || attr.hasDefaultValue();
2871 if (auto *propVar = dyn_cast<PropertyVariable>(el)) {
2872 const Property &prop = propVar->getVar()->prop;
2873 return prop.hasDefaultValue() && prop.hasOptionalParser();
2875 if (auto *operandVar = dyn_cast<OperandVariable>(el)) {
2876 const NamedTypeConstraint *operand = operandVar->getVar();
2877 return operand->isOptional() || operand->isVariadic() ||
2878 operand->isVariadicOfVariadic();
2880 if (auto *successorVar = dyn_cast<SuccessorVariable>(el))
2881 return successorVar->getVar()->isVariadic();
2882 if (auto *regionVar = dyn_cast<RegionVariable>(el))
2883 return regionVar->getVar()->isVariadic();
2884 return isa<WhitespaceElement, AttrDictDirective>(el);
2887 /// Scan the given range of elements from the start for an invalid format
2888 /// element that satisfies `isInvalid`, skipping any optionally-parsed elements.
2889 /// If an optional group is encountered, this function recurses into the 'then'
2890 /// and 'else' elements to check if they are invalid. Returns `success` if the
2891 /// range is known to be valid or `std::nullopt` if scanning reached the end.
2893 /// Since the guard element of an optional group is required, this function
2894 /// accepts an optional element pointer to mark it as required.
2895 static std::optional<LogicalResult> checkRangeForElement(
2896 FormatElement *base,
2897 function_ref<bool(FormatElement *, FormatElement *)> isInvalid,
2898 iterator_range<ArrayRef<FormatElement *>::iterator> elementRange,
2899 FormatElement *optionalGuard = nullptr) {
2900 for (FormatElement *element : elementRange) {
2901 // If we encounter an invalid element, return an error.
2902 if (isInvalid(base, element))
2903 return failure();
2905 // Recurse on optional groups.
2906 if (auto *optional = dyn_cast<OptionalElement>(element)) {
2907 if (std::optional<LogicalResult> result = checkRangeForElement(
2908 base, isInvalid, optional->getThenElements(),
2909 // The optional group guard is required for the group.
2910 optional->getThenElements().front()))
2911 if (failed(*result))
2912 return failure();
2913 if (std::optional<LogicalResult> result = checkRangeForElement(
2914 base, isInvalid, optional->getElseElements()))
2915 if (failed(*result))
2916 return failure();
2917 // Skip the optional group.
2918 continue;
2921 // Skip optionally parsed elements.
2922 if (element != optionalGuard && isOptionallyParsed(element))
2923 continue;
2925 // We found a closing element that is valid.
2926 return success();
2928 // Return std::nullopt to indicate that we reached the end.
2929 return std::nullopt;
2932 /// For the given elements, check whether any attributes are followed by a colon
2933 /// literal, resulting in an ambiguous assembly format. Returns a non-null
2934 /// attribute if verification of said attribute reached the end of the range.
2935 /// Returns null if all attribute elements are verified.
2936 static FailureOr<FormatElement *> verifyAdjacentElements(
2937 function_ref<bool(FormatElement *)> isBase,
2938 function_ref<bool(FormatElement *, FormatElement *)> isInvalid,
2939 ArrayRef<FormatElement *> elements) {
2940 for (auto *it = elements.begin(), *e = elements.end(); it != e; ++it) {
2941 // The current attribute being verified.
2942 FormatElement *base;
2944 if (isBase(*it)) {
2945 base = *it;
2946 } else if (auto *optional = dyn_cast<OptionalElement>(*it)) {
2947 // Recurse on optional groups.
2948 FailureOr<FormatElement *> thenResult = verifyAdjacentElements(
2949 isBase, isInvalid, optional->getThenElements());
2950 if (failed(thenResult))
2951 return failure();
2952 FailureOr<FormatElement *> elseResult = verifyAdjacentElements(
2953 isBase, isInvalid, optional->getElseElements());
2954 if (failed(elseResult))
2955 return failure();
2956 // If either optional group has an unverified attribute, save it.
2957 // Otherwise, move on to the next element.
2958 if (!(base = *thenResult) && !(base = *elseResult))
2959 continue;
2960 } else {
2961 continue;
2964 // Verify subsequent elements for potential ambiguities.
2965 if (std::optional<LogicalResult> result =
2966 checkRangeForElement(base, isInvalid, {std::next(it), e})) {
2967 if (failed(*result))
2968 return failure();
2969 } else {
2970 // Since we reached the end, return the attribute as unverified.
2971 return base;
2974 // All attribute elements are known to be verified.
2975 return nullptr;
2978 LogicalResult
2979 OpFormatParser::verifyAttributeColonType(SMLoc loc,
2980 ArrayRef<FormatElement *> elements) {
2981 auto isBase = [](FormatElement *el) {
2982 auto *attr = dyn_cast<AttributeVariable>(el);
2983 if (!attr)
2984 return false;
2985 // Check only attributes without type builders or that are known to call
2986 // the generic attribute parser.
