[Flang][RISCV] Set vscale_range based off zvl*b (#77277)
[llvm-project.git] / flang / lib / Lower / ConvertType.cpp
blob8caafb72e472a543f09ac6bac43a5cdc7092b0ed
1 //===-- ConvertType.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "flang/Lower/ConvertType.h"
10 #include "flang/Lower/AbstractConverter.h"
11 #include "flang/Lower/CallInterface.h"
12 #include "flang/Lower/ConvertVariable.h"
13 #include "flang/Lower/Mangler.h"
14 #include "flang/Lower/PFTBuilder.h"
15 #include "flang/Lower/Support/Utils.h"
16 #include "flang/Optimizer/Builder/Todo.h"
17 #include "flang/Optimizer/Dialect/FIRType.h"
18 #include "flang/Semantics/tools.h"
19 #include "flang/Semantics/type.h"
20 #include "mlir/IR/Builders.h"
21 #include "mlir/IR/BuiltinTypes.h"
22 #include "llvm/Support/Debug.h"
24 #define DEBUG_TYPE "flang-lower-type"
26 using Fortran::common::VectorElementCategory;
28 //===--------------------------------------------------------------------===//
29 // Intrinsic type translation helpers
30 //===--------------------------------------------------------------------===//
32 static mlir::Type genRealType(mlir::MLIRContext *context, int kind) {
33 if (Fortran::evaluate::IsValidKindOfIntrinsicType(
34 Fortran::common::TypeCategory::Real, kind)) {
35 switch (kind) {
36 case 2:
37 return mlir::FloatType::getF16(context);
38 case 3:
39 return mlir::FloatType::getBF16(context);
40 case 4:
41 return mlir::FloatType::getF32(context);
42 case 8:
43 return mlir::FloatType::getF64(context);
44 case 10:
45 return mlir::FloatType::getF80(context);
46 case 16:
47 return mlir::FloatType::getF128(context);
50 llvm_unreachable("REAL type translation not implemented");
53 template <int KIND>
54 int getIntegerBits() {
55 return Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer,
56 KIND>::Scalar::bits;
58 static mlir::Type genIntegerType(mlir::MLIRContext *context, int kind,
59 bool isUnsigned = false) {
60 if (Fortran::evaluate::IsValidKindOfIntrinsicType(
61 Fortran::common::TypeCategory::Integer, kind)) {
62 mlir::IntegerType::SignednessSemantics signedness =
63 (isUnsigned ? mlir::IntegerType::SignednessSemantics::Unsigned
64 : mlir::IntegerType::SignednessSemantics::Signless);
66 switch (kind) {
67 case 1:
68 return mlir::IntegerType::get(context, getIntegerBits<1>(), signedness);
69 case 2:
70 return mlir::IntegerType::get(context, getIntegerBits<2>(), signedness);
71 case 4:
72 return mlir::IntegerType::get(context, getIntegerBits<4>(), signedness);
73 case 8:
74 return mlir::IntegerType::get(context, getIntegerBits<8>(), signedness);
75 case 16:
76 return mlir::IntegerType::get(context, getIntegerBits<16>(), signedness);
79 llvm_unreachable("INTEGER kind not translated");
82 static mlir::Type genLogicalType(mlir::MLIRContext *context, int KIND) {
83 if (Fortran::evaluate::IsValidKindOfIntrinsicType(
84 Fortran::common::TypeCategory::Logical, KIND))
85 return fir::LogicalType::get(context, KIND);
86 return {};
89 static mlir::Type genCharacterType(
90 mlir::MLIRContext *context, int KIND,
91 Fortran::lower::LenParameterTy len = fir::CharacterType::unknownLen()) {
92 if (Fortran::evaluate::IsValidKindOfIntrinsicType(
93 Fortran::common::TypeCategory::Character, KIND))
94 return fir::CharacterType::get(context, KIND, len);
95 return {};
