1 //===- PPC64.cpp ----------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
13 #include "SyntheticSections.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
20 using namespace llvm::object
;
21 using namespace llvm::support::endian
;
22 using namespace llvm::ELF
;
24 using namespace lld::elf
;
26 constexpr uint64_t ppc64TocOffset
= 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset
= 0x8000;
30 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
31 // instructions that can be used as part of the initial exec TLS sequence.
82 constexpr uint32_t NOP
= 0x60000000;
84 enum class PPCLegacyInsn
: uint32_t {
112 enum class PPCPrefixedInsn
: uint64_t {
114 PREFIX_MLS
= 0x0610000000000000,
115 PREFIX_8LS
= 0x0410000000000000,
122 PLWA
= PREFIX_8LS
| 0xa4000000,
123 PLD
= PREFIX_8LS
| 0xe4000000,
125 PLXSSP
= PREFIX_8LS
| 0xac000000,
127 PLXSD
= PREFIX_8LS
| 0xa8000000,
128 PLXV
= PREFIX_8LS
| 0xc8000000,
129 PLXVP
= PREFIX_8LS
| 0xe8000000,
135 PSTD
= PREFIX_8LS
| 0xf4000000,
137 PSTXSSP
= PREFIX_8LS
| 0xbc000000,
139 PSTXSD
= PREFIX_8LS
| 0xb8000000,
140 PSTXV
= PREFIX_8LS
| 0xd8000000,
141 PSTXVP
= PREFIX_8LS
| 0xf8000000
144 static bool checkPPCLegacyInsn(uint32_t encoding
) {
145 PPCLegacyInsn insn
= static_cast<PPCLegacyInsn
>(encoding
);
146 if (insn
== PPCLegacyInsn::NOINSN
)
148 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
149 if (insn == PPCLegacyInsn::Legacy) \
151 #include "PPCInsns.def"
156 // Masks to apply to legacy instructions when converting them to prefixed,
157 // pc-relative versions. For the most part, the primary opcode is shared
158 // between the legacy instruction and the suffix of its prefixed version.
159 // However, there are some instances where that isn't the case (DS-Form and
160 // DQ-form instructions).
161 enum class LegacyToPrefixMask
: uint64_t {
163 OPC_AND_RST
= 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
164 ONLY_RST
= 0x3e00000, // [RS]T (6-10).
166 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
169 class PPC64 final
: public TargetInfo
{
172 int getTlsGdRelaxSkip(RelType type
) const override
;
173 uint32_t calcEFlags() const override
;
174 RelExpr
getRelExpr(RelType type
, const Symbol
&s
,
175 const uint8_t *loc
) const override
;
176 RelType
getDynRel(RelType type
) const override
;
177 int64_t getImplicitAddend(const uint8_t *buf
, RelType type
) const override
;
178 void writePltHeader(uint8_t *buf
) const override
;
179 void writePlt(uint8_t *buf
, const Symbol
&sym
,
180 uint64_t pltEntryAddr
) const override
;
181 void writeIplt(uint8_t *buf
, const Symbol
&sym
,
182 uint64_t pltEntryAddr
) const override
;
183 void relocate(uint8_t *loc
, const Relocation
&rel
,
184 uint64_t val
) const override
;
185 void writeGotHeader(uint8_t *buf
) const override
;
186 bool needsThunk(RelExpr expr
, RelType type
, const InputFile
*file
,
187 uint64_t branchAddr
, const Symbol
&s
,
188 int64_t a
) const override
;
189 uint32_t getThunkSectionSpacing() const override
;
190 bool inBranchRange(RelType type
, uint64_t src
, uint64_t dst
) const override
;
191 RelExpr
adjustTlsExpr(RelType type
, RelExpr expr
) const override
;
192 RelExpr
adjustGotPcExpr(RelType type
, int64_t addend
,
193 const uint8_t *loc
) const override
;
194 void relaxGot(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
195 void relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const override
;
197 bool adjustPrologueForCrossSplitStack(uint8_t *loc
, uint8_t *end
,
198 uint8_t stOther
) const override
;
201 void relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
202 void relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
203 void relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
204 void relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
208 uint64_t elf::getPPC64TocBase(Ctx
&ctx
) {
209 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
210 // TOC starts where the first of these sections starts. We always create a
211 // .got when we see a relocation that uses it, so for us the start is always
213 uint64_t tocVA
= ctx
.in
.got
->getVA();
215 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
216 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
217 // code (crt1.o) assumes that you can get from the TOC base to the
218 // start of the .toc section with only a single (signed) 16-bit relocation.
219 return tocVA
+ ppc64TocOffset
;
222 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(Ctx
&ctx
, uint8_t stOther
) {
223 // The offset is encoded into the 3 most significant bits of the st_other
224 // field, with some special values described in section 3.4.1 of the ABI:
225 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
226 // the TOC pointer (r2). r2 will hold the same value on returning from
227 // the function as it did on entering the function.
228 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
229 // caller-saved register for all callers.
230 // 2-6 --> The binary logarithm of the offset eg:
231 // 2 --> 2^2 = 4 bytes --> 1 instruction.
232 // 6 --> 2^6 = 64 bytes --> 16 instructions.
234 uint8_t gepToLep
= (stOther
>> 5) & 7;
238 // The value encoded in the st_other bits is the
239 // log-base-2(offset).
241 return 1 << gepToLep
;
244 << "reserved value of 7 in the 3 most-significant-bits of st_other";
248 void elf::writePrefixedInst(Ctx
&ctx
, uint8_t *loc
, uint64_t insn
) {
249 insn
= ctx
.arg
.isLE
? insn
<< 32 | insn
>> 32 : insn
;
250 write64(ctx
, loc
, insn
);
253 static bool addOptional(Ctx
&ctx
, StringRef name
, uint64_t value
,
254 std::vector
<Defined
*> &defined
) {
255 Symbol
*sym
= ctx
.symtab
->find(name
);
256 if (!sym
|| sym
->isDefined())
258 sym
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
259 STV_HIDDEN
, STT_FUNC
, value
,
260 /*size=*/0, /*section=*/nullptr});
261 defined
.push_back(cast
<Defined
>(sym
));
265 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
266 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
267 // The labels are defined only if they exist in the symbol table.
268 static void writeSequence(Ctx
&ctx
, const char *prefix
, int from
,
269 uint32_t firstInsn
, ArrayRef
<uint32_t> tail
) {
270 std::vector
<Defined
*> defined
;
273 const size_t size
= 32 - from
+ tail
.size();
274 MutableArrayRef
<uint32_t> buf(ctx
.bAlloc
.Allocate
<uint32_t>(size
), size
);
275 uint32_t *ptr
= buf
.data();
276 for (int r
= from
; r
< 32; ++r
) {
277 format("%s%d", prefix
, r
).snprint(name
, sizeof(name
));
278 if (addOptional(ctx
, name
, 4 * (r
- from
), defined
) && defined
.size() == 1)
280 write32(ctx
, ptr
++, firstInsn
+ 0x200008 * (r
- from
));
282 for (uint32_t insn
: tail
)
283 write32(ctx
, ptr
++, insn
);
284 assert(ptr
== &*buf
.end());
288 // The full section content has the extent of [begin, end). We drop unused
289 // instructions and write [first,end).
290 auto *sec
= make
<InputSection
>(
291 ctx
.internalFile
, ".text", SHT_PROGBITS
, SHF_ALLOC
, /*addralign=*/4,
293 ArrayRef(reinterpret_cast<uint8_t *>(buf
.data() + first
),
294 4 * (buf
.size() - first
)));
295 ctx
.inputSections
.push_back(sec
);
296 for (Defined
*sym
: defined
) {
298 sym
->value
-= 4 * first
;
302 // Implements some save and restore functions as described by ELF V2 ABI to be
303 // compatible with GCC. With GCC -Os, when the number of call-saved registers
304 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
305 // expects the linker to define them. See
306 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
307 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
308 // weird because libgcc.a would be the natural place. The linker generation
309 // approach has the advantage that the linker can generate multiple copies to
310 // avoid long branch thunks. However, we don't consider the advantage
311 // significant enough to complicate our trunk implementation, so we take the
312 // simple approach and synthesize .text sections providing the implementation.