2987 return !attr->getTypeBuilder() &&
2988 (attr->shouldBeQualified() ||
2989 attr->getVar()->attr.getStorageType() == "::mlir::Attribute");
2991 auto isInvalid = [&](FormatElement *base, FormatElement *el) {
2992 auto *literal = dyn_cast<LiteralElement>(el);
2993 if (!literal || literal->getSpelling() != ":")
2994 return false;
2995 // If we encounter `:`, the range is known to be invalid.
2996 (void)emitError(
2997 loc, formatv("format ambiguity caused by `:` literal found after "
2998 "attribute `{0}` which does not have a buildable type",
2999 cast<AttributeVariable>(base)->getVar()->name));
3000 return true;
3002 return verifyAdjacentElements(isBase, isInvalid, elements);
3005 LogicalResult
3006 OpFormatParser::verifyAttrDictRegion(SMLoc loc,
3007 ArrayRef<FormatElement *> elements) {
3008 auto isBase = [](FormatElement *el) {
3009 if (auto *attrDict = dyn_cast<AttrDictDirective>(el))
3010 return !attrDict->isWithKeyword();
3011 return false;
3013 auto isInvalid = [&](FormatElement *base, FormatElement *el) {
3014 auto *region = dyn_cast<RegionVariable>(el);
3015 if (!region)
3016 return false;
3017 (void)emitErrorAndNote(
3018 loc,
3019 formatv("format ambiguity caused by `attr-dict` directive "
3020 "followed by region `{0}`",
3021 region->getVar()->name),
3022 "try using `attr-dict-with-keyword` instead");
3023 return true;
3025 return verifyAdjacentElements(isBase, isInvalid, elements);
3028 LogicalResult OpFormatParser::verifyOperands(
3029 SMLoc loc, StringMap<TypeResolutionInstance> &variableTyResolver) {
3030 // Check that all of the operands are within the format, and their types can
3031 // be inferred.
3032 auto &buildableTypes = fmt.buildableTypes;
3033 for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
3034 NamedTypeConstraint &operand = op.getOperand(i);
3036 // Check that the operand itself is in the format.
3037 if (!fmt.allOperands && !seenOperands.count(&operand)) {
3038 return emitErrorAndNote(loc,
3039 "operand #" + Twine(i) + ", named '" +
3040 operand.name + "', not found",
3041 "suggest adding a '$" + operand.name +
3042 "' directive to the custom assembly format");
3045 // Check that the operand type is in the format, or that it can be inferred.
3046 if (fmt.allOperandTypes || seenOperandTypes.test(i))
3047 continue;
3049 // Check to see if we can infer this type from another variable.
3050 auto varResolverIt = variableTyResolver.find(op.getOperand(i).name);
3051 if (varResolverIt != variableTyResolver.end()) {
3052 TypeResolutionInstance &resolver = varResolverIt->second;
3053 fmt.operandTypes[i].setResolver(resolver.resolver, resolver.transformer);
3054 continue;
3057 // Similarly to results, allow a custom builder for resolving the type if
3058 // we aren't using the 'operands' directive.
3059 std::optional<StringRef> builder = operand.constraint.getBuilderCall();
3060 if (!builder || (fmt.allOperands && operand.isVariableLength())) {
3061 return emitErrorAndNote(
3062 loc,
3063 "type of operand #" + Twine(i) + ", named '" + operand.name +
3064 "', is not buildable and a buildable type cannot be inferred",
3065 "suggest adding a type constraint to the operation or adding a "
3066 "'type($" +
3067 operand.name + ")' directive to the " + "custom assembly format");
3069 auto it = buildableTypes.insert({*builder, buildableTypes.size()});
3070 fmt.operandTypes[i].setBuilderIdx(it.first->second);
3072 return success();
3075 LogicalResult OpFormatParser::verifyRegions(SMLoc loc) {
3076 // Check that all of the regions are within the format.
3077 if (hasAllRegions)
3078 return success();
3080 for (unsigned i = 0, e = op.getNumRegions(); i != e; ++i) {
3081 const NamedRegion &region = op.getRegion(i);
3082 if (!seenRegions.count(&region)) {
3083 return emitErrorAndNote(loc,
3084 "region #" + Twine(i) + ", named '" +
3085 region.name + "', not found",
3086 "suggest adding a '$" + region.name +
3087 "' directive to the custom assembly format");
3090 return success();
3093 LogicalResult OpFormatParser::verifyResults(
3094 SMLoc loc, StringMap<TypeResolutionInstance> &variableTyResolver) {
3095 // If we format all of the types together, there is nothing to check.
3096 if (fmt.allResultTypes)
3097 return success();
3099 // If no result types are specified and we can infer them, infer all result
3100 // types
3101 if (op.getNumResults() > 0 && seenResultTypes.count() == 0 &&
3102 canInferResultTypes) {
3103 fmt.infersResultTypes = true;
3104 return success();
3107 // Check that all of the result types can be inferred.
