[mlir][py] Enable loading only specified dialects during creation. (#121421)
[llvm-project.git] / lld / ELF / Arch / AVR.cpp
blob826ad54dc3dbae668caab8518e73f54935e49d3f
1 //===- AVR.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // AVR is a Harvard-architecture 8-bit microcontroller designed for small
10 // baremetal programs. All AVR-family processors have 32 8-bit registers.
11 // The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
12 // one supports up to 2^24 data address space and 2^22 code address space.
14 // Since it is a baremetal programming, there's usually no loader to load
15 // ELF files on AVRs. You are expected to link your program against address
16 // 0 and pull out a .text section from the result using objcopy, so that you
17 // can write the linked code to on-chip flush memory. You can do that with
18 // the following commands:
20 // ld.lld -Ttext=0 -o foo foo.o
21 // objcopy -O binary --only-section=.text foo output.bin
23 // Note that the current AVR support is very preliminary so you can't
24 // link any useful program yet, though.
26 //===----------------------------------------------------------------------===//
28 #include "InputFiles.h"
29 #include "Symbols.h"
30 #include "Target.h"
31 #include "Thunks.h"
32 #include "lld/Common/ErrorHandler.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Support/Endian.h"
36 using namespace llvm;
37 using namespace llvm::object;
38 using namespace llvm::support::endian;
39 using namespace llvm::ELF;
40 using namespace lld;
41 using namespace lld::elf;
43 namespace {
44 class AVR final : public TargetInfo {
45 public:
46 AVR(Ctx &ctx) : TargetInfo(ctx) { needsThunks = true; }
47 uint32_t calcEFlags() const override;
48 RelExpr getRelExpr(RelType type, const Symbol &s,
49 const uint8_t *loc) const override;
50 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
51 uint64_t branchAddr, const Symbol &s,
52 int64_t a) const override;
53 void relocate(uint8_t *loc, const Relocation &rel,
54 uint64_t val) const override;
56 } // namespace
58 RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
59 const uint8_t *loc) const {
60 switch (type) {
61 case R_AVR_6:
62 case R_AVR_6_ADIW:
63 case R_AVR_8:
64 case R_AVR_8_LO8:
65 case R_AVR_8_HI8:
66 case R_AVR_8_HLO8:
67 case R_AVR_16:
68 case R_AVR_16_PM:
69 case R_AVR_32:
70 case R_AVR_LDI:
71 case R_AVR_LO8_LDI:
72 case R_AVR_LO8_LDI_NEG:
73 case R_AVR_HI8_LDI:
74 case R_AVR_HI8_LDI_NEG:
75 case R_AVR_HH8_LDI_NEG:
76 case R_AVR_HH8_LDI:
77 case R_AVR_MS8_LDI_NEG:
78 case R_AVR_MS8_LDI:
79 case R_AVR_LO8_LDI_GS:
80 case R_AVR_LO8_LDI_PM:
81 case R_AVR_LO8_LDI_PM_NEG:
82 case R_AVR_HI8_LDI_GS:
83 case R_AVR_HI8_LDI_PM:
84 case R_AVR_HI8_LDI_PM_NEG:
85 case R_AVR_HH8_LDI_PM:
86 case R_AVR_HH8_LDI_PM_NEG:
87 case R_AVR_LDS_STS_16:
88 case R_AVR_PORT5:
89 case R_AVR_PORT6:
90 case R_AVR_CALL:
91 return R_ABS;
92 case R_AVR_7_PCREL:
93 case R_AVR_13_PCREL:
94 return R_PC;
95 default:
96 Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
97 << ") against symbol " << &s;
98 return R_NONE;
102 static void writeLDI(uint8_t *loc, uint64_t val) {
103 write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
106 bool AVR::needsThunk(RelExpr expr, RelType type, const InputFile *file,
107 uint64_t branchAddr, const Symbol &s, int64_t a) const {
108 switch (type) {
109 case R_AVR_LO8_LDI_GS:
110 case R_AVR_HI8_LDI_GS:
111 // A thunk is needed if the symbol's virtual address is out of range
112 // [0, 0x1ffff].
113 return s.getVA(ctx) >= 0x20000;
114 default:
115 return false;
119 void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
120 switch (rel.type) {
121 case R_AVR_8:
122 checkUInt(ctx, loc, val, 8, rel);
123 *loc = val;
124 break;
125 case R_AVR_8_LO8:
126 checkUInt(ctx, loc, val, 32, rel);
127 *loc = val & 0xff;
128 break;
129 case R_AVR_8_HI8:
130 checkUInt(ctx, loc, val, 32, rel);
131 *loc = (val >> 8) & 0xff;
132 break;
133 case R_AVR_8_HLO8:
134 checkUInt(ctx, loc, val, 32, rel);
135 *loc = (val >> 16) & 0xff;
136 break;
137 case R_AVR_16:
138 // Note: this relocation is often used between code and data space, which
139 // are 0x800000 apart in the output ELF file. The bitmask cuts off the high
140 // bit.
