[WebAssembly] Add new target feature in support of 'extended-const' proposal
[llvm-project.git] / llvm / lib / CodeGen / SplitKit.cpp
blobf270c3a648b3e821c053a25f3e0c1347a18877ca
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple, "Number of splits that were simple");
51 STATISTIC(NumCopies, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
54 //===----------------------------------------------------------------------===//
55 // Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
59 unsigned BBNum)
60 : LIS(lis), LastInsertPoint(BBNum) {}
62 SlotIndex
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
64 const MachineBasicBlock &MBB) {
65 unsigned Num = MBB.getNumber();
66 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
67 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
70 bool EHPadSuccessor = false;
71 for (const MachineBasicBlock *SMBB : MBB.successors()) {
72 if (SMBB->isEHPad()) {
73 ExceptionalSuccessors.push_back(SMBB);
74 EHPadSuccessor = true;
75 } else if (SMBB->isInlineAsmBrIndirectTarget())
76 ExceptionalSuccessors.push_back(SMBB);
79 // Compute insert points on the first call. The pair is independent of the
80 // current live interval.
81 if (!LIP.first.isValid()) {
82 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
83 if (FirstTerm == MBB.end())
84 LIP.first = MBBEnd;
85 else
86 LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 // If there is a landing pad or inlineasm_br successor, also find the
89 // instruction. If there is no such instruction, we don't need to do
90 // anything special. We assume there cannot be multiple instructions that
91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92 // assume that if there are any, they will be after any other call
93 // instructions in the block.
94 if (ExceptionalSuccessors.empty())
95 return LIP.first;
96 for (const MachineInstr &MI : llvm::reverse(MBB)) {
97 if ((EHPadSuccessor && MI.isCall()) ||
98 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
99 LIP.second = LIS.getInstructionIndex(MI);
100 break;
105 // If CurLI is live into a landing pad successor, move the last insert point
106 // back to the call that may throw.
107 if (!LIP.second)
108 return LIP.first;
110 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
111 return LIS.isLiveInToMBB(CurLI, EHPad);
113 return LIP.first;
115 // Find the value leaving MBB.
116 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
117 if (!VNI)
118 return LIP.first;
120 // The def of statepoint instruction is a gc relocation and it should be alive
121 // in landing pad. So we cannot split interval after statepoint instruction.
122 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
123 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
124 if (I->getOpcode() == TargetOpcode::STATEPOINT)
125 return LIP.second;
127 // If the value leaving MBB was defined after the call in MBB, it can't
128 // really be live-in to the landing pad. This can happen if the landing pad
129 // has a PHI, and this register is undef on the exceptional edge.
130 // <rdar://problem/10664933>
131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132 return LIP.first;
134 // Value is properly live-in to the landing pad.
135 // Only allow inserts before the call.
136 return LIP.second;
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141 MachineBasicBlock &MBB) {
142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143 if (LIP == LIS.getMBBEndIdx(&MBB))
144 return MBB.end();
145 return LIS.getInstructionFromIndex(LIP);
148 //===----------------------------------------------------------------------===//
149 // Split Analysis
150 //===----------------------------------------------------------------------===//
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153 const MachineLoopInfo &mli)
154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
157 void SplitAnalysis::clear() {
158 UseSlots.clear();
159 UseBlocks.clear();
160 ThroughBlocks.clear();
161 CurLI = nullptr;
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo *VNI : CurLI->valnos)
171 if (!VNI->isPHIDef() && !VNI->isUnused())
172 UseSlots.push_back(VNI->def);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo &MRI = MF.getRegInfo();
176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
177 if (!MO.isUndef())
178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
180 array_pod_sort(UseSlots.begin(), UseSlots.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185 SlotIndex::isSameInstr),
186 UseSlots.end());
188 // Compute per-live block info.
189 calcLiveBlockInfo();
191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
192 << UseBlocks.size() << " blocks, through "
193 << NumThroughBlocks << " blocks.\n");
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199 ThroughBlocks.resize(MF.getNumBlockIDs());
200 NumThroughBlocks = NumGapBlocks = 0;
201 if (CurLI->empty())
202 return;
204 LiveInterval::const_iterator LVI = CurLI->begin();
205 LiveInterval::const_iterator LVE = CurLI->end();
207 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
208 UseI = UseSlots.begin();
209 UseE = UseSlots.end();
211 // Loop over basic blocks where CurLI is live.
212 MachineFunction::iterator MFI =
213 LIS.getMBBFromIndex(LVI->start)->getIterator();
214 while (true) {
215 BlockInfo BI;
216 BI.MBB = &*MFI;
217 SlotIndex Start, Stop;
218 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
220 // If the block contains no uses, the range must be live through. At one
221 // point, RegisterCoalescer could create dangling ranges that ended
222 // mid-block.
223 if (UseI == UseE || *UseI >= Stop) {
224 ++NumThroughBlocks;
225 ThroughBlocks.set(BI.MBB->getNumber());
226 // The range shouldn't end mid-block if there are no uses. This shouldn't
227 // happen.
228 assert(LVI->end >= Stop && "range ends mid block with no uses");
229 } else {
230 // This block has uses. Find the first and last uses in the block.
231 BI.FirstInstr = *UseI;
232 assert(BI.FirstInstr >= Start);
233 do ++UseI;
234 while (UseI != UseE && *UseI < Stop);
235 BI.LastInstr = UseI[-1];
236 assert(BI.LastInstr < Stop);
238 // LVI is the first live segment overlapping MBB.
239 BI.LiveIn = LVI->start <= Start;
241 // When not live in, the first use should be a def.
242 if (!BI.LiveIn) {
243 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
244 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
245 BI.FirstDef = BI.FirstInstr;
248 // Look for gaps in the live range.
249 BI.LiveOut = true;
250 while (LVI->end < Stop) {
251 SlotIndex LastStop = LVI->end;
252 if (++LVI == LVE || LVI->start >= Stop) {
253 BI.LiveOut = false;
254 BI.LastInstr = LastStop;
255 break;
258 if (LastStop < LVI->start) {
259 // There is a gap in the live range. Create duplicate entries for the
260 // live-in snippet and the live-out snippet.
261 ++NumGapBlocks;
263 // Push the Live-in part.
264 BI.LiveOut = false;
265 UseBlocks.push_back(BI);
266 UseBlocks.back().LastInstr = LastStop;
268 // Set up BI for the live-out part.
269 BI.LiveIn = false;
270 BI.LiveOut = true;
271 BI.FirstInstr = BI.FirstDef = LVI->start;
274 // A Segment that starts in the middle of the block must be a def.