3108 auto &buildableTypes = fmt.buildableTypes;
3109 for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
3110 if (seenResultTypes.test(i))
3111 continue;
3113 // Check to see if we can infer this type from another variable.
3114 auto varResolverIt = variableTyResolver.find(op.getResultName(i));
3115 if (varResolverIt != variableTyResolver.end()) {
3116 TypeResolutionInstance resolver = varResolverIt->second;
3117 fmt.resultTypes[i].setResolver(resolver.resolver, resolver.transformer);
3118 continue;
3121 // If the result is not variable length, allow for the case where the type
3122 // has a builder that we can use.
3123 NamedTypeConstraint &result = op.getResult(i);
3124 std::optional<StringRef> builder = result.constraint.getBuilderCall();
3125 if (!builder || result.isVariableLength()) {
3126 return emitErrorAndNote(
3127 loc,
3128 "type of result #" + Twine(i) + ", named '" + result.name +
3129 "', is not buildable and a buildable type cannot be inferred",
3130 "suggest adding a type constraint to the operation or adding a "
3131 "'type($" +
3132 result.name + ")' directive to the " + "custom assembly format");
3134 // Note in the format that this result uses the custom builder.
3135 auto it = buildableTypes.insert({*builder, buildableTypes.size()});
3136 fmt.resultTypes[i].setBuilderIdx(it.first->second);
3138 return success();
3141 LogicalResult OpFormatParser::verifySuccessors(SMLoc loc) {
3142 // Check that all of the successors are within the format.
3143 if (hasAllSuccessors)
3144 return success();
3146 for (unsigned i = 0, e = op.getNumSuccessors(); i != e; ++i) {
3147 const NamedSuccessor &successor = op.getSuccessor(i);
3148 if (!seenSuccessors.count(&successor)) {
3149 return emitErrorAndNote(loc,
3150 "successor #" + Twine(i) + ", named '" +
3151 successor.name + "', not found",
3152 "suggest adding a '$" + successor.name +
3153 "' directive to the custom assembly format");
3156 return success();
3159 LogicalResult
3160 OpFormatParser::verifyOIListElements(SMLoc loc,
3161 ArrayRef<FormatElement *> elements) {
3162 // Check that all of the successors are within the format.
3163 SmallVector<StringRef> prohibitedLiterals;
3164 for (FormatElement *it : elements) {
3165 if (auto *oilist = dyn_cast<OIListElement>(it)) {
3166 if (!prohibitedLiterals.empty()) {
3167 // We just saw an oilist element in last iteration. Literals should not
3168 // match.
3169 for (LiteralElement *literal : oilist->getLiteralElements()) {
3170 if (find(prohibitedLiterals, literal->getSpelling()) !=
3171 prohibitedLiterals.end()) {
3172 return emitError(
3173 loc, "format ambiguity because " + literal->getSpelling() +
3174 " is used in two adjacent oilist elements.");
3178 for (LiteralElement *literal : oilist->getLiteralElements())
3179 prohibitedLiterals.push_back(literal->getSpelling());
3180 } else if (auto *literal = dyn_cast<LiteralElement>(it)) {
3181 if (find(prohibitedLiterals, literal->getSpelling()) !=
3182 prohibitedLiterals.end()) {
3183 return emitError(
3184 loc,
3185 "format ambiguity because " + literal->getSpelling() +
3186 " is used both in oilist element and the adjacent literal.");
3188 prohibitedLiterals.clear();
3189 } else {
3190 prohibitedLiterals.clear();
3193 return success();
3196 void OpFormatParser::handleAllTypesMatchConstraint(
3197 ArrayRef<StringRef> values,
3198 StringMap<TypeResolutionInstance> &variableTyResolver) {
3199 for (unsigned i = 0, e = values.size(); i != e; ++i) {
3200 // Check to see if this value matches a resolved operand or result type.
3201 ConstArgument arg = findSeenArg(values[i]);
3202 if (!arg)
3203 continue;
3205 // Mark this value as the type resolver for the other variables.
3206 for (unsigned j = 0; j != i; ++j)
3207 variableTyResolver[values[j]] = {arg, std::nullopt};
3208 for (unsigned j = i + 1; j != e; ++j)
3209 variableTyResolver[values[j]] = {arg, std::nullopt};
3213 void OpFormatParser::handleSameTypesConstraint(
3214 StringMap<TypeResolutionInstance> &variableTyResolver,
3215 bool includeResults) {
3216 const NamedTypeConstraint *resolver = nullptr;
3217 int resolvedIt = -1;
3219 // Check to see if there is an operand or result to use for the resolution.
