[mlir][py] Enable loading only specified dialects during creation. (#121421)
[llvm-project.git] / lld / ELF / Arch / X86_64.cpp
blob0c4fd00cab65c3d113b1de8a4cf6b6b99b9f22ff
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
10 #include "Relocations.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/MathExtras.h"
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
26 namespace {
27 class X86_64 : public TargetInfo {
28 public:
29 X86_64(Ctx &);
30 int getTlsGdRelaxSkip(RelType type) const override;
31 RelExpr getRelExpr(RelType type, const Symbol &s,
32 const uint8_t *loc) const override;
33 RelType getDynRel(RelType type) const override;
34 void writeGotPltHeader(uint8_t *buf) const override;
35 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37 void writePltHeader(uint8_t *buf) const override;
38 void writePlt(uint8_t *buf, const Symbol &sym,
39 uint64_t pltEntryAddr) const override;
40 void relocate(uint8_t *loc, const Relocation &rel,
41 uint64_t val) const override;
42 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43 void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44 unsigned size) const override;
45 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46 const uint8_t *loc) const override;
47 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49 uint8_t stOther) const override;
50 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51 InputSection *nextIS) const override;
52 bool relaxOnce(int pass) const override;
54 private:
55 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
56 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
60 } // namespace
62 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The
63 // appropriately sized instructions are used to fill the gaps between sections
64 // which are executed during fall through.
65 static const std::vector<std::vector<uint8_t>> nopInstructions = {
66 {0x90},
67 {0x66, 0x90},
68 {0x0f, 0x1f, 0x00},
69 {0x0f, 0x1f, 0x40, 0x00},
70 {0x0f, 0x1f, 0x44, 0x00, 0x00},
71 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
72 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
73 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
74 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
76 X86_64::X86_64(Ctx &ctx) : TargetInfo(ctx) {
77 copyRel = R_X86_64_COPY;
78 gotRel = R_X86_64_GLOB_DAT;
79 pltRel = R_X86_64_JUMP_SLOT;
80 relativeRel = R_X86_64_RELATIVE;
81 iRelativeRel = R_X86_64_IRELATIVE;
82 symbolicRel = R_X86_64_64;
83 tlsDescRel = R_X86_64_TLSDESC;
84 tlsGotRel = R_X86_64_TPOFF64;
85 tlsModuleIndexRel = R_X86_64_DTPMOD64;
86 tlsOffsetRel = R_X86_64_DTPOFF64;
87 gotBaseSymInGotPlt = true;
88 gotEntrySize = 8;
89 pltHeaderSize = 16;
90 pltEntrySize = 16;
91 ipltEntrySize = 16;
92 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
93 nopInstrs = nopInstructions;
95 // Align to the large page size (known as a superpage or huge page).
96 // FreeBSD automatically promotes large, superpage-aligned allocations.
97 defaultImageBase = 0x200000;
100 int X86_64::getTlsGdRelaxSkip(RelType type) const {
101 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
102 return type == R_X86_64_GOTPC32_TLSDESC ||
103 type == R_X86_64_CODE_4_GOTPC32_TLSDESC ||
104 type == R_X86_64_TLSDESC_CALL
106 : 2;
109 // Opcodes for the different X86_64 jmp instructions.
110 enum JmpInsnOpcode : uint32_t {
111 J_JMP_32,
112 J_JNE_32,
113 J_JE_32,
114 J_JG_32,
115 J_JGE_32,
116 J_JB_32,
117 J_JBE_32,
118 J_JL_32,
119 J_JLE_32,
120 J_JA_32,
121 J_JAE_32,
122 J_UNKNOWN,
125 // Given the first (optional) and second byte of the insn's opcode, this
126 // returns the corresponding enum value.
127 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
128 const uint8_t *second) {
129 if (*second == 0xe9)
130 return J_JMP_32;
132 if (first == nullptr)
133 return J_UNKNOWN;
135 if (*first == 0x0f) {
136 switch (*second) {
137 case 0x84:
138 return J_JE_32;
139 case 0x85:
140 return J_JNE_32;
141 case 0x8f:
142 return J_JG_32;
143 case 0x8d:
144 return J_JGE_32;
145 case 0x82:
146 return J_JB_32;
147 case 0x86:
148 return J_JBE_32;
149 case 0x8c:
150 return J_JL_32;
151 case 0x8e:
152 return J_JLE_32;
153 case 0x87:
154 return J_JA_32;
155 case 0x83:
156 return J_JAE_32;
159 return J_UNKNOWN;
162 // Return the relocation index for input section IS with a specific Offset.
163 // Returns the maximum size of the vector if no such relocation is found.
164 static unsigned getRelocationWithOffset(const InputSection &is,
165 uint64_t offset) {
166 unsigned size = is.relocs().size();
167 for (unsigned i = size - 1; i + 1 > 0; --i) {
168 if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
169 return i;
171 return size;
174 // Returns true if R corresponds to a relocation used for a jump instruction.
175 // TODO: Once special relocations for relaxable jump instructions are available,
176 // this should be modified to use those relocations.
177 static bool isRelocationForJmpInsn(Relocation &R) {
178 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
179 R.type == R_X86_64_PC8;
182 // Return true if Relocation R points to the first instruction in the
183 // next section.
184 // TODO: Delete this once psABI reserves a new relocation type for fall thru
185 // jumps.
186 static bool isFallThruRelocation(InputSection &is, InputFile *file,
187 InputSection *nextIS, Relocation &r) {
188 if (!isRelocationForJmpInsn(r))
189 return false;
191 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
192 uint64_t targetOffset = is.getRelocTargetVA(is.getCtx(), r, addrLoc);
194 // If this jmp is a fall thru, the target offset is the beginning of the
195 // next section.
