1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements a top-down list scheduler, using standard algorithms.
10 // The basic approach uses a priority queue of available nodes to schedule.
11 // One at a time, nodes are taken from the priority queue (thus in priority
12 // order), checked for legality to schedule, and emitted if legal.
14 // Nodes may not be legal to schedule either due to structural hazards (e.g.
15 // pipeline or resource constraints) or because an input to the instruction has
16 // not completed execution.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/AntiDepBreaker.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/RegisterClassInfo.h"
30 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
32 #include "llvm/CodeGen/SchedulerRegistry.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetPassConfig.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
46 #define DEBUG_TYPE "post-RA-sched"
48 STATISTIC(NumNoops
, "Number of noops inserted");
49 STATISTIC(NumStalls
, "Number of pipeline stalls");
50 STATISTIC(NumFixedAnti
, "Number of fixed anti-dependencies");
52 // Post-RA scheduling is enabled with
53 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
54 // override the target.
56 EnablePostRAScheduler("post-RA-scheduler",
57 cl::desc("Enable scheduling after register allocation"),
58 cl::init(false), cl::Hidden
);
59 static cl::opt
<std::string
>
60 EnableAntiDepBreaking("break-anti-dependencies",
61 cl::desc("Break post-RA scheduling anti-dependencies: "
62 "\"critical\", \"all\", or \"none\""),
63 cl::init("none"), cl::Hidden
);
65 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
67 DebugDiv("postra-sched-debugdiv",
68 cl::desc("Debug control MBBs that are scheduled"),
69 cl::init(0), cl::Hidden
);
71 DebugMod("postra-sched-debugmod",
72 cl::desc("Debug control MBBs that are scheduled"),
73 cl::init(0), cl::Hidden
);
75 AntiDepBreaker::~AntiDepBreaker() = default;
78 class PostRAScheduler
: public MachineFunctionPass
{
79 const TargetInstrInfo
*TII
= nullptr;
80 RegisterClassInfo RegClassInfo
;
84 PostRAScheduler() : MachineFunctionPass(ID
) {}
86 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
88 AU
.addRequired
<AAResultsWrapperPass
>();
89 AU
.addRequired
<TargetPassConfig
>();
90 AU
.addRequired
<MachineDominatorTree
>();
91 AU
.addPreserved
<MachineDominatorTree
>();
92 AU
.addRequired
<MachineLoopInfo
>();
93 AU
.addPreserved
<MachineLoopInfo
>();
94 MachineFunctionPass::getAnalysisUsage(AU
);
97 MachineFunctionProperties
getRequiredProperties() const override
{
98 return MachineFunctionProperties().set(
99 MachineFunctionProperties::Property::NoVRegs
);
102 bool runOnMachineFunction(MachineFunction
&Fn
) override
;
105 bool enablePostRAScheduler(
106 const TargetSubtargetInfo
&ST
, CodeGenOpt::Level OptLevel
,
107 TargetSubtargetInfo::AntiDepBreakMode
&Mode
,
108 TargetSubtargetInfo::RegClassVector
&CriticalPathRCs
) const;
110 char PostRAScheduler::ID
= 0;
112 class SchedulePostRATDList
: public ScheduleDAGInstrs
{
113 /// AvailableQueue - The priority queue to use for the available SUnits.
115 LatencyPriorityQueue AvailableQueue
;
117 /// PendingQueue - This contains all of the instructions whose operands have
118 /// been issued, but their results are not ready yet (due to the latency of
119 /// the operation). Once the operands becomes available, the instruction is
120 /// added to the AvailableQueue.
121 std::vector
<SUnit
*> PendingQueue
;
123 /// HazardRec - The hazard recognizer to use.
124 ScheduleHazardRecognizer
*HazardRec
;
126 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
127 AntiDepBreaker
*AntiDepBreak
;
129 /// AA - AliasAnalysis for making memory reference queries.
132 /// The schedule. Null SUnit*'s represent noop instructions.