3220 if ((resolvedIt = seenOperandTypes.find_first()) != -1)
3221 resolver = &op.getOperand(resolvedIt);
3222 else if (includeResults && (resolvedIt = seenResultTypes.find_first()) != -1)
3223 resolver = &op.getResult(resolvedIt);
3224 else
3225 return;
3227 // Set the resolvers for each operand and result.
3228 for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i)
3229 if (!seenOperandTypes.test(i))
3230 variableTyResolver[op.getOperand(i).name] = {resolver, std::nullopt};
3231 if (includeResults) {
3232 for (unsigned i = 0, e = op.getNumResults(); i != e; ++i)
3233 if (!seenResultTypes.test(i))
3234 variableTyResolver[op.getResultName(i)] = {resolver, std::nullopt};
3238 void OpFormatParser::handleTypesMatchConstraint(
3239 StringMap<TypeResolutionInstance> &variableTyResolver, const Record &def) {
3240 StringRef lhsName = def.getValueAsString("lhs");
3241 StringRef rhsName = def.getValueAsString("rhs");
3242 StringRef transformer = def.getValueAsString("transformer");
3243 if (ConstArgument arg = findSeenArg(lhsName))
3244 variableTyResolver[rhsName] = {arg, transformer};
3247 ConstArgument OpFormatParser::findSeenArg(StringRef name) {
3248 if (const NamedTypeConstraint *arg = findArg(op.getOperands(), name))
3249 return seenOperandTypes.test(arg - op.operand_begin()) ? arg : nullptr;
3250 if (const NamedTypeConstraint *arg = findArg(op.getResults(), name))
3251 return seenResultTypes.test(arg - op.result_begin()) ? arg : nullptr;
3252 if (const NamedAttribute *attr = findArg(op.getAttributes(), name))
3253 return seenAttrs.count(attr) ? attr : nullptr;
3254 return nullptr;
3257 FailureOr<FormatElement *>
3258 OpFormatParser::parseVariableImpl(SMLoc loc, StringRef name, Context ctx) {
3259 // Check that the parsed argument is something actually registered on the op.
3260 // Attributes
3261 if (const NamedAttribute *attr = findArg(op.getAttributes(), name)) {
3262 if (ctx == TypeDirectiveContext)
3263 return emitError(
3264 loc, "attributes cannot be used as children to a `type` directive");
3265 if (ctx == RefDirectiveContext) {
3266 if (!seenAttrs.count(attr))
3267 return emitError(loc, "attribute '" + name +
3268 "' must be bound before it is referenced");
3269 } else if (!seenAttrs.insert(attr)) {
3270 return emitError(loc, "attribute '" + name + "' is already bound");
3273 return create<AttributeVariable>(attr);
3276 if (const NamedProperty *property = findArg(op.getProperties(), name)) {
3277 if (ctx == TypeDirectiveContext)
3278 return emitError(
3279 loc, "properties cannot be used as children to a `type` directive");
3280 if (ctx == RefDirectiveContext) {
3281 if (!seenProperties.count(property))
3282 return emitError(loc, "property '" + name +
3283 "' must be bound before it is referenced");
3284 } else {
3285 if (!seenProperties.insert(property))
3286 return emitError(loc, "property '" + name + "' is already bound");
3289 return create<PropertyVariable>(property);
3292 // Operands
3293 if (const NamedTypeConstraint *operand = findArg(op.getOperands(), name)) {
3294 if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
3295 if (fmt.allOperands || !seenOperands.insert(operand).second)
3296 return emitError(loc, "operand '" + name + "' is already bound");
3297 } else if (ctx == RefDirectiveContext && !seenOperands.count(operand)) {
3298 return emitError(loc, "operand '" + name +
3299 "' must be bound before it is referenced");
3301 return create<OperandVariable>(operand);
3303 // Regions
3304 if (const NamedRegion *region = findArg(op.getRegions(), name)) {
3305 if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
3306 if (hasAllRegions || !seenRegions.insert(region).second)
3307 return emitError(loc, "region '" + name + "' is already bound");
3308 } else if (ctx == RefDirectiveContext && !seenRegions.count(region)) {
3309 return emitError(loc, "region '" + name +
3310 "' must be bound before it is referenced");
3311 } else {
3312 return emitError(loc, "regions can only be used at the top level");
3314 return create<RegionVariable>(region);
3316 // Results.
3317 if (const auto *result = findArg(op.getResults(), name)) {
3318 if (ctx != TypeDirectiveContext)
3319 return emitError(loc, "result variables can can only be used as a child "
3320 "to a 'type' directive");
3321 return create<ResultVariable>(result);
3323 // Successors.
