1 //===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass to insert code to mitigate against side channel
10 // vulnerabilities that may happen under control flow miss-speculation.
12 // The pass implements tracking of control flow miss-speculation into a "taint"
13 // register. That taint register can then be used to mask off registers with
14 // sensitive data when executing under miss-speculation, a.k.a. "transient
16 // This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
18 // It also implements speculative load hardening, i.e. using the taint register
19 // to automatically mask off loaded data.
21 // As a possible follow-on improvement, also an intrinsics-based approach as
22 // explained at https://lwn.net/Articles/759423/ could be implemented on top of
23 // the current design.
25 // For AArch64, the following implementation choices are made to implement the
26 // tracking of control flow miss-speculation into a taint register:
27 // Some of these are different than the implementation choices made in
28 // the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
29 // the instruction set characteristics result in different trade-offs.
30 // - The speculation hardening is done after register allocation. With a
31 // relative abundance of registers, one register is reserved (X16) to be
32 // the taint register. X16 is expected to not clash with other register
33 // reservation mechanisms with very high probability because:
34 // . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
35 // . The only way to request X16 to be used as a programmer is through
36 // inline assembly. In the rare case a function explicitly demands to
37 // use X16/W16, this pass falls back to hardening against speculation
38 // by inserting a DSB SYS/ISB barrier pair which will prevent control
40 // - It is easy to insert mask operations at this late stage as we have
41 // mask operations available that don't set flags.
42 // - The taint variable contains all-ones when no miss-speculation is detected,
43 // and contains all-zeros when miss-speculation is detected. Therefore, when
44 // masking, an AND instruction (which only changes the register to be masked,
45 // no other side effects) can easily be inserted anywhere that's needed.
46 // - The tracking of miss-speculation is done by using a data-flow conditional
47 // select instruction (CSEL) to evaluate the flags that were also used to
48 // make conditional branch direction decisions. Speculation of the CSEL
49 // instruction can be limited with a CSDB instruction - so the combination of
50 // CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
51 // aren't speculated. When conditional branch direction gets miss-speculated,
52 // the semantics of the inserted CSEL instruction is such that the taint
53 // register will contain all zero bits.
54 // One key requirement for this to work is that the conditional branch is
55 // followed by an execution of the CSEL instruction, where the CSEL
56 // instruction needs to use the same flags status as the conditional branch.
57 // This means that the conditional branches must not be implemented as one
58 // of the AArch64 conditional branches that do not use the flags as input
59 // (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
60 // selectors to not produce these instructions when speculation hardening
61 // is enabled. This pass will assert if it does encounter such an instruction.
62 // - On function call boundaries, the miss-speculation state is transferred from
63 // the taint register X16 to be encoded in the SP register as value 0.
65 // For the aspect of automatically hardening loads, using the taint register,
66 // (a.k.a. speculative load hardening, see
67 // https://llvm.org/docs/SpeculativeLoadHardening.html), the following
68 // implementation choices are made for AArch64:
69 // - Many of the optimizations described at
70 // https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
71 // loads haven't been implemented yet - but for some of them there are
72 // FIXMEs in the code.
73 // - loads that load into general purpose (X or W) registers get hardened by
74 // masking the loaded data. For loads that load into other registers, the
75 // address loaded from gets hardened. It is expected that hardening the
76 // loaded data may be more efficient; but masking data in registers other
77 // than X or W is not easy and may result in being slower than just
78 // hardening the X address register loaded from.
79 // - On AArch64, CSDB instructions are inserted between the masking of the
80 // register and its first use, to ensure there's no non-control-flow
81 // speculation that might undermine the hardening mechanism.
83 // Future extensions/improvements could be:
84 // - Implement this functionality using full speculation barriers, akin to the
85 // x86-slh-lfence option. This may be more useful for the intrinsics-based
86 // approach than for the SLH approach to masking.
87 // Note that this pass already inserts the full speculation barriers if the
88 // function for some niche reason makes use of X16/W16.
89 // - no indirect branch misprediction gets protected/instrumented; but this
90 // could be done for some indirect branches, such as switch jump tables.
