1 //===- X86.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
11 #include "SyntheticSections.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Support/Endian.h"
17 using namespace llvm::support::endian
;
18 using namespace llvm::ELF
;
20 using namespace lld::elf
;
23 class X86
: public TargetInfo
{
26 int getTlsGdRelaxSkip(RelType type
) const override
;
27 RelExpr
getRelExpr(RelType type
, const Symbol
&s
,
28 const uint8_t *loc
) const override
;
29 int64_t getImplicitAddend(const uint8_t *buf
, RelType type
) const override
;
30 void writeGotPltHeader(uint8_t *buf
) const override
;
31 RelType
getDynRel(RelType type
) const override
;
32 void writeGotPlt(uint8_t *buf
, const Symbol
&s
) const override
;
33 void writeIgotPlt(uint8_t *buf
, const Symbol
&s
) const override
;
34 void writePltHeader(uint8_t *buf
) const override
;
35 void writePlt(uint8_t *buf
, const Symbol
&sym
,
36 uint64_t pltEntryAddr
) const override
;
37 void relocate(uint8_t *loc
, const Relocation
&rel
,
38 uint64_t val
) const override
;
40 RelExpr
adjustTlsExpr(RelType type
, RelExpr expr
) const override
;
41 void relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const override
;
44 void relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
45 void relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
46 void relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
47 void relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
51 X86::X86(Ctx
&ctx
) : TargetInfo(ctx
) {
53 gotRel
= R_386_GLOB_DAT
;
54 pltRel
= R_386_JUMP_SLOT
;
55 iRelativeRel
= R_386_IRELATIVE
;
56 relativeRel
= R_386_RELATIVE
;
57 symbolicRel
= R_386_32
;
58 tlsDescRel
= R_386_TLS_DESC
;
59 tlsGotRel
= R_386_TLS_TPOFF
;
60 tlsModuleIndexRel
= R_386_TLS_DTPMOD32
;
61 tlsOffsetRel
= R_386_TLS_DTPOFF32
;
62 gotBaseSymInGotPlt
= true;
66 trapInstr
= {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
68 // Align to the non-PAE large page size (known as a superpage or huge page).
69 // FreeBSD automatically promotes large, superpage-aligned allocations.
70 defaultImageBase
= 0x400000;
73 int X86::getTlsGdRelaxSkip(RelType type
) const {
74 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
75 return type
== R_386_TLS_GOTDESC
|| type
== R_386_TLS_DESC_CALL
? 1 : 2;
78 RelExpr
X86::getRelExpr(RelType type
, const Symbol
&s
,
79 const uint8_t *loc
) const {
85 case R_386_TLS_LDO_32
:
88 return R_TLSGD_GOTPLT
;
90 return R_TLSLD_GOTPLT
;
98 return R_GOTPLTONLY_PC
;
103 // These relocations are arguably mis-designed because their calculations
104 // depend on the instructions they are applied to. This is bad because we
105 // usually don't care about whether the target section contains valid
106 // machine instructions or not. But this is part of the documented ABI, so
107 // we had to implement as the standard requires.
109 // x86 does not support PC-relative data access. Therefore, in order to
110 // access GOT contents, a GOT address needs to be known at link-time
111 // (which means non-PIC) or compilers have to emit code to get a GOT
112 // address at runtime (which means code is position-independent but
113 // compilers need to emit extra code for each GOT access.) This decision
114 // is made at compile-time. In the latter case, compilers emit code to
115 // load a GOT address to a register, which is usually %ebx.
117 // So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
120 // foo@GOT is not usable in PIC. If we are creating a PIC output and if we
121 // find such relocation, we should report an error. foo@GOT is resolved to
122 // an *absolute* address of foo's GOT entry, because both GOT address and
123 // foo's offset are known. In other words, it's G + A.
125 // foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to
126 // foo's GOT entry in the table, because GOT address is not known but foo's
127 // offset in the table is known. It's G + A - GOT.
129 // It's unfortunate that compilers emit the same relocation for these
130 // different use cases. In order to distinguish them, we have to read a
131 // machine instruction.