3324 if (const auto *successor = findArg(op.getSuccessors(), name)) {
3325 if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
3326 if (hasAllSuccessors || !seenSuccessors.insert(successor).second)
3327 return emitError(loc, "successor '" + name + "' is already bound");
3328 } else if (ctx == RefDirectiveContext && !seenSuccessors.count(successor)) {
3329 return emitError(loc, "successor '" + name +
3330 "' must be bound before it is referenced");
3331 } else {
3332 return emitError(loc, "successors can only be used at the top level");
3335 return create<SuccessorVariable>(successor);
3337 return emitError(loc, "expected variable to refer to an argument, region, "
3338 "result, or successor");
3341 FailureOr<FormatElement *>
3342 OpFormatParser::parseDirectiveImpl(SMLoc loc, FormatToken::Kind kind,
3343 Context ctx) {
3344 switch (kind) {
3345 case FormatToken::kw_prop_dict:
3346 return parsePropDictDirective(loc, ctx);
3347 case FormatToken::kw_attr_dict:
3348 return parseAttrDictDirective(loc, ctx,
3349 /*withKeyword=*/false);
3350 case FormatToken::kw_attr_dict_w_keyword:
3351 return parseAttrDictDirective(loc, ctx,
3352 /*withKeyword=*/true);
3353 case FormatToken::kw_functional_type:
3354 return parseFunctionalTypeDirective(loc, ctx);
3355 case FormatToken::kw_operands:
3356 return parseOperandsDirective(loc, ctx);
3357 case FormatToken::kw_regions:
3358 return parseRegionsDirective(loc, ctx);
3359 case FormatToken::kw_results:
3360 return parseResultsDirective(loc, ctx);
3361 case FormatToken::kw_successors:
3362 return parseSuccessorsDirective(loc, ctx);
3363 case FormatToken::kw_type:
3364 return parseTypeDirective(loc, ctx);
3365 case FormatToken::kw_oilist:
3366 return parseOIListDirective(loc, ctx);
3368 default:
3369 return emitError(loc, "unsupported directive kind");
3373 FailureOr<FormatElement *>
3374 OpFormatParser::parseAttrDictDirective(SMLoc loc, Context context,
3375 bool withKeyword) {
3376 if (context == TypeDirectiveContext)
3377 return emitError(loc, "'attr-dict' directive can only be used as a "
3378 "top-level directive");
3380 if (context == RefDirectiveContext) {
3381 if (!hasAttrDict)
3382 return emitError(loc, "'ref' of 'attr-dict' is not bound by a prior "
3383 "'attr-dict' directive");
3385 // Otherwise, this is a top-level context.
3386 } else {
3387 if (hasAttrDict)
3388 return emitError(loc, "'attr-dict' directive has already been seen");
3389 hasAttrDict = true;
3392 return create<AttrDictDirective>(withKeyword);
3395 FailureOr<FormatElement *>
3396 OpFormatParser::parsePropDictDirective(SMLoc loc, Context context) {
3397 if (context == TypeDirectiveContext)
3398 return emitError(loc, "'prop-dict' directive can only be used as a "
3399 "top-level directive");
3401 if (context == RefDirectiveContext)
3402 llvm::report_fatal_error("'ref' of 'prop-dict' unsupported");
3403 // Otherwise, this is a top-level context.
3405 if (hasPropDict)
3406 return emitError(loc, "'prop-dict' directive has already been seen");
3407 hasPropDict = true;
3409 return create<PropDictDirective>();
3412 LogicalResult OpFormatParser::verifyCustomDirectiveArguments(
3413 SMLoc loc, ArrayRef<FormatElement *> arguments) {
3414 for (FormatElement *argument : arguments) {
3415 if (!isa<AttrDictDirective, PropDictDirective, AttributeVariable,
3416 OperandVariable, PropertyVariable, RefDirective, RegionVariable,
3417 SuccessorVariable, StringElement, TypeDirective>(argument)) {
3418 // TODO: FormatElement should have location info attached.
3419 return emitError(loc, "only variables and types may be used as "
3420 "parameters to a custom directive");
3422 if (auto *type = dyn_cast<TypeDirective>(argument)) {
3423 if (!isa<OperandVariable, ResultVariable>(type->getArg())) {
3424 return emitError(loc, "type directives within a custom directive may "
3425 "only refer to variables");
3429 return success();
3432 FailureOr<FormatElement *>
3433 OpFormatParser::parseFunctionalTypeDirective(SMLoc loc, Context context) {
3434 if (context != TopLevelContext)
3435 return emitError(
3436 loc, "'functional-type' is only valid as a top-level directive");
3438 // Parse the main operand.