98 static mlir::Type genComplexType(mlir::MLIRContext *context, int KIND) {
99 if (Fortran::evaluate::IsValidKindOfIntrinsicType(
100 Fortran::common::TypeCategory::Complex, KIND))
101 return fir::ComplexType::get(context, KIND);
102 return {};
105 static mlir::Type
106 genFIRType(mlir::MLIRContext *context, Fortran::common::TypeCategory tc,
107 int kind,
108 llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters) {
109 switch (tc) {
110 case Fortran::common::TypeCategory::Real:
111 return genRealType(context, kind);
112 case Fortran::common::TypeCategory::Integer:
113 return genIntegerType(context, kind);
114 case Fortran::common::TypeCategory::Complex:
115 return genComplexType(context, kind);
116 case Fortran::common::TypeCategory::Logical:
117 return genLogicalType(context, kind);
118 case Fortran::common::TypeCategory::Character:
119 if (!lenParameters.empty())
120 return genCharacterType(context, kind, lenParameters[0]);
121 return genCharacterType(context, kind);
122 default:
123 break;
125 llvm_unreachable("unhandled type category");
128 //===--------------------------------------------------------------------===//
129 // Symbol and expression type translation
130 //===--------------------------------------------------------------------===//
132 /// TypeBuilderImpl translates expression and symbol type taking into account
133 /// their shape and length parameters. For symbols, attributes such as
134 /// ALLOCATABLE or POINTER are reflected in the fir type.
135 /// It uses evaluate::DynamicType and evaluate::Shape when possible to
136 /// avoid re-implementing type/shape analysis here.
137 /// Do not use the FirOpBuilder from the AbstractConverter to get fir/mlir types
138 /// since it is not guaranteed to exist yet when we lower types.
139 namespace {
140 struct TypeBuilderImpl {
142 TypeBuilderImpl(Fortran::lower::AbstractConverter &converter)
143 : derivedTypeInConstruction{converter.getTypeConstructionStack()},
144 converter{converter}, context{&converter.getMLIRContext()} {}
146 template <typename A>
147 mlir::Type genExprType(const A &expr) {
148 std::optional<Fortran::evaluate::DynamicType> dynamicType = expr.GetType();
149 if (!dynamicType)
150 return genTypelessExprType(expr);
151 Fortran::common::TypeCategory category = dynamicType->category();
153 mlir::Type baseType;
154 bool isPolymorphic = (dynamicType->IsPolymorphic() ||
155 dynamicType->IsUnlimitedPolymorphic()) &&
156 !dynamicType->IsAssumedType();
157 if (dynamicType->IsUnlimitedPolymorphic()) {
158 baseType = mlir::NoneType::get(context);
159 } else if (category == Fortran::common::TypeCategory::Derived) {
160 baseType = genDerivedType(dynamicType->GetDerivedTypeSpec());
161 } else {
162 // LOGICAL, INTEGER, REAL, COMPLEX, CHARACTER
163 llvm::SmallVector<Fortran::lower::LenParameterTy> params;
164 translateLenParameters(params, category, expr);
165 baseType = genFIRType(context, category, dynamicType->kind(), params);
167 std::optional<Fortran::evaluate::Shape> shapeExpr =
168 Fortran::evaluate::GetShape(converter.getFoldingContext(), expr);
169 fir::SequenceType::Shape shape;
170 if (shapeExpr) {
171 translateShape(shape, std::move(*shapeExpr));
172 } else {
173 // Shape static analysis cannot return something useful for the shape.
174 // Use unknown extents.
