[WebAssembly] Add new target feature in support of 'extended-const' proposal
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / CallLowering.cpp
blob4373786e29b8119f32e716298da02d0907a06aba
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
28 #define DEBUG_TYPE "call-lowering"
30 using namespace llvm;
32 void CallLowering::anchor() {}
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38 if (AttrFn(Attribute::SExt))
39 Flags.setSExt();
40 if (AttrFn(Attribute::ZExt))
41 Flags.setZExt();
42 if (AttrFn(Attribute::InReg))
43 Flags.setInReg();
44 if (AttrFn(Attribute::StructRet))
45 Flags.setSRet();
46 if (AttrFn(Attribute::Nest))
47 Flags.setNest();
48 if (AttrFn(Attribute::ByVal))
49 Flags.setByVal();
50 if (AttrFn(Attribute::Preallocated))
51 Flags.setPreallocated();
52 if (AttrFn(Attribute::InAlloca))
53 Flags.setInAlloca();
54 if (AttrFn(Attribute::Returned))
55 Flags.setReturned();
56 if (AttrFn(Attribute::SwiftSelf))
57 Flags.setSwiftSelf();
58 if (AttrFn(Attribute::SwiftAsync))
59 Flags.setSwiftAsync();
60 if (AttrFn(Attribute::SwiftError))
61 Flags.setSwiftError();
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65 unsigned ArgIdx) const {
66 ISD::ArgFlagsTy Flags;
67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68 return Call.paramHasAttr(ArgIdx, Attr);
69 });
70 return Flags;
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74 const AttributeList &Attrs,
75 unsigned OpIdx) const {
76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78 });
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82 ArrayRef<Register> ResRegs,
83 ArrayRef<ArrayRef<Register>> ArgRegs,
84 Register SwiftErrorVReg,
85 std::function<unsigned()> GetCalleeReg) const {
86 CallLoweringInfo Info;
87 const DataLayout &DL = MIRBuilder.getDataLayout();
88 MachineFunction &MF = MIRBuilder.getMF();
89 MachineRegisterInfo &MRI = MF.getRegInfo();
90 bool CanBeTailCalled = CB.isTailCall() &&
91 isInTailCallPosition(CB, MF.getTarget()) &&
92 (MF.getFunction()
93 .getFnAttribute("disable-tail-calls")
94 .getValueAsString() != "true");
96 CallingConv::ID CallConv = CB.getCallingConv();
97 Type *RetTy = CB.getType();
98 bool IsVarArg = CB.getFunctionType()->isVarArg();
100 SmallVector<BaseArgInfo, 4> SplitArgs;
101 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
102 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
104 if (!Info.CanLowerReturn) {
105 // Callee requires sret demotion.
106 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
108 // The sret demotion isn't compatible with tail-calls, since the sret
109 // argument points into the caller's stack frame.
110 CanBeTailCalled = false;
114 // First step is to marshall all the function's parameters into the correct
115 // physregs and memory locations. Gather the sequence of argument types that
116 // we'll pass to the assigner function.
117 unsigned i = 0;
118 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
119 for (auto &Arg : CB.args()) {
120 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
121 i < NumFixedArgs};
122 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
124 // If we have an explicit sret argument that is an Instruction, (i.e., it
125 // might point to function-local memory), we can't meaningfully tail-call.
126 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
127 CanBeTailCalled = false;
129 Info.OrigArgs.push_back(OrigArg);
130 ++i;
133 // Try looking through a bitcast from one function type to another.
134 // Commonly happens with calls to objc_msgSend().
