[mlir][py] Enable loading only specified dialects during creation. (#121421)
[llvm-project.git] / lld / ELF / Arch / PPC64.cpp
blob4edb6af4f09ad2981031c2fe7dc3da7275bd1455
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "Thunks.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
26 constexpr uint64_t ppc64TocOffset = 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
29 namespace {
30 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
31 // instructions that can be used as part of the initial exec TLS sequence.
32 enum XFormOpcd {
33 LBZX = 87,
34 LHZX = 279,
35 LWZX = 23,
36 LDX = 21,
37 STBX = 215,
38 STHX = 407,
39 STWX = 151,
40 STDX = 149,
41 LHAX = 343,
42 LWAX = 341,
43 LFSX = 535,
44 LFDX = 599,
45 STFSX = 663,
46 STFDX = 727,
47 ADD = 266,
50 enum DFormOpcd {
51 LBZ = 34,
52 LBZU = 35,
53 LHZ = 40,
54 LHZU = 41,
55 LHAU = 43,
56 LWZ = 32,
57 LWZU = 33,
58 LFSU = 49,
59 LFDU = 51,
60 STB = 38,
61 STBU = 39,
62 STH = 44,
63 STHU = 45,
64 STW = 36,
65 STWU = 37,
66 STFSU = 53,
67 STFDU = 55,
68 LHA = 42,
69 LFS = 48,
70 LFD = 50,
71 STFS = 52,
72 STFD = 54,
73 ADDI = 14
76 enum DSFormOpcd {
77 LD = 58,
78 LWA = 58,
79 STD = 62
82 constexpr uint32_t NOP = 0x60000000;
84 enum class PPCLegacyInsn : uint32_t {
85 NOINSN = 0,
86 // Loads.
87 LBZ = 0x88000000,
88 LHZ = 0xa0000000,
89 LWZ = 0x80000000,
90 LHA = 0xa8000000,
91 LWA = 0xe8000002,
92 LD = 0xe8000000,
93 LFS = 0xC0000000,
94 LXSSP = 0xe4000003,
95 LFD = 0xc8000000,
96 LXSD = 0xe4000002,
97 LXV = 0xf4000001,
98 LXVP = 0x18000000,
100 // Stores.
101 STB = 0x98000000,
102 STH = 0xb0000000,
103 STW = 0x90000000,
104 STD = 0xf8000000,
105 STFS = 0xd0000000,
106 STXSSP = 0xf4000003,
107 STFD = 0xd8000000,
108 STXSD = 0xf4000002,
109 STXV = 0xf4000005,
110 STXVP = 0x18000001
112 enum class PPCPrefixedInsn : uint64_t {
113 NOINSN = 0,
114 PREFIX_MLS = 0x0610000000000000,
115 PREFIX_8LS = 0x0410000000000000,
117 // Loads.
118 PLBZ = PREFIX_MLS,
119 PLHZ = PREFIX_MLS,
120 PLWZ = PREFIX_MLS,
121 PLHA = PREFIX_MLS,
122 PLWA = PREFIX_8LS | 0xa4000000,
123 PLD = PREFIX_8LS | 0xe4000000,
124 PLFS = PREFIX_MLS,
125 PLXSSP = PREFIX_8LS | 0xac000000,
126 PLFD = PREFIX_MLS,
127 PLXSD = PREFIX_8LS | 0xa8000000,
128 PLXV = PREFIX_8LS | 0xc8000000,
129 PLXVP = PREFIX_8LS | 0xe8000000,
131 // Stores.
132 PSTB = PREFIX_MLS,
133 PSTH = PREFIX_MLS,
134 PSTW = PREFIX_MLS,
135 PSTD = PREFIX_8LS | 0xf4000000,
136 PSTFS = PREFIX_MLS,
137 PSTXSSP = PREFIX_8LS | 0xbc000000,
138 PSTFD = PREFIX_MLS,
139 PSTXSD = PREFIX_8LS | 0xb8000000,
140 PSTXV = PREFIX_8LS | 0xd8000000,
141 PSTXVP = PREFIX_8LS | 0xf8000000
144 static bool checkPPCLegacyInsn(uint32_t encoding) {
145 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
146 if (insn == PPCLegacyInsn::NOINSN)
147 return false;
148 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
149 if (insn == PPCLegacyInsn::Legacy) \
150 return true;
151 #include "PPCInsns.def"
152 #undef PCREL_OPT
153 return false;
156 // Masks to apply to legacy instructions when converting them to prefixed,
157 // pc-relative versions. For the most part, the primary opcode is shared
158 // between the legacy instruction and the suffix of its prefixed version.
159 // However, there are some instances where that isn't the case (DS-Form and
160 // DQ-form instructions).
161 enum class LegacyToPrefixMask : uint64_t {
162 NOMASK = 0x0,
163 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
164 ONLY_RST = 0x3e00000, // [RS]T (6-10).
165 ST_STX28_TO5 =
166 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
169 class PPC64 final : public TargetInfo {
170 public:
171 PPC64(Ctx &);
172 int getTlsGdRelaxSkip(RelType type) const override;
173 uint32_t calcEFlags() const override;
174 RelExpr getRelExpr(RelType type, const Symbol &s,
175 const uint8_t *loc) const override;
176 RelType getDynRel(RelType type) const override;
177 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
178 void writePltHeader(uint8_t *buf) const override;
179 void writePlt(uint8_t *buf, const Symbol &sym,
180 uint64_t pltEntryAddr) const override;
181 void writeIplt(uint8_t *buf, const Symbol &sym,
182 uint64_t pltEntryAddr) const override;
183 void relocate(uint8_t *loc, const Relocation &rel,
184 uint64_t val) const override;
185 void writeGotHeader(uint8_t *buf) const override;
186 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
187 uint64_t branchAddr, const Symbol &s,
188 int64_t a) const override;
189 uint32_t getThunkSectionSpacing() const override;
190 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
191 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
192 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
193 const uint8_t *loc) const override;
194 void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
195 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
197 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
198 uint8_t stOther) const override;
200 private:
201 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
202 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
203 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
204 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
206 } // namespace
208 uint64_t elf::getPPC64TocBase(Ctx &ctx) {
209 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
210 // TOC starts where the first of these sections starts. We always create a
211 // .got when we see a relocation that uses it, so for us the start is always
212 // the .got.
213 uint64_t tocVA = ctx.in.got->getVA();
215 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
216 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
217 // code (crt1.o) assumes that you can get from the TOC base to the
218 // start of the .toc section with only a single (signed) 16-bit relocation.
219 return tocVA + ppc64TocOffset;
222 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(Ctx &ctx, uint8_t stOther) {
223 // The offset is encoded into the 3 most significant bits of the st_other
224 // field, with some special values described in section 3.4.1 of the ABI:
225 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
226 // the TOC pointer (r2). r2 will hold the same value on returning from
227 // the function as it did on entering the function.
228 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
229 // caller-saved register for all callers.
230 // 2-6 --> The binary logarithm of the offset eg:
231 // 2 --> 2^2 = 4 bytes --> 1 instruction.
232 // 6 --> 2^6 = 64 bytes --> 16 instructions.
233 // 7 --> Reserved.
234 uint8_t gepToLep = (stOther >> 5) & 7;
235 if (gepToLep < 2)
236 return 0;
238 // The value encoded in the st_other bits is the
239 // log-base-2(offset).
240 if (gepToLep < 7)
241 return 1 << gepToLep;
243 ErrAlways(ctx)
244 << "reserved value of 7 in the 3 most-significant-bits of st_other";
245 return 0;
248 void elf::writePrefixedInst(Ctx &ctx, uint8_t *loc, uint64_t insn) {
249 insn = ctx.arg.isLE ? insn << 32 | insn >> 32 : insn;
250 write64(ctx, loc, insn);
253 static bool addOptional(Ctx &ctx, StringRef name, uint64_t value,
254 std::vector<Defined *> &defined) {
255 Symbol *sym = ctx.symtab->find(name);
256 if (!sym || sym->isDefined())
257 return false;
258 sym->resolve(ctx, Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL,
259 STV_HIDDEN, STT_FUNC, value,
260 /*size=*/0, /*section=*/nullptr});
261 defined.push_back(cast<Defined>(sym));
262 return true;
265 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
266 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
267 // The labels are defined only if they exist in the symbol table.