133 // The following code implements it. We assume that Loc[0] is the first byte
134 // of a displacement or an immediate field of a valid machine
135 // instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
136 // the byte, we can determine whether the instruction uses the operand as an
137 // absolute address (R_GOT) or a register-relative address (R_GOTPLT).
138 return (loc
[-1] & 0xc7) == 0x5 ? R_GOT
: R_GOTPLT
;
139 case R_386_TLS_GOTDESC
:
140 return R_TLSDESC_GOTPLT
;
141 case R_386_TLS_DESC_CALL
:
142 return R_TLSDESC_CALL
;
143 case R_386_TLS_GOTIE
:
149 case R_386_TLS_LE_32
:
154 Err(ctx
) << getErrorLoc(ctx
, loc
) << "unknown relocation (" << type
.v
155 << ") against symbol " << &s
;
160 RelExpr
X86::adjustTlsExpr(RelType type
, RelExpr expr
) const {
164 case R_RELAX_TLS_GD_TO_IE
:
165 return R_RELAX_TLS_GD_TO_IE_GOTPLT
;
166 case R_RELAX_TLS_GD_TO_LE
:
167 return type
== R_386_TLS_GD
? R_RELAX_TLS_GD_TO_LE_NEG
168 : R_RELAX_TLS_GD_TO_LE
;
172 void X86::writeGotPltHeader(uint8_t *buf
) const {
173 write32le(buf
, ctx
.mainPart
->dynamic
->getVA());
176 void X86::writeGotPlt(uint8_t *buf
, const Symbol
&s
) const {
177 // Entries in .got.plt initially points back to the corresponding
178 // PLT entries with a fixed offset to skip the first instruction.
179 write32le(buf
, s
.getPltVA(ctx
) + 6);
182 void X86::writeIgotPlt(uint8_t *buf
, const Symbol
&s
) const {
183 // An x86 entry is the address of the ifunc resolver function.
184 write32le(buf
, s
.getVA(ctx
));
187 RelType
X86::getDynRel(RelType type
) const {
188 if (type
== R_386_TLS_LE
)
189 return R_386_TLS_TPOFF
;
190 if (type
== R_386_TLS_LE_32
)
191 return R_386_TLS_TPOFF32
;
195 void X86::writePltHeader(uint8_t *buf
) const {
197 const uint8_t v
[] = {
198 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
199 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
200 0x90, 0x90, 0x90, 0x90 // nop
202 memcpy(buf
, v
, sizeof(v
));
206 const uint8_t pltData
[] = {
207 0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4)
208 0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8)
209 0x90, 0x90, 0x90, 0x90, // nop
211 memcpy(buf
, pltData
, sizeof(pltData
));
212 uint32_t gotPlt
= ctx
.in
.gotPlt
->getVA();
213 write32le(buf
+ 2, gotPlt
+ 4);
214 write32le(buf
+ 8, gotPlt
+ 8);
217 void X86::writePlt(uint8_t *buf
, const Symbol
&sym
,
218 uint64_t pltEntryAddr
) const {
219 unsigned relOff
= ctx
.in
.relaPlt
->entsize
* sym
.getPltIdx(ctx
);
221 const uint8_t inst
[] = {
222 0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx)
223 0x68, 0, 0, 0, 0, // pushl $reloc_offset
224 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
226 memcpy(buf
, inst
, sizeof(inst
));
227 write32le(buf
+ 2, sym
.getGotPltVA(ctx
) - ctx
.in
.gotPlt
->getVA());
229 const uint8_t inst
[] = {
230 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
231 0x68, 0, 0, 0, 0, // pushl $reloc_offset
232 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
234 memcpy(buf
, inst
, sizeof(inst
));
235 write32le(buf
+ 2, sym
.getGotPltVA(ctx
));
238 write32le(buf
+ 7, relOff
);
239 write32le(buf
+ 12, ctx
.in
.plt
->getVA() - pltEntryAddr
- 16);
242 int64_t X86::getImplicitAddend(const uint8_t *buf
, RelType type
) const {
246 return SignExtend64
<8>(*buf
);
249 return SignExtend64
<16>(read16le(buf
));
256 case R_386_IRELATIVE
:
260 case R_386_TLS_GOTDESC
:
261 case R_386_TLS_DESC_CALL
:
262 case R_386_TLS_DTPMOD32
:
263 case R_386_TLS_DTPOFF32
:
264 case R_386_TLS_LDO_32
:
267 case R_386_TLS_IE_32
:
269 case R_386_TLS_LE_32
:
271 case R_386_TLS_GD_32
:
272 case R_386_TLS_GOTIE
:
273 case R_386_TLS_TPOFF
:
274 case R_386_TLS_TPOFF32
:
275 return SignExtend64
<32>(read32le(buf
));
277 return SignExtend64
<32>(read32le(buf
+ 4));
279 case R_386_JUMP_SLOT
:
280 // These relocations are defined as not having an implicit addend.