313 void elf::addPPC64SaveRestore(Ctx
&ctx
) {
314 constexpr uint32_t blr
= 0x4e800020, mtlr_0
= 0x7c0803a6;
316 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
317 // Tail: ld 0, 16(1); mtlr 0; blr
318 writeSequence(ctx
, "_restgpr0_", 14, 0xe9c1ff70, {0xe8010010, mtlr_0
, blr
});
319 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
321 writeSequence(ctx
, "_restgpr1_", 14, 0xe9ccff70, {blr
});
322 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
323 // Tail: std 0, 16(1); blr
324 writeSequence(ctx
, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr
});
325 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
327 writeSequence(ctx
, "_savegpr1_", 14, 0xf9ccff70, {blr
});
330 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
331 template <typename ELFT
>
332 static std::pair
<Defined
*, int64_t>
333 getRelaTocSymAndAddend(InputSectionBase
*tocSec
, uint64_t offset
) {
334 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
335 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
336 // relocation index in most cases.
338 // In rare cases a TOC entry may store a constant that doesn't need an
339 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
340 // points to a relocation with larger r_offset. Do a linear probe then.
341 // Constants are extremely uncommon in .toc and the extra number of array
342 // accesses can be seen as a small constant.
343 ArrayRef
<typename
ELFT::Rela
> relas
=
344 tocSec
->template relsOrRelas
<ELFT
>().relas
;
347 uint64_t index
= std::min
<uint64_t>(offset
/ 8, relas
.size() - 1);
349 if (relas
[index
].r_offset
== offset
) {
350 Symbol
&sym
= tocSec
->file
->getRelocTargetSym(relas
[index
]);
351 return {dyn_cast
<Defined
>(&sym
), getAddend
<ELFT
>(relas
[index
])};
353 if (relas
[index
].r_offset
< offset
|| index
== 0)
360 // When accessing a symbol defined in another translation unit, compilers
361 // reserve a .toc entry, allocate a local label and generate toc-indirect
364 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
365 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
366 // ld/lwa 3, 0(3) # load the value from the address
368 // .section .toc,"aw",@progbits
369 // .LC0: .tc var[TC],var
371 // If var is defined, non-preemptable and addressable with a 32-bit signed
372 // offset from the toc base, the address of var can be computed by adding an
373 // offset to the toc base, saving a load.
375 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
376 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
377 // ld/lwa 3, 0(3) # load the value from the address
379 // Returns true if the relaxation is performed.
380 static bool tryRelaxPPC64TocIndirection(Ctx
&ctx
, const Relocation
&rel
,
382 assert(ctx
.arg
.tocOptimize
);
386 // If the symbol is not the .toc section, this isn't a toc-indirection.
387 Defined
*defSym
= dyn_cast
<Defined
>(rel
.sym
);
388 if (!defSym
|| !defSym
->isSection() || defSym
->section
->name
!= ".toc")
393 auto *tocISB
= cast
<InputSectionBase
>(defSym
->section
);
394 std::tie(d
, addend
) =
395 ctx
.arg
.isLE
? getRelaTocSymAndAddend
<ELF64LE
>(tocISB
, rel
.addend
)
396 : getRelaTocSymAndAddend
<ELF64BE
>(tocISB
, rel
.addend
);
398 // Only non-preemptable defined symbols can be relaxed.
399 if (!d
|| d
->isPreemptible
)
402 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
403 // ifunc and changed its type to STT_FUNC.
404 assert(!d
->isGnuIFunc());
406 // Two instructions can materialize a 32-bit signed offset from the toc base.
407 uint64_t tocRelative
= d
->getVA(ctx
, addend
) - getPPC64TocBase(ctx
);
408 if (!isInt
<32>(tocRelative
))
411 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
412 static_cast<const PPC64
&>(*ctx
.target
)
413 .relaxGot(bufLoc
, rel
, tocRelative
+ ppc64TocOffset
);
417 // Relocation masks following the #lo(value), #hi(value), #ha(value),
418 // #higher(value), #highera(value), #highest(value), and #highesta(value)
419 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
421 static uint16_t lo(uint64_t v
) { return v
; }
422 static uint16_t hi(uint64_t v
) { return v
>> 16; }
423 static uint64_t ha(uint64_t v
) { return (v
+ 0x8000) >> 16; }
424 static uint16_t higher(uint64_t v
) { return v
>> 32; }
425 static uint16_t highera(uint64_t v
) { return (v
+ 0x8000) >> 32; }
426 static uint16_t highest(uint64_t v
) { return v
>> 48; }
427 static uint16_t highesta(uint64_t v
) { return (v
+ 0x8000) >> 48; }
429 // Extracts the 'PO' field of an instruction encoding.
430 static uint8_t getPrimaryOpCode(uint32_t encoding
) { return (encoding
>> 26); }
432 static bool isDQFormInstruction(uint32_t encoding
) {
433 switch (getPrimaryOpCode(encoding
)) {
436 case 6: // Power10 paired loads/stores (lxvp, stxvp).
438 // The only instruction with a primary opcode of 56 is `lq`.
441 // There are both DS and DQ instruction forms with this primary opcode.
442 // Namely `lxv` and `stxv` are the DQ-forms that use it.
443 // The DS 'XO' bits being set to 01 is restricted to DQ form.
444 return (encoding
& 3) == 0x1;
448 static bool isDSFormInstruction(PPCLegacyInsn insn
) {
452 case PPCLegacyInsn::LWA
:
453 case PPCLegacyInsn::LD
:
454 case PPCLegacyInsn::LXSD
:
455 case PPCLegacyInsn::LXSSP
:
456 case PPCLegacyInsn::STD
:
457 case PPCLegacyInsn::STXSD
:
458 case PPCLegacyInsn::STXSSP
:
463 static PPCLegacyInsn
getPPCLegacyInsn(uint32_t encoding
) {
464 uint32_t opc
= encoding
& 0xfc000000;
466 // If the primary opcode is shared between multiple instructions, we need to
467 // fix it up to match the actual instruction we are after.
468 if ((opc
== 0xe4000000 || opc
== 0xe8000000 || opc
== 0xf4000000 ||
469 opc
== 0xf8000000) &&
470 !isDQFormInstruction(encoding
))
471 opc
= encoding
& 0xfc000003;
472 else if (opc
== 0xf4000000)
473 opc
= encoding
& 0xfc000007;
474 else if (opc
== 0x18000000)
475 opc
= encoding
& 0xfc00000f;
477 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
478 // return PPCLegacyInsn::NOINSN.
479 if (!checkPPCLegacyInsn(opc
))
480 return PPCLegacyInsn::NOINSN
;
481 return static_cast<PPCLegacyInsn
>(opc
);
484 static PPCPrefixedInsn
getPCRelativeForm(PPCLegacyInsn insn
) {
486 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
487 case PPCLegacyInsn::Legacy: \
488 return PPCPrefixedInsn::PCRel
489 #include "PPCInsns.def"
492 return PPCPrefixedInsn::NOINSN
;
495 static LegacyToPrefixMask
getInsnMask(PPCLegacyInsn insn
) {
497 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
498 case PPCLegacyInsn::Legacy: \
499 return LegacyToPrefixMask::InsnMask
500 #include "PPCInsns.def"
503 return LegacyToPrefixMask::NOMASK
;
505 static uint64_t getPCRelativeForm(uint32_t encoding
) {
506 PPCLegacyInsn origInsn
= getPPCLegacyInsn(encoding
);
507 PPCPrefixedInsn pcrelInsn
= getPCRelativeForm(origInsn
);
508 if (pcrelInsn
== PPCPrefixedInsn::NOINSN
)
510 LegacyToPrefixMask origInsnMask
= getInsnMask(origInsn
);
511 uint64_t pcrelEncoding
=
512 (uint64_t)pcrelInsn
| (encoding
& (uint64_t)origInsnMask
);
514 // If the mask requires moving bit 28 to bit 5, do that now.
515 if (origInsnMask
== LegacyToPrefixMask::ST_STX28_TO5
)
516 pcrelEncoding
|= (encoding
& 0x8) << 23;
517 return pcrelEncoding
;
520 static bool isInstructionUpdateForm(uint32_t encoding
) {
521 switch (getPrimaryOpCode(encoding
)) {
536 // LWA has the same opcode as LD, and the DS bits is what differentiates
537 // between LD/LDU/LWA
540 return (encoding
& 3) == 1;
544 // Compute the total displacement between the prefixed instruction that gets
545 // to the start of the data and the load/store instruction that has the offset
546 // into the data structure.
548 // paddi 3, 0, 1000, 1
550 // Should add up to 1020 for total displacement.