275 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
276 if (!BI.FirstDef)
277 BI.FirstDef = LVI->start;
280 UseBlocks.push_back(BI);
282 // LVI is now at LVE or LVI->end >= Stop.
283 if (LVI == LVE)
284 break;
287 // Live segment ends exactly at Stop. Move to the next segment.
288 if (LVI->end == Stop && ++LVI == LVE)
289 break;
291 // Pick the next basic block.
292 if (LVI->start < Stop)
293 ++MFI;
294 else
295 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
302 if (cli->empty())
303 return 0;
304 LiveInterval *li = const_cast<LiveInterval*>(cli);
305 LiveInterval::iterator LVI = li->begin();
306 LiveInterval::iterator LVE = li->end();
307 unsigned Count = 0;
309 // Loop over basic blocks where li is live.
310 MachineFunction::const_iterator MFI =
311 LIS.getMBBFromIndex(LVI->start)->getIterator();
312 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
313 while (true) {
314 ++Count;
315 LVI = li->advanceTo(LVI, Stop);
316 if (LVI == LVE)
317 return Count;
318 do {
319 ++MFI;
320 Stop = LIS.getMBBEndIdx(&*MFI);
321 } while (Stop <= LVI->start);
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
326 unsigned OrigReg = VRM.getOriginal(CurLI->reg());
327 const LiveInterval &Orig = LIS.getInterval(OrigReg);
328 assert(!Orig.empty() && "Splitting empty interval?");
329 LiveInterval::const_iterator I = Orig.find(Idx);
331 // Range containing Idx should begin at Idx.
332 if (I != Orig.end() && I->start <= Idx)
333 return I->start == Idx;
335 // Range does not contain Idx, previous must end at Idx.
336 return I != Orig.begin() && (--I)->end == Idx;
339 void SplitAnalysis::analyze(const LiveInterval *li) {
340 clear();
341 CurLI = li;
342 analyzeUses();
345 //===----------------------------------------------------------------------===//
346 // Split Editor
347 //===----------------------------------------------------------------------===//
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
351 LiveIntervals &LIS, VirtRegMap &VRM,
352 MachineDominatorTree &MDT,
353 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
354 : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
355 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
356 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
357 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
358 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
360 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
361 Edit = &LRE;
362 SpillMode = SM;
363 OpenIdx = 0;
364 RegAssign.clear();
365 Values.clear();
367 // Reset the LiveIntervalCalc instances needed for this spill mode.
368 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369 &LIS.getVNInfoAllocator());
370 if (SpillMode)
371 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
372 &LIS.getVNInfoAllocator());
374 // We don't need an AliasAnalysis since we will only be performing
375 // cheap-as-a-copy remats anyway.
376 Edit->anyRematerializable(nullptr);
379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
380 LLVM_DUMP_METHOD void SplitEditor::dump() const {
381 if (RegAssign.empty()) {
382 dbgs() << " empty\n";
383 return;
386 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
387 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
388 dbgs() << '\n';
390 #endif
392 /// Find a subrange corresponding to the exact lane mask @p LM in the live
393 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
394 /// This function is used to find corresponding subranges between the
395 /// original interval and the new intervals.
396 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
397 for (auto &S : LI.subranges())
398 if (S.LaneMask == LM)
399 return S;
400 llvm_unreachable("SubRange for this mask not found");
403 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
404 LiveInterval &LI) {
405 return getSubrangeImpl(LM, LI);
408 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
409 const LiveInterval &LI) {
410 return getSubrangeImpl(LM, LI);
413 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
414 /// in the live interval @p LI. The interval @p LI is assumed to contain such
415 /// a subrange. This function is used to find corresponding subranges between
416 /// the original interval and the new intervals.
417 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
418 const LiveInterval &LI) {
419 for (const LiveInterval::SubRange &S : LI.subranges())
420 if ((S.LaneMask & LM) == LM)
421 return S;
422 llvm_unreachable("SubRange for this mask not found");
425 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
426 if (!LI.hasSubRanges()) {
427 LI.createDeadDef(VNI);
428 return;
431 SlotIndex Def = VNI->def;
432 if (Original) {
433 // If we are transferring a def from the original interval, make sure
434 // to only update the subranges for which the original subranges had
435 // a def at this location.
436 for (LiveInterval::SubRange &S : LI.subranges()) {
437 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
438 VNInfo *PV = PS.getVNInfoAt(Def);
439 if (PV != nullptr && PV->def == Def)
440 S.createDeadDef(Def, LIS.getVNInfoAllocator());
442 } else {
443 // This is a new def: either from rematerialization, or from an inserted
444 // copy. Since rematerialization can regenerate a definition of a sub-
445 // register, we need to check which subranges need to be updated.
446 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
447 assert(DefMI != nullptr);
448 LaneBitmask LM;
449 for (const MachineOperand &DefOp : DefMI->defs()) {
450 Register R = DefOp.getReg();
451 if (R != LI.reg())
452 continue;
453 if (unsigned SR = DefOp.getSubReg())
454 LM |= TRI.getSubRegIndexLaneMask(SR);
455 else {
456 LM = MRI.getMaxLaneMaskForVReg(R);
457 break;
460 for (LiveInterval::SubRange &S : LI.subranges())
461 if ((S.LaneMask & LM).any())
462 S.createDeadDef(Def, LIS.getVNInfoAllocator());
466 VNInfo *SplitEditor::defValue(unsigned RegIdx,
467 const VNInfo *ParentVNI,
468 SlotIndex Idx,
469 bool Original) {
470 assert(ParentVNI && "Mapping NULL value");
471 assert(Idx.isValid() && "Invalid SlotIndex");
472 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
473 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
475 // Create a new value.
476 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
478 bool Force = LI->hasSubRanges();
479 ValueForcePair FP(Force ? nullptr : VNI, Force);
480 // Use insert for lookup, so we can add missing values with a second lookup.
481 std::pair<ValueMap::iterator, bool> InsP =
482 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
484 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
485 // forced. Keep it as a simple def without any liveness.
486 if (!Force && InsP.second)
487 return VNI;
489 // If the previous value was a simple mapping, add liveness for it now.
490 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
491 addDeadDef(*LI, OldVNI, Original);
493 // No longer a simple mapping. Switch to a complex mapping. If the
494 // interval has subranges, make it a forced mapping.
