1 //===- ICF.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
24 // void foo() { bar(); }
25 // void bar() { foo(); }
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
35 // 1. First, we partition sections using their hash values as keys. Hash
36 // values contain section types, section contents and numbers of
37 // relocations. During this step, relocation targets are not taken into
38 // account. We just put sections that apparently differ into different
39 // equivalence classes.
41 // 2. Next, for each equivalence class, we visit sections to compare
42 // relocation targets. Relocation targets are considered equivalent if
43 // their targets are in the same equivalence class. Sections with
44 // different relocation targets are put into different equivalence
47 // 3. If we split an equivalence class in step 2, two relocations
48 // previously target the same equivalence class may now target
49 // different equivalence classes. Therefore, we repeat step 2 until a
50 // convergence is obtained.
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 // merge all the other sections in C with it.
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //===----------------------------------------------------------------------===//
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
92 using namespace llvm::ELF
;
93 using namespace llvm::object
;
95 using namespace lld::elf
;
98 template <class ELFT
> class ICF
{
100 ICF(Ctx
&ctx
) : ctx(ctx
) {}
104 void segregate(size_t begin
, size_t end
, uint32_t eqClassBase
, bool constant
);
106 template <class RelTy
>
107 bool constantEq(const InputSection
*a
, Relocs
<RelTy
> relsA
,
108 const InputSection
*b
, Relocs
<RelTy
> relsB
);
110 template <class RelTy
>
111 bool variableEq(const InputSection
*a
, Relocs
<RelTy
> relsA
,
112 const InputSection
*b
, Relocs
<RelTy
> relsB
);
114 bool equalsConstant(const InputSection
*a
, const InputSection
*b
);
115 bool equalsVariable(const InputSection
*a
, const InputSection
*b
);
117 size_t findBoundary(size_t begin
, size_t end
);
119 void forEachClassRange(size_t begin
, size_t end
,
120 llvm::function_ref
<void(size_t, size_t)> fn
);
122 void forEachClass(llvm::function_ref
<void(size_t, size_t)> fn
);
125 SmallVector
<InputSection
*, 0> sections
;
127 // We repeat the main loop while `Repeat` is true.
128 std::atomic
<bool> repeat
;
130 // The main loop counter.
133 // We have two locations for equivalence classes. On the first iteration
134 // of the main loop, Class[0] has a valid value, and Class[1] contains
135 // garbage. We read equivalence classes from slot 0 and write to slot 1.
136 // So, Class[0] represents the current class, and Class[1] represents
137 // the next class. On each iteration, we switch their roles and use them
140 // Why are we doing this? Recall that other threads may be working on
141 // other equivalence classes in parallel. They may read sections that we
142 // are updating. We cannot update equivalence classes in place because
143 // it breaks the invariance that all possibly-identical sections must be
144 // in the same equivalence class at any moment. In other words, the for
145 // loop to update equivalence classes is not atomic, and that is
146 // observable from other threads. By writing new classes to other
147 // places, we can keep the invariance.
149 // Below, `Current` has the index of the current class, and `Next` has
150 // the index of the next class. If threading is enabled, they are either
153 // Note on single-thread: if that's the case, they are always (0, 0)
154 // because we can safely read the next class without worrying about race
155 // conditions. Using the same location makes this algorithm converge
156 // faster because it uses results of the same iteration earlier.
162 // Returns true if section S is subject of ICF.
163 static bool isEligible(InputSection
*s
) {
164 if (!s
->isLive() || s
->keepUnique
|| !(s
->flags
& SHF_ALLOC
))
167 // Don't merge writable sections. .data.rel.ro sections are marked as writable
168 // but are semantically read-only.
169 if ((s
->flags
& SHF_WRITE
) && s
->name
!= ".data.rel.ro" &&
170 !s
->name
.starts_with(".data.rel.ro."))
173 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
174 // so we don't consider them for ICF individually.
175 if (s
->flags
& SHF_LINK_ORDER
)
178 // Don't merge synthetic sections as their Data member is not valid and empty.
179 // The Data member needs to be valid for ICF as it is used by ICF to determine
180 // the equality of section contents.