283 InternalErr(ctx
, buf
) << "cannot read addend for relocation " << type
;
288 void X86::relocate(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const {
291 // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
292 // being used for some 16-bit programs such as boot loaders, so
293 // we want to support them.
294 checkIntUInt(ctx
, loc
, val
, 8, rel
);
298 checkInt(ctx
, loc
, val
, 8, rel
);
302 checkIntUInt(ctx
, loc
, val
, 16, rel
);
306 // R_386_PC16 is normally used with 16 bit code. In that situation
307 // the PC is 16 bits, just like the addend. This means that it can
308 // point from any 16 bit address to any other if the possibility
309 // of wrapping is included.
310 // The only restriction we have to check then is that the destination
311 // address fits in 16 bits. That is impossible to do here. The problem is
312 // that we are passed the final value, which already had the
313 // current location subtracted from it.
314 // We just check that Val fits in 17 bits. This misses some cases, but
315 // should have no false positives.
316 checkInt(ctx
, loc
, val
, 17, rel
);
327 case R_386_TLS_GOTDESC
:
328 case R_386_TLS_DESC_CALL
:
329 case R_386_TLS_DTPMOD32
:
330 case R_386_TLS_DTPOFF32
:
332 case R_386_TLS_GOTIE
:
335 case R_386_TLS_LDO_32
:
337 case R_386_TLS_LE_32
:
338 case R_386_TLS_TPOFF
:
339 case R_386_TLS_TPOFF32
:
340 checkInt(ctx
, loc
, val
, 32, rel
);
344 // The addend is stored in the second 32-bit word.
345 write32le(loc
+ 4, val
);
348 llvm_unreachable("unknown relocation");
352 void X86::relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
,
353 uint64_t val
) const {
354 if (rel
.type
== R_386_TLS_GD
) {
355 // Convert (loc[-2] == 0x04)
356 // leal x@tlsgd(, %ebx, 1), %eax
357 // call ___tls_get_addr@plt
359 // leal x@tlsgd(%reg), %eax
360 // call *___tls_get_addr@got(%reg)
362 const uint8_t inst
[] = {
363 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
364 0x81, 0xe8, 0, 0, 0, 0, // subl x@ntpoff(%ebx), %eax
366 uint8_t *w
= loc
[-2] == 0x04 ? loc
- 3 : loc
- 2;
367 memcpy(w
, inst
, sizeof(inst
));
368 write32le(w
+ 8, val
);
369 } else if (rel
.type
== R_386_TLS_GOTDESC
) {
370 // Convert leal x@tlsdesc(%ebx), %eax to leal x@ntpoff, %eax.
372 // Note: call *x@tlsdesc(%eax) may not immediately follow this instruction.
373 if (memcmp(loc
- 2, "\x8d\x83", 2)) {
375 << getErrorLoc(ctx
, loc
- 2)
376 << "R_386_TLS_GOTDESC must be used in leal x@tlsdesc(%ebx), %eax";
382 // Convert call *x@tlsdesc(%eax) to xchg ax, ax.
