1 //===- AArch64ErrataFix.cpp -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around
9 // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10 // versions of the core.
12 // The general principle is that an erratum sequence of one or
13 // more instructions is detected in the instruction stream, one of the
14 // instructions in the sequence is replaced with a branch to a patch sequence
15 // of replacement instructions. At the end of the replacement sequence the
16 // patch branches back to the instruction stream.
18 // This technique is only suitable for fixing an erratum when:
19 // - There is a set of necessary conditions required to trigger the erratum that
20 // can be detected at static link time.
21 // - There is a set of replacement instructions that can be used to remove at
22 // least one of the necessary conditions that trigger the erratum.
23 // - We can overwrite an instruction in the erratum sequence with a branch to
24 // the replacement sequence.
25 // - We can place the replacement sequence within range of the branch.
26 //===----------------------------------------------------------------------===//
28 #include "AArch64ErrataFix.h"
29 #include "InputFiles.h"
30 #include "LinkerScript.h"
31 #include "OutputSections.h"
32 #include "Relocations.h"
34 #include "SyntheticSections.h"
36 #include "lld/Common/CommonLinkerContext.h"
37 #include "lld/Common/Strings.h"
38 #include "llvm/ADT/StringExtras.h"
39 #include "llvm/Support/Endian.h"
43 using namespace llvm::ELF
;
44 using namespace llvm::object
;
45 using namespace llvm::support
;
46 using namespace llvm::support::endian
;
48 using namespace lld::elf
;
50 // Helper functions to identify instructions and conditions needed to trigger
51 // the Cortex-A53-843419 erratum.
54 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
55 static bool isADRP(uint32_t instr
) {
56 return (instr
& 0x9f000000) == 0x90000000;
59 // Load and store bit patterns from ARMv8-A.
60 // Instructions appear in order of appearance starting from table in
61 // C4.1.3 Loads and Stores.
63 // All loads and stores have 1 (at bit position 27), (0 at bit position 25).
64 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
65 static bool isLoadStoreClass(uint32_t instr
) {
66 return (instr
& 0x0a000000) == 0x08000000;
69 // LDN/STN multiple no offset
70 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
71 // LDN/STN multiple post-indexed
72 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
75 // Utility routine to decode opcode field of LDN/STN multiple structure
76 // instructions to find the ST1 instructions.
77 // opcode == 0010 ST1 4 registers.
78 // opcode == 0110 ST1 3 registers.
79 // opcode == 0111 ST1 1 register.
80 // opcode == 1010 ST1 2 registers.
81 static bool isST1MultipleOpcode(uint32_t instr
) {
82 return (instr
& 0x0000f000) == 0x00002000 ||
83 (instr
& 0x0000f000) == 0x00006000 ||
84 (instr
& 0x0000f000) == 0x00007000 ||
85 (instr
& 0x0000f000) == 0x0000a000;
88 static bool isST1Multiple(uint32_t instr
) {
89 return (instr
& 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr
);
92 // Writes to Rn (writeback).
93 static bool isST1MultiplePost(uint32_t instr
) {
94 return (instr
& 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr
);
97 // LDN/STN single no offset
98 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
99 // LDN/STN single post-indexed
100 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
103 // Utility routine to decode opcode field of LDN/STN single structure
104 // instructions to find the ST1 instructions.
105 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
106 // opcode == 000 ST1 8-bit.
107 // opcode == 010 ST1 16-bit.
108 // opcode == 100 ST1 32 or 64-bit (Size determines which).
109 static bool isST1SingleOpcode(uint32_t instr
) {
110 return (instr
& 0x0040e000) == 0x00000000 ||
111 (instr
& 0x0040e000) == 0x00004000 ||
112 (instr
& 0x0040e000) == 0x00008000;
115 static bool isST1Single(uint32_t instr
) {
116 return (instr
& 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr
);
119 // Writes to Rn (writeback).
120 static bool isST1SinglePost(uint32_t instr
) {
121 return (instr
& 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr
);
124 static bool isST1(uint32_t instr
) {
125 return isST1Multiple(instr
) || isST1MultiplePost(instr
) ||
126 isST1Single(instr
) || isST1SinglePost(instr
);
129 // Load/store exclusive
130 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
131 // L == 0 for Stores.