495 InsP.first->second = ValueForcePair(nullptr, Force);
498 // This is a complex mapping, add liveness for VNI
499 addDeadDef(*LI, VNI, Original);
500 return VNI;
503 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
504 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
505 VNInfo *VNI = VFP.getPointer();
507 // ParentVNI was either unmapped or already complex mapped. Either way, just
508 // set the force bit.
509 if (!VNI) {
510 VFP.setInt(true);
511 return;
514 // This was previously a single mapping. Make sure the old def is represented
515 // by a trivial live range.
516 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
518 // Mark as complex mapped, forced.
519 VFP = ValueForcePair(nullptr, true);
522 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
523 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
524 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
525 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
526 bool FirstCopy = !Def.isValid();
527 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
528 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
529 | getInternalReadRegState(!FirstCopy), SubIdx)
530 .addReg(FromReg, 0, SubIdx);
532 SlotIndexes &Indexes = *LIS.getSlotIndexes();
533 if (FirstCopy) {
534 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
535 } else {
536 CopyMI->bundleWithPred();
538 return Def;
541 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
542 LaneBitmask LaneMask, MachineBasicBlock &MBB,
543 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
544 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
545 SlotIndexes &Indexes = *LIS.getSlotIndexes();
546 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
547 // The full vreg is copied.
548 MachineInstr *CopyMI =
549 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
550 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
553 // Only a subset of lanes needs to be copied. The following is a simple
554 // heuristic to construct a sequence of COPYs. We could add a target
555 // specific callback if this turns out to be suboptimal.
556 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
558 // First pass: Try to find a perfectly matching subregister index. If none
559 // exists find the one covering the most lanemask bits.
560 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
561 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
563 SmallVector<unsigned, 8> SubIndexes;
565 // Abort if we cannot possibly implement the COPY with the given indexes.
566 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
567 report_fatal_error("Impossible to implement partial COPY");
569 SlotIndex Def;
570 for (unsigned BestIdx : SubIndexes) {
571 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
572 DestLI, Late, Def);
575 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
576 DestLI.refineSubRanges(
577 Allocator, LaneMask,
578 [Def, &Allocator](LiveInterval::SubRange &SR) {
579 SR.createDeadDef(Def, Allocator);
581 Indexes, TRI);
583 return Def;
586 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
587 SlotIndex UseIdx, MachineBasicBlock &MBB,
588 MachineBasicBlock::iterator I) {
589 SlotIndex Def;
590 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
592 // We may be trying to avoid interference that ends at a deleted instruction,
593 // so always begin RegIdx 0 early and all others late.
594 bool Late = RegIdx != 0;
596 // Attempt cheap-as-a-copy rematerialization.
597 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
598 LiveInterval &OrigLI = LIS.getInterval(Original);
599 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
601 Register Reg = LI->reg();
602 bool DidRemat = false;
603 if (OrigVNI) {
604 LiveRangeEdit::Remat RM(ParentVNI);
605 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
606 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
607 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
608 ++NumRemats;
609 DidRemat = true;
612 if (!DidRemat) {
613 LaneBitmask LaneMask;
614 if (OrigLI.hasSubRanges()) {
615 LaneMask = LaneBitmask::getNone();
616 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
617 if (S.liveAt(UseIdx))
618 LaneMask |= S.LaneMask;
620 } else {
621 LaneMask = LaneBitmask::getAll();
624 if (LaneMask.none()) {
625 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
626 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
627 SlotIndexes &Indexes = *LIS.getSlotIndexes();
628 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
629 } else {
630 ++NumCopies;
631 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
635 // Define the value in Reg.
636 return defValue(RegIdx, ParentVNI, Def, false);
639 /// Create a new virtual register and live interval.
640 unsigned SplitEditor::openIntv() {
641 // Create the complement as index 0.
642 if (Edit->empty())
643 Edit->createEmptyInterval();
645 // Create the open interval.
646 OpenIdx = Edit->size();
647 Edit->createEmptyInterval();
648 return OpenIdx;
651 void SplitEditor::selectIntv(unsigned Idx) {
652 assert(Idx != 0 && "Cannot select the complement interval");
653 assert(Idx < Edit->size() && "Can only select previously opened interval");
654 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
655 OpenIdx = Idx;
658 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
659 assert(OpenIdx && "openIntv not called before enterIntvBefore");
660 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
661 Idx = Idx.getBaseIndex();
662 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
663 if (!ParentVNI) {
664 LLVM_DEBUG(dbgs() << ": not live\n");
665 return Idx;
667 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
668 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
669 assert(MI && "enterIntvBefore called with invalid index");
671 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
672 return VNI->def;
675 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
676 assert(OpenIdx && "openIntv not called before enterIntvAfter");
677 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
678 Idx = Idx.getBoundaryIndex();
679 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
680 if (!ParentVNI) {
681 LLVM_DEBUG(dbgs() << ": not live\n");
682 return Idx;
684 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
685 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
686 assert(MI && "enterIntvAfter called with invalid index");
688 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
689 std::next(MachineBasicBlock::iterator(MI)));
690 return VNI->def;
693 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
694 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
695 SlotIndex End = LIS.getMBBEndIdx(&MBB);
696 SlotIndex Last = End.getPrevSlot();
697 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
698 << Last);
699 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
700 if (!ParentVNI) {
701 LLVM_DEBUG(dbgs() << ": not live\n");
702 return End;
704 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
705 if (LSP < Last) {
706 // It could be that the use after LSP is a def, and thus the ParentVNI
707 // just selected starts at that def. For this case to exist, the def
708 // must be part of a tied def/use pair (as otherwise we'd have split
709 // distinct live ranges into individual live intervals), and thus we
710 // can insert the def into the VNI of the use and the tied def/use
711 // pair can live in the resulting interval.
712 Last = LSP;
713 ParentVNI = Edit->getParent().getVNInfoAt(Last);
714 if (!ParentVNI) {
715 // undef use --> undef tied def
716 LLVM_DEBUG(dbgs() << ": tied use not live\n");
717 return End;
721 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
722 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
723 SA.getLastSplitPointIter(&MBB));
724 RegAssign.insert(VNI->def, End, OpenIdx);
725 LLVM_DEBUG(dump());
726 return VNI->def;
729 /// useIntv - indicate that all instructions in MBB should use OpenLI.
730 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
731 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
734 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
735 assert(OpenIdx && "openIntv not called before useIntv");
736 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
737 RegAssign.insert(Start, End, OpenIdx);
738 LLVM_DEBUG(dump());
741 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
742 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
743 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
745 // The interval must be live beyond the instruction at Idx.