551 static int64_t getTotalDisp(uint64_t prefixedInsn
, uint32_t accessInsn
) {
552 int64_t disp34
= llvm::SignExtend64(
553 ((prefixedInsn
& 0x3ffff00000000) >> 16) | (prefixedInsn
& 0xffff), 34);
554 int32_t disp16
= llvm::SignExtend32(accessInsn
& 0xffff, 16);
555 // For DS and DQ form instructions, we need to mask out the XO bits.
556 if (isDQFormInstruction(accessInsn
))
558 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn
)))
560 return disp34
+ disp16
;
563 // There are a number of places when we either want to read or write an
564 // instruction when handling a half16 relocation type. On big-endian the buffer
565 // pointer is pointing into the middle of the word we want to extract, and on
566 // little-endian it is pointing to the start of the word. These 2 helpers are to
567 // simplify reading and writing in that context.
568 static void writeFromHalf16(Ctx
&ctx
, uint8_t *loc
, uint32_t insn
) {
569 write32(ctx
, ctx
.arg
.isLE
? loc
: loc
- 2, insn
);
572 static uint32_t readFromHalf16(Ctx
&ctx
, const uint8_t *loc
) {
573 return read32(ctx
, ctx
.arg
.isLE
? loc
: loc
- 2);
576 static uint64_t readPrefixedInst(Ctx
&ctx
, const uint8_t *loc
) {
577 uint64_t fullInstr
= read64(ctx
, loc
);
578 return ctx
.arg
.isLE
? (fullInstr
<< 32 | fullInstr
>> 32) : fullInstr
;
581 PPC64::PPC64(Ctx
&ctx
) : TargetInfo(ctx
) {
582 copyRel
= R_PPC64_COPY
;
583 gotRel
= R_PPC64_GLOB_DAT
;
584 pltRel
= R_PPC64_JMP_SLOT
;
585 relativeRel
= R_PPC64_RELATIVE
;
586 iRelativeRel
= R_PPC64_IRELATIVE
;
587 symbolicRel
= R_PPC64_ADDR64
;
590 ipltEntrySize
= 16; // PPC64PltCallStub::size
591 gotHeaderEntriesNum
= 1;
592 gotPltHeaderEntriesNum
= 2;
595 tlsModuleIndexRel
= R_PPC64_DTPMOD64
;
596 tlsOffsetRel
= R_PPC64_DTPREL64
;
598 tlsGotRel
= R_PPC64_TPREL64
;
600 needsMoreStackNonSplit
= false;
602 // We need 64K pages (at least under glibc/Linux, the loader won't
603 // set different permissions on a finer granularity than that).
604 defaultMaxPageSize
= 65536;
606 // The PPC64 ELF ABI v1 spec, says:
608 // It is normally desirable to put segments with different characteristics
609 // in separate 256 Mbyte portions of the address space, to give the
610 // operating system full paging flexibility in the 64-bit address space.
612 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
613 // use 0x10000000 as the starting address.
614 defaultImageBase
= 0x10000000;
616 write32(ctx
, trapInstr
.data(), 0x7fe00008);
619 int PPC64::getTlsGdRelaxSkip(RelType type
) const {
620 // A __tls_get_addr call instruction is marked with 2 relocations:
622 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
623 // R_PPC64_REL24: __tls_get_addr
625 // After the relaxation we no longer call __tls_get_addr and should skip both
626 // relocations to not create a false dependence on __tls_get_addr being
628 if (type
== R_PPC64_TLSGD
|| type
== R_PPC64_TLSLD
)
633 static uint32_t getEFlags(InputFile
*file
) {
634 if (file
->ekind
== ELF64BEKind
)
635 return cast
<ObjFile
<ELF64BE
>>(file
)->getObj().getHeader().e_flags
;
636 return cast
<ObjFile
<ELF64LE
>>(file
)->getObj().getHeader().e_flags
;
639 // This file implements v2 ABI. This function makes sure that all
640 // object files have v2 or an unspecified version as an ABI version.
641 uint32_t PPC64::calcEFlags() const {
642 for (InputFile
*f
: ctx
.objectFiles
) {
643 uint32_t flag
= getEFlags(f
);
645 ErrAlways(ctx
) << f
<< ": ABI version 1 is not supported";
647 ErrAlways(ctx
) << f
<< ": unrecognized e_flags: " << flag
;
652 void PPC64::relaxGot(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const {
654 case R_PPC64_TOC16_HA
:
655 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
656 relocate(loc
, rel
, val
);
658 case R_PPC64_TOC16_LO_DS
: {
659 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
660 // "addi reg, 2, var@toc".
661 uint32_t insn
= readFromHalf16(ctx
, loc
);
662 if (getPrimaryOpCode(insn
) != LD
)
664 << "expected a 'ld' for got-indirect to toc-relative relaxing";
665 writeFromHalf16(ctx
, loc
, (insn
& 0x03ffffff) | 0x38000000);
666 relocateNoSym(loc
, R_PPC64_TOC16_LO
, val
);
669 case R_PPC64_GOT_PCREL34
: {
670 // Clear the first 8 bits of the prefix and the first 6 bits of the
671 // instruction (the primary opcode).
672 uint64_t insn
= readPrefixedInst(ctx
, loc
);
673 if ((insn
& 0xfc000000) != 0xe4000000)
675 << "expected a 'pld' for got-indirect to pc-relative relaxing";
676 insn
&= ~0xff000000fc000000;
678 // Replace the cleared bits with the values for PADDI (0x600000038000000);
679 insn
|= 0x600000038000000;
680 writePrefixedInst(ctx
, loc
, insn
);
681 relocate(loc
, rel
, val
);
684 case R_PPC64_PCREL_OPT
: {
685 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
686 // be relaxed. The eligibility for the relaxation needs to be determined
687 // on that relocation since this one does not relocate a symbol.
688 uint64_t insn
= readPrefixedInst(ctx
, loc
);
689 uint32_t accessInsn
= read32(ctx
, loc
+ rel
.addend
);
690 uint64_t pcRelInsn
= getPCRelativeForm(accessInsn
);
692 // This error is not necessary for correctness but is emitted for now
693 // to ensure we don't miss these opportunities in real code. It can be
694 // removed at a later date.
695 if (pcRelInsn
== UINT64_C(-1)) {
697 << "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x"
698 << utohexstr(accessInsn
, true);
702 int64_t totalDisp
= getTotalDisp(insn
, accessInsn
);
703 if (!isInt
<34>(totalDisp
))
704 break; // Displacement doesn't fit.
705 // Convert the PADDI to the prefixed version of accessInsn and convert
706 // accessInsn to a nop.
707 writePrefixedInst(ctx
, loc
,
708 pcRelInsn
| ((totalDisp
& 0x3ffff0000) << 16) |
709 (totalDisp
& 0xffff));
710 write32(ctx
, loc
+ rel
.addend
, NOP
); // nop accessInsn.
