[mlir][py] Enable loading only specified dialects during creation. (#121421)
[llvm-project.git] / lld / ELF / SyntheticSections.h
blob9fcee3b481af08d2e64d4f9266736f2c82c1a047
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
18 //===----------------------------------------------------------------------===//
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
23 #include "Config.h"
24 #include "DWARF.h"
25 #include "InputSection.h"
26 #include "Symbols.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/FoldingSet.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/STLFunctionalExtras.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
33 #include "llvm/MC/StringTableBuilder.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/Parallel.h"
38 #include "llvm/Support/Threading.h"
40 namespace lld::elf {
41 class Defined;
42 struct PhdrEntry;
43 class SymbolTableBaseSection;
45 struct CieRecord {
46 EhSectionPiece *cie = nullptr;
47 SmallVector<EhSectionPiece *, 0> fdes;
50 // Section for .eh_frame.
51 class EhFrameSection final : public SyntheticSection {
52 public:
53 EhFrameSection(Ctx &);
54 void writeTo(uint8_t *buf) override;
55 void finalizeContents() override;
56 bool isNeeded() const override { return !sections.empty(); }
57 size_t getSize() const override { return size; }
59 static bool classof(const SectionBase *d) {
60 return SyntheticSection::classof(d) && d->name == ".eh_frame";
63 SmallVector<EhInputSection *, 0> sections;
64 size_t numFdes = 0;
66 struct FdeData {
67 uint32_t pcRel;
68 uint32_t fdeVARel;
71 SmallVector<FdeData, 0> getFdeData() const;
72 ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
73 template <class ELFT>
74 void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
76 private:
77 // This is used only when parsing EhInputSection. We keep it here to avoid
78 // allocating one for each EhInputSection.
79 llvm::DenseMap<size_t, CieRecord *> offsetToCie;
81 uint64_t size = 0;
83 template <class ELFT, class RelTy>
84 void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
85 template <class ELFT> void addSectionAux(EhInputSection *s);
86 template <class ELFT, class RelTy>
87 void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
88 llvm::DenseSet<size_t> &ciesWithLSDA,
89 llvm::function_ref<void(InputSection &)> fn);
91 template <class ELFT, class RelTy>
92 CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
94 template <class ELFT, class RelTy>
95 Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
97 uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
99 SmallVector<CieRecord *, 0> cieRecords;
101 // CIE records are uniquified by their contents and personality functions.
102 llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
105 class GotSection final : public SyntheticSection {
106 public:
107 GotSection(Ctx &);
108 size_t getSize() const override { return size; }
109 void finalizeContents() override;
110 bool isNeeded() const override;
111 void writeTo(uint8_t *buf) override;
113 void addConstant(const Relocation &r);
114 void addEntry(const Symbol &sym);
115 void addAuthEntry(const Symbol &sym);
116 bool addTlsDescEntry(const Symbol &sym);
117 bool addDynTlsEntry(const Symbol &sym);
118 bool addTlsIndex();
119 uint32_t getTlsDescOffset(const Symbol &sym) const;
120 uint64_t getTlsDescAddr(const Symbol &sym) const;
121 uint64_t getGlobalDynAddr(const Symbol &b) const;
122 uint64_t getGlobalDynOffset(const Symbol &b) const;
124 uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
125 uint32_t getTlsIndexOff() const { return tlsIndexOff; }
127 // Flag to force GOT to be in output if we have relocations
128 // that relies on its address.
129 std::atomic<bool> hasGotOffRel = false;
131 protected:
132 size_t numEntries = 0;
133 uint32_t tlsIndexOff = -1;
134 uint64_t size = 0;
135 struct AuthEntryInfo {
136 size_t offset;
137 bool isSymbolFunc;
139 SmallVector<AuthEntryInfo, 0> authEntries;
142 // .note.GNU-stack section.
143 class GnuStackSection : public SyntheticSection {
144 public:
145 GnuStackSection(Ctx &ctx)
146 : SyntheticSection(ctx, ".note.GNU-stack", llvm::ELF::SHT_PROGBITS, 0,
147 1) {}
148 void writeTo(uint8_t *buf) override {}
149 size_t getSize() const override { return 0; }
152 class GnuPropertySection final : public SyntheticSection {
153 public:
154 GnuPropertySection(Ctx &);
155 void writeTo(uint8_t *buf) override;
156 size_t getSize() const override;
159 // .note.gnu.build-id section.
160 class BuildIdSection : public SyntheticSection {
161 // First 16 bytes are a header.
162 static const unsigned headerSize = 16;
164 public:
165 const size_t hashSize;
166 BuildIdSection(Ctx &);
167 void writeTo(uint8_t *buf) override;
168 size_t getSize() const override { return headerSize + hashSize; }
169 void writeBuildId(llvm::ArrayRef<uint8_t> buf);
171 private:
172 uint8_t *hashBuf;
175 // BssSection is used to reserve space for copy relocations and common symbols.
176 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
177 // that are used for writable symbols, read-only symbols and common symbols,
178 // respectively.
179 class BssSection final : public SyntheticSection {
180 public:
181 BssSection(Ctx &, StringRef name, uint64_t size, uint32_t addralign);
182 void writeTo(uint8_t *) override {}
183 bool isNeeded() const override { return size != 0; }
184 size_t getSize() const override { return size; }
186 static bool classof(const SectionBase *s) {
187 return isa<SyntheticSection>(s) && cast<SyntheticSection>(s)->bss;
189 uint64_t size;
192 class MipsGotSection final : public SyntheticSection {
193 public:
194 MipsGotSection(Ctx &);
195 void writeTo(uint8_t *buf) override;
196 size_t getSize() const override { return size; }
197 bool updateAllocSize(Ctx &) override;
198 void finalizeContents() override;
199 bool isNeeded() const override;
201 // Join separate GOTs built for each input file to generate
202 // primary and optional multiple secondary GOTs.
203 void build();
205 void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
206 void addDynTlsEntry(InputFile &file, Symbol &sym);
207 void addTlsIndex(InputFile &file);
209 uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
210 int64_t addend) const;
211 uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
212 int64_t addend) const;
213 uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
214 uint64_t getTlsIndexOffset(const InputFile *f) const;
216 // Returns the symbol which corresponds to the first entry of the global part
217 // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
218 // table properties.
219 // Returns nullptr if the global part is empty.
220 const Symbol *getFirstGlobalEntry() const;
222 // Returns the number of entries in the local part of GOT including
223 // the number of reserved entries.
224 unsigned getLocalEntriesNum() const;
226 // Return _gp value for primary GOT (nullptr) or particular input file.
