1 //===- InputFiles.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
13 #include "DebugTypes.h"
15 #include "SymbolTable.h"
17 #include "lld/Common/DWARF.h"
18 #include "llvm-c/lto.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28 #include "llvm/IR/Mangler.h"
29 #include "llvm/LTO/LTO.h"
30 #include "llvm/Object/Binary.h"
31 #include "llvm/Object/COFF.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Endian.h"
34 #include "llvm/Support/Error.h"
35 #include "llvm/Support/ErrorOr.h"
36 #include "llvm/Support/FileSystem.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/TargetParser/Triple.h"
42 #include <system_error>
46 using namespace llvm::COFF
;
47 using namespace llvm::codeview
;
48 using namespace llvm::object
;
49 using namespace llvm::support::endian
;
51 using namespace lld::coff
;
54 using llvm::support::ulittle32_t
;
56 // Returns the last element of a path, which is supposed to be a filename.
57 static StringRef
getBasename(StringRef path
) {
58 return sys::path::filename(path
, sys::path::Style::windows
);
61 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
62 std::string
lld::toString(const coff::InputFile
*file
) {
65 if (file
->parentName
.empty())
66 return std::string(file
->getName());
68 return (getBasename(file
->parentName
) + "(" + getBasename(file
->getName()) +
73 const COFFSyncStream
&coff::operator<<(const COFFSyncStream
&s
,
75 return s
<< toString(f
);
78 /// Checks that Source is compatible with being a weak alias to Target.
79 /// If Source is Undefined and has no weak alias set, makes it a weak
81 static void checkAndSetWeakAlias(SymbolTable
&symtab
, InputFile
*f
,
82 Symbol
*source
, Symbol
*target
,
84 if (auto *u
= dyn_cast
<Undefined
>(source
)) {
85 if (u
->weakAlias
&& u
->weakAlias
!= target
) {
86 // Ignore duplicated anti-dependency symbols.
90 // Weak aliases as produced by GCC are named in the form
91 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
92 // of another symbol emitted near the weak symbol.
93 // Just use the definition from the first object file that defined
95 if (symtab
.ctx
.config
.allowDuplicateWeak
)
97 symtab
.reportDuplicate(source
, f
);
100 u
->setWeakAlias(target
, isAntiDep
);
104 static bool ignoredSymbolName(StringRef name
) {
105 return name
== "@feat.00" || name
== "@comp.id";
108 ArchiveFile::ArchiveFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
109 : InputFile(ctx
.symtab
, ArchiveKind
, m
) {}
111 void ArchiveFile::parse() {
112 COFFLinkerContext
&ctx
= symtab
.ctx
;
113 // Parse a MemoryBufferRef as an archive file.
114 file
= CHECK(Archive::create(mb
), this);
116 // Try to read symbols from ECSYMBOLS section on ARM64EC.
118 iterator_range
<Archive::symbol_iterator
> symbols
=
119 CHECK(file
->ec_symbols(), this);
120 if (!symbols
.empty()) {
121 for (const Archive::Symbol
&sym
: symbols
)
122 ctx
.symtabEC
->addLazyArchive(this, sym
);
124 // Read both EC and native symbols on ARM64X.
125 if (!ctx
.hybridSymtab
)
130 // Read the symbol table to construct Lazy objects.
131 for (const Archive::Symbol
&sym
: file
->symbols())
132 ctx
.symtab
.addLazyArchive(this, sym
);
135 // Returns a buffer pointing to a member file containing a given symbol.
136 void ArchiveFile::addMember(const Archive::Symbol
&sym
) {
137 const Archive::Child
&c
=
138 CHECK(sym
.getMember(), "could not get the member for symbol " +
139 toCOFFString(symtab
.ctx
, sym
));
141 // Return an empty buffer if we have already returned the same buffer.
142 if (!seen
.insert(c
.getChildOffset()).second
)
145 symtab
.ctx
.driver
.enqueueArchiveMember(c
, sym
, getName());
148 std::vector
<MemoryBufferRef
>
149 lld::coff::getArchiveMembers(COFFLinkerContext
&ctx
, Archive
*file
) {
150 std::vector
<MemoryBufferRef
> v
;
151 Error err
= Error::success();
152 for (const Archive::Child
&c
: file
->children(err
)) {
153 MemoryBufferRef mbref
=
154 CHECK(c
.getMemoryBufferRef(),
155 file
->getFileName() +
156 ": could not get the buffer for a child of the archive");
160 Fatal(ctx
) << file
->getFileName()
161 << ": Archive::children failed: " << toString(std::move(err
));
165 ObjFile::ObjFile(SymbolTable
&symtab
, COFFObjectFile
*coffObj
, bool lazy
)
166 : InputFile(symtab
, ObjectKind
, coffObj
->getMemoryBufferRef(), lazy
),
169 ObjFile
*ObjFile::create(COFFLinkerContext
&ctx
, MemoryBufferRef m
, bool lazy
) {
170 // Parse a memory buffer as a COFF file.
171 Expected
<std::unique_ptr
<Binary
>> bin
= createBinary(m
);
173 Fatal(ctx
) << "Could not parse " << m
.getBufferIdentifier();
175 auto *obj
= dyn_cast
<COFFObjectFile
>(bin
->get());
177 Fatal(ctx
) << m
.getBufferIdentifier() << " is not a COFF file";
180 return make
<ObjFile
>(ctx
.getSymtab(MachineTypes(obj
->getMachine())), obj
,
184 void ObjFile::parseLazy() {
185 // Native object file.
186 uint32_t numSymbols
= coffObj
->getNumberOfSymbols();
187 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
188 COFFSymbolRef coffSym
= check(coffObj
->getSymbol(i
));
189 if (coffSym
.isUndefined() || !coffSym
.isExternal() ||
190 coffSym
.isWeakExternal())
192 StringRef name
= check(coffObj
->getSymbolName(coffSym
));
193 if (coffSym
.isAbsolute() && ignoredSymbolName(name
))
195 symtab
.addLazyObject(this, name
);
198 i
+= coffSym
.getNumberOfAuxSymbols();
208 void ObjFile::initializeECThunks() {
209 for (SectionChunk
*chunk
: hybmpChunks
) {
210 if (chunk
->getContents().size() % sizeof(ECMapEntry
)) {
211 Err(symtab
.ctx
) << "Invalid .hybmp chunk size "
212 << chunk
->getContents().size();
217 chunk
->getContents().data() + chunk
->getContents().size();
218 for (const uint8_t *iter
= chunk
->getContents().data(); iter
!= end
;
219 iter
+= sizeof(ECMapEntry
)) {
220 auto entry
= reinterpret_cast<const ECMapEntry
*>(iter
);
221 switch (entry
->type
) {
222 case Arm64ECThunkType::Entry
:
223 symtab
.addEntryThunk(getSymbol(entry
->src
), getSymbol(entry
->dst
));
225 case Arm64ECThunkType::Exit
:
226 symtab
.addExitThunk(getSymbol(entry
->src
), getSymbol(entry
->dst
));
228 case Arm64ECThunkType::GuestExit
:
231 Warn(symtab
.ctx
) << "Ignoring unknown EC thunk type " << entry
->type
;
237 void ObjFile::parse() {
238 // Read section and symbol tables.
