1 //===- InputSection.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputSection.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
16 #include "SyntheticSections.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "lld/Common/DWARF.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/Compression.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/xxhash.h"
30 using namespace llvm::ELF
;
31 using namespace llvm::object
;
32 using namespace llvm::support
;
33 using namespace llvm::support::endian
;
34 using namespace llvm::sys
;
36 using namespace lld::elf
;
38 // Returns a string to construct an error message.
39 std::string
elf::toStr(Ctx
&ctx
, const InputSectionBase
*sec
) {
40 return (toStr(ctx
, sec
->file
) + ":(" + sec
->name
+ ")").str();
43 const ELFSyncStream
&elf::operator<<(const ELFSyncStream
&s
,
44 const InputSectionBase
*sec
) {
45 return s
<< toStr(s
.ctx
, sec
);
49 static ArrayRef
<uint8_t> getSectionContents(ObjFile
<ELFT
> &file
,
50 const typename
ELFT::Shdr
&hdr
) {
51 if (hdr
.sh_type
== SHT_NOBITS
)
52 return ArrayRef
<uint8_t>(nullptr, hdr
.sh_size
);
53 return check(file
.getObj().getSectionContents(hdr
));
56 InputSectionBase::InputSectionBase(InputFile
*file
, StringRef name
,
57 uint32_t type
, uint64_t flags
, uint32_t link
,
58 uint32_t info
, uint32_t addralign
,
59 uint32_t entsize
, ArrayRef
<uint8_t> data
,
61 : SectionBase(sectionKind
, file
, name
, type
, flags
, link
, info
, addralign
,
63 bss(0), decodedCrel(0), keepUnique(0), nopFiller(0),
64 content_(data
.data()), size(data
.size()) {
65 // In order to reduce memory allocation, we assume that mergeable
66 // sections are smaller than 4 GiB, which is not an unreasonable
67 // assumption as of 2017.
68 if (sectionKind
== SectionBase::Merge
&& content().size() > UINT32_MAX
)
69 ErrAlways(getCtx()) << this << ": section too large";
71 // The ELF spec states that a value of 0 means the section has
72 // no alignment constraints.
73 uint32_t v
= std::max
<uint32_t>(addralign
, 1);
74 if (!isPowerOf2_64(v
))
75 Fatal(getCtx()) << this << ": sh_addralign is not a power of 2";
78 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
80 if (flags
& SHF_COMPRESSED
) {
82 invokeELFT(parseCompressedHeader
, ctx
);
86 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
87 // output section. However, for relocatable linking without
88 // --force-group-allocation, the SHF_GROUP flag and section groups are retained.
89 static uint64_t getFlags(Ctx
&ctx
, uint64_t flags
) {
90 flags
&= ~(uint64_t)SHF_INFO_LINK
;
91 if (ctx
.arg
.resolveGroups
)
92 flags
&= ~(uint64_t)SHF_GROUP
;
97 InputSectionBase::InputSectionBase(ObjFile
<ELFT
> &file
,
98 const typename
ELFT::Shdr
&hdr
,
99 StringRef name
, Kind sectionKind
)
100 : InputSectionBase(&file
, name
, hdr
.sh_type
,
101 getFlags(file
.ctx
, hdr
.sh_flags
), hdr
.sh_link
,
102 hdr
.sh_info
, hdr
.sh_addralign
, hdr
.sh_entsize
,
103 getSectionContents(file
, hdr
), sectionKind
) {
104 // We reject object files having insanely large alignments even though
105 // they are allowed by the spec. I think 4GB is a reasonable limitation.
106 // We might want to relax this in the future.
107 if (hdr
.sh_addralign
> UINT32_MAX
)
108 Fatal(getCtx()) << &file
<< ": section sh_addralign is too large";
111 size_t InputSectionBase::getSize() const {
112 if (auto *s
= dyn_cast
<SyntheticSection
>(this))
114 return size
- bytesDropped
;
117 template <class ELFT
>
118 static void decompressAux(Ctx
&ctx
, const InputSectionBase
&sec
, uint8_t *out
,
120 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(sec
.content_
);
121 auto compressed
= ArrayRef
<uint8_t>(sec
.content_
, sec
.compressedSize
)
122 .slice(sizeof(typename
ELFT::Chdr
));
123 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
124 ? compression::zlib::decompress(compressed
, out
, size
)
125 : compression::zstd::decompress(compressed
, out
, size
))
126 Fatal(ctx
) << &sec
<< ": decompress failed: " << std::move(e
);
129 void InputSectionBase::decompress() const {
131 uint8_t *buf
= makeThreadLocalN
<uint8_t>(size
);
132 invokeELFT(decompressAux
, ctx
, *this, buf
, size
);
137 template <class ELFT
>
138 RelsOrRelas
<ELFT
> InputSectionBase::relsOrRelas(bool supportsCrel
) const {
141 RelsOrRelas
<ELFT
> ret
;
142 auto *f
= cast
<ObjFile
<ELFT
>>(file
);
143 typename
ELFT::Shdr shdr
= f
->template getELFShdrs
<ELFT
>()[relSecIdx
];
144 if (shdr
.sh_type
== SHT_CREL
) {
145 // Return an iterator if supported by caller.
147 ret
.crels
= Relocs
<typename
ELFT::Crel
>(
148 (const uint8_t *)f
->mb
.getBufferStart() + shdr
.sh_offset
);
151 InputSectionBase
*const &relSec
= f
->getSections()[relSecIdx
];
152 // Otherwise, allocate a buffer to hold the decoded RELA relocations. When
153 // called for the first time, relSec is null (without --emit-relocs) or an
154 // InputSection with false decodedCrel.
155 if (!relSec
|| !cast
<InputSection
>(relSec
)->decodedCrel
) {
156 auto *sec
= makeThreadLocal
<InputSection
>(*f
, shdr
, name
);
157 f
->cacheDecodedCrel(relSecIdx
, sec
);
158 sec
->type
= SHT_RELA
;
159 sec
->decodedCrel
= true;
161 RelocsCrel
<ELFT::Is64Bits
> entries(sec
->content_
);
162 sec
->size
= entries
.size() * sizeof(typename
ELFT::Rela
);
163 auto *relas
= makeThreadLocalN
<typename
ELFT::Rela
>(entries
.size());
164 sec
->content_
= reinterpret_cast<uint8_t *>(relas
);
165 for (auto [i
, r
] : llvm::enumerate(entries
)) {
166 relas
[i
].r_offset
= r
.r_offset
;
167 relas
[i
].setSymbolAndType(r
.r_symidx
, r
.r_type
, false);
168 relas
[i
].r_addend
= r
.r_addend
;
171 ret
.relas
= {ArrayRef(
172 reinterpret_cast<const typename
ELFT::Rela
*>(relSec
->content_
),
173 relSec
->size
/ sizeof(typename
ELFT::Rela
))};
177 const void *content
= f
->mb
.getBufferStart() + shdr
.sh_offset
;
178 size_t size
= shdr
.sh_size
;
179 if (shdr
.sh_type
== SHT_REL
) {
180 ret
.rels
= {ArrayRef(reinterpret_cast<const typename
ELFT::Rel
*>(content
),
181 size
/ sizeof(typename
ELFT::Rel
))};
183 assert(shdr
.sh_type
== SHT_RELA
);
185 ArrayRef(reinterpret_cast<const typename
ELFT::Rela
*>(content
),
186 size
/ sizeof(typename
ELFT::Rela
))};
191 Ctx
&SectionBase::getCtx() const { return file
->ctx
; }
193 uint64_t SectionBase::getOffset(uint64_t offset
) const {
196 auto *os
= cast
<OutputSection
>(this);
197 // For output sections we treat offset -1 as the end of the section.
198 return offset
== uint64_t(-1) ? os
->size
: offset
;
201 llvm_unreachable("section classes do not have offsets");
205 return cast
<InputSection
>(this)->outSecOff
+ offset
;
207 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
208 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
209 // start of the output .eh_frame. Just return offset.
211 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
212 // discarded due to GC/ICF. We should compute the output section offset.
