1 //===- ConcatOutputSection.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ConcatOutputSection.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
14 #include "SyntheticSections.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/BinaryFormat/MachO.h"
18 #include "llvm/Support/ScopedPrinter.h"
19 #include "llvm/Support/TimeProfiler.h"
22 using namespace llvm::MachO
;
24 using namespace lld::macho
;
26 MapVector
<NamePair
, ConcatOutputSection
*> macho::concatOutputSections
;
28 void ConcatOutputSection::addInput(ConcatInputSection
*input
) {
29 assert(input
->parent
== this);
32 flags
= input
->getFlags();
34 align
= std::max(align
, input
->align
);
37 inputs
.push_back(input
);
40 // Branch-range extension can be implemented in two ways, either through ...
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 // that might be chained in multiple hops to reach the desired
44 // destination. On ARM64, as 16 branch islands are needed to hop between
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 // even when it needs excessive hops.
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 // register, followed by a register-indirect branch. Thunks are
50 // constructed to reach any arbitrary address, so need not be
51 // chained. Although thunks need not be chained, a program might need
52 // multiple thunks to the same destination distributed throughout a large
53 // program so that all call sites can have one within range.
55 // The optimal approach is to mix islands for destinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk consists of:
62 // (1) new Defined symbol for the thunk named
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
70 // Nearly-optimal thunk-placement algorithm features:
72 // * Single pass: O(n) on the number of call sites.
74 // * Accounts for the exact space overhead of thunks - no heuristics
76 // * Exploits the full range of call instructions - forward & backward
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 // to its thunk bookkeeper.
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 // distant call sites might be unable to reach the same thunk, so multiple
85 // thunks are necessary to serve all call sites in a very large program. A
86 // thunkInfo stores state for all thunks associated with a particular
89 // (b) input section containing stub code, and
90 // (c) sequence number for the active thunk incarnation.
91 // When an old thunk goes out of range, we increment the sequence number and
92 // create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
94 // * A thunk consists of
95 // (a) a Defined symbol pointing to
96 // (b) an InputSection holding machine code (similar to a MachO stub), and
97 // (c) relocs referencing the real function for fixing up the stub code.
99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
100 // to the inputs vector. We store new thunks via cheap vector append, rather
101 // than costly insertion into the inputs vector.
105 // * During address assignment, MergedInputSection::finalize() examines call
106 // sites by ascending address and creates thunks. When a function is beyond
107 // the range of a call site, we need a thunk. Place it at the largest
108 // available forward address from the call site. Call sites increase
109 // monotonically and thunks are always placed as far forward as possible;
110 // thus, we place thunks at monotonically increasing addresses. Once a thunk
111 // is placed, it and all previous input-section addresses are final.
113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
114 // the inputs and thunks vectors (both ordered by ascending address), which
115 // is simple and cheap.
117 DenseMap
<Symbol
*, ThunkInfo
> lld::macho::thunkMap
;
119 // Determine whether we need thunks, which depends on the target arch -- RISC
120 // (i.e., ARM) generally does because it has limited-range branch/call
121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
122 // thunks for programs so large that branch source & destination addresses
123 // might differ more than the range of branch instruction(s).
124 bool TextOutputSection::needsThunks() const {
125 if (!target
->usesThunks())
127 uint64_t isecAddr
= addr
;
128 for (ConcatInputSection
*isec
: inputs
)
129 isecAddr
= alignToPowerOf2(isecAddr
, isec
->align
) + isec
->getSize();
130 if (isecAddr
- addr
+ in
.stubs
->getSize() <=
131 std::min(target
->backwardBranchRange
, target
->forwardBranchRange
))
133 // Yes, this program is large enough to need thunks.
134 for (ConcatInputSection
*isec
: inputs
) {
135 for (Reloc
&r
: isec
->relocs
) {
136 if (!target
->hasAttr(r
.type
, RelocAttrBits::BRANCH
))
138 auto *sym
= r
.referent
.get
<Symbol
*>();
139 // Pre-populate the thunkMap and memoize call site counts for every
140 // InputSection and ThunkInfo. We do this for the benefit of
141 // estimateStubsInRangeVA().
142 ThunkInfo
&thunkInfo
= thunkMap
[sym
];
143 // Knowing ThunkInfo call site count will help us know whether or not we
144 // might need to create more for this referent at the time we are
145 // estimating distance to __stubs in estimateStubsInRangeVA().