746 SlotIndex Boundary = Idx.getBoundaryIndex();
747 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
748 if (!ParentVNI) {
749 LLVM_DEBUG(dbgs() << ": not live\n");
750 return Boundary.getNextSlot();
752 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
753 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
754 assert(MI && "No instruction at index");
756 // In spill mode, make live ranges as short as possible by inserting the copy
757 // before MI. This is only possible if that instruction doesn't redefine the
758 // value. The inserted COPY is not a kill, and we don't need to recompute
759 // the source live range. The spiller also won't try to hoist this copy.
760 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
761 MI->readsVirtualRegister(Edit->getReg())) {
762 forceRecompute(0, *ParentVNI);
763 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
764 return Idx;
767 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
768 std::next(MachineBasicBlock::iterator(MI)));
769 return VNI->def;
772 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
773 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
774 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
776 // The interval must be live into the instruction at Idx.
777 Idx = Idx.getBaseIndex();
778 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
779 if (!ParentVNI) {
780 LLVM_DEBUG(dbgs() << ": not live\n");
781 return Idx.getNextSlot();
783 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
785 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
786 assert(MI && "No instruction at index");
787 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
788 return VNI->def;
791 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
792 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
793 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
794 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
795 << Start);
797 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
798 if (!ParentVNI) {
799 LLVM_DEBUG(dbgs() << ": not live\n");
800 return Start;
803 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
804 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
805 RegAssign.insert(Start, VNI->def, OpenIdx);
806 LLVM_DEBUG(dump());
807 return VNI->def;
810 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
811 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
812 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
816 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
817 assert(OpenIdx && "openIntv not called before overlapIntv");
818 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
819 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
820 "Parent changes value in extended range");
821 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
822 "Range cannot span basic blocks");
824 // The complement interval will be extended as needed by LICalc.extend().
825 if (ParentVNI)
826 forceRecompute(0, *ParentVNI);
828 // If the last use is tied to a def, we can't mark it as live for the
829 // interval which includes only the use. That would cause the tied pair
830 // to end up in two different intervals.
831 if (auto *MI = LIS.getInstructionFromIndex(End))
832 if (hasTiedUseOf(*MI, Edit->getReg())) {
833 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
834 return;
837 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
838 RegAssign.insert(Start, End, OpenIdx);
839 LLVM_DEBUG(dump());
842 //===----------------------------------------------------------------------===//
843 // Spill modes
844 //===----------------------------------------------------------------------===//
846 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
847 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
848 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
849 RegAssignMap::iterator AssignI;
850 AssignI.setMap(RegAssign);
852 for (const VNInfo *C : Copies) {
853 SlotIndex Def = C->def;
854 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
855 assert(MI && "No instruction for back-copy");
857 MachineBasicBlock *MBB = MI->getParent();
858 MachineBasicBlock::iterator MBBI(MI);
859 bool AtBegin;
860 do AtBegin = MBBI == MBB->begin();
861 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
863 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
864 LIS.removeVRegDefAt(*LI, Def);
865 LIS.RemoveMachineInstrFromMaps(*MI);
866 MI->eraseFromParent();
868 // Adjust RegAssign if a register assignment is killed at Def. We want to
869 // avoid calculating the live range of the source register if possible.
870 AssignI.find(Def.getPrevSlot());
871 if (!AssignI.valid() || AssignI.start() >= Def)
872 continue;
873 // If MI doesn't kill the assigned register, just leave it.
874 if (AssignI.stop() != Def)
875 continue;
876 unsigned RegIdx = AssignI.value();
877 // We could hoist back-copy right after another back-copy. As a result
878 // MMBI points to copy instruction which is actually dead now.
879 // We cannot set its stop to MBBI which will be the same as start and
880 // interval does not support that.
881 SlotIndex Kill =
882 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
883 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
884 Kill <= AssignI.start()) {
885 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
886 << '\n');
887 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
888 } else {
889 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
890 AssignI.setStop(Kill);
895 MachineBasicBlock*
896 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
897 MachineBasicBlock *DefMBB) {
898 if (MBB == DefMBB)
899 return MBB;
900 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
902 const MachineLoopInfo &Loops = SA.Loops;
903 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
904 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
906 // Best candidate so far.
907 MachineBasicBlock *BestMBB = MBB;
908 unsigned BestDepth = std::numeric_limits<unsigned>::max();
910 while (true) {
911 const MachineLoop *Loop = Loops.getLoopFor(MBB);
913 // MBB isn't in a loop, it doesn't get any better. All dominators have a
914 // higher frequency by definition.
915 if (!Loop) {
916 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
917 << " dominates " << printMBBReference(*MBB)
918 << " at depth 0\n");
919 return MBB;
922 // We'll never be able to exit the DefLoop.
923 if (Loop == DefLoop) {
924 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
925 << " dominates " << printMBBReference(*MBB)
926 << " in the same loop\n");
927 return MBB;
930 // Least busy dominator seen so far.
931 unsigned Depth = Loop->getLoopDepth();
932 if (Depth < BestDepth) {
933 BestMBB = MBB;
934 BestDepth = Depth;
935 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
936 << " dominates " << printMBBReference(*MBB)
937 << " at depth " << Depth << '\n');
940 // Leave loop by going to the immediate dominator of the loop header.
941 // This is a bigger stride than simply walking up the dominator tree.
942 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
944 // Too far up the dominator tree?
945 if (!IDom || !MDT.dominates(DefDomNode, IDom))
946 return BestMBB;
948 MBB = IDom->getBlock();
952 void SplitEditor::computeRedundantBackCopies(
953 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
954 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
955 const LiveInterval *Parent = &Edit->getParent();
956 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
957 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
959 // Aggregate VNIs having the same value as ParentVNI.
960 for (VNInfo *VNI : LI->valnos) {
961 if (VNI->isUnused())
962 continue;
963 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
964 EqualVNs[ParentVNI->id].insert(VNI);
967 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
968 // redundant VNIs to BackCopies.
969 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
970 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
971 if (!NotToHoistSet.count(ParentVNI->id))
972 continue;
973 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
974 SmallPtrSetIterator<VNInfo *> It2 = It1;
975 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
976 It2 = It1;
977 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
978 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
979 continue;
981 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
982 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
983 if (MBB1 == MBB2) {
984 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
985 } else if (MDT.dominates(MBB1, MBB2)) {
986 DominatedVNIs.insert(*It2);
987 } else if (MDT.dominates(MBB2, MBB1)) {
988 DominatedVNIs.insert(*It1);
992 if (!DominatedVNIs.empty()) {
993 forceRecompute(0, *ParentVNI);
994 append_range(BackCopies, DominatedVNIs);
995 DominatedVNIs.clear();
1000 /// For SM_Size mode, find a common dominator for all the back-copies for
1001 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1002 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1003 /// to do the hoisting, simply remove the dominated backcopies for the same
1004 /// ParentVNI.