213 const EhInputSection
*es
= cast
<EhInputSection
>(this);
214 if (!es
->content().empty())
215 if (InputSection
*isec
= es
->getParent())
216 return isec
->outSecOff
+ es
->getParentOffset(offset
);
220 const MergeInputSection
*ms
= cast
<MergeInputSection
>(this);
221 if (InputSection
*isec
= ms
->getParent())
222 return isec
->outSecOff
+ ms
->getParentOffset(offset
);
223 return ms
->getParentOffset(offset
);
225 llvm_unreachable("invalid section kind");
228 uint64_t SectionBase::getVA(uint64_t offset
) const {
229 const OutputSection
*out
= getOutputSection();
230 return (out
? out
->addr
: 0) + getOffset(offset
);
233 OutputSection
*SectionBase::getOutputSection() {
235 if (auto *isec
= dyn_cast
<InputSection
>(this))
237 else if (auto *ms
= dyn_cast
<MergeInputSection
>(this))
238 sec
= ms
->getParent();
239 else if (auto *eh
= dyn_cast
<EhInputSection
>(this))
240 sec
= eh
->getParent();
242 return cast
<OutputSection
>(this);
243 return sec
? sec
->getParent() : nullptr;
246 // When a section is compressed, `rawData` consists with a header followed
247 // by zlib-compressed data. This function parses a header to initialize
248 // `uncompressedSize` member and remove the header from `rawData`.
249 template <typename ELFT
>
250 void InputSectionBase::parseCompressedHeader(Ctx
&ctx
) {
251 flags
&= ~(uint64_t)SHF_COMPRESSED
;
254 if (content().size() < sizeof(typename
ELFT::Chdr
)) {
255 ErrAlways(ctx
) << this << ": corrupted compressed section";
259 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content().data());
260 if (hdr
->ch_type
== ELFCOMPRESS_ZLIB
) {
261 if (!compression::zlib::isAvailable())
262 ErrAlways(ctx
) << this
263 << " is compressed with ELFCOMPRESS_ZLIB, but lld is "
264 "not built with zlib support";
265 } else if (hdr
->ch_type
== ELFCOMPRESS_ZSTD
) {
266 if (!compression::zstd::isAvailable())
267 ErrAlways(ctx
) << this
268 << " is compressed with ELFCOMPRESS_ZSTD, but lld is "
269 "not built with zstd support";
271 ErrAlways(ctx
) << this << ": unsupported compression type ("
272 << uint32_t(hdr
->ch_type
) << ")";
277 compressedSize
= size
;
279 addralign
= std::max
<uint32_t>(hdr
->ch_addralign
, 1);
282 InputSection
*InputSectionBase::getLinkOrderDep() const {
283 assert(flags
& SHF_LINK_ORDER
);
286 return cast
<InputSection
>(file
->getSections()[link
]);
289 // Find a symbol that encloses a given location.
290 Defined
*InputSectionBase::getEnclosingSymbol(uint64_t offset
,
291 uint8_t type
) const {
292 if (file
->isInternal())
294 for (Symbol
*b
: file
->getSymbols())
295 if (Defined
*d
= dyn_cast
<Defined
>(b
))
296 if (d
->section
== this && d
->value
<= offset
&&
297 offset
< d
->value
+ d
->size
&& (type
== 0 || type
== d
->type
))
302 // Returns an object file location string. Used to construct an error message.
303 std::string
InputSectionBase::getLocation(uint64_t offset
) const {
304 std::string secAndOffset
=
305 (name
+ "+0x" + Twine::utohexstr(offset
) + ")").str();
307 std::string filename
= toStr(getCtx(), file
);
308 if (Defined
*d
= getEnclosingFunction(offset
))
309 return filename
+ ":(function " + toStr(getCtx(), *d
) + ": " + secAndOffset
;
311 return filename
+ ":(" + secAndOffset
;
314 static void printFileLine(const ELFSyncStream
&s
, StringRef path
,
316 StringRef filename
= path::filename(path
);
317 s
<< filename
<< ':' << line
;
318 if (filename
!= path
)
319 s
<< " (" << path
<< ':' << line
<< ')';
322 // Print an error message that looks like this:
324 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
325 const ELFSyncStream
&elf::operator<<(const ELFSyncStream
&s
,
326 InputSectionBase::SrcMsg
&&msg
) {
328 if (sec
.file
->kind() != InputFile::ObjKind
)
330 auto &file
= cast
<ELFFileBase
>(*sec
.file
);
332 // First, look up the DWARF line table.
333 ArrayRef
<InputSectionBase
*> sections
= file
.getSections();
334 auto it
= llvm::find(sections
, &sec
);
335 uint64_t sectionIndex
= it
!= sections
.end()
336 ? it
- sections
.begin()
337 : object::SectionedAddress::UndefSection
;
338 DWARFCache
*dwarf
= file
.getDwarf();
339 if (auto info
= dwarf
->getDILineInfo(msg
.offset
, sectionIndex
))
340 printFileLine(s
, info
->FileName
, info
->Line
);
341 else if (auto fileLine
= dwarf
->getVariableLoc(msg
.sym
.getName()))
342 // If it failed, look up again as a variable.
343 printFileLine(s
, fileLine
->first
, fileLine
->second
);
345 // File.sourceFile contains STT_FILE symbol, and that is a last resort.
346 s
<< file
.sourceFile
;
350 // Returns a filename string along with an optional section name. This
351 // function is intended to be used for constructing an error
352 // message. The returned message looks like this:
354 // path/to/foo.o:(function bar)
358 // path/to/foo.o:(function bar) in archive path/to/bar.a
359 const ELFSyncStream
&elf::operator<<(const ELFSyncStream
&s
,
360 InputSectionBase::ObjMsg
&&msg
) {
362 s
<< sec
->file
->getName() << ":(";
364 // Find a symbol that encloses a given location. getObjMsg may be called
365 // before ObjFile::initSectionsAndLocalSyms where local symbols are
367 if (Defined
*d
= sec
->getEnclosingSymbol(msg
.offset
))
370 s
<< sec
->name
<< "+0x" << Twine::utohexstr(msg
.offset
);
372 if (!sec
->file
->archiveName
.empty())
373 s
<< (" in archive " + sec
->file
->archiveName
).str();
377 PotentialSpillSection::PotentialSpillSection(const InputSectionBase
&source
,
378 InputSectionDescription
&isd
)
379 : InputSection(source
.file
, source
.name
, source
.type
, source
.flags
,
380 source
.addralign
, source
.addralign
, {}, SectionBase::Spill
),
383 InputSection
InputSection::discarded(nullptr, "", 0, 0, 0, 0,
384 ArrayRef
<uint8_t>());
386 InputSection::InputSection(InputFile
*f
, StringRef name
, uint32_t type
,
387 uint64_t flags
, uint32_t addralign
, uint32_t entsize
,
388 ArrayRef
<uint8_t> data
, Kind k
)
389 : InputSectionBase(f
, name
, type
, flags
,
390 /*link=*/0, /*info=*/0, addralign
, /*entsize=*/entsize
,
392 assert(f
|| this == &InputSection::discarded
);
395 template <class ELFT
>
396 InputSection::InputSection(ObjFile
<ELFT
> &f
, const typename
ELFT::Shdr
&header
,
398 : InputSectionBase(f
, header
, name
, InputSectionBase::Regular
) {}
400 // Copy SHT_GROUP section contents. Used only for the -r option.
401 template <class ELFT
> void InputSection::copyShtGroup(uint8_t *buf
) {
402 // ELFT::Word is the 32-bit integral type in the target endianness.
403 using u32
= typename
ELFT::Word
;
404 ArrayRef
<u32
> from
= getDataAs
<u32
>();
405 auto *to
= reinterpret_cast<u32
*>(buf
);
407 // The first entry is not a section number but a flag.