135 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
136 if (const Function *F = dyn_cast<Function>(CalleeV))
137 Info.Callee = MachineOperand::CreateGA(F, 0);
138 else
139 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
141 Register ReturnHintAlignReg;
142 Align ReturnHintAlign;
144 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
146 if (!Info.OrigRet.Ty->isVoidTy()) {
147 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
149 if (MaybeAlign Alignment = CB.getRetAlign()) {
150 if (*Alignment > Align(1)) {
151 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
152 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
153 ReturnHintAlign = *Alignment;
158 Info.CB = &CB;
159 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
160 Info.CallConv = CallConv;
161 Info.SwiftErrorVReg = SwiftErrorVReg;
162 Info.IsMustTailCall = CB.isMustTailCall();
163 Info.IsTailCall = CanBeTailCalled;
164 Info.IsVarArg = IsVarArg;
165 if (!lowerCall(MIRBuilder, Info))
166 return false;
168 if (ReturnHintAlignReg && !Info.IsTailCall) {
169 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
170 ReturnHintAlign);
173 return true;
176 template <typename FuncInfoTy>
177 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
178 const DataLayout &DL,
179 const FuncInfoTy &FuncInfo) const {
180 auto &Flags = Arg.Flags[0];
181 const AttributeList &Attrs = FuncInfo.getAttributes();
182 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
184 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
185 if (PtrTy) {
186 Flags.setPointer();
187 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
190 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
191 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
192 assert(OpIdx >= AttributeList::FirstArgIndex);
193 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
195 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
196 if (!ElementTy)
197 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
198 if (!ElementTy)
199 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
200 assert(ElementTy && "Must have byval, inalloca or preallocated type");
201 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
203 // For ByVal, alignment should be passed from FE. BE will guess if
204 // this info is not there but there are cases it cannot get right.
205 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
206 MemAlign = *ParamAlign;
207 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
208 MemAlign = *ParamAlign;
209 else
210 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
211 } else if (OpIdx >= AttributeList::FirstArgIndex) {
212 if (auto ParamAlign =
213 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
214 MemAlign = *ParamAlign;
216 Flags.setMemAlign(MemAlign);
217 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
219 // Don't try to use the returned attribute if the argument is marked as
220 // swiftself, since it won't be passed in x0.
221 if (Flags.isSwiftSelf())
222 Flags.setReturned(false);
225 template void
226 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
227 const DataLayout &DL,
228 const Function &FuncInfo) const;
230 template void
231 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
232 const DataLayout &DL,
233 const CallBase &FuncInfo) const;
235 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
236 SmallVectorImpl<ArgInfo> &SplitArgs,
237 const DataLayout &DL,
238 CallingConv::ID CallConv,
239 SmallVectorImpl<uint64_t> *Offsets) const {
240 LLVMContext &Ctx = OrigArg.Ty->getContext();
242 SmallVector<EVT, 4> SplitVTs;
243 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
245 if (SplitVTs.size() == 0)
246 return;
248 if (SplitVTs.size() == 1) {
249 // No splitting to do, but we want to replace the original type (e.g. [1 x
250 // double] -> double).
251 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
252 OrigArg.OrigArgIndex, OrigArg.Flags[0],
253 OrigArg.IsFixed, OrigArg.OrigValue);
254 return;
257 // Create one ArgInfo for each virtual register in the original ArgInfo.
258 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
260 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
261 OrigArg.Ty, CallConv, false, DL);
262 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
263 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
264 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
265 OrigArg.Flags[0], OrigArg.IsFixed);
266 if (NeedsRegBlock)
267 SplitArgs.back().Flags[0].setInConsecutiveRegs();
270 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
273 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
274 static MachineInstrBuilder
275 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
276 ArrayRef<Register> SrcRegs) {
277 MachineRegisterInfo &MRI = *B.getMRI();
278 LLT LLTy = MRI.getType(DstRegs[0]);
279 LLT PartLLT = MRI.getType(SrcRegs[0]);
281 // Deal with v3s16 split into v2s16
282 LLT LCMTy = getCoverTy(LLTy, PartLLT);
283 if (LCMTy == LLTy) {
284 // Common case where no padding is needed.
285 assert(DstRegs.size() == 1);
286 return B.buildConcatVectors(DstRegs[0], SrcRegs);
289 // We need to create an unmerge to the result registers, which may require
290 // widening the original value.
291 Register UnmergeSrcReg;
292 if (LCMTy != PartLLT) {
293 assert(DstRegs.size() == 1);
294 return B.buildDeleteTrailingVectorElements(DstRegs[0],
295 B.buildMerge(LCMTy, SrcRegs));
296 } else {
297 // We don't need to widen anything if we're extracting a scalar which was
298 // promoted to a vector e.g. s8 -> v4s8 -> s8
299 assert(SrcRegs.size() == 1);
300 UnmergeSrcReg = SrcRegs[0];
303 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
305 SmallVector<Register, 8> PadDstRegs(NumDst);
306 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
308 // Create the excess dead defs for the unmerge.