91 //===----------------------------------------------------------------------===//
93 #include "AArch64InstrInfo.h"
94 #include "AArch64Subtarget.h"
95 #include "Utils/AArch64BaseInfo.h"
96 #include "llvm/ADT/BitVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/CodeGen/MachineBasicBlock.h"
99 #include "llvm/CodeGen/MachineFunction.h"
100 #include "llvm/CodeGen/MachineFunctionPass.h"
101 #include "llvm/CodeGen/MachineInstr.h"
102 #include "llvm/CodeGen/MachineInstrBuilder.h"
103 #include "llvm/CodeGen/MachineOperand.h"
104 #include "llvm/CodeGen/MachineRegisterInfo.h"
105 #include "llvm/CodeGen/RegisterScavenging.h"
106 #include "llvm/IR/DebugLoc.h"
107 #include "llvm/Pass.h"
108 #include "llvm/Support/CodeGen.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Target/TargetMachine.h"
113 using namespace llvm
;
115 #define DEBUG_TYPE "aarch64-speculation-hardening"
117 #define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
119 static cl::opt
<bool> HardenLoads("aarch64-slh-loads", cl::Hidden
,
120 cl::desc("Sanitize loads from memory."),
125 class AArch64SpeculationHardening
: public MachineFunctionPass
{
127 const TargetInstrInfo
*TII
;
128 const TargetRegisterInfo
*TRI
;
132 AArch64SpeculationHardening() : MachineFunctionPass(ID
) {
133 initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
136 bool runOnMachineFunction(MachineFunction
&Fn
) override
;
138 StringRef
getPassName() const override
{
139 return AARCH64_SPECULATION_HARDENING_NAME
;
143 unsigned MisspeculatingTaintReg
;
144 unsigned MisspeculatingTaintReg32Bit
;
145 bool UseControlFlowSpeculationBarrier
;
146 BitVector RegsNeedingCSDBBeforeUse
;
147 BitVector RegsAlreadyMasked
;
149 bool functionUsesHardeningRegister(MachineFunction
&MF
) const;
150 bool instrumentControlFlow(MachineBasicBlock
&MBB
,
151 bool &UsesFullSpeculationBarrier
);
152 bool endsWithCondControlFlow(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
153 MachineBasicBlock
*&FBB
,
154 AArch64CC::CondCode
&CondCode
) const;
155 void insertTrackingCode(MachineBasicBlock
&SplitEdgeBB
,
156 AArch64CC::CondCode
&CondCode
, DebugLoc DL
) const;
157 void insertSPToRegTaintPropagation(MachineBasicBlock
&MBB
,
158 MachineBasicBlock::iterator MBBI
) const;
159 void insertRegToSPTaintPropagation(MachineBasicBlock
&MBB
,
160 MachineBasicBlock::iterator MBBI
,
161 unsigned TmpReg
) const;
162 void insertFullSpeculationBarrier(MachineBasicBlock
&MBB
,
163 MachineBasicBlock::iterator MBBI
,
166 bool slhLoads(MachineBasicBlock
&MBB
);
167 bool makeGPRSpeculationSafe(MachineBasicBlock
&MBB
,
168 MachineBasicBlock::iterator MBBI
,
169 MachineInstr
&MI
, unsigned Reg
);
170 bool lowerSpeculationSafeValuePseudos(MachineBasicBlock
&MBB
,
171 bool UsesFullSpeculationBarrier
);
172 bool expandSpeculationSafeValue(MachineBasicBlock
&MBB
,
173 MachineBasicBlock::iterator MBBI
,
174 bool UsesFullSpeculationBarrier
);
175 bool insertCSDB(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
179 } // end anonymous namespace
181 char AArch64SpeculationHardening::ID
= 0;
183 INITIALIZE_PASS(AArch64SpeculationHardening
, "aarch64-speculation-hardening",
184 AARCH64_SPECULATION_HARDENING_NAME
, false, false)
186 bool AArch64SpeculationHardening::endsWithCondControlFlow(
187 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
188 AArch64CC::CondCode
&CondCode
) const {
189 SmallVector
<MachineOperand
, 1> analyzeBranchCondCode
;
190 if (TII
->analyzeBranch(MBB
, TBB
, FBB
, analyzeBranchCondCode
, false))
193 // Ignore if the BB ends in an unconditional branch/fall-through.