227 uint64_t getGp(const InputFile *f = nullptr) const;
229 private:
230 // MIPS GOT consists of three parts: local, global and tls. Each part
231 // contains different types of entries. Here is a layout of GOT:
232 // - Header entries |
233 // - Page entries | Local part
234 // - Local entries (16-bit access) |
235 // - Local entries (32-bit access) |
236 // - Normal global entries || Global part
237 // - Reloc-only global entries ||
238 // - TLS entries ||| TLS part
240 // Header:
241 // Two entries hold predefined value 0x0 and 0x80000000.
242 // Page entries:
243 // These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
244 // relocation against local symbols. They are initialized by higher 16-bit
245 // of the corresponding symbol's value. So each 64kb of address space
246 // requires a single GOT entry.
247 // Local entries (16-bit access):
248 // These entries created by GOT relocations against global non-preemptible
249 // symbols so dynamic linker is not necessary to resolve the symbol's
250 // values. "16-bit access" means that corresponding relocations address
251 // GOT using 16-bit index. Each unique Symbol-Addend pair has its own
252 // GOT entry.
253 // Local entries (32-bit access):
254 // These entries are the same as above but created by relocations which
255 // address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
256 // Normal global entries:
257 // These entries created by GOT relocations against preemptible global
258 // symbols. They need to be initialized by dynamic linker and they ordered
259 // exactly as the corresponding entries in the dynamic symbols table.
260 // Reloc-only global entries:
261 // These entries created for symbols that are referenced by dynamic
262 // relocations R_MIPS_REL32. These entries are not accessed with gp-relative
263 // addressing, but MIPS ABI requires that these entries be present in GOT.
264 // TLS entries:
265 // Entries created by TLS relocations.
267 // If the sum of local, global and tls entries is less than 64K only single
268 // got is enough. Otherwise, multi-got is created. Series of primary and
269 // multiple secondary GOTs have the following layout:
270 // - Primary GOT
271 // Header
272 // Local entries
273 // Global entries
274 // Relocation only entries
275 // TLS entries
277 // - Secondary GOT
278 // Local entries
279 // Global entries
280 // TLS entries
281 // ...
283 // All GOT entries required by relocations from a single input file entirely
284 // belong to either primary or one of secondary GOTs. To reference GOT entries
285 // each GOT has its own _gp value points to the "middle" of the GOT.
286 // In the code this value loaded to the register which is used for GOT access.
288 // MIPS 32 function's prologue:
289 // lui v0,0x0
290 // 0: R_MIPS_HI16 _gp_disp
291 // addiu v0,v0,0
292 // 4: R_MIPS_LO16 _gp_disp
294 // MIPS 64:
295 // lui at,0x0
296 // 14: R_MIPS_GPREL16 main
298 // Dynamic linker does not know anything about secondary GOTs and cannot
299 // use a regular MIPS mechanism for GOT entries initialization. So we have
300 // to use an approach accepted by other architectures and create dynamic
301 // relocations R_MIPS_REL32 to initialize global entries (and local in case
302 // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
303 // requires GOT entries and correspondingly ordered dynamic symbol table
304 // entries to deal with dynamic relocations. To handle this problem
305 // relocation-only section in the primary GOT contains entries for all
306 // symbols referenced in global parts of secondary GOTs. Although the sum
307 // of local and normal global entries of the primary got should be less
308 // than 64K, the size of the primary got (including relocation-only entries
309 // can be greater than 64K, because parts of the primary got that overflow
310 // the 64K limit are used only by the dynamic linker at dynamic link-time
311 // and not by 16-bit gp-relative addressing at run-time.
313 // For complete multi-GOT description see the following link
314 // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
316 // Number of "Header" entries.
317 static const unsigned headerEntriesNum = 2;
319 uint64_t size = 0;
321 // Symbol and addend.
322 using GotEntry = std::pair<Symbol *, int64_t>;
324 struct FileGot {
325 InputFile *file = nullptr;
326 size_t startIndex = 0;
328 struct PageBlock {
329 size_t firstIndex;
330 size_t count;
331 PageBlock() : firstIndex(0), count(0) {}
334 // Map output sections referenced by MIPS GOT relocations
335 // to the description (index/count) "page" entries allocated
336 // for this section.
337 llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
338 // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
339 llvm::MapVector<GotEntry, size_t> local16;
340 llvm::MapVector<GotEntry, size_t> local32;
341 llvm::MapVector<Symbol *, size_t> global;
342 llvm::MapVector<Symbol *, size_t> relocs;
343 llvm::MapVector<Symbol *, size_t> tls;
344 // Set of symbols referenced by dynamic TLS relocations.
345 llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
347 // Total number of all entries.
348 size_t getEntriesNum() const;
349 // Number of "page" entries.
350 size_t getPageEntriesNum() const;
351 // Number of entries require 16-bit index to access.
352 size_t getIndexedEntriesNum() const;
355 // Container of GOT created for each input file.
356 // After building a final series of GOTs this container
357 // holds primary and secondary GOT's.
358 std::vector<FileGot> gots;
360 // Return (and create if necessary) `FileGot`.
361 FileGot &getGot(InputFile &f);
363 // Try to merge two GOTs. In case of success the `Dst` contains
364 // result of merging and the function returns true. In case of
365 // overflow the `Dst` is unchanged and the function returns false.
366 bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
369 class GotPltSection final : public SyntheticSection {
370 public:
371 GotPltSection(Ctx &);
372 void addEntry(Symbol &sym);
373 size_t getSize() const override;
374 void writeTo(uint8_t *buf) override;
375 bool isNeeded() const override;
377 // Flag to force GotPlt to be in output if we have relocations
378 // that relies on its address.
379 std::atomic<bool> hasGotPltOffRel = false;
381 private:
382 SmallVector<const Symbol *, 0> entries;
385 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
386 // Symbols that will be relocated by Target->IRelativeRel.
387 // On most Targets the IgotPltSection will immediately follow the GotPltSection
388 // on ARM the IgotPltSection will immediately follow the GotSection.
389 class IgotPltSection final : public SyntheticSection {
390 public:
391 IgotPltSection(Ctx &);
392 void addEntry(Symbol &sym);
393 size_t getSize() const override;
394 void writeTo(uint8_t *buf) override;
395 bool isNeeded() const override { return !entries.empty(); }
397 private:
398 SmallVector<const Symbol *, 0> entries;
401 class StringTableSection final : public SyntheticSection {
402 public:
403 StringTableSection(Ctx &, StringRef name, bool dynamic);
404 unsigned addString(StringRef s, bool hashIt = true);
405 void writeTo(uint8_t *buf) override;
406 size_t getSize() const override { return size; }
407 bool isDynamic() const { return dynamic; }
409 private:
410 const bool dynamic;
412 uint64_t size = 0;
414 llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap;
415 SmallVector<StringRef, 0> strings;
418 class DynamicReloc {
419 public:
420 enum Kind {
421 /// The resulting dynamic relocation does not reference a symbol (#sym must
422 /// be nullptr) and uses #addend as the result of computeAddend(ctx).
