[WebAssembly] Add new target feature in support of 'extended-const' proposal
[llvm-project.git] / llvm / lib / Target / Sparc / SparcISelLowering.cpp
blob501bb4d4910f6bcd2c61ad9fa3fb26489c27f744
1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Sparc uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "SparcISelLowering.h"
15 #include "MCTargetDesc/SparcMCExpr.h"
16 #include "SparcMachineFunctionInfo.h"
17 #include "SparcRegisterInfo.h"
18 #include "SparcTargetMachine.h"
19 #include "SparcTargetObjectFile.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // Calling Convention Implementation
39 //===----------------------------------------------------------------------===//
41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
42 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
43 ISD::ArgFlagsTy &ArgFlags, CCState &State)
45 assert (ArgFlags.isSRet());
47 // Assign SRet argument.
48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
50 LocVT, LocInfo));
51 return true;
54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
55 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
56 ISD::ArgFlagsTy &ArgFlags, CCState &State)
58 static const MCPhysReg RegList[] = {
59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
61 // Try to get first reg.
62 if (Register Reg = State.AllocateReg(RegList)) {
63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
64 } else {
65 // Assign whole thing in stack.
66 State.addLoc(CCValAssign::getCustomMem(
67 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
68 return true;
71 // Try to get second reg.
72 if (Register Reg = State.AllocateReg(RegList))
73 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
74 else
75 State.addLoc(CCValAssign::getCustomMem(
76 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
77 return true;
80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
81 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
82 ISD::ArgFlagsTy &ArgFlags, CCState &State)
84 static const MCPhysReg RegList[] = {
85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
88 // Try to get first reg.
89 if (Register Reg = State.AllocateReg(RegList))
90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
91 else
92 return false;
94 // Try to get second reg.
95 if (Register Reg = State.AllocateReg(RegList))
96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
97 else
98 return false;
100 return true;
103 // Allocate a full-sized argument for the 64-bit ABI.
104 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
105 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
106 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
107 assert((LocVT == MVT::f32 || LocVT == MVT::f128
108 || LocVT.getSizeInBits() == 64) &&
109 "Can't handle non-64 bits locations");
111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
112 unsigned size = (LocVT == MVT::f128) ? 16 : 8;
113 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8);
114 unsigned Offset = State.AllocateStack(size, alignment);
115 unsigned Reg = 0;
117 if (LocVT == MVT::i64 && Offset < 6*8)
118 // Promote integers to %i0-%i5.
119 Reg = SP::I0 + Offset/8;
120 else if (LocVT == MVT::f64 && Offset < 16*8)
121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
122 Reg = SP::D0 + Offset/8;
123 else if (LocVT == MVT::f32 && Offset < 16*8)
124 // Promote floats to %f1, %f3, ...
125 Reg = SP::F1 + Offset/4;
126 else if (LocVT == MVT::f128 && Offset < 16*8)
127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
128 Reg = SP::Q0 + Offset/16;
130 // Promote to register when possible, otherwise use the stack slot.
131 if (Reg) {
132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
133 return true;
136 // This argument goes on the stack in an 8-byte slot.
137 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
138 // the right-aligned float. The first 4 bytes of the stack slot are undefined.
139 if (LocVT == MVT::f32)
140 Offset += 4;
142 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
143 return true;
146 // Allocate a half-sized argument for the 64-bit ABI.
148 // This is used when passing { float, int } structs by value in registers.
149 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
150 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
151 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
152 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
153 unsigned Offset = State.AllocateStack(4, Align(4));
155 if (LocVT == MVT::f32 && Offset < 16*8) {
156 // Promote floats to %f0-%f31.
157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
158 LocVT, LocInfo));
159 return true;
162 if (LocVT == MVT::i32 && Offset < 6*8) {
163 // Promote integers to %i0-%i5, using half the register.
164 unsigned Reg = SP::I0 + Offset/8;
165 LocVT = MVT::i64;
166 LocInfo = CCValAssign::AExt;
168 // Set the Custom bit if this i32 goes in the high bits of a register.
169 if (Offset % 8 == 0)
170 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
171 LocVT, LocInfo));
172 else
173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
174 return true;
177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
178 return true;
181 #include "SparcGenCallingConv.inc"
183 // The calling conventions in SparcCallingConv.td are described in terms of the
184 // callee's register window. This function translates registers to the
185 // corresponding caller window %o register.
186 static unsigned toCallerWindow(unsigned Reg) {
187 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
188 "Unexpected enum");
189 if (Reg >= SP::I0 && Reg <= SP::I7)
190 return Reg - SP::I0 + SP::O0;
191 return Reg;
194 SDValue
195 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
196 bool IsVarArg,
197 const SmallVectorImpl<ISD::OutputArg> &Outs,
198 const SmallVectorImpl<SDValue> &OutVals,
199 const SDLoc &DL, SelectionDAG &DAG) const {
200 if (Subtarget->is64Bit())
201 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
202 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
205 SDValue
206 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
207 bool IsVarArg,
208 const SmallVectorImpl<ISD::OutputArg> &Outs,
209 const SmallVectorImpl<SDValue> &OutVals,
210 const SDLoc &DL, SelectionDAG &DAG) const {
211 MachineFunction &MF = DAG.getMachineFunction();
213 // CCValAssign - represent the assignment of the return value to locations.
214 SmallVector<CCValAssign, 16> RVLocs;
216 // CCState - Info about the registers and stack slot.
217 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
218 *DAG.getContext());
220 // Analyze return values.
221 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
223 SDValue Flag;
224 SmallVector<SDValue, 4> RetOps(1, Chain);
225 // Make room for the return address offset.
226 RetOps.push_back(SDValue());
228 // Copy the result values into the output registers.
229 for (unsigned i = 0, realRVLocIdx = 0;
230 i != RVLocs.size();
231 ++i, ++realRVLocIdx) {
232 CCValAssign &VA = RVLocs[i];
233 assert(VA.isRegLoc() && "Can only return in registers!");
235 SDValue Arg = OutVals[realRVLocIdx];
237 if (VA.needsCustom()) {
238 assert(VA.getLocVT() == MVT::v2i32);
239 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
240 // happen by default if this wasn't a legal type)
242 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
243 Arg,
244 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
245 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
246 Arg,
247 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
249 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
250 Flag = Chain.getValue(1);
251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
252 VA = RVLocs[++i]; // skip ahead to next loc
253 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
254 Flag);
255 } else
256 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
258 // Guarantee that all emitted copies are stuck together with flags.
259 Flag = Chain.getValue(1);
260 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
263 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
264 // If the function returns a struct, copy the SRetReturnReg to I0
265 if (MF.getFunction().hasStructRetAttr()) {
266 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
267 Register Reg = SFI->getSRetReturnReg();
268 if (!Reg)
269 llvm_unreachable("sret virtual register not created in the entry block");
270 auto PtrVT = getPointerTy(DAG.getDataLayout());
271 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
272 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
273 Flag = Chain.getValue(1);
274 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
275 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
278 RetOps[0] = Chain; // Update chain.
279 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
281 // Add the flag if we have it.
282 if (Flag.getNode())
283 RetOps.push_back(Flag);
285 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
288 // Lower return values for the 64-bit ABI.
289 // Return values are passed the exactly the same way as function arguments.
290 SDValue
291 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
292 bool IsVarArg,
293 const SmallVectorImpl<ISD::OutputArg> &Outs,
294 const SmallVectorImpl<SDValue> &OutVals,
295 const SDLoc &DL, SelectionDAG &DAG) const {
296 // CCValAssign - represent the assignment of the return value to locations.
297 SmallVector<CCValAssign, 16> RVLocs;
299 // CCState - Info about the registers and stack slot.
300 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
301 *DAG.getContext());
303 // Analyze return values.
304 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
306 SDValue Flag;
307 SmallVector<SDValue, 4> RetOps(1, Chain);
309 // The second operand on the return instruction is the return address offset.
310 // The return address is always %i7+8 with the 64-bit ABI.
311 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
313 // Copy the result values into the output registers.
314 for (unsigned i = 0; i != RVLocs.size(); ++i) {
315 CCValAssign &VA = RVLocs[i];
316 assert(VA.isRegLoc() && "Can only return in registers!");
317 SDValue OutVal = OutVals[i];
319 // Integer return values must be sign or zero extended by the callee.
320 switch (VA.getLocInfo()) {
321 case CCValAssign::Full: break;
322 case CCValAssign::SExt:
323 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
324 break;
325 case CCValAssign::ZExt:
326 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
327 break;
328 case CCValAssign::AExt:
329 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
330 break;
331 default:
332 llvm_unreachable("Unknown loc info!");
335 // The custom bit on an i32 return value indicates that it should be passed
336 // in the high bits of the register.
337 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
338 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
339 DAG.getConstant(32, DL, MVT::i32));
341 // The next value may go in the low bits of the same register.
342 // Handle both at once.
343 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
345 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
346 // Skip the next value, it's already done.
347 ++i;
351 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
353 // Guarantee that all emitted copies are stuck together with flags.
354 Flag = Chain.getValue(1);
355 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
358 RetOps[0] = Chain; // Update chain.
360 // Add the flag if we have it.