242 initializeDependencies();
243 initializeECThunks();
246 const coff_section
*ObjFile::getSection(uint32_t i
) {
247 auto sec
= coffObj
->getSection(i
);
249 Fatal(symtab
.ctx
) << "getSection failed: #" << i
<< ": " << sec
.takeError();
253 // We set SectionChunk pointers in the SparseChunks vector to this value
254 // temporarily to mark comdat sections as having an unknown resolution. As we
255 // walk the object file's symbol table, once we visit either a leader symbol or
256 // an associative section definition together with the parent comdat's leader,
257 // we set the pointer to either nullptr (to mark the section as discarded) or a
258 // valid SectionChunk for that section.
259 static SectionChunk
*const pendingComdat
= reinterpret_cast<SectionChunk
*>(1);
261 void ObjFile::initializeChunks() {
262 uint32_t numSections
= coffObj
->getNumberOfSections();
263 sparseChunks
.resize(numSections
+ 1);
264 for (uint32_t i
= 1; i
< numSections
+ 1; ++i
) {
265 const coff_section
*sec
= getSection(i
);
266 if (sec
->Characteristics
& IMAGE_SCN_LNK_COMDAT
)
267 sparseChunks
[i
] = pendingComdat
;
269 sparseChunks
[i
] = readSection(i
, nullptr, "");
273 SectionChunk
*ObjFile::readSection(uint32_t sectionNumber
,
274 const coff_aux_section_definition
*def
,
275 StringRef leaderName
) {
276 const coff_section
*sec
= getSection(sectionNumber
);
279 if (Expected
<StringRef
> e
= coffObj
->getSectionName(sec
))
282 Fatal(symtab
.ctx
) << "getSectionName failed: #" << sectionNumber
<< ": "
285 if (name
== ".drectve") {
286 ArrayRef
<uint8_t> data
;
287 cantFail(coffObj
->getSectionContents(sec
, data
));
288 directives
= StringRef((const char *)data
.data(), data
.size());
292 if (name
== ".llvm_addrsig") {
297 if (name
== ".llvm.call-graph-profile") {
302 // Object files may have DWARF debug info or MS CodeView debug info
305 // DWARF sections don't need any special handling from the perspective
306 // of the linker; they are just a data section containing relocations.
307 // We can just link them to complete debug info.
309 // CodeView needs linker support. We need to interpret debug info,
310 // and then write it to a separate .pdb file.
312 // Ignore DWARF debug info unless requested to be included.
313 if (!symtab
.ctx
.config
.includeDwarfChunks
&& name
.starts_with(".debug_"))
316 if (sec
->Characteristics
& llvm::COFF::IMAGE_SCN_LNK_REMOVE
)
319 if (isArm64EC(getMachineType()))
320 c
= make
<SectionChunkEC
>(this, sec
);
322 c
= make
<SectionChunk
>(this, sec
);
324 c
->checksum
= def
->CheckSum
;
326 // CodeView sections are stored to a different vector because they are not
327 // linked in the regular manner.
329 debugChunks
.push_back(c
);
330 else if (name
== ".gfids$y")
331 guardFidChunks
.push_back(c
);
332 else if (name
== ".giats$y")
333 guardIATChunks
.push_back(c
);
334 else if (name
== ".gljmp$y")
335 guardLJmpChunks
.push_back(c
);
336 else if (name
== ".gehcont$y")
337 guardEHContChunks
.push_back(c
);
338 else if (name
== ".sxdata")
339 sxDataChunks
.push_back(c
);
340 else if (isArm64EC(getMachineType()) && name
== ".hybmp$x")
341 hybmpChunks
.push_back(c
);
342 else if (symtab
.ctx
.config
.tailMerge
&& sec
->NumberOfRelocations
== 0 &&
343 name
== ".rdata" && leaderName
.starts_with("??_C@"))
344 // COFF sections that look like string literal sections (i.e. no
345 // relocations, in .rdata, leader symbol name matches the MSVC name mangling
346 // for string literals) are subject to string tail merging.
347 MergeChunk::addSection(symtab
.ctx
, c
);
348 else if (name
== ".rsrc" || name
.starts_with(".rsrc$"))
349 resourceChunks
.push_back(c
);
356 void ObjFile::includeResourceChunks() {
357 chunks
.insert(chunks
.end(), resourceChunks
.begin(), resourceChunks
.end());
360 void ObjFile::readAssociativeDefinition(
361 COFFSymbolRef sym
, const coff_aux_section_definition
*def
) {
362 readAssociativeDefinition(sym
, def
, def
->getNumber(sym
.isBigObj()));
365 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym
,
366 const coff_aux_section_definition
*def
,
367 uint32_t parentIndex
) {
368 SectionChunk
*parent
= sparseChunks
[parentIndex
];
369 int32_t sectionNumber
= sym
.getSectionNumber();
372 StringRef name
= check(coffObj
->getSymbolName(sym
));
374 StringRef parentName
;
375 const coff_section
*parentSec
= getSection(parentIndex
);
376 if (Expected
<StringRef
> e
= coffObj
->getSectionName(parentSec
))
378 Err(symtab
.ctx
) << toString(this) << ": associative comdat " << name
379 << " (sec " << sectionNumber
380 << ") has invalid reference to section " << parentName
381 << " (sec " << parentIndex
<< ")";
384 if (parent
== pendingComdat
) {
385 // This can happen if an associative comdat refers to another associative
386 // comdat that appears after it (invalid per COFF spec) or to a section
387 // without any symbols.
392 // Check whether the parent is prevailing. If it is, so are we, and we read
393 // the section; otherwise mark it as discarded.
395 SectionChunk
*c
= readSection(sectionNumber
, def
, "");
396 sparseChunks
[sectionNumber
] = c
;
398 c
->selection
= IMAGE_COMDAT_SELECT_ASSOCIATIVE
;
399 parent
->addAssociative(c
);
402 sparseChunks
[sectionNumber
] = nullptr;
406 void ObjFile::recordPrevailingSymbolForMingw(
407 COFFSymbolRef sym
, DenseMap
<StringRef
, uint32_t> &prevailingSectionMap
) {
408 // For comdat symbols in executable sections, where this is the copy
409 // of the section chunk we actually include instead of discarding it,
410 // add the symbol to a map to allow using it for implicitly
411 // associating .[px]data$<func> sections to it.
412 // Use the suffix from the .text$<func> instead of the leader symbol
413 // name, for cases where the names differ (i386 mangling/decorations,
414 // cases where the leader is a weak symbol named .weak.func.default*).