3439 FailureOr<FormatElement *> inputs, results;
3440 if (failed(parseToken(FormatToken::l_paren,
3441 "expected '(' before argument list")) ||
3442 failed(inputs = parseTypeDirectiveOperand(loc)) ||
3443 failed(parseToken(FormatToken::comma,
3444 "expected ',' after inputs argument")) ||
3445 failed(results = parseTypeDirectiveOperand(loc)) ||
3446 failed(
3447 parseToken(FormatToken::r_paren, "expected ')' after argument list")))
3448 return failure();
3449 return create<FunctionalTypeDirective>(*inputs, *results);
3452 FailureOr<FormatElement *>
3453 OpFormatParser::parseOperandsDirective(SMLoc loc, Context context) {
3454 if (context == RefDirectiveContext) {
3455 if (!fmt.allOperands)
3456 return emitError(loc, "'ref' of 'operands' is not bound by a prior "
3457 "'operands' directive");
3459 } else if (context == TopLevelContext || context == CustomDirectiveContext) {
3460 if (fmt.allOperands || !seenOperands.empty())
3461 return emitError(loc, "'operands' directive creates overlap in format");
3462 fmt.allOperands = true;
3464 return create<OperandsDirective>();
3467 FailureOr<FormatElement *>
3468 OpFormatParser::parseRegionsDirective(SMLoc loc, Context context) {
3469 if (context == TypeDirectiveContext)
3470 return emitError(loc, "'regions' is only valid as a top-level directive");
3471 if (context == RefDirectiveContext) {
3472 if (!hasAllRegions)
3473 return emitError(loc, "'ref' of 'regions' is not bound by a prior "
3474 "'regions' directive");
3476 // Otherwise, this is a TopLevel directive.
3477 } else {
3478 if (hasAllRegions || !seenRegions.empty())
3479 return emitError(loc, "'regions' directive creates overlap in format");
3480 hasAllRegions = true;
3482 return create<RegionsDirective>();
3485 FailureOr<FormatElement *>
3486 OpFormatParser::parseResultsDirective(SMLoc loc, Context context) {
3487 if (context != TypeDirectiveContext)
3488 return emitError(loc, "'results' directive can can only be used as a child "
3489 "to a 'type' directive");
3490 return create<ResultsDirective>();
3493 FailureOr<FormatElement *>
3494 OpFormatParser::parseSuccessorsDirective(SMLoc loc, Context context) {
3495 if (context == TypeDirectiveContext)
3496 return emitError(loc,
3497 "'successors' is only valid as a top-level directive");
3498 if (context == RefDirectiveContext) {
3499 if (!hasAllSuccessors)
3500 return emitError(loc, "'ref' of 'successors' is not bound by a prior "
3501 "'successors' directive");
3503 // Otherwise, this is a TopLevel directive.
3504 } else {
3505 if (hasAllSuccessors || !seenSuccessors.empty())
3506 return emitError(loc, "'successors' directive creates overlap in format");
3507 hasAllSuccessors = true;
3509 return create<SuccessorsDirective>();
3512 FailureOr<FormatElement *>
3513 OpFormatParser::parseOIListDirective(SMLoc loc, Context context) {
3514 if (failed(parseToken(FormatToken::l_paren,
3515 "expected '(' before oilist argument list")))
3516 return failure();
3517 std::vector<FormatElement *> literalElements;
3518 std::vector<std::vector<FormatElement *>> parsingElements;
3519 do {
3520 FailureOr<FormatElement *> lelement = parseLiteral(context);
3521 if (failed(lelement))
3522 return failure();
3523 literalElements.push_back(*lelement);
3524 parsingElements.emplace_back();
3525 std::vector<FormatElement *> &currParsingElements = parsingElements.back();
3526 while (peekToken().getKind() != FormatToken::pipe &&
3527 peekToken().getKind() != FormatToken::r_paren) {
3528 FailureOr<FormatElement *> pelement = parseElement(context);
3529 if (failed(pelement) ||
3530 failed(verifyOIListParsingElement(*pelement, loc)))
3531 return failure();
3532 currParsingElements.push_back(*pelement);
3534 if (peekToken().getKind() == FormatToken::pipe) {
3535 consumeToken();
3536 continue;
3538 if (peekToken().getKind() == FormatToken::r_paren) {
3539 consumeToken();
3540 break;
3542 } while (true);
3544 return create<OIListElement>(std::move(literalElements),
3545 std::move(parsingElements));
3548 LogicalResult OpFormatParser::verifyOIListParsingElement(FormatElement *element,
3549 SMLoc loc) {
3550 SmallVector<VariableElement *> vars;
3551 collect(element, vars);
3552 for (VariableElement *elem : vars) {
3553 LogicalResult res =
3554 TypeSwitch<FormatElement *, LogicalResult>(elem)
3555 // Only optional attributes can be within an oilist parsing group.
3556 .Case([&](AttributeVariable *attrEle) {
3557 if (!attrEle->getVar()->attr.isOptional() &&
3558 !attrEle->getVar()->attr.hasDefaultValue())
3559 return emitError(loc, "only optional attributes can be used in "
3560 "an oilist parsing group");
3561 return success();
3563 // Only optional properties can be within an oilist parsing group.
3564 .Case([&](PropertyVariable *propEle) {
3565 if (!propEle->getVar()->prop.hasDefaultValue())
3566 return emitError(
3567 loc,
3568 "only default-valued or optional properties can be used in "
3569 "an olist parsing group");
3570 return success();
3572 // Only optional-like(i.e. variadic) operands can be within an
3573 // oilist parsing group.