181 if (isa
<SyntheticSection
>(s
))
184 // .init and .fini contains instructions that must be executed to initialize
185 // and finalize the process. They cannot and should not be merged.
186 if (s
->name
== ".init" || s
->name
== ".fini")
189 // A user program may enumerate sections named with a C identifier using
190 // __start_* and __stop_* symbols. We cannot ICF any such sections because
191 // that could change program semantics.
192 if (isValidCIdentifier(s
->name
))
198 // Split an equivalence class into smaller classes.
199 template <class ELFT
>
200 void ICF
<ELFT
>::segregate(size_t begin
, size_t end
, uint32_t eqClassBase
,
202 // This loop rearranges sections in [Begin, End) so that all sections
203 // that are equal in terms of equals{Constant,Variable} are contiguous
206 // The algorithm is quadratic in the worst case, but that is not an
207 // issue in practice because the number of the distinct sections in
208 // each range is usually very small.
210 while (begin
< end
) {
211 // Divide [Begin, End) into two. Let Mid be the start index of the
214 std::stable_partition(sections
.begin() + begin
+ 1,
215 sections
.begin() + end
, [&](InputSection
*s
) {
217 return equalsConstant(sections
[begin
], s
);
218 return equalsVariable(sections
[begin
], s
);
220 size_t mid
= bound
- sections
.begin();
222 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
223 // updating the sections in [Begin, Mid). We use Mid as the basis for
224 // the equivalence class ID because every group ends with a unique index.
225 // Add this to eqClassBase to avoid equality with unique IDs.
226 for (size_t i
= begin
; i
< mid
; ++i
)
227 sections
[i
]->eqClass
[next
] = eqClassBase
+ mid
;
229 // If we created a group, we need to iterate the main loop again.
237 // Compare two lists of relocations.
238 template <class ELFT
>
239 template <class RelTy
>
240 bool ICF
<ELFT
>::constantEq(const InputSection
*secA
, Relocs
<RelTy
> ra
,
241 const InputSection
*secB
, Relocs
<RelTy
> rb
) {
242 if (ra
.size() != rb
.size())
244 auto rai
= ra
.begin(), rae
= ra
.end(), rbi
= rb
.begin();
245 for (; rai
!= rae
; ++rai
, ++rbi
) {
246 if (rai
->r_offset
!= rbi
->r_offset
||
247 rai
->getType(ctx
.arg
.isMips64EL
) != rbi
->getType(ctx
.arg
.isMips64EL
))
250 uint64_t addA
= getAddend
<ELFT
>(*rai
);
251 uint64_t addB
= getAddend
<ELFT
>(*rbi
);
253 Symbol
&sa
= secA
->file
->getRelocTargetSym(*rai
);
254 Symbol
&sb
= secB
->file
->getRelocTargetSym(*rbi
);
261 auto *da
= dyn_cast
<Defined
>(&sa
);
262 auto *db
= dyn_cast
<Defined
>(&sb
);
264 // Placeholder symbols generated by linker scripts look the same now but
265 // may have different values later.
266 if (!da
|| !db
|| da
->scriptDefined
|| db
->scriptDefined
)
269 // When comparing a pair of relocations, if they refer to different symbols,
270 // and either symbol is preemptible, the containing sections should be
271 // considered different. This is because even if the sections are identical
272 // in this DSO, they may not be after preemption.
273 if (da
->isPreemptible
|| db
->isPreemptible
)
276 // Relocations referring to absolute symbols are constant-equal if their
278 if (!da
->section
&& !db
->section
&& da
->value
+ addA
== db
->value
+ addB
)
280 if (!da
->section
|| !db
->section
)
283 if (da
->section
->kind() != db
->section
->kind())
286 // Relocations referring to InputSections are constant-equal if their
287 // section offsets are equal.
288 if (isa
<InputSection
>(da
->section
)) {
289 if (da
->value
+ addA
== db
->value
+ addB
)
294 // Relocations referring to MergeInputSections are constant-equal if their
295 // offsets in the output section are equal.