415 int32_t sectionNumber
= sym
.getSectionNumber();
416 SectionChunk
*sc
= sparseChunks
[sectionNumber
];
417 if (sc
&& sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
) {
418 StringRef name
= sc
->getSectionName().split('$').second
;
419 prevailingSectionMap
[name
] = sectionNumber
;
423 void ObjFile::maybeAssociateSEHForMingw(
424 COFFSymbolRef sym
, const coff_aux_section_definition
*def
,
425 const DenseMap
<StringRef
, uint32_t> &prevailingSectionMap
) {
426 StringRef name
= check(coffObj
->getSymbolName(sym
));
427 if (name
.consume_front(".pdata$") || name
.consume_front(".xdata$") ||
428 name
.consume_front(".eh_frame$")) {
429 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
430 // associative to the symbol <func>.
431 auto parentSym
= prevailingSectionMap
.find(name
);
432 if (parentSym
!= prevailingSectionMap
.end())
433 readAssociativeDefinition(sym
, def
, parentSym
->second
);
437 Symbol
*ObjFile::createRegular(COFFSymbolRef sym
) {
438 SectionChunk
*sc
= sparseChunks
[sym
.getSectionNumber()];
439 if (sym
.isExternal()) {
440 StringRef name
= check(coffObj
->getSymbolName(sym
));
442 return symtab
.addRegular(this, name
, sym
.getGeneric(), sc
,
444 // For MinGW symbols named .weak.* that point to a discarded section,
445 // don't create an Undefined symbol. If nothing ever refers to the symbol,
446 // everything should be fine. If something actually refers to the symbol
447 // (e.g. the undefined weak alias), linking will fail due to undefined
448 // references at the end.
449 if (symtab
.ctx
.config
.mingw
&& name
.starts_with(".weak."))
451 return symtab
.addUndefined(name
, this, false);
454 return make
<DefinedRegular
>(this, /*Name*/ "", /*IsCOMDAT*/ false,
455 /*IsExternal*/ false, sym
.getGeneric(), sc
);
459 void ObjFile::initializeSymbols() {
460 uint32_t numSymbols
= coffObj
->getNumberOfSymbols();
461 symbols
.resize(numSymbols
);
463 SmallVector
<std::pair
<Symbol
*, const coff_aux_weak_external
*>, 8>
465 std::vector
<uint32_t> pendingIndexes
;
466 pendingIndexes
.reserve(numSymbols
);
468 DenseMap
<StringRef
, uint32_t> prevailingSectionMap
;
469 std::vector
<const coff_aux_section_definition
*> comdatDefs(
470 coffObj
->getNumberOfSections() + 1);
471 COFFLinkerContext
&ctx
= symtab
.ctx
;
473 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
474 COFFSymbolRef coffSym
= check(coffObj
->getSymbol(i
));
475 bool prevailingComdat
;
476 if (coffSym
.isUndefined()) {
477 symbols
[i
] = createUndefined(coffSym
, false);
478 } else if (coffSym
.isWeakExternal()) {
479 auto aux
= coffSym
.getAux
<coff_aux_weak_external
>();
480 bool overrideLazy
= true;
482 // On ARM64EC, external function calls emit a pair of weak-dependency
483 // aliases: func to #func and #func to the func guess exit thunk
484 // (instead of a single undefined func symbol, which would be emitted on
485 // other targets). Allow such aliases to be overridden by lazy archive
486 // symbols, just as we would for undefined symbols.
487 if (isArm64EC(getMachineType()) &&
488 aux
->Characteristics
== IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY
) {
489 COFFSymbolRef targetSym
= check(coffObj
->getSymbol(aux
->TagIndex
));
490 if (!targetSym
.isAnyUndefined()) {
491 // If the target is defined, it may be either a guess exit thunk or
492 // the actual implementation. If it's the latter, consider the alias
493 // to be part of the implementation and override potential lazy
495 StringRef targetName
= check(coffObj
->getSymbolName(targetSym
));
496 StringRef name
= check(coffObj
->getSymbolName(coffSym
));
497 std::optional
<std::string
> mangledName
=
498 getArm64ECMangledFunctionName(name
);
499 overrideLazy
= mangledName
== targetName
;
501 overrideLazy
= false;
504 symbols
[i
] = createUndefined(coffSym
, overrideLazy
);
505 weakAliases
.emplace_back(symbols
[i
], aux
);
506 } else if (std::optional
<Symbol
*> optSym
=
507 createDefined(coffSym
, comdatDefs
, prevailingComdat
)) {
508 symbols
[i
] = *optSym
;
509 if (ctx
.config
.mingw
&& prevailingComdat
)
510 recordPrevailingSymbolForMingw(coffSym
, prevailingSectionMap
);
512 // createDefined() returns std::nullopt if a symbol belongs to a section
513 // that was pending at the point when the symbol was read. This can happen
515 // 1) section definition symbol for a comdat leader;
516 // 2) symbol belongs to a comdat section associated with another section.
517 // In both of these cases, we can expect the section to be resolved by
518 // the time we finish visiting the remaining symbols in the symbol
519 // table. So we postpone the handling of this symbol until that time.
520 pendingIndexes
.push_back(i
);
522 i
+= coffSym
.getNumberOfAuxSymbols();
525 for (uint32_t i
: pendingIndexes
) {
526 COFFSymbolRef sym
= check(coffObj
->getSymbol(i
));
527 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition()) {
528 if (def
->Selection
== IMAGE_COMDAT_SELECT_ASSOCIATIVE
)
529 readAssociativeDefinition(sym
, def
);
530 else if (ctx
.config
.mingw
)
531 maybeAssociateSEHForMingw(sym
, def
, prevailingSectionMap
);
533 if (sparseChunks
[sym
.getSectionNumber()] == pendingComdat
) {
534 StringRef name
= check(coffObj
->getSymbolName(sym
));
535 Log(ctx
) << "comdat section " << name
536 << " without leader and unassociated, discarding";
539 symbols
[i
] = createRegular(sym
);
542 for (auto &kv
: weakAliases
) {
543 Symbol
*sym
= kv
.first
;
544 const coff_aux_weak_external
*aux
= kv
.second
;
545 checkAndSetWeakAlias(symtab
, this, sym
, symbols
[aux
->TagIndex
],
546 aux
->Characteristics
==
547 IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY
);
550 // Free the memory used by sparseChunks now that symbol loading is finished.