146 ++thunkInfo
.callSiteCount
;
147 // We can avoid work on InputSections that have no BRANCH relocs.
148 isec
->hasCallSites
= true;
154 // Since __stubs is placed after __text, we must estimate the address
155 // beyond which stubs are within range of a simple forward branch.
156 // This is called exactly once, when the last input section has been finalized.
157 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx
) const {
158 // Tally the functions which still have call sites remaining to process,
159 // which yields the maximum number of thunks we might yet place.
160 size_t maxPotentialThunks
= 0;
161 for (auto &tp
: thunkMap
) {
162 ThunkInfo
&ti
= tp
.second
;
163 // This overcounts: Only sections that are in forward jump range from the
164 // currently-active section get finalized, and all input sections are
165 // finalized when estimateStubsInRangeVA() is called. So only backward
166 // jumps will need thunks, but we count all jumps.
167 if (ti
.callSitesUsed
< ti
.callSiteCount
)
168 maxPotentialThunks
+= 1;
170 // Tally the total size of input sections remaining to process.
171 uint64_t isecVA
= inputs
[callIdx
]->getVA();
172 uint64_t isecEnd
= isecVA
;
173 for (size_t i
= callIdx
; i
< inputs
.size(); i
++) {
174 InputSection
*isec
= inputs
[i
];
175 isecEnd
= alignToPowerOf2(isecEnd
, isec
->align
) + isec
->getSize();
177 // Estimate the address after which call sites can safely call stubs
178 // directly rather than through intermediary thunks.
179 uint64_t forwardBranchRange
= target
->forwardBranchRange
;
180 assert(isecEnd
> forwardBranchRange
&&
181 "should not run thunk insertion if all code fits in jump range");
182 assert(isecEnd
- isecVA
<= forwardBranchRange
&&
183 "should only finalize sections in jump range");
184 uint64_t stubsInRangeVA
= isecEnd
+ maxPotentialThunks
* target
->thunkSize
+
185 in
.stubs
->getSize() - forwardBranchRange
;
186 log("thunks = " + std::to_string(thunkMap
.size()) +
187 ", potential = " + std::to_string(maxPotentialThunks
) +
188 ", stubs = " + std::to_string(in
.stubs
->getSize()) + ", isecVA = " +
189 utohexstr(isecVA
) + ", threshold = " + utohexstr(stubsInRangeVA
) +
190 ", isecEnd = " + utohexstr(isecEnd
) +
191 ", tail = " + utohexstr(isecEnd
- isecVA
) +
192 ", slop = " + utohexstr(forwardBranchRange
- (isecEnd
- isecVA
)));
193 return stubsInRangeVA
;
196 void ConcatOutputSection::finalizeOne(ConcatInputSection
*isec
) {
197 size
= alignToPowerOf2(size
, isec
->align
);
198 fileSize
= alignToPowerOf2(fileSize
, isec
->align
);
199 isec
->outSecOff
= size
;
200 isec
->isFinal
= true;
201 size
+= isec
->getSize();
202 fileSize
+= isec
->getFileSize();
205 void ConcatOutputSection::finalizeContents() {
206 for (ConcatInputSection
*isec
: inputs
)
210 void TextOutputSection::finalize() {
211 if (!needsThunks()) {
212 for (ConcatInputSection
*isec
: inputs
)
217 uint64_t forwardBranchRange
= target
->forwardBranchRange
;
218 uint64_t backwardBranchRange
= target
->backwardBranchRange
;
219 uint64_t stubsInRangeVA
= TargetInfo::outOfRangeVA
;
220 size_t thunkSize
= target
->thunkSize
;
221 size_t relocCount
= 0;
222 size_t callSiteCount
= 0;
223 size_t thunkCallCount
= 0;
224 size_t thunkCount
= 0;
226 // Walk all sections in order. Finalize all sections that are less than
227 // forwardBranchRange in front of it.
228 // isecVA is the address of the current section.
229 // addr + size is the start address of the first non-finalized section.