383 assert(rel
.type
== R_386_TLS_DESC_CALL
);
389 void X86::relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
,
390 uint64_t val
) const {
391 if (rel
.type
== R_386_TLS_GD
) {
392 // Convert (loc[-2] == 0x04)
393 // leal x@tlsgd(, %ebx, 1), %eax
394 // call ___tls_get_addr@plt
396 // leal x@tlsgd(%reg), %eax
397 // call *___tls_get_addr@got(%reg)
398 const uint8_t inst
[] = {
399 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
400 0x03, 0x83, 0, 0, 0, 0, // addl x@gottpoff(%ebx), %eax
402 uint8_t *w
= loc
[-2] == 0x04 ? loc
- 3 : loc
- 2;
403 memcpy(w
, inst
, sizeof(inst
));
404 write32le(w
+ 8, val
);
405 } else if (rel
.type
== R_386_TLS_GOTDESC
) {
406 // Convert leal x@tlsdesc(%ebx), %eax to movl x@gotntpoff(%ebx), %eax.
407 if (memcmp(loc
- 2, "\x8d\x83", 2)) {
409 << getErrorLoc(ctx
, loc
- 2)
410 << "R_386_TLS_GOTDESC must be used in leal x@tlsdesc(%ebx), %eax";
416 // Convert call *x@tlsdesc(%eax) to xchg ax, ax.
417 assert(rel
.type
== R_386_TLS_DESC_CALL
);
423 // In some conditions, relocations can be optimized to avoid using GOT.
424 // This function does that for Initial Exec to Local Exec case.
425 void X86::relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
,
426 uint64_t val
) const {
427 // Ulrich's document section 6.2 says that @gotntpoff can
428 // be used with MOVL or ADDL instructions.
429 // @indntpoff is similar to @gotntpoff, but for use in
430 // position dependent code.
431 uint8_t reg
= (loc
[-1] >> 3) & 7;
433 if (rel
.type
== R_386_TLS_IE
) {
434 if (loc
[-1] == 0xa1) {
435 // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
436 // This case is different from the generic case below because
437 // this is a 5 byte instruction while below is 6 bytes.
439 } else if (loc
[-2] == 0x8b) {
440 // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
442 loc
[-1] = 0xc0 | reg
;
444 // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
446 loc
[-1] = 0xc0 | reg
;
449 assert(rel
.type
== R_386_TLS_GOTIE
);
450 if (loc
[-2] == 0x8b) {
451 // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
453 loc
[-1] = 0xc0 | reg
;
455 // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
457 loc
[-1] = 0x80 | (reg
<< 3) | reg
;
463 void X86::relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
,
464 uint64_t val
) const {
465 if (rel
.type
== R_386_TLS_LDO_32
) {
470 if (loc
[4] == 0xe8) {
473 // call ___tls_get_addr@plt
475 const uint8_t inst
[] = {
476 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
478 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
480 memcpy(loc
- 2, inst
, sizeof(inst
));
486 // call *___tls_get_addr@got(%reg)
488 const uint8_t inst
[] = {
489 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
490 0x8d, 0xb6, 0x00, 0x00, 0x00, 0x00, // leal (%esi),%esi
492 memcpy(loc
- 2, inst
, sizeof(inst
));
495 void X86::relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const {
496 uint64_t secAddr
= sec
.getOutputSection()->addr
;
497 if (auto *s
= dyn_cast
<InputSection
>(&sec
))
498 secAddr
+= s
->outSecOff
;
499 for (const Relocation
&rel
: sec
.relocs()) {
500 uint8_t *loc
= buf
+ rel
.offset
;
502 SignExtend64(sec
.getRelocTargetVA(ctx
, rel
, secAddr
+ rel
.offset
), 32);
504 case R_RELAX_TLS_GD_TO_IE_GOTPLT
:
505 relaxTlsGdToIe(loc
, rel
, val
);
507 case R_RELAX_TLS_GD_TO_LE
:
508 case R_RELAX_TLS_GD_TO_LE_NEG
:
509 relaxTlsGdToLe(loc
, rel