194 if (analyzeBranchCondCode
.empty())
197 // If the BB ends with a single conditional branch, FBB will be set to
198 // nullptr (see API docs for TII->analyzeBranch). For the rest of the
199 // analysis we want the FBB block to be set always.
200 assert(TBB
!= nullptr);
202 FBB
= MBB
.getFallThrough();
204 // If both the true and the false condition jump to the same basic block,
205 // there isn't need for any protection - whether the branch is speculated
206 // correctly or not, we end up executing the architecturally correct code.
210 assert(MBB
.succ_size() == 2);
211 // translate analyzeBranchCondCode to CondCode.
212 assert(analyzeBranchCondCode
.size() == 1 && "unknown Cond array format");
213 CondCode
= AArch64CC::CondCode(analyzeBranchCondCode
[0].getImm());
217 void AArch64SpeculationHardening::insertFullSpeculationBarrier(
218 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
220 // A full control flow speculation barrier consists of (DSB SYS + ISB)
221 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::DSB
)).addImm(0xf);
222 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ISB
)).addImm(0xf);
225 void AArch64SpeculationHardening::insertTrackingCode(
226 MachineBasicBlock
&SplitEdgeBB
, AArch64CC::CondCode
&CondCode
,
228 if (UseControlFlowSpeculationBarrier
) {
229 insertFullSpeculationBarrier(SplitEdgeBB
, SplitEdgeBB
.begin(), DL
);
231 BuildMI(SplitEdgeBB
, SplitEdgeBB
.begin(), DL
, TII
->get(AArch64::CSELXr
))
232 .addDef(MisspeculatingTaintReg
)
233 .addUse(MisspeculatingTaintReg
)
234 .addUse(AArch64::XZR
)
236 SplitEdgeBB
.addLiveIn(AArch64::NZCV
);
240 bool AArch64SpeculationHardening::instrumentControlFlow(
241 MachineBasicBlock
&MBB
, bool &UsesFullSpeculationBarrier
) {
242 LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB
);
244 bool Modified
= false;
245 MachineBasicBlock
*TBB
= nullptr;
246 MachineBasicBlock
*FBB
= nullptr;
247 AArch64CC::CondCode CondCode
;
249 if (!endsWithCondControlFlow(MBB
, TBB
, FBB
, CondCode
)) {
250 LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
253 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
254 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
256 AArch64CC::CondCode InvCondCode
= AArch64CC::getInvertedCondCode(CondCode
);
258 MachineBasicBlock
*SplitEdgeTBB
= MBB
.SplitCriticalEdge(TBB
, *this);
259 MachineBasicBlock
*SplitEdgeFBB
= MBB
.SplitCriticalEdge(FBB
, *this);
261 assert(SplitEdgeTBB
!= nullptr);
262 assert(SplitEdgeFBB
!= nullptr);
265 if (MBB
.instr_end() != MBB
.instr_begin())
266 DL
= (--MBB
.instr_end())->getDebugLoc();
268 insertTrackingCode(*SplitEdgeTBB
, CondCode
, DL
);
269 insertTrackingCode(*SplitEdgeFBB
, InvCondCode
, DL
);
271 LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB
<< "\n");
272 LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB
<< "\n");
276 // Perform correct code generation around function calls and before returns.
277 // The below variables record the return/terminator instructions and the call
278 // instructions respectively; including which register is available as a
279 // temporary register just before the recorded instructions.
280 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 4> ReturnInstructions
;
281 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 4> CallInstructions
;
282 // if a temporary register is not available for at least one of the
283 // instructions for which we need to transfer taint to the stack pointer, we
284 // need to insert a full speculation barrier.
285 // TmpRegisterNotAvailableEverywhere tracks that condition.