196 uint64_t nextSectionOffset =
197 nextIS->getOutputSection()->addr + nextIS->outSecOff;
198 return (addrLoc + 4 + targetOffset) == nextSectionOffset;
201 // Return the jmp instruction opcode that is the inverse of the given
202 // opcode. For example, JE inverted is JNE.
203 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
204 switch (opcode) {
205 case J_JE_32:
206 return J_JNE_32;
207 case J_JNE_32:
208 return J_JE_32;
209 case J_JG_32:
210 return J_JLE_32;
211 case J_JGE_32:
212 return J_JL_32;
213 case J_JB_32:
214 return J_JAE_32;
215 case J_JBE_32:
216 return J_JA_32;
217 case J_JL_32:
218 return J_JGE_32;
219 case J_JLE_32:
220 return J_JG_32;
221 case J_JA_32:
222 return J_JBE_32;
223 case J_JAE_32:
224 return J_JB_32;
225 default:
226 return J_UNKNOWN;
230 // Deletes direct jump instruction in input sections that jumps to the
231 // following section as it is not required. If there are two consecutive jump
232 // instructions, it checks if they can be flipped and one can be deleted.
233 // For example:
234 // .section .text
235 // a.BB.foo:
236 // ...
237 // 10: jne aa.BB.foo
238 // 16: jmp bar
239 // aa.BB.foo:
240 // ...
242 // can be converted to:
243 // a.BB.foo:
244 // ...
245 // 10: je bar #jne flipped to je and the jmp is deleted.
246 // aa.BB.foo:
247 // ...
248 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
249 InputSection *nextIS) const {
250 const unsigned sizeOfDirectJmpInsn = 5;
252 if (nextIS == nullptr)
253 return false;
255 if (is.getSize() < sizeOfDirectJmpInsn)
256 return false;
258 // If this jmp insn can be removed, it is the last insn and the
259 // relocation is 4 bytes before the end.
260 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
261 if (rIndex == is.relocs().size())
262 return false;
264 Relocation &r = is.relocs()[rIndex];
266 // Check if the relocation corresponds to a direct jmp.
267 const uint8_t *secContents = is.content().data();
268 // If it is not a direct jmp instruction, there is nothing to do here.
269 if (*(secContents + r.offset - 1) != 0xe9)
270 return false;
272 if (isFallThruRelocation(is, file, nextIS, r)) {
273 // This is a fall thru and can be deleted.
274 r.expr = R_NONE;
275 r.offset = 0;
276 is.drop_back(sizeOfDirectJmpInsn);
277 is.nopFiller = true;
278 return true;
281 // Now, check if flip and delete is possible.
282 const unsigned sizeOfJmpCCInsn = 6;
283 // To flip, there must be at least one JmpCC and one direct jmp.
284 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
285 return false;
287 unsigned rbIndex =
288 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
289 if (rbIndex == is.relocs().size())
290 return false;
292 Relocation &rB = is.relocs()[rbIndex];
294 const uint8_t *jmpInsnB = secContents + rB.offset - 1;
295 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
296 if (jmpOpcodeB == J_UNKNOWN)
297 return false;
299 if (!isFallThruRelocation(is, file, nextIS, rB))
300 return false;
302 // jmpCC jumps to the fall thru block, the branch can be flipped and the
303 // jmp can be deleted.
304 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
305 if (jInvert == J_UNKNOWN)
306 return false;
307 is.jumpInstrMod = make<JumpInstrMod>();
308 *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
309 // Move R's values to rB except the offset.
310 rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
311 // Cancel R
312 r.expr = R_NONE;
313 r.offset = 0;
314 is.drop_back(sizeOfDirectJmpInsn);
315 is.nopFiller = true;
316 return true;
319 bool X86_64::relaxOnce(int pass) const {
320 uint64_t minVA = UINT64_MAX, maxVA = 0;
321 for (OutputSection *osec : ctx.outputSections) {
322 minVA = std::min(minVA, osec->addr);
323 maxVA = std::max(maxVA, osec->addr + osec->size);
325 // If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In
326 // -pie/-shared, the condition can be relaxed to test the max VA difference as
327 // there is no R_RELAX_GOT_PC_NOPIC.