268 static void writeSequence(Ctx &ctx, const char *prefix, int from,
269 uint32_t firstInsn, ArrayRef<uint32_t> tail) {
270 std::vector<Defined *> defined;
271 char name[16];
272 int first;
273 const size_t size = 32 - from + tail.size();
274 MutableArrayRef<uint32_t> buf(ctx.bAlloc.Allocate<uint32_t>(size), size);
275 uint32_t *ptr = buf.data();
276 for (int r = from; r < 32; ++r) {
277 format("%s%d", prefix, r).snprint(name, sizeof(name));
278 if (addOptional(ctx, name, 4 * (r - from), defined) && defined.size() == 1)
279 first = r - from;
280 write32(ctx, ptr++, firstInsn + 0x200008 * (r - from));
282 for (uint32_t insn : tail)
283 write32(ctx, ptr++, insn);
284 assert(ptr == &*buf.end());
286 if (defined.empty())
287 return;
288 // The full section content has the extent of [begin, end). We drop unused
289 // instructions and write [first,end).
290 auto *sec = make<InputSection>(
291 ctx.internalFile, ".text", SHT_PROGBITS, SHF_ALLOC, /*addralign=*/4,
292 /*entsize=*/0,
293 ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
294 4 * (buf.size() - first)));
295 ctx.inputSections.push_back(sec);
296 for (Defined *sym : defined) {
297 sym->section = sec;
298 sym->value -= 4 * first;
302 // Implements some save and restore functions as described by ELF V2 ABI to be
303 // compatible with GCC. With GCC -Os, when the number of call-saved registers
304 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
305 // expects the linker to define them. See
306 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
307 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
308 // weird because libgcc.a would be the natural place. The linker generation
309 // approach has the advantage that the linker can generate multiple copies to
310 // avoid long branch thunks. However, we don't consider the advantage
311 // significant enough to complicate our trunk implementation, so we take the
312 // simple approach and synthesize .text sections providing the implementation.
313 void elf::addPPC64SaveRestore(Ctx &ctx) {
314 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
316 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
317 // Tail: ld 0, 16(1); mtlr 0; blr
318 writeSequence(ctx, "_restgpr0_", 14, 0xe9c1ff70, {0xe8010010, mtlr_0, blr});
319 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
320 // Tail: blr
321 writeSequence(ctx, "_restgpr1_", 14, 0xe9ccff70, {blr});
322 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
323 // Tail: std 0, 16(1); blr
324 writeSequence(ctx, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
325 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
326 // Tail: blr
327 writeSequence(ctx, "_savegpr1_", 14, 0xf9ccff70, {blr});
330 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
331 template <typename ELFT>
332 static std::pair<Defined *, int64_t>
333 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
334 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
335 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
336 // relocation index in most cases.
338 // In rare cases a TOC entry may store a constant that doesn't need an
339 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
340 // points to a relocation with larger r_offset. Do a linear probe then.
341 // Constants are extremely uncommon in .toc and the extra number of array
342 // accesses can be seen as a small constant.
343 ArrayRef<typename ELFT::Rela> relas =
344 tocSec->template relsOrRelas<ELFT>().relas;
345 if (relas.empty())
346 return {};
347 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
348 for (;;) {
349 if (relas[index].r_offset == offset) {
350 Symbol &sym = tocSec->file->getRelocTargetSym(relas[index]);
351 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
353 if (relas[index].r_offset < offset || index == 0)
354 break;
355 --index;
357 return {};
360 // When accessing a symbol defined in another translation unit, compilers
361 // reserve a .toc entry, allocate a local label and generate toc-indirect
362 // instructions:
364 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
365 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
366 // ld/lwa 3, 0(3) # load the value from the address
368 // .section .toc,"aw",@progbits
369 // .LC0: .tc var[TC],var
371 // If var is defined, non-preemptable and addressable with a 32-bit signed
372 // offset from the toc base, the address of var can be computed by adding an
373 // offset to the toc base, saving a load.
375 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
376 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
377 // ld/lwa 3, 0(3) # load the value from the address
379 // Returns true if the relaxation is performed.
380 static bool tryRelaxPPC64TocIndirection(Ctx &ctx, const Relocation &rel,
381 uint8_t *bufLoc) {
382 assert(ctx.arg.tocOptimize);
383 if (rel.addend < 0)
384 return false;
386 // If the symbol is not the .toc section, this isn't a toc-indirection.
387 Defined *defSym = dyn_cast<Defined>(rel.sym);
388 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
389 return false;
391 Defined *d;
392 int64_t addend;
393 auto *tocISB = cast<InputSectionBase>(defSym->section);
394 std::tie(d, addend) =
395 ctx.arg.isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
396 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
398 // Only non-preemptable defined symbols can be relaxed.
399 if (!d || d->isPreemptible)
400 return false;
402 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
403 // ifunc and changed its type to STT_FUNC.
404 assert(!d->isGnuIFunc());
406 // Two instructions can materialize a 32-bit signed offset from the toc base.
407 uint64_t tocRelative = d->getVA(ctx, addend) - getPPC64TocBase(ctx);
408 if (!isInt<32>(tocRelative))
409 return false;
411 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
412 static_cast<const PPC64 &>(*ctx.target)
413 .relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
414 return true;
417 // Relocation masks following the #lo(value), #hi(value), #ha(value),
418 // #higher(value), #highera(value), #highest(value), and #highesta(value)
419 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
420 // document.
421 static uint16_t lo(uint64_t v) { return v; }
422 static uint16_t hi(uint64_t v) { return v >> 16; }
423 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
424 static uint16_t higher(uint64_t v) { return v >> 32; }
425 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
426 static uint16_t highest(uint64_t v) { return v >> 48; }
427 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
429 // Extracts the 'PO' field of an instruction encoding.
430 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
432 static bool isDQFormInstruction(uint32_t encoding) {
433 switch (getPrimaryOpCode(encoding)) {
434 default:
435 return false;
436 case 6: // Power10 paired loads/stores (lxvp, stxvp).
437 case 56:
438 // The only instruction with a primary opcode of 56 is `lq`.
439 return true;
440 case 61:
441 // There are both DS and DQ instruction forms with this primary opcode.
442 // Namely `lxv` and `stxv` are the DQ-forms that use it.
443 // The DS 'XO' bits being set to 01 is restricted to DQ form.
444 return (encoding & 3) == 0x1;
448 static bool isDSFormInstruction(PPCLegacyInsn insn) {
449 switch (insn) {
450 default:
451 return false;
452 case PPCLegacyInsn::LWA:
453 case PPCLegacyInsn::LD:
454 case PPCLegacyInsn::LXSD:
455 case PPCLegacyInsn::LXSSP:
456 case PPCLegacyInsn::STD:
457 case PPCLegacyInsn::STXSD:
458 case PPCLegacyInsn::STXSSP:
459 return true;
463 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
464 uint32_t opc = encoding & 0xfc000000;
466 // If the primary opcode is shared between multiple instructions, we need to
467 // fix it up to match the actual instruction we are after.
468 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
469 opc == 0xf8000000) &&
470 !isDQFormInstruction(encoding))
471 opc = encoding & 0xfc000003;
472 else if (opc == 0xf4000000)
473 opc = encoding & 0xfc000007;
474 else if (opc == 0x18000000)
475 opc = encoding & 0xfc00000f;
477 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
478 // return PPCLegacyInsn::NOINSN.
479 if (!checkPPCLegacyInsn(opc))
480 return PPCLegacyInsn::NOINSN;
481 return static_cast<PPCLegacyInsn>(opc);
484 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
485 switch (insn) {
486 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
487 case PPCLegacyInsn::Legacy: \
488 return PPCPrefixedInsn::PCRel
489 #include "PPCInsns.def"
490 #undef PCREL_OPT
492 return PPCPrefixedInsn::NOINSN;
495 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
496 switch (insn) {
497 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
498 case PPCLegacyInsn::Legacy: \
499 return LegacyToPrefixMask::InsnMask
500 #include "PPCInsns.def"
501 #undef PCREL_OPT
503 return LegacyToPrefixMask::NOMASK;
505 static uint64_t getPCRelativeForm(uint32_t encoding) {
506 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
507 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
508 if (pcrelInsn == PPCPrefixedInsn::NOINSN)
509 return UINT64_C(-1);
510 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
511 uint64_t pcrelEncoding =
512 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
514 // If the mask requires moving bit 28 to bit 5, do that now.