1005 void SplitEditor::hoistCopies() {
1006 // Get the complement interval, always RegIdx 0.
1007 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1008 const LiveInterval *Parent = &Edit->getParent();
1010 // Track the nearest common dominator for all back-copies for each ParentVNI,
1011 // indexed by ParentVNI->id.
1012 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1013 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1014 // The total cost of all the back-copies for each ParentVNI.
1015 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1016 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1017 // for Speed.
1018 DenseSet<unsigned> NotToHoistSet;
1020 // Find the nearest common dominator for parent values with multiple
1021 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1022 for (VNInfo *VNI : LI->valnos) {
1023 if (VNI->isUnused())
1024 continue;
1025 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1026 assert(ParentVNI && "Parent not live at complement def");
1028 // Don't hoist remats. The complement is probably going to disappear
1029 // completely anyway.
1030 if (Edit->didRematerialize(ParentVNI))
1031 continue;
1033 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1035 DomPair &Dom = NearestDom[ParentVNI->id];
1037 // Keep directly defined parent values. This is either a PHI or an
1038 // instruction in the complement range. All other copies of ParentVNI
1039 // should be eliminated.
1040 if (VNI->def == ParentVNI->def) {
1041 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1042 Dom = DomPair(ValMBB, VNI->def);
1043 continue;
1045 // Skip the singly mapped values. There is nothing to gain from hoisting a
1046 // single back-copy.
1047 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1048 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1049 continue;
1052 if (!Dom.first) {
1053 // First time we see ParentVNI. VNI dominates itself.
1054 Dom = DomPair(ValMBB, VNI->def);
1055 } else if (Dom.first == ValMBB) {
1056 // Two defs in the same block. Pick the earlier def.
1057 if (!Dom.second.isValid() || VNI->def < Dom.second)
1058 Dom.second = VNI->def;
1059 } else {
1060 // Different basic blocks. Check if one dominates.
1061 MachineBasicBlock *Near =
1062 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1063 if (Near == ValMBB)
1064 // Def ValMBB dominates.
1065 Dom = DomPair(ValMBB, VNI->def);
1066 else if (Near != Dom.first)
1067 // None dominate. Hoist to common dominator, need new def.
1068 Dom = DomPair(Near, SlotIndex());
1069 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1072 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1073 << VNI->def << " for parent " << ParentVNI->id << '@'
1074 << ParentVNI->def << " hoist to "
1075 << printMBBReference(*Dom.first) << ' ' << Dom.second
1076 << '\n');
1079 // Insert the hoisted copies.
1080 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1081 DomPair &Dom = NearestDom[i];
1082 if (!Dom.first || Dom.second.isValid())
1083 continue;
1084 // This value needs a hoisted copy inserted at the end of Dom.first.
1085 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1086 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1087 // Get a less loopy dominator than Dom.first.
1088 Dom.first = findShallowDominator(Dom.first, DefMBB);
1089 if (SpillMode == SM_Speed &&
1090 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1091 NotToHoistSet.insert(ParentVNI->id);
1092 continue;
1094 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1095 if (LSP <= ParentVNI->def) {
1096 NotToHoistSet.insert(ParentVNI->id);
1097 continue;
1099 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1100 SA.getLastSplitPointIter(Dom.first))->def;
1103 // Remove redundant back-copies that are now known to be dominated by another
1104 // def with the same value.
1105 SmallVector<VNInfo*, 8> BackCopies;
1106 for (VNInfo *VNI : LI->valnos) {
1107 if (VNI->isUnused())
1108 continue;
1109 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1110 const DomPair &Dom = NearestDom[ParentVNI->id];
1111 if (!Dom.first || Dom.second == VNI->def ||
1112 NotToHoistSet.count(ParentVNI->id))
1113 continue;
1114 BackCopies.push_back(VNI);
1115 forceRecompute(0, *ParentVNI);
1118 // If it is not beneficial to hoist all the BackCopies, simply remove
1119 // redundant BackCopies in speed mode.
1120 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1121 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1123 removeBackCopies(BackCopies);
1126 /// transferValues - Transfer all possible values to the new live ranges.
1127 /// Values that were rematerialized are left alone, they need LICalc.extend().
1128 bool SplitEditor::transferValues() {
1129 bool Skipped = false;
1130 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1131 for (const LiveRange::Segment &S : Edit->getParent()) {
1132 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1133 VNInfo *ParentVNI = S.valno;
1134 // RegAssign has holes where RegIdx 0 should be used.
1135 SlotIndex Start = S.start;
1136 AssignI.advanceTo(Start);
1137 do {
1138 unsigned RegIdx;
1139 SlotIndex End = S.end;
1140 if (!AssignI.valid()) {
1141 RegIdx = 0;
1142 } else if (AssignI.start() <= Start) {
1143 RegIdx = AssignI.value();
1144 if (AssignI.stop() < End) {
1145 End = AssignI.stop();
1146 ++AssignI;
1148 } else {
1149 RegIdx = 0;
1150 End = std::min(End, AssignI.start());
1153 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1154 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1155 << printReg(Edit->get(RegIdx)) << ')');
1156 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1158 // Check for a simply defined value that can be blitted directly.
1159 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1160 if (VNInfo *VNI = VFP.getPointer()) {
1161 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1162 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1163 Start = End;
1164 continue;
1167 // Skip values with forced recomputation.
1168 if (VFP.getInt()) {
1169 LLVM_DEBUG(dbgs() << "(recalc)");
1170 Skipped = true;
1171 Start = End;
1172 continue;
1175 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1177 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1178 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1179 // LiveInBlocks.
1180 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1181 SlotIndex BlockStart, BlockEnd;
1182 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1184 // The first block may be live-in, or it may have its own def.
1185 if (Start != BlockStart) {
1186 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1187 assert(VNI && "Missing def for complex mapped value");
1188 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1189 // MBB has its own def. Is it also live-out?
1190 if (BlockEnd <= End)
1191 LIC.setLiveOutValue(&*MBB, VNI);
1193 // Skip to the next block for live-in.
1194 ++MBB;
1195 BlockStart = BlockEnd;
1198 // Handle the live-in blocks covered by [Start;End).