133 std::vector
<SUnit
*> Sequence
;
135 /// Ordered list of DAG postprocessing steps.
136 std::vector
<std::unique_ptr
<ScheduleDAGMutation
>> Mutations
;
138 /// The index in BB of RegionEnd.
140 /// This is the instruction number from the top of the current block, not
141 /// the SlotIndex. It is only used by the AntiDepBreaker.
142 unsigned EndIndex
= 0;
145 SchedulePostRATDList(
146 MachineFunction
&MF
, MachineLoopInfo
&MLI
, AliasAnalysis
*AA
,
147 const RegisterClassInfo
&,
148 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
,
149 SmallVectorImpl
<const TargetRegisterClass
*> &CriticalPathRCs
);
151 ~SchedulePostRATDList() override
;
153 /// startBlock - Initialize register live-range state for scheduling in
156 void startBlock(MachineBasicBlock
*BB
) override
;
158 // Set the index of RegionEnd within the current BB.
159 void setEndIndex(unsigned EndIdx
) { EndIndex
= EndIdx
; }
161 /// Initialize the scheduler state for the next scheduling region.
162 void enterRegion(MachineBasicBlock
*bb
,
163 MachineBasicBlock::iterator begin
,
164 MachineBasicBlock::iterator end
,
165 unsigned regioninstrs
) override
;
167 /// Notify that the scheduler has finished scheduling the current region.
168 void exitRegion() override
;
170 /// Schedule - Schedule the instruction range using list scheduling.
172 void schedule() override
;
176 /// Observe - Update liveness information to account for the current
177 /// instruction, which will not be scheduled.
179 void Observe(MachineInstr
&MI
, unsigned Count
);
181 /// finishBlock - Clean up register live-range state.
183 void finishBlock() override
;
186 /// Apply each ScheduleDAGMutation step in order.
187 void postprocessDAG();
189 void ReleaseSucc(SUnit
*SU
, SDep
*SuccEdge
);
190 void ReleaseSuccessors(SUnit
*SU
);
191 void ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
);
192 void ListScheduleTopDown();
194 void dumpSchedule() const;
195 void emitNoop(unsigned CurCycle
);
199 char &llvm::PostRASchedulerID
= PostRAScheduler::ID
;
201 INITIALIZE_PASS(PostRAScheduler
, DEBUG_TYPE
,
202 "Post RA top-down list latency scheduler", false, false)
204 SchedulePostRATDList::SchedulePostRATDList(
205 MachineFunction
&MF
, MachineLoopInfo
&MLI
, AliasAnalysis
*AA
,
206 const RegisterClassInfo
&RCI
,
207 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
,
208 SmallVectorImpl
<const TargetRegisterClass
*> &CriticalPathRCs
)
209 : ScheduleDAGInstrs(MF
, &MLI
), AA(AA
) {
211 const InstrItineraryData
*InstrItins
=
212 MF
.getSubtarget().getInstrItineraryData();
214 MF
.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
216 MF
.getSubtarget().getPostRAMutations(Mutations
);
218 assert((AntiDepMode
== TargetSubtargetInfo::ANTIDEP_NONE
||
219 MRI
.tracksLiveness()) &&
220 "Live-ins must be accurate for anti-dependency breaking");
221 AntiDepBreak
= ((AntiDepMode
== TargetSubtargetInfo::ANTIDEP_ALL
)
222 ? createAggressiveAntiDepBreaker(MF
, RCI
, CriticalPathRCs
)
223 : ((AntiDepMode
== TargetSubtargetInfo::ANTIDEP_CRITICAL
)
224 ? createCriticalAntiDepBreaker(MF
, RCI
)
228 SchedulePostRATDList::~SchedulePostRATDList() {
233 /// Initialize state associated with the next scheduling region.
234 void SchedulePostRATDList::enterRegion(MachineBasicBlock
*bb
,
235 MachineBasicBlock::iterator begin
,
236 MachineBasicBlock::iterator end
,
237 unsigned regioninstrs
) {
238 ScheduleDAGInstrs::enterRegion(bb
, begin
, end
, regioninstrs
);
242 /// Print the schedule before exiting the region.