410 // Adjust section numbers because section numbers in an input object files are
411 // different in the output. We also need to handle combined or discarded
413 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
414 DenseSet
<uint32_t> seen
;
415 for (uint32_t idx
: from
.slice(1)) {
416 OutputSection
*osec
= sections
[idx
]->getOutputSection();
417 if (osec
&& seen
.insert(osec
->sectionIndex
).second
)
418 *to
++ = osec
->sectionIndex
;
422 InputSectionBase
*InputSection::getRelocatedSection() const {
423 if (file
->isInternal() || !isStaticRelSecType(type
))
425 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
426 return sections
[info
];
429 template <class ELFT
, class RelTy
>
430 void InputSection::copyRelocations(Ctx
&ctx
, uint8_t *buf
) {
431 if (ctx
.arg
.relax
&& !ctx
.arg
.relocatable
&&
432 (ctx
.arg
.emachine
== EM_RISCV
|| ctx
.arg
.emachine
== EM_LOONGARCH
)) {
433 // On LoongArch and RISC-V, relaxation might change relocations: copy
434 // from internal ones that are updated by relaxation.
435 InputSectionBase
*sec
= getRelocatedSection();
436 copyRelocations
<ELFT
, RelTy
>(
438 llvm::make_range(sec
->relocations
.begin(), sec
->relocations
.end()));
440 // Convert the raw relocations in the input section into Relocation objects
441 // suitable to be used by copyRelocations below.
444 const ObjFile
<ELFT
> &file
;
445 Relocation
operator()(const RelTy
&rel
) const {
446 // RelExpr is not used so set to a dummy value.
447 return Relocation
{R_NONE
, rel
.getType(ctx
.arg
.isMips64EL
), rel
.r_offset
,
448 getAddend
<ELFT
>(rel
), &file
.getRelocTargetSym(rel
)};
452 using RawRels
= ArrayRef
<RelTy
>;
454 llvm::mapped_iterator
<typename
RawRels::iterator
, MapRel
>;
455 auto mapRel
= MapRel
{ctx
, *getFile
<ELFT
>()};
456 RawRels rawRels
= getDataAs
<RelTy
>();
457 auto rels
= llvm::make_range(MapRelIter(rawRels
.begin(), mapRel
),
458 MapRelIter(rawRels
.end(), mapRel
));
459 copyRelocations
<ELFT
, RelTy
>(ctx
, buf
, rels
);
463 // This is used for -r and --emit-relocs. We can't use memcpy to copy
464 // relocations because we need to update symbol table offset and section index
465 // for each relocation. So we copy relocations one by one.
466 template <class ELFT
, class RelTy
, class RelIt
>
467 void InputSection::copyRelocations(Ctx
&ctx
, uint8_t *buf
,
468 llvm::iterator_range
<RelIt
> rels
) {
469 const TargetInfo
&target
= *ctx
.target
;
470 InputSectionBase
*sec
= getRelocatedSection();
471 (void)sec
->contentMaybeDecompress(); // uncompress if needed
473 for (const Relocation
&rel
: rels
) {
474 RelType type
= rel
.type
;
475 const ObjFile
<ELFT
> *file
= getFile
<ELFT
>();
476 Symbol
&sym
= *rel
.sym
;
478 auto *p
= reinterpret_cast<typename
ELFT::Rela
*>(buf
);
479 buf
+= sizeof(RelTy
);
481 if (RelTy::HasAddend
)
482 p
->r_addend
= rel
.addend
;
484 // Output section VA is zero for -r, so r_offset is an offset within the
485 // section, but for --emit-relocs it is a virtual address.
486 p
->r_offset
= sec
->getVA(rel
.offset
);
487 p
->setSymbolAndType(ctx
.in
.symTab
->getSymbolIndex(sym
), type
,
490 if (sym
.type
== STT_SECTION
) {
491 // We combine multiple section symbols into only one per
492 // section. This means we have to update the addend. That is
493 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
494 // section data. We do that by adding to the Relocation vector.
496 // .eh_frame is horribly special and can reference discarded sections. To
497 // avoid having to parse and recreate .eh_frame, we just replace any
498 // relocation in it pointing to discarded sections with R_*_NONE, which
499 // hopefully creates a frame that is ignored at runtime. Also, don't warn
500 // on .gcc_except_table and debug sections.
502 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
503 auto *d
= dyn_cast
<Defined
>(&sym
);
505 if (!isDebugSection(*sec
) && sec
->name
!= ".eh_frame" &&
506 sec
->name
!= ".gcc_except_table" && sec
->name
!= ".got2" &&
507 sec
->name
!= ".toc") {
508 uint32_t secIdx
= cast
<Undefined
>(sym
).discardedSecIdx
;
509 Elf_Shdr_Impl
<ELFT
> sec
= file
->template getELFShdrs
<ELFT
>()[secIdx
];
510 Warn(ctx
) << "relocation refers to a discarded section: "
511 << CHECK2(file
->getObj().getSectionName(sec
), file
)
512 << "\n>>> referenced by " << getObjMsg(p
->r_offset
);
514 p
->setSymbolAndType(0, 0, false);
517 SectionBase
*section
= d
->section
;
518 assert(section
->isLive());
520 int64_t addend
= rel
.addend
;
521 const uint8_t *bufLoc
= sec
->content().begin() + rel
.offset
;
522 if (!RelTy::HasAddend
)
523 addend
= target
.getImplicitAddend(bufLoc
, type
);
525 if (ctx
.arg
.emachine
== EM_MIPS
&&
526 target
.getRelExpr(type
, sym
, bufLoc
) == RE_MIPS_GOTREL
) {
527 // Some MIPS relocations depend on "gp" value. By default,
528 // this value has 0x7ff0 offset from a .got section. But
529 // relocatable files produced by a compiler or a linker
530 // might redefine this default value and we must use it
531 // for a calculation of the relocation result. When we
532 // generate EXE or DSO it's trivial. Generating a relocatable
533 // output is more difficult case because the linker does
534 // not calculate relocations in this mode and loses
535 // individual "gp" values used by each input object file.
536 // As a workaround we add the "gp" value to the relocation
537 // addend and save it back to the file.
538 addend
+= sec
->getFile
<ELFT
>()->mipsGp0
;
541 if (RelTy::HasAddend
)
543 sym
.getVA(ctx
, addend
) - section
->getOutputSection()->addr
;
544 // For SHF_ALLOC sections relocated by REL, append a relocation to
545 // sec->relocations so that relocateAlloc transitively called by
546 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
547 // utilize relocateNonAlloc to process raw relocations and do not need
548 // this sec->relocations change.
549 else if (ctx
.arg
.relocatable
&& (sec
->flags
& SHF_ALLOC
) &&
550 type
!= target
.noneRel
)
551 sec
->addReloc({R_ABS
, type
, rel
.offset
, addend
, &sym
});
552 } else if (ctx
.arg
.emachine
== EM_PPC
&& type
== R_PPC_PLTREL24
&&
553 p
->r_addend
>= 0x8000 && sec
->file
->ppc32Got2
) {
554 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
555 // indicates that r30 is relative to the input section .got2
556 // (r_addend>=0x8000), after linking, r30 should be relative to the output
557 // section .got2 . To compensate for the shift, adjust r_addend by
558 // ppc32Got->outSecOff.
559 p
->r_addend
+= sec
->file
->ppc32Got2
->outSecOff
;
564 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
565 // references specially. The general rule is that the value of the symbol in
566 // this context is the address of the place P. A further special case is that
567 // branch relocations to an undefined weak reference resolve to the next
569 static uint32_t getARMUndefinedRelativeWeakVA(RelType type
, uint32_t a
,
572 // Unresolved branch relocations to weak references resolve to next
573 // instruction, this will be either 2 or 4 bytes on from P.
574 case R_ARM_THM_JUMP8
:
575 case R_ARM_THM_JUMP11
:
582 case R_ARM_THM_JUMP19
:
583 case R_ARM_THM_JUMP24
:
586 // We don't want an interworking BLX to ARM
588 // Unresolved non branch pc-relative relocations
589 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
590 // targets a weak-reference.
591 case R_ARM_MOVW_PREL_NC
:
592 case R_ARM_MOVT_PREL
:
594 case R_ARM_THM_ALU_PREL_11_0
:
595 case R_ARM_THM_MOVW_PREL_NC
:
596 case R_ARM_THM_MOVT_PREL
:
599 // p + a is unrepresentable as negative immediates can't be encoded.