423 AddendOnly,
424 /// The resulting dynamic relocation will not reference a symbol: #sym is
425 /// only used to compute the addend with InputSection::getRelocTargetVA().
426 /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
427 AddendOnlyWithTargetVA,
428 /// The resulting dynamic relocation references symbol #sym from the dynamic
429 /// symbol table and uses #addend as the value of computeAddend(ctx).
430 AgainstSymbol,
431 /// The resulting dynamic relocation references symbol #sym from the dynamic
432 /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
433 /// final addend. It can be used for relocations that write the symbol VA as
434 // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
435 AgainstSymbolWithTargetVA,
436 /// This is used by the MIPS multi-GOT implementation. It relocates
437 /// addresses of 64kb pages that lie inside the output section.
438 MipsMultiGotPage,
440 /// This constructor records a relocation against a symbol.
441 DynamicReloc(RelType type, const InputSectionBase *inputSec,
442 uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
443 RelExpr expr)
444 : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
445 addend(addend), kind(kind), expr(expr) {}
446 /// This constructor records a relative relocation with no symbol.
447 DynamicReloc(RelType type, const InputSectionBase *inputSec,
448 uint64_t offsetInSec, int64_t addend = 0)
449 : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
450 addend(addend), kind(AddendOnly), expr(R_ADDEND) {}
451 /// This constructor records dynamic relocation settings used by the MIPS
452 /// multi-GOT implementation.
453 DynamicReloc(RelType type, const InputSectionBase *inputSec,
454 uint64_t offsetInSec, const OutputSection *outputSec,
455 int64_t addend)
456 : sym(nullptr), outputSec(outputSec), inputSec(inputSec),
457 offsetInSec(offsetInSec), type(type), addend(addend),
458 kind(MipsMultiGotPage), expr(R_ADDEND) {}
460 uint64_t getOffset() const;
461 uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
462 bool needsDynSymIndex() const {
463 return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
466 /// Computes the addend of the dynamic relocation. Note that this is not the
467 /// same as the #addend member variable as it may also include the symbol
468 /// address/the address of the corresponding GOT entry/etc.
469 int64_t computeAddend(Ctx &) const;
471 void computeRaw(Ctx &, SymbolTableBaseSection *symt);
473 Symbol *sym;
474 const OutputSection *outputSec = nullptr;
475 const InputSectionBase *inputSec;
476 uint64_t offsetInSec;
477 uint64_t r_offset;
478 RelType type;
479 uint32_t r_sym;
480 // Initially input addend, then the output addend after
481 // RelocationSection<ELFT>::writeTo.
482 int64_t addend;
484 private:
485 Kind kind;
486 // The kind of expression used to calculate the added (required e.g. for
487 // relative GOT relocations).
488 RelExpr expr;
491 template <class ELFT> class DynamicSection final : public SyntheticSection {
492 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
494 public:
495 DynamicSection(Ctx &);
496 void finalizeContents() override;
497 void writeTo(uint8_t *buf) override;
498 size_t getSize() const override { return size; }
500 private:
501 std::vector<std::pair<int32_t, uint64_t>> computeContents();
502 uint64_t size = 0;
505 class RelocationBaseSection : public SyntheticSection {
506 public:
507 RelocationBaseSection(Ctx &, StringRef name, uint32_t type,
508 int32_t dynamicTag, int32_t sizeDynamicTag,
509 bool combreloc, unsigned concurrency);
510 /// Add a dynamic relocation without writing an addend to the output section.
511 /// This overload can be used if the addends are written directly instead of
512 /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
513 template <bool shard = false> void addReloc(const DynamicReloc &reloc) {
514 relocs.push_back(reloc);
516 /// Add a dynamic relocation against \p sym with an optional addend.
517 void addSymbolReloc(RelType dynType, InputSectionBase &isec,
518 uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
519 std::optional<RelType> addendRelType = {});
520 /// Add a relative dynamic relocation that uses the target address of \p sym
521 /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
522 /// This function should only be called for non-preemptible symbols or
523 /// RelExpr values that refer to an address inside the output file (e.g. the
524 /// address of the GOT entry for a potentially preemptible symbol).
525 template <bool shard = false>
526 void addRelativeReloc(RelType dynType, InputSectionBase &isec,
527 uint64_t offsetInSec, Symbol &sym, int64_t addend,
528 RelType addendRelType, RelExpr expr) {
529 assert(expr != R_ADDEND && "expected non-addend relocation expression");
530 addReloc<shard>(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec,
531 offsetInSec, sym, addend, expr, addendRelType);
533 /// Add a dynamic relocation using the target address of \p sym as the addend
534 /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
535 void addAddendOnlyRelocIfNonPreemptible(RelType dynType,
536 InputSectionBase &isec,
537 uint64_t offsetInSec, Symbol &sym,
538 RelType addendRelType);
539 template <bool shard = false>
540 void addReloc(DynamicReloc::Kind kind, RelType dynType, InputSectionBase &sec,
541 uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr,
542 RelType addendRelType) {
543 // Write the addends to the relocated address if required. We skip
544 // it if the written value would be zero.
545 if (ctx.arg.writeAddends && (expr != R_ADDEND || addend != 0))
546 sec.addReloc({expr, addendRelType, offsetInSec, addend, &sym});
547 addReloc<shard>({dynType, &sec, offsetInSec, kind, sym, addend, expr});
549 bool isNeeded() const override {
550 return !relocs.empty() ||
551 llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
553 size_t getSize() const override { return relocs.size() * this->entsize; }
554 size_t getRelativeRelocCount() const { return numRelativeRelocs; }
555 void mergeRels();
556 void partitionRels();
557 void finalizeContents() override;
559 int32_t dynamicTag, sizeDynamicTag;
560 SmallVector<DynamicReloc, 0> relocs;
562 protected:
563 void computeRels();
564 // Used when parallel relocation scanning adds relocations. The elements
565 // will be moved into relocs by mergeRel().