175 int rank = expr.Rank();
176 if (rank < 0)
177 TODO(converter.getCurrentLocation(), "assumed rank expression types");
178 for (int dim = 0; dim < rank; ++dim)
179 shape.emplace_back(fir::SequenceType::getUnknownExtent());
182 if (!shape.empty()) {
183 if (isPolymorphic)
184 return fir::ClassType::get(fir::SequenceType::get(shape, baseType));
185 return fir::SequenceType::get(shape, baseType);
187 if (isPolymorphic)
188 return fir::ClassType::get(baseType);
189 return baseType;
192 template <typename A>
193 void translateShape(A &shape, Fortran::evaluate::Shape &&shapeExpr) {
194 for (Fortran::evaluate::MaybeExtentExpr extentExpr : shapeExpr) {
195 fir::SequenceType::Extent extent = fir::SequenceType::getUnknownExtent();
196 if (std::optional<std::int64_t> constantExtent =
197 toInt64(std::move(extentExpr)))
198 extent = *constantExtent;
199 shape.push_back(extent);
203 template <typename A>
204 std::optional<std::int64_t> toInt64(A &&expr) {
205 return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold(
206 converter.getFoldingContext(), std::move(expr)));
209 template <typename A>
210 mlir::Type genTypelessExprType(const A &expr) {
211 fir::emitFatalError(converter.getCurrentLocation(), "not a typeless expr");
214 mlir::Type genTypelessExprType(const Fortran::lower::SomeExpr &expr) {
215 return std::visit(
216 Fortran::common::visitors{
217 [&](const Fortran::evaluate::BOZLiteralConstant &) -> mlir::Type {
218 return mlir::NoneType::get(context);
220 [&](const Fortran::evaluate::NullPointer &) -> mlir::Type {
221 return fir::ReferenceType::get(mlir::NoneType::get(context));
223 [&](const Fortran::evaluate::ProcedureDesignator &proc)
224 -> mlir::Type {
225 return Fortran::lower::translateSignature(proc, converter);
227 [&](const Fortran::evaluate::ProcedureRef &) -> mlir::Type {
228 return mlir::NoneType::get(context);
230 [](const auto &x) -> mlir::Type {
231 using T = std::decay_t<decltype(x)>;
232 static_assert(!Fortran::common::HasMember<
233 T, Fortran::evaluate::TypelessExpression>,
234 "missing typeless expr handling");
235 llvm::report_fatal_error("not a typeless expression");
238 expr.u);
241 mlir::Type genSymbolType(const Fortran::semantics::Symbol &symbol,
242 bool isAlloc = false, bool isPtr = false) {
243 mlir::Location loc = converter.genLocation(symbol.name());
244 mlir::Type ty;
245 // If the symbol is not the same as the ultimate one (i.e, it is host or use
246 // associated), all the symbol properties are the ones of the ultimate
247 // symbol but the volatile and asynchronous attributes that may differ. To
248 // avoid issues with helper functions that would not follow association
249 // links, the fir type is built based on the ultimate symbol. This relies
250 // on the fact volatile and asynchronous are not reflected in fir types.
251 const Fortran::semantics::Symbol &ultimate = symbol.GetUltimate();
253 if (Fortran::semantics::IsProcedurePointer(ultimate)) {
254 Fortran::evaluate::ProcedureDesignator proc(ultimate);
255 auto procTy{Fortran::lower::translateSignature(proc, converter)};
256 return fir::BoxProcType::get(context, procTy);
259 if (const Fortran::semantics::DeclTypeSpec *type = ultimate.GetType()) {
260 if (const Fortran::semantics::IntrinsicTypeSpec *tySpec =
261 type->AsIntrinsic()) {
262 int kind = toInt64(Fortran::common::Clone(tySpec->kind())).value();
263 llvm::SmallVector<Fortran::lower::LenParameterTy> params;
264 translateLenParameters(params, tySpec->category(), ultimate);
265 ty = genFIRType(context, tySpec->category(), kind, params);
266 } else if (type->IsPolymorphic() &&
267 !converter.getLoweringOptions().getPolymorphicTypeImpl()) {
268 // TODO is kept under experimental flag until feature is complete.