515 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
516 pcrelEncoding |= (encoding & 0x8) << 23;
517 return pcrelEncoding;
520 static bool isInstructionUpdateForm(uint32_t encoding) {
521 switch (getPrimaryOpCode(encoding)) {
522 default:
523 return false;
524 case LBZU:
525 case LHAU:
526 case LHZU:
527 case LWZU:
528 case LFSU:
529 case LFDU:
530 case STBU:
531 case STHU:
532 case STWU:
533 case STFSU:
534 case STFDU:
535 return true;
536 // LWA has the same opcode as LD, and the DS bits is what differentiates
537 // between LD/LDU/LWA
538 case LD:
539 case STD:
540 return (encoding & 3) == 1;
544 // Compute the total displacement between the prefixed instruction that gets
545 // to the start of the data and the load/store instruction that has the offset
546 // into the data structure.
547 // For example:
548 // paddi 3, 0, 1000, 1
549 // lwz 3, 20(3)
550 // Should add up to 1020 for total displacement.
551 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
552 int64_t disp34 = llvm::SignExtend64(
553 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
554 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
555 // For DS and DQ form instructions, we need to mask out the XO bits.
556 if (isDQFormInstruction(accessInsn))
557 disp16 &= ~0xf;
558 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
559 disp16 &= ~0x3;
560 return disp34 + disp16;
563 // There are a number of places when we either want to read or write an
564 // instruction when handling a half16 relocation type. On big-endian the buffer
565 // pointer is pointing into the middle of the word we want to extract, and on
566 // little-endian it is pointing to the start of the word. These 2 helpers are to
567 // simplify reading and writing in that context.
568 static void writeFromHalf16(Ctx &ctx, uint8_t *loc, uint32_t insn) {
569 write32(ctx, ctx.arg.isLE ? loc : loc - 2, insn);
572 static uint32_t readFromHalf16(Ctx &ctx, const uint8_t *loc) {
573 return read32(ctx, ctx.arg.isLE ? loc : loc - 2);
576 static uint64_t readPrefixedInst(Ctx &ctx, const uint8_t *loc) {
577 uint64_t fullInstr = read64(ctx, loc);
578 return ctx.arg.isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
581 PPC64::PPC64(Ctx &ctx) : TargetInfo(ctx) {
582 copyRel = R_PPC64_COPY;
583 gotRel = R_PPC64_GLOB_DAT;
584 pltRel = R_PPC64_JMP_SLOT;
585 relativeRel = R_PPC64_RELATIVE;
586 iRelativeRel = R_PPC64_IRELATIVE;
587 symbolicRel = R_PPC64_ADDR64;
588 pltHeaderSize = 60;
589 pltEntrySize = 4;
590 ipltEntrySize = 16; // PPC64PltCallStub::size
591 gotHeaderEntriesNum = 1;
592 gotPltHeaderEntriesNum = 2;
593 needsThunks = true;
595 tlsModuleIndexRel = R_PPC64_DTPMOD64;
596 tlsOffsetRel = R_PPC64_DTPREL64;
598 tlsGotRel = R_PPC64_TPREL64;
600 needsMoreStackNonSplit = false;
602 // We need 64K pages (at least under glibc/Linux, the loader won't
603 // set different permissions on a finer granularity than that).
604 defaultMaxPageSize = 65536;
606 // The PPC64 ELF ABI v1 spec, says:
608 // It is normally desirable to put segments with different characteristics
609 // in separate 256 Mbyte portions of the address space, to give the
610 // operating system full paging flexibility in the 64-bit address space.
612 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
613 // use 0x10000000 as the starting address.
614 defaultImageBase = 0x10000000;
616 write32(ctx, trapInstr.data(), 0x7fe00008);
619 int PPC64::getTlsGdRelaxSkip(RelType type) const {
620 // A __tls_get_addr call instruction is marked with 2 relocations:
622 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
623 // R_PPC64_REL24: __tls_get_addr
625 // After the relaxation we no longer call __tls_get_addr and should skip both
626 // relocations to not create a false dependence on __tls_get_addr being
627 // defined.
628 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
629 return 2;
630 return 1;
633 static uint32_t getEFlags(InputFile *file) {
634 if (file->ekind == ELF64BEKind)
635 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
636 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
639 // This file implements v2 ABI. This function makes sure that all
640 // object files have v2 or an unspecified version as an ABI version.
641 uint32_t PPC64::calcEFlags() const {
642 for (InputFile *f : ctx.objectFiles) {
643 uint32_t flag = getEFlags(f);
644 if (flag == 1)
645 ErrAlways(ctx) << f << ": ABI version 1 is not supported";
646 else if (flag > 2)
647 ErrAlways(ctx) << f << ": unrecognized e_flags: " << flag;
649 return 2;
652 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
653 switch (rel.type) {
654 case R_PPC64_TOC16_HA:
655 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
656 relocate(loc, rel, val);
657 break;
658 case R_PPC64_TOC16_LO_DS: {
659 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
660 // "addi reg, 2, var@toc".
661 uint32_t insn = readFromHalf16(ctx, loc);
662 if (getPrimaryOpCode(insn) != LD)
663 ErrAlways(ctx)
664 << "expected a 'ld' for got-indirect to toc-relative relaxing";
665 writeFromHalf16(ctx, loc, (insn & 0x03ffffff) | 0x38000000);
666 relocateNoSym(loc, R_PPC64_TOC16_LO, val);
667 break;
669 case R_PPC64_GOT_PCREL34: {
670 // Clear the first 8 bits of the prefix and the first 6 bits of the
671 // instruction (the primary opcode).
672 uint64_t insn = readPrefixedInst(ctx, loc);
673 if ((insn & 0xfc000000) != 0xe4000000)
674 ErrAlways(ctx)
675 << "expected a 'pld' for got-indirect to pc-relative relaxing";
676 insn &= ~0xff000000fc000000;
678 // Replace the cleared bits with the values for PADDI (0x600000038000000);
679 insn |= 0x600000038000000;
680 writePrefixedInst(ctx, loc, insn);
681 relocate(loc, rel, val);
682 break;
684 case R_PPC64_PCREL_OPT: {
685 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
686 // be relaxed. The eligibility for the relaxation needs to be determined
687 // on that relocation since this one does not relocate a symbol.
688 uint64_t insn = readPrefixedInst(ctx, loc);
689 uint32_t accessInsn = read32(ctx, loc + rel.addend);
690 uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
692 // This error is not necessary for correctness but is emitted for now
693 // to ensure we don't miss these opportunities in real code. It can be
694 // removed at a later date.
695 if (pcRelInsn == UINT64_C(-1)) {
696 Err(ctx)
697 << "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x"
698 << utohexstr(accessInsn, true);
699 break;
702 int64_t totalDisp = getTotalDisp(insn, accessInsn);
703 if (!isInt<34>(totalDisp))
704 break; // Displacement doesn't fit.
705 // Convert the PADDI to the prefixed version of accessInsn and convert
706 // accessInsn to a nop.
707 writePrefixedInst(ctx, loc,
708 pcRelInsn | ((totalDisp & 0x3ffff0000) << 16) |
709 (totalDisp & 0xffff));
710 write32(ctx, loc + rel.addend, NOP); // nop accessInsn.