309 for (int I = DstRegs.size(); I != NumDst; ++I)
310 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
312 if (PadDstRegs.size() == 1)
313 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
314 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
317 /// Create a sequence of instructions to combine pieces split into register
318 /// typed values to the original IR value. \p OrigRegs contains the destination
319 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
320 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
321 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
322 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
323 const ISD::ArgFlagsTy Flags) {
324 MachineRegisterInfo &MRI = *B.getMRI();
326 if (PartLLT == LLTy) {
327 // We should have avoided introducing a new virtual register, and just
328 // directly assigned here.
329 assert(OrigRegs[0] == Regs[0]);
330 return;
333 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
334 Regs.size() == 1) {
335 B.buildBitcast(OrigRegs[0], Regs[0]);
336 return;
339 // A vector PartLLT needs extending to LLTy's element size.
340 // E.g. <2 x s64> = G_SEXT <2 x s32>.
341 if (PartLLT.isVector() == LLTy.isVector() &&
342 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
343 (!PartLLT.isVector() ||
344 PartLLT.getNumElements() == LLTy.getNumElements()) &&
345 OrigRegs.size() == 1 && Regs.size() == 1) {
346 Register SrcReg = Regs[0];
348 LLT LocTy = MRI.getType(SrcReg);
350 if (Flags.isSExt()) {
351 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
352 .getReg(0);
353 } else if (Flags.isZExt()) {
354 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
355 .getReg(0);
358 // Sometimes pointers are passed zero extended.
359 LLT OrigTy = MRI.getType(OrigRegs[0]);
360 if (OrigTy.isPointer()) {
361 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
362 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
363 return;
366 B.buildTrunc(OrigRegs[0], SrcReg);
367 return;
370 if (!LLTy.isVector() && !PartLLT.isVector()) {
371 assert(OrigRegs.size() == 1);
372 LLT OrigTy = MRI.getType(OrigRegs[0]);
374 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
375 if (SrcSize == OrigTy.getSizeInBits())
376 B.buildMerge(OrigRegs[0], Regs);
377 else {
378 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
379 B.buildTrunc(OrigRegs[0], Widened);
382 return;
385 if (PartLLT.isVector()) {
386 assert(OrigRegs.size() == 1);
387 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
389 // If PartLLT is a mismatched vector in both number of elements and element
390 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
391 // have the same elt type, i.e. v4s32.
392 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
393 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
394 Regs.size() == 1) {
395 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
396 .changeElementCount(PartLLT.getElementCount() * 2);
397 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
398 PartLLT = NewTy;
401 if (LLTy.getScalarType() == PartLLT.getElementType()) {
402 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
403 } else {
404 unsigned I = 0;
405 LLT GCDTy = getGCDType(LLTy, PartLLT);
407 // We are both splitting a vector, and bitcasting its element types. Cast
408 // the source pieces into the appropriate number of pieces with the result
409 // element type.
410 for (Register SrcReg : CastRegs)
411 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
412 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
415 return;
418 assert(LLTy.isVector() && !PartLLT.isVector());
420 LLT DstEltTy = LLTy.getElementType();
422 // Pointer information was discarded. We'll need to coerce some register types
423 // to avoid violating type constraints.
424 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
426 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
428 if (DstEltTy == PartLLT) {
429 // Vector was trivially scalarized.
431 if (RealDstEltTy.isPointer()) {
432 for (Register Reg : Regs)
433 MRI.setType(Reg, RealDstEltTy);
436 B.buildBuildVector(OrigRegs[0], Regs);
437 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
438 // Deal with vector with 64-bit elements decomposed to 32-bit
439 // registers. Need to create intermediate 64-bit elements.
440 SmallVector<Register, 8> EltMerges;
441 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
443 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
445 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
446 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
447 // Fix the type in case this is really a vector of pointers.
448 MRI.setType(Merge.getReg(0), RealDstEltTy);
449 EltMerges.push_back(Merge.getReg(0));
450 Regs = Regs.drop_front(PartsPerElt);
453 B.buildBuildVector(OrigRegs[0], EltMerges);
454 } else {
455 // Vector was split, and elements promoted to a wider type.
456 // FIXME: Should handle floating point promotions.
457 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
458 auto BV = B.buildBuildVector(BVType, Regs);
459 B.buildTrunc(OrigRegs[0], BV);
463 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
464 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
465 /// contain the type of scalar value extension if necessary.