328 if (isUInt<31>(maxVA) || (isUInt<31>(maxVA - minVA) && ctx.arg.isPic))
329 return false;
331 SmallVector<InputSection *, 0> storage;
332 bool changed = false;
333 for (OutputSection *osec : ctx.outputSections) {
334 if (!(osec->flags & SHF_EXECINSTR))
335 continue;
336 for (InputSection *sec : getInputSections(*osec, storage)) {
337 for (Relocation &rel : sec->relocs()) {
338 if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC)
339 continue;
340 assert(rel.addend == -4);
342 Relocation rel1 = rel;
343 rel1.addend = rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4;
344 uint64_t v = sec->getRelocTargetVA(ctx, rel1,
345 sec->getOutputSection()->addr +
346 sec->outSecOff + rel.offset);
347 if (isInt<32>(v))
348 continue;
349 if (rel.sym->auxIdx == 0) {
350 rel.sym->allocateAux(ctx);
351 addGotEntry(ctx, *rel.sym);
352 changed = true;
354 rel.expr = R_GOT_PC;
358 return changed;
361 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
362 const uint8_t *loc) const {
363 switch (type) {
364 case R_X86_64_8:
365 case R_X86_64_16:
366 case R_X86_64_32:
367 case R_X86_64_32S:
368 case R_X86_64_64:
369 return R_ABS;
370 case R_X86_64_DTPOFF32:
371 case R_X86_64_DTPOFF64:
372 return R_DTPREL;
373 case R_X86_64_TPOFF32:
374 case R_X86_64_TPOFF64:
375 return R_TPREL;
376 case R_X86_64_TLSDESC_CALL:
377 return R_TLSDESC_CALL;
378 case R_X86_64_TLSLD:
379 return R_TLSLD_PC;
380 case R_X86_64_TLSGD:
381 return R_TLSGD_PC;
382 case R_X86_64_SIZE32:
383 case R_X86_64_SIZE64:
384 return R_SIZE;
385 case R_X86_64_PLT32:
386 return R_PLT_PC;
387 case R_X86_64_PC8:
388 case R_X86_64_PC16:
389 case R_X86_64_PC32:
390 case R_X86_64_PC64:
391 return R_PC;
392 case R_X86_64_GOT32:
393 case R_X86_64_GOT64:
394 return R_GOTPLT;
395 case R_X86_64_GOTPC32_TLSDESC:
396 case R_X86_64_CODE_4_GOTPC32_TLSDESC:
397 return R_TLSDESC_PC;
398 case R_X86_64_GOTPCREL:
399 case R_X86_64_GOTPCRELX:
400 case R_X86_64_REX_GOTPCRELX:
401 case R_X86_64_CODE_4_GOTPCRELX:
402 case R_X86_64_GOTTPOFF:
403 case R_X86_64_CODE_4_GOTTPOFF:
404 case R_X86_64_CODE_6_GOTTPOFF:
405 return R_GOT_PC;
406 case R_X86_64_GOTOFF64:
407 return R_GOTPLTREL;
408 case R_X86_64_PLTOFF64:
409 return R_PLT_GOTPLT;
410 case R_X86_64_GOTPC32:
411 case R_X86_64_GOTPC64:
412 return R_GOTPLTONLY_PC;
413 case R_X86_64_NONE:
414 return R_NONE;
415 default:
416 Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
417 << ") against symbol " << &s;
418 return R_NONE;
422 void X86_64::writeGotPltHeader(uint8_t *buf) const {
423 // The first entry holds the link-time address of _DYNAMIC. It is documented
424 // in the psABI and glibc before Aug 2021 used the entry to compute run-time
425 // load address of the shared object (note that this is relevant for linking
426 // ld.so, not any other program).
427 write64le(buf, ctx.mainPart->dynamic->getVA());
430 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
431 // See comments in X86::writeGotPlt.
432 write64le(buf, s.getPltVA(ctx) + 6);
435 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
436 // An x86 entry is the address of the ifunc resolver function (for -z rel).
437 if (ctx.arg.writeAddends)
438 write64le(buf, s.getVA(ctx));
441 void X86_64::writePltHeader(uint8_t *buf) const {
442 const uint8_t pltData[] = {
443 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
444 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
445 0x0f, 0x1f, 0x40, 0x00, // nop
447 memcpy(buf, pltData, sizeof(pltData));
448 uint64_t gotPlt = ctx.in.gotPlt->getVA();
449 uint64_t plt = ctx.in.ibtPlt ? ctx.in.ibtPlt->getVA() : ctx.in.plt->getVA();
450 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
451 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
454 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
455 uint64_t pltEntryAddr) const {
456 const uint8_t inst[] = {
457 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
458 0x68, 0, 0, 0, 0, // pushq <relocation index>
459 0xe9, 0, 0, 0, 0, // jmpq plt[0]
461 memcpy(buf, inst, sizeof(inst));
463 write32le(buf + 2, sym.getGotPltVA(ctx) - pltEntryAddr - 6);
464 write32le(buf + 7, sym.getPltIdx(ctx));
465 write32le(buf + 12, ctx.in.plt->getVA() - pltEntryAddr - 16);
468 RelType X86_64::getDynRel(RelType type) const {
469 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
470 type == R_X86_64_SIZE64)
471 return type;
472 return R_X86_64_NONE;
475 void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
476 uint64_t val) const {
477 if (rel.type == R_X86_64_TLSGD) {
478 // Convert
479 // .byte 0x66
480 // leaq x@tlsgd(%rip), %rdi
481 // .word 0x6666
482 // rex64
483 // call __tls_get_addr@plt
484 // to the following two instructions.
485 const uint8_t inst[] = {
486 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
487 0x00, 0x00, // mov %fs:0x0,%rax
488 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
490 memcpy(loc - 4, inst, sizeof(inst));
492 // The original code used a pc relative relocation and so we have to
493 // compensate for the -4 in had in the addend.
494 write32le(loc + 8, val + 4);
495 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC ||
496 rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) {
497 // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
498 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
499 (loc[-1] & 0xc7) != 0x05) {
500 Err(ctx) << getErrorLoc(ctx, (rel.type == R_X86_64_GOTPC32_TLSDESC)
501 ? loc - 3
502 : loc - 4)
503 << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC "
504 "must be used in leaq x@tlsdesc(%rip), %REG";
505 return;
507 if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
508 loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
509 } else {
510 loc[-3] = (loc[-3] & ~0x44) | ((loc[-3] & 0x44) >> 2);
512 loc[-2] = 0xc7;
513 loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
515 write32le(loc, val + 4);
516 } else {
517 // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
518 assert(rel.type == R_X86_64_TLSDESC_CALL);
519 loc[0] = 0x66;
520 loc[1] = 0x90;
524 void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
525 uint64_t val) const {
526 if (rel.type == R_X86_64_TLSGD) {
527 // Convert
528 // .byte 0x66
529 // leaq x@tlsgd(%rip), %rdi
530 // .word 0x6666
531 // rex64
532 // call __tls_get_addr@plt
533 // to the following two instructions.