711 break;
713 default:
714 llvm_unreachable("unexpected relocation type");
718 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
719 uint64_t val) const {
720 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
721 // The general dynamic code sequence for a global `x` will look like:
722 // Instruction Relocation Symbol
723 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
724 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
725 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
726 // R_PPC64_REL24 __tls_get_addr
727 // nop None None
729 // Relaxing to local exec entails converting:
730 // addis r3, r2, x@got@tlsgd@ha into nop
731 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
732 // bl __tls_get_addr(x@tlsgd) into nop
733 // nop into addi r3, r3, x@tprel@l
735 switch (rel.type) {
736 case R_PPC64_GOT_TLSGD16_HA:
737 writeFromHalf16(ctx, loc, NOP);
738 break;
739 case R_PPC64_GOT_TLSGD16:
740 case R_PPC64_GOT_TLSGD16_LO:
741 writeFromHalf16(ctx, loc, 0x3c6d0000); // addis r3, r13
742 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
743 break;
744 case R_PPC64_GOT_TLSGD_PCREL34:
745 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
746 // paddi r3, r13, x@tprel, 0
747 writePrefixedInst(ctx, loc, 0x06000000386d0000);
748 relocateNoSym(loc, R_PPC64_TPREL34, val);
749 break;
750 case R_PPC64_TLSGD: {
751 // PC Relative Relaxation:
752 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
753 // nop
754 // TOC Relaxation:
755 // Relax from bl __tls_get_addr(x@tlsgd)
756 // nop
757 // to
758 // nop
759 // addi r3, r3, x@tprel@l
760 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
761 if (locAsInt % 4 == 0) {
762 write32(ctx, loc, NOP); // nop
763 write32(ctx, loc + 4, 0x38630000); // addi r3, r3
764 // Since we are relocating a half16 type relocation and Loc + 4 points to
765 // the start of an instruction we need to advance the buffer by an extra
766 // 2 bytes on BE.
767 relocateNoSym(loc + 4 + (ctx.arg.ekind == ELF64BEKind ? 2 : 0),
768 R_PPC64_TPREL16_LO, val);
769 } else if (locAsInt % 4 == 1) {
770 write32(ctx, loc - 1, NOP);
771 } else {
772 Err(ctx) << "R_PPC64_TLSGD has unexpected byte alignment";
774 break;
776 default:
777 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
781 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
782 uint64_t val) const {
783 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
784 // The local dynamic code sequence for a global `x` will look like:
785 // Instruction Relocation Symbol
786 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
787 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
788 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
789 // R_PPC64_REL24 __tls_get_addr
790 // nop None None
792 // Relaxing to local exec entails converting:
793 // addis r3, r2, x@got@tlsld@ha into nop
794 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
795 // bl __tls_get_addr(x@tlsgd) into nop
796 // nop into addi r3, r3, 4096
798 switch (rel.type) {
799 case R_PPC64_GOT_TLSLD16_HA:
800 writeFromHalf16(ctx, loc, NOP);
801 break;
802 case R_PPC64_GOT_TLSLD16_LO:
803 writeFromHalf16(ctx, loc, 0x3c6d0000); // addis r3, r13, 0
804 break;
805 case R_PPC64_GOT_TLSLD_PCREL34:
806 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
807 // paddi r3, r13, 0x1000, 0
808 writePrefixedInst(ctx, loc, 0x06000000386d1000);
809 break;
810 case R_PPC64_TLSLD: {
811 // PC Relative Relaxation:
812 // Relax from bl __tls_get_addr@notoc(x@tlsld)
813 // to
814 // nop
815 // TOC Relaxation:
816 // Relax from bl __tls_get_addr(x@tlsld)
817 // nop
818 // to
819 // nop
820 // addi r3, r3, 4096
821 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
822 if (locAsInt % 4 == 0) {
823 write32(ctx, loc, NOP);
824 write32(ctx, loc + 4, 0x38631000); // addi r3, r3, 4096
825 } else if (locAsInt % 4 == 1) {
826 write32(ctx, loc - 1, NOP);
827 } else {
828 Err(ctx) << "R_PPC64_TLSLD has unexpected byte alignment";
830 break;
832 case R_PPC64_DTPREL16:
833 case R_PPC64_DTPREL16_HA:
834 case R_PPC64_DTPREL16_HI:
835 case R_PPC64_DTPREL16_DS:
836 case R_PPC64_DTPREL16_LO:
837 case R_PPC64_DTPREL16_LO_DS:
838 case R_PPC64_DTPREL34:
839 relocate(loc, rel, val);
840 break;
841 default:
842 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
846 // Map X-Form instructions to their DS-Form counterparts, if applicable.
847 // The full encoding is returned here to distinguish between the different
848 // DS-Form instructions.
849 unsigned elf::getPPCDSFormOp(unsigned secondaryOp) {
850 switch (secondaryOp) {
851 case LWAX:
852 return (LWA << 26) | 0x2;
853 case LDX:
854 return LD << 26;
855 case STDX:
856 return STD << 26;
857 default:
858 return 0;
862 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
863 switch (secondaryOp) {
864 case LBZX:
865 return LBZ << 26;
866 case LHZX:
867 return LHZ << 26;
868 case LWZX:
869 return LWZ << 26;
870 case STBX:
871 return STB << 26;
872 case STHX:
873 return STH << 26;
874 case STWX:
875 return STW << 26;
876 case LHAX:
877 return LHA << 26;
878 case LFSX:
879 return LFS << 26;
880 case LFDX:
881 return LFD << 26;
882 case STFSX:
883 return STFS << 26;
884 case STFDX:
885 return STFD << 26;
886 case ADD:
887 return ADDI << 26;
888 default:
889 return 0;
893 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
894 uint64_t val) const {
895 // The initial exec code sequence for a global `x` will look like:
896 // Instruction Relocation Symbol
897 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
898 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
899 // add r9, r9, x@tls R_PPC64_TLS x
901 // Relaxing to local exec entails converting:
902 // addis r9, r2, x@got@tprel@ha into nop
903 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
904 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
906 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
907 // it is replaced with r13 (thread pointer).
909 // The add instruction in the initial exec sequence has multiple variations
910 // that need to be handled. If we are building an address it will use an add
911 // instruction, if we are accessing memory it will use any of the X-form
912 // indexed load or store instructions.
914 unsigned offset = (ctx.arg.ekind == ELF64BEKind) ? 2 : 0;
915 switch (rel.type) {
916 case R_PPC64_GOT_TPREL16_HA:
917 write32(ctx, loc - offset, NOP);
918 break;
919 case R_PPC64_GOT_TPREL16_LO_DS:
920 case R_PPC64_GOT_TPREL16_DS: {
921 uint32_t regNo = read32(ctx, loc - offset) & 0x03e00000; // bits 6-10
922 write32(ctx, loc - offset, 0x3c0d0000 | regNo); // addis RegNo, r13
923 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
924 break;
926 case R_PPC64_GOT_TPREL_PCREL34: {
927 const uint64_t pldRT = readPrefixedInst(ctx, loc) & 0x0000000003e00000;
928 // paddi RT(from pld), r13, symbol@tprel, 0
929 writePrefixedInst(ctx, loc, 0x06000000380d0000 | pldRT);
930 relocateNoSym(loc, R_PPC64_TPREL34, val);
931 break;
933 case R_PPC64_TLS: {
934 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
935 if (locAsInt % 4 == 0) {
936 uint32_t primaryOp = getPrimaryOpCode(read32(ctx, loc));
937 if (primaryOp != 31)
938 ErrAlways(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS";
939 uint32_t secondaryOp = (read32(ctx, loc) & 0x000007fe) >> 1; // bits 21-30
940 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
941 uint32_t finalReloc;
942 if (dFormOp == 0) { // Expecting a DS-Form instruction.
943 dFormOp = getPPCDSFormOp(secondaryOp);
944 if (dFormOp == 0)
945 ErrAlways(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS";
946 finalReloc = R_PPC64_TPREL16_LO_DS;
947 } else
948 finalReloc = R_PPC64_TPREL16_LO;
949 write32(ctx, loc, dFormOp | (read32(ctx, loc) & 0x03ff0000));
950 relocateNoSym(loc + offset, finalReloc, val);
951 } else if (locAsInt % 4 == 1) {
952 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
953 // This version of the relocation is offset by one byte from the
954 // instruction it references.
955 uint32_t tlsInstr = read32(ctx, loc - 1);
956 uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
957 if (primaryOp != 31)
958 Err(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS";
959 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
960 // The add is a special case and should be turned into a nop. The paddi
961 // that comes before it will already have computed the address of the
962 // symbol.