361 if (Flag.getNode())
362 RetOps.push_back(Flag);
364 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
367 SDValue SparcTargetLowering::LowerFormalArguments(
368 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
371 if (Subtarget->is64Bit())
372 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
373 DL, DAG, InVals);
374 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
375 DL, DAG, InVals);
378 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
379 /// passed in either one or two GPRs, including FP values. TODO: we should
380 /// pass FP values in FP registers for fastcc functions.
381 SDValue SparcTargetLowering::LowerFormalArguments_32(
382 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
383 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
384 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
385 MachineFunction &MF = DAG.getMachineFunction();
386 MachineRegisterInfo &RegInfo = MF.getRegInfo();
387 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
389 // Assign locations to all of the incoming arguments.
390 SmallVector<CCValAssign, 16> ArgLocs;
391 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
392 *DAG.getContext());
393 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
395 const unsigned StackOffset = 92;
396 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
398 unsigned InIdx = 0;
399 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
400 CCValAssign &VA = ArgLocs[i];
402 if (Ins[InIdx].Flags.isSRet()) {
403 if (InIdx != 0)
404 report_fatal_error("sparc only supports sret on the first parameter");
405 // Get SRet from [%fp+64].
406 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
407 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
408 SDValue Arg =
409 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
410 InVals.push_back(Arg);
411 continue;
414 if (VA.isRegLoc()) {
415 if (VA.needsCustom()) {
416 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
418 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
419 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
420 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
422 assert(i+1 < e);
423 CCValAssign &NextVA = ArgLocs[++i];
425 SDValue LoVal;
426 if (NextVA.isMemLoc()) {
427 int FrameIdx = MF.getFrameInfo().
428 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
429 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
430 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
431 } else {
432 Register loReg = MF.addLiveIn(NextVA.getLocReg(),
433 &SP::IntRegsRegClass);
434 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
437 if (IsLittleEndian)
438 std::swap(LoVal, HiVal);
440 SDValue WholeValue =
441 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
442 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
443 InVals.push_back(WholeValue);
444 continue;
446 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
447 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
448 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
449 if (VA.getLocVT() == MVT::f32)
450 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
451 else if (VA.getLocVT() != MVT::i32) {
452 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
453 DAG.getValueType(VA.getLocVT()));
454 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
456 InVals.push_back(Arg);
457 continue;
460 assert(VA.isMemLoc());
462 unsigned Offset = VA.getLocMemOffset()+StackOffset;
463 auto PtrVT = getPointerTy(DAG.getDataLayout());
465 if (VA.needsCustom()) {
466 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
467 // If it is double-word aligned, just load.
468 if (Offset % 8 == 0) {
469 int FI = MF.getFrameInfo().CreateFixedObject(8,
470 Offset,
471 true);
472 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
473 SDValue Load =
474 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
475 InVals.push_back(Load);
476 continue;
479 int FI = MF.getFrameInfo().CreateFixedObject(4,
480 Offset,
481 true);
482 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
483 SDValue HiVal =
484 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
485 int FI2 = MF.getFrameInfo().CreateFixedObject(4,
486 Offset+4,
487 true);
488 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
490 SDValue LoVal =
491 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
493 if (IsLittleEndian)
494 std::swap(LoVal, HiVal);
496 SDValue WholeValue =
497 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
498 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
499 InVals.push_back(WholeValue);
500 continue;
503 int FI = MF.getFrameInfo().CreateFixedObject(4,
504 Offset,
505 true);
506 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
507 SDValue Load ;
508 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
509 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
510 } else if (VA.getValVT() == MVT::f128) {
511 report_fatal_error("SPARCv8 does not handle f128 in calls; "
512 "pass indirectly");
513 } else {
514 // We shouldn't see any other value types here.
515 llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
517 InVals.push_back(Load);
520 if (MF.getFunction().hasStructRetAttr()) {
521 // Copy the SRet Argument to SRetReturnReg.
522 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
523 Register Reg = SFI->getSRetReturnReg();
524 if (!Reg) {
525 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
526 SFI->setSRetReturnReg(Reg);
528 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
529 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
532 // Store remaining ArgRegs to the stack if this is a varargs function.
533 if (isVarArg) {
534 static const MCPhysReg ArgRegs[] = {
535 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
537 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
538 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
539 unsigned ArgOffset = CCInfo.getNextStackOffset();
540 if (NumAllocated == 6)
541 ArgOffset += StackOffset;
542 else {
543 assert(!ArgOffset);
544 ArgOffset = 68+4*NumAllocated;
547 // Remember the vararg offset for the va_start implementation.
548 FuncInfo->setVarArgsFrameOffset(ArgOffset);
550 std::vector<SDValue> OutChains;
552 for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
553 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
554 MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
555 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
557 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
558 true);
559 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
561 OutChains.push_back(
562 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
563 ArgOffset += 4;
566 if (!OutChains.empty()) {
567 OutChains.push_back(Chain);
568 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
572 return Chain;
575 // Lower formal arguments for the 64 bit ABI.
576 SDValue SparcTargetLowering::LowerFormalArguments_64(
577 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
578 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
579 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
580 MachineFunction &MF = DAG.getMachineFunction();
582 // Analyze arguments according to CC_Sparc64.
583 SmallVector<CCValAssign, 16> ArgLocs;
584 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
585 *DAG.getContext());
586 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
588 // The argument array begins at %fp+BIAS+128, after the register save area.
589 const unsigned ArgArea = 128;
591 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
592 CCValAssign &VA = ArgLocs[i];
593 if (VA.isRegLoc()) {
594 // This argument is passed in a register.
595 // All integer register arguments are promoted by the caller to i64.
597 // Create a virtual register for the promoted live-in value.
598 Register VReg = MF.addLiveIn(VA.getLocReg(),
599 getRegClassFor(VA.getLocVT()));
600 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
602 // Get the high bits for i32 struct elements.
603 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
604 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
605 DAG.getConstant(32, DL, MVT::i32));
607 // The caller promoted the argument, so insert an Assert?ext SDNode so we
608 // won't promote the value again in this function.
609 switch (VA.getLocInfo()) {
610 case CCValAssign::SExt:
611 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
612 DAG.getValueType(VA.getValVT()));
613 break;
614 case CCValAssign::ZExt:
615 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
616 DAG.getValueType(VA.getValVT()));
617 break;
618 default:
619 break;
622 // Truncate the register down to the argument type.
623 if (VA.isExtInLoc())
624 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
626 InVals.push_back(Arg);
627 continue;
630 // The registers are exhausted. This argument was passed on the stack.
631 assert(VA.isMemLoc());
632 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
633 // beginning of the arguments area at %fp+BIAS+128.
634 unsigned Offset = VA.getLocMemOffset() + ArgArea;
635 unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
636 // Adjust offset for extended arguments, SPARC is big-endian.
637 // The caller will have written the full slot with extended bytes, but we
638 // prefer our own extending loads.
639 if (VA.isExtInLoc())
640 Offset += 8 - ValSize;
641 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
642 InVals.push_back(
643 DAG.getLoad(VA.getValVT(), DL, Chain,
644 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
645 MachinePointerInfo::getFixedStack(MF, FI)));
648 if (!IsVarArg)
649 return Chain;
651 // This function takes variable arguments, some of which may have been passed
652 // in registers %i0-%i5. Variable floating point arguments are never passed
653 // in floating point registers. They go on %i0-%i5 or on the stack like
654 // integer arguments.
656 // The va_start intrinsic needs to know the offset to the first variable
657 // argument.
658 unsigned ArgOffset = CCInfo.getNextStackOffset();
659 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
660 // Skip the 128 bytes of register save area.
661 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
662 Subtarget->getStackPointerBias());
664 // Save the variable arguments that were passed in registers.
665 // The caller is required to reserve stack space for 6 arguments regardless
666 // of how many arguments were actually passed.
667 SmallVector<SDValue, 8> OutChains;
668 for (; ArgOffset < 6*8; ArgOffset += 8) {
669 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
670 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
671 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
672 auto PtrVT = getPointerTy(MF.getDataLayout());
673 OutChains.push_back(
674 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
675 MachinePointerInfo::getFixedStack(MF, FI)));
678 if (!OutChains.empty())
679 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
681 return Chain;
684 SDValue
685 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
686 SmallVectorImpl<SDValue> &InVals) const {
687 if (Subtarget->is64Bit())
688 return LowerCall_64(CLI, InVals);
689 return LowerCall_32(CLI, InVals);
692 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
693 const CallBase *Call) {
694 if (Call)
695 return Call->hasFnAttr(Attribute::ReturnsTwice);
697 const Function *CalleeFn = nullptr;
698 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
699 CalleeFn = dyn_cast<Function>(G->getGlobal());
700 } else if (ExternalSymbolSDNode *E =
701 dyn_cast<ExternalSymbolSDNode>(Callee)) {
702 const Function &Fn = DAG.getMachineFunction().getFunction();
703 const Module *M = Fn.getParent();
704 const char *CalleeName = E->getSymbol();
705 CalleeFn = M->getFunction(CalleeName);
708 if (!CalleeFn)
709 return false;
710 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
713 // Lower a call for the 32-bit ABI.