534 const uint8_t inst[] = {
535 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
536 0x00, 0x00, // mov %fs:0x0,%rax
537 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
539 memcpy(loc - 4, inst, sizeof(inst));
541 // Both code sequences are PC relatives, but since we are moving the
542 // constant forward by 8 bytes we have to subtract the value by 8.
543 write32le(loc + 8, val - 8);
544 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC ||
545 rel.type == R_X86_64_CODE_4_GOTPC32_TLSDESC) {
546 // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
547 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
548 (loc[-1] & 0xc7) != 0x05) {
549 Err(ctx) << getErrorLoc(ctx, (rel.type == R_X86_64_GOTPC32_TLSDESC)
550 ? loc - 3
551 : loc - 4)
552 << "R_X86_64_GOTPC32_TLSDESC/R_X86_64_CODE_4_GOTPC32_TLSDESC "
553 "must be used in leaq x@tlsdesc(%rip), %REG";
554 return;
556 loc[-2] = 0x8b;
557 write32le(loc, val);
558 } else {
559 // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
560 assert(rel.type == R_X86_64_TLSDESC_CALL);
561 loc[0] = 0x66;
562 loc[1] = 0x90;
566 // In some conditions,
567 // R_X86_64_GOTTPOFF/R_X86_64_CODE_4_GOTTPOFF/R_X86_64_CODE_6_GOTTPOFF
568 // relocation can be optimized to R_X86_64_TPOFF32 so that it does not use GOT.
569 void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
570 uint64_t val) const {
571 uint8_t *inst = loc - 3;
572 uint8_t reg = loc[-1] >> 3;
573 uint8_t *regSlot = loc - 1;
575 if (rel.type == R_X86_64_GOTTPOFF) {
576 // Note that ADD with RSP or R12 is converted to ADD instead of LEA
577 // because LEA with these registers needs 4 bytes to encode and thus
578 // wouldn't fit the space.
580 if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
581 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
582 memcpy(inst, "\x48\x81\xc4", 3);
583 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
584 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
585 memcpy(inst, "\x49\x81\xc4", 3);
586 } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
587 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
588 memcpy(inst, "\x4d\x8d", 2);
589 *regSlot = 0x80 | (reg << 3) | reg;
590 } else if (memcmp(inst, "\x48\x03", 2) == 0) {
591 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
592 memcpy(inst, "\x48\x8d", 2);
593 *regSlot = 0x80 | (reg << 3) | reg;
594 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
595 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
596 memcpy(inst, "\x49\xc7", 2);
597 *regSlot = 0xc0 | reg;
598 } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
599 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
600 memcpy(inst, "\x48\xc7", 2);
601 *regSlot = 0xc0 | reg;
602 } else {
603 Err(ctx)
604 << getErrorLoc(ctx, loc - 3)
605 << "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only";
607 } else if (rel.type == R_X86_64_CODE_4_GOTTPOFF) {
608 if (loc[-4] != 0xd5) {
609 Err(ctx) << getErrorLoc(ctx, loc - 4)
610 << "invalid prefix with R_X86_64_CODE_4_GOTTPOFF!";
611 return;
613 const uint8_t rex = loc[-3];
614 loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2;
615 *regSlot = 0xc0 | reg;
617 if (loc[-2] == 0x8b) {
618 // "movq foo@gottpoff(%rip),%r[16-31]" -> "movq $foo,%r[16-31]"
619 loc[-2] = 0xc7;
620 } else if (loc[-2] == 0x03) {
621 // "addq foo@gottpoff(%rip),%r[16-31]" -> "addq $foo,%r[16-31]"
622 loc[-2] = 0x81;
623 } else {
624 Err(ctx) << getErrorLoc(ctx, loc - 4)
625 << "R_X86_64_CODE_4_GOTTPOFF must be used in MOVQ or ADDQ "
626 "instructions only";
628 } else if (rel.type == R_X86_64_CODE_6_GOTTPOFF) {
629 if (loc[-6] != 0x62) {
630 Err(ctx) << getErrorLoc(ctx, loc - 6)
631 << "invalid prefix with R_X86_64_CODE_6_GOTTPOFF!";
632 return;
634 // Check bits are satisfied:
635 // loc[-5]: X==1 (inverted polarity), (loc[-5] & 0x7) == 0x4
636 // loc[-4]: W==1, X2==1 (inverted polarity), pp==0b00(NP)
637 // loc[-3]: NF==1 or ND==1
638 // loc[-2]: opcode==0x1 or opcode==0x3
639 // loc[-1]: Mod==0b00, RM==0b101
640 if (((loc[-5] & 0x47) == 0x44) && ((loc[-4] & 0x87) == 0x84) &&
641 ((loc[-3] & 0x14) != 0) && (loc[-2] == 0x1 || loc[-2] == 0x3) &&
642 ((loc[-1] & 0xc7) == 0x5)) {
643 // "addq %reg1, foo@GOTTPOFF(%rip), %reg2" -> "addq $foo, %reg1, %reg2"
644 // "addq foo@GOTTPOFF(%rip), %reg1, %reg2" -> "addq $foo, %reg1, %reg2"
645 // "{nf} addq %reg1, foo@GOTTPOFF(%rip), %reg2"
646 // -> "{nf} addq $foo, %reg1, %reg2"
647 // "{nf} addq name@GOTTPOFF(%rip), %reg1, %reg2"
648 // -> "{nf} addq $foo, %reg1, %reg2"
649 // "{nf} addq name@GOTTPOFF(%rip), %reg" -> "{nf} addq $foo, %reg"
650 loc[-2] = 0x81;
651 // Move R bits to B bits in EVEX payloads and ModRM byte.