1199 assert(Start <= BlockStart && "Expected live-in block");
1200 while (BlockStart < End) {
1201 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1202 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1203 if (BlockStart == ParentVNI->def) {
1204 // This block has the def of a parent PHI, so it isn't live-in.
1205 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1206 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1207 assert(VNI && "Missing def for complex mapped parent PHI");
1208 if (End >= BlockEnd)
1209 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1210 } else {
1211 // This block needs a live-in value. The last block covered may not
1212 // be live-out.
1213 if (End < BlockEnd)
1214 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1215 else {
1216 // Live-through, and we don't know the value.
1217 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1218 LIC.setLiveOutValue(&*MBB, nullptr);
1221 BlockStart = BlockEnd;
1222 ++MBB;
1224 Start = End;
1225 } while (Start != S.end);
1226 LLVM_DEBUG(dbgs() << '\n');
1229 LICalc[0].calculateValues();
1230 if (SpillMode)
1231 LICalc[1].calculateValues();
1233 return Skipped;
1236 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1237 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1238 if (Seg == nullptr)
1239 return true;
1240 if (Seg->end != Def.getDeadSlot())
1241 return false;
1242 // This is a dead PHI. Remove it.
1243 LR.removeSegment(*Seg, true);
1244 return true;
1247 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1248 LiveRange &LR, LaneBitmask LM,
1249 ArrayRef<SlotIndex> Undefs) {
1250 for (MachineBasicBlock *P : B.predecessors()) {
1251 SlotIndex End = LIS.getMBBEndIdx(P);
1252 SlotIndex LastUse = End.getPrevSlot();
1253 // The predecessor may not have a live-out value. That is OK, like an
1254 // undef PHI operand.
1255 const LiveInterval &PLI = Edit->getParent();
1256 // Need the cast because the inputs to ?: would otherwise be deemed
1257 // "incompatible": SubRange vs LiveInterval.
1258 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1259 : static_cast<const LiveRange &>(PLI);
1260 if (PSR.liveAt(LastUse))
1261 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1265 void SplitEditor::extendPHIKillRanges() {
1266 // Extend live ranges to be live-out for successor PHI values.
1268 // Visit each PHI def slot in the parent live interval. If the def is dead,
1269 // remove it. Otherwise, extend the live interval to reach the end indexes
1270 // of all predecessor blocks.
1272 const LiveInterval &ParentLI = Edit->getParent();
1273 for (const VNInfo *V : ParentLI.valnos) {
1274 if (V->isUnused() || !V->isPHIDef())
1275 continue;
1277 unsigned RegIdx = RegAssign.lookup(V->def);
1278 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1279 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1280 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1281 if (!removeDeadSegment(V->def, LI))
1282 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1285 SmallVector<SlotIndex, 4> Undefs;
1286 LiveIntervalCalc SubLIC;
1288 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1289 for (const VNInfo *V : PS.valnos) {
1290 if (V->isUnused() || !V->isPHIDef())
1291 continue;
1292 unsigned RegIdx = RegAssign.lookup(V->def);
1293 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1294 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1295 if (removeDeadSegment(V->def, S))
1296 continue;
1298 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1299 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1300 &LIS.getVNInfoAllocator());
1301 Undefs.clear();
1302 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1303 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1308 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1309 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1310 struct ExtPoint {
1311 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1312 : MO(O), RegIdx(R), Next(N) {}
1314 MachineOperand MO;
1315 unsigned RegIdx;
1316 SlotIndex Next;
1319 SmallVector<ExtPoint,4> ExtPoints;
1321 for (MachineOperand &MO :
1322 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1323 MachineInstr *MI = MO.getParent();
1324 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1325 if (MI->isDebugValue()) {
1326 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1327 MO.setReg(0);
1328 continue;
1331 // <undef> operands don't really read the register, so it doesn't matter
1332 // which register we choose. When the use operand is tied to a def, we must
1333 // use the same register as the def, so just do that always.
1334 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1335 if (MO.isDef() || MO.isUndef())
1336 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1338 // Rewrite to the mapped register at Idx.
1339 unsigned RegIdx = RegAssign.lookup(Idx);
1340 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1341 MO.setReg(LI.reg());
1342 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1343 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1345 // Extend liveness to Idx if the instruction reads reg.
1346 if (!ExtendRanges || MO.isUndef())
1347 continue;
1349 // Skip instructions that don't read Reg.
1350 if (MO.isDef()) {
1351 if (!MO.getSubReg() && !MO.isEarlyClobber())
1352 continue;
1353 // We may want to extend a live range for a partial redef, or for a use
1354 // tied to an early clobber.
1355 Idx = Idx.getPrevSlot();
1356 if (!Edit->getParent().liveAt(Idx))
1357 continue;
1358 } else
1359 Idx = Idx.getRegSlot(true);
1361 SlotIndex Next = Idx.getNextSlot();
1362 if (LI.hasSubRanges()) {
1363 // We have to delay extending subranges until we have seen all operands
1364 // defining the register. This is because a <def,read-undef> operand
1365 // will create an "undef" point, and we cannot extend any subranges
1366 // until all of them have been accounted for.
1367 if (MO.isUse())
1368 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1369 } else {
1370 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1371 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1375 for (ExtPoint &EP : ExtPoints) {
1376 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1377 assert(LI.hasSubRanges());
1379 LiveIntervalCalc SubLIC;
1380 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1381 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1382 : MRI.getMaxLaneMaskForVReg(Reg);
1383 for (LiveInterval::SubRange &S : LI.subranges()) {
1384 if ((S.LaneMask & LM).none())
1385 continue;
1386 // The problem here can be that the new register may have been created
1387 // for a partially defined original register. For example:
1388 // %0:subreg_hireg<def,read-undef> = ...
1389 // ...
1390 // %1 = COPY %0
1391 if (S.empty())
1392 continue;
1393 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1394 &LIS.getVNInfoAllocator());
1395 SmallVector<SlotIndex, 4> Undefs;
1396 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1397 SubLIC.extend(S, EP.Next, 0, Undefs);
1401 for (Register R : *Edit) {
1402 LiveInterval &LI = LIS.getInterval(R);
1403 if (!LI.hasSubRanges())
1404 continue;
1405 LI.clear();
1406 LI.removeEmptySubRanges();
1407 LIS.constructMainRangeFromSubranges(LI);
1411 void SplitEditor::deleteRematVictims() {
1412 SmallVector<MachineInstr*, 8> Dead;
1413 for (const Register &R : *Edit) {
1414 LiveInterval *LI = &LIS.getInterval(R);
1415 for (const LiveRange::Segment &S : LI->segments) {
1416 // Dead defs end at the dead slot.