141 write16le(loc, val & 0xffff);
142 break;
143 case R_AVR_16_PM:
144 checkAlignment(ctx, loc, val, 2, rel);
145 checkUInt(ctx, loc, val >> 1, 16, rel);
146 write16le(loc, val >> 1);
147 break;
148 case R_AVR_32:
149 checkUInt(ctx, loc, val, 32, rel);
150 write32le(loc, val);
151 break;
153 case R_AVR_LDI:
154 checkUInt(ctx, loc, val, 8, rel);
155 writeLDI(loc, val & 0xff);
156 break;
158 case R_AVR_LO8_LDI_NEG:
159 writeLDI(loc, -val & 0xff);
160 break;
161 case R_AVR_LO8_LDI:
162 writeLDI(loc, val & 0xff);
163 break;
164 case R_AVR_HI8_LDI_NEG:
165 writeLDI(loc, (-val >> 8) & 0xff);
166 break;
167 case R_AVR_HI8_LDI:
168 writeLDI(loc, (val >> 8) & 0xff);
169 break;
170 case R_AVR_HH8_LDI_NEG:
171 writeLDI(loc, (-val >> 16) & 0xff);
172 break;
173 case R_AVR_HH8_LDI:
174 writeLDI(loc, (val >> 16) & 0xff);
175 break;
176 case R_AVR_MS8_LDI_NEG:
177 writeLDI(loc, (-val >> 24) & 0xff);
178 break;
179 case R_AVR_MS8_LDI:
180 writeLDI(loc, (val >> 24) & 0xff);
181 break;
183 case R_AVR_LO8_LDI_GS:
184 checkUInt(ctx, loc, val, 17, rel);
185 [[fallthrough]];
186 case R_AVR_LO8_LDI_PM:
187 checkAlignment(ctx, loc, val, 2, rel);
188 writeLDI(loc, (val >> 1) & 0xff);
189 break;
190 case R_AVR_HI8_LDI_GS:
191 checkUInt(ctx, loc, val, 17, rel);
192 [[fallthrough]];
193 case R_AVR_HI8_LDI_PM:
194 checkAlignment(ctx, loc, val, 2, rel);
195 writeLDI(loc, (val >> 9) & 0xff);
196 break;
197 case R_AVR_HH8_LDI_PM:
198 checkAlignment(ctx, loc, val, 2, rel);
199 writeLDI(loc, (val >> 17) & 0xff);
200 break;
202 case R_AVR_LO8_LDI_PM_NEG:
203 checkAlignment(ctx, loc, val, 2, rel);
204 writeLDI(loc, (-val >> 1) & 0xff);
205 break;
206 case R_AVR_HI8_LDI_PM_NEG:
207 checkAlignment(ctx, loc, val, 2, rel);
208 writeLDI(loc, (-val >> 9) & 0xff);
209 break;
210 case R_AVR_HH8_LDI_PM_NEG:
211 checkAlignment(ctx, loc, val, 2, rel);
212 writeLDI(loc, (-val >> 17) & 0xff);
213 break;
215 case R_AVR_LDS_STS_16: {
216 checkUInt(ctx, loc, val, 7, rel);
217 const uint16_t hi = val >> 4;
218 const uint16_t lo = val & 0xf;
219 write16le(loc, (read16le(loc) & 0xf8f0) | ((hi << 8) | lo));
220 break;
223 case R_AVR_PORT5:
224 checkUInt(ctx, loc, val, 5, rel);
225 write16le(loc, (read16le(loc) & 0xff07) | (val << 3));
226 break;
227 case R_AVR_PORT6:
228 checkUInt(ctx, loc, val, 6, rel);
229 write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
230 break;
232 // Since every jump destination is word aligned we gain an extra bit
233 case R_AVR_7_PCREL: {
234 checkInt(ctx, loc, val - 2, 8, rel);
235 checkAlignment(ctx, loc, val, 2, rel);
236 const uint16_t target = (val - 2) >> 1;
237 write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3));
238 break;
240 case R_AVR_13_PCREL: {
241 checkAlignment(ctx, loc, val, 2, rel);
242 const uint16_t target = (val - 2) >> 1;
243 write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff));
244 break;
247 case R_AVR_6:
248 checkInt(ctx, loc, val, 6, rel);
249 write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 |
250 (val & 0x18) << 7 | (val & 0x07));
251 break;
252 case R_AVR_6_ADIW:
253 checkInt(ctx, loc, val, 6, rel);
254 write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
255 break;
257 case R_AVR_CALL: {
258 checkAlignment(ctx, loc, val, 2, rel);
259 uint16_t hi = val >> 17;
260 uint16_t lo = val >> 1;
261 write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
262 write16le(loc + 2, lo);
263 break;
265 default:
266 llvm_unreachable("unknown relocation");
270 void elf::setAVRTargetInfo(Ctx &ctx) { ctx.target.reset(new AVR(ctx)); }
272 static uint32_t getEFlags(InputFile *file) {
273 return cast<ObjFile<ELF32LE>>(file)->getObj().getHeader().e_flags;
276 uint32_t AVR::calcEFlags() const {
277 assert(!ctx.objectFiles.empty());
279 uint32_t flags = getEFlags(ctx.objectFiles[0]);
280 bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED;
282 for (InputFile *f : ArrayRef(ctx.objectFiles).slice(1)) {
283 uint32_t objFlags = getEFlags(f);
284 if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK))
285 ErrAlways(ctx)
286 << f << ": cannot link object files with incompatible target ISA";
287 if (!(objFlags & EF_AVR_LINKRELAX_PREPARED))
288 hasLinkRelaxFlag = false;
291 if (!hasLinkRelaxFlag)
292 flags &= ~EF_AVR_LINKRELAX_PREPARED;
294 return flags;