269 TODO(loc, "support for polymorphic types");
270 } else if (type->IsUnlimitedPolymorphic()) {
271 ty = mlir::NoneType::get(context);
272 } else if (const Fortran::semantics::DerivedTypeSpec *tySpec =
273 type->AsDerived()) {
274 ty = genDerivedType(*tySpec);
275 } else {
276 fir::emitFatalError(loc, "symbol's type must have a type spec");
278 } else {
279 fir::emitFatalError(loc, "symbol must have a type");
281 bool isPolymorphic = (Fortran::semantics::IsPolymorphic(symbol) ||
282 Fortran::semantics::IsUnlimitedPolymorphic(symbol)) &&
283 !Fortran::semantics::IsAssumedType(symbol);
284 if (ultimate.IsObjectArray()) {
285 auto shapeExpr =
286 Fortran::evaluate::GetShape(converter.getFoldingContext(), ultimate);
287 if (!shapeExpr)
288 TODO(loc, "assumed rank symbol type");
289 fir::SequenceType::Shape shape;
290 translateShape(shape, std::move(*shapeExpr));
291 ty = fir::SequenceType::get(shape, ty);
293 if (Fortran::semantics::IsPointer(symbol))
294 return fir::wrapInClassOrBoxType(fir::PointerType::get(ty),
295 isPolymorphic);
296 if (Fortran::semantics::IsAllocatable(symbol))
297 return fir::wrapInClassOrBoxType(fir::HeapType::get(ty), isPolymorphic);
298 // isPtr and isAlloc are variable that were promoted to be on the
299 // heap or to be pointers, but they do not have Fortran allocatable
300 // or pointer semantics, so do not use box for them.
301 if (isPtr)
302 return fir::PointerType::get(ty);
303 if (isAlloc)
304 return fir::HeapType::get(ty);
305 if (isPolymorphic)
306 return fir::ClassType::get(ty);
307 return ty;
310 /// Does \p component has non deferred lower bounds that are not compile time
311 /// constant 1.
312 static bool componentHasNonDefaultLowerBounds(
313 const Fortran::semantics::Symbol &component) {
314 if (const auto *objDetails =
315 component.detailsIf<Fortran::semantics::ObjectEntityDetails>())
316 for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape())
317 if (auto lb = bounds.lbound().GetExplicit())
318 if (auto constant = Fortran::evaluate::ToInt64(*lb))
319 if (!constant || *constant != 1)
320 return true;
321 return false;
324 mlir::Type genVectorType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
325 assert(tySpec.scope() && "Missing scope for Vector type");
326 auto vectorSize{tySpec.scope()->size()};
327 switch (tySpec.category()) {
328 SWITCH_COVERS_ALL_CASES
329 case (Fortran::semantics::DerivedTypeSpec::Category::IntrinsicVector): {
330 int64_t vecElemKind;
331 int64_t vecElemCategory;
333 for (const auto &pair : tySpec.parameters()) {
334 if (pair.first == "element_category") {
335 vecElemCategory =
336 Fortran::evaluate::ToInt64(pair.second.GetExplicit())
337 .value_or(-1);
338 } else if (pair.first == "element_kind") {
339 vecElemKind =
340 Fortran::evaluate::ToInt64(pair.second.GetExplicit()).value_or(0);
344 assert((vecElemCategory >= 0 &&
345 static_cast<size_t>(vecElemCategory) <
346 Fortran::common::VectorElementCategory_enumSize) &&
347 "Vector element type is not specified");
348 assert(vecElemKind && "Vector element kind is not specified");
350 int64_t numOfElements = vectorSize / vecElemKind;
351 switch (static_cast<VectorElementCategory>(vecElemCategory)) {
352 SWITCH_COVERS_ALL_CASES
353 case VectorElementCategory::Integer:
354 return fir::VectorType::get(numOfElements,
355 genIntegerType(context, vecElemKind));
356 case VectorElementCategory::Unsigned:
357 return fir::VectorType::get(numOfElements,
358 genIntegerType(context, vecElemKind, true));
359 case VectorElementCategory::Real:
360 return fir::VectorType::get(numOfElements,
361 genRealType(context, vecElemKind));
363 break;
365 case (Fortran::semantics::DerivedTypeSpec::Category::PairVector):
366 case (Fortran::semantics::DerivedTypeSpec::Category::QuadVector):
367 return fir::VectorType::get(vectorSize * 8,
368 mlir::IntegerType::get(context, 1));
369 case (Fortran::semantics::DerivedTypeSpec::Category::DerivedType):
370 Fortran::common::die("Vector element type not implemented");
374 mlir::Type genDerivedType(const Fortran::semantics::DerivedTypeSpec &tySpec) {
375 std::vector<std::pair<std::string, mlir::Type>> ps;
376 std::vector<std::pair<std::string, mlir::Type>> cs;
377 const Fortran::semantics::Symbol &typeSymbol = tySpec.typeSymbol();
378 if (mlir::Type ty = getTypeIfDerivedAlreadyInConstruction(typeSymbol))
379 return ty;
381 if (tySpec.IsVectorType()) {
382 return genVectorType(tySpec);
385 const Fortran::semantics::Scope &derivedScope = DEREF(tySpec.GetScope());
387 auto rec = fir::RecordType::get(context, converter.mangleName(tySpec));
388 // Maintain the stack of types for recursive references.