714 llvm_unreachable("unexpected relocation type");
718 void PPC64::relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
,
719 uint64_t val
) const {
720 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
721 // The general dynamic code sequence for a global `x` will look like:
722 // Instruction Relocation Symbol
723 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
724 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
725 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
726 // R_PPC64_REL24 __tls_get_addr
729 // Relaxing to local exec entails converting:
730 // addis r3, r2, x@got@tlsgd@ha into nop
731 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
732 // bl __tls_get_addr(x@tlsgd) into nop
733 // nop into addi r3, r3, x@tprel@l
736 case R_PPC64_GOT_TLSGD16_HA
:
737 writeFromHalf16(ctx
, loc
, NOP
);
739 case R_PPC64_GOT_TLSGD16
:
740 case R_PPC64_GOT_TLSGD16_LO
:
741 writeFromHalf16(ctx
, loc
, 0x3c6d0000); // addis r3, r13
742 relocateNoSym(loc
, R_PPC64_TPREL16_HA
, val
);
744 case R_PPC64_GOT_TLSGD_PCREL34
:
745 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
746 // paddi r3, r13, x@tprel, 0
747 writePrefixedInst(ctx
, loc
, 0x06000000386d0000);
748 relocateNoSym(loc
, R_PPC64_TPREL34
, val
);
750 case R_PPC64_TLSGD
: {
751 // PC Relative Relaxation:
752 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
755 // Relax from bl __tls_get_addr(x@tlsgd)
759 // addi r3, r3, x@tprel@l
760 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
761 if (locAsInt
% 4 == 0) {
762 write32(ctx
, loc
, NOP
); // nop
763 write32(ctx
, loc
+ 4, 0x38630000); // addi r3, r3
764 // Since we are relocating a half16 type relocation and Loc + 4 points to
765 // the start of an instruction we need to advance the buffer by an extra
767 relocateNoSym(loc
+ 4 + (ctx
.arg
.ekind
== ELF64BEKind
? 2 : 0),
768 R_PPC64_TPREL16_LO
, val
);
769 } else if (locAsInt
% 4 == 1) {
770 write32(ctx
, loc
- 1, NOP
);
772 Err(ctx
) << "R_PPC64_TLSGD has unexpected byte alignment";
777 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
781 void PPC64::relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
,
782 uint64_t val
) const {
783 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
784 // The local dynamic code sequence for a global `x` will look like:
785 // Instruction Relocation Symbol
786 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
787 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
788 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
789 // R_PPC64_REL24 __tls_get_addr
792 // Relaxing to local exec entails converting:
793 // addis r3, r2, x@got@tlsld@ha into nop
794 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
795 // bl __tls_get_addr(x@tlsgd) into nop
796 // nop into addi r3, r3, 4096
799 case R_PPC64_GOT_TLSLD16_HA
:
800 writeFromHalf16(ctx
, loc
, NOP
);
802 case R_PPC64_GOT_TLSLD16_LO
:
803 writeFromHalf16(ctx
, loc
, 0x3c6d0000); // addis r3, r13, 0
805 case R_PPC64_GOT_TLSLD_PCREL34
:
806 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
807 // paddi r3, r13, 0x1000, 0
808 writePrefixedInst(ctx
, loc
, 0x06000000386d1000);
810 case R_PPC64_TLSLD
: {
811 // PC Relative Relaxation:
812 // Relax from bl __tls_get_addr@notoc(x@tlsld)
816 // Relax from bl __tls_get_addr(x@tlsld)
821 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
822 if (locAsInt
% 4 == 0) {
823 write32(ctx
, loc
, NOP
);
824 write32(ctx
, loc
+ 4, 0x38631000); // addi r3, r3, 4096
825 } else if (locAsInt
% 4 == 1) {
826 write32(ctx
, loc
- 1, NOP
);
828 Err(ctx
) << "R_PPC64_TLSLD has unexpected byte alignment";
832 case R_PPC64_DTPREL16
:
833 case R_PPC64_DTPREL16_HA
:
834 case R_PPC64_DTPREL16_HI
:
835 case R_PPC64_DTPREL16_DS
:
836 case R_PPC64_DTPREL16_LO
:
837 case R_PPC64_DTPREL16_LO_DS
:
838 case R_PPC64_DTPREL34
:
839 relocate(loc
, rel
, val
);
842 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
846 // Map X-Form instructions to their DS-Form counterparts, if applicable.
847 // The full encoding is returned here to distinguish between the different
848 // DS-Form instructions.
849 unsigned elf::getPPCDSFormOp(unsigned secondaryOp
) {
850 switch (secondaryOp
) {
852 return (LWA
<< 26) | 0x2;
862 unsigned elf::getPPCDFormOp(unsigned secondaryOp
) {
863 switch (secondaryOp
) {
893 void PPC64::relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
,
894 uint64_t val
) const {
895 // The initial exec code sequence for a global `x` will look like:
896 // Instruction Relocation Symbol
897 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
898 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
899 // add r9, r9, x@tls R_PPC64_TLS x
901 // Relaxing to local exec entails converting:
902 // addis r9, r2, x@got@tprel@ha into nop
903 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
904 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
906 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
907 // it is replaced with r13 (thread pointer).
909 // The add instruction in the initial exec sequence has multiple variations
910 // that need to be handled. If we are building an address it will use an add
911 // instruction, if we are accessing memory it will use any of the X-form
912 // indexed load or store instructions.
914 unsigned offset
= (ctx
.arg
.ekind
== ELF64BEKind
) ? 2 : 0;
916 case R_PPC64_GOT_TPREL16_HA
:
917 write32(ctx
, loc
- offset
, NOP
);
919 case R_PPC64_GOT_TPREL16_LO_DS
:
920 case R_PPC64_GOT_TPREL16_DS
: {
921 uint32_t regNo
= read32(ctx
, loc
- offset
) & 0x03e00000; // bits 6-10
922 write32(ctx
, loc
- offset
, 0x3c0d0000 | regNo
); // addis RegNo, r13
923 relocateNoSym(loc
, R_PPC64_TPREL16_HA
, val
);
926 case R_PPC64_GOT_TPREL_PCREL34
: {
927 const uint64_t pldRT
= readPrefixedInst(ctx
, loc
) & 0x0000000003e00000;
928 // paddi RT(from pld), r13, symbol@tprel, 0
929 writePrefixedInst(ctx
, loc
, 0x06000000380d0000 | pldRT
);
930 relocateNoSym(loc
, R_PPC64_TPREL34
, val
);
934 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
935 if (locAsInt
% 4 == 0) {
936 uint32_t primaryOp
= getPrimaryOpCode(read32(ctx
, loc
));
938 ErrAlways(ctx
) << "unrecognized instruction for IE to LE R_PPC64_TLS";
939 uint32_t secondaryOp
= (read32(ctx
, loc
) & 0x000007fe) >> 1; // bits 21-30
940 uint32_t dFormOp
= getPPCDFormOp(secondaryOp
);
942 if (dFormOp
== 0) { // Expecting a DS-Form instruction.
943 dFormOp
= getPPCDSFormOp(secondaryOp
);
945 ErrAlways(ctx
) << "unrecognized instruction for IE to LE R_PPC64_TLS";
946 finalReloc
= R_PPC64_TPREL16_LO_DS
;
948 finalReloc
= R_PPC64_TPREL16_LO
;
949 write32(ctx
, loc
, dFormOp
| (read32(ctx
, loc
) & 0x03ff0000));
950 relocateNoSym(loc
+ offset
, finalReloc
, val
);
951 } else if (locAsInt
% 4 == 1) {
952 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
953 // This version of the relocation is offset by one byte from the
954 // instruction it references.
955 uint32_t tlsInstr
= read32(ctx
, loc
- 1);
956 uint32_t primaryOp
= getPrimaryOpCode(tlsInstr
);
958 Err(ctx
) << "unrecognized instruction for IE to LE R_PPC64_TLS";
959 uint32_t secondaryOp
= (tlsInstr
& 0x000007FE) >> 1; // bits 21-30
960 // The add is a special case and should be turned into a nop. The paddi
961 // that comes before it will already have computed the address of the
963 if (secondaryOp
== 266) {
964 // Check if the add uses the same result register as the input register.
965 uint32_t rt
= (tlsInstr
& 0x03E00000) >> 21; // bits 6-10
966 uint32_t ra
= (tlsInstr
& 0x001F0000) >> 16; // bits 11-15
968 write32(ctx
, loc
- 1, NOP
);
971 write32(ctx
, loc
- 1,
972 0x7C000378 | (rt
<< 16) | (ra
<< 21) | (ra
<< 11));
975 uint32_t dFormOp
= getPPCDFormOp(secondaryOp
);
976 if (dFormOp
== 0) { // Expecting a DS-Form instruction.