467 /// This is used for outgoing values (vregs to physregs)
468 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
469 Register SrcReg, LLT SrcTy, LLT PartTy,
470 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
471 // We could just insert a regular copy, but this is unreachable at the moment.
472 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
474 const unsigned PartSize = PartTy.getSizeInBits();
476 if (PartTy.isVector() == SrcTy.isVector() &&
477 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
478 assert(DstRegs.size() == 1);
479 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
480 return;
483 if (SrcTy.isVector() && !PartTy.isVector() &&
484 PartSize > SrcTy.getElementType().getSizeInBits()) {
485 // Vector was scalarized, and the elements extended.
486 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
487 for (int i = 0, e = DstRegs.size(); i != e; ++i)
488 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
489 return;
492 LLT GCDTy = getGCDType(SrcTy, PartTy);
493 if (GCDTy == PartTy) {
494 // If this already evenly divisible, we can create a simple unmerge.
495 B.buildUnmerge(DstRegs, SrcReg);
496 return;
499 MachineRegisterInfo &MRI = *B.getMRI();
500 LLT DstTy = MRI.getType(DstRegs[0]);
501 LLT LCMTy = getCoverTy(SrcTy, PartTy);
503 const unsigned DstSize = DstTy.getSizeInBits();
504 const unsigned SrcSize = SrcTy.getSizeInBits();
505 unsigned CoveringSize = LCMTy.getSizeInBits();
507 Register UnmergeSrc = SrcReg;
509 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
510 // For scalars, it's common to be able to use a simple extension.
511 if (SrcTy.isScalar() && DstTy.isScalar()) {
512 CoveringSize = alignTo(SrcSize, DstSize);
513 LLT CoverTy = LLT::scalar(CoveringSize);
514 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
515 } else {
516 // Widen to the common type.
517 // FIXME: This should respect the extend type
518 Register Undef = B.buildUndef(SrcTy).getReg(0);
519 SmallVector<Register, 8> MergeParts(1, SrcReg);
520 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
521 MergeParts.push_back(Undef);
522 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
526 if (LCMTy.isVector() && CoveringSize != SrcSize)
527 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
529 B.buildUnmerge(DstRegs, UnmergeSrc);
532 bool CallLowering::determineAndHandleAssignments(
533 ValueHandler &Handler, ValueAssigner &Assigner,
534 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
535 CallingConv::ID CallConv, bool IsVarArg,
536 ArrayRef<Register> ThisReturnRegs) const {
537 MachineFunction &MF = MIRBuilder.getMF();
538 const Function &F = MF.getFunction();
539 SmallVector<CCValAssign, 16> ArgLocs;
541 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
542 if (!determineAssignments(Assigner, Args, CCInfo))
543 return false;
545 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
546 ThisReturnRegs);
549 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
550 if (Flags.isSExt())
551 return TargetOpcode::G_SEXT;
552 if (Flags.isZExt())
553 return TargetOpcode::G_ZEXT;
554 return TargetOpcode::G_ANYEXT;
557 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
558 SmallVectorImpl<ArgInfo> &Args,
559 CCState &CCInfo) const {
560 LLVMContext &Ctx = CCInfo.getContext();
561 const CallingConv::ID CallConv = CCInfo.getCallingConv();
563 unsigned NumArgs = Args.size();
564 for (unsigned i = 0; i != NumArgs; ++i) {
565 EVT CurVT = EVT::getEVT(Args[i].Ty);
567 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
569 // If we need to split the type over multiple regs, check it's a scenario
570 // we currently support.
571 unsigned NumParts =
572 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
574 if (NumParts == 1) {
575 // Try to use the register type if we couldn't assign the VT.
576 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
577 Args[i].Flags[0], CCInfo))
578 return false;
579 continue;
582 // For incoming arguments (physregs to vregs), we could have values in
583 // physregs (or memlocs) which we want to extract and copy to vregs.
584 // During this, we might have to deal with the LLT being split across
585 // multiple regs, so we have to record this information for later.
587 // If we have outgoing args, then we have the opposite case. We have a
588 // vreg with an LLT which we want to assign to a physical location, and
589 // we might have to record that the value has to be split later.
591 // We're handling an incoming arg which is split over multiple regs.
592 // E.g. passing an s128 on AArch64.