3574 .Case([&](OperandVariable *ele) {
3575 if (!ele->getVar()->isVariableLength())
3576 return emitError(loc, "only variable length operands can be "
3577 "used within an oilist parsing group");
3578 return success();
3580 // Only optional-like(i.e. variadic) results can be within an oilist
3581 // parsing group.
3582 .Case([&](ResultVariable *ele) {
3583 if (!ele->getVar()->isVariableLength())
3584 return emitError(loc, "only variable length results can be "
3585 "used within an oilist parsing group");
3586 return success();
3588 .Case([&](RegionVariable *) { return success(); })
3589 .Default([&](FormatElement *) {
3590 return emitError(loc,
3591 "only literals, types, and variables can be "
3592 "used within an oilist group");
3594 if (failed(res))
3595 return failure();
3597 return success();
3600 FailureOr<FormatElement *> OpFormatParser::parseTypeDirective(SMLoc loc,
3601 Context context) {
3602 if (context == TypeDirectiveContext)
3603 return emitError(loc, "'type' cannot be used as a child of another `type`");
3605 bool isRefChild = context == RefDirectiveContext;
3606 FailureOr<FormatElement *> operand;
3607 if (failed(parseToken(FormatToken::l_paren,
3608 "expected '(' before argument list")) ||
3609 failed(operand = parseTypeDirectiveOperand(loc, isRefChild)) ||
3610 failed(
3611 parseToken(FormatToken::r_paren, "expected ')' after argument list")))
3612 return failure();
3614 return create<TypeDirective>(*operand);
3617 LogicalResult OpFormatParser::markQualified(SMLoc loc, FormatElement *element) {
3618 return TypeSwitch<FormatElement *, LogicalResult>(element)
3619 .Case<AttributeVariable, TypeDirective>([](auto *element) {
3620 element->setShouldBeQualified();
3621 return success();
3623 .Default([&](auto *element) {
3624 return this->emitError(
3625 loc,
3626 "'qualified' directive expects an attribute or a `type` directive");
3630 FailureOr<FormatElement *>
3631 OpFormatParser::parseTypeDirectiveOperand(SMLoc loc, bool isRefChild) {
3632 FailureOr<FormatElement *> result = parseElement(TypeDirectiveContext);
3633 if (failed(result))
3634 return failure();
3636 FormatElement *element = *result;
3637 if (isa<LiteralElement>(element))
3638 return emitError(
3639 loc, "'type' directive operand expects variable or directive operand");
3641 if (auto *var = dyn_cast<OperandVariable>(element)) {
3642 unsigned opIdx = var->getVar() - op.operand_begin();
3643 if (!isRefChild && (fmt.allOperandTypes || seenOperandTypes.test(opIdx)))
3644 return emitError(loc, "'type' of '" + var->getVar()->name +
3645 "' is already bound");
3646 if (isRefChild && !(fmt.allOperandTypes || seenOperandTypes.test(opIdx)))
3647 return emitError(loc, "'ref' of 'type($" + var->getVar()->name +
3648 ")' is not bound by a prior 'type' directive");
3649 seenOperandTypes.set(opIdx);
3650 } else if (auto *var = dyn_cast<ResultVariable>(element)) {
3651 unsigned resIdx = var->getVar() - op.result_begin();
3652 if (!isRefChild && (fmt.allResultTypes || seenResultTypes.test(resIdx)))
3653 return emitError(loc, "'type' of '" + var->getVar()->name +
3654 "' is already bound");
3655 if (isRefChild && !(fmt.allResultTypes || seenResultTypes.test(resIdx)))
3656 return emitError(loc, "'ref' of 'type($" + var->getVar()->name +
3657 ")' is not bound by a prior 'type' directive");
3658 seenResultTypes.set(resIdx);
3659 } else if (isa<OperandsDirective>(&*element)) {
3660 if (!isRefChild && (fmt.allOperandTypes || seenOperandTypes.any()))
3661 return emitError(loc, "'operands' 'type' is already bound");
3662 if (isRefChild && !fmt.allOperandTypes)
3663 return emitError(loc, "'ref' of 'type(operands)' is not bound by a prior "
3664 "'type' directive");
3665 fmt.allOperandTypes = true;
3666 } else if (isa<ResultsDirective>(&*element)) {
3667 if (!isRefChild && (fmt.allResultTypes || seenResultTypes.any()))
3668 return emitError(loc, "'results' 'type' is already bound");
3669 if (isRefChild && !fmt.allResultTypes)
3670 return emitError(loc, "'ref' of 'type(results)' is not bound by a prior "
3671 "'type' directive");
3672 fmt.allResultTypes = true;
3673 } else {
3674 return emitError(loc, "invalid argument to 'type' directive");
3676 return element;
3679 LogicalResult OpFormatParser::verifyOptionalGroupElements(
3680 SMLoc loc, ArrayRef<FormatElement *> elements, FormatElement *anchor) {
3681 for (FormatElement *element : elements) {
3682 if (failed(verifyOptionalGroupElement(loc, element, element == anchor)))
3683 return failure();
3685 return success();
3688 LogicalResult OpFormatParser::verifyOptionalGroupElement(SMLoc loc,
3689 FormatElement *element,
3690 bool isAnchor) {
3691 return TypeSwitch<FormatElement *, LogicalResult>(element)
3692 // All attributes can be within the optional group, but only optional
3693 // attributes can be the anchor.