231 // inputs[finalIdx] is for finalization (address-assignment)
233 // Kick-off by ensuring that the first input section has an address
234 for (size_t callIdx
= 0, endIdx
= inputs
.size(); callIdx
< endIdx
;
236 if (finalIdx
== callIdx
)
237 finalizeOne(inputs
[finalIdx
++]);
238 ConcatInputSection
*isec
= inputs
[callIdx
];
239 assert(isec
->isFinal
);
240 uint64_t isecVA
= isec
->getVA();
242 // Assign addresses up-to the forward branch-range limit.
243 // Every call instruction needs a small number of bytes (on Arm64: 4),
244 // and each inserted thunk needs a slightly larger number of bytes
245 // (on Arm64: 12). If a section starts with a branch instruction and
246 // contains several branch instructions in succession, then the distance
247 // from the current position to the position where the thunks are inserted
248 // grows. So leave room for a bunch of thunks.
249 unsigned slop
= 256 * thunkSize
;
250 while (finalIdx
< endIdx
) {
251 uint64_t expectedNewSize
=
252 alignToPowerOf2(addr
+ size
, inputs
[finalIdx
]->align
) +
253 inputs
[finalIdx
]->getSize();
254 if (expectedNewSize
>= isecVA
+ forwardBranchRange
- slop
)
256 finalizeOne(inputs
[finalIdx
++]);
259 if (!isec
->hasCallSites
)
262 if (finalIdx
== endIdx
&& stubsInRangeVA
== TargetInfo::outOfRangeVA
) {
263 // When we have finalized all input sections, __stubs (destined
264 // to follow __text) comes within range of forward branches and
265 // we can estimate the threshold address after which we can
266 // reach any stub with a forward branch. Note that although it
267 // sits in the middle of a loop, this code executes only once.
268 // It is in the loop because we need to call it at the proper
269 // time: the earliest call site from which the end of __text
270 // (and start of __stubs) comes within range of a forward branch.
271 stubsInRangeVA
= estimateStubsInRangeVA(callIdx
);
273 // Process relocs by ascending address, i.e., ascending offset within isec
274 std::vector
<Reloc
> &relocs
= isec
->relocs
;
275 // FIXME: This property does not hold for object files produced by ld64's
277 assert(is_sorted(relocs
,
278 [](Reloc
&a
, Reloc
&b
) { return a
.offset
> b
.offset
; }));
279 for (Reloc
&r
: reverse(relocs
)) {
281 if (!target
->hasAttr(r
.type
, RelocAttrBits::BRANCH
))
284 // Calculate branch reachability boundaries
285 uint64_t callVA
= isecVA
+ r
.offset
;
287 backwardBranchRange
< callVA
? callVA
- backwardBranchRange
: 0;
288 uint64_t highVA
= callVA
+ forwardBranchRange
;
289 // Calculate our call referent address
290 auto *funcSym
= r
.referent
.get
<Symbol
*>();
291 ThunkInfo
&thunkInfo
= thunkMap
[funcSym
];
292 // The referent is not reachable, so we need to use a thunk ...
293 if (funcSym
->isInStubs() && callVA
>= stubsInRangeVA
) {
294 assert(callVA
!= TargetInfo::outOfRangeVA
);
295 // ... Oh, wait! We are close enough to the end that __stubs
296 // are now within range of a simple forward branch.
299 uint64_t funcVA
= funcSym
->resolveBranchVA();
300 ++thunkInfo
.callSitesUsed
;
301 if (lowVA
<= funcVA
&& funcVA
<= highVA
) {
302 // The referent is reachable with a simple call instruction.
305 ++thunkInfo
.thunkCallCount
;
307 // If an existing thunk is reachable, use it ...
309 uint64_t thunkVA
= thunkInfo
.isec
->getVA();
310 if (lowVA
<= thunkVA
&& thunkVA
<= highVA
) {
311 r
.referent
= thunkInfo
.sym
;
315 // ... otherwise, create a new thunk.