977 dFormOp
= getPPCDSFormOp(secondaryOp
);
979 Err(ctx
) << "unrecognized instruction for IE to LE R_PPC64_TLS";
981 write32(ctx
, loc
- 1, (dFormOp
| (tlsInstr
& 0x03ff0000)));
984 Err(ctx
) << "R_PPC64_TLS must be either 4 byte aligned or one byte "
985 "offset from 4 byte aligned";
990 llvm_unreachable("unknown relocation for IE to LE");
995 RelExpr
PPC64::getRelExpr(RelType type
, const Symbol
&s
,
996 const uint8_t *loc
) const {
1000 case R_PPC64_ADDR16
:
1001 case R_PPC64_ADDR16_DS
:
1002 case R_PPC64_ADDR16_HA
:
1003 case R_PPC64_ADDR16_HI
:
1004 case R_PPC64_ADDR16_HIGH
:
1005 case R_PPC64_ADDR16_HIGHER
:
1006 case R_PPC64_ADDR16_HIGHERA
:
1007 case R_PPC64_ADDR16_HIGHEST
:
1008 case R_PPC64_ADDR16_HIGHESTA
:
1009 case R_PPC64_ADDR16_LO
:
1010 case R_PPC64_ADDR16_LO_DS
:
1011 case R_PPC64_ADDR32
:
1012 case R_PPC64_ADDR64
:
1015 case R_PPC64_GOT16_DS
:
1016 case R_PPC64_GOT16_HA
:
1017 case R_PPC64_GOT16_HI
:
1018 case R_PPC64_GOT16_LO
:
1019 case R_PPC64_GOT16_LO_DS
:
1022 case R_PPC64_TOC16_DS
:
1023 case R_PPC64_TOC16_HI
:
1024 case R_PPC64_TOC16_LO
:
1026 case R_PPC64_GOT_PCREL34
:
1027 case R_PPC64_GOT_TPREL_PCREL34
:
1028 case R_PPC64_PCREL_OPT
:
1030 case R_PPC64_TOC16_HA
:
1031 case R_PPC64_TOC16_LO_DS
:
1032 return ctx
.arg
.tocOptimize
? RE_PPC64_RELAX_TOC
: R_GOTREL
;
1034 return RE_PPC64_TOCBASE
;
1037 return RE_PPC64_CALL_PLT
;
1038 case R_PPC64_REL24_NOTOC
:
1040 case R_PPC64_REL16_LO
:
1041 case R_PPC64_REL16_HA
:
1042 case R_PPC64_REL16_HI
:
1045 case R_PPC64_PCREL34
:
1047 case R_PPC64_GOT_TLSGD16
:
1048 case R_PPC64_GOT_TLSGD16_HA
:
1049 case R_PPC64_GOT_TLSGD16_HI
:
1050 case R_PPC64_GOT_TLSGD16_LO
:
1052 case R_PPC64_GOT_TLSGD_PCREL34
:
1054 case R_PPC64_GOT_TLSLD16
:
1055 case R_PPC64_GOT_TLSLD16_HA
:
1056 case R_PPC64_GOT_TLSLD16_HI
:
1057 case R_PPC64_GOT_TLSLD16_LO
:
1059 case R_PPC64_GOT_TLSLD_PCREL34
:
1061 case R_PPC64_GOT_TPREL16_HA
:
1062 case R_PPC64_GOT_TPREL16_LO_DS
:
1063 case R_PPC64_GOT_TPREL16_DS
:
1064 case R_PPC64_GOT_TPREL16_HI
:
1066 case R_PPC64_GOT_DTPREL16_HA
:
1067 case R_PPC64_GOT_DTPREL16_LO_DS
:
1068 case R_PPC64_GOT_DTPREL16_DS
:
1069 case R_PPC64_GOT_DTPREL16_HI
:
1070 return R_TLSLD_GOT_OFF
;
1071 case R_PPC64_TPREL16
:
1072 case R_PPC64_TPREL16_HA
:
1073 case R_PPC64_TPREL16_LO
:
1074 case R_PPC64_TPREL16_HI
:
1075 case R_PPC64_TPREL16_DS
:
1076 case R_PPC64_TPREL16_LO_DS
:
1077 case R_PPC64_TPREL16_HIGHER
:
1078 case R_PPC64_TPREL16_HIGHERA
:
1079 case R_PPC64_TPREL16_HIGHEST
:
1080 case R_PPC64_TPREL16_HIGHESTA
:
1081 case R_PPC64_TPREL34
:
1083 case R_PPC64_DTPREL16
:
1084 case R_PPC64_DTPREL16_DS
:
1085 case R_PPC64_DTPREL16_HA
:
1086 case R_PPC64_DTPREL16_HI
:
1087 case R_PPC64_DTPREL16_HIGHER
:
1088 case R_PPC64_DTPREL16_HIGHERA
:
1089 case R_PPC64_DTPREL16_HIGHEST
:
1090 case R_PPC64_DTPREL16_HIGHESTA
:
1091 case R_PPC64_DTPREL16_LO
:
1092 case R_PPC64_DTPREL16_LO_DS
:
1093 case R_PPC64_DTPREL64
:
1094 case R_PPC64_DTPREL34
:
1097 return R_TLSDESC_CALL
;
1099 return R_TLSLD_HINT
;
1101 return R_TLSIE_HINT
;
1103 Err(ctx
) << getErrorLoc(ctx
, loc
) << "unknown relocation (" << type
.v
1104 << ") against symbol " << &s
;
1109 RelType
PPC64::getDynRel(RelType type
) const {
1110 if (type
== R_PPC64_ADDR64
|| type
== R_PPC64_TOC
)
1111 return R_PPC64_ADDR64
;
1112 return R_PPC64_NONE
;
1115 int64_t PPC64::getImplicitAddend(const uint8_t *buf
, RelType type
) const {
1118 case R_PPC64_GLOB_DAT
:
1119 case R_PPC64_JMP_SLOT
:
1122 return SignExtend64
<32>(read32(ctx
, buf
));
1123 case R_PPC64_ADDR64
:
1125 case R_PPC64_RELATIVE
:
1126 case R_PPC64_IRELATIVE
:
1127 case R_PPC64_DTPMOD64
:
1128 case R_PPC64_DTPREL64
:
1129 case R_PPC64_TPREL64
:
1130 return read64(ctx
, buf
);
1132 InternalErr(ctx
, buf
) << "cannot read addend for relocation " << type
;
1137 void PPC64::writeGotHeader(uint8_t *buf
) const {
1138 write64(ctx
, buf
, getPPC64TocBase(ctx
));
1141 void PPC64::writePltHeader(uint8_t *buf
) const {
1142 // The generic resolver stub goes first.
1143 write32(ctx
, buf
+ 0, 0x7c0802a6); // mflr r0
1144 write32(ctx
, buf
+ 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1145 write32(ctx
, buf
+ 8, 0x7d6802a6); // mflr r11
1146 write32(ctx
, buf
+ 12, 0x7c0803a6); // mtlr r0
1147 write32(ctx
, buf
+ 16, 0x7d8b6050); // subf r12, r11, r12
1148 write32(ctx
, buf
+ 20, 0x380cffcc); // subi r0,r12,52
1149 write32(ctx
, buf
+ 24, 0x7800f082); // srdi r0,r0,62,2
1150 write32(ctx
, buf
+ 28, 0xe98b002c); // ld r12,44(r11)
1151 write32(ctx
, buf
+ 32, 0x7d6c5a14); // add r11,r12,r11
1152 write32(ctx
, buf
+ 36, 0xe98b0000); // ld r12,0(r11)
1153 write32(ctx
, buf
+ 40, 0xe96b0008); // ld r11,8(r11)
1154 write32(ctx
, buf
+ 44, 0x7d8903a6); // mtctr r12
1155 write32(ctx
, buf
+ 48, 0x4e800420); // bctr
1157 // The 'bcl' instruction will set the link register to the address of the
1158 // following instruction ('mflr r11'). Here we store the offset from that
1159 // instruction to the first entry in the GotPlt section.
1160 int64_t gotPltOffset
= ctx
.in
.gotPlt
->getVA() - (ctx
.in
.plt
->getVA() + 8);
1161 write64(ctx
, buf
+ 52, gotPltOffset
);
1164 void PPC64::writePlt(uint8_t *buf
, const Symbol
&sym
,
1165 uint64_t /*pltEntryAddr*/) const {
1166 int32_t offset
= pltHeaderSize
+ sym
.getPltIdx(ctx
) * pltEntrySize
;
1167 // bl __glink_PLTresolve
1168 write32(ctx
, buf
, 0x48000000 | ((-offset
) & 0x03fffffc));
1171 void PPC64::writeIplt(uint8_t *buf
, const Symbol
&sym
,
1172 uint64_t /*pltEntryAddr*/) const {
1173 writePPC64LoadAndBranch(ctx
, buf
,
1174 sym
.getGotPltVA(ctx
) - getPPC64TocBase(ctx
));
1177 static std::pair
<RelType
, uint64_t> toAddr16Rel(RelType type
, uint64_t val
) {
1178 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1179 uint64_t tocBiasedVal
= val
- ppc64TocOffset
;
1180 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1181 uint64_t dtpBiasedVal
= val
- dynamicThreadPointerOffset
;
1184 // TOC biased relocation.