566 SmallVector<SmallVector<DynamicReloc, 0>, 0> relocsVec;
567 size_t numRelativeRelocs = 0; // used by -z combreloc
568 bool combreloc;
571 template <>
572 inline void RelocationBaseSection::addReloc<true>(const DynamicReloc &reloc) {
573 relocsVec[llvm::parallel::getThreadIndex()].push_back(reloc);
576 template <class ELFT>
577 class RelocationSection final : public RelocationBaseSection {
578 using Elf_Rel = typename ELFT::Rel;
579 using Elf_Rela = typename ELFT::Rela;
581 public:
582 RelocationSection(Ctx &, StringRef name, bool combreloc,
583 unsigned concurrency);
584 void writeTo(uint8_t *buf) override;
587 template <class ELFT>
588 class AndroidPackedRelocationSection final : public RelocationBaseSection {
589 using Elf_Rel = typename ELFT::Rel;
590 using Elf_Rela = typename ELFT::Rela;
592 public:
593 AndroidPackedRelocationSection(Ctx &, StringRef name, unsigned concurrency);
595 bool updateAllocSize(Ctx &) override;
596 size_t getSize() const override { return relocData.size(); }
597 void writeTo(uint8_t *buf) override {
598 memcpy(buf, relocData.data(), relocData.size());
601 private:
602 SmallVector<char, 0> relocData;
605 struct RelativeReloc {
606 uint64_t getOffset() const {
607 return inputSec->getVA(inputSec->relocs()[relocIdx].offset);
610 const InputSectionBase *inputSec;
611 size_t relocIdx;
614 class RelrBaseSection : public SyntheticSection {
615 public:
616 RelrBaseSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false);
617 void mergeRels();
618 bool isNeeded() const override {
619 return !relocs.empty() ||
620 llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
622 SmallVector<RelativeReloc, 0> relocs;
623 SmallVector<SmallVector<RelativeReloc, 0>, 0> relocsVec;
626 // RelrSection is used to encode offsets for relative relocations.
627 // Proposal for adding SHT_RELR sections to generic-abi is here:
628 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
629 // For more details, see the comment in RelrSection::updateAllocSize(Ctx &ctx).
630 template <class ELFT> class RelrSection final : public RelrBaseSection {
631 using Elf_Relr = typename ELFT::Relr;
633 public:
634 RelrSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false);
636 bool updateAllocSize(Ctx &) override;
637 size_t getSize() const override { return relrRelocs.size() * this->entsize; }
638 void writeTo(uint8_t *buf) override {
639 memcpy(buf, relrRelocs.data(), getSize());
642 private:
643 SmallVector<Elf_Relr, 0> relrRelocs;
646 struct SymbolTableEntry {
647 Symbol *sym;
648 size_t strTabOffset;
651 class SymbolTableBaseSection : public SyntheticSection {
652 public:
653 SymbolTableBaseSection(Ctx &ctx, StringTableSection &strTabSec);
654 void finalizeContents() override;
655 size_t getSize() const override { return getNumSymbols() * entsize; }
656 void addSymbol(Symbol *sym);
657 unsigned getNumSymbols() const { return symbols.size() + 1; }
658 size_t getSymbolIndex(const Symbol &sym);
659 ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
661 protected:
662 void sortSymTabSymbols();
664 // A vector of symbols and their string table offsets.
665 SmallVector<SymbolTableEntry, 0> symbols;
667 StringTableSection &strTabSec;
669 llvm::once_flag onceFlag;
670 llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
671 llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
674 template <class ELFT>
675 class SymbolTableSection final : public SymbolTableBaseSection {
676 using Elf_Sym = typename ELFT::Sym;
678 public:
679 SymbolTableSection(Ctx &, StringTableSection &strTabSec);
680 void writeTo(uint8_t *buf) override;
683 class SymtabShndxSection final : public SyntheticSection {
684 public:
685 SymtabShndxSection(Ctx &);
687 void writeTo(uint8_t *buf) override;
688 size_t getSize() const override;
689 bool isNeeded() const override;
690 void finalizeContents() override;
693 // Outputs GNU Hash section. For detailed explanation see:
694 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
695 class GnuHashTableSection final : public SyntheticSection {
696 public:
697 GnuHashTableSection(Ctx &);
698 void finalizeContents() override;
699 void writeTo(uint8_t *buf) override;
700 size_t getSize() const override { return size; }
702 // Adds symbols to the hash table.
703 // Sorts the input to satisfy GNU hash section requirements.
704 void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols);
706 private:
707 // See the comment in writeBloomFilter.
708 enum { Shift2 = 26 };
710 struct Entry {
711 Symbol *sym;
712 size_t strTabOffset;
713 uint32_t hash;
714 uint32_t bucketIdx;
717 SmallVector<Entry, 0> symbols;
718 size_t maskWords;
719 size_t nBuckets = 0;
720 size_t size = 0;
723 class HashTableSection final : public SyntheticSection {
724 public:
725 HashTableSection(Ctx &);
726 void finalizeContents() override;
727 void writeTo(uint8_t *buf) override;
728 size_t getSize() const override { return size; }
730 private:
731 size_t size = 0;
734 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
735 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
736 // at runtime.
738 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
739 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
740 // lazy symbol resolver.
742 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
743 // A call instruction jumps to a .plt.sec entry, which will then jump to the
744 // target (BIND_NOW) or a .plt entry.
745 class PltSection : public SyntheticSection {
746 public:
747 PltSection(Ctx &);
748 void writeTo(uint8_t *buf) override;
749 size_t getSize() const override;
750 bool isNeeded() const override;
751 void addSymbols();
752 void addEntry(Symbol &sym);
753 size_t getNumEntries() const { return entries.size(); }
755 size_t headerSize;
757 SmallVector<const Symbol *, 0> entries;
760 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
761 // associated with an IRELATIVE relocation, which will be resolved eagerly at
762 // runtime. PltSection can only contain entries associated with JUMP_SLOT
763 // relocations, so IPLT entries are in a separate section.
764 class IpltSection final : public SyntheticSection {
765 SmallVector<const Symbol *, 0> entries;
767 public:
768 IpltSection(Ctx &);
769 void writeTo(uint8_t *buf) override;
770 size_t getSize() const override;
771 bool isNeeded() const override { return !entries.empty(); }
772 void addSymbols();
773 void addEntry(Symbol &sym);
776 class PPC32GlinkSection : public PltSection {
777 public:
778 PPC32GlinkSection(Ctx &);
779 void writeTo(uint8_t *buf) override;
780 size_t getSize() const override;
782 SmallVector<const Symbol *, 0> canonical_plts;
783 static constexpr size_t footerSize = 64;
786 // This is x86-only.
787 class IBTPltSection : public SyntheticSection {
788 public:
789 IBTPltSection(Ctx &);
790 void writeTo(uint8_t *Buf) override;
791 bool isNeeded() const override;
792 size_t getSize() const override;
795 // Used to align the end of the PT_GNU_RELRO segment and the associated PT_LOAD
796 // segment to a common-page-size boundary. This padding section ensures that all
797 // pages in the PT_LOAD segment is covered by at least one section.