389 derivedTypeInConstruction.emplace_back(typeSymbol, rec);
391 // Gather the record type fields.
392 // (1) The data components.
393 if (converter.getLoweringOptions().getLowerToHighLevelFIR()) {
394 // In HLFIR the parent component is the first fir.type component.
395 for (const auto &componentName :
396 typeSymbol.get<Fortran::semantics::DerivedTypeDetails>()
397 .componentNames()) {
398 auto scopeIter = derivedScope.find(componentName);
399 assert(scopeIter != derivedScope.cend() &&
400 "failed to find derived type component symbol");
401 const Fortran::semantics::Symbol &component = scopeIter->second.get();
402 mlir::Type ty = genSymbolType(component);
403 cs.emplace_back(converter.getRecordTypeFieldName(component), ty);
405 } else {
406 for (const auto &component :
407 Fortran::semantics::OrderedComponentIterator(tySpec)) {
408 // In the lowering to FIR the parent component does not appear in the
409 // fir.type and its components are inlined at the beginning of the
410 // fir.type<>.
411 // FIXME: this strategy leads to bugs because padding should be inserted
412 // after the component of the parents so that the next components do not
413 // end-up in the parent storage if the sum of the parent's component
414 // storage size is not a multiple of the parent type storage alignment.
416 // Lowering is assuming non deferred component lower bounds are
417 // always 1. Catch any situations where this is not true for now.
418 if (componentHasNonDefaultLowerBounds(component))
419 TODO(converter.genLocation(component.name()),
420 "derived type components with non default lower bounds");
421 if (IsProcedure(component))
422 TODO(converter.genLocation(component.name()), "procedure components");
423 mlir::Type ty = genSymbolType(component);
424 // Do not add the parent component (component of the parents are
425 // added and should be sufficient, the parent component would
426 // duplicate the fields). Note that genSymbolType must be called above
427 // on it so that the dispatch table for the parent type still gets
428 // emitted as needed.
429 if (component.test(Fortran::semantics::Symbol::Flag::ParentComp))
430 continue;
431 cs.emplace_back(converter.getRecordTypeFieldName(component), ty);
435 mlir::Location loc = converter.genLocation(typeSymbol.name());
436 // (2) The LEN type parameters.
437 for (const auto &param :
438 Fortran::semantics::OrderParameterDeclarations(typeSymbol))
439 if (param->get<Fortran::semantics::TypeParamDetails>().attr() ==
440 Fortran::common::TypeParamAttr::Len) {
441 TODO(loc, "parameterized derived types");
442 // TODO: emplace in ps. Beware that param is the symbol in the type
443 // declaration, not instantiation: its kind may not be a constant.
444 // The instantiated symbol in tySpec.scope should be used instead.
445 ps.emplace_back(param->name().ToString(), genSymbolType(*param));
448 rec.finalize(ps, cs);
449 popDerivedTypeInConstruction();
451 if (!ps.empty()) {
452 // TODO: this type is a PDT (parametric derived type) with length
453 // parameter. Create the functions to use for allocation, dereferencing,
454 // and address arithmetic here.