603 llvm_unreachable("ARM pc-relative relocation expected\n");
606 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
607 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
609 // Unresolved branch relocations to weak references resolve to next
610 // instruction, this is 4 bytes on from P.
611 case R_AARCH64_CALL26
:
612 case R_AARCH64_CONDBR19
:
613 case R_AARCH64_JUMP26
:
614 case R_AARCH64_TSTBR14
:
616 // Unresolved non branch pc-relative relocations
617 case R_AARCH64_PREL16
:
618 case R_AARCH64_PREL32
:
619 case R_AARCH64_PREL64
:
620 case R_AARCH64_ADR_PREL_LO21
:
621 case R_AARCH64_LD_PREL_LO19
:
622 case R_AARCH64_PLT32
:
625 llvm_unreachable("AArch64 pc-relative relocation expected\n");
628 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
633 case R_RISCV_CALL_PLT
:
634 case R_RISCV_RVC_BRANCH
:
635 case R_RISCV_RVC_JUMP
:
643 // ARM SBREL relocations are of the form S + A - B where B is the static base
644 // The ARM ABI defines base to be "addressing origin of the output segment
645 // defining the symbol S". We defined the "addressing origin"/static base to be
646 // the base of the PT_LOAD segment containing the Sym.
647 // The procedure call standard only defines a Read Write Position Independent
648 // RWPI variant so in practice we should expect the static base to be the base
649 // of the RW segment.
650 static uint64_t getARMStaticBase(const Symbol
&sym
) {
651 OutputSection
*os
= sym
.getOutputSection();
652 if (!os
|| !os
->ptLoad
|| !os
->ptLoad
->firstSec
)
653 Fatal(os
->ctx
) << "SBREL relocation to " << sym
.getName()
654 << " without static base";
655 return os
->ptLoad
->firstSec
->addr
;
658 // For RE_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
659 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
660 // is calculated using PCREL_HI20's symbol.
662 // This function returns the R_RISCV_PCREL_HI20 relocation from the
663 // R_RISCV_PCREL_LO12 relocation.
664 static Relocation
*getRISCVPCRelHi20(Ctx
&ctx
, const InputSectionBase
*loSec
,
665 const Relocation
&loReloc
) {
666 uint64_t addend
= loReloc
.addend
;
667 Symbol
*sym
= loReloc
.sym
;
669 const Defined
*d
= cast
<Defined
>(sym
);
671 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
672 << ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: "
676 InputSection
*hiSec
= cast
<InputSection
>(d
->section
);
679 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
680 << ": R_RISCV_PCREL_LO12 relocation points to a symbol '"
681 << sym
->getName() << "' in a different section '" << hiSec
->name
685 Warn(ctx
) << loSec
->getLocation(loReloc
.offset
)
686 << ": non-zero addend in R_RISCV_PCREL_LO12 relocation to "
687 << hiSec
->getObjMsg(d
->value
) << " is ignored";
689 // Relocations are sorted by offset, so we can use std::equal_range to do
692 hiReloc
.offset
= d
->value
;
694 std::equal_range(hiSec
->relocs().begin(), hiSec
->relocs().end(), hiReloc
,
695 [](const Relocation
&lhs
, const Relocation
&rhs
) {
696 return lhs
.offset
< rhs
.offset
;
699 for (auto it
= range
.first
; it
!= range
.second
; ++it
)
700 if (it
->type
== R_RISCV_PCREL_HI20
|| it
->type
== R_RISCV_GOT_HI20
||
701 it
->type
== R_RISCV_TLS_GD_HI20
|| it
->type
== R_RISCV_TLS_GOT_HI20
)
704 Err(ctx
) << loSec
->getLocation(loReloc
.offset
)
705 << ": R_RISCV_PCREL_LO12 relocation points to "
706 << hiSec
->getObjMsg(d
->value
)
707 << " without an associated R_RISCV_PCREL_HI20 relocation";
711 // A TLS symbol's virtual address is relative to the TLS segment. Add a
712 // target-specific adjustment to produce a thread-pointer-relative offset.
713 static int64_t getTlsTpOffset(Ctx
&ctx
, const Symbol
&s
) {
714 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
715 if (&s
== ctx
.sym
.tlsModuleBase
)
718 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
719 // while most others use Variant 1. At run time TP will be aligned to p_align.
721 // Variant 1. TP will be followed by an optional gap (which is the size of 2
722 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
723 // padding, then the static TLS blocks. The alignment padding is added so that
724 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
726 // Variant 2. Static TLS blocks, followed by alignment padding are placed
727 // before TP. The alignment padding is added so that (TP - padding -
728 // p_memsz) is congruent to p_vaddr modulo p_align.
729 PhdrEntry
*tls
= ctx
.tlsPhdr
;
730 if (!tls
) // Reported an error in getSymVA
732 switch (ctx
.arg
.emachine
) {
736 return s
.getVA(ctx
, 0) + ctx
.arg
.wordsize
* 2 +
737 ((tls
->p_vaddr
- ctx
.arg
.wordsize
* 2) & (tls
->p_align
- 1));
741 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
742 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
743 // data and 0xf000 of the program's TLS segment.
744 return s
.getVA(ctx
, 0) + (tls
->p_vaddr
& (tls
->p_align
- 1)) - 0x7000;
747 // See the comment in handleTlsRelocation. For TLSDESC=>IE,
748 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
749 // `tls` may be null, the return value is ignored.
750 if (s
.type
!= STT_TLS
)
752 return s
.getVA(ctx
, 0) + (tls
->p_vaddr
& (tls
->p_align
- 1));
760 return s
.getVA(ctx
, 0) - tls
->p_memsz
-
761 ((-tls
->p_vaddr
- tls
->p_memsz
) & (tls
->p_align
- 1));
763 llvm_unreachable("unhandled ctx.arg.emachine");
767 uint64_t InputSectionBase::getRelocTargetVA(Ctx
&ctx
, const Relocation
&r
,
769 int64_t a
= r
.addend
;
773 case R_RELAX_TLS_LD_TO_LE_ABS
:
774 case R_RELAX_GOT_PC_NOPIC
:
775 case RE_AARCH64_AUTH
:
777 case RE_RISCV_LEB128
:
778 return r
.sym
->getVA(ctx
, a
);
784 return r
.sym
->getVA(ctx
, a
) - getARMStaticBase(*r
.sym
);
786 case RE_AARCH64_AUTH_GOT
:
787 case R_RELAX_TLS_GD_TO_IE_ABS
:
788 return r
.sym
->getGotVA(ctx
) + a
;
789 case RE_LOONGARCH_GOT
:
790 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type
791 // for their page offsets. The arithmetics are different in the TLS case
792 // so we have to duplicate some logic here.
793 if (r
.sym
->hasFlag(NEEDS_TLSGD
) && r
.type
!= R_LARCH_TLS_IE_PC_LO12
)
794 // Like RE_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
795 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
;
796 return r
.sym
->getGotVA(ctx
) + a
;
798 return ctx
.in
.got
->getVA() + a
- p
;
799 case R_GOTPLTONLY_PC
:
800 return ctx
.in
.gotPlt
->getVA() + a
- p
;
802 case RE_PPC64_RELAX_TOC
:
803 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.got
->getVA();
805 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.gotPlt
->getVA();
807 case R_RELAX_TLS_GD_TO_IE_GOTPLT
:
808 return r
.sym
->getGotVA(ctx
) + a
- ctx
.in
.gotPlt
->getVA();
809 case R_TLSLD_GOT_OFF
:
811 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
812 return r
.sym
->getGotOffset(ctx
) + a
;
813 case RE_AARCH64_GOT_PAGE_PC
:
814 case RE_AARCH64_AUTH_GOT_PAGE_PC
:
815 case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC
:
816 return getAArch64Page(r
.sym
->getGotVA(ctx
) + a
) - getAArch64Page(p
);
817 case RE_AARCH64_GOT_PAGE
:
818 return r
.sym
->getGotVA(ctx
) + a
- getAArch64Page(ctx
.in
.got
->getVA());
820 case RE_AARCH64_AUTH_GOT_PC
:
821 case R_RELAX_TLS_GD_TO_IE
:
822 return r
.sym
->getGotVA(ctx
) + a
- p
;
823 case R_GOTPLT_GOTREL
:
824 return r
.sym
->getGotPltVA(ctx
) + a
- ctx
.in
.got
->getVA();
826 return r
.sym
->getGotPltVA(ctx
) + a
- p
;
827 case RE_LOONGARCH_GOT_PAGE_PC
:
828 if (r
.sym
->hasFlag(NEEDS_TLSGD
))
829 return getLoongArchPageDelta(ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
, p
,
831 return getLoongArchPageDelta(r
.sym
->getGotVA(ctx
) + a
, p
, r
.type
);
833 return r
.sym
->getVA(ctx
, a
) - ctx
.in
.mipsGot
->getGp(file
);
835 return ctx
.in
.mipsGot
->getGp(file
) + a
;
836 case RE_MIPS_GOT_GP_PC
: {
837 // R_MIPS_LO16 expression has RE_MIPS_GOT_GP_PC r.type iif the target
838 // is _gp_disp symbol. In that case we should use the following
839 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
840 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
841 // microMIPS variants of these relocations use slightly different
842 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
843 // to correctly handle less-significant bit of the microMIPS symbol.