243 void SchedulePostRATDList::exitRegion() {
245 dbgs() << "*** Final schedule ***\n";
249 ScheduleDAGInstrs::exitRegion();
252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
253 /// dumpSchedule - dump the scheduled Sequence.
254 LLVM_DUMP_METHOD
void SchedulePostRATDList::dumpSchedule() const {
255 for (const SUnit
*SU
: Sequence
) {
259 dbgs() << "**** NOOP ****\n";
264 bool PostRAScheduler::enablePostRAScheduler(
265 const TargetSubtargetInfo
&ST
,
266 CodeGenOpt::Level OptLevel
,
267 TargetSubtargetInfo::AntiDepBreakMode
&Mode
,
268 TargetSubtargetInfo::RegClassVector
&CriticalPathRCs
) const {
269 Mode
= ST
.getAntiDepBreakMode();
270 ST
.getCriticalPathRCs(CriticalPathRCs
);
272 // Check for explicit enable/disable of post-ra scheduling.
273 if (EnablePostRAScheduler
.getPosition() > 0)
274 return EnablePostRAScheduler
;
276 return ST
.enablePostRAScheduler() &&
277 OptLevel
>= ST
.getOptLevelToEnablePostRAScheduler();
280 bool PostRAScheduler::runOnMachineFunction(MachineFunction
&Fn
) {
281 if (skipFunction(Fn
.getFunction()))
284 TII
= Fn
.getSubtarget().getInstrInfo();
285 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
286 AliasAnalysis
*AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
287 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
289 RegClassInfo
.runOnMachineFunction(Fn
);
291 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
=
292 TargetSubtargetInfo::ANTIDEP_NONE
;
293 SmallVector
<const TargetRegisterClass
*, 4> CriticalPathRCs
;
295 // Check that post-RA scheduling is enabled for this target.
296 // This may upgrade the AntiDepMode.
297 if (!enablePostRAScheduler(Fn
.getSubtarget(), PassConfig
->getOptLevel(),
298 AntiDepMode
, CriticalPathRCs
))
301 // Check for antidep breaking override...
302 if (EnableAntiDepBreaking
.getPosition() > 0) {
303 AntiDepMode
= (EnableAntiDepBreaking
== "all")
304 ? TargetSubtargetInfo::ANTIDEP_ALL
305 : ((EnableAntiDepBreaking
== "critical")
306 ? TargetSubtargetInfo::ANTIDEP_CRITICAL
307 : TargetSubtargetInfo::ANTIDEP_NONE
);
310 LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
312 SchedulePostRATDList
Scheduler(Fn
, MLI
, AA
, RegClassInfo
, AntiDepMode
,
315 // Loop over all of the basic blocks
316 for (auto &MBB
: Fn
) {
318 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
320 static int bbcnt
= 0;
321 if (bbcnt
++ % DebugDiv
!= DebugMod
)
323 dbgs() << "*** DEBUG scheduling " << Fn
.getName() << ":"
324 << printMBBReference(MBB
) << " ***\n";
328 // Initialize register live-range state for scheduling in this block.
329 Scheduler
.startBlock(&MBB
);
331 // Schedule each sequence of instructions not interrupted by a label
332 // or anything else that effectively needs to shut down scheduling.
333 MachineBasicBlock::iterator Current
= MBB
.end();
334 unsigned Count
= MBB
.size(), CurrentCount
= Count
;
335 for (MachineBasicBlock::iterator I
= Current
; I
!= MBB
.begin();) {
336 MachineInstr
&MI
= *std::prev(I
);
338 // Calls are not scheduling boundaries before register allocation, but
339 // post-ra we don't gain anything by scheduling across calls since we
340 // don't need to worry about register pressure.