551 decltype(sparseChunks
)().swap(sparseChunks
);
554 Symbol
*ObjFile::createUndefined(COFFSymbolRef sym
, bool overrideLazy
) {
555 StringRef name
= check(coffObj
->getSymbolName(sym
));
556 Symbol
*s
= symtab
.addUndefined(name
, this, overrideLazy
);
558 // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC
560 if (symtab
.isEC() && getMachineType() == AMD64
) {
561 auto u
= dyn_cast
<Undefined
>(s
);
562 if (u
&& !u
->weakAlias
) {
563 if (std::optional
<std::string
> mangledName
=
564 getArm64ECMangledFunctionName(name
)) {
565 Symbol
*m
= symtab
.addUndefined(saver().save(*mangledName
), this,
566 /*overrideLazy=*/false);
567 u
->setWeakAlias(m
, /*antiDep=*/true);
574 static const coff_aux_section_definition
*findSectionDef(COFFObjectFile
*obj
,
576 uint32_t numSymbols
= obj
->getNumberOfSymbols();
577 for (uint32_t i
= 0; i
< numSymbols
; ++i
) {
578 COFFSymbolRef sym
= check(obj
->getSymbol(i
));
579 if (sym
.getSectionNumber() != section
)
581 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition())
587 void ObjFile::handleComdatSelection(
588 COFFSymbolRef sym
, COMDATType
&selection
, bool &prevailing
,
589 DefinedRegular
*leader
,
590 const llvm::object::coff_aux_section_definition
*def
) {
593 // There's already an existing comdat for this symbol: `Leader`.
594 // Use the comdats's selection field to determine if the new
595 // symbol in `Sym` should be discarded, produce a duplicate symbol
598 SectionChunk
*leaderChunk
= leader
->getChunk();
599 COMDATType leaderSelection
= leaderChunk
->selection
;
600 COFFLinkerContext
&ctx
= symtab
.ctx
;
602 assert(leader
->data
&& "Comdat leader without SectionChunk?");
603 if (isa
<BitcodeFile
>(leader
->file
)) {
604 // If the leader is only a LTO symbol, we don't know e.g. its final size
605 // yet, so we can't do the full strict comdat selection checking yet.
606 selection
= leaderSelection
= IMAGE_COMDAT_SELECT_ANY
;
609 if ((selection
== IMAGE_COMDAT_SELECT_ANY
&&
610 leaderSelection
== IMAGE_COMDAT_SELECT_LARGEST
) ||
611 (selection
== IMAGE_COMDAT_SELECT_LARGEST
&&
612 leaderSelection
== IMAGE_COMDAT_SELECT_ANY
)) {
613 // cl.exe picks "any" for vftables when building with /GR- and
614 // "largest" when building with /GR. To be able to link object files
615 // compiled with each flag, "any" and "largest" are merged as "largest".
616 leaderSelection
= selection
= IMAGE_COMDAT_SELECT_LARGEST
;
619 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
620 // Clang on the other hand picks "any". To be able to link two object files
621 // with a __declspec(selectany) declaration, one compiled with gcc and the
622 // other with clang, we merge them as proper "same size as"
623 if (ctx
.config
.mingw
&& ((selection
== IMAGE_COMDAT_SELECT_ANY
&&
624 leaderSelection
== IMAGE_COMDAT_SELECT_SAME_SIZE
) ||
625 (selection
== IMAGE_COMDAT_SELECT_SAME_SIZE
&&
626 leaderSelection
== IMAGE_COMDAT_SELECT_ANY
))) {
627 leaderSelection
= selection
= IMAGE_COMDAT_SELECT_SAME_SIZE
;
630 // Other than that, comdat selections must match. This is a bit more
631 // strict than link.exe which allows merging "any" and "largest" if "any"
632 // is the first symbol the linker sees, and it allows merging "largest"
633 // with everything (!) if "largest" is the first symbol the linker sees.
634 // Making this symmetric independent of which selection is seen first
635 // seems better though.
636 // (This behavior matches ModuleLinker::getComdatResult().)
637 if (selection
!= leaderSelection
) {
638 Log(ctx
) << "conflicting comdat type for " << leader
<< ": "
639 << (int)leaderSelection
<< " in " << leader
->getFile() << " and "
640 << (int)selection
<< " in " << this;
641 symtab
.reportDuplicate(leader
, this);
646 case IMAGE_COMDAT_SELECT_NODUPLICATES
:
647 symtab
.reportDuplicate(leader
, this);
650 case IMAGE_COMDAT_SELECT_ANY
:
654 case IMAGE_COMDAT_SELECT_SAME_SIZE
:
655 if (leaderChunk
->getSize() != getSection(sym
)->SizeOfRawData
) {
656 if (!ctx
.config
.mingw
) {
657 symtab
.reportDuplicate(leader
, this);
659 const coff_aux_section_definition
*leaderDef
= nullptr;
660 if (leaderChunk
->file
)
661 leaderDef
= findSectionDef(leaderChunk
->file
->getCOFFObj(),
662 leaderChunk
->getSectionNumber());
663 if (!leaderDef
|| leaderDef
->Length
!= def
->Length
)
664 symtab
.reportDuplicate(leader
, this);
669 case IMAGE_COMDAT_SELECT_EXACT_MATCH
: {
670 SectionChunk
newChunk(this, getSection(sym
));
671 // link.exe only compares section contents here and doesn't complain
672 // if the two comdat sections have e.g. different alignment.
674 if (leaderChunk
->getContents() != newChunk
.getContents())
675 symtab
.reportDuplicate(leader
, this, &newChunk
, sym
.getValue());
679 case IMAGE_COMDAT_SELECT_ASSOCIATIVE
:
680 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
681 // (This means lld-link doesn't produce duplicate symbol errors for
682 // associative comdats while link.exe does, but associate comdats
683 // are never extern in practice.)
684 llvm_unreachable("createDefined not called for associative comdats");
686 case IMAGE_COMDAT_SELECT_LARGEST
:
687 if (leaderChunk
->getSize() < getSection(sym
)->SizeOfRawData
) {
688 // Replace the existing comdat symbol with the new one.
689 StringRef name
= check(coffObj
->getSymbolName(sym
));
690 // FIXME: This is incorrect: With /opt:noref, the previous sections
691 // make it into the final executable as well. Correct handling would
692 // be to undo reading of the whole old section that's being replaced,
693 // or doing one pass that determines what the final largest comdat
694 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
695 // only the largest one.
696 replaceSymbol
<DefinedRegular
>(leader
, this, name
, /*IsCOMDAT*/ true,
697 /*IsExternal*/ true, sym
.getGeneric(),
703 case IMAGE_COMDAT_SELECT_NEWEST
:
704 llvm_unreachable("should have been rejected earlier");
708 std::optional
<Symbol
*> ObjFile::createDefined(
710 std::vector
<const coff_aux_section_definition
*> &comdatDefs
,
713 auto getName
= [&]() { return check(coffObj
->getSymbolName(sym
)); };
715 if (sym
.isCommon()) {
716 auto *c
= make
<CommonChunk
>(sym
);
718 return symtab
.addCommon(this, getName(), sym
.getValue(), sym
.getGeneric(),
722 COFFLinkerContext
&ctx
= symtab
.ctx
;
723 if (sym
.isAbsolute()) {
724 StringRef name
= getName();
726 if (name
== "@feat.00")
727 feat00Flags
= sym
.getValue();
728 // Skip special symbols.