132 static bool isLoadStoreExclusive(uint32_t instr
) {
133 return (instr
& 0x3f000000) == 0x08000000;
136 static bool isLoadExclusive(uint32_t instr
) {
137 return (instr
& 0x3f400000) == 0x08400000;
140 // Load register literal
141 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
142 static bool isLoadLiteral(uint32_t instr
) {
143 return (instr
& 0x3b000000) == 0x18000000;
146 // Load/store no-allocate pair
148 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
149 // L == 0 for stores.
150 // Never writes to register
151 static bool isSTNP(uint32_t instr
) {
152 return (instr
& 0x3bc00000) == 0x28000000;
155 // Load/store register pair
157 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
158 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
160 static bool isSTPPost(uint32_t instr
) {
161 return (instr
& 0x3bc00000) == 0x28800000;
165 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
166 static bool isSTPOffset(uint32_t instr
) {
167 return (instr
& 0x3bc00000) == 0x29000000;
171 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
173 static bool isSTPPre(uint32_t instr
) {
174 return (instr
& 0x3bc00000) == 0x29800000;
177 static bool isSTP(uint32_t instr
) {
178 return isSTPPost(instr
) || isSTPOffset(instr
) || isSTPPre(instr
);
181 // Load/store register (unscaled immediate)
182 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
183 // V == 0 for Scalar, V == 1 for Simd/FP.
184 static bool isLoadStoreUnscaled(uint32_t instr
) {
185 return (instr
& 0x3b000c00) == 0x38000000;
188 // Load/store register (immediate post-indexed)
189 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
190 static bool isLoadStoreImmediatePost(uint32_t instr
) {
191 return (instr
& 0x3b200c00) == 0x38000400;
194 // Load/store register (unprivileged)
195 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
196 static bool isLoadStoreUnpriv(uint32_t instr
) {
197 return (instr
& 0x3b200c00) == 0x38000800;
200 // Load/store register (immediate pre-indexed)
201 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
202 static bool isLoadStoreImmediatePre(uint32_t instr
) {
203 return (instr
& 0x3b200c00) == 0x38000c00;
206 // Load/store register (register offset)
207 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
208 static bool isLoadStoreRegisterOff(uint32_t instr
) {
209 return (instr
& 0x3b200c00) == 0x38200800;
212 // Load/store register (unsigned immediate)
213 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
214 static bool isLoadStoreRegisterUnsigned(uint32_t instr
) {
215 return (instr
& 0x3b000000) == 0x39000000;
218 // Rt is always in bit position 0 - 4.
219 static uint32_t getRt(uint32_t instr
) { return (instr
& 0x1f); }
221 // Rn is always in bit position 5 - 9.
222 static uint32_t getRn(uint32_t instr
) { return (instr
>> 5) & 0x1f; }
224 // C4.1.2 Branches, Exception Generating and System instructions
225 // | op0 (3) 1 | 01 op1 (4) | x (22) |
226 // op0 == 010 101 op1 == 0xxx Conditional Branch.
227 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
228 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
229 // op0 == x01 101 op1 == 0xxx Compare and branch immediate.
230 // op0 == x01 101 op1 == 1xxx Test and branch immediate.
231 static bool isBranch(uint32_t instr
) {
232 return ((instr
& 0xfe000000) == 0xd6000000) || // Cond branch.
233 ((instr
& 0xfe000000) == 0x54000000) || // Uncond branch reg.
234 ((instr
& 0x7c000000) == 0x14000000) || // Uncond branch imm.
235 ((instr
& 0x7c000000) == 0x34000000); // Compare and test branch.
238 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr
) {
239 return isLoadStoreUnscaled(instr
) || isLoadStoreImmediatePost(instr
) ||
240 isLoadStoreUnpriv(instr
) || isLoadStoreImmediatePre(instr
) ||
241 isLoadStoreRegisterOff(instr
) || isLoadStoreRegisterUnsigned(instr
);
244 // Note that this function refers to v8.0 only and does not include the
245 // additional load and store instructions added for in later revisions of
246 // the architecture such as the Atomic memory operations introduced
248 static bool isV8NonStructureLoad(uint32_t instr
) {
249 if (isLoadExclusive(instr
))
251 if (isLoadLiteral(instr
))
253 else if (isV8SingleRegisterNonStructureLoadStore(instr
)) {
254 // For Load and Store single register, Loads are derived from a
255 // combination of the Size, V and Opc fields.