341 if (MI
.isCall() || TII
->isSchedulingBoundary(MI
, &MBB
, Fn
)) {
342 Scheduler
.enterRegion(&MBB
, I
, Current
, CurrentCount
- Count
);
343 Scheduler
.setEndIndex(CurrentCount
);
344 Scheduler
.schedule();
345 Scheduler
.exitRegion();
346 Scheduler
.EmitSchedule();
348 CurrentCount
= Count
;
349 Scheduler
.Observe(MI
, CurrentCount
);
353 Count
-= MI
.getBundleSize();
355 assert(Count
== 0 && "Instruction count mismatch!");
356 assert((MBB
.begin() == Current
|| CurrentCount
!= 0) &&
357 "Instruction count mismatch!");
358 Scheduler
.enterRegion(&MBB
, MBB
.begin(), Current
, CurrentCount
);
359 Scheduler
.setEndIndex(CurrentCount
);
360 Scheduler
.schedule();
361 Scheduler
.exitRegion();
362 Scheduler
.EmitSchedule();
364 // Clean up register live-range state.
365 Scheduler
.finishBlock();
367 // Update register kills
368 Scheduler
.fixupKills(MBB
);
374 /// StartBlock - Initialize register live-range state for scheduling in
377 void SchedulePostRATDList::startBlock(MachineBasicBlock
*BB
) {
378 // Call the superclass.
379 ScheduleDAGInstrs::startBlock(BB
);
381 // Reset the hazard recognizer and anti-dep breaker.
384 AntiDepBreak
->StartBlock(BB
);
387 /// Schedule - Schedule the instruction range using list scheduling.
389 void SchedulePostRATDList::schedule() {
390 // Build the scheduling graph.
395 AntiDepBreak
->BreakAntiDependencies(SUnits
, RegionBegin
, RegionEnd
,
396 EndIndex
, DbgValues
);
399 // We made changes. Update the dependency graph.
400 // Theoretically we could update the graph in place:
401 // When a live range is changed to use a different register, remove
402 // the def's anti-dependence *and* output-dependence edges due to
403 // that register, and add new anti-dependence and output-dependence
404 // edges based on the next live range of the register.
405 ScheduleDAG::clearDAG();
408 NumFixedAnti
+= Broken
;
414 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
417 AvailableQueue
.initNodes(SUnits
);
418 ListScheduleTopDown();
419 AvailableQueue
.releaseState();
422 /// Observe - Update liveness information to account for the current
423 /// instruction, which will not be scheduled.
425 void SchedulePostRATDList::Observe(MachineInstr
&MI
, unsigned Count
) {
427 AntiDepBreak
->Observe(MI
, Count
, EndIndex
);
430 /// FinishBlock - Clean up register live-range state.
432 void SchedulePostRATDList::finishBlock() {
434 AntiDepBreak
->FinishBlock();
436 // Call the superclass.
437 ScheduleDAGInstrs::finishBlock();
440 /// Apply each ScheduleDAGMutation step in order.
441 void SchedulePostRATDList::postprocessDAG() {
442 for (auto &M
: Mutations
)
446 //===----------------------------------------------------------------------===//
447 // Top-Down Scheduling
448 //===----------------------------------------------------------------------===//
450 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
451 /// the PendingQueue if the count reaches zero.
452 void SchedulePostRATDList::ReleaseSucc(SUnit
*SU
, SDep
*SuccEdge
) {
453 SUnit
*SuccSU
= SuccEdge
->getSUnit();
455 if (SuccEdge
->isWeak()) {
456 --SuccSU
->WeakPredsLeft
;
460 if (SuccSU
->NumPredsLeft
== 0) {
461 dbgs() << "*** Scheduling failed! ***\n";
463 dbgs() << " has been released too many times!\n";
464 llvm_unreachable(nullptr);
467 --SuccSU
->NumPredsLeft
;
469 // Standard scheduler algorithms will recompute the depth of the successor
471 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
473 // However, we lazily compute node depth instead. Note that
474 // ScheduleNodeTopDown has already updated the depth of this node which causes
475 // all descendents to be marked dirty. Setting the successor depth explicitly
476 // here would cause depth to be recomputed for all its ancestors. If the
477 // successor is not yet ready (because of a transitively redundant edge) then
478 // this causes depth computation to be quadratic in the size of the DAG.