729 if (ignoredSymbolName(name
))
732 if (sym
.isExternal())
733 return symtab
.addAbsolute(name
, sym
);
734 return make
<DefinedAbsolute
>(ctx
, name
, sym
);
737 int32_t sectionNumber
= sym
.getSectionNumber();
738 if (sectionNumber
== llvm::COFF::IMAGE_SYM_DEBUG
)
741 if (llvm::COFF::isReservedSectionNumber(sectionNumber
))
742 Fatal(ctx
) << toString(this) << ": " << getName()
743 << " should not refer to special section "
744 << Twine(sectionNumber
);
746 if ((uint32_t)sectionNumber
>= sparseChunks
.size())
747 Fatal(ctx
) << toString(this) << ": " << getName()
748 << " should not refer to non-existent section "
749 << Twine(sectionNumber
);
752 // A comdat symbol consists of two symbol table entries.
753 // The first symbol entry has the name of the section (e.g. .text), fixed
754 // values for the other fields, and one auxiliary record.
755 // The second symbol entry has the name of the comdat symbol, called the
757 // When this function is called for the first symbol entry of a comdat,
758 // it sets comdatDefs and returns std::nullopt, and when it's called for the
759 // second symbol entry it reads comdatDefs and then sets it back to nullptr.
761 // Handle comdat leader.
762 if (const coff_aux_section_definition
*def
= comdatDefs
[sectionNumber
]) {
763 comdatDefs
[sectionNumber
] = nullptr;
764 DefinedRegular
*leader
;
766 if (sym
.isExternal()) {
767 std::tie(leader
, prevailing
) =
768 symtab
.addComdat(this, getName(), sym
.getGeneric());
770 leader
= make
<DefinedRegular
>(this, /*Name*/ "", /*IsCOMDAT*/ false,
771 /*IsExternal*/ false, sym
.getGeneric());
775 if (def
->Selection
< (int)IMAGE_COMDAT_SELECT_NODUPLICATES
||
776 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
777 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
778 def
->Selection
> (int)IMAGE_COMDAT_SELECT_LARGEST
) {
779 Fatal(ctx
) << "unknown comdat type "
780 << std::to_string((int)def
->Selection
) << " for " << getName()
781 << " in " << toString(this);
783 COMDATType selection
= (COMDATType
)def
->Selection
;
785 if (leader
->isCOMDAT
)
786 handleComdatSelection(sym
, selection
, prevailing
, leader
, def
);
789 SectionChunk
*c
= readSection(sectionNumber
, def
, getName());
790 sparseChunks
[sectionNumber
] = c
;
793 c
->sym
= cast
<DefinedRegular
>(leader
);
794 c
->selection
= selection
;
795 cast
<DefinedRegular
>(leader
)->data
= &c
->repl
;
797 sparseChunks
[sectionNumber
] = nullptr;
802 // Prepare to handle the comdat leader symbol by setting the section's
803 // ComdatDefs pointer if we encounter a non-associative comdat.
804 if (sparseChunks
[sectionNumber
] == pendingComdat
) {
805 if (const coff_aux_section_definition
*def
= sym
.getSectionDefinition()) {
806 if (def
->Selection
!= IMAGE_COMDAT_SELECT_ASSOCIATIVE
)
807 comdatDefs
[sectionNumber
] = def
;
812 return createRegular(sym
);
815 MachineTypes
ObjFile::getMachineType() const {
816 return static_cast<MachineTypes
>(coffObj
->getMachine());
819 ArrayRef
<uint8_t> ObjFile::getDebugSection(StringRef secName
) {
820 if (SectionChunk
*sec
= SectionChunk::findByName(debugChunks
, secName
))
821 return sec
->consumeDebugMagic();
825 // OBJ files systematically store critical information in a .debug$S stream,
826 // even if the TU was compiled with no debug info. At least two records are
827 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
828 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
829 // currently used to initialize the hotPatchable member.
830 void ObjFile::initializeFlags() {
831 ArrayRef
<uint8_t> data
= getDebugSection(".debug$S");
835 DebugSubsectionArray subsections
;
837 BinaryStreamReader
reader(data
, llvm::endianness::little
);
838 ExitOnError exitOnErr
;
839 exitOnErr(reader
.readArray(subsections
, data
.size()));
841 for (const DebugSubsectionRecord
&ss
: subsections
) {
842 if (ss
.kind() != DebugSubsectionKind::Symbols
)
847 // Only parse the first two records. We are only looking for S_OBJNAME
848 // and S_COMPILE3, and they usually appear at the beginning of the
850 for (unsigned i
= 0; i
< 2; ++i
) {
851 Expected
<CVSymbol
> sym
= readSymbolFromStream(ss
.getRecordData(), offset
);
853 consumeError(sym
.takeError());
856 if (sym
->kind() == SymbolKind::S_COMPILE3
) {
858 cantFail(SymbolDeserializer::deserializeAs
<Compile3Sym
>(sym
.get()));
860 (cs
.Flags
& CompileSym3Flags::HotPatch
) != CompileSym3Flags::None
;
862 if (sym
->kind() == SymbolKind::S_OBJNAME
) {
863 auto objName
= cantFail(SymbolDeserializer::deserializeAs
<ObjNameSym
>(
865 if (objName
.Signature
)
866 pchSignature
= objName
.Signature
;
868 offset
+= sym
->length();
873 // Depending on the compilation flags, OBJs can refer to external files,
874 // necessary to merge this OBJ into the final PDB. We currently support two
875 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
876 // And PDB type servers, when compiling with /Zi. This function extracts these
877 // dependencies and makes them available as a TpiSource interface (see
878 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
879 // output even with /Yc and /Yu and with /Zi.
880 void ObjFile::initializeDependencies() {
881 COFFLinkerContext
&ctx
= symtab
.ctx
;
882 if (!ctx
.config
.debug
)
887 ArrayRef
<uint8_t> data
= getDebugSection(".debug$P");
891 data
= getDebugSection(".debug$T");
893 // symbols but no types, make a plain, empty TpiSource anyway, because it
894 // simplifies adding the symbols later.
896 if (!debugChunks
.empty())
897 debugTypesObj
= makeTpiSource(ctx
, this);
901 // Get the first type record. It will indicate if this object uses a type
902 // server (/Zi) or a PCH file (/Yu).
904 BinaryStreamReader
reader(data
, llvm::endianness::little
);
905 cantFail(reader
.readArray(types
, reader
.getLength()));
906 CVTypeArray::Iterator firstType
= types
.begin();
907 if (firstType
== types
.end())
910 // Remember the .debug$T or .debug$P section.
913 // This object file is a PCH file that others will depend on.
915 debugTypesObj
= makePrecompSource(ctx
, this);
919 // This object file was compiled with /Zi. Enqueue the PDB dependency.