296 auto *x
= dyn_cast
<MergeInputSection
>(da
->section
);
299 auto *y
= cast
<MergeInputSection
>(db
->section
);
300 if (x
->getParent() != y
->getParent())
304 sa
.isSection() ? x
->getOffset(addA
) : x
->getOffset(da
->value
) + addA
;
306 sb
.isSection() ? y
->getOffset(addB
) : y
->getOffset(db
->value
) + addB
;
307 if (offsetA
!= offsetB
)
314 // Compare "non-moving" part of two InputSections, namely everything
315 // except relocation targets.
316 template <class ELFT
>
317 bool ICF
<ELFT
>::equalsConstant(const InputSection
*a
, const InputSection
*b
) {
318 if (a
->flags
!= b
->flags
|| a
->getSize() != b
->getSize() ||
319 a
->content() != b
->content())
322 // If two sections have different output sections, we cannot merge them.
323 assert(a
->getParent() && b
->getParent());
324 if (a
->getParent() != b
->getParent())
327 const RelsOrRelas
<ELFT
> ra
= a
->template relsOrRelas
<ELFT
>();
328 const RelsOrRelas
<ELFT
> rb
= b
->template relsOrRelas
<ELFT
>();
329 if (ra
.areRelocsCrel() || rb
.areRelocsCrel())
330 return constantEq(a
, ra
.crels
, b
, rb
.crels
);
331 return ra
.areRelocsRel() || rb
.areRelocsRel()
332 ? constantEq(a
, ra
.rels
, b
, rb
.rels
)
333 : constantEq(a
, ra
.relas
, b
, rb
.relas
);
336 // Compare two lists of relocations. Returns true if all pairs of
337 // relocations point to the same section in terms of ICF.
338 template <class ELFT
>
339 template <class RelTy
>
340 bool ICF
<ELFT
>::variableEq(const InputSection
*secA
, Relocs
<RelTy
> ra
,
341 const InputSection
*secB
, Relocs
<RelTy
> rb
) {
342 assert(ra
.size() == rb
.size());
344 auto rai
= ra
.begin(), rae
= ra
.end(), rbi
= rb
.begin();
345 for (; rai
!= rae
; ++rai
, ++rbi
) {
346 // The two sections must be identical.
347 Symbol
&sa
= secA
->file
->getRelocTargetSym(*rai
);
348 Symbol
&sb
= secB
->file
->getRelocTargetSym(*rbi
);
352 auto *da
= cast
<Defined
>(&sa
);
353 auto *db
= cast
<Defined
>(&sb
);
355 // We already dealt with absolute and non-InputSection symbols in
356 // constantEq, and for InputSections we have already checked everything
357 // except the equivalence class.
360 auto *x
= dyn_cast
<InputSection
>(da
->section
);
363 auto *y
= cast
<InputSection
>(db
->section
);
365 // Sections that are in the special equivalence class 0, can never be the
366 // same in terms of the equivalence class.
367 if (x
->eqClass
[current
] == 0)
369 if (x
->eqClass
[current
] != y
->eqClass
[current
])
376 // Compare "moving" part of two InputSections, namely relocation targets.
377 template <class ELFT
>
378 bool ICF
<ELFT
>::equalsVariable(const InputSection
*a
, const InputSection
*b
) {
379 const RelsOrRelas
<ELFT
> ra
= a
->template relsOrRelas
<ELFT
>();
380 const RelsOrRelas
<ELFT
> rb
= b
->template relsOrRelas
<ELFT
>();
381 if (ra
.areRelocsCrel() || rb
.areRelocsCrel())
382 return variableEq(a
, ra
.crels
, b
, rb
.crels
);
383 return ra
.areRelocsRel() || rb
.areRelocsRel()
384 ? variableEq(a
, ra
.rels
, b
, rb
.rels
)
385 : variableEq(a
, ra
.relas
, b
, rb
.relas
);
388 template <class ELFT
> size_t ICF
<ELFT
>::findBoundary(size_t begin
, size_t end
) {
389 uint32_t eqClass
= sections
[begin
]->eqClass
[current
];
390 for (size_t i
= begin
+ 1; i
< end
; ++i
)
391 if (eqClass
!= sections
[i
]->eqClass
[current
])
396 // Sections in the same equivalence class are contiguous in Sections
397 // vector. Therefore, Sections vector can be considered as contiguous
398 // groups of sections, grouped by the class.