963 if (secondaryOp == 266) {
964 // Check if the add uses the same result register as the input register.
965 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
966 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
967 if (ra == rt) {
968 write32(ctx, loc - 1, NOP);
969 } else {
970 // mr rt, ra
971 write32(ctx, loc - 1,
972 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
974 } else {
975 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
976 if (dFormOp == 0) { // Expecting a DS-Form instruction.
977 dFormOp = getPPCDSFormOp(secondaryOp);
978 if (dFormOp == 0)
979 Err(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS";
981 write32(ctx, loc - 1, (dFormOp | (tlsInstr & 0x03ff0000)));
983 } else {
984 Err(ctx) << "R_PPC64_TLS must be either 4 byte aligned or one byte "
985 "offset from 4 byte aligned";
987 break;
989 default:
990 llvm_unreachable("unknown relocation for IE to LE");
991 break;
995 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
996 const uint8_t *loc) const {
997 switch (type) {
998 case R_PPC64_NONE:
999 return R_NONE;
1000 case R_PPC64_ADDR16:
1001 case R_PPC64_ADDR16_DS:
1002 case R_PPC64_ADDR16_HA:
1003 case R_PPC64_ADDR16_HI:
1004 case R_PPC64_ADDR16_HIGH:
1005 case R_PPC64_ADDR16_HIGHER:
1006 case R_PPC64_ADDR16_HIGHERA:
1007 case R_PPC64_ADDR16_HIGHEST:
1008 case R_PPC64_ADDR16_HIGHESTA:
1009 case R_PPC64_ADDR16_LO:
1010 case R_PPC64_ADDR16_LO_DS:
1011 case R_PPC64_ADDR32:
1012 case R_PPC64_ADDR64:
1013 return R_ABS;
1014 case R_PPC64_GOT16:
1015 case R_PPC64_GOT16_DS:
1016 case R_PPC64_GOT16_HA:
1017 case R_PPC64_GOT16_HI:
1018 case R_PPC64_GOT16_LO:
1019 case R_PPC64_GOT16_LO_DS:
1020 return R_GOT_OFF;
1021 case R_PPC64_TOC16:
1022 case R_PPC64_TOC16_DS:
1023 case R_PPC64_TOC16_HI:
1024 case R_PPC64_TOC16_LO:
1025 return R_GOTREL;
1026 case R_PPC64_GOT_PCREL34:
1027 case R_PPC64_GOT_TPREL_PCREL34:
1028 case R_PPC64_PCREL_OPT:
1029 return R_GOT_PC;
1030 case R_PPC64_TOC16_HA:
1031 case R_PPC64_TOC16_LO_DS:
1032 return ctx.arg.tocOptimize ? RE_PPC64_RELAX_TOC : R_GOTREL;
1033 case R_PPC64_TOC:
1034 return RE_PPC64_TOCBASE;
1035 case R_PPC64_REL14:
1036 case R_PPC64_REL24:
1037 return RE_PPC64_CALL_PLT;
1038 case R_PPC64_REL24_NOTOC:
1039 return R_PLT_PC;
1040 case R_PPC64_REL16_LO:
1041 case R_PPC64_REL16_HA:
1042 case R_PPC64_REL16_HI:
1043 case R_PPC64_REL32:
1044 case R_PPC64_REL64:
1045 case R_PPC64_PCREL34:
1046 return R_PC;
1047 case R_PPC64_GOT_TLSGD16:
1048 case R_PPC64_GOT_TLSGD16_HA:
1049 case R_PPC64_GOT_TLSGD16_HI:
1050 case R_PPC64_GOT_TLSGD16_LO:
1051 return R_TLSGD_GOT;
1052 case R_PPC64_GOT_TLSGD_PCREL34:
1053 return R_TLSGD_PC;
1054 case R_PPC64_GOT_TLSLD16:
1055 case R_PPC64_GOT_TLSLD16_HA:
1056 case R_PPC64_GOT_TLSLD16_HI:
1057 case R_PPC64_GOT_TLSLD16_LO:
1058 return R_TLSLD_GOT;
1059 case R_PPC64_GOT_TLSLD_PCREL34:
1060 return R_TLSLD_PC;
1061 case R_PPC64_GOT_TPREL16_HA:
1062 case R_PPC64_GOT_TPREL16_LO_DS:
1063 case R_PPC64_GOT_TPREL16_DS:
1064 case R_PPC64_GOT_TPREL16_HI:
1065 return R_GOT_OFF;
1066 case R_PPC64_GOT_DTPREL16_HA:
1067 case R_PPC64_GOT_DTPREL16_LO_DS:
1068 case R_PPC64_GOT_DTPREL16_DS:
1069 case R_PPC64_GOT_DTPREL16_HI:
1070 return R_TLSLD_GOT_OFF;
1071 case R_PPC64_TPREL16:
1072 case R_PPC64_TPREL16_HA:
1073 case R_PPC64_TPREL16_LO:
1074 case R_PPC64_TPREL16_HI:
1075 case R_PPC64_TPREL16_DS:
1076 case R_PPC64_TPREL16_LO_DS:
1077 case R_PPC64_TPREL16_HIGHER:
1078 case R_PPC64_TPREL16_HIGHERA:
1079 case R_PPC64_TPREL16_HIGHEST:
1080 case R_PPC64_TPREL16_HIGHESTA:
1081 case R_PPC64_TPREL34:
1082 return R_TPREL;
1083 case R_PPC64_DTPREL16:
1084 case R_PPC64_DTPREL16_DS:
1085 case R_PPC64_DTPREL16_HA:
1086 case R_PPC64_DTPREL16_HI:
1087 case R_PPC64_DTPREL16_HIGHER:
1088 case R_PPC64_DTPREL16_HIGHERA:
1089 case R_PPC64_DTPREL16_HIGHEST:
1090 case R_PPC64_DTPREL16_HIGHESTA:
1091 case R_PPC64_DTPREL16_LO:
1092 case R_PPC64_DTPREL16_LO_DS:
1093 case R_PPC64_DTPREL64:
1094 case R_PPC64_DTPREL34:
1095 return R_DTPREL;
1096 case R_PPC64_TLSGD:
1097 return R_TLSDESC_CALL;
1098 case R_PPC64_TLSLD:
1099 return R_TLSLD_HINT;
1100 case R_PPC64_TLS:
1101 return R_TLSIE_HINT;
1102 default:
1103 Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
1104 << ") against symbol " << &s;
1105 return R_NONE;
1109 RelType PPC64::getDynRel(RelType type) const {
1110 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1111 return R_PPC64_ADDR64;
1112 return R_PPC64_NONE;
1115 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1116 switch (type) {
1117 case R_PPC64_NONE:
1118 case R_PPC64_GLOB_DAT:
1119 case R_PPC64_JMP_SLOT:
1120 return 0;
1121 case R_PPC64_REL32:
1122 return SignExtend64<32>(read32(ctx, buf));
1123 case R_PPC64_ADDR64:
1124 case R_PPC64_REL64:
1125 case R_PPC64_RELATIVE:
1126 case R_PPC64_IRELATIVE:
1127 case R_PPC64_DTPMOD64:
1128 case R_PPC64_DTPREL64:
1129 case R_PPC64_TPREL64:
1130 return read64(ctx, buf);
1131 default:
1132 InternalErr(ctx, buf) << "cannot read addend for relocation " << type;
1133 return 0;
1137 void PPC64::writeGotHeader(uint8_t *buf) const {
1138 write64(ctx, buf, getPPC64TocBase(ctx));
1141 void PPC64::writePltHeader(uint8_t *buf) const {
1142 // The generic resolver stub goes first.