920 if (firstType
->kind() == LF_TYPESERVER2
) {
921 TypeServer2Record ts
= cantFail(
922 TypeDeserializer::deserializeAs
<TypeServer2Record
>(firstType
->data()));
923 debugTypesObj
= makeUseTypeServerSource(ctx
, this, ts
);
924 enqueuePdbFile(ts
.getName(), this);
928 // This object was compiled with /Yu. It uses types from another object file
929 // with a matching signature.
930 if (firstType
->kind() == LF_PRECOMP
) {
931 PrecompRecord precomp
= cantFail(
932 TypeDeserializer::deserializeAs
<PrecompRecord
>(firstType
->data()));
933 // We're better off trusting the LF_PRECOMP signature. In some cases the
934 // S_OBJNAME record doesn't contain a valid PCH signature.
935 if (precomp
.Signature
)
936 pchSignature
= precomp
.Signature
;
937 debugTypesObj
= makeUsePrecompSource(ctx
, this, precomp
);
938 // Drop the LF_PRECOMP record from the input stream.
939 debugTypes
= debugTypes
.drop_front(firstType
->RecordData
.size());
943 // This is a plain old object file.
944 debugTypesObj
= makeTpiSource(ctx
, this);
947 // The casing of the PDB path stamped in the OBJ can differ from the actual path
948 // on disk. With this, we ensure to always use lowercase as a key for the
949 // pdbInputFileInstances map, at least on Windows.
950 static std::string
normalizePdbPath(StringRef path
) {
954 return std::string(path
);
958 // If existing, return the actual PDB path on disk.
959 static std::optional
<std::string
>
960 findPdbPath(StringRef pdbPath
, ObjFile
*dependentFile
, StringRef outputPath
) {
961 // Ensure the file exists before anything else. In some cases, if the path
962 // points to a removable device, Driver::enqueuePath() would fail with an
963 // error (EAGAIN, "resource unavailable try again") which we want to skip
965 if (llvm::sys::fs::exists(pdbPath
))
966 return normalizePdbPath(pdbPath
);
968 StringRef objPath
= !dependentFile
->parentName
.empty()
969 ? dependentFile
->parentName
970 : dependentFile
->getName();
972 // Currently, type server PDBs are only created by MSVC cl, which only runs
973 // on Windows, so we can assume type server paths are Windows style.
974 StringRef pdbName
= sys::path::filename(pdbPath
, sys::path::Style::windows
);
976 // Check if the PDB is in the same folder as the OBJ.
977 SmallString
<128> path
;
978 sys::path::append(path
, sys::path::parent_path(objPath
), pdbName
);
979 if (llvm::sys::fs::exists(path
))
980 return normalizePdbPath(path
);
982 // Check if the PDB is in the output folder.
984 sys::path::append(path
, sys::path::parent_path(outputPath
), pdbName
);
985 if (llvm::sys::fs::exists(path
))
986 return normalizePdbPath(path
);
991 PDBInputFile::PDBInputFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
992 : InputFile(ctx
.symtab
, PDBKind
, m
) {}
994 PDBInputFile::~PDBInputFile() = default;
996 PDBInputFile
*PDBInputFile::findFromRecordPath(const COFFLinkerContext
&ctx
,
999 auto p
= findPdbPath(path
.str(), fromFile
, ctx
.config
.outputFile
);
1002 auto it
= ctx
.pdbInputFileInstances
.find(*p
);
1003 if (it
!= ctx
.pdbInputFileInstances
.end())
1008 void PDBInputFile::parse() {
1009 symtab
.ctx
.pdbInputFileInstances
[mb
.getBufferIdentifier().str()] = this;
1011 std::unique_ptr
<pdb::IPDBSession
> thisSession
;
1012 Error E
= pdb::NativeSession::createFromPdb(
1013 MemoryBuffer::getMemBuffer(mb
, false), thisSession
);
1015 loadErrorStr
.emplace(toString(std::move(E
)));
1016 return; // fail silently at this point - the error will be handled later,
1017 // when merging the debug type stream
1020 session
.reset(static_cast<pdb::NativeSession
*>(thisSession
.release()));
1022 pdb::PDBFile
&pdbFile
= session
->getPDBFile();
1023 auto expectedInfo
= pdbFile
.getPDBInfoStream();
1024 // All PDB Files should have an Info stream.
1025 if (!expectedInfo
) {
1026 loadErrorStr
.emplace(toString(expectedInfo
.takeError()));
1029 debugTypesObj
= makeTypeServerSource(symtab
.ctx
, this);
1032 // Used only for DWARF debug info, which is not common (except in MinGW
1033 // environments). This returns an optional pair of file name and line
1034 // number for where the variable was defined.
1035 std::optional
<std::pair
<StringRef
, uint32_t>>
1036 ObjFile::getVariableLocation(StringRef var
) {
1038 dwarf
= make
<DWARFCache
>(DWARFContext::create(*getCOFFObj()));
1040 return std::nullopt
;
1042 if (symtab
.machine
== I386
)
1043 var
.consume_front("_");
1044 std::optional
<std::pair
<std::string
, unsigned>> ret
=
1045 dwarf
->getVariableLoc(var
);
1047 return std::nullopt
;
1048 return std::make_pair(saver().save(ret
->first
), ret
->second
);
1051 // Used only for DWARF debug info, which is not common (except in MinGW
1053 std::optional
<DILineInfo
> ObjFile::getDILineInfo(uint32_t offset
,
1054 uint32_t sectionIndex
) {
1056 dwarf
= make
<DWARFCache
>(DWARFContext::create(*getCOFFObj()));
1058 return std::nullopt
;
1061 return dwarf
->getDILineInfo(offset
, sectionIndex
);
1064 void ObjFile::enqueuePdbFile(StringRef path
, ObjFile
*fromFile
) {
1065 auto p
= findPdbPath(path
.str(), fromFile
, symtab
.ctx
.config
.outputFile
);
1068 auto it
= symtab
.ctx
.pdbInputFileInstances
.emplace(*p
, nullptr);
1070 return; // already scheduled for load
1071 symtab
.ctx
.driver
.enqueuePDB(*p
);
1074 ImportFile::ImportFile(COFFLinkerContext
&ctx
, MemoryBufferRef m
)
1075 : InputFile(ctx
.symtab
, ImportKind
, m
), live(!ctx
.config
.doGC
) {}
1077 MachineTypes
ImportFile::getMachineType() const {
1079 reinterpret_cast<const coff_import_header
*>(mb
.getBufferStart())
1081 return MachineTypes(machine
);
1084 ImportThunkChunk
*ImportFile::makeImportThunk() {
1085 switch (hdr
->Machine
) {
1087 return make
<ImportThunkChunkX64
>(symtab
.ctx
, impSym
);
1089 return make
<ImportThunkChunkX86
>(symtab
.ctx
, impSym
);
1091 return make
<ImportThunkChunkARM64
>(symtab
.ctx
, impSym
, ARM64
);
1093 return make
<ImportThunkChunkARM
>(symtab
.ctx
, impSym
);
1095 llvm_unreachable("unknown machine type");
1098 void ImportFile::parse() {
1100 reinterpret_cast<const coff_import_header
*>(mb
.getBufferStart());
1102 // Check if the total size is valid.