593 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
594 Args[i].Flags.clear();
596 for (unsigned Part = 0; Part < NumParts; ++Part) {
597 ISD::ArgFlagsTy Flags = OrigFlags;
598 if (Part == 0) {
599 Flags.setSplit();
600 } else {
601 Flags.setOrigAlign(Align(1));
602 if (Part == NumParts - 1)
603 Flags.setSplitEnd();
606 Args[i].Flags.push_back(Flags);
607 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
608 Args[i].Flags[Part], CCInfo)) {
609 // Still couldn't assign this smaller part type for some reason.
610 return false;
615 return true;
618 bool CallLowering::handleAssignments(ValueHandler &Handler,
619 SmallVectorImpl<ArgInfo> &Args,
620 CCState &CCInfo,
621 SmallVectorImpl<CCValAssign> &ArgLocs,
622 MachineIRBuilder &MIRBuilder,
623 ArrayRef<Register> ThisReturnRegs) const {
624 MachineFunction &MF = MIRBuilder.getMF();
625 MachineRegisterInfo &MRI = MF.getRegInfo();
626 const Function &F = MF.getFunction();
627 const DataLayout &DL = F.getParent()->getDataLayout();
629 const unsigned NumArgs = Args.size();
631 // Stores thunks for outgoing register assignments. This is used so we delay
632 // generating register copies until mem loc assignments are done. We do this
633 // so that if the target is using the delayed stack protector feature, we can
634 // find the split point of the block accurately. E.g. if we have:
635 // G_STORE %val, %memloc
636 // $x0 = COPY %foo
637 // $x1 = COPY %bar
638 // CALL func
639 // ... then the split point for the block will correctly be at, and including,
640 // the copy to $x0. If instead the G_STORE instruction immediately precedes
641 // the CALL, then we'd prematurely choose the CALL as the split point, thus
642 // generating a split block with a CALL that uses undefined physregs.
643 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
645 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
646 assert(j < ArgLocs.size() && "Skipped too many arg locs");
647 CCValAssign &VA = ArgLocs[j];
648 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
650 if (VA.needsCustom()) {
651 std::function<void()> Thunk;
652 unsigned NumArgRegs = Handler.assignCustomValue(
653 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
654 if (Thunk)
655 DelayedOutgoingRegAssignments.emplace_back(Thunk);
656 if (!NumArgRegs)
657 return false;
658 j += NumArgRegs;
659 continue;
662 const MVT ValVT = VA.getValVT();
663 const MVT LocVT = VA.getLocVT();
665 const LLT LocTy(LocVT);
666 const LLT ValTy(ValVT);
667 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
668 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
669 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
671 // Expected to be multiple regs for a single incoming arg.
672 // There should be Regs.size() ArgLocs per argument.
673 // This should be the same as getNumRegistersForCallingConv
674 const unsigned NumParts = Args[i].Flags.size();
676 // Now split the registers into the assigned types.
677 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
679 if (NumParts != 1 || NewLLT != OrigTy) {
680 // If we can't directly assign the register, we need one or more
681 // intermediate values.
682 Args[i].Regs.resize(NumParts);
684 // For each split register, create and assign a vreg that will store
685 // the incoming component of the larger value. These will later be
686 // merged to form the final vreg.
687 for (unsigned Part = 0; Part < NumParts; ++Part)
688 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
691 assert((j + (NumParts - 1)) < ArgLocs.size() &&
692 "Too many regs for number of args");
694 // Coerce into outgoing value types before register assignment.
695 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
696 assert(Args[i].OrigRegs.size() == 1);
697 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
698 ValTy, extendOpFromFlags(Args[i].Flags[0]));
701 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
702 for (unsigned Part = 0; Part < NumParts; ++Part) {
703 Register ArgReg = Args[i].Regs[Part];
704 // There should be Regs.size() ArgLocs per argument.
705 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
706 CCValAssign &VA = ArgLocs[j + Idx];
707 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
709 if (VA.isMemLoc() && !Flags.isByVal()) {
710 // Individual pieces may have been spilled to the stack and others
711 // passed in registers.
713 // TODO: The memory size may be larger than the value we need to
714 // store. We may need to adjust the offset for big endian targets.
715 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
717 MachinePointerInfo MPO;
718 Register StackAddr = Handler.getStackAddress(
719 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
721 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
722 continue;
725 if (VA.isMemLoc() && Flags.isByVal()) {
726 assert(Args[i].Regs.size() == 1 &&
727 "didn't expect split byval pointer");
729 if (Handler.isIncomingArgumentHandler()) {
730 // We just need to copy the frame index value to the pointer.