1143 write32(ctx, buf + 0, 0x7c0802a6); // mflr r0
1144 write32(ctx, buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1145 write32(ctx, buf + 8, 0x7d6802a6); // mflr r11
1146 write32(ctx, buf + 12, 0x7c0803a6); // mtlr r0
1147 write32(ctx, buf + 16, 0x7d8b6050); // subf r12, r11, r12
1148 write32(ctx, buf + 20, 0x380cffcc); // subi r0,r12,52
1149 write32(ctx, buf + 24, 0x7800f082); // srdi r0,r0,62,2
1150 write32(ctx, buf + 28, 0xe98b002c); // ld r12,44(r11)
1151 write32(ctx, buf + 32, 0x7d6c5a14); // add r11,r12,r11
1152 write32(ctx, buf + 36, 0xe98b0000); // ld r12,0(r11)
1153 write32(ctx, buf + 40, 0xe96b0008); // ld r11,8(r11)
1154 write32(ctx, buf + 44, 0x7d8903a6); // mtctr r12
1155 write32(ctx, buf + 48, 0x4e800420); // bctr
1157 // The 'bcl' instruction will set the link register to the address of the
1158 // following instruction ('mflr r11'). Here we store the offset from that
1159 // instruction to the first entry in the GotPlt section.
1160 int64_t gotPltOffset = ctx.in.gotPlt->getVA() - (ctx.in.plt->getVA() + 8);
1161 write64(ctx, buf + 52, gotPltOffset);
1164 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1165 uint64_t /*pltEntryAddr*/) const {
1166 int32_t offset = pltHeaderSize + sym.getPltIdx(ctx) * pltEntrySize;
1167 // bl __glink_PLTresolve
1168 write32(ctx, buf, 0x48000000 | ((-offset) & 0x03fffffc));
1171 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1172 uint64_t /*pltEntryAddr*/) const {
1173 writePPC64LoadAndBranch(ctx, buf,
1174 sym.getGotPltVA(ctx) - getPPC64TocBase(ctx));
1177 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1178 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1179 uint64_t tocBiasedVal = val - ppc64TocOffset;
1180 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1181 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1183 switch (type) {
1184 // TOC biased relocation.
1185 case R_PPC64_GOT16:
1186 case R_PPC64_GOT_TLSGD16:
1187 case R_PPC64_GOT_TLSLD16:
1188 case R_PPC64_TOC16:
1189 return {R_PPC64_ADDR16, tocBiasedVal};
1190 case R_PPC64_GOT16_DS:
1191 case R_PPC64_TOC16_DS:
1192 case R_PPC64_GOT_TPREL16_DS:
1193 case R_PPC64_GOT_DTPREL16_DS:
1194 return {R_PPC64_ADDR16_DS, tocBiasedVal};
1195 case R_PPC64_GOT16_HA:
1196 case R_PPC64_GOT_TLSGD16_HA:
1197 case R_PPC64_GOT_TLSLD16_HA:
1198 case R_PPC64_GOT_TPREL16_HA:
1199 case R_PPC64_GOT_DTPREL16_HA:
1200 case R_PPC64_TOC16_HA:
1201 return {R_PPC64_ADDR16_HA, tocBiasedVal};
1202 case R_PPC64_GOT16_HI:
1203 case R_PPC64_GOT_TLSGD16_HI:
1204 case R_PPC64_GOT_TLSLD16_HI:
1205 case R_PPC64_GOT_TPREL16_HI:
1206 case R_PPC64_GOT_DTPREL16_HI:
1207 case R_PPC64_TOC16_HI:
1208 return {R_PPC64_ADDR16_HI, tocBiasedVal};
1209 case R_PPC64_GOT16_LO:
1210 case R_PPC64_GOT_TLSGD16_LO:
1211 case R_PPC64_GOT_TLSLD16_LO:
1212 case R_PPC64_TOC16_LO:
1213 return {R_PPC64_ADDR16_LO, tocBiasedVal};
1214 case R_PPC64_GOT16_LO_DS:
1215 case R_PPC64_TOC16_LO_DS:
1216 case R_PPC64_GOT_TPREL16_LO_DS:
1217 case R_PPC64_GOT_DTPREL16_LO_DS:
1218 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1220 // Dynamic Thread pointer biased relocation types.
1221 case R_PPC64_DTPREL16:
1222 return {R_PPC64_ADDR16, dtpBiasedVal};
1223 case R_PPC64_DTPREL16_DS:
1224 return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1225 case R_PPC64_DTPREL16_HA:
1226 return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1227 case R_PPC64_DTPREL16_HI:
1228 return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1229 case R_PPC64_DTPREL16_HIGHER:
1230 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1231 case R_PPC64_DTPREL16_HIGHERA:
1232 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1233 case R_PPC64_DTPREL16_HIGHEST:
1234 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1235 case R_PPC64_DTPREL16_HIGHESTA:
1236 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1237 case R_PPC64_DTPREL16_LO:
1238 return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1239 case R_PPC64_DTPREL16_LO_DS:
1240 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1241 case R_PPC64_DTPREL64:
1242 return {R_PPC64_ADDR64, dtpBiasedVal};
1244 default:
1245 return {type, val};
1249 static bool isTocOptType(RelType type) {
1250 switch (type) {
1251 case R_PPC64_GOT16_HA:
1252 case R_PPC64_GOT16_LO_DS:
1253 case R_PPC64_TOC16_HA:
1254 case R_PPC64_TOC16_LO_DS:
1255 case R_PPC64_TOC16_LO:
1256 return true;
1257 default:
1258 return false;
1262 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1263 RelType type = rel.type;
1264 bool shouldTocOptimize = isTocOptType(type);
1265 // For dynamic thread pointer relative, toc-relative, and got-indirect
1266 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1267 std::tie(type, val) = toAddr16Rel(type, val);
1269 switch (type) {
1270 case R_PPC64_ADDR14: {
1271 checkAlignment(ctx, loc, val, 4, rel);
1272 // Preserve the AA/LK bits in the branch instruction
1273 uint8_t aalk = loc[3];
1274 write16(ctx, loc + 2, (aalk & 3) | (val & 0xfffc));
1275 break;
1277 case R_PPC64_ADDR16:
1278 checkIntUInt(ctx, loc, val, 16, rel);
1279 write16(ctx, loc, val);
1280 break;
1281 case R_PPC64_ADDR32:
1282 checkIntUInt(ctx, loc, val, 32, rel);
1283 write32(ctx, loc, val);
1284 break;
1285 case R_PPC64_ADDR16_DS:
1286 case R_PPC64_TPREL16_DS: {
1287 checkInt(ctx, loc, val, 16, rel);
1288 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1289 // DS-form instructions only use bits 30-31.
1290 uint16_t mask = isDQFormInstruction(readFromHalf16(ctx, loc)) ? 0xf : 0x3;
1291 checkAlignment(ctx, loc, lo(val), mask + 1, rel);
1292 write16(ctx, loc, (read16(ctx, loc) & mask) | lo(val));
1293 } break;
1294 case R_PPC64_ADDR16_HA:
1295 case R_PPC64_REL16_HA:
1296 case R_PPC64_TPREL16_HA:
1297 if (ctx.arg.tocOptimize && shouldTocOptimize && ha(val) == 0)
1298 writeFromHalf16(ctx, loc, NOP);
1299 else {
1300 checkInt(ctx, loc, val + 0x8000, 32, rel);
1301 write16(ctx, loc, ha(val));
1303 break;
1304 case R_PPC64_ADDR16_HI:
1305 case R_PPC64_REL16_HI:
1306 case R_PPC64_TPREL16_HI:
1307 checkInt(ctx, loc, val, 32, rel);
1308 write16(ctx, loc, hi(val));
1309 break;
1310 case R_PPC64_ADDR16_HIGH:
1311 write16(ctx, loc, hi(val));
1312 break;
1313 case R_PPC64_ADDR16_HIGHER:
1314 case R_PPC64_TPREL16_HIGHER:
1315 write16(ctx, loc, higher(val));
1316 break;
1317 case R_PPC64_ADDR16_HIGHERA:
1318 case R_PPC64_TPREL16_HIGHERA:
1319 write16(ctx, loc, highera(val));
1320 break;
1321 case R_PPC64_ADDR16_HIGHEST:
1322 case R_PPC64_TPREL16_HIGHEST:
1323 write16(ctx, loc, highest(val));
1324 break;
1325 case R_PPC64_ADDR16_HIGHESTA:
1326 case R_PPC64_TPREL16_HIGHESTA:
1327 write16(ctx, loc, highesta(val));
1328 break;
1329 case R_PPC64_ADDR16_LO:
1330 case R_PPC64_REL16_LO:
1331 case R_PPC64_TPREL16_LO:
1332 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1333 // changed into a nop. The lo part then needs to be updated to use the
1334 // toc-pointer register r2, as the base register.