1186 case R_PPC64_GOT_TLSGD16
:
1187 case R_PPC64_GOT_TLSLD16
:
1189 return {R_PPC64_ADDR16
, tocBiasedVal
};
1190 case R_PPC64_GOT16_DS
:
1191 case R_PPC64_TOC16_DS
:
1192 case R_PPC64_GOT_TPREL16_DS
:
1193 case R_PPC64_GOT_DTPREL16_DS
:
1194 return {R_PPC64_ADDR16_DS
, tocBiasedVal
};
1195 case R_PPC64_GOT16_HA
:
1196 case R_PPC64_GOT_TLSGD16_HA
:
1197 case R_PPC64_GOT_TLSLD16_HA
:
1198 case R_PPC64_GOT_TPREL16_HA
:
1199 case R_PPC64_GOT_DTPREL16_HA
:
1200 case R_PPC64_TOC16_HA
:
1201 return {R_PPC64_ADDR16_HA
, tocBiasedVal
};
1202 case R_PPC64_GOT16_HI
:
1203 case R_PPC64_GOT_TLSGD16_HI
:
1204 case R_PPC64_GOT_TLSLD16_HI
:
1205 case R_PPC64_GOT_TPREL16_HI
:
1206 case R_PPC64_GOT_DTPREL16_HI
:
1207 case R_PPC64_TOC16_HI
:
1208 return {R_PPC64_ADDR16_HI
, tocBiasedVal
};
1209 case R_PPC64_GOT16_LO
:
1210 case R_PPC64_GOT_TLSGD16_LO
:
1211 case R_PPC64_GOT_TLSLD16_LO
:
1212 case R_PPC64_TOC16_LO
:
1213 return {R_PPC64_ADDR16_LO
, tocBiasedVal
};
1214 case R_PPC64_GOT16_LO_DS
:
1215 case R_PPC64_TOC16_LO_DS
:
1216 case R_PPC64_GOT_TPREL16_LO_DS
:
1217 case R_PPC64_GOT_DTPREL16_LO_DS
:
1218 return {R_PPC64_ADDR16_LO_DS
, tocBiasedVal
};
1220 // Dynamic Thread pointer biased relocation types.
1221 case R_PPC64_DTPREL16
:
1222 return {R_PPC64_ADDR16
, dtpBiasedVal
};
1223 case R_PPC64_DTPREL16_DS
:
1224 return {R_PPC64_ADDR16_DS
, dtpBiasedVal
};
1225 case R_PPC64_DTPREL16_HA
:
1226 return {R_PPC64_ADDR16_HA
, dtpBiasedVal
};
1227 case R_PPC64_DTPREL16_HI
:
1228 return {R_PPC64_ADDR16_HI
, dtpBiasedVal
};
1229 case R_PPC64_DTPREL16_HIGHER
:
1230 return {R_PPC64_ADDR16_HIGHER
, dtpBiasedVal
};
1231 case R_PPC64_DTPREL16_HIGHERA
:
1232 return {R_PPC64_ADDR16_HIGHERA
, dtpBiasedVal
};
1233 case R_PPC64_DTPREL16_HIGHEST
:
1234 return {R_PPC64_ADDR16_HIGHEST
, dtpBiasedVal
};
1235 case R_PPC64_DTPREL16_HIGHESTA
:
1236 return {R_PPC64_ADDR16_HIGHESTA
, dtpBiasedVal
};
1237 case R_PPC64_DTPREL16_LO
:
1238 return {R_PPC64_ADDR16_LO
, dtpBiasedVal
};
1239 case R_PPC64_DTPREL16_LO_DS
:
1240 return {R_PPC64_ADDR16_LO_DS
, dtpBiasedVal
};
1241 case R_PPC64_DTPREL64
:
1242 return {R_PPC64_ADDR64
, dtpBiasedVal
};
1249 static bool isTocOptType(RelType type
) {
1251 case R_PPC64_GOT16_HA
:
1252 case R_PPC64_GOT16_LO_DS
:
1253 case R_PPC64_TOC16_HA
:
1254 case R_PPC64_TOC16_LO_DS
:
1255 case R_PPC64_TOC16_LO
:
1262 void PPC64::relocate(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const {
1263 RelType type
= rel
.type
;
1264 bool shouldTocOptimize
= isTocOptType(type
);
1265 // For dynamic thread pointer relative, toc-relative, and got-indirect
1266 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1267 std::tie(type
, val
) = toAddr16Rel(type
, val
);
1270 case R_PPC64_ADDR14
: {
1271 checkAlignment(ctx
, loc
, val
, 4, rel
);
1272 // Preserve the AA/LK bits in the branch instruction
1273 uint8_t aalk
= loc
[3];
1274 write16(ctx
, loc
+ 2, (aalk
& 3) | (val
& 0xfffc));
1277 case R_PPC64_ADDR16
:
1278 checkIntUInt(ctx
, loc
, val
, 16, rel
);
1279 write16(ctx
, loc
, val
);
1281 case R_PPC64_ADDR32
:
1282 checkIntUInt(ctx
, loc
, val
, 32, rel
);
1283 write32(ctx
, loc
, val
);
1285 case R_PPC64_ADDR16_DS
:
1286 case R_PPC64_TPREL16_DS
: {
1287 checkInt(ctx
, loc
, val
, 16, rel
);
1288 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1289 // DS-form instructions only use bits 30-31.
1290 uint16_t mask
= isDQFormInstruction(readFromHalf16(ctx
, loc
)) ? 0xf : 0x3;
1291 checkAlignment(ctx
, loc
, lo(val
), mask
+ 1, rel
);
1292 write16(ctx
, loc
, (read16(ctx
, loc
) & mask
) | lo(val
));
1294 case R_PPC64_ADDR16_HA
:
1295 case R_PPC64_REL16_HA
:
1296 case R_PPC64_TPREL16_HA
:
1297 if (ctx
.arg
.tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0)
1298 writeFromHalf16(ctx
, loc
, NOP
);
1300 checkInt(ctx
, loc
, val
+ 0x8000, 32, rel
);
1301 write16(ctx
, loc
, ha(val
));
1304 case R_PPC64_ADDR16_HI
:
1305 case R_PPC64_REL16_HI
:
1306 case R_PPC64_TPREL16_HI
:
1307 checkInt(ctx
, loc
, val
, 32, rel
);
1308 write16(ctx
, loc
, hi(val
));
1310 case R_PPC64_ADDR16_HIGH
:
1311 write16(ctx
, loc
, hi(val
));
1313 case R_PPC64_ADDR16_HIGHER
:
1314 case R_PPC64_TPREL16_HIGHER
:
1315 write16(ctx
, loc
, higher(val
));
1317 case R_PPC64_ADDR16_HIGHERA
:
1318 case R_PPC64_TPREL16_HIGHERA
:
1319 write16(ctx
, loc
, highera(val
));
1321 case R_PPC64_ADDR16_HIGHEST
:
1322 case R_PPC64_TPREL16_HIGHEST
:
1323 write16(ctx
, loc
, highest(val
));
1325 case R_PPC64_ADDR16_HIGHESTA
:
1326 case R_PPC64_TPREL16_HIGHESTA
:
1327 write16(ctx
, loc
, highesta(val
));
1329 case R_PPC64_ADDR16_LO
:
1330 case R_PPC64_REL16_LO
:
1331 case R_PPC64_TPREL16_LO
:
1332 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1333 // changed into a nop. The lo part then needs to be updated to use the
1334 // toc-pointer register r2, as the base register.
1335 if (ctx
.arg
.tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0) {
1336 uint32_t insn
= readFromHalf16(ctx
, loc
);
1337 if (isInstructionUpdateForm(insn
))
1338 Err(ctx
) << getErrorLoc(ctx
, loc
)
1339 << "can't toc-optimize an update instruction: 0x"
1340 << utohexstr(insn
, true);
1341 writeFromHalf16(ctx
, loc
, (insn
& 0xffe00000) | 0x00020000 | lo(val
));
1343 write16(ctx
, loc
, lo(val
));
1346 case R_PPC64_ADDR16_LO_DS
:
1347 case R_PPC64_TPREL16_LO_DS
: {
1348 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1349 // DS-form instructions only use bits 30-31.
1350 uint32_t insn
= readFromHalf16(ctx
, loc
);
1351 uint16_t mask
= isDQFormInstruction(insn
) ? 0xf : 0x3;
1352 checkAlignment(ctx
, loc
, lo(val
), mask
+ 1, rel
);
1353 if (ctx
.arg
.tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0) {
1354 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1355 // changed into a nop. The lo part then needs to be updated to use the toc
1356 // pointer register r2, as the base register.