652 const uint8_t evexPayload0 = loc[-5];
653 if ((evexPayload0 & (1 << 7)) == 0)
654 loc[-5] = (evexPayload0 | (1 << 7)) & ~(1 << 5);
655 if ((evexPayload0 & (1 << 4)) == 0)
656 loc[-5] = evexPayload0 | (1 << 4) | (1 << 3);
657 *regSlot = 0xc0 | reg;
658 } else {
659 Err(ctx) << getErrorLoc(ctx, loc - 6)
660 << "R_X86_64_CODE_6_GOTTPOFF must be used in ADDQ instructions "
661 "with NDD/NF/NDD+NF only";
663 } else {
664 llvm_unreachable("Unsupported relocation type!");
667 // The original code used a PC relative relocation.
668 // Need to compensate for the -4 it had in the addend.
669 write32le(loc, val + 4);
672 void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
673 uint64_t val) const {
674 const uint8_t inst[] = {
675 0x66, 0x66, // .word 0x6666
676 0x66, // .byte 0x66
677 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
680 if (loc[4] == 0xe8) {
681 // Convert
682 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
683 // callq __tls_get_addr@PLT # e8 <disp32>
684 // leaq bar@dtpoff(%rax), %rcx
685 // to
686 // .word 0x6666
687 // .byte 0x66
688 // mov %fs:0,%rax
689 // leaq bar@tpoff(%rax), %rcx
690 memcpy(loc - 3, inst, sizeof(inst));
691 return;
694 if (loc[4] == 0xff && loc[5] == 0x15) {
695 // Convert
696 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
697 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
698 // to
699 // .long 0x66666666
700 // movq %fs:0,%rax
701 // See "Table 11.9: LD -> LE Code Transition (LP64)" in
702 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
703 loc[-3] = 0x66;
704 memcpy(loc - 2, inst, sizeof(inst));
705 return;
708 ErrAlways(ctx)
709 << getErrorLoc(ctx, loc - 3)
710 << "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD";
713 // A JumpInstrMod at a specific offset indicates that the jump instruction
714 // opcode at that offset must be modified. This is specifically used to relax
715 // jump instructions with basic block sections. This function looks at the
716 // JumpMod and effects the change.
717 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
718 unsigned size) const {
719 switch (type) {
720 case J_JMP_32:
721 if (size == 4)
722 *loc = 0xe9;
723 else
724 *loc = 0xeb;
725 break;
726 case J_JE_32:
727 if (size == 4) {
728 loc[-1] = 0x0f;
729 *loc = 0x84;
730 } else
731 *loc = 0x74;
732 break;
733 case J_JNE_32:
734 if (size == 4) {
735 loc[-1] = 0x0f;
736 *loc = 0x85;
737 } else
738 *loc = 0x75;
739 break;
740 case J_JG_32:
741 if (size == 4) {
742 loc[-1] = 0x0f;
743 *loc = 0x8f;
744 } else
745 *loc = 0x7f;
746 break;
747 case J_JGE_32:
748 if (size == 4) {
749 loc[-1] = 0x0f;
750 *loc = 0x8d;
751 } else
752 *loc = 0x7d;
753 break;
754 case J_JB_32:
755 if (size == 4) {
756 loc[-1] = 0x0f;
757 *loc = 0x82;
758 } else
759 *loc = 0x72;
760 break;
761 case J_JBE_32:
762 if (size == 4) {
763 loc[-1] = 0x0f;
764 *loc = 0x86;
765 } else
766 *loc = 0x76;
767 break;
768 case J_JL_32:
769 if (size == 4) {
770 loc[-1] = 0x0f;
771 *loc = 0x8c;
772 } else
773 *loc = 0x7c;
774 break;
775 case J_JLE_32:
776 if (size == 4) {
777 loc[-1] = 0x0f;
778 *loc = 0x8e;
779 } else
780 *loc = 0x7e;
781 break;
782 case J_JA_32:
783 if (size == 4) {
784 loc[-1] = 0x0f;
785 *loc = 0x87;
786 } else
787 *loc = 0x77;
788 break;
789 case J_JAE_32:
790 if (size == 4) {
791 loc[-1] = 0x0f;
792 *loc = 0x83;
793 } else
794 *loc = 0x73;
795 break;
796 case J_UNKNOWN:
797 llvm_unreachable("Unknown Jump Relocation");
801 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
802 switch (type) {
803 case R_X86_64_8:
804 case R_X86_64_PC8:
805 return SignExtend64<8>(*buf);
806 case R_X86_64_16:
807 case R_X86_64_PC16:
808 return SignExtend64<16>(read16le(buf));
809 case R_X86_64_32:
810 case R_X86_64_32S:
811 case R_X86_64_TPOFF32:
812 case R_X86_64_GOT32:
813 case R_X86_64_GOTPC32:
814 case R_X86_64_GOTPC32_TLSDESC:
815 case R_X86_64_GOTPCREL:
816 case R_X86_64_GOTPCRELX:
817 case R_X86_64_REX_GOTPCRELX:
818 case R_X86_64_CODE_4_GOTPCRELX:
819 case R_X86_64_PC32:
820 case R_X86_64_GOTTPOFF:
821 case R_X86_64_CODE_4_GOTTPOFF:
822 case R_X86_64_CODE_6_GOTTPOFF:
823 case R_X86_64_PLT32:
824 case R_X86_64_TLSGD:
825 case R_X86_64_TLSLD:
826 case R_X86_64_DTPOFF32:
827 case R_X86_64_SIZE32:
828 return SignExtend64<32>(read32le(buf));
829 case R_X86_64_64:
830 case R_X86_64_TPOFF64:
831 case R_X86_64_DTPOFF64:
832 case R_X86_64_DTPMOD64:
833 case R_X86_64_PC64:
834 case R_X86_64_SIZE64:
835 case R_X86_64_GLOB_DAT:
836 case R_X86_64_GOT64:
837 case R_X86_64_GOTOFF64:
838 case R_X86_64_GOTPC64:
839 case R_X86_64_PLTOFF64:
840 case R_X86_64_IRELATIVE:
841 case R_X86_64_RELATIVE:
842 return read64le(buf);
843 case R_X86_64_TLSDESC:
844 return read64le(buf + 8);
845 case R_X86_64_JUMP_SLOT:
846 case R_X86_64_NONE:
847 // These relocations are defined as not having an implicit addend.