286 bool TmpRegisterNotAvailableEverywhere
= false;
289 RS
.enterBasicBlock(MBB
);
291 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); I
++) {
292 MachineInstr
&MI
= *I
;
293 if (!MI
.isReturn() && !MI
.isCall())
296 // The RegScavenger represents registers available *after* the MI
297 // instruction pointed to by RS.getCurrentPosition().
298 // We need to have a register that is available *before* the MI is executed.
299 if (I
!= MBB
.begin())
300 RS
.forward(std::prev(I
));
301 // FIXME: The below just finds *a* unused register. Maybe code could be
302 // optimized more if this looks for the register that isn't used for the
303 // longest time around this place, to enable more scheduling freedom. Not
304 // sure if that would actually result in a big performance difference
305 // though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
306 // already to do this - but it's unclear if that could easily be used here.
307 Register TmpReg
= RS
.FindUnusedReg(&AArch64::GPR64commonRegClass
);
308 LLVM_DEBUG(dbgs() << "RS finds "
309 << ((TmpReg
== 0) ? "no register " : "register ");
310 if (TmpReg
!= 0) dbgs() << printReg(TmpReg
, TRI
) << " ";
311 dbgs() << "to be available at MI " << MI
);
313 TmpRegisterNotAvailableEverywhere
= true;
315 ReturnInstructions
.push_back({&MI
, TmpReg
});
316 else if (MI
.isCall())
317 CallInstructions
.push_back({&MI
, TmpReg
});
320 if (TmpRegisterNotAvailableEverywhere
) {
321 // When a temporary register is not available everywhere in this basic
322 // basic block where a propagate-taint-to-sp operation is needed, just
323 // emit a full speculation barrier at the start of this basic block, which
324 // renders the taint/speculation tracking in this basic block unnecessary.
325 insertFullSpeculationBarrier(MBB
, MBB
.begin(),
326 (MBB
.begin())->getDebugLoc());
327 UsesFullSpeculationBarrier
= true;
330 for (auto MI_Reg
: ReturnInstructions
) {
331 assert(MI_Reg
.second
!= 0);
334 << " About to insert Reg to SP taint propagation with temp register "
335 << printReg(MI_Reg
.second
, TRI
)
336 << " on instruction: " << *MI_Reg
.first
);
337 insertRegToSPTaintPropagation(MBB
, MI_Reg
.first
, MI_Reg
.second
);
341 for (auto MI_Reg
: CallInstructions
) {
342 assert(MI_Reg
.second
!= 0);
343 LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
344 "propagation with temp register "
345 << printReg(MI_Reg
.second
, TRI
)
346 << " around instruction: " << *MI_Reg
.first
);
347 // Just after the call:
348 insertSPToRegTaintPropagation(
349 MBB
, std::next((MachineBasicBlock::iterator
)MI_Reg
.first
));
350 // Just before the call:
351 insertRegToSPTaintPropagation(MBB
, MI_Reg
.first
, MI_Reg
.second
);
358 void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
359 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
360 // If full control flow speculation barriers are used, emit a control flow
361 // barrier to block potential miss-speculation in flight coming in to this
363 if (UseControlFlowSpeculationBarrier
) {
364 insertFullSpeculationBarrier(MBB
, MBBI
, DebugLoc());
368 // CMP SP, #0 === SUBS xzr, SP, #0
369 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::SUBSXri
))
370 .addDef(AArch64::XZR
)
373 .addImm(0); // no shift
374 // CSETM x16, NE === CSINV x16, xzr, xzr, EQ
375 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::CSINVXr
))
376 .addDef(MisspeculatingTaintReg
)
377 .addUse(AArch64::XZR
)
378 .addUse(AArch64::XZR
)
379 .addImm(AArch64CC::EQ
);
382 void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
383 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
384 unsigned TmpReg
) const {
385 // If full control flow speculation barriers are used, there will not be
386 // miss-speculation when returning from this function, and therefore, also
387 // no need to encode potential miss-speculation into the stack pointer.