456 LLVM_DEBUG(llvm::dbgs() << "derived type: " << rec << '\n');
458 // Generate the type descriptor object if any
459 if (const Fortran::semantics::Symbol *typeInfoSym =
460 derivedScope.runtimeDerivedTypeDescription())
461 converter.registerTypeInfo(loc, *typeInfoSym, tySpec, rec);
462 return rec;
465 // To get the character length from a symbol, make an fold a designator for
466 // the symbol to cover the case where the symbol is an assumed length named
467 // constant and its length comes from its init expression length.
468 template <int Kind>
469 fir::SequenceType::Extent
470 getCharacterLengthHelper(const Fortran::semantics::Symbol &symbol) {
471 using TC =
472 Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
473 auto designator = Fortran::evaluate::Fold(
474 converter.getFoldingContext(),
475 Fortran::evaluate::Expr<TC>{Fortran::evaluate::Designator<TC>{symbol}});
476 if (auto len = toInt64(std::move(designator.LEN())))
477 return *len;
478 return fir::SequenceType::getUnknownExtent();
481 template <typename T>
482 void translateLenParameters(
483 llvm::SmallVectorImpl<Fortran::lower::LenParameterTy> &params,
484 Fortran::common::TypeCategory category, const T &exprOrSym) {
485 if (category == Fortran::common::TypeCategory::Character)
486 params.push_back(getCharacterLength(exprOrSym));
487 else if (category == Fortran::common::TypeCategory::Derived)
488 TODO(converter.getCurrentLocation(), "derived type length parameters");
490 Fortran::lower::LenParameterTy
491 getCharacterLength(const Fortran::semantics::Symbol &symbol) {
492 const Fortran::semantics::DeclTypeSpec *type = symbol.GetType();
493 if (!type ||
494 type->category() != Fortran::semantics::DeclTypeSpec::Character ||
495 !type->AsIntrinsic())
496 llvm::report_fatal_error("not a character symbol");
497 int kind =
498 toInt64(Fortran::common::Clone(type->AsIntrinsic()->kind())).value();
499 switch (kind) {
500 case 1:
501 return getCharacterLengthHelper<1>(symbol);
502 case 2:
503 return getCharacterLengthHelper<2>(symbol);
504 case 4:
505 return getCharacterLengthHelper<4>(symbol);
507 llvm_unreachable("unknown character kind");
510 template <typename A>
511 Fortran::lower::LenParameterTy getCharacterLength(const A &expr) {
512 return fir::SequenceType::getUnknownExtent();
515 template <typename T>
516 Fortran::lower::LenParameterTy
517 getCharacterLength(const Fortran::evaluate::FunctionRef<T> &funcRef) {
518 if (auto constantLen = toInt64(funcRef.LEN()))
519 return *constantLen;
520 return fir::SequenceType::getUnknownExtent();
523 Fortran::lower::LenParameterTy
524 getCharacterLength(const Fortran::lower::SomeExpr &expr) {
525 // Do not use dynamic type length here. We would miss constant
526 // lengths opportunities because dynamic type only has the length
527 // if it comes from a declaration.
528 if (const auto *charExpr = std::get_if<
529 Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>(
530 &expr.u)) {
531 if (auto constantLen = toInt64(charExpr->LEN()))
532 return *constantLen;
533 } else if (auto dynamicType = expr.GetType()) {
534 // When generating derived type type descriptor as structure constructor,
535 // semantics wraps designators to data component initialization into
536 // CLASS(*), regardless of their actual type.
537 // GetType() will recover the actual symbol type as the dynamic type, so
538 // getCharacterLength may be reached even if expr is packaged as an
539 // Expr<SomeDerived> instead of an Expr<SomeChar>.
540 // Just use the dynamic type here again to retrieve the length.
541 if (auto constantLen = toInt64(dynamicType->GetCharLength()))
542 return *constantLen;
544 return fir::SequenceType::getUnknownExtent();
547 mlir::Type genVariableType(const Fortran::lower::pft::Variable &var) {
548 return genSymbolType(var.getSymbol(), var.isHeapAlloc(), var.isPointer());
551 /// Derived type can be recursive. That is, pointer components of a derived
552 /// type `t` have type `t`. This helper returns `t` if it is already being
553 /// lowered to avoid infinite loops.