3694 .Case([&](AttributeVariable *attrEle) {
3695 Attribute attr = attrEle->getVar()->attr;
3696 if (isAnchor && !(attr.isOptional() || attr.hasDefaultValue()))
3697 return emitError(loc, "only optional or default-valued attributes "
3698 "can be used to anchor an optional group");
3699 return success();
3701 // All properties can be within the optional group, but only optional
3702 // properties can be the anchor.
3703 .Case([&](PropertyVariable *propEle) {
3704 Property prop = propEle->getVar()->prop;
3705 if (isAnchor && !(prop.hasDefaultValue() && prop.hasOptionalParser()))
3706 return emitError(loc, "only properties with default values "
3707 "that can be optionally parsed "
3708 "can be used to anchor an optional group");
3709 return success();
3711 // Only optional-like(i.e. variadic) operands can be within an optional
3712 // group.
3713 .Case([&](OperandVariable *ele) {
3714 if (!ele->getVar()->isVariableLength())
3715 return emitError(loc, "only variable length operands can be used "
3716 "within an optional group");
3717 return success();
3719 // Only optional-like(i.e. variadic) results can be within an optional
3720 // group.
3721 .Case([&](ResultVariable *ele) {
3722 if (!ele->getVar()->isVariableLength())
3723 return emitError(loc, "only variable length results can be used "
3724 "within an optional group");
3725 return success();
3727 .Case([&](RegionVariable *) {
3728 // TODO: When ODS has proper support for marking "optional" regions, add
3729 // a check here.
3730 return success();
3732 .Case([&](TypeDirective *ele) {
3733 return verifyOptionalGroupElement(loc, ele->getArg(),
3734 /*isAnchor=*/false);
3736 .Case([&](FunctionalTypeDirective *ele) {
3737 if (failed(verifyOptionalGroupElement(loc, ele->getInputs(),
3738 /*isAnchor=*/false)))
3739 return failure();
3740 return verifyOptionalGroupElement(loc, ele->getResults(),
3741 /*isAnchor=*/false);
3743 .Case([&](CustomDirective *ele) {
3744 if (!isAnchor)
3745 return success();
3746 // Verify each child as being valid in an optional group. They are all
3747 // potential anchors if the custom directive was marked as one.
3748 for (FormatElement *child : ele->getArguments()) {
3749 if (isa<RefDirective>(child))
3750 continue;
3751 if (failed(verifyOptionalGroupElement(loc, child, /*isAnchor=*/true)))
3752 return failure();
3754 return success();
3756 // Literals, whitespace, and custom directives may be used, but they can't
3757 // anchor the group.
3758 .Case<LiteralElement, WhitespaceElement, OptionalElement>(
3759 [&](FormatElement *) {
3760 if (isAnchor)
3761 return emitError(loc, "only variables and types can be used "
3762 "to anchor an optional group");
3763 return success();
3765 .Default([&](FormatElement *) {
3766 return emitError(loc, "only literals, types, and variables can be "
3767 "used within an optional group");
3771 //===----------------------------------------------------------------------===//
3772 // Interface
3773 //===----------------------------------------------------------------------===//
3775 void mlir::tblgen::generateOpFormat(const Operator &constOp, OpClass &opClass,
3776 bool hasProperties) {
3777 // TODO: Operator doesn't expose all necessary functionality via
3778 // the const interface.
3779 Operator &op = const_cast<Operator &>(constOp);
3780 if (!op.hasAssemblyFormat())
3781 return;
3783 // Parse the format description.
3784 llvm::SourceMgr mgr;
3785 mgr.AddNewSourceBuffer(
3786 llvm::MemoryBuffer::getMemBuffer(op.getAssemblyFormat()), SMLoc());
3787 OperationFormat format(op, hasProperties);
3788 OpFormatParser parser(mgr, format, op);
3789 FailureOr<std::vector<FormatElement *>> elements = parser.parse();
3790 if (failed(elements)) {
3791 // Exit the process if format errors are treated as fatal.
3792 if (formatErrorIsFatal) {
3793 // Invoke the interrupt handlers to run the file cleanup handlers.
3794 llvm::sys::RunInterruptHandlers();
3795 std::exit(1);
3797 return;
3799 format.elements = std::move(*elements);
3801 // Generate the printer and parser based on the parsed format.
3802 format.genParser(op, opClass);
3803 format.genPrinter(op, opClass);