388 if (UseControlFlowSpeculationBarrier
)
391 // mov Xtmp, SP === ADD Xtmp, SP, #0
392 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ADDXri
))
396 .addImm(0); // no shift
397 // and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
398 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ANDXrs
))
399 .addDef(TmpReg
, RegState::Renamable
)
400 .addUse(TmpReg
, RegState::Kill
| RegState::Renamable
)
401 .addUse(MisspeculatingTaintReg
, RegState::Kill
)
403 // mov SP, Xtmp === ADD SP, Xtmp, #0
404 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ADDXri
))
406 .addUse(TmpReg
, RegState::Kill
)
408 .addImm(0); // no shift
411 bool AArch64SpeculationHardening::functionUsesHardeningRegister(
412 MachineFunction
&MF
) const {
413 for (MachineBasicBlock
&MBB
: MF
) {
414 for (MachineInstr
&MI
: MBB
) {
415 // treat function calls specially, as the hardening register does not
416 // need to remain live across function calls.
419 if (MI
.readsRegister(MisspeculatingTaintReg
, TRI
) ||
420 MI
.modifiesRegister(MisspeculatingTaintReg
, TRI
))
427 // Make GPR register Reg speculation-safe by putting it through the
428 // SpeculationSafeValue pseudo instruction, if we can't prove that
429 // the value in the register has already been hardened.
430 bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
431 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, MachineInstr
&MI
,
433 assert(AArch64::GPR32allRegClass
.contains(Reg
) ||
434 AArch64::GPR64allRegClass
.contains(Reg
));
436 // Loads cannot directly load a value into the SP (nor WSP).
437 // Therefore, if Reg is SP or WSP, it is because the instruction loads from
438 // the stack through the stack pointer.
440 // Since the stack pointer is never dynamically controllable, don't harden it.
441 if (Reg
== AArch64::SP
|| Reg
== AArch64::WSP
)
444 // Do not harden the register again if already hardened before.
445 if (RegsAlreadyMasked
[Reg
])
448 const bool Is64Bit
= AArch64::GPR64allRegClass
.contains(Reg
);
449 LLVM_DEBUG(dbgs() << "About to harden register : " << Reg
<< "\n");
450 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
451 TII
->get(Is64Bit
? AArch64::SpeculationSafeValueX
452 : AArch64::SpeculationSafeValueW
))
455 RegsAlreadyMasked
.set(Reg
);
459 bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock
&MBB
) {
460 bool Modified
= false;
462 LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB
);
464 RegsAlreadyMasked
.reset();
466 MachineBasicBlock::iterator MBBI
= MBB
.begin(), E
= MBB
.end();
467 MachineBasicBlock::iterator NextMBBI
;
468 for (; MBBI
!= E
; MBBI
= NextMBBI
) {
469 MachineInstr
&MI
= *MBBI
;
470 NextMBBI
= std::next(MBBI
);
471 // Only harden loaded values or addresses used in loads.
475 LLVM_DEBUG(dbgs() << "About to harden: " << MI
);
477 // For general purpose register loads, harden the registers loaded into.
478 // For other loads, harden the address loaded from.
479 // Masking the loaded value is expected to result in less performance
480 // overhead, as the load can still execute speculatively in comparison to
481 // when the address loaded from gets masked. However, masking is only
482 // easy to do efficiently on GPR registers, so for loads into non-GPR
483 // registers (e.g. floating point loads), mask the address loaded from.
484 bool AllDefsAreGPR
= llvm::all_of(MI
.defs(), [&](MachineOperand
&Op
) {
485 return Op
.isReg() && (AArch64::GPR32allRegClass
.contains(Op
.getReg()) ||
486 AArch64::GPR64allRegClass
.contains(Op
.getReg()));
488 // FIXME: it might be a worthwhile optimization to not mask loaded
489 // values if all the registers involved in address calculation are already
490 // hardened, leading to this load not able to execute on a miss-speculated
492 bool HardenLoadedData
= AllDefsAreGPR
;
493 bool HardenAddressLoadedFrom
= !HardenLoadedData
;
495 // First remove registers from AlreadyMaskedRegisters if their value is
496 // updated by this instruction - it makes them contain a new value that is
497 // not guaranteed to already have been masked.