848 return 0;
849 default:
850 InternalErr(ctx, buf) << "cannot read addend for relocation " << type;
851 return 0;
855 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
857 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
858 switch (rel.type) {
859 case R_X86_64_8:
860 checkIntUInt(ctx, loc, val, 8, rel);
861 *loc = val;
862 break;
863 case R_X86_64_PC8:
864 checkInt(ctx, loc, val, 8, rel);
865 *loc = val;
866 break;
867 case R_X86_64_16:
868 checkIntUInt(ctx, loc, val, 16, rel);
869 write16le(loc, val);
870 break;
871 case R_X86_64_PC16:
872 checkInt(ctx, loc, val, 16, rel);
873 write16le(loc, val);
874 break;
875 case R_X86_64_32:
876 checkUInt(ctx, loc, val, 32, rel);
877 write32le(loc, val);
878 break;
879 case R_X86_64_32S:
880 case R_X86_64_GOT32:
881 case R_X86_64_GOTPC32:
882 case R_X86_64_GOTPCREL:
883 case R_X86_64_PC32:
884 case R_X86_64_PLT32:
885 case R_X86_64_DTPOFF32:
886 case R_X86_64_SIZE32:
887 checkInt(ctx, loc, val, 32, rel);
888 write32le(loc, val);
889 break;
890 case R_X86_64_64:
891 case R_X86_64_TPOFF64:
892 case R_X86_64_DTPOFF64:
893 case R_X86_64_PC64:
894 case R_X86_64_SIZE64:
895 case R_X86_64_GOT64:
896 case R_X86_64_GOTOFF64:
897 case R_X86_64_GOTPC64:
898 case R_X86_64_PLTOFF64:
899 write64le(loc, val);
900 break;
901 case R_X86_64_GOTPCRELX:
902 case R_X86_64_REX_GOTPCRELX:
903 case R_X86_64_CODE_4_GOTPCRELX:
904 if (rel.expr != R_GOT_PC) {
905 relaxGot(loc, rel, val);
906 } else {
907 checkInt(ctx, loc, val, 32, rel);
908 write32le(loc, val);
910 break;
911 case R_X86_64_GOTPC32_TLSDESC:
912 case R_X86_64_CODE_4_GOTPC32_TLSDESC:
913 case R_X86_64_TLSDESC_CALL:
914 case R_X86_64_TLSGD:
915 if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
916 relaxTlsGdToLe(loc, rel, val);
917 } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
918 relaxTlsGdToIe(loc, rel, val);
919 } else {
920 checkInt(ctx, loc, val, 32, rel);
921 write32le(loc, val);
923 break;
924 case R_X86_64_TLSLD:
925 if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
926 relaxTlsLdToLe(loc, rel, val);
927 } else {
928 checkInt(ctx, loc, val, 32, rel);
929 write32le(loc, val);
931 break;
932 case R_X86_64_GOTTPOFF:
933 case R_X86_64_CODE_4_GOTTPOFF:
934 case R_X86_64_CODE_6_GOTTPOFF:
935 if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
936 relaxTlsIeToLe(loc, rel, val);
937 } else {
938 checkInt(ctx, loc, val, 32, rel);
939 write32le(loc, val);
941 break;
942 case R_X86_64_TPOFF32:
943 checkInt(ctx, loc, val, 32, rel);
944 write32le(loc, val);
945 break;
947 case R_X86_64_TLSDESC:
948 // The addend is stored in the second 64-bit word.
949 write64le(loc + 8, val);
950 break;
951 default:
952 llvm_unreachable("unknown relocation");
956 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
957 const uint8_t *loc) const {
958 // Only R_X86_64_[REX_]|[CODE_4_]GOTPCRELX can be relaxed. GNU as may emit
959 // GOTPCRELX with addend != -4. Such an instruction does not load the full GOT
960 // entry, so we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip),
961 // %rax (addend=0) loads the high 32 bits of the GOT entry.
962 if (!ctx.arg.relax || addend != -4 ||
963 (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX &&
964 type != R_X86_64_CODE_4_GOTPCRELX))
965 return R_GOT_PC;
966 const uint8_t op = loc[-2];
967 const uint8_t modRm = loc[-1];
969 // FIXME: When PIC is disabled and foo is defined locally in the
970 // lower 32 bit address space, memory operand in mov can be converted into
971 // immediate operand. Otherwise, mov must be changed to lea. We support only
972 // latter relaxation at this moment.
973 if (op == 0x8b)
974 return R_RELAX_GOT_PC;
976 // Relax call and jmp.
977 if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
978 return R_RELAX_GOT_PC;
980 // We don't support test/binop instructions without a REX/REX2 prefix.
981 if (type == R_X86_64_GOTPCRELX)
982 return R_GOT_PC;
984 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
985 // If PIC then no relaxation is available.
986 return ctx.arg.isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
989 // A subset of relaxations can only be applied for no-PIC. This method
990 // handles such relaxations. Instructions encoding information was taken from:
991 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
992 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
993 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
994 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, uint8_t modRm,
995 bool isRex2) {
996 const uint8_t rex = loc[-3];
997 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
998 if (op == 0x85) {
999 // See "TEST-Logical Compare" (4-428 Vol. 2B),
1000 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
1002 // ModR/M byte has form XX YYY ZZZ, where
1003 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
1004 // XX has different meanings:
1005 // 00: The operand's memory address is in reg1.