714 SDValue
715 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
716 SmallVectorImpl<SDValue> &InVals) const {
717 SelectionDAG &DAG = CLI.DAG;
718 SDLoc &dl = CLI.DL;
719 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
720 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
721 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
722 SDValue Chain = CLI.Chain;
723 SDValue Callee = CLI.Callee;
724 bool &isTailCall = CLI.IsTailCall;
725 CallingConv::ID CallConv = CLI.CallConv;
726 bool isVarArg = CLI.IsVarArg;
728 // Sparc target does not yet support tail call optimization.
729 isTailCall = false;
731 // Analyze operands of the call, assigning locations to each operand.
732 SmallVector<CCValAssign, 16> ArgLocs;
733 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
734 *DAG.getContext());
735 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
737 // Get the size of the outgoing arguments stack space requirement.
738 unsigned ArgsSize = CCInfo.getNextStackOffset();
740 // Keep stack frames 8-byte aligned.
741 ArgsSize = (ArgsSize+7) & ~7;
743 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
745 // Create local copies for byval args.
746 SmallVector<SDValue, 8> ByValArgs;
747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
748 ISD::ArgFlagsTy Flags = Outs[i].Flags;
749 if (!Flags.isByVal())
750 continue;
752 SDValue Arg = OutVals[i];
753 unsigned Size = Flags.getByValSize();
754 Align Alignment = Flags.getNonZeroByValAlign();
756 if (Size > 0U) {
757 int FI = MFI.CreateStackObject(Size, Alignment, false);
758 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
759 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
761 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment,
762 false, // isVolatile,
763 (Size <= 32), // AlwaysInline if size <= 32,
764 false, // isTailCall
765 MachinePointerInfo(), MachinePointerInfo());
766 ByValArgs.push_back(FIPtr);
768 else {
769 SDValue nullVal;
770 ByValArgs.push_back(nullVal);
774 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
776 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
777 SmallVector<SDValue, 8> MemOpChains;
779 const unsigned StackOffset = 92;
780 bool hasStructRetAttr = false;
781 unsigned SRetArgSize = 0;
782 // Walk the register/memloc assignments, inserting copies/loads.
783 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
784 i != e;
785 ++i, ++realArgIdx) {
786 CCValAssign &VA = ArgLocs[i];
787 SDValue Arg = OutVals[realArgIdx];
789 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
791 // Use local copy if it is a byval arg.
792 if (Flags.isByVal()) {
793 Arg = ByValArgs[byvalArgIdx++];
794 if (!Arg) {
795 continue;
799 // Promote the value if needed.
800 switch (VA.getLocInfo()) {
801 default: llvm_unreachable("Unknown loc info!");
802 case CCValAssign::Full: break;
803 case CCValAssign::SExt:
804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
805 break;
806 case CCValAssign::ZExt:
807 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
808 break;
809 case CCValAssign::AExt:
810 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
811 break;
812 case CCValAssign::BCvt:
813 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
814 break;
817 if (Flags.isSRet()) {
818 assert(VA.needsCustom());
819 // store SRet argument in %sp+64
820 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
821 SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
822 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
823 MemOpChains.push_back(
824 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
825 hasStructRetAttr = true;
826 // sret only allowed on first argument
827 assert(Outs[realArgIdx].OrigArgIndex == 0);
828 SRetArgSize =
829 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType);
830 continue;
833 if (VA.needsCustom()) {
834 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
836 if (VA.isMemLoc()) {
837 unsigned Offset = VA.getLocMemOffset() + StackOffset;
838 // if it is double-word aligned, just store.
839 if (Offset % 8 == 0) {
840 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
841 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
842 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
843 MemOpChains.push_back(
844 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
845 continue;
849 if (VA.getLocVT() == MVT::f64) {
850 // Move from the float value from float registers into the
851 // integer registers.
852 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
853 Arg = bitcastConstantFPToInt(C, dl, DAG);
854 else
855 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
858 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
859 Arg,
860 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
861 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
862 Arg,
863 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
865 if (VA.isRegLoc()) {
866 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
867 assert(i+1 != e);
868 CCValAssign &NextVA = ArgLocs[++i];
869 if (NextVA.isRegLoc()) {
870 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
871 } else {
872 // Store the second part in stack.
873 unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
874 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
875 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
876 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
877 MemOpChains.push_back(
878 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
880 } else {
881 unsigned Offset = VA.getLocMemOffset() + StackOffset;
882 // Store the first part.
883 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
884 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
885 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
886 MemOpChains.push_back(
887 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
888 // Store the second part.
889 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
890 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
891 MemOpChains.push_back(
892 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
894 continue;
897 // Arguments that can be passed on register must be kept at
898 // RegsToPass vector
899 if (VA.isRegLoc()) {
900 if (VA.getLocVT() != MVT::f32) {
901 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
902 continue;
904 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
905 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
906 continue;
909 assert(VA.isMemLoc());
911 // Create a store off the stack pointer for this argument.
912 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
913 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
914 dl);
915 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
916 MemOpChains.push_back(
917 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
921 // Emit all stores, make sure the occur before any copies into physregs.
922 if (!MemOpChains.empty())
923 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
925 // Build a sequence of copy-to-reg nodes chained together with token
926 // chain and flag operands which copy the outgoing args into registers.
927 // The InFlag in necessary since all emitted instructions must be
928 // stuck together.
929 SDValue InFlag;
930 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
931 Register Reg = toCallerWindow(RegsToPass[i].first);
932 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
933 InFlag = Chain.getValue(1);
936 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
938 // If the callee is a GlobalAddress node (quite common, every direct call is)
939 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
940 // Likewise ExternalSymbol -> TargetExternalSymbol.
941 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
942 : SparcMCExpr::VK_Sparc_WDISP30;
943 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
944 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
945 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
946 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
948 // Returns a chain & a flag for retval copy to use
949 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
950 SmallVector<SDValue, 8> Ops;
951 Ops.push_back(Chain);
952 Ops.push_back(Callee);
953 if (hasStructRetAttr)
954 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
955 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
956 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
957 RegsToPass[i].second.getValueType()));
959 // Add a register mask operand representing the call-preserved registers.
960 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
961 const uint32_t *Mask =
962 ((hasReturnsTwice)
963 ? TRI->getRTCallPreservedMask(CallConv)
964 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
965 assert(Mask && "Missing call preserved mask for calling convention");
966 Ops.push_back(DAG.getRegisterMask(Mask));
968 if (InFlag.getNode())
969 Ops.push_back(InFlag);
971 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
972 InFlag = Chain.getValue(1);
974 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true),
975 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
976 InFlag = Chain.getValue(1);
978 // Assign locations to each value returned by this call.
979 SmallVector<CCValAssign, 16> RVLocs;
980 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
981 *DAG.getContext());
983 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
985 // Copy all of the result registers out of their specified physreg.
986 for (unsigned i = 0; i != RVLocs.size(); ++i) {
987 if (RVLocs[i].getLocVT() == MVT::v2i32) {
988 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
989 SDValue Lo = DAG.getCopyFromReg(
990 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
991 Chain = Lo.getValue(1);
992 InFlag = Lo.getValue(2);
993 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
994 DAG.getConstant(0, dl, MVT::i32));
995 SDValue Hi = DAG.getCopyFromReg(
996 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
997 Chain = Hi.getValue(1);
998 InFlag = Hi.getValue(2);
999 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
1000 DAG.getConstant(1, dl, MVT::i32));
1001 InVals.push_back(Vec);
1002 } else {
1003 Chain =
1004 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1005 RVLocs[i].getValVT(), InFlag)
1006 .getValue(1);
1007 InFlag = Chain.getValue(2);
1008 InVals.push_back(Chain.getValue(0));
1012 return Chain;
1015 // FIXME? Maybe this could be a TableGen attribute on some registers and
1016 // this table could be generated automatically from RegInfo.
1017 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
1018 const MachineFunction &MF) const {
1019 Register Reg = StringSwitch<Register>(RegName)
1020 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1021 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1022 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1023 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1024 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1025 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1026 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1027 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1028 .Default(0);
1030 if (Reg)
1031 return Reg;
1033 report_fatal_error("Invalid register name global variable");
1036 // Fixup floating point arguments in the ... part of a varargs call.
1038 // The SPARC v9 ABI requires that floating point arguments are treated the same
1039 // as integers when calling a varargs function. This does not apply to the
1040 // fixed arguments that are part of the function's prototype.
1042 // This function post-processes a CCValAssign array created by
1043 // AnalyzeCallOperands().
1044 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1045 ArrayRef<ISD::OutputArg> Outs) {
1046 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1047 const CCValAssign &VA = ArgLocs[i];
1048 MVT ValTy = VA.getLocVT();
1049 // FIXME: What about f32 arguments? C promotes them to f64 when calling
1050 // varargs functions.
1051 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1052 continue;
1053 // The fixed arguments to a varargs function still go in FP registers.
1054 if (Outs[VA.getValNo()].IsFixed)
1055 continue;
1057 // This floating point argument should be reassigned.
1058 CCValAssign NewVA;
1060 // Determine the offset into the argument array.
1061 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1062 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
1063 unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1064 assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1066 if (Offset < 6*8) {
1067 // This argument should go in %i0-%i5.