554 mlir::Type getTypeIfDerivedAlreadyInConstruction(
555 const Fortran::lower::SymbolRef derivedSym) const {
556 for (const auto &[sym, type] : derivedTypeInConstruction)
557 if (sym == derivedSym)
558 return type;
559 return {};
562 void popDerivedTypeInConstruction() {
563 assert(!derivedTypeInConstruction.empty());
564 derivedTypeInConstruction.pop_back();
567 /// Stack derived type being processed to avoid infinite loops in case of
568 /// recursive derived types. The depth of derived types is expected to be
569 /// shallow (<10), so a SmallVector is sufficient.
570 Fortran::lower::TypeConstructionStack &derivedTypeInConstruction;
571 Fortran::lower::AbstractConverter &converter;
572 mlir::MLIRContext *context;
574 } // namespace
576 mlir::Type Fortran::lower::getFIRType(mlir::MLIRContext *context,
577 Fortran::common::TypeCategory tc,
578 int kind,
579 llvm::ArrayRef<LenParameterTy> params) {
580 return genFIRType(context, tc, kind, params);
583 mlir::Type Fortran::lower::translateDerivedTypeToFIRType(
584 Fortran::lower::AbstractConverter &converter,
585 const Fortran::semantics::DerivedTypeSpec &tySpec) {
586 return TypeBuilderImpl{converter}.genDerivedType(tySpec);
589 mlir::Type Fortran::lower::translateSomeExprToFIRType(
590 Fortran::lower::AbstractConverter &converter, const SomeExpr &expr) {
591 return TypeBuilderImpl{converter}.genExprType(expr);
594 mlir::Type Fortran::lower::translateSymbolToFIRType(
595 Fortran::lower::AbstractConverter &converter, const SymbolRef symbol) {
596 return TypeBuilderImpl{converter}.genSymbolType(symbol);
599 mlir::Type Fortran::lower::translateVariableToFIRType(
600 Fortran::lower::AbstractConverter &converter,
601 const Fortran::lower::pft::Variable &var) {
602 return TypeBuilderImpl{converter}.genVariableType(var);
605 mlir::Type Fortran::lower::convertReal(mlir::MLIRContext *context, int kind) {
606 return genRealType(context, kind);
609 bool Fortran::lower::isDerivedTypeWithLenParameters(
610 const Fortran::semantics::Symbol &sym) {
611 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
612 if (const Fortran::semantics::DerivedTypeSpec *derived =
613 declTy->AsDerived())
614 return Fortran::semantics::CountLenParameters(*derived) > 0;
615 return false;
618 template <typename T>
619 mlir::Type Fortran::lower::TypeBuilder<T>::genType(
620 Fortran::lower::AbstractConverter &converter,
621 const Fortran::evaluate::FunctionRef<T> &funcRef) {
622 return TypeBuilderImpl{converter}.genExprType(funcRef);
625 const Fortran::semantics::DerivedTypeSpec &
626 Fortran::lower::ComponentReverseIterator::advanceToParentType() {
627 const Fortran::semantics::Scope *scope = currentParentType->GetScope();
628 auto parentComp =
629 DEREF(scope).find(currentTypeDetails->GetParentComponentName().value());
630 assert(parentComp != scope->cend() && "failed to get parent component");
631 setCurrentType(parentComp->second->GetType()->derivedTypeSpec());
632 return *currentParentType;
635 void Fortran::lower::ComponentReverseIterator::setCurrentType(
636 const Fortran::semantics::DerivedTypeSpec &derived) {
637 currentParentType = &derived;
638 currentTypeDetails = &currentParentType->typeSymbol()
639 .get<Fortran::semantics::DerivedTypeDetails>();
640 componentIt = currentTypeDetails->componentNames().crbegin();
641 componentItEnd = currentTypeDetails->componentNames().crend();
644 using namespace Fortran::evaluate;
645 using namespace Fortran::common;
646 FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::TypeBuilder, )