1006 // 01: The operand's memory address is reg1 + a byte-sized displacement.
1007 // 10: The operand's memory address is reg1 + a word-sized displacement.
1008 // 11: The operand is reg1 itself.
1009 // If an instruction requires only one operand, the unused reg2 field
1010 // holds extra opcode bits rather than a register code
1011 // 0xC0 == 11 000 000 binary.
1012 // 0x38 == 00 111 000 binary.
1013 // We transfer reg2 to reg1 here as operand.
1014 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
1015 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
1017 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
1018 // See "TEST-Logical Compare" (4-428 Vol. 2B).
1019 loc[-2] = 0xf7;
1021 // Move R bit to the B bit in REX/REX2 byte.
1022 // REX byte is encoded as 0100WRXB, where
1023 // 0100 is 4bit fixed pattern.
1024 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
1025 // default operand size is used (which is 32-bit for most but not all
1026 // instructions).
1027 // REX.R This 1-bit value is an extension to the MODRM.reg field.
1028 // REX.X This 1-bit value is an extension to the SIB.index field.
1029 // REX.B This 1-bit value is an extension to the MODRM.rm field or the
1030 // SIB.base field.
1031 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
1033 // REX2 prefix is encoded as 0xd5|M|R2|X2|B2|WRXB, where
1034 // 0xd5 is 1byte fixed pattern.
1035 // REX2's [W,R,X,B] have the same meanings as REX's.
1036 // REX2.M encodes the map id.
1037 // R2/X2/B2 provides the fifth and most siginicant bits of the R/X/B
1038 // register identifiers, each of which can now address all 32 GPRs.
1039 if (isRex2)
1040 loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2;
1041 else
1042 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
1043 write32le(loc, val);
1044 return;
1047 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
1048 // or xor operations.
1050 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
1051 // Logic is close to one for test instruction above, but we also
1052 // write opcode extension here, see below for details.
1053 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
1055 // Primary opcode is 0x81, opcode extension is one of:
1056 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
1057 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
1058 // This value was wrote to MODRM.reg in a line above.
1059 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
1060 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
1061 // descriptions about each operation.
1062 loc[-2] = 0x81;
1063 if (isRex2)
1064 loc[-3] = (rex & ~0x44) | (rex & 0x44) >> 2;
1065 else
1066 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
1067 write32le(loc, val);
1070 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
1071 assert(isInt<32>(val) &&
1072 "GOTPCRELX should not have been relaxed if it overflows");
1073 const uint8_t op = loc[-2];
1074 const uint8_t modRm = loc[-1];
1076 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
1077 if (op == 0x8b) {
1078 loc[-2] = 0x8d;
1079 write32le(loc, val);
1080 return;
1083 if (op != 0xff) {
1084 // We are relaxing a rip relative to an absolute, so compensate
1085 // for the old -4 addend.
1086 assert(!rel.sym->file->ctx.arg.isPic);
1087 relaxGotNoPic(loc, val + 4, op, modRm,
1088 rel.type == R_X86_64_CODE_4_GOTPCRELX);
1089 return;
1092 // Convert call/jmp instructions.
1093 if (modRm == 0x15) {
1094 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
1095 // Instead we convert to "addr32 call foo" where addr32 is an instruction
1096 // prefix. That makes result expression to be a single instruction.
1097 loc[-2] = 0x67; // addr32 prefix
1098 loc[-1] = 0xe8; // call
1099 write32le(loc, val);
1100 return;
1103 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
1104 // jmp doesn't return, so it is fine to use nop here, it is just a stub.
1105 assert(modRm == 0x25);
1106 loc[-2] = 0xe9; // jmp
1107 loc[3] = 0x90; // nop
1108 write32le(loc - 1, val + 1);
1111 // A split-stack prologue starts by checking the amount of stack remaining
1112 // in one of two ways:
1113 // A) Comparing of the stack pointer to a field in the tcb.
1114 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
1115 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1116 uint8_t stOther) const {
1117 if (!ctx.arg.is64) {
1118 ErrAlways(ctx) << "target doesn't support split stacks";
1119 return false;
1122 if (loc + 8 >= end)
1123 return false;
1125 // Replace "cmp %fs:0x70,%rsp" and subsequent branch
1126 // with "stc, nopl 0x0(%rax,%rax,1)"
1127 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1128 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1129 return true;
1132 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1133 // be r10 or r11. The lea instruction feeds a subsequent compare which checks
1134 // if there is X available stack space. Making X larger effectively reserves
1135 // that much additional space. The stack grows downward so subtract the value.
1136 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1137 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1138 // The offset bytes are encoded four bytes after the start of the
1139 // instruction.