844 uint64_t v
= ctx
.in
.mipsGot
->getGp(file
) + a
- p
;
845 if (r
.type
== R_MIPS_LO16
|| r
.type
== R_MICROMIPS_LO16
)
847 if (r
.type
== R_MICROMIPS_LO16
|| r
.type
== R_MICROMIPS_HI16
)
851 case RE_MIPS_GOT_LOCAL_PAGE
:
852 // If relocation against MIPS local symbol requires GOT entry, this entry
853 // should be initialized by 'page address'. This address is high 16-bits
854 // of sum the symbol's value and the addend.
855 return ctx
.in
.mipsGot
->getVA() +
856 ctx
.in
.mipsGot
->getPageEntryOffset(file
, *r
.sym
, a
) -
857 ctx
.in
.mipsGot
->getGp(file
);
858 case RE_MIPS_GOT_OFF
:
859 case RE_MIPS_GOT_OFF32
:
860 // In case of MIPS if a GOT relocation has non-zero addend this addend
861 // should be applied to the GOT entry content not to the GOT entry offset.
862 // That is why we use separate expression r.type.
863 return ctx
.in
.mipsGot
->getVA() +
864 ctx
.in
.mipsGot
->getSymEntryOffset(file
, *r
.sym
, a
) -
865 ctx
.in
.mipsGot
->getGp(file
);
867 return ctx
.in
.mipsGot
->getVA() +
868 ctx
.in
.mipsGot
->getGlobalDynOffset(file
, *r
.sym
) -
869 ctx
.in
.mipsGot
->getGp(file
);
871 return ctx
.in
.mipsGot
->getVA() + ctx
.in
.mipsGot
->getTlsIndexOffset(file
) -
872 ctx
.in
.mipsGot
->getGp(file
);
873 case RE_AARCH64_PAGE_PC
: {
874 uint64_t val
= r
.sym
->isUndefWeak() ? p
+ a
: r
.sym
->getVA(ctx
, a
);
875 return getAArch64Page(val
) - getAArch64Page(p
);
877 case RE_RISCV_PC_INDIRECT
: {
878 if (const Relocation
*hiRel
= getRISCVPCRelHi20(ctx
, this, r
))
879 return getRelocTargetVA(ctx
, *hiRel
, r
.sym
->getVA(ctx
));
882 case RE_LOONGARCH_PAGE_PC
:
883 return getLoongArchPageDelta(r
.sym
->getVA(ctx
, a
), p
, r
.type
);
887 if (r
.expr
== RE_ARM_PCA
)
888 // Some PC relative ARM (Thumb) relocations align down the place.
890 if (r
.sym
->isUndefined()) {
891 // On ARM and AArch64 a branch to an undefined weak resolves to the next
892 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
893 // to the same instruction to cause an infinite loop (making the user
894 // aware of the issue) while ensuring no overflow.
895 // Note: if the symbol is hidden, its binding has been converted to local,
896 // so we just check isUndefined() here.
897 if (ctx
.arg
.emachine
== EM_ARM
)
898 dest
= getARMUndefinedRelativeWeakVA(r
.type
, a
, p
);
899 else if (ctx
.arg
.emachine
== EM_AARCH64
)
900 dest
= getAArch64UndefinedRelativeWeakVA(r
.type
, p
) + a
;
901 else if (ctx
.arg
.emachine
== EM_PPC
)
903 else if (ctx
.arg
.emachine
== EM_RISCV
)
904 dest
= getRISCVUndefinedRelativeWeakVA(r
.type
, p
) + a
;
906 dest
= r
.sym
->getVA(ctx
, a
);
908 dest
= r
.sym
->getVA(ctx
, a
);
913 return r
.sym
->getPltVA(ctx
) + a
;
915 case RE_PPC64_CALL_PLT
:
916 return r
.sym
->getPltVA(ctx
) + a
- p
;
917 case RE_LOONGARCH_PLT_PAGE_PC
:
918 return getLoongArchPageDelta(r
.sym
->getPltVA(ctx
) + a
, p
, r
.type
);
920 return r
.sym
->getPltVA(ctx
) + a
- ctx
.in
.gotPlt
->getVA();
922 return r
.sym
->getPltVA(ctx
) + a
- ctx
.in
.got
->getVA();
923 case RE_PPC32_PLTREL
:
924 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
925 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
926 // target VA computation.
927 return r
.sym
->getPltVA(ctx
) - p
;
928 case RE_PPC64_CALL
: {
929 uint64_t symVA
= r
.sym
->getVA(ctx
, a
);
930 // If we have an undefined weak symbol, we might get here with a symbol
931 // address of zero. That could overflow, but the code must be unreachable,
932 // so don't bother doing anything at all.
936 // PPC64 V2 ABI describes two entry points to a function. The global entry
937 // point is used for calls where the caller and callee (may) have different
938 // TOC base pointers and r2 needs to be modified to hold the TOC base for
939 // the callee. For local calls the caller and callee share the same
940 // TOC base and so the TOC pointer initialization code should be skipped by
941 // branching to the local entry point.
943 getPPC64GlobalEntryToLocalEntryOffset(ctx
, r
.sym
->stOther
);
945 case RE_PPC64_TOCBASE
:
946 return getPPC64TocBase(ctx
) + a
;
948 case RE_PPC64_RELAX_GOT_PC
:
949 return r
.sym
->getVA(ctx
, a
) - p
;
950 case R_RELAX_TLS_GD_TO_LE
:
951 case R_RELAX_TLS_IE_TO_LE
:
952 case R_RELAX_TLS_LD_TO_LE
:
954 // It is not very clear what to return if the symbol is undefined. With
955 // --noinhibit-exec, even a non-weak undefined reference may reach here.
956 // Just return A, which matches R_ABS, and the behavior of some dynamic
958 if (r
.sym
->isUndefined())
960 return getTlsTpOffset(ctx
, *r
.sym
) + a
;
961 case R_RELAX_TLS_GD_TO_LE_NEG
:
963 if (r
.sym
->isUndefined())
965 return -getTlsTpOffset(ctx
, *r
.sym
) + a
;
967 return r
.sym
->getSize() + a
;
969 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
;
971 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
- p
;
972 case R_TLSDESC_GOTPLT
:
973 return ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
- ctx
.in
.gotPlt
->getVA();
974 case RE_AARCH64_TLSDESC_PAGE
:
975 return getAArch64Page(ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
) -
977 case RE_LOONGARCH_TLSDESC_PAGE_PC
:
978 return getLoongArchPageDelta(ctx
.in
.got
->getTlsDescAddr(*r
.sym
) + a
, p
,
981 return ctx
.in
.got
->getGlobalDynOffset(*r
.sym
) + a
;
983 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
- ctx
.in
.gotPlt
->getVA();
985 return ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
- p
;
986 case RE_LOONGARCH_TLSGD_PAGE_PC
:
987 return getLoongArchPageDelta(ctx
.in
.got
->getGlobalDynAddr(*r
.sym
) + a
, p
,
990 return ctx
.in
.got
->getVA() + ctx
.in
.got
->getTlsIndexOff() + a
-
991 ctx
.in
.gotPlt
->getVA();
993 return ctx
.in
.got
->getTlsIndexOff() + a
;
995 return ctx
.in
.got
->getTlsIndexVA() + a
- p
;
997 llvm_unreachable("invalid expression");
1001 // This function applies relocations to sections without SHF_ALLOC bit.