798 class RelroPaddingSection final : public SyntheticSection {
799 public:
800 RelroPaddingSection(Ctx &);
801 size_t getSize() const override { return 0; }
802 void writeTo(uint8_t *buf) override {}
805 class RandomizePaddingSection final : public SyntheticSection {
806 uint64_t size;
808 public:
809 RandomizePaddingSection(Ctx &ctx, uint64_t size, OutputSection *parent);
810 size_t getSize() const override { return size; }
811 void writeTo(uint8_t *buf) override;
814 // Used by the merged DWARF32 .debug_names (a per-module index). If we
815 // move to DWARF64, most of this data will need to be re-sized.
816 class DebugNamesBaseSection : public SyntheticSection {
817 public:
818 struct Abbrev : llvm::FoldingSetNode {
819 uint32_t code;
820 uint32_t tag;
821 SmallVector<llvm::DWARFDebugNames::AttributeEncoding, 2> attributes;
823 void Profile(llvm::FoldingSetNodeID &id) const;
826 struct AttrValue {
827 uint32_t attrValue;
828 uint8_t attrSize;
831 struct IndexEntry {
832 uint32_t abbrevCode;
833 uint32_t poolOffset;
834 union {
835 uint64_t parentOffset = 0;
836 IndexEntry *parentEntry;
838 SmallVector<AttrValue, 3> attrValues;
841 struct NameEntry {
842 const char *name;
843 uint32_t hashValue;
844 uint32_t stringOffset;
845 uint32_t entryOffset;
846 // Used to relocate `stringOffset` in the merged section.
847 uint32_t chunkIdx;
848 SmallVector<IndexEntry *, 0> indexEntries;
850 llvm::iterator_range<
851 llvm::pointee_iterator<typename SmallVector<IndexEntry *, 0>::iterator>>
852 entries() {
853 return llvm::make_pointee_range(indexEntries);
857 // The contents of one input .debug_names section. An InputChunk
858 // typically contains one NameData, but might contain more, especially
859 // in LTO builds.
860 struct NameData {
861 llvm::DWARFDebugNames::Header hdr;
862 llvm::DenseMap<uint32_t, uint32_t> abbrevCodeMap;
863 SmallVector<NameEntry, 0> nameEntries;
866 // InputChunk and OutputChunk hold per-file contributions to the merged index.
867 // InputChunk instances will be discarded after `init` completes.
868 struct InputChunk {
869 uint32_t baseCuIdx;
870 LLDDWARFSection section;
871 SmallVector<NameData, 0> nameData;
872 std::optional<llvm::DWARFDebugNames> llvmDebugNames;
875 struct OutputChunk {
876 // Pointer to the .debug_info section that contains compile units, used to
877 // compute the relocated CU offsets.
878 InputSection *infoSec;
879 // This initially holds section offsets. After relocation, the section
880 // offsets are changed to CU offsets relative the the output section.
881 SmallVector<uint32_t, 0> compUnits;
884 DebugNamesBaseSection(Ctx &);
885 size_t getSize() const override { return size; }
886 bool isNeeded() const override { return numChunks > 0; }
888 protected:
889 void init(llvm::function_ref<void(InputFile *, InputChunk &, OutputChunk &)>);
890 static void
891 parseDebugNames(Ctx &, InputChunk &inputChunk, OutputChunk &chunk,
892 llvm::DWARFDataExtractor &namesExtractor,
893 llvm::DataExtractor &strExtractor,
894 llvm::function_ref<SmallVector<uint32_t, 0>(
895 uint32_t numCUs, const llvm::DWARFDebugNames::Header &hdr,
896 const llvm::DWARFDebugNames::DWARFDebugNamesOffsets &)>
897 readOffsets);
898 void computeHdrAndAbbrevTable(MutableArrayRef<InputChunk> inputChunks);
899 std::pair<uint32_t, uint32_t>
900 computeEntryPool(MutableArrayRef<InputChunk> inputChunks);
902 // Input .debug_names sections for relocating string offsets in the name table
903 // in `finalizeContents`.
904 SmallVector<InputSection *, 0> inputSections;
906 llvm::DWARFDebugNames::Header hdr;
907 size_t numChunks;
908 std::unique_ptr<OutputChunk[]> chunks;
909 llvm::SpecificBumpPtrAllocator<Abbrev> abbrevAlloc;
910 SmallVector<Abbrev *, 0> abbrevTable;
911 SmallVector<char, 0> abbrevTableBuf;
913 ArrayRef<OutputChunk> getChunks() const {
914 return ArrayRef(chunks.get(), numChunks);
917 // Sharded name entries that will be used to compute bucket_count and the
918 // count name table.
919 static constexpr size_t numShards = 32;
920 SmallVector<NameEntry, 0> nameVecs[numShards];
923 // Complement DebugNamesBaseSection for ELFT-aware code: reading offsets,
924 // relocating string offsets, and writeTo.
925 template <class ELFT>
926 class DebugNamesSection final : public DebugNamesBaseSection {
927 public:
928 DebugNamesSection(Ctx &);
929 void finalizeContents() override;
930 void writeTo(uint8_t *buf) override;
932 template <class RelTy>
933 void getNameRelocs(const InputFile &file,
934 llvm::DenseMap<uint32_t, uint32_t> &relocs,
935 Relocs<RelTy> rels);
937 private:
938 static void readOffsets(InputChunk &inputChunk, OutputChunk &chunk,
939 llvm::DWARFDataExtractor &namesExtractor,
940 llvm::DataExtractor &strExtractor);
943 class GdbIndexSection final : public SyntheticSection {
944 public:
945 struct AddressEntry {
946 InputSection *section;
947 uint64_t lowAddress;
948 uint64_t highAddress;
949 uint32_t cuIndex;
952 struct CuEntry {
953 uint64_t cuOffset;
954 uint64_t cuLength;
957 struct NameAttrEntry {
958 llvm::CachedHashStringRef name;
959 uint32_t cuIndexAndAttrs;
962 struct GdbChunk {
963 InputSection *sec;
964 SmallVector<AddressEntry, 0> addressAreas;
965 SmallVector<CuEntry, 0> compilationUnits;
968 struct GdbSymbol {
969 llvm::CachedHashStringRef name;
970 SmallVector<uint32_t, 0> cuVector;
971 uint32_t nameOff;
972 uint32_t cuVectorOff;
975 GdbIndexSection(Ctx &);
976 template <typename ELFT>
977 static std::unique_ptr<GdbIndexSection> create(Ctx &);
978 void writeTo(uint8_t *buf) override;
979 size_t getSize() const override { return size; }
980 bool isNeeded() const override;
982 private:
983 struct GdbIndexHeader {
984 llvm::support::ulittle32_t version;
985 llvm::support::ulittle32_t cuListOff;
986 llvm::support::ulittle32_t cuTypesOff;
987 llvm::support::ulittle32_t addressAreaOff;
988 llvm::support::ulittle32_t symtabOff;
989 llvm::support::ulittle32_t constantPoolOff;
992 size_t computeSymtabSize() const;
994 // Each chunk contains information gathered from debug sections of a
995 // single object file.