256 uint32_t size
= (instr
>> 30) & 0xff;
257 uint32_t v
= (instr
>> 26) & 0x1;
258 uint32_t opc
= (instr
>> 22) & 0x3;
259 // For the load and store instructions that we are decoding.
260 // Opc == 0 are all stores.
261 // Opc == 1 with a couple of exceptions are loads. The exceptions are:
262 // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
263 // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
264 return opc
!= 0 && !(size
== 0 && v
== 1 && opc
== 2) &&
265 !(size
== 3 && v
== 0 && opc
== 2);
270 // The following decode instructions are only complete up to the instructions
271 // needed for errata 843419.
273 // Instruction with writeback updates the index register after the load/store.
274 static bool hasWriteback(uint32_t instr
) {
275 return isLoadStoreImmediatePre(instr
) || isLoadStoreImmediatePost(instr
) ||
276 isSTPPre(instr
) || isSTPPost(instr
) || isST1SinglePost(instr
) ||
277 isST1MultiplePost(instr
);
280 // For the load and store class of instructions, a load can write to the
281 // destination register, a load and a store can write to the base register when
282 // the instruction has writeback.
283 static bool doesLoadStoreWriteToReg(uint32_t instr
, uint32_t reg
) {
284 return (isV8NonStructureLoad(instr
) && getRt(instr
) == reg
) ||
285 (hasWriteback(instr
) && getRn(instr
) == reg
);
288 // Scanner for Cortex-A53 errata 843419
289 // Full details are available in the Cortex A53 MPCore revision 0 Software
290 // Developers Errata Notice (ARM-EPM-048406).
292 // The instruction sequence that triggers the erratum is common in compiled
293 // AArch64 code, however it is sensitive to the offset of the sequence within
294 // a 4k page. This means that by scanning and fixing the patch after we have
295 // assigned addresses we only need to disassemble and fix instances of the
296 // sequence in the range of affected offsets.
298 // In summary the erratum conditions are a series of 4 instructions:
299 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of
300 // address of instruction either 0xff8 or 0xffc.
301 // 2.) A load or store instruction that can be:
302 // - A single register load or store, of either integer or vector registers.
303 // - An STP or STNP, of either integer or vector registers.
304 // - An Advanced SIMD ST1 store instruction.
305 // - Must not write to Rn, but may optionally read from it.
306 // 3.) An optional instruction that is not a branch and does not write to Rn.
307 // 4.) A load or store from the Load/store register (unsigned immediate) class
308 // that uses Rn as the base address register.
310 // Note that we do not attempt to scan for Sequence 2 as described in the
311 // Software Developers Errata Notice as this has been assessed to be extremely
312 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
314 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
315 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
316 // and 4.) in the Scanner for Cortex-A53 errata comment above.
317 static bool is843419ErratumSequence(uint32_t instr1
, uint32_t instr2
,
322 uint32_t rn
= getRt(instr1
);
323 return isLoadStoreClass(instr2
) &&
324 (isLoadStoreExclusive(instr2
) || isLoadLiteral(instr2
) ||
325 isV8SingleRegisterNonStructureLoadStore(instr2
) || isSTP(instr2
) ||
326 isSTNP(instr2
) || isST1(instr2
)) &&
327 !doesLoadStoreWriteToReg(instr2
, rn
) &&
328 isLoadStoreRegisterUnsigned(instr4
) && getRn(instr4
) == rn
;
331 // Scan the instruction sequence starting at Offset Off from the base of
332 // InputSection isec. We update Off in this function rather than in the caller
333 // as we can skip ahead much further into the section when we know how many
334 // instructions we've scanned.
335 // Return the offset of the load or store instruction in isec that we want to
336 // patch or 0 if no patch required.
337 static uint64_t scanCortexA53Errata843419(InputSection
*isec
, uint64_t &off
,
339 uint64_t isecAddr
= isec
->getVA(0);
341 // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
342 uint64_t initialPageOff
= (isecAddr
+ off
) & 0xfff;
343 if (initialPageOff
< 0xff8)
344 off
+= 0xff8 - initialPageOff
;
346 bool optionalAllowed
= limit
- off
> 12;
347 if (off
>= limit
|| limit
- off
< 12) {
348 // Need at least 3 4-byte sized instructions to trigger erratum.