1417 if (S.end != S.valno->def.getDeadSlot())
1418 continue;
1419 if (S.valno->isPHIDef())
1420 continue;
1421 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1422 assert(MI && "Missing instruction for dead def");
1423 MI->addRegisterDead(LI->reg(), &TRI);
1425 if (!MI->allDefsAreDead())
1426 continue;
1428 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1429 Dead.push_back(MI);
1433 if (Dead.empty())
1434 return;
1436 Edit->eliminateDeadDefs(Dead, None, &AA);
1439 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1440 // Fast-path for common case.
1441 if (!ParentVNI.isPHIDef()) {
1442 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1443 forceRecompute(I, ParentVNI);
1444 return;
1447 // Trace value through phis.
1448 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1449 SmallVector<const VNInfo *, 4> WorkList;
1450 Visited.insert(&ParentVNI);
1451 WorkList.push_back(&ParentVNI);
1453 const LiveInterval &ParentLI = Edit->getParent();
1454 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1455 do {
1456 const VNInfo &VNI = *WorkList.back();
1457 WorkList.pop_back();
1458 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1459 forceRecompute(I, VNI);
1460 if (!VNI.isPHIDef())
1461 continue;
1463 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1464 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1465 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1466 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1467 assert(PredVNI && "Value available in PhiVNI predecessor");
1468 if (Visited.insert(PredVNI).second)
1469 WorkList.push_back(PredVNI);
1471 } while(!WorkList.empty());
1474 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1475 ++NumFinished;
1477 // At this point, the live intervals in Edit contain VNInfos corresponding to
1478 // the inserted copies.
1480 // Add the original defs from the parent interval.
1481 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1482 if (ParentVNI->isUnused())
1483 continue;
1484 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1485 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1487 // Force rematted values to be recomputed everywhere.
1488 // The new live ranges may be truncated.
1489 if (Edit->didRematerialize(ParentVNI))
1490 forceRecomputeVNI(*ParentVNI);
1493 // Hoist back-copies to the complement interval when in spill mode.
1494 switch (SpillMode) {
1495 case SM_Partition:
1496 // Leave all back-copies as is.
1497 break;
1498 case SM_Size:
1499 case SM_Speed:
1500 // hoistCopies will behave differently between size and speed.
1501 hoistCopies();
1504 // Transfer the simply mapped values, check if any are skipped.
1505 bool Skipped = transferValues();
1507 // Rewrite virtual registers, possibly extending ranges.
1508 rewriteAssigned(Skipped);
1510 if (Skipped)
1511 extendPHIKillRanges();
1512 else
1513 ++NumSimple;
1515 // Delete defs that were rematted everywhere.
1516 if (Skipped)
1517 deleteRematVictims();
1519 // Get rid of unused values and set phi-kill flags.
1520 for (Register Reg : *Edit) {
1521 LiveInterval &LI = LIS.getInterval(Reg);
1522 LI.removeEmptySubRanges();
1523 LI.RenumberValues();
1526 // Provide a reverse mapping from original indices to Edit ranges.
1527 if (LRMap) {
1528 auto Seq = llvm::seq<unsigned>(0, Edit->size());
1529 LRMap->assign(Seq.begin(), Seq.end());
1532 // Now check if any registers were separated into multiple components.
1533 ConnectedVNInfoEqClasses ConEQ(LIS);
1534 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1535 // Don't use iterators, they are invalidated by create() below.
1536 Register VReg = Edit->get(i);
1537 LiveInterval &LI = LIS.getInterval(VReg);
1538 SmallVector<LiveInterval*, 8> SplitLIs;
1539 LIS.splitSeparateComponents(LI, SplitLIs);
1540 Register Original = VRM.getOriginal(VReg);
1541 for (LiveInterval *SplitLI : SplitLIs)
1542 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1544 // The new intervals all map back to i.
1545 if (LRMap)
1546 LRMap->resize(Edit->size(), i);
1549 // Calculate spill weight and allocation hints for new intervals.
1550 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1552 assert(!LRMap || LRMap->size() == Edit->size());
1555 //===----------------------------------------------------------------------===//
1556 // Single Block Splitting
1557 //===----------------------------------------------------------------------===//
1559 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1560 bool SingleInstrs) const {
1561 // Always split for multiple instructions.
1562 if (!BI.isOneInstr())
1563 return true;
1564 // Don't split for single instructions unless explicitly requested.
1565 if (!SingleInstrs)
1566 return false;
1567 // Splitting a live-through range always makes progress.
1568 if (BI.LiveIn && BI.LiveOut)
1569 return true;
1570 // No point in isolating a copy. It has no register class constraints.
1571 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1572 return false;
1573 // Finally, don't isolate an end point that was created by earlier splits.
1574 return isOriginalEndpoint(BI.FirstInstr);
1577 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1578 openIntv();
1579 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1580 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1581 LastSplitPoint));
1582 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1583 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1584 } else {
1585 // The last use is after the last valid split point.
1586 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1587 useIntv(SegStart, SegStop);
1588 overlapIntv(SegStop, BI.LastInstr);
1592 //===----------------------------------------------------------------------===//
1593 // Global Live Range Splitting Support
1594 //===----------------------------------------------------------------------===//
1596 // These methods support a method of global live range splitting that uses a
1597 // global algorithm to decide intervals for CFG edges. They will insert split
1598 // points and color intervals in basic blocks while avoiding interference.
1600 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1601 // are on the stack.
1603 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1604 unsigned IntvIn, SlotIndex LeaveBefore,
1605 unsigned IntvOut, SlotIndex EnterAfter){
1606 SlotIndex Start, Stop;
1607 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1609 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1610 << ") intf " << LeaveBefore << '-' << EnterAfter
1611 << ", live-through " << IntvIn << " -> " << IntvOut);
1613 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1615 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1616 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1617 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1619 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1621 if (!IntvOut) {
1622 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1624 // <<<<<<<<< Possible LeaveBefore interference.
1625 // |-----------| Live through.
1626 // -____________ Spill on entry.
1628 selectIntv(IntvIn);
1629 SlotIndex Idx = leaveIntvAtTop(*MBB);
1630 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1631 (void)Idx;
1632 return;
1635 if (!IntvIn) {
1636 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1638 // >>>>>>> Possible EnterAfter interference.