1103 if (mb
.getBufferSize() < sizeof(*hdr
) ||
1104 mb
.getBufferSize() != sizeof(*hdr
) + hdr
->SizeOfData
)
1105 Fatal(symtab
.ctx
) << "broken import library";
1107 // Read names and create an __imp_ symbol.
1108 StringRef buf
= mb
.getBuffer().substr(sizeof(*hdr
));
1109 auto split
= buf
.split('\0');
1112 if (isArm64EC(hdr
->Machine
)) {
1113 if (std::optional
<std::string
> demangledName
=
1114 getArm64ECDemangledFunctionName(split
.first
))
1115 name
= saver().save(*demangledName
);
1118 name
= saver().save(split
.first
);
1119 StringRef impName
= saver().save("__imp_" + name
);
1120 dllName
= buf
.split('\0').first
;
1122 switch (hdr
->getNameType()) {
1123 case IMPORT_ORDINAL
:
1129 case IMPORT_NAME_NOPREFIX
:
1130 extName
= ltrim1(name
, "?@_");
1132 case IMPORT_NAME_UNDECORATE
:
1133 extName
= ltrim1(name
, "?@_");
1134 extName
= extName
.substr(0, extName
.find('@'));
1136 case IMPORT_NAME_EXPORTAS
:
1137 extName
= buf
.substr(dllName
.size() + 1).split('\0').first
;
1142 externalName
= extName
;
1144 bool isCode
= hdr
->getType() == llvm::COFF::IMPORT_CODE
;
1146 if (!symtab
.isEC()) {
1147 impSym
= symtab
.addImportData(impName
, this, location
);
1149 // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT,
1150 // which holds addresses that are guaranteed to be callable directly from
1151 // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to
1152 // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For
1153 // data imports, the naming is reversed.
1154 StringRef auxImpName
= saver().save("__imp_aux_" + name
);
1156 impSym
= symtab
.addImportData(auxImpName
, this, location
);
1157 impECSym
= symtab
.addImportData(impName
, this, auxLocation
);
1159 impSym
= symtab
.addImportData(impName
, this, location
);
1160 impECSym
= symtab
.addImportData(auxImpName
, this, auxLocation
);
1165 StringRef auxImpCopyName
= saver().save("__auximpcopy_" + name
);
1166 auxImpCopySym
= symtab
.addImportData(auxImpCopyName
, this, auxCopyLocation
);
1170 // If this was a duplicate, we logged an error but may continue;
1171 // in this case, impSym is nullptr.
1175 if (hdr
->getType() == llvm::COFF::IMPORT_CONST
)
1176 static_cast<void>(symtab
.addImportData(name
, this, location
));
1178 // If type is function, we need to create a thunk which jump to an
1179 // address pointed by the __imp_ symbol. (This allows you to call
1180 // DLL functions just like regular non-DLL functions.)
1182 if (!symtab
.isEC()) {
1183 thunkSym
= symtab
.addImportThunk(name
, impSym
, makeImportThunk());
1185 thunkSym
= symtab
.addImportThunk(
1186 name
, impSym
, make
<ImportThunkChunkX64
>(symtab
.ctx
, impSym
));
1188 if (std::optional
<std::string
> mangledName
=
1189 getArm64ECMangledFunctionName(name
)) {
1190 StringRef auxThunkName
= saver().save(*mangledName
);
1191 auxThunkSym
= symtab
.addImportThunk(
1192 auxThunkName
, impECSym
,
1193 make
<ImportThunkChunkARM64
>(symtab
.ctx
, impECSym
, ARM64EC
));
1196 StringRef impChkName
= saver().save("__impchk_" + name
);
1197 impchkThunk
= make
<ImportThunkChunkARM64EC
>(this);
1198 impchkThunk
->sym
= symtab
.addImportThunk(impChkName
, impSym
, impchkThunk
);
1199 symtab
.ctx
.driver
.pullArm64ECIcallHelper();
1204 BitcodeFile::BitcodeFile(COFFLinkerContext
&ctx
, MemoryBufferRef mb
,
1205 StringRef archiveName
, uint64_t offsetInArchive
,
1207 : InputFile(ctx
.symtab
, BitcodeKind
, mb
, lazy
) {
1208 std::string path
= mb
.getBufferIdentifier().str();
1209 if (ctx
.config
.thinLTOIndexOnly
)
1210 path
= replaceThinLTOSuffix(mb
.getBufferIdentifier(),
1211 ctx
.config
.thinLTOObjectSuffixReplace
.first
,
1212 ctx
.config
.thinLTOObjectSuffixReplace
.second
);
1214 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1215 // name. If two archives define two members with the same name, this
1216 // causes a collision which result in only one of the objects being taken
1217 // into consideration at LTO time (which very likely causes undefined
1218 // symbols later in the link stage). So we append file offset to make
1220 MemoryBufferRef
mbref(mb
.getBuffer(),
1221 saver().save(archiveName
.empty()
1224 sys::path::filename(path
) +
1225 utostr(offsetInArchive
)));
1227 obj
= check(lto::InputFile::create(mbref
));
1230 BitcodeFile::~BitcodeFile() = default;
1232 void BitcodeFile::parse() {
1233 llvm::StringSaver
&saver
= lld::saver();
1235 std::vector
<std::pair
<Symbol
*, bool>> comdat(obj
->getComdatTable().size());
1236 for (size_t i
= 0; i
!= obj
->getComdatTable().size(); ++i
)
1237 // FIXME: Check nodeduplicate
1239 symtab
.addComdat(this, saver
.save(obj
->getComdatTable()[i
].first
));
1240 for (const lto::InputFile::Symbol
&objSym
: obj
->symbols()) {
1241 StringRef symName
= saver
.save(objSym
.getName());
1242 int comdatIndex
= objSym
.getComdatIndex();
1244 SectionChunk
*fakeSC
= nullptr;
1245 if (objSym
.isExecutable())
1246 fakeSC
= &symtab
.ctx
.ltoTextSectionChunk
.chunk
;
1248 fakeSC
= &symtab
.ctx
.ltoDataSectionChunk
.chunk
;
1249 if (objSym
.isUndefined()) {
1250 sym
= symtab
.addUndefined(symName
, this, false);
1251 if (objSym
.isWeak())
1252 sym
->deferUndefined
= true;
1253 // If one LTO object file references (i.e. has an undefined reference to)
1254 // a symbol with an __imp_ prefix, the LTO compilation itself sees it
1255 // as unprefixed but with a dllimport attribute instead, and doesn't
1256 // understand the relation to a concrete IR symbol with the __imp_ prefix.