, val
);
511 case R_RELAX_TLS_LD_TO_LE
:
512 relaxTlsLdToLe(loc
, rel
, val
);
514 case R_RELAX_TLS_IE_TO_LE
:
515 relaxTlsIeToLe(loc
, rel
, val
);
518 relocate(loc
, rel
, val
);
524 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
525 // entries containing endbr32 instructions. A PLT entry will be split into two
526 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
528 class IntelIBT
: public X86
{
530 IntelIBT(Ctx
&ctx
) : X86(ctx
) { pltHeaderSize
= 0; }
531 void writeGotPlt(uint8_t *buf
, const Symbol
&s
) const override
;
532 void writePlt(uint8_t *buf
, const Symbol
&sym
,
533 uint64_t pltEntryAddr
) const override
;
534 void writeIBTPlt(uint8_t *buf
, size_t numEntries
) const override
;
536 static const unsigned IBTPltHeaderSize
= 16;
540 void IntelIBT::writeGotPlt(uint8_t *buf
, const Symbol
&s
) const {
541 uint64_t va
= ctx
.in
.ibtPlt
->getVA() + IBTPltHeaderSize
+
542 s
.getPltIdx(ctx
) * pltEntrySize
;
546 void IntelIBT::writePlt(uint8_t *buf
, const Symbol
&sym
,
547 uint64_t /*pltEntryAddr*/) const {
549 const uint8_t inst
[] = {
550 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
551 0xff, 0xa3, 0, 0, 0, 0, // jmp *name@GOT(%ebx)
552 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
554 memcpy(buf
, inst
, sizeof(inst
));
555 write32le(buf
+ 6, sym
.getGotPltVA(ctx
) - ctx
.in
.gotPlt
->getVA());
559 const uint8_t inst
[] = {
560 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
561 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
562 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
564 memcpy(buf
, inst
, sizeof(inst
));
565 write32le(buf
+ 6, sym
.getGotPltVA(ctx
));
568 void IntelIBT::writeIBTPlt(uint8_t *buf
, size_t numEntries
) const {
570 buf
+= IBTPltHeaderSize
;
572 const uint8_t inst
[] = {
573 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
574 0x68, 0, 0, 0, 0, // pushl $reloc_offset
575 0xe9, 0, 0, 0, 0, // jmpq .PLT0@PC
579 for (size_t i
= 0; i
< numEntries
; ++i
) {
580 memcpy(buf
, inst
, sizeof(inst
));
581 write32le(buf
+ 5, i
* sizeof(object::ELF32LE::Rel
));
582 write32le(buf
+ 10, -pltHeaderSize
- sizeof(inst
) * i
- 30);
588 class RetpolinePic
: public X86
{
591 void writeGotPlt(uint8_t *buf
, const Symbol
&s
) const override
;
592 void writePltHeader(uint8_t *buf
) const override
;
593 void writePlt(uint8_t *buf
, const Symbol
&sym
,
594 uint64_t pltEntryAddr
) const override
;
597 class RetpolineNoPic
: public X86
{
599 RetpolineNoPic(Ctx
&);
600 void writeGotPlt(uint8_t *buf
, const Symbol
&s
) const override
;
601 void writePltHeader(uint8_t *buf
) const override
;
602 void writePlt(uint8_t *buf
, const Symbol
&sym
,
603 uint64_t pltEntryAddr
) const override
;
607 RetpolinePic::RetpolinePic(Ctx
&ctx
) : X86(ctx
) {
613 void RetpolinePic::writeGotPlt(uint8_t *buf
, const Symbol
&s
) const {
614 write32le(buf
, s
.getPltVA(ctx
) + 17);
617 void RetpolinePic::writePltHeader(uint8_t *buf
) const {
618 const uint8_t insn
[] = {
619 0xff, 0xb3, 4, 0, 0, 0, // 0: pushl 4(%ebx)
620 0x50, // 6: pushl %eax
621 0x8b, 0x83, 8, 0, 0, 0, // 7: mov 8(%ebx), %eax
622 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next
623 0xf3, 0x90, // 12: loop: pause
624 0x0f, 0xae, 0xe8, // 14: lfence
625 0xeb, 0xf9, // 17: jmp loop
626 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
627 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