1639 // |-----------| Live through.
1640 // ___________-- Reload on exit.
1642 selectIntv(IntvOut);
1643 SlotIndex Idx = enterIntvAtEnd(*MBB);
1644 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1645 (void)Idx;
1646 return;
1649 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1650 LLVM_DEBUG(dbgs() << ", straight through.\n");
1652 // |-----------| Live through.
1653 // ------------- Straight through, same intv, no interference.
1655 selectIntv(IntvOut);
1656 useIntv(Start, Stop);
1657 return;
1660 // We cannot legally insert splits after LSP.
1661 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1662 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1664 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1665 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1666 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1668 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1669 // |-----------| Live through.
1670 // ------======= Switch intervals between interference.
1672 selectIntv(IntvOut);
1673 SlotIndex Idx;
1674 if (LeaveBefore && LeaveBefore < LSP) {
1675 Idx = enterIntvBefore(LeaveBefore);
1676 useIntv(Idx, Stop);
1677 } else {
1678 Idx = enterIntvAtEnd(*MBB);
1680 selectIntv(IntvIn);
1681 useIntv(Start, Idx);
1682 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1683 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1684 return;
1687 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1689 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1690 // |-----------| Live through.
1691 // ==---------== Switch intervals before/after interference.
1693 assert(LeaveBefore <= EnterAfter && "Missed case");
1695 selectIntv(IntvOut);
1696 SlotIndex Idx = enterIntvAfter(EnterAfter);
1697 useIntv(Idx, Stop);
1698 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1700 selectIntv(IntvIn);
1701 Idx = leaveIntvBefore(LeaveBefore);
1702 useIntv(Start, Idx);
1703 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1706 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1707 unsigned IntvIn, SlotIndex LeaveBefore) {
1708 SlotIndex Start, Stop;
1709 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1711 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1712 << Stop << "), uses " << BI.FirstInstr << '-'
1713 << BI.LastInstr << ", reg-in " << IntvIn
1714 << ", leave before " << LeaveBefore
1715 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1717 assert(IntvIn && "Must have register in");
1718 assert(BI.LiveIn && "Must be live-in");
1719 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1721 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1722 LLVM_DEBUG(dbgs() << " before interference.\n");
1724 // <<< Interference after kill.
1725 // |---o---x | Killed in block.
1726 // ========= Use IntvIn everywhere.
1728 selectIntv(IntvIn);
1729 useIntv(Start, BI.LastInstr);
1730 return;
1733 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1735 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1737 // <<< Possible interference after last use.
1738 // |---o---o---| Live-out on stack.
1739 // =========____ Leave IntvIn after last use.
1741 // < Interference after last use.
1742 // |---o---o--o| Live-out on stack, late last use.
1743 // ============ Copy to stack after LSP, overlap IntvIn.
1744 // \_____ Stack interval is live-out.
1746 if (BI.LastInstr < LSP) {
1747 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1748 selectIntv(IntvIn);
1749 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1750 useIntv(Start, Idx);
1751 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1752 } else {
1753 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1754 selectIntv(IntvIn);
1755 SlotIndex Idx = leaveIntvBefore(LSP);
1756 overlapIntv(Idx, BI.LastInstr);
1757 useIntv(Start, Idx);
1758 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1760 return;
1763 // The interference is overlapping somewhere we wanted to use IntvIn. That
1764 // means we need to create a local interval that can be allocated a
1765 // different register.
1766 unsigned LocalIntv = openIntv();
1767 (void)LocalIntv;
1768 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1770 if (!BI.LiveOut || BI.LastInstr < LSP) {
1772 // <<<<<<< Interference overlapping uses.
1773 // |---o---o---| Live-out on stack.
1774 // =====----____ Leave IntvIn before interference, then spill.
1776 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1777 SlotIndex From = enterIntvBefore(LeaveBefore);
1778 useIntv(From, To);
1779 selectIntv(IntvIn);
1780 useIntv(Start, From);
1781 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1782 return;
1785 // <<<<<<< Interference overlapping uses.
1786 // |---o---o--o| Live-out on stack, late last use.
1787 // =====------- Copy to stack before LSP, overlap LocalIntv.
1788 // \_____ Stack interval is live-out.
1790 SlotIndex To = leaveIntvBefore(LSP);
1791 overlapIntv(To, BI.LastInstr);
1792 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1793 useIntv(From, To);
1794 selectIntv(IntvIn);
1795 useIntv(Start, From);
1796 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1799 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1800 unsigned IntvOut, SlotIndex EnterAfter) {
1801 SlotIndex Start, Stop;
1802 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1804 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1805 << Stop << "), uses " << BI.FirstInstr << '-'
1806 << BI.LastInstr << ", reg-out " << IntvOut
1807 << ", enter after " << EnterAfter
1808 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1810 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1812 assert(IntvOut && "Must have register out");
1813 assert(BI.LiveOut && "Must be live-out");
1814 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1816 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1817 LLVM_DEBUG(dbgs() << " after interference.\n");
1819 // >>>> Interference before def.
1820 // | o---o---| Defined in block.
1821 // ========= Use IntvOut everywhere.
1823 selectIntv(IntvOut);
1824 useIntv(BI.FirstInstr, Stop);
1825 return;
1828 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1829 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1831 // >>>> Interference before def.
1832 // |---o---o---| Live-through, stack-in.
1833 // ____========= Enter IntvOut before first use.
1835 selectIntv(IntvOut);
1836 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1837 useIntv(Idx, Stop);
1838 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1839 return;
1842 // The interference is overlapping somewhere we wanted to use IntvOut. That
1843 // means we need to create a local interval that can be allocated a
1844 // different register.
1845 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1847 // >>>>>>> Interference overlapping uses.
1848 // |---o---o---| Live-through, stack-in.
1849 // ____---====== Create local interval for interference range.
1851 selectIntv(IntvOut);
1852 SlotIndex Idx = enterIntvAfter(EnterAfter);
1853 useIntv(Idx, Stop);
1854 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1856 openIntv();
1857 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1858 useIntv(From, Idx);
1861 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1862 OS << "{" << printMBBReference(*MBB) << ", "
1863 << "uses " << FirstInstr << " to " << LastInstr << ", "
1864 << "1st def " << FirstDef << ", "
1865 << (LiveIn ? "live in" : "dead in") << ", "
1866 << (LiveOut ? "live out" : "dead out") << "}";
1869 void SplitAnalysis::BlockInfo::dump() const {
1870 print(dbgs());
1871 dbgs() << "\n";