1002 // Such sections are never mapped to memory at runtime. Debug sections are
1003 // an example. Relocations in non-alloc sections are much easier to
1004 // handle than in allocated sections because it will never need complex
1005 // treatment such as GOT or PLT (because at runtime no one refers them).
1006 // So, we handle relocations for non-alloc sections directly in this
1007 // function as a performance optimization.
1008 template <class ELFT
, class RelTy
>
1009 void InputSection::relocateNonAlloc(Ctx
&ctx
, uint8_t *buf
,
1010 Relocs
<RelTy
> rels
) {
1011 const unsigned bits
= sizeof(typename
ELFT::uint
) * 8;
1012 const TargetInfo
&target
= *ctx
.target
;
1013 const auto emachine
= ctx
.arg
.emachine
;
1014 const bool isDebug
= isDebugSection(*this);
1015 const bool isDebugLine
= isDebug
&& name
== ".debug_line";
1016 std::optional
<uint64_t> tombstone
;
1018 if (name
== ".debug_loc" || name
== ".debug_ranges")
1020 else if (name
== ".debug_names")
1021 tombstone
= UINT64_MAX
; // tombstone value
1025 for (const auto &patAndValue
: llvm::reverse(ctx
.arg
.deadRelocInNonAlloc
))
1026 if (patAndValue
.first
.match(this->name
)) {
1027 tombstone
= patAndValue
.second
;
1031 const InputFile
*f
= this->file
;
1032 for (auto it
= rels
.begin(), end
= rels
.end(); it
!= end
; ++it
) {
1033 const RelTy
&rel
= *it
;
1034 const RelType type
= rel
.getType(ctx
.arg
.isMips64EL
);
1035 const uint64_t offset
= rel
.r_offset
;
1036 uint8_t *bufLoc
= buf
+ offset
;
1037 int64_t addend
= getAddend
<ELFT
>(rel
);
1038 if (!RelTy::HasAddend
)
1039 addend
+= target
.getImplicitAddend(bufLoc
, type
);
1041 Symbol
&sym
= f
->getRelocTargetSym(rel
);
1042 RelExpr expr
= target
.getRelExpr(type
, sym
, bufLoc
);
1045 auto *ds
= dyn_cast
<Defined
>(&sym
);
1047 if (emachine
== EM_RISCV
&& type
== R_RISCV_SET_ULEB128
) {
1049 it
->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128
&&
1050 it
->r_offset
== offset
) {
1052 if (!ds
&& tombstone
) {
1055 val
= sym
.getVA(ctx
, addend
) -
1056 (f
->getRelocTargetSym(*it
).getVA(ctx
) + getAddend
<ELFT
>(*it
));
1058 if (overwriteULEB128(bufLoc
, val
) >= 0x80)
1059 Err(ctx
) << getLocation(offset
) << ": ULEB128 value " << val
1060 << " exceeds available space; references '" << &sym
<< "'";
1063 Err(ctx
) << getLocation(offset
)
1064 << ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128";
1068 if (tombstone
&& (expr
== R_ABS
|| expr
== R_DTPREL
)) {
1069 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
1070 // folded section symbols) to a tombstone value. Resolving to addend is
1071 // unsatisfactory because the result address range may collide with a
1072 // valid range of low address, or leave multiple CUs claiming ownership of
1073 // the same range of code, which may confuse consumers.
1075 // To address the problems, we use -1 as a tombstone value for most
1076 // .debug_* sections. We have to ignore the addend because we don't want
1077 // to resolve an address attribute (which may have a non-zero addend) to
1078 // -1+addend (wrap around to a low address).
1080 // R_DTPREL type relocations represent an offset into the dynamic thread
1081 // vector. The computed value is st_value plus a non-negative offset.
1082 // Negative values are invalid, so -1 can be used as the tombstone value.
1084 // If the referenced symbol is relative to a discarded section (due to
1085 // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
1086 // `ds->folded` catches the ICF folded case. However, resolving a
1087 // relocation in .debug_line to -1 would stop debugger users from setting
1088 // breakpoints on the folded-in function, so exclude .debug_line.
1090 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
1091 // (base address selection entry), use 1 (which is used by GNU ld for
1094 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
1095 // value. Enable -1 in a future release.
1096 if (!ds
|| (ds
->folded
&& !isDebugLine
)) {
1097 // If -z dead-reloc-in-nonalloc= is specified, respect it.
1098 uint64_t value
= SignExtend64
<bits
>(*tombstone
);
1099 // For a 32-bit local TU reference in .debug_names, X86_64::relocate
1100 // requires that the unsigned value for R_X86_64_32 is truncated to
1101 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
1102 // absolute relocations and do not need this change.
1103 if (emachine
== EM_X86_64
&& type
== R_X86_64_32
)
1104 value
= static_cast<uint32_t>(value
);
1105 target
.relocateNoSym(bufLoc
, type
, value
);
1110 // For a relocatable link, content relocated by relocation types with an
1111 // explicit addend, such as RELA, remain unchanged and we can stop here.
1112 // While content relocated by relocation types with an implicit addend, such
1113 // as REL, needs the implicit addend updated.
1114 if (ctx
.arg
.relocatable
&& (RelTy::HasAddend
|| sym
.type
!= STT_SECTION
))
1117 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1119 if (LLVM_LIKELY(expr
== R_ABS
) || expr
== R_DTPREL
|| expr
== R_GOTPLTREL
||
1120 expr
== RE_RISCV_ADD
|| expr
== RE_ARM_SBREL
) {
1121 target
.relocateNoSym(bufLoc
, type
,
1122 SignExtend64
<bits
>(sym
.getVA(ctx
, addend
)));
1126 if (expr
== R_SIZE
) {
1127 target
.relocateNoSym(bufLoc
, type
,
1128 SignExtend64
<bits
>(sym
.getSize() + addend
));
1132 // If the control reaches here, we found a PC-relative relocation in a
1133 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1134 // at runtime, the notion of PC-relative doesn't make sense here. So,
1135 // this is a usage error. However, GNU linkers historically accept such
1136 // relocations without any errors and relocate them as if they were at
1137 // address 0. For bug-compatibility, we accept them with warnings. We
1138 // know Steel Bank Common Lisp as of 2018 have this bug.
1140 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1141 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1142 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1143 // keep this bug-compatible code for a while.
1144 bool isErr
= expr
!= R_PC
&& !(emachine
== EM_386
&& type
== R_386_GOTPC
);
1146 ELFSyncStream
diag(ctx
, isErr
&& !ctx
.arg
.noinhibitExec
1149 diag
<< getLocation(offset
) << ": has non-ABS relocation " << type
1150 << " against symbol '" << &sym
<< "'";
1153 target
.relocateNoSym(
1155 SignExtend64
<bits
>(sym
.getVA(ctx
, addend
- offset
- outSecOff
)));
1159 template <class ELFT
>
1160 void InputSectionBase::relocate(Ctx
&ctx
, uint8_t *buf
, uint8_t *bufEnd
) {
1161 if ((flags
& SHF_EXECINSTR
) && LLVM_UNLIKELY(getFile
<ELFT
>()->splitStack
))
1162 adjustSplitStackFunctionPrologues
<ELFT
>(ctx
, buf
, bufEnd
);
1164 if (flags
& SHF_ALLOC
) {
1165 ctx
.target
->relocateAlloc(*this, buf
);
1169 auto *sec
= cast
<InputSection
>(this);
1170 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1171 // locations with tombstone values.