480 // If all the node's predecessors are scheduled, this node is ready
481 // to be scheduled. Ignore the special ExitSU node.
482 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
)
483 PendingQueue
.push_back(SuccSU
);
486 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
487 void SchedulePostRATDList::ReleaseSuccessors(SUnit
*SU
) {
488 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
490 ReleaseSucc(SU
, &*I
);
494 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
495 /// count of its successors. If a successor pending count is zero, add it to
496 /// the Available queue.
497 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
498 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle
<< "]: ");
499 LLVM_DEBUG(dumpNode(*SU
));
501 Sequence
.push_back(SU
);
502 assert(CurCycle
>= SU
->getDepth() &&
503 "Node scheduled above its depth!");
504 SU
->setDepthToAtLeast(CurCycle
);
506 ReleaseSuccessors(SU
);
507 SU
->isScheduled
= true;
508 AvailableQueue
.scheduledNode(SU
);
511 /// emitNoop - Add a noop to the current instruction sequence.
512 void SchedulePostRATDList::emitNoop(unsigned CurCycle
) {
513 LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle
<< '\n');
514 HazardRec
->EmitNoop();
515 Sequence
.push_back(nullptr); // NULL here means noop
519 /// ListScheduleTopDown - The main loop of list scheduling for top-down
521 void SchedulePostRATDList::ListScheduleTopDown() {
522 unsigned CurCycle
= 0;
524 // We're scheduling top-down but we're visiting the regions in
525 // bottom-up order, so we don't know the hazards at the start of a
526 // region. So assume no hazards (this should usually be ok as most
527 // blocks are a single region).
530 // Release any successors of the special Entry node.
531 ReleaseSuccessors(&EntrySU
);
533 // Add all leaves to Available queue.
534 for (SUnit
&SUnit
: SUnits
) {
535 // It is available if it has no predecessors.
536 if (!SUnit
.NumPredsLeft
&& !SUnit
.isAvailable
) {
537 AvailableQueue
.push(&SUnit
);
538 SUnit
.isAvailable
= true;
542 // In any cycle where we can't schedule any instructions, we must
543 // stall or emit a noop, depending on the target.
544 bool CycleHasInsts
= false;
546 // While Available queue is not empty, grab the node with the highest
547 // priority. If it is not ready put it back. Schedule the node.
548 std::vector
<SUnit
*> NotReady
;
549 Sequence
.reserve(SUnits
.size());
550 while (!AvailableQueue
.empty() || !PendingQueue
.empty()) {
551 // Check to see if any of the pending instructions are ready to issue. If
552 // so, add them to the available queue.
553 unsigned MinDepth
= ~0u;
554 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
555 if (PendingQueue
[i
]->getDepth() <= CurCycle
) {
556 AvailableQueue
.push(PendingQueue
[i
]);
557 PendingQueue
[i
]->isAvailable
= true;
558 PendingQueue
[i
] = PendingQueue
.back();
559 PendingQueue
.pop_back();
561 } else if (PendingQueue
[i
]->getDepth() < MinDepth
)
562 MinDepth
= PendingQueue
[i
]->getDepth();
565 LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
566 AvailableQueue
.dump(this));
568 SUnit
*FoundSUnit
= nullptr, *NotPreferredSUnit
= nullptr;
569 bool HasNoopHazards
= false;
570 while (!AvailableQueue
.empty()) {
571 SUnit
*CurSUnit
= AvailableQueue
.pop();
573 ScheduleHazardRecognizer::HazardType HT
=
574 HazardRec
->getHazardType(CurSUnit
, 0/*no stalls*/);
575 if (HT
== ScheduleHazardRecognizer::NoHazard
) {
576 if (HazardRec
->ShouldPreferAnother(CurSUnit
)) {
577 if (!NotPreferredSUnit
) {
578 // If this is the first non-preferred node for this cycle, then
579 // record it and continue searching for a preferred node. If this
580 // is not the first non-preferred node, then treat it as though
581 // there had been a hazard.