996 SmallVector<GdbChunk, 0> chunks;
998 // A symbol table for this .gdb_index section.
999 SmallVector<GdbSymbol, 0> symbols;
1001 size_t size;
1004 // --eh-frame-hdr option tells linker to construct a header for all the
1005 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
1006 // and also to a PT_GNU_EH_FRAME segment.
1007 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
1008 // calling dl_iterate_phdr.
1009 // This section contains a lookup table for quick binary search of FDEs.
1010 // Detailed info about internals can be found in Ian Lance Taylor's blog:
1011 // http://www.airs.com/blog/archives/460 (".eh_frame")
1012 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
1013 class EhFrameHeader final : public SyntheticSection {
1014 public:
1015 EhFrameHeader(Ctx &);
1016 void write();
1017 void writeTo(uint8_t *buf) override;
1018 size_t getSize() const override;
1019 bool isNeeded() const override;
1022 // For more information about .gnu.version and .gnu.version_r see:
1023 // https://www.akkadia.org/drepper/symbol-versioning
1025 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
1026 // contain symbol version definitions. The number of entries in this section
1027 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
1028 // The section shall contain an array of Elf_Verdef structures, optionally
1029 // followed by an array of Elf_Verdaux structures.
1030 class VersionDefinitionSection final : public SyntheticSection {
1031 public:
1032 VersionDefinitionSection(Ctx &);
1033 void finalizeContents() override;
1034 size_t getSize() const override;
1035 void writeTo(uint8_t *buf) override;
1037 private:
1038 enum { EntrySize = 28 };
1039 void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
1040 StringRef getFileDefName();
1042 unsigned fileDefNameOff;
1043 SmallVector<unsigned, 0> verDefNameOffs;
1046 // The .gnu.version section specifies the required version of each symbol in the
1047 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
1048 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
1049 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
1050 // The values 0 and 1 are reserved. All other values are used for versions in
1051 // the own object or in any of the dependencies.
1052 class VersionTableSection final : public SyntheticSection {
1053 public:
1054 VersionTableSection(Ctx &);
1055 void finalizeContents() override;
1056 size_t getSize() const override;
1057 void writeTo(uint8_t *buf) override;
1058 bool isNeeded() const override;
1061 // The .gnu.version_r section defines the version identifiers used by
1062 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
1063 // Elf_Verneed specifies the version requirements for a single DSO, and contains
1064 // a reference to a linked list of Elf_Vernaux data structures which define the
1065 // mapping from version identifiers to version names.
1066 template <class ELFT>
1067 class VersionNeedSection final : public SyntheticSection {
1068 using Elf_Verneed = typename ELFT::Verneed;
1069 using Elf_Vernaux = typename ELFT::Vernaux;
1071 struct Vernaux {
1072 uint64_t hash;
1073 uint32_t verneedIndex;
1074 uint64_t nameStrTab;
1077 struct Verneed {
1078 uint64_t nameStrTab;
1079 std::vector<Vernaux> vernauxs;
1082 SmallVector<Verneed, 0> verneeds;
1084 public:
1085 VersionNeedSection(Ctx &);
1086 void finalizeContents() override;
1087 void writeTo(uint8_t *buf) override;
1088 size_t getSize() const override;
1089 bool isNeeded() const override;
1092 // MergeSyntheticSection is a class that allows us to put mergeable sections
1093 // with different attributes in a single output sections. To do that
1094 // we put them into MergeSyntheticSection synthetic input sections which are
1095 // attached to regular output sections.
1096 class MergeSyntheticSection : public SyntheticSection {
1097 public:
1098 void addSection(MergeInputSection *ms);
1099 SmallVector<MergeInputSection *, 0> sections;
1101 protected:
1102 MergeSyntheticSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1103 uint32_t addralign)
1104 : SyntheticSection(ctx, name, type, flags, addralign) {}
1107 class MergeTailSection final : public MergeSyntheticSection {
1108 public:
1109 MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1110 uint32_t addralign);
1112 size_t getSize() const override;
1113 void writeTo(uint8_t *buf) override;
1114 void finalizeContents() override;
1116 private:
1117 llvm::StringTableBuilder builder;
1120 class MergeNoTailSection final : public MergeSyntheticSection {
1121 public:
1122 MergeNoTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1123 uint32_t addralign)
1124 : MergeSyntheticSection(ctx, name, type, flags, addralign) {}
1126 size_t getSize() const override { return size; }
1127 void writeTo(uint8_t *buf) override;
1128 void finalizeContents() override;
1130 private:
1131 // We use the most significant bits of a hash as a shard ID.
1132 // The reason why we don't want to use the least significant bits is
1133 // because DenseMap also uses lower bits to determine a bucket ID.
1134 // If we use lower bits, it significantly increases the probability of
1135 // hash collisions.
1136 size_t getShardId(uint32_t hash) {
1137 assert((hash >> 31) == 0);
1138 return hash >> (31 - llvm::countr_zero(numShards));
1141 // Section size
1142 size_t size;
1144 // String table contents
1145 constexpr static size_t numShards = 32;
1146 SmallVector<llvm::StringTableBuilder, 0> shards;
1147 size_t shardOffsets[numShards];
1150 // .MIPS.abiflags section.
1151 template <class ELFT>
1152 class MipsAbiFlagsSection final : public SyntheticSection {
1153 using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
1155 public:
1156 static std::unique_ptr<MipsAbiFlagsSection> create(Ctx &);
1158 MipsAbiFlagsSection(Ctx &, Elf_Mips_ABIFlags flags);
1159 size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
1160 void writeTo(uint8_t *buf) override;
1162 private:
1163 Elf_Mips_ABIFlags flags;
1166 // .MIPS.options section.
1167 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
1168 using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
1169 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1171 public:
1172 static std::unique_ptr<MipsOptionsSection<ELFT>> create(Ctx &);
1174 MipsOptionsSection(Ctx &, Elf_Mips_RegInfo reginfo);
1175 void writeTo(uint8_t *buf) override;
1177 size_t getSize() const override {
1178 return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1181 private:
1182 Elf_Mips_RegInfo reginfo;
1185 // MIPS .reginfo section.
1186 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1187 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1189 public:
1190 static std::unique_ptr<MipsReginfoSection> create(Ctx &);
1192 MipsReginfoSection(Ctx &, Elf_Mips_RegInfo reginfo);
1193 size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1194 void writeTo(uint8_t *buf) override;
1196 private:
1197 Elf_Mips_RegInfo reginfo;
1200 // This is a MIPS specific section to hold a space within the data segment
1201 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1202 // See "Dynamic section" in Chapter 5 in the following document:
1203 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1204 class MipsRldMapSection final : public SyntheticSection {
1205 public:
1206 MipsRldMapSection(Ctx &);
1207 size_t getSize() const override { return ctx.arg.wordsize; }
1208 void writeTo(uint8_t *buf) override {}
1211 // Representation of the combined .ARM.Exidx input sections. We process these
1212 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1213 // and add terminating sentinel entries.