1357 if (isInstructionUpdateForm(insn
))
1358 Err(ctx
) << getErrorLoc(ctx
, loc
)
1359 << "can't toc-optimize an update instruction: 0x"
1360 << utohexstr(insn
, true);
1361 insn
&= 0xffe00000 | mask
;
1362 writeFromHalf16(ctx
, loc
, insn
| 0x00020000 | lo(val
));
1364 write16(ctx
, loc
, (read16(ctx
, loc
) & mask
) | lo(val
));
1367 case R_PPC64_TPREL16
:
1368 checkInt(ctx
, loc
, val
, 16, rel
);
1369 write16(ctx
, loc
, val
);
1372 checkInt(ctx
, loc
, val
, 32, rel
);
1373 write32(ctx
, loc
, val
);
1375 case R_PPC64_ADDR64
:
1378 write64(ctx
, loc
, val
);
1380 case R_PPC64_REL14
: {
1381 uint32_t mask
= 0x0000FFFC;
1382 checkInt(ctx
, loc
, val
, 16, rel
);
1383 checkAlignment(ctx
, loc
, val
, 4, rel
);
1384 write32(ctx
, loc
, (read32(ctx
, loc
) & ~mask
) | (val
& mask
));
1388 case R_PPC64_REL24_NOTOC
: {
1389 uint32_t mask
= 0x03FFFFFC;
1390 checkInt(ctx
, loc
, val
, 26, rel
);
1391 checkAlignment(ctx
, loc
, val
, 4, rel
);
1392 write32(ctx
, loc
, (read32(ctx
, loc
) & ~mask
) | (val
& mask
));
1395 case R_PPC64_DTPREL64
:
1396 write64(ctx
, loc
, val
- dynamicThreadPointerOffset
);
1398 case R_PPC64_DTPREL34
:
1399 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1400 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1401 // need to subtract that value then fallthrough to the general case.
1402 val
-= dynamicThreadPointerOffset
;
1404 case R_PPC64_PCREL34
:
1405 case R_PPC64_GOT_PCREL34
:
1406 case R_PPC64_GOT_TLSGD_PCREL34
:
1407 case R_PPC64_GOT_TLSLD_PCREL34
:
1408 case R_PPC64_GOT_TPREL_PCREL34
:
1409 case R_PPC64_TPREL34
: {
1410 const uint64_t si0Mask
= 0x00000003ffff0000;
1411 const uint64_t si1Mask
= 0x000000000000ffff;
1412 const uint64_t fullMask
= 0x0003ffff0000ffff;
1413 checkInt(ctx
, loc
, val
, 34, rel
);
1415 uint64_t instr
= readPrefixedInst(ctx
, loc
) & ~fullMask
;
1416 writePrefixedInst(ctx
, loc
,
1417 instr
| ((val
& si0Mask
) << 16) | (val
& si1Mask
));
1420 // If we encounter a PCREL_OPT relocation that we won't optimize.
1421 case R_PPC64_PCREL_OPT
:
1424 llvm_unreachable("unknown relocation");
1428 bool PPC64::needsThunk(RelExpr expr
, RelType type
, const InputFile
*file
,
1429 uint64_t branchAddr
, const Symbol
&s
, int64_t a
) const {
1430 if (type
!= R_PPC64_REL14
&& type
!= R_PPC64_REL24
&&
1431 type
!= R_PPC64_REL24_NOTOC
)
1434 // If a function is in the Plt it needs to be called with a call-stub.
1438 // This check looks at the st_other bits of the callee with relocation
1439 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1440 // clobbers the TOC and we need an R2 save stub.
1441 if (type
!= R_PPC64_REL24_NOTOC
&& (s
.stOther
>> 5) == 1)
1444 if (type
== R_PPC64_REL24_NOTOC
&& (s
.stOther
>> 5) > 1)
1447 // An undefined weak symbol not in a PLT does not need a thunk. If it is
1448 // hidden, its binding has been converted to local, so we just check
1449 // isUndefined() here. A undefined non-weak symbol has been errored.
1450 if (s
.isUndefined())
1453 // If the offset exceeds the range of the branch type then it will need
1454 // a range-extending thunk.
1455 // See the comment in getRelocTargetVA() about RE_PPC64_CALL.
1456 return !inBranchRange(
1458 s
.getVA(ctx
, a
) + getPPC64GlobalEntryToLocalEntryOffset(ctx
, s
.stOther
));
1461 uint32_t PPC64::getThunkSectionSpacing() const {
1462 // See comment in Arch/ARM.cpp for a more detailed explanation of
1463 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1464 // R_PPC64_REL24, which is used by unconditional branch instructions.
1465 // 0x2000000 = (1 << 24-1) * 4
1469 bool PPC64::inBranchRange(RelType type
, uint64_t src
, uint64_t dst
) const {
1470 int64_t offset
= dst
- src
;
1471 if (type
== R_PPC64_REL14
)
1472 return isInt
<16>(offset
);
1473 if (type
== R_PPC64_REL24
|| type
== R_PPC64_REL24_NOTOC
)
1474 return isInt
<26>(offset
);
1475 llvm_unreachable("unsupported relocation type used in branch");
1478 RelExpr
PPC64::adjustTlsExpr(RelType type
, RelExpr expr
) const {
1479 if (type
!= R_PPC64_GOT_TLSGD_PCREL34
&& expr
== R_RELAX_TLS_GD_TO_IE
)
1480 return R_RELAX_TLS_GD_TO_IE_GOT_OFF
;
1481 if (expr
== R_RELAX_TLS_LD_TO_LE
)
1482 return R_RELAX_TLS_LD_TO_LE_ABS
;
1486 RelExpr
PPC64::adjustGotPcExpr(RelType type
, int64_t addend
,
1487 const uint8_t *loc
) const {
1488 if ((type
== R_PPC64_GOT_PCREL34
|| type
== R_PPC64_PCREL_OPT
) &&
1489 ctx
.arg
.pcRelOptimize
) {
1490 // It only makes sense to optimize pld since paddi means that the address
1491 // of the object in the GOT is required rather than the object itself.
1492 if ((readPrefixedInst(ctx
, loc
) & 0xfc000000) == 0xe4000000)
1493 return RE_PPC64_RELAX_GOT_PC
;
1498 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1499 // The general dynamic code sequence for a global `x` uses 4 instructions.
1500 // Instruction Relocation Symbol
1501 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1502 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1503 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1504 // R_PPC64_REL24 __tls_get_addr
1507 // Relaxing to initial-exec entails:
1508 // 1) Convert the addis/addi pair that builds the address of the tls_index
1509 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1510 // 2) Convert the call to __tls_get_addr to a nop.
1511 // 3) Convert the nop following the call to an add of the loaded offset to the
1513 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1514 // used as the relaxation hint for both steps 2 and 3.
1515 void PPC64::relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
,
1516 uint64_t val
) const {
1518 case R_PPC64_GOT_TLSGD16_HA
:
1519 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1520 // addis rT, r2, sym@got@tprel@ha.
1521 relocateNoSym(loc
, R_PPC64_GOT_TPREL16_HA
, val
);
1523 case R_PPC64_GOT_TLSGD16
:
1524 case R_PPC64_GOT_TLSGD16_LO
: {
1525 // Relax from addi r3, rA, sym@got@tlsgd@l to
1526 // ld r3, sym@got@tprel@l(rA)
1527 uint32_t ra
= (readFromHalf16(ctx
, loc
) & (0x1f << 16));
1528 writeFromHalf16(ctx
, loc
, 0xe8600000 | ra
);
1529 relocateNoSym(loc
, R_PPC64_GOT_TPREL16_LO_DS
, val
);
1532 case R_PPC64_GOT_TLSGD_PCREL34
: {
1533 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1534 // pld r3, sym@got@tprel@pcrel
1535 writePrefixedInst(ctx
, loc
, 0x04100000e4600000);
1536 relocateNoSym(loc
, R_PPC64_GOT_TPREL_PCREL34
, val
);
1539 case R_PPC64_TLSGD
: {
1540 // PC Relative Relaxation:
1541 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1544 // Relax from bl __tls_get_addr(x@tlsgd)
1549 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
1550 if (locAsInt
% 4 == 0) {
1551 write32(ctx
, loc
, NOP
); // bl __tls_get_addr(sym@tlsgd) --> nop
1552 write32(ctx
, loc
+ 4, 0x7c636a14); // nop --> add r3, r3, r13
1553 } else if (locAsInt
% 4 == 1) {
1554 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1555 write32(ctx
, loc
- 1, 0x7c636a14);
1557 Err(ctx
) << "R_PPC64_TLSGD has unexpected byte alignment";
1562 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1566 void PPC64::relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const {
1567 uint64_t secAddr
= sec
.getOutputSection()->addr
;
1568 if (auto *s
= dyn_cast
<InputSection
>(&sec
))
1569 secAddr
+= s
->outSecOff
;
1570 else if (auto *ehIn
= dyn_cast
<EhInputSection
>(&sec
))
1571 secAddr
+= ehIn
->getParent()->outSecOff
;
1572 uint64_t lastPPCRelaxedRelocOff
= -1;
1573 for (const Relocation
&rel
: sec
.relocs()) {
1574 uint8_t *loc
= buf
+ rel
.offset
;
1575 const uint64_t val
= sec
.getRelocTargetVA(ctx
, rel
, secAddr
+ rel
.offset
);
1577 case RE_PPC64_RELAX_GOT_PC
: {
1578 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1579 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1580 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1581 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1582 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1583 // and only relax the other if the saved offset matches.