1068 unsigned IReg = SP::I0 + Offset/8;
1069 if (ValTy == MVT::f64)
1070 // Full register, just bitconvert into i64.
1071 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
1072 IReg, MVT::i64, CCValAssign::BCvt);
1073 else {
1074 assert(ValTy == MVT::f128 && "Unexpected type!");
1075 // Full register, just bitconvert into i128 -- We will lower this into
1076 // two i64s in LowerCall_64.
1077 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
1078 IReg, MVT::i128, CCValAssign::BCvt);
1080 } else {
1081 // This needs to go to memory, we're out of integer registers.
1082 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
1083 Offset, VA.getLocVT(), VA.getLocInfo());
1085 ArgLocs[i] = NewVA;
1089 // Lower a call for the 64-bit ABI.
1090 SDValue
1091 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1092 SmallVectorImpl<SDValue> &InVals) const {
1093 SelectionDAG &DAG = CLI.DAG;
1094 SDLoc DL = CLI.DL;
1095 SDValue Chain = CLI.Chain;
1096 auto PtrVT = getPointerTy(DAG.getDataLayout());
1098 // Sparc target does not yet support tail call optimization.
1099 CLI.IsTailCall = false;
1101 // Analyze operands of the call, assigning locations to each operand.
1102 SmallVector<CCValAssign, 16> ArgLocs;
1103 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1104 *DAG.getContext());
1105 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1107 // Get the size of the outgoing arguments stack space requirement.
1108 // The stack offset computed by CC_Sparc64 includes all arguments.
1109 // Called functions expect 6 argument words to exist in the stack frame, used
1110 // or not.
1111 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
1113 // Keep stack frames 16-byte aligned.
1114 ArgsSize = alignTo(ArgsSize, 16);
1116 // Varargs calls require special treatment.
1117 if (CLI.IsVarArg)
1118 fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1120 // Adjust the stack pointer to make room for the arguments.
1121 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1122 // with more than 6 arguments.
1123 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1125 // Collect the set of registers to pass to the function and their values.
1126 // This will be emitted as a sequence of CopyToReg nodes glued to the call
1127 // instruction.
1128 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
1130 // Collect chains from all the memory opeations that copy arguments to the
1131 // stack. They must follow the stack pointer adjustment above and precede the
1132 // call instruction itself.
1133 SmallVector<SDValue, 8> MemOpChains;
1135 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1136 const CCValAssign &VA = ArgLocs[i];
1137 SDValue Arg = CLI.OutVals[i];
1139 // Promote the value if needed.
1140 switch (VA.getLocInfo()) {
1141 default:
1142 llvm_unreachable("Unknown location info!");
1143 case CCValAssign::Full:
1144 break;
1145 case CCValAssign::SExt:
1146 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1147 break;
1148 case CCValAssign::ZExt:
1149 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1150 break;
1151 case CCValAssign::AExt:
1152 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1153 break;
1154 case CCValAssign::BCvt:
1155 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1156 // SPARC does not support i128 natively. Lower it into two i64, see below.
1157 if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1158 || VA.getLocVT() != MVT::i128)
1159 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1160 break;
1163 if (VA.isRegLoc()) {
1164 if (VA.needsCustom() && VA.getValVT() == MVT::f128
1165 && VA.getLocVT() == MVT::i128) {
1166 // Store and reload into the integer register reg and reg+1.
1167 unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1168 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1169 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1170 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1171 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1172 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1173 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1175 // Store to %sp+BIAS+128+Offset
1176 SDValue Store =
1177 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1178 // Load into Reg and Reg+1
1179 SDValue Hi64 =
1180 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1181 SDValue Lo64 =
1182 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1183 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
1184 Hi64));
1185 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
1186 Lo64));
1187 continue;
1190 // The custom bit on an i32 return value indicates that it should be
1191 // passed in the high bits of the register.
1192 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1193 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1194 DAG.getConstant(32, DL, MVT::i32));
1196 // The next value may go in the low bits of the same register.
1197 // Handle both at once.
1198 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1199 ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1200 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1201 CLI.OutVals[i+1]);
1202 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1203 // Skip the next value, it's already done.
1204 ++i;
1207 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
1208 continue;
1211 assert(VA.isMemLoc());
1213 // Create a store off the stack pointer for this argument.
1214 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1215 // The argument area starts at %fp+BIAS+128 in the callee frame,
1216 // %sp+BIAS+128 in ours.
1217 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1218 Subtarget->getStackPointerBias() +
1219 128, DL);
1220 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1221 MemOpChains.push_back(
1222 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1225 // Emit all stores, make sure they occur before the call.
1226 if (!MemOpChains.empty())
1227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1229 // Build a sequence of CopyToReg nodes glued together with token chain and
1230 // glue operands which copy the outgoing args into registers. The InGlue is
1231 // necessary since all emitted instructions must be stuck together in order
1232 // to pass the live physical registers.
1233 SDValue InGlue;
1234 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1235 Chain = DAG.getCopyToReg(Chain, DL,
1236 RegsToPass[i].first, RegsToPass[i].second, InGlue);
1237 InGlue = Chain.getValue(1);
1240 // If the callee is a GlobalAddress node (quite common, every direct call is)
1241 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1242 // Likewise ExternalSymbol -> TargetExternalSymbol.
1243 SDValue Callee = CLI.Callee;
1244 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1245 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1246 : SparcMCExpr::VK_Sparc_WDISP30;
1247 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1248 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1249 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1250 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1252 // Build the operands for the call instruction itself.
1253 SmallVector<SDValue, 8> Ops;
1254 Ops.push_back(Chain);
1255 Ops.push_back(Callee);
1256 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1257 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1258 RegsToPass[i].second.getValueType()));
1260 // Add a register mask operand representing the call-preserved registers.
1261 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1262 const uint32_t *Mask =
1263 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1264 : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1265 CLI.CallConv));
1266 assert(Mask && "Missing call preserved mask for calling convention");
1267 Ops.push_back(DAG.getRegisterMask(Mask));
1269 // Make sure the CopyToReg nodes are glued to the call instruction which
1270 // consumes the registers.
1271 if (InGlue.getNode())
1272 Ops.push_back(InGlue);
1274 // Now the call itself.
1275 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1276 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1277 InGlue = Chain.getValue(1);
1279 // Revert the stack pointer immediately after the call.
1280 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
1281 DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
1282 InGlue = Chain.getValue(1);
1284 // Now extract the return values. This is more or less the same as
1285 // LowerFormalArguments_64.
1287 // Assign locations to each value returned by this call.
1288 SmallVector<CCValAssign, 16> RVLocs;
1289 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1290 *DAG.getContext());
1292 // Set inreg flag manually for codegen generated library calls that
1293 // return float.
1294 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
1295 CLI.Ins[0].Flags.setInReg();
1297 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1299 // Copy all of the result registers out of their specified physreg.
1300 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1301 CCValAssign &VA = RVLocs[i];
1302 unsigned Reg = toCallerWindow(VA.getLocReg());
1304 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1305 // reside in the same register in the high and low bits. Reuse the
1306 // CopyFromReg previous node to avoid duplicate copies.
1307 SDValue RV;
1308 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1309 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1310 RV = Chain.getValue(0);
1312 // But usually we'll create a new CopyFromReg for a different register.
1313 if (!RV.getNode()) {
1314 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1315 Chain = RV.getValue(1);
1316 InGlue = Chain.getValue(2);
1319 // Get the high bits for i32 struct elements.
1320 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1321 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1322 DAG.getConstant(32, DL, MVT::i32));
1324 // The callee promoted the return value, so insert an Assert?ext SDNode so
1325 // we won't promote the value again in this function.
1326 switch (VA.getLocInfo()) {
1327 case CCValAssign::SExt:
1328 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1329 DAG.getValueType(VA.getValVT()));
1330 break;
1331 case CCValAssign::ZExt:
1332 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1333 DAG.getValueType(VA.getValVT()));
1334 break;
1335 default:
1336 break;
1339 // Truncate the register down to the return value type.
1340 if (VA.isExtInLoc())
1341 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1343 InVals.push_back(RV);
1346 return Chain;
1349 //===----------------------------------------------------------------------===//
1350 // TargetLowering Implementation
1351 //===----------------------------------------------------------------------===//
1353 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1354 if (AI->getOperation() == AtomicRMWInst::Xchg &&
1355 AI->getType()->getPrimitiveSizeInBits() == 32)
1356 return AtomicExpansionKind::None; // Uses xchg instruction
1358 return AtomicExpansionKind::CmpXChg;
1361 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1362 /// condition.
1363 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1364 switch (CC) {
1365 default: llvm_unreachable("Unknown integer condition code!");
1366 case ISD::SETEQ: return SPCC::ICC_E;
1367 case ISD::SETNE: return SPCC::ICC_NE;
1368 case ISD::SETLT: return SPCC::ICC_L;
1369 case ISD::SETGT: return SPCC::ICC_G;
1370 case ISD::SETLE: return SPCC::ICC_LE;
1371 case ISD::SETGE: return SPCC::ICC_GE;
1372 case ISD::SETULT: return SPCC::ICC_CS;
1373 case ISD::SETULE: return SPCC::ICC_LEU;
1374 case ISD::SETUGT: return SPCC::ICC_GU;
1375 case ISD::SETUGE: return SPCC::ICC_CC;
1379 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1380 /// FCC condition.