731 MachinePointerInfo MPO;
732 Register StackAddr = Handler.getStackAddress(
733 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
734 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
735 } else {
736 // For outgoing byval arguments, insert the implicit copy byval
737 // implies, such that writes in the callee do not modify the caller's
738 // value.
739 uint64_t MemSize = Flags.getByValSize();
740 int64_t Offset = VA.getLocMemOffset();
742 MachinePointerInfo DstMPO;
743 Register StackAddr =
744 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
746 MachinePointerInfo SrcMPO(Args[i].OrigValue);
747 if (!Args[i].OrigValue) {
748 // We still need to accurately track the stack address space if we
749 // don't know the underlying value.
750 const LLT PtrTy = MRI.getType(StackAddr);
751 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
754 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
755 inferAlignFromPtrInfo(MF, DstMPO));
757 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
758 inferAlignFromPtrInfo(MF, SrcMPO));
760 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
761 DstMPO, DstAlign, SrcMPO, SrcAlign,
762 MemSize, VA);
764 continue;
767 assert(!VA.needsCustom() && "custom loc should have been handled already");
769 if (i == 0 && !ThisReturnRegs.empty() &&
770 Handler.isIncomingArgumentHandler() &&
771 isTypeIsValidForThisReturn(ValVT)) {
772 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
773 continue;
776 if (Handler.isIncomingArgumentHandler())
777 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
778 else {
779 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
780 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
785 // Now that all pieces have been assigned, re-pack the register typed values
786 // into the original value typed registers.
787 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
788 // Merge the split registers into the expected larger result vregs of
789 // the original call.
790 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
791 LocTy, Args[i].Flags[0]);
794 j += NumParts - 1;
796 for (auto &Fn : DelayedOutgoingRegAssignments)
797 Fn();
799 return true;
802 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
803 ArrayRef<Register> VRegs, Register DemoteReg,
804 int FI) const {
805 MachineFunction &MF = MIRBuilder.getMF();
806 MachineRegisterInfo &MRI = MF.getRegInfo();
807 const DataLayout &DL = MF.getDataLayout();
809 SmallVector<EVT, 4> SplitVTs;
810 SmallVector<uint64_t, 4> Offsets;
811 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
813 assert(VRegs.size() == SplitVTs.size());
815 unsigned NumValues = SplitVTs.size();
816 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
817 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
818 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
820 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
822 for (unsigned I = 0; I < NumValues; ++I) {
823 Register Addr;
824 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
825 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
826 MRI.getType(VRegs[I]),
827 commonAlignment(BaseAlign, Offsets[I]));
828 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
832 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
833 ArrayRef<Register> VRegs,
834 Register DemoteReg) const {
835 MachineFunction &MF = MIRBuilder.getMF();
836 MachineRegisterInfo &MRI = MF.getRegInfo();
837 const DataLayout &DL = MF.getDataLayout();
839 SmallVector<EVT, 4> SplitVTs;
840 SmallVector<uint64_t, 4> Offsets;
841 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
843 assert(VRegs.size() == SplitVTs.size());
845 unsigned NumValues = SplitVTs.size();
846 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
847 unsigned AS = DL.getAllocaAddrSpace();
848 LLT OffsetLLTy =
849 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
851 MachinePointerInfo PtrInfo(AS);
853 for (unsigned I = 0; I < NumValues; ++I) {
854 Register Addr;
855 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
856 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
857 MRI.getType(VRegs[I]),
858 commonAlignment(BaseAlign, Offsets[I]));
859 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
863 void CallLowering::insertSRetIncomingArgument(
864 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
865 MachineRegisterInfo &MRI, const DataLayout &DL) const {
866 unsigned AS = DL.getAllocaAddrSpace();
867 DemoteReg = MRI.createGenericVirtualRegister(
868 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
870 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
872 SmallVector<EVT, 1> ValueVTs;
873 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
875 // NOTE: Assume that a pointer won't get split into more than one VT.