498 for (MachineOperand Op
: MI
.defs())
499 for (MCRegAliasIterator
AI(Op
.getReg(), TRI
, true); AI
.isValid(); ++AI
)
500 RegsAlreadyMasked
.reset(*AI
);
502 // FIXME: loads from the stack with an immediate offset from the stack
503 // pointer probably shouldn't be hardened, which could result in a
504 // significant optimization. See section "Don’t check loads from
505 // compile-time constant stack offsets", in
506 // https://llvm.org/docs/SpeculativeLoadHardening.html
508 if (HardenLoadedData
)
509 for (auto Def
: MI
.defs()) {
511 // Do not mask a register that is not used further.
513 // FIXME: For pre/post-increment addressing modes, the base register
514 // used in address calculation is also defined by this instruction.
515 // It might be a worthwhile optimization to not harden that
516 // base register increment/decrement when the increment/decrement is
518 Modified
|= makeGPRSpeculationSafe(MBB
, NextMBBI
, MI
, Def
.getReg());
521 if (HardenAddressLoadedFrom
)
522 for (auto Use
: MI
.uses()) {
525 Register Reg
= Use
.getReg();
526 // Some loads of floating point data have implicit defs/uses on a
527 // super register of that floating point data. Some examples:
528 // $s0 = LDRSui $sp, 22, implicit-def $q0
529 // $q0 = LD1i64 $q0, 1, renamable $x0
530 // We need to filter out these uses for non-GPR register which occur
531 // because the load partially fills a non-GPR register with the loaded
532 // data. Just skipping all non-GPR registers is safe (for now) as all
533 // AArch64 load instructions only use GPR registers to perform the
534 // address calculation. FIXME: However that might change once we can
535 // produce SVE gather instructions.
536 if (!(AArch64::GPR32allRegClass
.contains(Reg
) ||
537 AArch64::GPR64allRegClass
.contains(Reg
)))
539 Modified
|= makeGPRSpeculationSafe(MBB
, MBBI
, MI
, Reg
);
545 /// \brief If MBBI references a pseudo instruction that should be expanded
546 /// here, do the expansion and return true. Otherwise return false.
547 bool AArch64SpeculationHardening::expandSpeculationSafeValue(
548 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
549 bool UsesFullSpeculationBarrier
) {
550 MachineInstr
&MI
= *MBBI
;
551 unsigned Opcode
= MI
.getOpcode();
557 case AArch64::SpeculationSafeValueW
:
560 case AArch64::SpeculationSafeValueX
:
561 // Just remove the SpeculationSafe pseudo's if control flow
562 // miss-speculation isn't happening because we're already inserting barriers
563 // to guarantee that.
564 if (!UseControlFlowSpeculationBarrier
&& !UsesFullSpeculationBarrier
) {
565 Register DstReg
= MI
.getOperand(0).getReg();
566 Register SrcReg
= MI
.getOperand(1).getReg();
567 // Mark this register and all its aliasing registers as needing to be
568 // value speculation hardened before its next use, by using a CSDB
569 // barrier instruction.
570 for (MachineOperand Op
: MI
.defs())
571 for (MCRegAliasIterator
AI(Op
.getReg(), TRI
, true); AI
.isValid(); ++AI
)
572 RegsNeedingCSDBBeforeUse
.set(*AI
);
574 // Mask off with taint state.
575 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
576 Is64Bit
? TII
->get(AArch64::ANDXrs
) : TII
->get(AArch64::ANDWrs
))
578 .addUse(SrcReg
, RegState::Kill
)
579 .addUse(Is64Bit
? MisspeculatingTaintReg
580 : MisspeculatingTaintReg32Bit
)
583 MI
.eraseFromParent();
589 bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock
&MBB
,
590 MachineBasicBlock::iterator MBBI
,
592 assert(!UseControlFlowSpeculationBarrier
&& "No need to insert CSDBs when "
593 "control flow miss-speculation "
594 "is already blocked");
595 // insert data value speculation barrier (CSDB)
596 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::HINT
)).addImm(0x14);
597 RegsNeedingCSDBBeforeUse
.reset();
601 bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
602 MachineBasicBlock
&MBB
, bool UsesFullSpeculationBarrier
) {
603 bool Modified
= false;
605 RegsNeedingCSDBBeforeUse
.reset();
607 // The following loop iterates over all instructions in the basic block,
608 // and performs 2 operations:
609 // 1. Insert a CSDB at this location if needed.