1381 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1382 switch (CC) {
1383 default: llvm_unreachable("Unknown fp condition code!");
1384 case ISD::SETEQ:
1385 case ISD::SETOEQ: return SPCC::FCC_E;
1386 case ISD::SETNE:
1387 case ISD::SETUNE: return SPCC::FCC_NE;
1388 case ISD::SETLT:
1389 case ISD::SETOLT: return SPCC::FCC_L;
1390 case ISD::SETGT:
1391 case ISD::SETOGT: return SPCC::FCC_G;
1392 case ISD::SETLE:
1393 case ISD::SETOLE: return SPCC::FCC_LE;
1394 case ISD::SETGE:
1395 case ISD::SETOGE: return SPCC::FCC_GE;
1396 case ISD::SETULT: return SPCC::FCC_UL;
1397 case ISD::SETULE: return SPCC::FCC_ULE;
1398 case ISD::SETUGT: return SPCC::FCC_UG;
1399 case ISD::SETUGE: return SPCC::FCC_UGE;
1400 case ISD::SETUO: return SPCC::FCC_U;
1401 case ISD::SETO: return SPCC::FCC_O;
1402 case ISD::SETONE: return SPCC::FCC_LG;
1403 case ISD::SETUEQ: return SPCC::FCC_UE;
1407 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1408 const SparcSubtarget &STI)
1409 : TargetLowering(TM), Subtarget(&STI) {
1410 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
1412 // Instructions which use registers as conditionals examine all the
1413 // bits (as does the pseudo SELECT_CC expansion). I don't think it
1414 // matters much whether it's ZeroOrOneBooleanContent, or
1415 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1416 // former.
1417 setBooleanContents(ZeroOrOneBooleanContent);
1418 setBooleanVectorContents(ZeroOrOneBooleanContent);
1420 // Set up the register classes.
1421 addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1422 if (!Subtarget->useSoftFloat()) {
1423 addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1424 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1425 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1427 if (Subtarget->is64Bit()) {
1428 addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1429 } else {
1430 // On 32bit sparc, we define a double-register 32bit register
1431 // class, as well. This is modeled in LLVM as a 2-vector of i32.
1432 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1434 // ...but almost all operations must be expanded, so set that as
1435 // the default.
1436 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1437 setOperationAction(Op, MVT::v2i32, Expand);
1439 // Truncating/extending stores/loads are also not supported.
1440 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1441 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1442 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1443 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1445 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1446 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1447 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1449 setTruncStoreAction(VT, MVT::v2i32, Expand);
1450 setTruncStoreAction(MVT::v2i32, VT, Expand);
1452 // However, load and store *are* legal.
1453 setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1454 setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1455 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1456 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1458 // And we need to promote i64 loads/stores into vector load/store
1459 setOperationAction(ISD::LOAD, MVT::i64, Custom);
1460 setOperationAction(ISD::STORE, MVT::i64, Custom);
1462 // Sadly, this doesn't work:
1463 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1464 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1467 // Turn FP extload into load/fpextend
1468 for (MVT VT : MVT::fp_valuetypes()) {
1469 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1470 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1471 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1474 // Sparc doesn't have i1 sign extending load
1475 for (MVT VT : MVT::integer_valuetypes())
1476 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1478 // Turn FP truncstore into trunc + store.
1479 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1480 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1481 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1482 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
1483 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1484 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1486 // Custom legalize GlobalAddress nodes into LO/HI parts.
1487 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1488 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1489 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1490 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1492 // Sparc doesn't have sext_inreg, replace them with shl/sra
1493 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1494 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1495 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1497 // Sparc has no REM or DIVREM operations.
1498 setOperationAction(ISD::UREM, MVT::i32, Expand);
1499 setOperationAction(ISD::SREM, MVT::i32, Expand);
1500 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1501 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1503 // ... nor does SparcV9.
1504 if (Subtarget->is64Bit()) {
1505 setOperationAction(ISD::UREM, MVT::i64, Expand);
1506 setOperationAction(ISD::SREM, MVT::i64, Expand);
1507 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1508 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1511 // Custom expand fp<->sint
1512 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1513 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1514 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1515 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1517 // Custom Expand fp<->uint
1518 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1519 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1520 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1521 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1523 // Lower f16 conversion operations into library calls
1524 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1525 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1526 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1527 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1528 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
1529 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
1531 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1532 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1534 // Sparc has no select or setcc: expand to SELECT_CC.
1535 setOperationAction(ISD::SELECT, MVT::i32, Expand);
1536 setOperationAction(ISD::SELECT, MVT::f32, Expand);
1537 setOperationAction(ISD::SELECT, MVT::f64, Expand);
1538 setOperationAction(ISD::SELECT, MVT::f128, Expand);
1540 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1541 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1542 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1543 setOperationAction(ISD::SETCC, MVT::f128, Expand);
1545 // Sparc doesn't have BRCOND either, it has BR_CC.
1546 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1547 setOperationAction(ISD::BRIND, MVT::Other, Expand);
1548 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1549 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1550 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1551 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1552 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1554 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1555 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1556 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1557 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1559 setOperationAction(ISD::ADDC, MVT::i32, Custom);
1560 setOperationAction(ISD::ADDE, MVT::i32, Custom);
1561 setOperationAction(ISD::SUBC, MVT::i32, Custom);
1562 setOperationAction(ISD::SUBE, MVT::i32, Custom);
1564 if (Subtarget->is64Bit()) {
1565 setOperationAction(ISD::ADDC, MVT::i64, Custom);
1566 setOperationAction(ISD::ADDE, MVT::i64, Custom);
1567 setOperationAction(ISD::SUBC, MVT::i64, Custom);
1568 setOperationAction(ISD::SUBE, MVT::i64, Custom);
1569 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1570 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1571 setOperationAction(ISD::SELECT, MVT::i64, Expand);
1572 setOperationAction(ISD::SETCC, MVT::i64, Expand);
1573 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1574 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1576 setOperationAction(ISD::CTPOP, MVT::i64,
1577 Subtarget->usePopc() ? Legal : Expand);
1578 setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1579 setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1580 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1581 setOperationAction(ISD::ROTL , MVT::i64, Expand);
1582 setOperationAction(ISD::ROTR , MVT::i64, Expand);
1583 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1586 // ATOMICs.
1587 // Atomics are supported on SparcV9. 32-bit atomics are also
1588 // supported by some Leon SparcV8 variants. Otherwise, atomics
1589 // are unsupported.
1590 if (Subtarget->isV9())
1591 setMaxAtomicSizeInBitsSupported(64);
1592 else if (Subtarget->hasLeonCasa())
1593 setMaxAtomicSizeInBitsSupported(32);
1594 else
1595 setMaxAtomicSizeInBitsSupported(0);
1597 setMinCmpXchgSizeInBits(32);
1599 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1601 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1603 // Custom Lower Atomic LOAD/STORE
1604 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1605 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1607 if (Subtarget->is64Bit()) {
1608 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1609 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1610 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1611 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1614 if (!Subtarget->is64Bit()) {
1615 // These libcalls are not available in 32-bit.
1616 setLibcallName(RTLIB::MULO_I64, nullptr);
1617 setLibcallName(RTLIB::SHL_I128, nullptr);
1618 setLibcallName(RTLIB::SRL_I128, nullptr);
1619 setLibcallName(RTLIB::SRA_I128, nullptr);
1622 setLibcallName(RTLIB::MULO_I128, nullptr);
1624 if (!Subtarget->isV9()) {
1625 // SparcV8 does not have FNEGD and FABSD.
1626 setOperationAction(ISD::FNEG, MVT::f64, Custom);
1627 setOperationAction(ISD::FABS, MVT::f64, Custom);
1630 setOperationAction(ISD::FSIN , MVT::f128, Expand);
1631 setOperationAction(ISD::FCOS , MVT::f128, Expand);
1632 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1633 setOperationAction(ISD::FREM , MVT::f128, Expand);
1634 setOperationAction(ISD::FMA , MVT::f128, Expand);
1635 setOperationAction(ISD::FSIN , MVT::f64, Expand);
1636 setOperationAction(ISD::FCOS , MVT::f64, Expand);
1637 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1638 setOperationAction(ISD::FREM , MVT::f64, Expand);
1639 setOperationAction(ISD::FMA , MVT::f64, Expand);
1640 setOperationAction(ISD::FSIN , MVT::f32, Expand);
1641 setOperationAction(ISD::FCOS , MVT::f32, Expand);
1642 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1643 setOperationAction(ISD::FREM , MVT::f32, Expand);
1644 setOperationAction(ISD::FMA , MVT::f32, Expand);
1645 setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1646 setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1647 setOperationAction(ISD::ROTL , MVT::i32, Expand);
1648 setOperationAction(ISD::ROTR , MVT::i32, Expand);
1649 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1650 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1651 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1652 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1653 setOperationAction(ISD::FPOW , MVT::f128, Expand);
1654 setOperationAction(ISD::FPOW , MVT::f64, Expand);
1655 setOperationAction(ISD::FPOW , MVT::f32, Expand);
1657 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1658 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1659 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1661 // Expands to [SU]MUL_LOHI.