582 NotPreferredSUnit
= CurSUnit
;
586 FoundSUnit
= CurSUnit
;
591 // Remember if this is a noop hazard.
592 HasNoopHazards
|= HT
== ScheduleHazardRecognizer::NoopHazard
;
594 NotReady
.push_back(CurSUnit
);
597 // If we have a non-preferred node, push it back onto the available list.
598 // If we did not find a preferred node, then schedule this first
599 // non-preferred node.
600 if (NotPreferredSUnit
) {
603 dbgs() << "*** Will schedule a non-preferred instruction...\n");
604 FoundSUnit
= NotPreferredSUnit
;
606 AvailableQueue
.push(NotPreferredSUnit
);
609 NotPreferredSUnit
= nullptr;
612 // Add the nodes that aren't ready back onto the available list.
613 if (!NotReady
.empty()) {
614 AvailableQueue
.push_all(NotReady
);
618 // If we found a node to schedule...
620 // If we need to emit noops prior to this instruction, then do so.
621 unsigned NumPreNoops
= HazardRec
->PreEmitNoops(FoundSUnit
);
622 for (unsigned i
= 0; i
!= NumPreNoops
; ++i
)
625 // ... schedule the node...
626 ScheduleNodeTopDown(FoundSUnit
, CurCycle
);
627 HazardRec
->EmitInstruction(FoundSUnit
);
628 CycleHasInsts
= true;
629 if (HazardRec
->atIssueLimit()) {
630 LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
632 HazardRec
->AdvanceCycle();
634 CycleHasInsts
= false;
638 LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle
<< '\n');
639 HazardRec
->AdvanceCycle();
640 } else if (!HasNoopHazards
) {
641 // Otherwise, we have a pipeline stall, but no other problem,
642 // just advance the current cycle and try again.
643 LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle
<< '\n');
644 HazardRec
->AdvanceCycle();
647 // Otherwise, we have no instructions to issue and we have instructions
648 // that will fault if we don't do this right. This is the case for
649 // processors without pipeline interlocks and other cases.
654 CycleHasInsts
= false;
659 unsigned ScheduledNodes
= VerifyScheduledDAG(/*isBottomUp=*/false);
660 unsigned Noops
= llvm::count(Sequence
, nullptr);
661 assert(Sequence
.size() - Noops
== ScheduledNodes
&&
662 "The number of nodes scheduled doesn't match the expected number!");
666 // EmitSchedule - Emit the machine code in scheduled order.
667 void SchedulePostRATDList::EmitSchedule() {
668 RegionBegin
= RegionEnd
;
670 // If first instruction was a DBG_VALUE then put it back.
672 BB
->splice(RegionEnd
, BB
, FirstDbgValue
);
674 // Then re-insert them according to the given schedule.
675 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
676 if (SUnit
*SU
= Sequence
[i
])
677 BB
->splice(RegionEnd
, BB
, SU
->getInstr());
679 // Null SUnit* is a noop.
680 TII
->insertNoop(*BB
, RegionEnd
);
682 // Update the Begin iterator, as the first instruction in the block
683 // may have been scheduled later.
685 RegionBegin
= std::prev(RegionEnd
);
688 // Reinsert any remaining debug_values.
689 for (std::vector
<std::pair
<MachineInstr
*, MachineInstr
*> >::iterator
690 DI
= DbgValues
.end(), DE
= DbgValues
.begin(); DI
!= DE
; --DI
) {
691 std::pair
<MachineInstr
*, MachineInstr
*> P
= *std::prev(DI
);
692 MachineInstr
*DbgValue
= P
.first
;
693 MachineBasicBlock::iterator OrigPrivMI
= P
.second
;
694 BB
->splice(++OrigPrivMI
, BB
, DbgValue
);
697 FirstDbgValue
= nullptr;