1258 // For such cases, mark the symbol as used in a regular object (i.e. the
1259 // symbol must be retained) so that the linker can associate the
1260 // references in the end. If the symbol is defined in an import library
1261 // or in a regular object file, this has no effect, but if it is defined
1262 // in another LTO object file, this makes sure it is kept, to fulfill
1263 // the reference when linking the output of the LTO compilation.
1264 if (symName
.starts_with("__imp_"))
1265 sym
->isUsedInRegularObj
= true;
1266 } else if (objSym
.isCommon()) {
1267 sym
= symtab
.addCommon(this, symName
, objSym
.getCommonSize());
1268 } else if (objSym
.isWeak() && objSym
.isIndirect()) {
1270 sym
= symtab
.addUndefined(symName
, this, true);
1271 std::string fallback
= std::string(objSym
.getCOFFWeakExternalFallback());
1272 Symbol
*alias
= symtab
.addUndefined(saver
.save(fallback
));
1273 checkAndSetWeakAlias(symtab
, this, sym
, alias
, false);
1274 } else if (comdatIndex
!= -1) {
1275 if (symName
== obj
->getComdatTable()[comdatIndex
].first
) {
1276 sym
= comdat
[comdatIndex
].first
;
1277 if (cast
<DefinedRegular
>(sym
)->data
== nullptr)
1278 cast
<DefinedRegular
>(sym
)->data
= &fakeSC
->repl
;
1279 } else if (comdat
[comdatIndex
].second
) {
1280 sym
= symtab
.addRegular(this, symName
, nullptr, fakeSC
);
1282 sym
= symtab
.addUndefined(symName
, this, false);
1286 symtab
.addRegular(this, symName
, nullptr, fakeSC
, 0, objSym
.isWeak());
1288 symbols
.push_back(sym
);
1289 if (objSym
.isUsed())
1290 symtab
.ctx
.config
.gcroot
.push_back(sym
);
1292 directives
= saver
.save(obj
->getCOFFLinkerOpts());
1295 void BitcodeFile::parseLazy() {
1296 for (const lto::InputFile::Symbol
&sym
: obj
->symbols())
1297 if (!sym
.isUndefined()) {
1298 symtab
.addLazyObject(this, sym
.getName());
1304 MachineTypes
BitcodeFile::getMachineType() const {
1305 Triple
t(obj
->getTargetTriple());
1306 switch (t
.getArch()) {
1307 case Triple::x86_64
:
1314 case Triple::aarch64
:
1315 return t
.isWindowsArm64EC() ? ARM64EC
: ARM64
;
1317 return IMAGE_FILE_MACHINE_UNKNOWN
;
1321 std::string
lld::coff::replaceThinLTOSuffix(StringRef path
, StringRef suffix
,
1323 if (path
.consume_back(suffix
))
1324 return (path
+ repl
).str();
1325 return std::string(path
);
1328 static bool isRVACode(COFFObjectFile
*coffObj
, uint64_t rva
, InputFile
*file
) {
1329 for (size_t i
= 1, e
= coffObj
->getNumberOfSections(); i
<= e
; i
++) {
1330 const coff_section
*sec
= CHECK(coffObj
->getSection(i
), file
);
1331 if (rva
>= sec
->VirtualAddress
&&
1332 rva
<= sec
->VirtualAddress
+ sec
->VirtualSize
) {
1333 return (sec
->Characteristics
& COFF::IMAGE_SCN_CNT_CODE
) != 0;
1339 void DLLFile::parse() {
1340 // Parse a memory buffer as a PE-COFF executable.
1341 std::unique_ptr
<Binary
> bin
= CHECK(createBinary(mb
), this);
1343 if (auto *obj
= dyn_cast
<COFFObjectFile
>(bin
.get())) {
1347 Err(symtab
.ctx
) << toString(this) << " is not a COFF file";
1351 if (!coffObj
->getPE32Header() && !coffObj
->getPE32PlusHeader()) {
1352 Err(symtab
.ctx
) << toString(this) << " is not a PE-COFF executable";
1356 for (const auto &exp
: coffObj
->export_directories()) {
1357 StringRef dllName
, symbolName
;
1359 checkError(exp
.getDllName(dllName
));
1360 checkError(exp
.getSymbolName(symbolName
));
1361 checkError(exp
.getExportRVA(exportRVA
));
1363 if (symbolName
.empty())
1366 bool code
= isRVACode(coffObj
.get(), exportRVA
, this);
1368 Symbol
*s
= make
<Symbol
>();
1369 s
->dllName
= dllName
;
1370 s
->symbolName
= symbolName
;
1371 s
->importType
= code
? ImportType::IMPORT_CODE
: ImportType::IMPORT_DATA
;
1372 s
->nameType
= ImportNameType::IMPORT_NAME
;
1374 if (coffObj
->getMachine() == I386
) {
1375 s
->symbolName
= symbolName
= saver().save("_" + symbolName
);
1376 s
->nameType
= ImportNameType::IMPORT_NAME_NOPREFIX
;
1379 StringRef impName
= saver().save("__imp_" + symbolName
);
1380 symtab
.addLazyDLLSymbol(this, s
, impName
);
1382 symtab
.addLazyDLLSymbol(this, s
, symbolName
);
1386 MachineTypes
DLLFile::getMachineType() const {
1388 return static_cast<MachineTypes
>(coffObj
->getMachine());
1389 return IMAGE_FILE_MACHINE_UNKNOWN
;
1392 void DLLFile::makeImport(DLLFile::Symbol
*s
) {
1393 if (!seen
.insert(s
->symbolName
).second
)
1396 size_t impSize
= s
->dllName
.size() + s
->symbolName
.size() + 2; // +2 for NULs
1397 size_t size
= sizeof(coff_import_header
) + impSize
;
1398 char *buf
= bAlloc().Allocate
<char>(size
);
1399 memset(buf
, 0, size
);
1401 auto *imp
= reinterpret_cast<coff_import_header
*>(p
);
1404 imp
->Machine
= coffObj
->getMachine();
1405 imp
->SizeOfData
= impSize
;
1406 imp
->OrdinalHint
= 0; // Only linking by name
1407 imp
->TypeInfo
= (s
->nameType
<< 2) | s
->importType
;
1409 // Write symbol name and DLL name.
1410 memcpy(p
, s
->symbolName
.data(), s
->symbolName
.size());
1411 p
+= s
->symbolName
.size() + 1;
1412 memcpy(p
, s
->dllName
.data(), s
->dllName
.size());
1413 MemoryBufferRef mbref
= MemoryBufferRef(StringRef(buf
, size
), s
->dllName
);
1414 ImportFile
*impFile
= make
<ImportFile
>(symtab
.ctx
, mbref
);
1415 symtab
.ctx
.driver
.addFile(impFile
);