876 assert(ValueVTs.size() == 1);
878 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
879 ArgInfo::NoArgIndex);
880 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
881 DemoteArg.Flags[0].setSRet();
882 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
885 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
886 const CallBase &CB,
887 CallLoweringInfo &Info) const {
888 const DataLayout &DL = MIRBuilder.getDataLayout();
889 Type *RetTy = CB.getType();
890 unsigned AS = DL.getAllocaAddrSpace();
891 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
893 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
894 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
896 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
897 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
898 ArgInfo::NoArgIndex);
899 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
900 DemoteArg.Flags[0].setSRet();
902 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
903 Info.DemoteStackIndex = FI;
904 Info.DemoteRegister = DemoteReg;
907 bool CallLowering::checkReturn(CCState &CCInfo,
908 SmallVectorImpl<BaseArgInfo> &Outs,
909 CCAssignFn *Fn) const {
910 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
911 MVT VT = MVT::getVT(Outs[I].Ty);
912 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
913 return false;
915 return true;
918 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
919 AttributeList Attrs,
920 SmallVectorImpl<BaseArgInfo> &Outs,
921 const DataLayout &DL) const {
922 LLVMContext &Context = RetTy->getContext();
923 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
925 SmallVector<EVT, 4> SplitVTs;
926 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
927 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
929 for (EVT VT : SplitVTs) {
930 unsigned NumParts =
931 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
932 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
933 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
935 for (unsigned I = 0; I < NumParts; ++I) {
936 Outs.emplace_back(PartTy, Flags);
941 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
942 const auto &F = MF.getFunction();
943 Type *ReturnType = F.getReturnType();
944 CallingConv::ID CallConv = F.getCallingConv();
946 SmallVector<BaseArgInfo, 4> SplitArgs;
947 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
948 MF.getDataLayout());
949 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
952 bool CallLowering::parametersInCSRMatch(
953 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
954 const SmallVectorImpl<CCValAssign> &OutLocs,
955 const SmallVectorImpl<ArgInfo> &OutArgs) const {
956 for (unsigned i = 0; i < OutLocs.size(); ++i) {
957 auto &ArgLoc = OutLocs[i];
958 // If it's not a register, it's fine.
959 if (!ArgLoc.isRegLoc())
960 continue;
962 MCRegister PhysReg = ArgLoc.getLocReg();
964 // Only look at callee-saved registers.
965 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
966 continue;
968 LLVM_DEBUG(
969 dbgs()
970 << "... Call has an argument passed in a callee-saved register.\n");
972 // Check if it was copied from.
973 const ArgInfo &OutInfo = OutArgs[i];
975 if (OutInfo.Regs.size() > 1) {
976 LLVM_DEBUG(
977 dbgs() << "... Cannot handle arguments in multiple registers.\n");
978 return false;
981 // Check if we copy the register, walking through copies from virtual
982 // registers. Note that getDefIgnoringCopies does not ignore copies from
983 // physical registers.
984 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
985 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
986 LLVM_DEBUG(
987 dbgs()
988 << "... Parameter was not copied into a VReg, cannot tail call.\n");
989 return false;
992 // Got a copy. Verify that it's the same as the register we want.
993 Register CopyRHS = RegDef->getOperand(1).getReg();
994 if (CopyRHS != PhysReg) {
995 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
996 "VReg, cannot tail call.\n");
997 return false;
1001 return true;
1004 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1005 MachineFunction &MF,
1006 SmallVectorImpl<ArgInfo> &InArgs,
1007 ValueAssigner &CalleeAssigner,
1008 ValueAssigner &CallerAssigner) const {
1009 const Function &F = MF.getFunction();
1010 CallingConv::ID CalleeCC = Info.CallConv;
1011 CallingConv::ID CallerCC = F.getCallingConv();
1013 if (CallerCC == CalleeCC)
1014 return true;
1016 SmallVector<CCValAssign, 16> ArgLocs1;
1017 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1018 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1019 return false;
1021 SmallVector<CCValAssign, 16> ArgLocs2;
1022 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1023 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1024 return false;
1026 // We need the argument locations to match up exactly. If there's more in
1027 // one than the other, then we are done.
1028 if (ArgLocs1.size() != ArgLocs2.size())
1029 return false;
1031 // Make sure that each location is passed in exactly the same way.
1032 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1033 const CCValAssign &Loc1 = ArgLocs1[i];
1034 const CCValAssign &Loc2 = ArgLocs2[i];
1036 // We need both of them to be the same. So if one is a register and one
1037 // isn't, we're done.
1038 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1039 return false;
1041 if (Loc1.isRegLoc()) {
1042 // If they don't have the same register location, we're done.