1335 if (ctx.arg.tocOptimize && shouldTocOptimize && ha(val) == 0) {
1336 uint32_t insn = readFromHalf16(ctx, loc);
1337 if (isInstructionUpdateForm(insn))
1338 Err(ctx) << getErrorLoc(ctx, loc)
1339 << "can't toc-optimize an update instruction: 0x"
1340 << utohexstr(insn, true);
1341 writeFromHalf16(ctx, loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1342 } else {
1343 write16(ctx, loc, lo(val));
1345 break;
1346 case R_PPC64_ADDR16_LO_DS:
1347 case R_PPC64_TPREL16_LO_DS: {
1348 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1349 // DS-form instructions only use bits 30-31.
1350 uint32_t insn = readFromHalf16(ctx, loc);
1351 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1352 checkAlignment(ctx, loc, lo(val), mask + 1, rel);
1353 if (ctx.arg.tocOptimize && shouldTocOptimize && ha(val) == 0) {
1354 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1355 // changed into a nop. The lo part then needs to be updated to use the toc
1356 // pointer register r2, as the base register.
1357 if (isInstructionUpdateForm(insn))
1358 Err(ctx) << getErrorLoc(ctx, loc)
1359 << "can't toc-optimize an update instruction: 0x"
1360 << utohexstr(insn, true);
1361 insn &= 0xffe00000 | mask;
1362 writeFromHalf16(ctx, loc, insn | 0x00020000 | lo(val));
1363 } else {
1364 write16(ctx, loc, (read16(ctx, loc) & mask) | lo(val));
1366 } break;
1367 case R_PPC64_TPREL16:
1368 checkInt(ctx, loc, val, 16, rel);
1369 write16(ctx, loc, val);
1370 break;
1371 case R_PPC64_REL32:
1372 checkInt(ctx, loc, val, 32, rel);
1373 write32(ctx, loc, val);
1374 break;
1375 case R_PPC64_ADDR64:
1376 case R_PPC64_REL64:
1377 case R_PPC64_TOC:
1378 write64(ctx, loc, val);
1379 break;
1380 case R_PPC64_REL14: {
1381 uint32_t mask = 0x0000FFFC;
1382 checkInt(ctx, loc, val, 16, rel);
1383 checkAlignment(ctx, loc, val, 4, rel);
1384 write32(ctx, loc, (read32(ctx, loc) & ~mask) | (val & mask));
1385 break;
1387 case R_PPC64_REL24:
1388 case R_PPC64_REL24_NOTOC: {
1389 uint32_t mask = 0x03FFFFFC;
1390 checkInt(ctx, loc, val, 26, rel);
1391 checkAlignment(ctx, loc, val, 4, rel);
1392 write32(ctx, loc, (read32(ctx, loc) & ~mask) | (val & mask));
1393 break;
1395 case R_PPC64_DTPREL64:
1396 write64(ctx, loc, val - dynamicThreadPointerOffset);
1397 break;
1398 case R_PPC64_DTPREL34:
1399 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1400 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1401 // need to subtract that value then fallthrough to the general case.
1402 val -= dynamicThreadPointerOffset;
1403 [[fallthrough]];
1404 case R_PPC64_PCREL34:
1405 case R_PPC64_GOT_PCREL34:
1406 case R_PPC64_GOT_TLSGD_PCREL34:
1407 case R_PPC64_GOT_TLSLD_PCREL34:
1408 case R_PPC64_GOT_TPREL_PCREL34:
1409 case R_PPC64_TPREL34: {
1410 const uint64_t si0Mask = 0x00000003ffff0000;
1411 const uint64_t si1Mask = 0x000000000000ffff;
1412 const uint64_t fullMask = 0x0003ffff0000ffff;
1413 checkInt(ctx, loc, val, 34, rel);
1415 uint64_t instr = readPrefixedInst(ctx, loc) & ~fullMask;
1416 writePrefixedInst(ctx, loc,
1417 instr | ((val & si0Mask) << 16) | (val & si1Mask));
1418 break;
1420 // If we encounter a PCREL_OPT relocation that we won't optimize.
1421 case R_PPC64_PCREL_OPT:
1422 break;
1423 default:
1424 llvm_unreachable("unknown relocation");
1428 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1429 uint64_t branchAddr, const Symbol &s, int64_t a) const {
1430 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1431 type != R_PPC64_REL24_NOTOC)
1432 return false;
1434 // If a function is in the Plt it needs to be called with a call-stub.
1435 if (s.isInPlt(ctx))
1436 return true;
1438 // This check looks at the st_other bits of the callee with relocation
1439 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1440 // clobbers the TOC and we need an R2 save stub.
1441 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1442 return true;
1444 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1445 return true;
1447 // An undefined weak symbol not in a PLT does not need a thunk. If it is
1448 // hidden, its binding has been converted to local, so we just check
1449 // isUndefined() here. A undefined non-weak symbol has been errored.
1450 if (s.isUndefined())
1451 return false;
1453 // If the offset exceeds the range of the branch type then it will need
1454 // a range-extending thunk.
1455 // See the comment in getRelocTargetVA() about RE_PPC64_CALL.
1456 return !inBranchRange(
1457 type, branchAddr,
1458 s.getVA(ctx, a) + getPPC64GlobalEntryToLocalEntryOffset(ctx, s.stOther));
1461 uint32_t PPC64::getThunkSectionSpacing() const {
1462 // See comment in Arch/ARM.cpp for a more detailed explanation of
1463 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1464 // R_PPC64_REL24, which is used by unconditional branch instructions.
1465 // 0x2000000 = (1 << 24-1) * 4
1466 return 0x2000000;
1469 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1470 int64_t offset = dst - src;
1471 if (type == R_PPC64_REL14)
1472 return isInt<16>(offset);
1473 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1474 return isInt<26>(offset);
1475 llvm_unreachable("unsupported relocation type used in branch");
1478 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1479 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1480 return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1481 if (expr == R_RELAX_TLS_LD_TO_LE)
1482 return R_RELAX_TLS_LD_TO_LE_ABS;
1483 return expr;
1486 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1487 const uint8_t *loc) const {
1488 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1489 ctx.arg.pcRelOptimize) {
1490 // It only makes sense to optimize pld since paddi means that the address
1491 // of the object in the GOT is required rather than the object itself.
1492 if ((readPrefixedInst(ctx, loc) & 0xfc000000) == 0xe4000000)
1493 return RE_PPC64_RELAX_GOT_PC;
1495 return R_GOT_PC;
1498 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1499 // The general dynamic code sequence for a global `x` uses 4 instructions.
1500 // Instruction Relocation Symbol
1501 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1502 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1503 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1504 // R_PPC64_REL24 __tls_get_addr
1505 // nop None None
1507 // Relaxing to initial-exec entails:
1508 // 1) Convert the addis/addi pair that builds the address of the tls_index
1509 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1510 // 2) Convert the call to __tls_get_addr to a nop.
1511 // 3) Convert the nop following the call to an add of the loaded offset to the
1512 // thread pointer.
1513 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1514 // used as the relaxation hint for both steps 2 and 3.
1515 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1516 uint64_t val) const {
1517 switch (rel.type) {
1518 case R_PPC64_GOT_TLSGD16_HA:
1519 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1520 // addis rT, r2, sym@got@tprel@ha.