1662 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1663 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1664 setOperationAction(ISD::MUL, MVT::i32, Expand);
1666 if (Subtarget->useSoftMulDiv()) {
1667 // .umul works for both signed and unsigned
1668 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1669 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1670 setLibcallName(RTLIB::MUL_I32, ".umul");
1672 setOperationAction(ISD::SDIV, MVT::i32, Expand);
1673 setLibcallName(RTLIB::SDIV_I32, ".div");
1675 setOperationAction(ISD::UDIV, MVT::i32, Expand);
1676 setLibcallName(RTLIB::UDIV_I32, ".udiv");
1678 setLibcallName(RTLIB::SREM_I32, ".rem");
1679 setLibcallName(RTLIB::UREM_I32, ".urem");
1682 if (Subtarget->is64Bit()) {
1683 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1684 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1685 setOperationAction(ISD::MULHU, MVT::i64, Expand);
1686 setOperationAction(ISD::MULHS, MVT::i64, Expand);
1688 setOperationAction(ISD::UMULO, MVT::i64, Custom);
1689 setOperationAction(ISD::SMULO, MVT::i64, Custom);
1691 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1692 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1693 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1696 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1697 setOperationAction(ISD::VASTART , MVT::Other, Custom);
1698 // VAARG needs to be lowered to not do unaligned accesses for doubles.
1699 setOperationAction(ISD::VAARG , MVT::Other, Custom);
1701 setOperationAction(ISD::TRAP , MVT::Other, Legal);
1702 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal);
1704 // Use the default implementation.
1705 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
1706 setOperationAction(ISD::VAEND , MVT::Other, Expand);
1707 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
1708 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
1709 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
1711 setStackPointerRegisterToSaveRestore(SP::O6);
1713 setOperationAction(ISD::CTPOP, MVT::i32,
1714 Subtarget->usePopc() ? Legal : Expand);
1716 if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1717 setOperationAction(ISD::LOAD, MVT::f128, Legal);
1718 setOperationAction(ISD::STORE, MVT::f128, Legal);
1719 } else {
1720 setOperationAction(ISD::LOAD, MVT::f128, Custom);
1721 setOperationAction(ISD::STORE, MVT::f128, Custom);
1724 if (Subtarget->hasHardQuad()) {
1725 setOperationAction(ISD::FADD, MVT::f128, Legal);
1726 setOperationAction(ISD::FSUB, MVT::f128, Legal);
1727 setOperationAction(ISD::FMUL, MVT::f128, Legal);
1728 setOperationAction(ISD::FDIV, MVT::f128, Legal);
1729 setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1730 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1731 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1732 if (Subtarget->isV9()) {
1733 setOperationAction(ISD::FNEG, MVT::f128, Legal);
1734 setOperationAction(ISD::FABS, MVT::f128, Legal);
1735 } else {
1736 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1737 setOperationAction(ISD::FABS, MVT::f128, Custom);
1740 if (!Subtarget->is64Bit()) {
1741 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1742 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1743 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1744 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1747 } else {
1748 // Custom legalize f128 operations.
1750 setOperationAction(ISD::FADD, MVT::f128, Custom);
1751 setOperationAction(ISD::FSUB, MVT::f128, Custom);
1752 setOperationAction(ISD::FMUL, MVT::f128, Custom);
1753 setOperationAction(ISD::FDIV, MVT::f128, Custom);
1754 setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1755 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1756 setOperationAction(ISD::FABS, MVT::f128, Custom);
1758 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1759 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
1760 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1762 // Setup Runtime library names.
1763 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1764 setLibcallName(RTLIB::ADD_F128, "_Qp_add");
1765 setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
1766 setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
1767 setLibcallName(RTLIB::DIV_F128, "_Qp_div");
1768 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1769 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1770 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1771 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1772 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1773 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1774 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1775 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1776 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1777 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1778 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1779 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1780 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1781 } else if (!Subtarget->useSoftFloat()) {
1782 setLibcallName(RTLIB::ADD_F128, "_Q_add");
1783 setLibcallName(RTLIB::SUB_F128, "_Q_sub");
1784 setLibcallName(RTLIB::MUL_F128, "_Q_mul");
1785 setLibcallName(RTLIB::DIV_F128, "_Q_div");
1786 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1787 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1788 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1789 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1790 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1791 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1792 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1793 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1794 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1795 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1796 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1797 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1798 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1802 if (Subtarget->fixAllFDIVSQRT()) {
1803 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1804 // the former instructions generate errata on LEON processors.
1805 setOperationAction(ISD::FDIV, MVT::f32, Promote);
1806 setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1809 if (Subtarget->hasNoFMULS()) {
1810 setOperationAction(ISD::FMUL, MVT::f32, Promote);
1813 // Custom combine bitcast between f64 and v2i32
1814 if (!Subtarget->is64Bit())
1815 setTargetDAGCombine(ISD::BITCAST);
1817 if (Subtarget->hasLeonCycleCounter())
1818 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1820 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1822 setMinFunctionAlignment(Align(4));
1824 computeRegisterProperties(Subtarget->getRegisterInfo());
1827 bool SparcTargetLowering::useSoftFloat() const {
1828 return Subtarget->useSoftFloat();
1831 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
1832 switch ((SPISD::NodeType)Opcode) {
1833 case SPISD::FIRST_NUMBER: break;
1834 case SPISD::CMPICC: return "SPISD::CMPICC";
1835 case SPISD::CMPFCC: return "SPISD::CMPFCC";
1836 case SPISD::BRICC: return "SPISD::BRICC";
1837 case SPISD::BRXCC: return "SPISD::BRXCC";
1838 case SPISD::BRFCC: return "SPISD::BRFCC";
1839 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
1840 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
1841 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
1842 case SPISD::Hi: return "SPISD::Hi";
1843 case SPISD::Lo: return "SPISD::Lo";
1844 case SPISD::FTOI: return "SPISD::FTOI";
1845 case SPISD::ITOF: return "SPISD::ITOF";
1846 case SPISD::FTOX: return "SPISD::FTOX";
1847 case SPISD::XTOF: return "SPISD::XTOF";
1848 case SPISD::CALL: return "SPISD::CALL";
1849 case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
1850 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
1851 case SPISD::FLUSHW: return "SPISD::FLUSHW";
1852 case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
1853 case SPISD::TLS_LD: return "SPISD::TLS_LD";
1854 case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
1856 return nullptr;
1859 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
1860 EVT VT) const {
1861 if (!VT.isVector())
1862 return MVT::i32;
1863 return VT.changeVectorElementTypeToInteger();
1866 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
1867 /// be zero. Op is expected to be a target specific node. Used by DAG
1868 /// combiner.
1869 void SparcTargetLowering::computeKnownBitsForTargetNode
1870 (const SDValue Op,
1871 KnownBits &Known,
1872 const APInt &DemandedElts,
1873 const SelectionDAG &DAG,
1874 unsigned Depth) const {
1875 KnownBits Known2;
1876 Known.resetAll();
1878 switch (Op.getOpcode()) {
1879 default: break;
1880 case SPISD::SELECT_ICC:
1881 case SPISD::SELECT_XCC:
1882 case SPISD::SELECT_FCC:
1883 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
1884 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
1886 // Only known if known in both the LHS and RHS.
1887 Known = KnownBits::commonBits(Known, Known2);
1888 break;
1892 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
1893 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
1894 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
1895 ISD::CondCode CC, unsigned &SPCC) {
1896 if (isNullConstant(RHS) &&
1897 CC == ISD::SETNE &&
1898 (((LHS.getOpcode() == SPISD::SELECT_ICC ||
1899 LHS.getOpcode() == SPISD::SELECT_XCC) &&
1900 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
1901 (LHS.getOpcode() == SPISD::SELECT_FCC &&
1902 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
1903 isOneConstant(LHS.getOperand(0)) &&
1904 isNullConstant(LHS.getOperand(1))) {
1905 SDValue CMPCC = LHS.getOperand(3);
1906 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
1907 LHS = CMPCC.getOperand(0);
1908 RHS = CMPCC.getOperand(1);
1912 // Convert to a target node and set target flags.
1913 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
1914 SelectionDAG &DAG) const {
1915 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1916 return DAG.getTargetGlobalAddress(GA->getGlobal(),
1917 SDLoc(GA),
1918 GA->getValueType(0),
1919 GA->getOffset(), TF);
1921 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
1922 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
1923 CP->getAlign(), CP->getOffset(), TF);
1925 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
1926 return DAG.getTargetBlockAddress(BA->getBlockAddress(),
1927 Op.getValueType(),
1929 TF);
1931 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
1932 return DAG.getTargetExternalSymbol(ES->getSymbol(),
1933 ES->getValueType(0), TF);
1935 llvm_unreachable("Unhandled address SDNode");
1938 // Split Op into high and low parts according to HiTF and LoTF.
1939 // Return an ADD node combining the parts.