353 uint64_t patchOff
= 0;
354 const uint8_t *buf
= isec
->content().begin();
355 const ulittle32_t
*instBuf
= reinterpret_cast<const ulittle32_t
*>(buf
+ off
);
356 uint32_t instr1
= *instBuf
++;
357 uint32_t instr2
= *instBuf
++;
358 uint32_t instr3
= *instBuf
++;
359 if (is843419ErratumSequence(instr1
, instr2
, instr3
)) {
361 } else if (optionalAllowed
&& !isBranch(instr3
)) {
362 uint32_t instr4
= *instBuf
++;
363 if (is843419ErratumSequence(instr1
, instr2
, instr4
))
366 if (((isecAddr
+ off
) & 0xfff) == 0xff8)
373 class elf::Patch843419Section final
: public SyntheticSection
{
375 Patch843419Section(Ctx
&, InputSection
*p
, uint64_t off
);
377 void writeTo(uint8_t *buf
) override
;
379 size_t getSize() const override
{ return 8; }
381 uint64_t getLDSTAddr() const;
383 static bool classof(const SectionBase
*d
) {
384 return d
->kind() == InputSectionBase::Synthetic
&& d
->name
== ".text.patch";
387 // The Section we are patching.
388 const InputSection
*patchee
;
389 // The offset of the instruction in the patchee section we are patching.
390 uint64_t patcheeOffset
;
391 // A label for the start of the Patch that we can use as a relocation target.
395 Patch843419Section::Patch843419Section(Ctx
&ctx
, InputSection
*p
, uint64_t off
)
396 : SyntheticSection(ctx
, ".text.patch", SHT_PROGBITS
,
397 SHF_ALLOC
| SHF_EXECINSTR
, 4),
398 patchee(p
), patcheeOffset(off
) {
399 this->parent
= p
->getParent();
400 patchSym
= addSyntheticLocal(
401 ctx
, ctx
.saver
.save("__CortexA53843419_" + utohexstr(getLDSTAddr())),
402 STT_FUNC
, 0, getSize(), *this);
403 addSyntheticLocal(ctx
, ctx
.saver
.save("$x"), STT_NOTYPE
, 0, 0, *this);
406 uint64_t Patch843419Section::getLDSTAddr() const {
407 return patchee
->getVA(patcheeOffset
);
410 void Patch843419Section::writeTo(uint8_t *buf
) {
411 // Copy the instruction that we will be replacing with a branch in the
413 write32le(buf
, read32le(patchee
->content().begin() + patcheeOffset
));
415 // Apply any relocation transferred from the original patchee section.
416 ctx
.target
->relocateAlloc(*this, buf
);
418 // Return address is the next instruction after the one we have just copied.
419 uint64_t s
= getLDSTAddr() + 4;
420 uint64_t p
= patchSym
->getVA(ctx
) + 4;
421 ctx
.target
->relocateNoSym(buf
+ 4, R_AARCH64_JUMP26
, s
- p
);
424 void AArch64Err843419Patcher::init() {
425 // The AArch64 ABI permits data in executable sections. We must avoid scanning
426 // this data as if it were instructions to avoid false matches. We use the
427 // mapping symbols in the InputObjects to identify this data, caching the
428 // results in sectionMap so we don't have to recalculate it each pass.
430 // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
431 // half open intervals [Symbol Value, Next Symbol Value) of code and data
432 // within sections. If there is no next symbol then the half open interval is
433 // [Symbol Value, End of section). The type, code or data, is determined by
434 // the mapping symbol name, $x for code, $d for data.
435 auto isCodeMapSymbol
= [](const Symbol
*b
) {
436 return b
->getName() == "$x" || b
->getName().starts_with("$x.");
438 auto isDataMapSymbol
= [](const Symbol
*b
) {
439 return b
->getName() == "$d" || b
->getName().starts_with("$d.");
442 // Collect mapping symbols for every executable InputSection.