1215 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1216 // a table that the unwinder can derive (Addresses are encoded as offsets from
1217 // table):
1218 // | Address of function | Unwind instructions for function |
1219 // where the unwind instructions are either a small number of unwind or the
1220 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1221 // When an exception is thrown from an address A, the unwinder searches the
1222 // table for the closest table entry with Address of function <= A. This means
1223 // that for two consecutive table entries:
1224 // | A1 | U1 |
1225 // | A2 | U2 |
1226 // The range of addresses described by U1 is [A1, A2)
1228 // There are two cases where we need a linker generated table entry to fixup
1229 // the address ranges in the table
1230 // Case 1:
1231 // - A sentinel entry added with an address higher than all
1232 // executable sections. This was needed to work around libunwind bug pr31091.
1233 // - After address assignment we need to find the highest addressed executable
1234 // section and use the limit of that section so that the unwinder never
1235 // matches it.
1236 // Case 2:
1237 // - InputSections without a .ARM.exidx section (usually from Assembly)
1238 // need a table entry so that they terminate the range of the previously
1239 // function. This is pr40277.
1241 // Instead of storing pointers to the .ARM.exidx InputSections from
1242 // InputObjects, we store pointers to the executable sections that need
1243 // .ARM.exidx sections. We can then use the dependentSections of these to
1244 // either find the .ARM.exidx section or know that we need to generate one.
1245 class ARMExidxSyntheticSection : public SyntheticSection {
1246 public:
1247 ARMExidxSyntheticSection(Ctx &);
1249 // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1250 // section needs to be removed from the main input section list.
1251 bool addSection(InputSection *isec);
1253 size_t getSize() const override { return size; }
1254 void writeTo(uint8_t *buf) override;
1255 bool isNeeded() const override;
1256 // Sort and remove duplicate entries.
1257 void finalizeContents() override;
1258 InputSection *getLinkOrderDep() const;
1260 static bool classof(const SectionBase *sec) {
1261 return sec->kind() == InputSectionBase::Synthetic &&
1262 sec->type == llvm::ELF::SHT_ARM_EXIDX;
1265 // Links to the ARMExidxSections so we can transfer the relocations once the
1266 // layout is known.
1267 SmallVector<InputSection *, 0> exidxSections;
1269 private:
1270 size_t size = 0;
1272 // Instead of storing pointers to the .ARM.exidx InputSections from
1273 // InputObjects, we store pointers to the executable sections that need
1274 // .ARM.exidx sections. We can then use the dependentSections of these to
1275 // either find the .ARM.exidx section or know that we need to generate one.
1276 SmallVector<InputSection *, 0> executableSections;
1278 // Value of executableSecitons before finalizeContents(), so that it can be
1279 // run repeateadly during fixed point iteration.
1280 SmallVector<InputSection *, 0> originalExecutableSections;
1282 // The executable InputSection with the highest address to use for the
1283 // sentinel. We store separately from ExecutableSections as merging of
1284 // duplicate entries may mean this InputSection is removed from
1285 // ExecutableSections.
1286 InputSection *sentinel = nullptr;
1289 // A container for one or more linker generated thunks. Instances of these
1290 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1291 class ThunkSection final : public SyntheticSection {
1292 public:
1293 // ThunkSection in OS, with desired outSecOff of Off
1294 ThunkSection(Ctx &, OutputSection *os, uint64_t off);
1296 // Add a newly created Thunk to this container:
1297 // Thunk is given offset from start of this InputSection
1298 // Thunk defines a symbol in this InputSection that can be used as target
1299 // of a relocation
1300 void addThunk(Thunk *t);
1301 size_t getSize() const override;
1302 void writeTo(uint8_t *buf) override;
1303 InputSection *getTargetInputSection() const;
1304 bool assignOffsets();
1306 // When true, round up reported size of section to 4 KiB. See comment
1307 // in addThunkSection() for more details.
1308 bool roundUpSizeForErrata = false;
1310 private:
1311 SmallVector<Thunk *, 0> thunks;
1312 size_t size = 0;
1315 // Cortex-M Security Extensions. Prefix for functions that should be exported
1316 // for the non-secure world.
1317 const char ACLESESYM_PREFIX[] = "__acle_se_";
1318 const int ACLESESYM_SIZE = 8;
1320 class ArmCmseSGVeneer {
1321 public:
1322 ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
1323 std::optional<uint64_t> addr = std::nullopt)
1324 : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
1325 static const size_t size{ACLESESYM_SIZE};
1326 const std::optional<uint64_t> getAddr() const { return entAddr; };
1328 Symbol *sym;
1329 Symbol *acleSeSym;
1330 uint64_t offset = 0;
1332 private:
1333 const std::optional<uint64_t> entAddr;
1336 class ArmCmseSGSection final : public SyntheticSection {
1337 public:
1338 ArmCmseSGSection(Ctx &ctx);
1339 bool isNeeded() const override { return !entries.empty(); }
1340 size_t getSize() const override;
1341 void writeTo(uint8_t *buf) override;
1342 void addSGVeneer(Symbol *sym, Symbol *ext_sym);
1343 void addMappingSymbol();
1344 void finalizeContents() override;
1345 void exportEntries(SymbolTableBaseSection *symTab);
1346 uint64_t impLibMaxAddr = 0;
1348 private:
1349 SmallVector<std::pair<Symbol *, Symbol *>, 0> entries;
1350 SmallVector<std::unique_ptr<ArmCmseSGVeneer>, 0> sgVeneers;
1351 uint64_t newEntries = 0;
1354 // Used to compute outSecOff of .got2 in each object file. This is needed to
1355 // synthesize PLT entries for PPC32 Secure PLT ABI.
1356 class PPC32Got2Section final : public SyntheticSection {
1357 public:
1358 PPC32Got2Section(Ctx &);
1359 size_t getSize() const override { return 0; }
1360 bool isNeeded() const override;
1361 void finalizeContents() override;
1362 void writeTo(uint8_t *buf) override {}
1365 // This section is used to store the addresses of functions that are called
1366 // in range-extending thunks on PowerPC64. When producing position dependent
1367 // code the addresses are link-time constants and the table is written out to
1368 // the binary. When producing position-dependent code the table is allocated and
1369 // filled in by the dynamic linker.