1940 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
1941 unsigned HiTF, unsigned LoTF,
1942 SelectionDAG &DAG) const {
1943 SDLoc DL(Op);
1944 EVT VT = Op.getValueType();
1945 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
1946 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
1947 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
1950 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
1951 // or ExternalSymbol SDNode.
1952 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
1953 SDLoc DL(Op);
1954 EVT VT = getPointerTy(DAG.getDataLayout());
1956 // Handle PIC mode first. SPARC needs a got load for every variable!
1957 if (isPositionIndependent()) {
1958 const Module *M = DAG.getMachineFunction().getFunction().getParent();
1959 PICLevel::Level picLevel = M->getPICLevel();
1960 SDValue Idx;
1962 if (picLevel == PICLevel::SmallPIC) {
1963 // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
1964 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
1965 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
1966 } else {
1967 // This is the pic32 code model, the GOT is known to be smaller than 4GB.
1968 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
1969 SparcMCExpr::VK_Sparc_GOT10, DAG);
1972 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
1973 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
1974 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
1975 // function has calls.
1976 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1977 MFI.setHasCalls(true);
1978 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
1979 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1982 // This is one of the absolute code models.
1983 switch(getTargetMachine().getCodeModel()) {
1984 default:
1985 llvm_unreachable("Unsupported absolute code model");
1986 case CodeModel::Small:
1987 // abs32.
1988 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
1989 SparcMCExpr::VK_Sparc_LO, DAG);
1990 case CodeModel::Medium: {
1991 // abs44.
1992 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
1993 SparcMCExpr::VK_Sparc_M44, DAG);
1994 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
1995 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
1996 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
1997 return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
1999 case CodeModel::Large: {
2000 // abs64.
2001 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
2002 SparcMCExpr::VK_Sparc_HM, DAG);
2003 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
2004 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2005 SparcMCExpr::VK_Sparc_LO, DAG);
2006 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2011 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2012 SelectionDAG &DAG) const {
2013 return makeAddress(Op, DAG);
2016 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2017 SelectionDAG &DAG) const {
2018 return makeAddress(Op, DAG);
2021 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2022 SelectionDAG &DAG) const {
2023 return makeAddress(Op, DAG);
2026 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2027 SelectionDAG &DAG) const {
2029 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2030 if (DAG.getTarget().useEmulatedTLS())
2031 return LowerToTLSEmulatedModel(GA, DAG);
2033 SDLoc DL(GA);
2034 const GlobalValue *GV = GA->getGlobal();
2035 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2037 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2039 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2040 unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2041 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2042 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2043 unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2044 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2045 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2046 unsigned addTF = ((model == TLSModel::GeneralDynamic)
2047 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2048 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2049 unsigned callTF = ((model == TLSModel::GeneralDynamic)
2050 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2051 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2053 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2054 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2055 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2056 withTargetFlags(Op, addTF, DAG));
2058 SDValue Chain = DAG.getEntryNode();
2059 SDValue InFlag;
2061 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2062 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
2063 InFlag = Chain.getValue(1);
2064 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2065 SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2067 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2068 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2069 DAG.getMachineFunction(), CallingConv::C);
2070 assert(Mask && "Missing call preserved mask for calling convention");
2071 SDValue Ops[] = {Chain,
2072 Callee,
2073 Symbol,
2074 DAG.getRegister(SP::O0, PtrVT),
2075 DAG.getRegisterMask(Mask),
2076 InFlag};
2077 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2078 InFlag = Chain.getValue(1);
2079 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true),
2080 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
2081 InFlag = Chain.getValue(1);
2082 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
2084 if (model != TLSModel::LocalDynamic)
2085 return Ret;
2087 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2088 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2089 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2090 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2091 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2092 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2093 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2096 if (model == TLSModel::InitialExec) {
2097 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2098 : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2100 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2102 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2103 // function has calls.
2104 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2105 MFI.setHasCalls(true);
2107 SDValue TGA = makeHiLoPair(Op,
2108 SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2109 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2110 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2111 SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2112 DL, PtrVT, Ptr,
2113 withTargetFlags(Op, ldTF, DAG));
2114 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2115 DAG.getRegister(SP::G7, PtrVT), Offset,
2116 withTargetFlags(Op,
2117 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2120 assert(model == TLSModel::LocalExec);
2121 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2122 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2123 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2124 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2125 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2127 return DAG.getNode(ISD::ADD, DL, PtrVT,
2128 DAG.getRegister(SP::G7, PtrVT), Offset);
2131 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2132 ArgListTy &Args, SDValue Arg,
2133 const SDLoc &DL,
2134 SelectionDAG &DAG) const {
2135 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2136 EVT ArgVT = Arg.getValueType();
2137 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2139 ArgListEntry Entry;
2140 Entry.Node = Arg;
2141 Entry.Ty = ArgTy;
2143 if (ArgTy->isFP128Ty()) {
2144 // Create a stack object and pass the pointer to the library function.
2145 int FI = MFI.CreateStackObject(16, Align(8), false);
2146 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2147 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2148 Align(8));
2150 Entry.Node = FIPtr;
2151 Entry.Ty = PointerType::getUnqual(ArgTy);
2153 Args.push_back(Entry);
2154 return Chain;
2157 SDValue
2158 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2159 const char *LibFuncName,
2160 unsigned numArgs) const {
2162 ArgListTy Args;
2164 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2165 auto PtrVT = getPointerTy(DAG.getDataLayout());
2167 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2168 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2169 Type *RetTyABI = RetTy;
2170 SDValue Chain = DAG.getEntryNode();
2171 SDValue RetPtr;
2173 if (RetTy->isFP128Ty()) {
2174 // Create a Stack Object to receive the return value of type f128.
2175 ArgListEntry Entry;
2176 int RetFI = MFI.CreateStackObject(16, Align(8), false);
2177 RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2178 Entry.Node = RetPtr;
2179 Entry.Ty = PointerType::getUnqual(RetTy);
2180 if (!Subtarget->is64Bit()) {
2181 Entry.IsSRet = true;
2182 Entry.IndirectType = RetTy;
2184 Entry.IsReturned = false;
2185 Args.push_back(Entry);
2186 RetTyABI = Type::getVoidTy(*DAG.getContext());
2189 assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2190 for (unsigned i = 0, e = numArgs; i != e; ++i) {
2191 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2193 TargetLowering::CallLoweringInfo CLI(DAG);
2194 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2195 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2197 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2199 // chain is in second result.
2200 if (RetTyABI == RetTy)
2201 return CallInfo.first;
2203 assert (RetTy->isFP128Ty() && "Unexpected return type!");
2205 Chain = CallInfo.second;
2207 // Load RetPtr to get the return value.
2208 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2209 MachinePointerInfo(), Align(8));
2212 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2213 unsigned &SPCC, const SDLoc &DL,
2214 SelectionDAG &DAG) const {
2216 const char *LibCall = nullptr;
2217 bool is64Bit = Subtarget->is64Bit();
2218 switch(SPCC) {
2219 default: llvm_unreachable("Unhandled conditional code!");
2220 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2221 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2222 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2223 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2224 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2225 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2226 case SPCC::FCC_UL :
2227 case SPCC::FCC_ULE:
2228 case SPCC::FCC_UG :
2229 case SPCC::FCC_UGE:
2230 case SPCC::FCC_U :
2231 case SPCC::FCC_O :
2232 case SPCC::FCC_LG :
2233 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2236 auto PtrVT = getPointerTy(DAG.getDataLayout());
2237 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2238 Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2239 ArgListTy Args;
2240 SDValue Chain = DAG.getEntryNode();
2241 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2242 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2244 TargetLowering::CallLoweringInfo CLI(DAG);
2245 CLI.setDebugLoc(DL).setChain(Chain)
2246 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2248 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2250 // result is in first, and chain is in second result.
2251 SDValue Result = CallInfo.first;
2253 switch(SPCC) {
2254 default: {
2255 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2256 SPCC = SPCC::ICC_NE;
2257 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2259 case SPCC::FCC_UL : {
2260 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType());
2261 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2262 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2263 SPCC = SPCC::ICC_NE;
2264 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2266 case SPCC::FCC_ULE: {
2267 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType());
2268 SPCC = SPCC::ICC_NE;
2269 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2271 case SPCC::FCC_UG : {
2272 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2273 SPCC = SPCC::ICC_G;
2274 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2276 case SPCC::FCC_UGE: {
2277 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2278 SPCC = SPCC::ICC_NE;
2279 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2282 case SPCC::FCC_U : {
2283 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2284 SPCC = SPCC::ICC_E;
2285 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2287 case SPCC::FCC_O : {
2288 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2289 SPCC = SPCC::ICC_NE;
2290 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2292 case SPCC::FCC_LG : {
2293 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
2294 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2295 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2296 SPCC = SPCC::ICC_NE;
2297 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2299 case SPCC::FCC_UE : {
2300 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
2301 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2302 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2303 SPCC = SPCC::ICC_E;
2304 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2309 static SDValue
2310 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2311 const SparcTargetLowering &TLI) {
2313 if (Op.getOperand(0).getValueType() == MVT::f64)
2314 return TLI.LowerF128Op(Op, DAG,
2315 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2317 if (Op.getOperand(0).getValueType() == MVT::f32)
2318 return TLI.LowerF128Op(Op, DAG,
2319 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2321 llvm_unreachable("fpextend with non-float operand!");
2322 return SDValue();
2325 static SDValue
2326 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2327 const SparcTargetLowering &TLI) {
2328 // FP_ROUND on f64 and f32 are legal.