400 // This function calls Fn on every group within [Begin, End).
401 template <class ELFT
>
402 void ICF
<ELFT
>::forEachClassRange(size_t begin
, size_t end
,
403 llvm::function_ref
<void(size_t, size_t)> fn
) {
404 while (begin
< end
) {
405 size_t mid
= findBoundary(begin
, end
);
411 // Call Fn on each equivalence class.
412 template <class ELFT
>
413 void ICF
<ELFT
>::forEachClass(llvm::function_ref
<void(size_t, size_t)> fn
) {
414 // If threading is disabled or the number of sections are
415 // too small to use threading, call Fn sequentially.
416 if (parallel::strategy
.ThreadsRequested
== 1 || sections
.size() < 1024) {
417 forEachClassRange(0, sections
.size(), fn
);
423 next
= (cnt
+ 1) % 2;
425 // Shard into non-overlapping intervals, and call Fn in parallel.
426 // The sharding must be completed before any calls to Fn are made
427 // so that Fn can modify the Chunks in its shard without causing data
429 const size_t numShards
= 256;
430 size_t step
= sections
.size() / numShards
;
431 size_t boundaries
[numShards
+ 1];
433 boundaries
[numShards
] = sections
.size();
435 parallelFor(1, numShards
, [&](size_t i
) {
436 boundaries
[i
] = findBoundary((i
- 1) * step
, sections
.size());
439 parallelFor(1, numShards
+ 1, [&](size_t i
) {
440 if (boundaries
[i
- 1] < boundaries
[i
])
441 forEachClassRange(boundaries
[i
- 1], boundaries
[i
], fn
);
446 // Combine the hashes of the sections referenced by the given section into its
448 template <class RelTy
>
449 static void combineRelocHashes(unsigned cnt
, InputSection
*isec
,
450 Relocs
<RelTy
> rels
) {
451 uint32_t hash
= isec
->eqClass
[cnt
% 2];
452 for (RelTy rel
: rels
) {
453 Symbol
&s
= isec
->file
->getRelocTargetSym(rel
);
454 if (auto *d
= dyn_cast
<Defined
>(&s
))
455 if (auto *relSec
= dyn_cast_or_null
<InputSection
>(d
->section
))
456 hash
+= relSec
->eqClass
[cnt
% 2];
458 // Set MSB to 1 to avoid collisions with unique IDs.
459 isec
->eqClass
[(cnt
+ 1) % 2] = hash
| (1U << 31);
462 // The main function of ICF.
463 template <class ELFT
> void ICF
<ELFT
>::run() {
464 // Two text sections may have identical content and relocations but different
465 // LSDA, e.g. the two functions may have catch blocks of different types. If a
466 // text section is referenced by a .eh_frame FDE with LSDA, it is not
467 // eligible. This is implemented by iterating over CIE/FDE and setting
468 // eqClass[0] to the referenced text section from a live FDE.
470 // If two .gcc_except_table have identical semantics (usually identical
471 // content with PC-relative encoding), we will lose folding opportunity.
472 uint32_t uniqueId
= 0;
473 for (Partition
&part
: ctx
.partitions
)
474 part
.ehFrame
->iterateFDEWithLSDA
<ELFT
>(
475 [&](InputSection
&s
) { s
.eqClass
[0] = s
.eqClass
[1] = ++uniqueId
; });
477 // Collect sections to merge.
478 for (InputSectionBase
*sec
: ctx
.inputSections
) {
479 auto *s
= dyn_cast
<InputSection
>(sec
);
480 if (s
&& s
->eqClass
[0] == 0) {
482 sections
.push_back(s
);
484 // Ineligible sections are assigned unique IDs, i.e. each section
485 // belongs to an equivalence class of its own.
486 s
->eqClass
[0] = s
->eqClass
[1] = ++uniqueId
;
490 // Initially, we use hash values to partition sections.
491 parallelForEach(sections
, [&](InputSection
*s
) {
492 // Set MSB to 1 to avoid collisions with unique IDs.