1172 invokeOnRelocs(*sec
, sec
->relocateNonAlloc
<ELFT
>, ctx
, buf
);
1175 // For each function-defining prologue, find any calls to __morestack,
1176 // and replace them with calls to __morestack_non_split.
1177 static void switchMorestackCallsToMorestackNonSplit(
1178 Ctx
&ctx
, DenseSet
<Defined
*> &prologues
,
1179 SmallVector
<Relocation
*, 0> &morestackCalls
) {
1181 // If the target adjusted a function's prologue, all calls to
1182 // __morestack inside that function should be switched to
1183 // __morestack_non_split.
1184 Symbol
*moreStackNonSplit
= ctx
.symtab
->find("__morestack_non_split");
1185 if (!moreStackNonSplit
) {
1186 ErrAlways(ctx
) << "mixing split-stack objects requires a definition of "
1187 "__morestack_non_split";
1191 // Sort both collections to compare addresses efficiently.
1192 llvm::sort(morestackCalls
, [](const Relocation
*l
, const Relocation
*r
) {
1193 return l
->offset
< r
->offset
;
1195 std::vector
<Defined
*> functions(prologues
.begin(), prologues
.end());
1196 llvm::sort(functions
, [](const Defined
*l
, const Defined
*r
) {
1197 return l
->value
< r
->value
;
1200 auto it
= morestackCalls
.begin();
1201 for (Defined
*f
: functions
) {
1202 // Find the first call to __morestack within the function.
1203 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
)
1205 // Adjust all calls inside the function.
1206 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
+ f
->size
) {
1207 (*it
)->sym
= moreStackNonSplit
;
1213 static bool enclosingPrologueAttempted(uint64_t offset
,
1214 const DenseSet
<Defined
*> &prologues
) {
1215 for (Defined
*f
: prologues
)
1216 if (f
->value
<= offset
&& offset
< f
->value
+ f
->size
)
1221 // If a function compiled for split stack calls a function not
1222 // compiled for split stack, then the caller needs its prologue
1223 // adjusted to ensure that the called function will have enough stack
1224 // available. Find those functions, and adjust their prologues.
1225 template <class ELFT
>
1226 void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx
&ctx
, uint8_t *buf
,
1228 DenseSet
<Defined
*> prologues
;
1229 SmallVector
<Relocation
*, 0> morestackCalls
;
1231 for (Relocation
&rel
: relocs()) {
1232 // Ignore calls into the split-stack api.
1233 if (rel
.sym
->getName().starts_with("__morestack")) {
1234 if (rel
.sym
->getName() == "__morestack")
1235 morestackCalls
.push_back(&rel
);
1239 // A relocation to non-function isn't relevant. Sometimes
1240 // __morestack is not marked as a function, so this check comes
1241 // after the name check.
1242 if (rel
.sym
->type
!= STT_FUNC
)
1245 // If the callee's-file was compiled with split stack, nothing to do. In
1246 // this context, a "Defined" symbol is one "defined by the binary currently
1247 // being produced". So an "undefined" symbol might be provided by a shared
1248 // library. It is not possible to tell how such symbols were compiled, so be
1250 if (Defined
*d
= dyn_cast
<Defined
>(rel
.sym
))
1251 if (InputSection
*isec
= cast_or_null
<InputSection
>(d
->section
))
1252 if (!isec
|| !isec
->getFile
<ELFT
>() || isec
->getFile
<ELFT
>()->splitStack
)
1255 if (enclosingPrologueAttempted(rel
.offset
, prologues
))
1258 if (Defined
*f
= getEnclosingFunction(rel
.offset
)) {
1259 prologues
.insert(f
);
1260 if (ctx
.target
->adjustPrologueForCrossSplitStack(buf
+ f
->value
, end
,
1263 if (!getFile
<ELFT
>()->someNoSplitStack
)
1265 << this << ": " << f
->getName() << " (with -fsplit-stack) calls "
1266 << rel
.sym
->getName()
1267 << " (without -fsplit-stack), but couldn't adjust its prologue";
1271 if (ctx
.target
->needsMoreStackNonSplit
)
1272 switchMorestackCallsToMorestackNonSplit(ctx
, prologues
, morestackCalls
);
1275 template <class ELFT
> void InputSection::writeTo(Ctx
&ctx
, uint8_t *buf
) {
1276 if (LLVM_UNLIKELY(type
== SHT_NOBITS
))
1278 // If -r or --emit-relocs is given, then an InputSection
1279 // may be a relocation section.
1280 if (LLVM_UNLIKELY(type
== SHT_RELA
)) {
1281 copyRelocations
<ELFT
, typename
ELFT::Rela
>(ctx
, buf
);
1284 if (LLVM_UNLIKELY(type
== SHT_REL
)) {
1285 copyRelocations
<ELFT
, typename
ELFT::Rel
>(ctx
, buf
);
1289 // If -r is given, we may have a SHT_GROUP section.
1290 if (LLVM_UNLIKELY(type
== SHT_GROUP
)) {
1291 copyShtGroup
<ELFT
>(buf
);
1295 // If this is a compressed section, uncompress section contents directly
1298 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content_
);
1299 auto compressed
= ArrayRef
<uint8_t>(content_
, compressedSize
)
1300 .slice(sizeof(typename
ELFT::Chdr
));
1301 size_t size
= this->size
;
1302 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
1303 ? compression::zlib::decompress(compressed
, buf
, size
)
1304 : compression::zstd::decompress(compressed
, buf
, size
))
1305 Fatal(ctx
) << this << ": decompress failed: " << std::move(e
);
1306 uint8_t *bufEnd
= buf
+ size
;
1307 relocate
<ELFT
>(ctx
, buf
, bufEnd
);
1311 // Copy section contents from source object file to output file
1312 // and then apply relocations.
1313 memcpy(buf
, content().data(), content().size());
1314 relocate
<ELFT
>(ctx
, buf
, buf
+ content().size());
1317 void InputSection::replace(InputSection
*other
) {
1318 addralign
= std::max(addralign
, other
->addralign
);
1320 // When a section is replaced with another section that was allocated to
1321 // another partition, the replacement section (and its associated sections)
1322 // need to be placed in the main partition so that both partitions will be
1323 // able to access it.
1324 if (partition
!= other
->partition
) {
1326 for (InputSection
*isec
: dependentSections
)
1327 isec
->partition
= 1;
1334 template <class ELFT
>
1335 EhInputSection::EhInputSection(ObjFile
<ELFT
> &f
,
1336 const typename
ELFT::Shdr
&header
,
1338 : InputSectionBase(f
, header
, name
, InputSectionBase::EHFrame
) {}
1340 SyntheticSection
*EhInputSection::getParent() const {
1341 return cast_or_null
<SyntheticSection
>(parent
);
1344 // .eh_frame is a sequence of CIE or FDE records.
1345 // This function splits an input section into records and returns them.
1346 template <class ELFT
> void EhInputSection::split() {
1347 const RelsOrRelas
<ELFT
> rels
= relsOrRelas
<ELFT
>(/*supportsCrel=*/false);
1348 // getReloc expects the relocations to be sorted by r_offset. See the comment
1350 if (rels
.areRelocsRel()) {
1351 SmallVector
<typename
ELFT::Rel
, 0> storage
;
1352 split
<ELFT
>(sortRels(rels
.rels
, storage
));
1354 SmallVector
<typename
ELFT::Rela
, 0> storage
;
1355 split
<ELFT
>(sortRels(rels
.relas
, storage
));
1359 template <class ELFT
, class RelTy
>
1360 void EhInputSection::split(ArrayRef
<RelTy
> rels
) {
1361 ArrayRef
<uint8_t> d
= content();
1362 const char *msg
= nullptr;
1364 while (!d
.empty()) {
1366 msg
= "CIE/FDE too small";
1369 uint64_t size
= endian::read32
<ELFT::Endianness
>(d
.data());
1370 if (size
== 0) // ZERO terminator
1372 uint32_t id
= endian::read32
<ELFT::Endianness
>(d
.data() + 4);
1374 if (LLVM_UNLIKELY(size
> d
.size())) {
1375 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1376 // but we do not support that format yet.