628 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
629 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
630 0x89, 0xc8, // 2b: mov %ecx, %eax
631 0x59, // 2d: pop %ecx
633 0xcc, // 2f: int3; padding
635 memcpy(buf
, insn
, sizeof(insn
));
638 void RetpolinePic::writePlt(uint8_t *buf
, const Symbol
&sym
,
639 uint64_t pltEntryAddr
) const {
640 unsigned relOff
= ctx
.in
.relaPlt
->entsize
* sym
.getPltIdx(ctx
);
641 const uint8_t insn
[] = {
643 0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax
644 0xe8, 0, 0, 0, 0, // call plt+0x20
645 0xe9, 0, 0, 0, 0, // jmp plt+0x12
646 0x68, 0, 0, 0, 0, // pushl $reloc_offset
647 0xe9, 0, 0, 0, 0, // jmp plt+0
648 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
650 memcpy(buf
, insn
, sizeof(insn
));
652 uint32_t ebx
= ctx
.in
.gotPlt
->getVA();
653 unsigned off
= pltEntryAddr
- ctx
.in
.plt
->getVA();
654 write32le(buf
+ 3, sym
.getGotPltVA(ctx
) - ebx
);
655 write32le(buf
+ 8, -off
- 12 + 32);
656 write32le(buf
+ 13, -off
- 17 + 18);
657 write32le(buf
+ 18, relOff
);
658 write32le(buf
+ 23, -off
- 27);
661 RetpolineNoPic::RetpolineNoPic(Ctx
&ctx
) : X86(ctx
) {
667 void RetpolineNoPic::writeGotPlt(uint8_t *buf
, const Symbol
&s
) const {
668 write32le(buf
, s
.getPltVA(ctx
) + 16);
671 void RetpolineNoPic::writePltHeader(uint8_t *buf
) const {
672 const uint8_t insn
[] = {
673 0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4
674 0x50, // 6: pushl %eax
675 0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax
676 0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next
677 0xf3, 0x90, // 11: loop: pause
678 0x0f, 0xae, 0xe8, // 13: lfence
679 0xeb, 0xf9, // 16: jmp loop
680 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3
681 0xcc, 0xcc, 0xcc, // 1f: int3; .align 16
682 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
683 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
684 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
685 0x89, 0xc8, // 2b: mov %ecx, %eax
686 0x59, // 2d: pop %ecx
688 0xcc, // 2f: int3; padding
690 memcpy(buf
, insn
, sizeof(insn
));
692 uint32_t gotPlt
= ctx
.in
.gotPlt
->getVA();
693 write32le(buf
+ 2, gotPlt
+ 4);
694 write32le(buf
+ 8, gotPlt
+ 8);
697 void RetpolineNoPic::writePlt(uint8_t *buf
, const Symbol
&sym
,
698 uint64_t pltEntryAddr
) const {
699 unsigned relOff
= ctx
.in
.relaPlt
->entsize
* sym
.getPltIdx(ctx
);
700 const uint8_t insn
[] = {
701 0x50, // 0: pushl %eax
702 0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax
703 0xe8, 0, 0, 0, 0, // 6: call plt+0x20
704 0xe9, 0, 0, 0, 0, // b: jmp plt+0x11
705 0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset
706 0xe9, 0, 0, 0, 0, // 15: jmp plt+0
707 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
708 0xcc, // 1f: int3; padding
710 memcpy(buf
, insn
, sizeof(insn
));
712 unsigned off
= pltEntryAddr
- ctx
.in
.plt
->getVA();
713 write32le(buf
+ 2, sym
.getGotPltVA(ctx
));
714 write32le(buf
+ 7, -off
- 11 + 32);
715 write32le(buf
+ 12, -off
- 16 + 17);
716 write32le(buf
+ 17, relOff
);
717 write32le(buf
+ 22, -off
- 26);
720 void elf::setX86TargetInfo(Ctx
&ctx
) {
721 if (ctx
.arg
.zRetpolineplt
) {
723 ctx
.target
.reset(new RetpolinePic(ctx
));
725 ctx
.target
.reset(new RetpolineNoPic(ctx
));
729 if (ctx
.arg
.andFeatures
& GNU_PROPERTY_X86_FEATURE_1_IBT
)
730 ctx
.target
.reset(new IntelIBT(ctx
));
732 ctx
.target
.reset(new X86(ctx
));