1140 write32le(loc + 4, read32le(loc + 4) - 0x4000);
1141 return true;
1143 return false;
1146 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1147 uint64_t secAddr = sec.getOutputSection()->addr;
1148 if (auto *s = dyn_cast<InputSection>(&sec))
1149 secAddr += s->outSecOff;
1150 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1151 secAddr += ehIn->getParent()->outSecOff;
1152 for (const Relocation &rel : sec.relocs()) {
1153 if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1154 continue;
1155 uint8_t *loc = buf + rel.offset;
1156 const uint64_t val = sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset);
1157 relocate(loc, rel, val);
1159 if (sec.jumpInstrMod) {
1160 applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1161 sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1165 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1166 // entries containing endbr64 instructions. A PLT entry will be split into two
1167 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1168 namespace {
1169 class IntelIBT : public X86_64 {
1170 public:
1171 IntelIBT(Ctx &ctx) : X86_64(ctx) { pltHeaderSize = 0; };
1172 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1173 void writePlt(uint8_t *buf, const Symbol &sym,
1174 uint64_t pltEntryAddr) const override;
1175 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1177 static const unsigned IBTPltHeaderSize = 16;
1179 } // namespace
1181 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1182 uint64_t va = ctx.in.ibtPlt->getVA() + IBTPltHeaderSize +
1183 s.getPltIdx(ctx) * pltEntrySize;
1184 write64le(buf, va);
1187 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1188 uint64_t pltEntryAddr) const {
1189 const uint8_t Inst[] = {
1190 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1191 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
1192 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1194 memcpy(buf, Inst, sizeof(Inst));
1195 write32le(buf + 6, sym.getGotPltVA(ctx) - pltEntryAddr - 10);
1198 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1199 writePltHeader(buf);
1200 buf += IBTPltHeaderSize;
1202 const uint8_t inst[] = {
1203 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1204 0x68, 0, 0, 0, 0, // pushq <relocation index>
1205 0xe9, 0, 0, 0, 0, // jmpq plt[0]
1206 0x66, 0x90, // nop
1209 for (size_t i = 0; i < numEntries; ++i) {
1210 memcpy(buf, inst, sizeof(inst));
1211 write32le(buf + 5, i);
1212 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1213 buf += sizeof(inst);
1217 // These nonstandard PLT entries are to migtigate Spectre v2 security
1218 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1219 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1220 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1221 // indirect jump. That instruction sequence is so-called "retpoline".
1223 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1224 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1225 // that option is given, we can omit code for symbol lazy resolution.
1226 namespace {
1227 class Retpoline : public X86_64 {
1228 public:
1229 Retpoline(Ctx &);
1230 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1231 void writePltHeader(uint8_t *buf) const override;
1232 void writePlt(uint8_t *buf, const Symbol &sym,
1233 uint64_t pltEntryAddr) const override;
1236 class RetpolineZNow : public X86_64 {
1237 public:
1238 RetpolineZNow(Ctx &);
1239 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1240 void writePltHeader(uint8_t *buf) const override;
1241 void writePlt(uint8_t *buf, const Symbol &sym,
1242 uint64_t pltEntryAddr) const override;
1244 } // namespace
1246 Retpoline::Retpoline(Ctx &ctx) : X86_64(ctx) {
1247 pltHeaderSize = 48;
1248 pltEntrySize = 32;
1249 ipltEntrySize = 32;
1252 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1253 write64le(buf, s.getPltVA(ctx) + 17);
1256 void Retpoline::writePltHeader(uint8_t *buf) const {
1257 const uint8_t insn[] = {
1258 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
1259 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
1260 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
1261 0xf3, 0x90, // 12: loop: pause
1262 0x0f, 0xae, 0xe8, // 14: lfence
1263 0xeb, 0xf9, // 17: jmp loop
1264 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
1265 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
1266 0xc3, // 24: ret
1267 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
1268 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
1270 memcpy(buf, insn, sizeof(insn));
1272 uint64_t gotPlt = ctx.in.gotPlt->getVA();
1273 uint64_t plt = ctx.in.plt->getVA();
1274 write32le(buf + 2, gotPlt - plt - 6 + 8);
1275 write32le(buf + 9, gotPlt - plt - 13 + 16);
1278 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1279 uint64_t pltEntryAddr) const {
1280 const uint8_t insn[] = {
1281 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
1282 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
1283 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
1284 0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
1285 0xe9, 0, 0, 0, 0, // 16: jmp plt+0
1286 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1288 memcpy(buf, insn, sizeof(insn));
1290 uint64_t off = pltEntryAddr - ctx.in.plt->getVA();
1292 write32le(buf + 3, sym.getGotPltVA(ctx) - pltEntryAddr - 7);
1293 write32le(buf + 8, -off - 12 + 32);
1294 write32le(buf + 13, -off - 17 + 18);
1295 write32le(buf + 18, sym.getPltIdx(ctx));
1296 write32le(buf + 23, -off - 27);
1299 RetpolineZNow::RetpolineZNow(Ctx &ctx) : X86_64(ctx) {
1300 pltHeaderSize = 32;
1301 pltEntrySize = 16;
1302 ipltEntrySize = 16;
1305 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1306 const uint8_t insn[] = {
1307 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
1308 0xf3, 0x90, // 5: loop: pause
1309 0x0f, 0xae, 0xe8, // 7: lfence
1310 0xeb, 0xf9, // a: jmp loop
1311 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
1312 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
1313 0xc3, // 14: ret
1314 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
1315 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
1316 0xcc, // 1f: int3; padding
1318 memcpy(buf, insn, sizeof(insn));
1321 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1322 uint64_t pltEntryAddr) const {
1323 const uint8_t insn[] = {
1324 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1325 0xe9, 0, 0, 0, 0, // jmp plt+0
1326 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
1328 memcpy(buf, insn, sizeof(insn));
1330 write32le(buf + 3, sym.getGotPltVA(ctx) - pltEntryAddr - 7);
1331 write32le(buf + 8, ctx.in.plt->getVA() - pltEntryAddr - 12);
1334 void elf::setX86_64TargetInfo(Ctx &ctx) {
1335 if (ctx.arg.zRetpolineplt) {
1336 if (ctx.arg.zNow)
1337 ctx.target.reset(new RetpolineZNow(ctx));
1338 else
1339 ctx.target.reset(new Retpoline(ctx));
1340 return;
1343 if (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)
1344 ctx.target.reset(new IntelIBT(ctx));
1345 else
1346 ctx.target.reset(new X86_64(ctx));