1370 class PPC64LongBranchTargetSection final : public SyntheticSection {
1371 public:
1372 PPC64LongBranchTargetSection(Ctx &);
1373 uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1374 std::optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1375 size_t getSize() const override;
1376 void writeTo(uint8_t *buf) override;
1377 bool isNeeded() const override;
1378 void finalizeContents() override { finalized = true; }
1380 private:
1381 SmallVector<std::pair<const Symbol *, int64_t>, 0> entries;
1382 llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1383 bool finalized = false;
1386 template <typename ELFT>
1387 class PartitionElfHeaderSection final : public SyntheticSection {
1388 public:
1389 PartitionElfHeaderSection(Ctx &);
1390 size_t getSize() const override;
1391 void writeTo(uint8_t *buf) override;
1394 template <typename ELFT>
1395 class PartitionProgramHeadersSection final : public SyntheticSection {
1396 public:
1397 PartitionProgramHeadersSection(Ctx &);
1398 size_t getSize() const override;
1399 void writeTo(uint8_t *buf) override;
1402 class PartitionIndexSection final : public SyntheticSection {
1403 public:
1404 PartitionIndexSection(Ctx &);
1405 size_t getSize() const override;
1406 void finalizeContents() override;
1407 void writeTo(uint8_t *buf) override;
1410 // See the following link for the Android-specific loader code that operates on
1411 // this section:
1412 // https://cs.android.com/android/platform/superproject/+/master:bionic/libc/bionic/libc_init_static.cpp;drc=9425b16978f9c5aa8f2c50c873db470819480d1d;l=192
1413 class MemtagAndroidNote final : public SyntheticSection {
1414 public:
1415 MemtagAndroidNote(Ctx &ctx)
1416 : SyntheticSection(ctx, ".note.android.memtag", llvm::ELF::SHT_NOTE,
1417 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1418 void writeTo(uint8_t *buf) override;
1419 size_t getSize() const override;
1422 class PackageMetadataNote final : public SyntheticSection {
1423 public:
1424 PackageMetadataNote(Ctx &ctx)
1425 : SyntheticSection(ctx, ".note.package", llvm::ELF::SHT_NOTE,
1426 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1427 void writeTo(uint8_t *buf) override;
1428 size_t getSize() const override;
1431 class MemtagGlobalDescriptors final : public SyntheticSection {
1432 public:
1433 MemtagGlobalDescriptors(Ctx &ctx)
1434 : SyntheticSection(ctx, ".memtag.globals.dynamic",
1435 llvm::ELF::SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC,
1436 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1437 void writeTo(uint8_t *buf) override;
1438 // The size of the section is non-computable until all addresses are
1439 // synthetized, because the section's contents contain a sorted
1440 // varint-compressed list of pointers to global variables. We only know the
1441 // final size after `finalizeAddressDependentContent()`.
1442 size_t getSize() const override;
1443 bool updateAllocSize(Ctx &) override;
1445 void addSymbol(const Symbol &sym) {
1446 symbols.push_back(&sym);
1449 bool isNeeded() const override { return !symbols.empty(); }
1451 private:
1452 SmallVector<const Symbol *, 0> symbols;
1455 template <class ELFT> void createSyntheticSections(Ctx &);
1456 InputSection *createInterpSection(Ctx &);
1457 MergeInputSection *createCommentSection(Ctx &);
1458 template <class ELFT> void splitSections(Ctx &);
1459 void combineEhSections(Ctx &);
1461 bool hasMemtag(Ctx &);
1462 bool canHaveMemtagGlobals(Ctx &);
1464 template <typename ELFT> void writeEhdr(Ctx &, uint8_t *buf, Partition &part);
1465 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1467 Defined *addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type,
1468 uint64_t value, uint64_t size,
1469 InputSectionBase &section);
1471 void addVerneed(Ctx &, Symbol &ss);
1473 // This describes a program header entry.
1474 // Each contains type, access flags and range of output sections that will be
1475 // placed in it.
1476 struct PhdrEntry {
1477 PhdrEntry(Ctx &ctx, unsigned type, unsigned flags)
1478 : p_align(type == llvm::ELF::PT_LOAD ? ctx.arg.maxPageSize : 0),
1479 p_type(type), p_flags(flags) {}
1480 void add(OutputSection *sec);
1482 uint64_t p_paddr = 0;
1483 uint64_t p_vaddr = 0;
1484 uint64_t p_memsz = 0;
1485 uint64_t p_filesz = 0;
1486 uint64_t p_offset = 0;
1487 uint32_t p_align = 0;
1488 uint32_t p_type = 0;
1489 uint32_t p_flags = 0;
1491 OutputSection *firstSec = nullptr;
1492 OutputSection *lastSec = nullptr;
1493 bool hasLMA = false;
1495 uint64_t lmaOffset = 0;
1498 // Linker generated per-partition sections.
1499 struct Partition {
1500 Ctx &ctx;
1501 StringRef name;
1502 uint64_t nameStrTab;
1504 std::unique_ptr<SyntheticSection> elfHeader;
1505 std::unique_ptr<SyntheticSection> programHeaders;
1506 SmallVector<std::unique_ptr<PhdrEntry>, 0> phdrs;
1508 std::unique_ptr<ARMExidxSyntheticSection> armExidx;
1509 std::unique_ptr<BuildIdSection> buildId;
1510 std::unique_ptr<SyntheticSection> dynamic;
1511 std::unique_ptr<StringTableSection> dynStrTab;
1512 std::unique_ptr<SymbolTableBaseSection> dynSymTab;
1513 std::unique_ptr<EhFrameHeader> ehFrameHdr;
1514 std::unique_ptr<EhFrameSection> ehFrame;
1515 std::unique_ptr<GnuHashTableSection> gnuHashTab;
1516 std::unique_ptr<HashTableSection> hashTab;
1517 std::unique_ptr<MemtagAndroidNote> memtagAndroidNote;
1518 std::unique_ptr<MemtagGlobalDescriptors> memtagGlobalDescriptors;
1519 std::unique_ptr<PackageMetadataNote> packageMetadataNote;
1520 std::unique_ptr<RelocationBaseSection> relaDyn;
1521 std::unique_ptr<RelrBaseSection> relrDyn;
1522 std::unique_ptr<RelrBaseSection> relrAuthDyn;
1523 std::unique_ptr<VersionDefinitionSection> verDef;
1524 std::unique_ptr<SyntheticSection> verNeed;
1525 std::unique_ptr<VersionTableSection> verSym;
1527 Partition(Ctx &ctx) : ctx(ctx) {}
1528 unsigned getNumber(Ctx &ctx) const { return this - &ctx.partitions[0] + 1; }
1531 inline Partition &SectionBase::getPartition(Ctx &ctx) const {
1532 assert(isLive());
1533 return ctx.partitions[partition - 1];
1536 } // namespace lld::elf
1538 #endif