1521 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1522 return;
1523 case R_PPC64_GOT_TLSGD16:
1524 case R_PPC64_GOT_TLSGD16_LO: {
1525 // Relax from addi r3, rA, sym@got@tlsgd@l to
1526 // ld r3, sym@got@tprel@l(rA)
1527 uint32_t ra = (readFromHalf16(ctx, loc) & (0x1f << 16));
1528 writeFromHalf16(ctx, loc, 0xe8600000 | ra);
1529 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1530 return;
1532 case R_PPC64_GOT_TLSGD_PCREL34: {
1533 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1534 // pld r3, sym@got@tprel@pcrel
1535 writePrefixedInst(ctx, loc, 0x04100000e4600000);
1536 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1537 return;
1539 case R_PPC64_TLSGD: {
1540 // PC Relative Relaxation:
1541 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1542 // nop
1543 // TOC Relaxation:
1544 // Relax from bl __tls_get_addr(x@tlsgd)
1545 // nop
1546 // to
1547 // nop
1548 // add r3, r3, r13
1549 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1550 if (locAsInt % 4 == 0) {
1551 write32(ctx, loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
1552 write32(ctx, loc + 4, 0x7c636a14); // nop --> add r3, r3, r13
1553 } else if (locAsInt % 4 == 1) {
1554 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1555 write32(ctx, loc - 1, 0x7c636a14);
1556 } else {
1557 Err(ctx) << "R_PPC64_TLSGD has unexpected byte alignment";
1559 return;
1561 default:
1562 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1566 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1567 uint64_t secAddr = sec.getOutputSection()->addr;
1568 if (auto *s = dyn_cast<InputSection>(&sec))
1569 secAddr += s->outSecOff;
1570 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1571 secAddr += ehIn->getParent()->outSecOff;
1572 uint64_t lastPPCRelaxedRelocOff = -1;
1573 for (const Relocation &rel : sec.relocs()) {
1574 uint8_t *loc = buf + rel.offset;
1575 const uint64_t val = sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset);
1576 switch (rel.expr) {
1577 case RE_PPC64_RELAX_GOT_PC: {
1578 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1579 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1580 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1581 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1582 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1583 // and only relax the other if the saved offset matches.
1584 if (rel.type == R_PPC64_GOT_PCREL34)
1585 lastPPCRelaxedRelocOff = rel.offset;
1586 if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1587 break;
1588 relaxGot(loc, rel, val);
1589 break;
1591 case RE_PPC64_RELAX_TOC:
1592 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1593 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1594 // entry, there may be R_PPC64_TOC16_HA not paired with
1595 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1596 // opportunities but is safe.
1597 if (ctx.ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1598 !tryRelaxPPC64TocIndirection(ctx, rel, loc))
1599 relocate(loc, rel, val);
1600 break;
1601 case RE_PPC64_CALL:
1602 // If this is a call to __tls_get_addr, it may be part of a TLS
1603 // sequence that has been relaxed and turned into a nop. In this
1604 // case, we don't want to handle it as a call.
1605 if (read32(ctx, loc) == 0x60000000) // nop
1606 break;
1608 // Patch a nop (0x60000000) to a ld.
1609 if (rel.sym->needsTocRestore()) {
1610 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1611 // recursive calls even if the function is preemptible. This is not
1612 // wrong in the common case where the function is not preempted at
1613 // runtime. Just ignore.
1614 if ((rel.offset + 8 > sec.content().size() ||
1615 read32(ctx, loc + 4) != 0x60000000) &&
1616 rel.sym->file != sec.file) {
1617 // Use substr(6) to remove the "__plt_" prefix.
1618 Err(ctx) << getErrorLoc(ctx, loc) << "call to "
1619 << toStr(ctx, *rel.sym).substr(6)
1620 << " lacks nop, can't restore toc";
1621 break;
1623 write32(ctx, loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1625 relocate(loc, rel, val);
1626 break;
1627 case R_RELAX_TLS_GD_TO_IE:
1628 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1629 relaxTlsGdToIe(loc, rel, val);
1630 break;
1631 case R_RELAX_TLS_GD_TO_LE:
1632 relaxTlsGdToLe(loc, rel, val);
1633 break;
1634 case R_RELAX_TLS_LD_TO_LE_ABS:
1635 relaxTlsLdToLe(loc, rel, val);
1636 break;
1637 case R_RELAX_TLS_IE_TO_LE:
1638 relaxTlsIeToLe(loc, rel, val);
1639 break;
1640 default:
1641 relocate(loc, rel, val);
1642 break;
1647 // The prologue for a split-stack function is expected to look roughly
1648 // like this:
1649 // .Lglobal_entry_point:
1650 // # TOC pointer initialization.
1651 // ...
1652 // .Llocal_entry_point:
1653 // # load the __private_ss member of the threads tcbhead.
1654 // ld r0,-0x7000-64(r13)
1655 // # subtract the functions stack size from the stack pointer.
1656 // addis r12, r1, ha(-stack-frame size)
1657 // addi r12, r12, l(-stack-frame size)
1658 // # compare needed to actual and branch to allocate_more_stack if more
1659 // # space is needed, otherwise fallthrough to 'normal' function body.
1660 // cmpld cr7,r12,r0
1661 // blt- cr7, .Lallocate_more_stack
1663 // -) The allocate_more_stack block might be placed after the split-stack
1664 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1665 // instead.
1666 // -) If either the addis or addi is not needed due to the stack size being
1667 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1668 // but there will always be 2 instructions the linker can overwrite for the
1669 // adjusted stack size.
1671 // The linkers job here is to increase the stack size used in the addis/addi
1672 // pair by split-stack-size-adjust.
1673 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1674 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
1675 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1676 uint8_t stOther) const {
1677 // If the caller has a global entry point adjust the buffer past it. The start
1678 // of the split-stack prologue will be at the local entry point.
1679 loc += getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther);
1681 // At the very least we expect to see a load of some split-stack data from the
1682 // tcb, and 2 instructions that calculate the ending stack address this
1683 // function will require. If there is not enough room for at least 3
1684 // instructions it can't be a split-stack prologue.
1685 if (loc + 12 >= end)
1686 return false;
1688 // First instruction must be `ld r0, -0x7000-64(r13)`
1689 if (read32(ctx, loc) != 0xe80d8fc0)
1690 return false;
1692 int16_t hiImm = 0;
1693 int16_t loImm = 0;
1694 // First instruction can be either an addis if the frame size is larger then
1695 // 32K, or an addi if the size is less then 32K.
1696 int32_t firstInstr = read32(ctx, loc + 4);
1697 if (getPrimaryOpCode(firstInstr) == 15) {
1698 hiImm = firstInstr & 0xFFFF;
1699 } else if (getPrimaryOpCode(firstInstr) == 14) {
1700 loImm = firstInstr & 0xFFFF;
1701 } else {
1702 return false;
1705 // Second instruction is either an addi or a nop. If the first instruction was
1706 // an addi then LoImm is set and the second instruction must be a nop.
1707 uint32_t secondInstr = read32(ctx, loc + 8);
1708 if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1709 loImm = secondInstr & 0xFFFF;
1710 } else if (secondInstr != NOP) {
1711 return false;
1714 // The register operands of the first instruction should be the stack-pointer
1715 // (r1) as the input (RA) and r12 as the output (RT). If the second
1716 // instruction is not a nop, then it should use r12 as both input and output.
1717 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1718 uint8_t expectedRA) {
1719 return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1720 ((instr & 0x1F0000) >> 16 == expectedRA);
1722 if (!checkRegOperands(firstInstr, 12, 1))
1723 return false;
1724 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1725 return false;
1727 int32_t stackFrameSize = (hiImm * 65536) + loImm;
1728 // Check that the adjusted size doesn't overflow what we can represent with 2
1729 // instructions.
1730 if (stackFrameSize < ctx.arg.splitStackAdjustSize + INT32_MIN) {
1731 Err(ctx) << getErrorLoc(ctx, loc)
1732 << "split-stack prologue adjustment overflows";
1733 return false;
1736 int32_t adjustedStackFrameSize =
1737 stackFrameSize - ctx.arg.splitStackAdjustSize;
1739 loImm = adjustedStackFrameSize & 0xFFFF;
1740 hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1741 if (hiImm) {
1742 write32(ctx, loc + 4, 0x3d810000 | (uint16_t)hiImm);
1743 // If the low immediate is zero the second instruction will be a nop.
1744 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1745 write32(ctx, loc + 8, secondInstr);
1746 } else {
1747 // addi r12, r1, imm
1748 write32(ctx, loc + 4, (0x39810000) | (uint16_t)loImm);
1749 write32(ctx, loc + 8, NOP);
1752 return true;
1755 void elf::setPPC64TargetInfo(Ctx &ctx) { ctx.target.reset(new PPC64(ctx)); }