493 s
->eqClass
[0] = xxh3_64bits(s
->content()) | (1U << 31);
496 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
497 // reduce the average sizes of equivalence classes, i.e. segregate() which has
498 // a large time complexity will have less work to do.
499 for (unsigned cnt
= 0; cnt
!= 2; ++cnt
) {
500 parallelForEach(sections
, [&](InputSection
*s
) {
501 const RelsOrRelas
<ELFT
> rels
= s
->template relsOrRelas
<ELFT
>();
502 if (rels
.areRelocsCrel())
503 combineRelocHashes(cnt
, s
, rels
.crels
);
504 else if (rels
.areRelocsRel())
505 combineRelocHashes(cnt
, s
, rels
.rels
);
507 combineRelocHashes(cnt
, s
, rels
.relas
);
511 // From now on, sections in Sections vector are ordered so that sections
512 // in the same equivalence class are consecutive in the vector.
513 llvm::stable_sort(sections
, [](const InputSection
*a
, const InputSection
*b
) {
514 return a
->eqClass
[0] < b
->eqClass
[0];
517 // Compare static contents and assign unique equivalence class IDs for each
518 // static content. Use a base offset for these IDs to ensure no overlap with
519 // the unique IDs already assigned.
520 uint32_t eqClassBase
= ++uniqueId
;
521 forEachClass([&](size_t begin
, size_t end
) {
522 segregate(begin
, end
, eqClassBase
, true);
525 // Split groups by comparing relocations until convergence is obtained.
528 forEachClass([&](size_t begin
, size_t end
) {
529 segregate(begin
, end
, eqClassBase
, false);
533 Log(ctx
) << "ICF needed " << cnt
<< " iterations";
535 auto print
= [&ctx
= ctx
]() -> ELFSyncStream
{
536 return {ctx
, ctx
.arg
.printIcfSections
? DiagLevel::Msg
: DiagLevel::None
};
538 // Merge sections by the equivalence class.
539 forEachClassRange(0, sections
.size(), [&](size_t begin
, size_t end
) {
540 if (end
- begin
== 1)
542 print() << "selected section " << sections
[begin
];
543 for (size_t i
= begin
+ 1; i
< end
; ++i
) {
544 print() << " removing identical section " << sections
[i
];
545 sections
[begin
]->replace(sections
[i
]);
547 // At this point we know sections merged are fully identical and hence
548 // we want to remove duplicate implicit dependencies such as link order
549 // and relocation sections.
550 for (InputSection
*isec
: sections
[i
]->dependentSections
)
555 // Change Defined symbol's section field to the canonical one.
556 auto fold
= [](Symbol
*sym
) {
557 if (auto *d
= dyn_cast
<Defined
>(sym
))
558 if (auto *sec
= dyn_cast_or_null
<InputSection
>(d
->section
))
559 if (sec
->repl
!= d
->section
) {
560 d
->section
= sec
->repl
;
564 for (Symbol
*sym
: ctx
.symtab
->getSymbols())
566 parallelForEach(ctx
.objectFiles
, [&](ELFFileBase
*file
) {
567 for (Symbol
*sym
: file
->getLocalSymbols())
571 // InputSectionDescription::sections is populated by processSectionCommands().
572 // ICF may fold some input sections assigned to output sections. Remove them.
573 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
574 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
575 for (SectionCommand
*subCmd
: osd
->osec
.commands
)
576 if (auto *isd
= dyn_cast
<InputSectionDescription
>(subCmd
))
577 llvm::erase_if(isd
->sections
,
578 [](InputSection
*isec
) { return !isec
->isLive(); });
581 // ICF entry point function.
582 template <class ELFT
> void elf::doIcf(Ctx
&ctx
) {
583 llvm::TimeTraceScope
timeScope("ICF");
584 ICF
<ELFT
>(ctx
).run();
587 template void elf::doIcf
<ELF32LE
>(Ctx
&);
588 template void elf::doIcf
<ELF32BE
>(Ctx
&);
589 template void elf::doIcf
<ELF64LE
>(Ctx
&);
590 template void elf::doIcf
<ELF64BE
>(Ctx
&);