443 for (ELFFileBase
*file
: ctx
.objectFiles
) {
444 for (Symbol
*b
: file
->getLocalSymbols()) {
445 auto *def
= dyn_cast
<Defined
>(b
);
448 if (!isCodeMapSymbol(def
) && !isDataMapSymbol(def
))
450 if (auto *sec
= dyn_cast_or_null
<InputSection
>(def
->section
))
451 if (sec
->flags
& SHF_EXECINSTR
)
452 sectionMap
[sec
].push_back(def
);
455 // For each InputSection make sure the mapping symbols are in sorted in
456 // ascending order and free from consecutive runs of mapping symbols with
457 // the same type. For example we must remove the redundant $d.1 from $x.0
459 for (auto &kv
: sectionMap
) {
460 std::vector
<const Defined
*> &mapSyms
= kv
.second
;
461 llvm::stable_sort(mapSyms
, [](const Defined
*a
, const Defined
*b
) {
462 return a
->value
< b
->value
;
465 std::unique(mapSyms
.begin(), mapSyms
.end(),
466 [=](const Defined
*a
, const Defined
*b
) {
467 return isCodeMapSymbol(a
) == isCodeMapSymbol(b
);
470 // Always start with a Code Mapping Symbol.
471 if (!mapSyms
.empty() && !isCodeMapSymbol(mapSyms
.front()))
472 mapSyms
.erase(mapSyms
.begin());
477 // Insert the PatchSections we have created back into the
478 // InputSectionDescription. As inserting patches alters the addresses of
479 // InputSections that follow them, we try and place the patches after all the
480 // executable sections, although we may need to insert them earlier if the
481 // InputSectionDescription is larger than the maximum branch range.
482 void AArch64Err843419Patcher::insertPatches(
483 InputSectionDescription
&isd
, std::vector
<Patch843419Section
*> &patches
) {
485 uint64_t prevIsecLimit
= isd
.sections
.front()->outSecOff
;
486 uint64_t patchUpperBound
=
487 prevIsecLimit
+ ctx
.target
->getThunkSectionSpacing();
488 uint64_t outSecAddr
= isd
.sections
.front()->getParent()->addr
;
490 // Set the outSecOff of patches to the place where we want to insert them.
491 // We use a similar strategy to Thunk placement. Place patches roughly
492 // every multiple of maximum branch range.
493 auto patchIt
= patches
.begin();
494 auto patchEnd
= patches
.end();
495 for (const InputSection
*isec
: isd
.sections
) {
496 isecLimit
= isec
->outSecOff
+ isec
->getSize();
497 if (isecLimit
> patchUpperBound
) {
498 while (patchIt
!= patchEnd
) {
499 if ((*patchIt
)->getLDSTAddr() - outSecAddr
>= prevIsecLimit
)
501 (*patchIt
)->outSecOff
= prevIsecLimit
;
504 patchUpperBound
= prevIsecLimit
+ ctx
.target
->getThunkSectionSpacing();
506 prevIsecLimit
= isecLimit
;
508 for (; patchIt
!= patchEnd
; ++patchIt
) {
509 (*patchIt
)->outSecOff
= isecLimit
;
512 // Merge all patch sections. We use the outSecOff assigned above to
513 // determine the insertion point. This is ok as we only merge into an
514 // InputSectionDescription once per pass, and at the end of the pass
515 // assignAddresses() will recalculate all the outSecOff values.
516 SmallVector
<InputSection
*, 0> tmp
;
517 tmp
.reserve(isd
.sections
.size() + patches
.size());
518 auto mergeCmp
= [](const InputSection
*a
, const InputSection
*b
) {
519 if (a
->outSecOff
!= b
->outSecOff
)
520 return a
->outSecOff
< b
->outSecOff
;
521 return isa
<Patch843419Section
>(a
) && !isa
<Patch843419Section
>(b
);
523 std::merge(isd
.sections
.begin(), isd
.sections
.end(), patches
.begin(),
524 patches
.end(), std::back_inserter(tmp
), mergeCmp
);
525 isd
.sections
= std::move(tmp
);
528 // Given an erratum sequence that starts at address adrpAddr, with an
529 // instruction that we need to patch at patcheeOffset from the start of
530 // InputSection isec, create a Patch843419 Section and add it to the
531 // Patches that we need to insert.
532 static void implementPatch(Ctx
&ctx
, uint64_t adrpAddr
, uint64_t patcheeOffset
,
534 std::vector
<Patch843419Section
*> &patches
) {
535 // There may be a relocation at the same offset that we are patching. There
536 // are four cases that we need to consider.
537 // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
538 // instance of the erratum on a previous patch and altered the relocation. We
539 // have nothing more to do.