1377 msg
= size
== UINT32_MAX
+ uint64_t(4)
1378 ? "CIE/FDE too large"
1379 : "CIE/FDE ends past the end of the section";
1383 // Find the first relocation that points to [off,off+size). Relocations
1384 // have been sorted by r_offset.
1385 const uint64_t off
= d
.data() - content().data();
1386 while (relI
!= rels
.size() && rels
[relI
].r_offset
< off
)
1388 unsigned firstRel
= -1;
1389 if (relI
!= rels
.size() && rels
[relI
].r_offset
< off
+ size
)
1391 (id
== 0 ? cies
: fdes
).emplace_back(off
, this, size
, firstRel
);
1395 Err(file
->ctx
) << "corrupted .eh_frame: " << msg
<< "\n>>> defined in "
1396 << getObjMsg(d
.data() - content().data());
1399 // Return the offset in an output section for a given input offset.
1400 uint64_t EhInputSection::getParentOffset(uint64_t offset
) const {
1401 auto it
= partition_point(
1402 fdes
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1403 if (it
== fdes
.begin() || it
[-1].inputOff
+ it
[-1].size
<= offset
) {
1404 it
= partition_point(
1405 cies
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1406 if (it
== cies
.begin()) // invalid piece
1409 if (it
[-1].outputOff
== -1) // invalid piece
1410 return offset
- it
[-1].inputOff
;
1411 return it
[-1].outputOff
+ (offset
- it
[-1].inputOff
);
1414 static size_t findNull(StringRef s
, size_t entSize
) {
1415 for (unsigned i
= 0, n
= s
.size(); i
!= n
; i
+= entSize
) {
1416 const char *b
= s
.begin() + i
;
1417 if (std::all_of(b
, b
+ entSize
, [](char c
) { return c
== 0; }))
1420 llvm_unreachable("");
1423 // Split SHF_STRINGS section. Such section is a sequence of
1424 // null-terminated strings.
1425 void MergeInputSection::splitStrings(StringRef s
, size_t entSize
) {
1426 const bool live
= !(flags
& SHF_ALLOC
) || !getCtx().arg
.gcSections
;
1427 const char *p
= s
.data(), *end
= s
.data() + s
.size();
1428 if (!std::all_of(end
- entSize
, end
, [](char c
) { return c
== 0; }))
1429 Fatal(getCtx()) << this << ": string is not null terminated";
1431 // Optimize the common case.
1433 size_t size
= strlen(p
);
1434 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1439 size_t size
= findNull(StringRef(p
, end
- p
), entSize
);
1440 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1441 p
+= size
+ entSize
;
1446 // Split non-SHF_STRINGS section. Such section is a sequence of
1447 // fixed size records.
1448 void MergeInputSection::splitNonStrings(ArrayRef
<uint8_t> data
,
1450 size_t size
= data
.size();
1451 assert((size
% entSize
) == 0);
1452 const bool live
= !(flags
& SHF_ALLOC
) || !getCtx().arg
.gcSections
;
1454 pieces
.resize_for_overwrite(size
/ entSize
);
1455 for (size_t i
= 0, j
= 0; i
!= size
; i
+= entSize
, j
++)
1456 pieces
[j
] = {i
, (uint32_t)xxh3_64bits(data
.slice(i
, entSize
)), live
};
1459 template <class ELFT
>
1460 MergeInputSection::MergeInputSection(ObjFile
<ELFT
> &f
,
1461 const typename
ELFT::Shdr
&header
,
1463 : InputSectionBase(f
, header
, name
, InputSectionBase::Merge
) {}
1465 MergeInputSection::MergeInputSection(Ctx
&ctx
, StringRef name
, uint32_t type
,
1466 uint64_t flags
, uint64_t entsize
,
1467 ArrayRef
<uint8_t> data
)
1468 : InputSectionBase(ctx
.internalFile
, name
, type
, flags
, /*link=*/0,
1470 /*addralign=*/entsize
, entsize
, data
,
1471 SectionBase::Merge
) {}
1473 // This function is called after we obtain a complete list of input sections
1474 // that need to be linked. This is responsible to split section contents
1475 // into small chunks for further processing.
1477 // Note that this function is called from parallelForEach. This must be
1478 // thread-safe (i.e. no memory allocation from the pools).
1479 void MergeInputSection::splitIntoPieces() {
1480 assert(pieces
.empty());
1482 if (flags
& SHF_STRINGS
)
1483 splitStrings(toStringRef(contentMaybeDecompress()), entsize
);
1485 splitNonStrings(contentMaybeDecompress(), entsize
);
1488 SectionPiece
&MergeInputSection::getSectionPiece(uint64_t offset
) {
1489 if (content().size() <= offset
)
1490 Fatal(getCtx()) << this << ": offset is outside the section";
1491 return partition_point(
1492 pieces
, [=](SectionPiece p
) { return p
.inputOff
<= offset
; })[-1];
1495 // Return the offset in an output section for a given input offset.
1496 uint64_t MergeInputSection::getParentOffset(uint64_t offset
) const {
1497 const SectionPiece
&piece
= getSectionPiece(offset
);
1498 return piece
.outputOff
+ (offset
- piece
.inputOff
);
1501 template InputSection::InputSection(ObjFile
<ELF32LE
> &, const ELF32LE::Shdr
&,
1503 template InputSection::InputSection(ObjFile
<ELF32BE
> &, const ELF32BE::Shdr
&,
1505 template InputSection::InputSection(ObjFile
<ELF64LE
> &, const ELF64LE::Shdr
&,
1507 template InputSection::InputSection(ObjFile
<ELF64BE
> &, const ELF64BE::Shdr
&,
1510 template void InputSection::writeTo
<ELF32LE
>(Ctx
&, uint8_t *);
1511 template void InputSection::writeTo
<ELF32BE
>(Ctx
&, uint8_t *);
1512 template void InputSection::writeTo
<ELF64LE
>(Ctx
&, uint8_t *);
1513 template void InputSection::writeTo
<ELF64BE
>(Ctx
&, uint8_t *);
1515 template RelsOrRelas
<ELF32LE
>
1516 InputSectionBase::relsOrRelas
<ELF32LE
>(bool) const;
1517 template RelsOrRelas
<ELF32BE
>
1518 InputSectionBase::relsOrRelas
<ELF32BE
>(bool) const;
1519 template RelsOrRelas
<ELF64LE
>
1520 InputSectionBase::relsOrRelas
<ELF64LE
>(bool) const;
1521 template RelsOrRelas
<ELF64BE
>
1522 InputSectionBase::relsOrRelas
<ELF64BE
>(bool) const;
1524 template MergeInputSection::MergeInputSection(ObjFile
<ELF32LE
> &,
1525 const ELF32LE::Shdr
&, StringRef
);
1526 template MergeInputSection::MergeInputSection(ObjFile
<ELF32BE
> &,
1527 const ELF32BE::Shdr
&, StringRef
);
1528 template MergeInputSection::MergeInputSection(ObjFile
<ELF64LE
> &,
1529 const ELF64LE::Shdr
&, StringRef
);
1530 template MergeInputSection::MergeInputSection(ObjFile
<ELF64BE
> &,
1531 const ELF64BE::Shdr
&, StringRef
);
1533 template EhInputSection::EhInputSection(ObjFile
<ELF32LE
> &,
1534 const ELF32LE::Shdr
&, StringRef
);
1535 template EhInputSection::EhInputSection(ObjFile
<ELF32BE
> &,
1536 const ELF32BE::Shdr
&, StringRef
);
1537 template EhInputSection::EhInputSection(ObjFile
<ELF64LE
> &,
1538 const ELF64LE::Shdr
&, StringRef
);
1539 template EhInputSection::EhInputSection(ObjFile
<ELF64BE
> &,
1540 const ELF64BE::Shdr
&, StringRef
);
1542 template void EhInputSection::split
<ELF32LE
>();
1543 template void EhInputSection::split
<ELF32BE
>();
1544 template void EhInputSection::split
<ELF64LE
>();
1545 template void EhInputSection::split
<ELF64BE
>();