1584 if (rel
.type
== R_PPC64_GOT_PCREL34
)
1585 lastPPCRelaxedRelocOff
= rel
.offset
;
1586 if (rel
.type
== R_PPC64_PCREL_OPT
&& rel
.offset
!= lastPPCRelaxedRelocOff
)
1588 relaxGot(loc
, rel
, val
);
1591 case RE_PPC64_RELAX_TOC
:
1592 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1593 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1594 // entry, there may be R_PPC64_TOC16_HA not paired with
1595 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1596 // opportunities but is safe.
1597 if (ctx
.ppc64noTocRelax
.count({rel
.sym
, rel
.addend
}) ||
1598 !tryRelaxPPC64TocIndirection(ctx
, rel
, loc
))
1599 relocate(loc
, rel
, val
);
1602 // If this is a call to __tls_get_addr, it may be part of a TLS
1603 // sequence that has been relaxed and turned into a nop. In this
1604 // case, we don't want to handle it as a call.
1605 if (read32(ctx
, loc
) == 0x60000000) // nop
1608 // Patch a nop (0x60000000) to a ld.
1609 if (rel
.sym
->needsTocRestore()) {
1610 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1611 // recursive calls even if the function is preemptible. This is not
1612 // wrong in the common case where the function is not preempted at
1613 // runtime. Just ignore.
1614 if ((rel
.offset
+ 8 > sec
.content().size() ||
1615 read32(ctx
, loc
+ 4) != 0x60000000) &&
1616 rel
.sym
->file
!= sec
.file
) {
1617 // Use substr(6) to remove the "__plt_" prefix.
1618 Err(ctx
) << getErrorLoc(ctx
, loc
) << "call to "
1619 << toStr(ctx
, *rel
.sym
).substr(6)
1620 << " lacks nop, can't restore toc";
1623 write32(ctx
, loc
+ 4, 0xe8410018); // ld %r2, 24(%r1)
1625 relocate(loc
, rel
, val
);
1627 case R_RELAX_TLS_GD_TO_IE
:
1628 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
1629 relaxTlsGdToIe(loc
, rel
, val
);
1631 case R_RELAX_TLS_GD_TO_LE
:
1632 relaxTlsGdToLe(loc
, rel
, val
);
1634 case R_RELAX_TLS_LD_TO_LE_ABS
:
1635 relaxTlsLdToLe(loc
, rel
, val
);
1637 case R_RELAX_TLS_IE_TO_LE
:
1638 relaxTlsIeToLe(loc
, rel
, val
);
1641 relocate(loc
, rel
, val
);
1647 // The prologue for a split-stack function is expected to look roughly
1649 // .Lglobal_entry_point:
1650 // # TOC pointer initialization.
1652 // .Llocal_entry_point:
1653 // # load the __private_ss member of the threads tcbhead.
1654 // ld r0,-0x7000-64(r13)
1655 // # subtract the functions stack size from the stack pointer.
1656 // addis r12, r1, ha(-stack-frame size)
1657 // addi r12, r12, l(-stack-frame size)
1658 // # compare needed to actual and branch to allocate_more_stack if more
1659 // # space is needed, otherwise fallthrough to 'normal' function body.
1661 // blt- cr7, .Lallocate_more_stack
1663 // -) The allocate_more_stack block might be placed after the split-stack
1664 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1666 // -) If either the addis or addi is not needed due to the stack size being
1667 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1668 // but there will always be 2 instructions the linker can overwrite for the
1669 // adjusted stack size.
1671 // The linkers job here is to increase the stack size used in the addis/addi
1672 // pair by split-stack-size-adjust.
1673 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1674 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
1675 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc
, uint8_t *end
,
1676 uint8_t stOther
) const {
1677 // If the caller has a global entry point adjust the buffer past it. The start
1678 // of the split-stack prologue will be at the local entry point.
1679 loc
+= getPPC64GlobalEntryToLocalEntryOffset(ctx
, stOther
);
1681 // At the very least we expect to see a load of some split-stack data from the
1682 // tcb, and 2 instructions that calculate the ending stack address this
1683 // function will require. If there is not enough room for at least 3
1684 // instructions it can't be a split-stack prologue.
1685 if (loc
+ 12 >= end
)
1688 // First instruction must be `ld r0, -0x7000-64(r13)`
1689 if (read32(ctx
, loc
) != 0xe80d8fc0)
1694 // First instruction can be either an addis if the frame size is larger then
1695 // 32K, or an addi if the size is less then 32K.
1696 int32_t firstInstr
= read32(ctx
, loc
+ 4);
1697 if (getPrimaryOpCode(firstInstr
) == 15) {
1698 hiImm
= firstInstr
& 0xFFFF;
1699 } else if (getPrimaryOpCode(firstInstr
) == 14) {
1700 loImm
= firstInstr
& 0xFFFF;
1705 // Second instruction is either an addi or a nop. If the first instruction was
1706 // an addi then LoImm is set and the second instruction must be a nop.
1707 uint32_t secondInstr
= read32(ctx
, loc
+ 8);
1708 if (!loImm
&& getPrimaryOpCode(secondInstr
) == 14) {
1709 loImm
= secondInstr
& 0xFFFF;
1710 } else if (secondInstr
!= NOP
) {
1714 // The register operands of the first instruction should be the stack-pointer
1715 // (r1) as the input (RA) and r12 as the output (RT). If the second
1716 // instruction is not a nop, then it should use r12 as both input and output.
1717 auto checkRegOperands
= [](uint32_t instr
, uint8_t expectedRT
,
1718 uint8_t expectedRA
) {
1719 return ((instr
& 0x3E00000) >> 21 == expectedRT
) &&
1720 ((instr
& 0x1F0000) >> 16 == expectedRA
);
1722 if (!checkRegOperands(firstInstr
, 12, 1))
1724 if (secondInstr
!= NOP
&& !checkRegOperands(secondInstr
, 12, 12))
1727 int32_t stackFrameSize
= (hiImm
* 65536) + loImm
;
1728 // Check that the adjusted size doesn't overflow what we can represent with 2
1730 if (stackFrameSize
< ctx
.arg
.splitStackAdjustSize
+ INT32_MIN
) {
1731 Err(ctx
) << getErrorLoc(ctx
, loc
)
1732 << "split-stack prologue adjustment overflows";
1736 int32_t adjustedStackFrameSize
=
1737 stackFrameSize
- ctx
.arg
.splitStackAdjustSize
;
1739 loImm
= adjustedStackFrameSize
& 0xFFFF;
1740 hiImm
= (adjustedStackFrameSize
+ 0x8000) >> 16;
1742 write32(ctx
, loc
+ 4, 0x3d810000 | (uint16_t)hiImm
);
1743 // If the low immediate is zero the second instruction will be a nop.
1744 secondInstr
= loImm
? 0x398C0000 | (uint16_t)loImm
: NOP
;
1745 write32(ctx
, loc
+ 8, secondInstr
);
1747 // addi r12, r1, imm
1748 write32(ctx
, loc
+ 4, (0x39810000) | (uint16_t)loImm
);
1749 write32(ctx
, loc
+ 8, NOP
);
1755 void elf::setPPC64TargetInfo(Ctx
&ctx
) { ctx
.target
.reset(new PPC64(ctx
)); }