540 // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
541 // we read will be transformed into a MOVZ later so we actually don't match
542 // the sequence and have nothing more to do.
543 // Case 3: A load/store register (unsigned immediate) class relocation. There
544 // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
545 // they are both absolute. We need to add the same relocation to the patch,
546 // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
547 // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
548 // relocation at the offset.
549 auto relIt
= llvm::find_if(isec
->relocs(), [=](const Relocation
&r
) {
550 return r
.offset
== patcheeOffset
;
552 if (relIt
!= isec
->relocs().end() &&
553 (relIt
->type
== R_AARCH64_JUMP26
|| relIt
->expr
== R_RELAX_TLS_IE_TO_LE
))
556 Log(ctx
) << "detected cortex-a53-843419 erratum sequence starting at " <<
557 utohexstr(adrpAddr
) << " in unpatched output.";
559 auto *ps
= make
<Patch843419Section
>(ctx
, isec
, patcheeOffset
);
560 patches
.push_back(ps
);
562 auto makeRelToPatch
= [](uint64_t offset
, Symbol
*patchSym
) {
563 return Relocation
{R_PC
, R_AARCH64_JUMP26
, offset
, 0, patchSym
};
566 if (relIt
!= isec
->relocs().end()) {
567 ps
->addReloc({relIt
->expr
, relIt
->type
, 0, relIt
->addend
, relIt
->sym
});
568 *relIt
= makeRelToPatch(patcheeOffset
, ps
->patchSym
);
570 isec
->addReloc(makeRelToPatch(patcheeOffset
, ps
->patchSym
));
573 // Scan all the instructions in InputSectionDescription, for each instance of
574 // the erratum sequence create a Patch843419Section. We return the list of
575 // Patch843419Sections that need to be applied to the InputSectionDescription.
576 std::vector
<Patch843419Section
*>
577 AArch64Err843419Patcher::patchInputSectionDescription(
578 InputSectionDescription
&isd
) {
579 std::vector
<Patch843419Section
*> patches
;
580 for (InputSection
*isec
: isd
.sections
) {
581 // LLD doesn't use the erratum sequence in SyntheticSections.
582 if (isa
<SyntheticSection
>(isec
))
584 // Use sectionMap to make sure we only scan code and not inline data.
585 // We have already sorted MapSyms in ascending order and removed consecutive
586 // mapping symbols of the same type. Our range of executable instructions to
587 // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
589 std::vector
<const Defined
*> &mapSyms
= sectionMap
[isec
];
591 auto codeSym
= mapSyms
.begin();
592 while (codeSym
!= mapSyms
.end()) {
593 auto dataSym
= std::next(codeSym
);
594 uint64_t off
= (*codeSym
)->value
;
595 uint64_t limit
= (dataSym
== mapSyms
.end()) ? isec
->content().size()
598 while (off
< limit
) {
599 uint64_t startAddr
= isec
->getVA(off
);
600 if (uint64_t patcheeOffset
=
601 scanCortexA53Errata843419(isec
, off
, limit
))
602 implementPatch(ctx
, startAddr
, patcheeOffset
, isec
, patches
);
604 if (dataSym
== mapSyms
.end())
606 codeSym
= std::next(dataSym
);
612 // For each InputSectionDescription make one pass over the executable sections
613 // looking for the erratum sequence; creating a synthetic Patch843419Section
614 // for each instance found. We insert these synthetic patch sections after the
615 // executable code in each InputSectionDescription.
618 // The Output and Input Sections have had their final addresses assigned.
621 // Returns true if at least one patch was added. The addresses of the
622 // Output and Input Sections may have been changed.
623 // Returns false if no patches were required and no changes were made.
624 bool AArch64Err843419Patcher::createFixes() {
628 bool addressesChanged
= false;
629 for (OutputSection
*os
: ctx
.outputSections
) {
630 if (!(os
->flags
& SHF_ALLOC
) || !(os
->flags
& SHF_EXECINSTR
))
632 for (SectionCommand
*cmd
: os
->commands
)
633 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
)) {
634 std::vector
<Patch843419Section
*> patches
=
635 patchInputSectionDescription(*isd
);
636 if (!patches
.empty()) {
637 insertPatches(*isd
, patches
);
638 addressesChanged
= true;
642 return addressesChanged
;