316 if (addr
+ size
> highVA
) {
317 // There were too many consecutive branch instructions for `slop`
318 // above. If you hit this: For the current algorithm, just bumping up
319 // slop above and trying again is probably simplest. (See also PR51578
321 fatal(Twine(__FUNCTION__
) + ": FIXME: thunk range overrun");
324 makeSyntheticInputSection(isec
->getSegName(), isec
->getName());
325 thunkInfo
.isec
->parent
= this;
326 assert(thunkInfo
.isec
->live
);
328 StringRef thunkName
= saver().save(funcSym
->getName() + ".thunk." +
329 std::to_string(thunkInfo
.sequence
++));
330 if (!isa
<Defined
>(funcSym
) || cast
<Defined
>(funcSym
)->isExternal()) {
331 r
.referent
= thunkInfo
.sym
= symtab
->addDefined(
332 thunkName
, /*file=*/nullptr, thunkInfo
.isec
, /*value=*/0, thunkSize
,
333 /*isWeakDef=*/false, /*isPrivateExtern=*/true,
334 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false,
335 /*isWeakDefCanBeHidden=*/false);
337 r
.referent
= thunkInfo
.sym
= make
<Defined
>(
338 thunkName
, /*file=*/nullptr, thunkInfo
.isec
, /*value=*/0, thunkSize
,
339 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true,
340 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
341 /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false);
343 thunkInfo
.sym
->used
= true;
344 target
->populateThunk(thunkInfo
.isec
, funcSym
);
345 finalizeOne(thunkInfo
.isec
);
346 thunks
.push_back(thunkInfo
.isec
);
351 log("thunks for " + parent
->name
+ "," + name
+
352 ": funcs = " + std::to_string(thunkMap
.size()) +
353 ", relocs = " + std::to_string(relocCount
) +
354 ", all calls = " + std::to_string(callSiteCount
) +
355 ", thunk calls = " + std::to_string(thunkCallCount
) +
356 ", thunks = " + std::to_string(thunkCount
));
359 void ConcatOutputSection::writeTo(uint8_t *buf
) const {
360 for (ConcatInputSection
*isec
: inputs
)
361 isec
->writeTo(buf
+ isec
->outSecOff
);
364 void TextOutputSection::writeTo(uint8_t *buf
) const {
365 // Merge input sections from thunk & ordinary vectors
366 size_t i
= 0, ie
= inputs
.size();
367 size_t t
= 0, te
= thunks
.size();
368 while (i
< ie
|| t
< te
) {
369 while (i
< ie
&& (t
== te
|| inputs
[i
]->empty() ||
370 inputs
[i
]->outSecOff
< thunks
[t
]->outSecOff
)) {
371 inputs
[i
]->writeTo(buf
+ inputs
[i
]->outSecOff
);
374 while (t
< te
&& (i
== ie
|| thunks
[t
]->outSecOff
< inputs
[i
]->outSecOff
)) {
375 thunks
[t
]->writeTo(buf
+ thunks
[t
]->outSecOff
);
381 void ConcatOutputSection::finalizeFlags(InputSection
*input
) {
382 switch (sectionType(input
->getFlags())) {
383 default /*type-unspec'ed*/:
384 // FIXME: Add additional logic here when supporting emitting obj files.
386 case S_4BYTE_LITERALS
:
387 case S_8BYTE_LITERALS
:
388 case S_16BYTE_LITERALS
:
389 case S_CSTRING_LITERALS
:
391 case S_LAZY_SYMBOL_POINTERS
:
392 case S_MOD_TERM_FUNC_POINTERS
:
393 case S_THREAD_LOCAL_REGULAR
:
394 case S_THREAD_LOCAL_ZEROFILL
:
395 case S_THREAD_LOCAL_VARIABLES
:
396 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS
:
397 case S_THREAD_LOCAL_VARIABLE_POINTERS
:
398 case S_NON_LAZY_SYMBOL_POINTERS
:
400 flags
|= input
->getFlags();
405 ConcatOutputSection
*
406 ConcatOutputSection::getOrCreateForInput(const InputSection
*isec
) {
407 NamePair names
= maybeRenameSection({isec
->getSegName(), isec
->getName()});
408 ConcatOutputSection
*&osec
= concatOutputSections
[names
];
410 if (isec
->getSegName() == segment_names::text
&&
411 isec
->getName() != section_names::gccExceptTab
&&
412 isec
->getName() != section_names::ehFrame
)
413 osec
= make
<TextOutputSection
>(names
.second
);
415 osec
= make
<ConcatOutputSection
>(names
.second
);
420 NamePair
macho::maybeRenameSection(NamePair key
) {
421 auto newNames
= config
->sectionRenameMap
.find(key
);
422 if (newNames
!= config
->sectionRenameMap
.end())
423 return newNames
->second
;