610 // 2. Expand the SpeculationSafeValuePseudo if the current instruction is
613 // The insertion of the CSDB is done as late as possible (i.e. just before
614 // the use of a masked register), in the hope that that will reduce the
615 // total number of CSDBs in a block when there are multiple masked registers
617 MachineBasicBlock::iterator MBBI
= MBB
.begin(), E
= MBB
.end();
620 MachineInstr
&MI
= *MBBI
;
621 DL
= MI
.getDebugLoc();
622 MachineBasicBlock::iterator NMBBI
= std::next(MBBI
);
624 // First check if a CSDB needs to be inserted due to earlier registers
625 // that were masked and that are used by the next instruction.
626 // Also emit the barrier on any potential control flow changes.
627 bool NeedToEmitBarrier
= false;
628 if (RegsNeedingCSDBBeforeUse
.any() && (MI
.isCall() || MI
.isTerminator()))
629 NeedToEmitBarrier
= true;
630 if (!NeedToEmitBarrier
)
631 for (MachineOperand Op
: MI
.uses())
632 if (Op
.isReg() && RegsNeedingCSDBBeforeUse
[Op
.getReg()]) {
633 NeedToEmitBarrier
= true;
637 if (NeedToEmitBarrier
&& !UsesFullSpeculationBarrier
)
638 Modified
|= insertCSDB(MBB
, MBBI
, DL
);
641 expandSpeculationSafeValue(MBB
, MBBI
, UsesFullSpeculationBarrier
);
646 if (RegsNeedingCSDBBeforeUse
.any() && !UsesFullSpeculationBarrier
)
647 Modified
|= insertCSDB(MBB
, MBBI
, DL
);
652 bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction
&MF
) {
653 if (!MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
656 MisspeculatingTaintReg
= AArch64::X16
;
657 MisspeculatingTaintReg32Bit
= AArch64::W16
;
658 TII
= MF
.getSubtarget().getInstrInfo();
659 TRI
= MF
.getSubtarget().getRegisterInfo();
660 RegsNeedingCSDBBeforeUse
.resize(TRI
->getNumRegs());
661 RegsAlreadyMasked
.resize(TRI
->getNumRegs());
662 UseControlFlowSpeculationBarrier
= functionUsesHardeningRegister(MF
);
664 bool Modified
= false;
666 // Step 1: Enable automatic insertion of SpeculationSafeValue.
669 dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
670 "SpeculationSafeValue intrinsics *****\n");
672 Modified
|= slhLoads(MBB
);
675 // 2. Add instrumentation code to function entry and exits.
678 << "***** AArch64SpeculationHardening - track control flow *****\n");
680 SmallVector
<MachineBasicBlock
*, 2> EntryBlocks
;
681 EntryBlocks
.push_back(&MF
.front());
682 for (const LandingPadInfo
&LPI
: MF
.getLandingPads())
683 EntryBlocks
.push_back(LPI
.LandingPadBlock
);
684 for (auto Entry
: EntryBlocks
)
685 insertSPToRegTaintPropagation(
686 *Entry
, Entry
->SkipPHIsLabelsAndDebug(Entry
->begin()));
688 // 3. Add instrumentation code to every basic block.
689 for (auto &MBB
: MF
) {
690 bool UsesFullSpeculationBarrier
= false;
691 Modified
|= instrumentControlFlow(MBB
, UsesFullSpeculationBarrier
);
693 lowerSpeculationSafeValuePseudos(MBB
, UsesFullSpeculationBarrier
);
699 /// \brief Returns an instance of the pseudo instruction expansion pass.
700 FunctionPass
*llvm::createAArch64SpeculationHardeningPass() {
701 return new AArch64SpeculationHardening();