1043 if (Loc1.getLocReg() != Loc2.getLocReg())
1044 return false;
1046 // They matched, so we can move to the next ArgLoc.
1047 continue;
1050 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1051 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1052 return false;
1055 return true;
1058 LLT CallLowering::ValueHandler::getStackValueStoreType(
1059 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1060 const MVT ValVT = VA.getValVT();
1061 if (ValVT != MVT::iPTR) {
1062 LLT ValTy(ValVT);
1064 // We lost the pointeriness going through CCValAssign, so try to restore it
1065 // based on the flags.
1066 if (Flags.isPointer()) {
1067 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1068 ValTy.getScalarSizeInBits());
1069 if (ValVT.isVector())
1070 return LLT::vector(ValTy.getElementCount(), PtrTy);
1071 return PtrTy;
1074 return ValTy;
1077 unsigned AddrSpace = Flags.getPointerAddrSpace();
1078 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1081 void CallLowering::ValueHandler::copyArgumentMemory(
1082 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1083 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1084 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1085 CCValAssign &VA) const {
1086 MachineFunction &MF = MIRBuilder.getMF();
1087 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1088 SrcPtrInfo,
1089 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1090 SrcAlign);
1092 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1093 DstPtrInfo,
1094 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1095 MemSize, DstAlign);
1097 const LLT PtrTy = MRI.getType(DstPtr);
1098 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1100 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1101 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1104 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1105 CCValAssign &VA,
1106 unsigned MaxSizeBits) {
1107 LLT LocTy{VA.getLocVT()};
1108 LLT ValTy{VA.getValVT()};
1110 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1111 return ValReg;
1113 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1114 if (MaxSizeBits <= ValTy.getSizeInBits())
1115 return ValReg;
1116 LocTy = LLT::scalar(MaxSizeBits);
1119 const LLT ValRegTy = MRI.getType(ValReg);
1120 if (ValRegTy.isPointer()) {
1121 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1122 // we have to cast to do the extension.
1123 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1124 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1127 switch (VA.getLocInfo()) {
1128 default: break;
1129 case CCValAssign::Full:
1130 case CCValAssign::BCvt:
1131 // FIXME: bitconverting between vector types may or may not be a
1132 // nop in big-endian situations.
1133 return ValReg;
1134 case CCValAssign::AExt: {
1135 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1136 return MIB.getReg(0);
1138 case CCValAssign::SExt: {
1139 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1140 MIRBuilder.buildSExt(NewReg, ValReg);
1141 return NewReg;
1143 case CCValAssign::ZExt: {
1144 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1145 MIRBuilder.buildZExt(NewReg, ValReg);
1146 return NewReg;
1149 llvm_unreachable("unable to extend register");
1152 void CallLowering::ValueAssigner::anchor() {}
1154 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1155 Register SrcReg,
1156 LLT NarrowTy) {
1157 switch (VA.getLocInfo()) {
1158 case CCValAssign::LocInfo::ZExt: {
1159 return MIRBuilder
1160 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1161 NarrowTy.getScalarSizeInBits())
1162 .getReg(0);
1164 case CCValAssign::LocInfo::SExt: {
1165 return MIRBuilder
1166 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1167 NarrowTy.getScalarSizeInBits())
1168 .getReg(0);
1169 break;
1171 default:
1172 return SrcReg;
1176 /// Check if we can use a basic COPY instruction between the two types.
1178 /// We're currently building on top of the infrastructure using MVT, which loses
1179 /// pointer information in the CCValAssign. We accept copies from physical
1180 /// registers that have been reported as integers if it's to an equivalent sized
1181 /// pointer LLT.
1182 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1183 if (SrcTy == DstTy)
1184 return true;
1186 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1187 return false;
1189 SrcTy = SrcTy.getScalarType();
1190 DstTy = DstTy.getScalarType();
1192 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1193 (DstTy.isScalar() && SrcTy.isPointer());
1196 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1197 Register PhysReg,
1198 CCValAssign VA) {
1199 const MVT LocVT = VA.getLocVT();
1200 const LLT LocTy(LocVT);
1201 const LLT RegTy = MRI.getType(ValVReg);
1203 if (isCopyCompatibleType(RegTy, LocTy)) {
1204 MIRBuilder.buildCopy(ValVReg, PhysReg);
1205 return;
1208 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1209 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1210 MIRBuilder.buildTrunc(ValVReg, Hint);