2329 if (Op.getOperand(0).getValueType() != MVT::f128)
2330 return Op;
2332 if (Op.getValueType() == MVT::f64)
2333 return TLI.LowerF128Op(Op, DAG,
2334 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2335 if (Op.getValueType() == MVT::f32)
2336 return TLI.LowerF128Op(Op, DAG,
2337 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2339 llvm_unreachable("fpround to non-float!");
2340 return SDValue();
2343 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2344 const SparcTargetLowering &TLI,
2345 bool hasHardQuad) {
2346 SDLoc dl(Op);
2347 EVT VT = Op.getValueType();
2348 assert(VT == MVT::i32 || VT == MVT::i64);
2350 // Expand f128 operations to fp128 abi calls.
2351 if (Op.getOperand(0).getValueType() == MVT::f128
2352 && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2353 const char *libName = TLI.getLibcallName(VT == MVT::i32
2354 ? RTLIB::FPTOSINT_F128_I32
2355 : RTLIB::FPTOSINT_F128_I64);
2356 return TLI.LowerF128Op(Op, DAG, libName, 1);
2359 // Expand if the resulting type is illegal.
2360 if (!TLI.isTypeLegal(VT))
2361 return SDValue();
2363 // Otherwise, Convert the fp value to integer in an FP register.
2364 if (VT == MVT::i32)
2365 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2366 else
2367 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2369 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2372 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2373 const SparcTargetLowering &TLI,
2374 bool hasHardQuad) {
2375 SDLoc dl(Op);
2376 EVT OpVT = Op.getOperand(0).getValueType();
2377 assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2379 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2381 // Expand f128 operations to fp128 ABI calls.
2382 if (Op.getValueType() == MVT::f128
2383 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2384 const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2385 ? RTLIB::SINTTOFP_I32_F128
2386 : RTLIB::SINTTOFP_I64_F128);
2387 return TLI.LowerF128Op(Op, DAG, libName, 1);
2390 // Expand if the operand type is illegal.
2391 if (!TLI.isTypeLegal(OpVT))
2392 return SDValue();
2394 // Otherwise, Convert the int value to FP in an FP register.
2395 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2396 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2397 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2400 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2401 const SparcTargetLowering &TLI,
2402 bool hasHardQuad) {
2403 SDLoc dl(Op);
2404 EVT VT = Op.getValueType();
2406 // Expand if it does not involve f128 or the target has support for
2407 // quad floating point instructions and the resulting type is legal.
2408 if (Op.getOperand(0).getValueType() != MVT::f128 ||
2409 (hasHardQuad && TLI.isTypeLegal(VT)))
2410 return SDValue();
2412 assert(VT == MVT::i32 || VT == MVT::i64);
2414 return TLI.LowerF128Op(Op, DAG,
2415 TLI.getLibcallName(VT == MVT::i32
2416 ? RTLIB::FPTOUINT_F128_I32
2417 : RTLIB::FPTOUINT_F128_I64),
2421 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2422 const SparcTargetLowering &TLI,
2423 bool hasHardQuad) {
2424 SDLoc dl(Op);
2425 EVT OpVT = Op.getOperand(0).getValueType();
2426 assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2428 // Expand if it does not involve f128 or the target has support for
2429 // quad floating point instructions and the operand type is legal.
2430 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2431 return SDValue();
2433 return TLI.LowerF128Op(Op, DAG,
2434 TLI.getLibcallName(OpVT == MVT::i32
2435 ? RTLIB::UINTTOFP_I32_F128
2436 : RTLIB::UINTTOFP_I64_F128),
2440 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2441 const SparcTargetLowering &TLI,
2442 bool hasHardQuad) {
2443 SDValue Chain = Op.getOperand(0);
2444 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2445 SDValue LHS = Op.getOperand(2);
2446 SDValue RHS = Op.getOperand(3);
2447 SDValue Dest = Op.getOperand(4);
2448 SDLoc dl(Op);
2449 unsigned Opc, SPCC = ~0U;
2451 // If this is a br_cc of a "setcc", and if the setcc got lowered into
2452 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2453 LookThroughSetCC(LHS, RHS, CC, SPCC);
2455 // Get the condition flag.
2456 SDValue CompareFlag;
2457 if (LHS.getValueType().isInteger()) {
2458 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2459 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2460 // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2461 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
2462 } else {
2463 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2464 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2465 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2466 Opc = SPISD::BRICC;
2467 } else {
2468 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2469 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2470 Opc = SPISD::BRFCC;
2473 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2474 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2477 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2478 const SparcTargetLowering &TLI,
2479 bool hasHardQuad) {
2480 SDValue LHS = Op.getOperand(0);
2481 SDValue RHS = Op.getOperand(1);
2482 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2483 SDValue TrueVal = Op.getOperand(2);
2484 SDValue FalseVal = Op.getOperand(3);
2485 SDLoc dl(Op);
2486 unsigned Opc, SPCC = ~0U;
2488 // If this is a select_cc of a "setcc", and if the setcc got lowered into
2489 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2490 LookThroughSetCC(LHS, RHS, CC, SPCC);
2492 SDValue CompareFlag;
2493 if (LHS.getValueType().isInteger()) {
2494 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2495 Opc = LHS.getValueType() == MVT::i32 ?
2496 SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2497 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2498 } else {
2499 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2500 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2501 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2502 Opc = SPISD::SELECT_ICC;
2503 } else {
2504 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2505 Opc = SPISD::SELECT_FCC;
2506 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2509 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2510 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2513 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2514 const SparcTargetLowering &TLI) {
2515 MachineFunction &MF = DAG.getMachineFunction();
2516 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2517 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2519 // Need frame address to find the address of VarArgsFrameIndex.
2520 MF.getFrameInfo().setFrameAddressIsTaken(true);
2522 // vastart just stores the address of the VarArgsFrameIndex slot into the
2523 // memory location argument.
2524 SDLoc DL(Op);
2525 SDValue Offset =
2526 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2527 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2528 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2529 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2530 MachinePointerInfo(SV));
2533 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2534 SDNode *Node = Op.getNode();
2535 EVT VT = Node->getValueType(0);
2536 SDValue InChain = Node->getOperand(0);
2537 SDValue VAListPtr = Node->getOperand(1);
2538 EVT PtrVT = VAListPtr.getValueType();
2539 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2540 SDLoc DL(Node);
2541 SDValue VAList =
2542 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2543 // Increment the pointer, VAList, to the next vaarg.
2544 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2545 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2546 DL));
2547 // Store the incremented VAList to the legalized pointer.
2548 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2549 MachinePointerInfo(SV));
2550 // Load the actual argument out of the pointer VAList.
2551 // We can't count on greater alignment than the word size.
2552 return DAG.getLoad(
2553 VT, DL, InChain, VAList, MachinePointerInfo(),
2554 std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8);
2557 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2558 const SparcSubtarget *Subtarget) {
2559 SDValue Chain = Op.getOperand(0); // Legalize the chain.
2560 SDValue Size = Op.getOperand(1); // Legalize the size.
2561 MaybeAlign Alignment =
2562 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
2563 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign();
2564 EVT VT = Size->getValueType(0);
2565 SDLoc dl(Op);
2567 // TODO: implement over-aligned alloca. (Note: also implies
2568 // supporting support for overaligned function frames + dynamic
2569 // allocations, at all, which currently isn't supported)
2570 if (Alignment && *Alignment > StackAlign) {
2571 const MachineFunction &MF = DAG.getMachineFunction();
2572 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2573 "over-aligned dynamic alloca not supported.");
2576 // The resultant pointer needs to be above the register spill area
2577 // at the bottom of the stack.
2578 unsigned regSpillArea;
2579 if (Subtarget->is64Bit()) {
2580 regSpillArea = 128;
2581 } else {
2582 // On Sparc32, the size of the spill area is 92. Unfortunately,
2583 // that's only 4-byte aligned, not 8-byte aligned (the stack
2584 // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2585 // aligned dynamic allocation, we actually need to add 96 to the
2586 // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2588 // That also means adding 4 to the size of the allocation --
2589 // before applying the 8-byte rounding. Unfortunately, we the
2590 // value we get here has already had rounding applied. So, we need
2591 // to add 8, instead, wasting a bit more memory.
2593 // Further, this only actually needs to be done if the required
2594 // alignment is > 4, but, we've lost that info by this point, too,
2595 // so we always apply it.
2597 // (An alternative approach would be to always reserve 96 bytes
2598 // instead of the required 92, but then we'd waste 4 extra bytes
2599 // in every frame, not just those with dynamic stack allocations)
2601 // TODO: modify code in SelectionDAGBuilder to make this less sad.
2603 Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2604 DAG.getConstant(8, dl, VT));
2605 regSpillArea = 96;
2608 unsigned SPReg = SP::O6;
2609 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2610 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2611 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
2613 regSpillArea += Subtarget->getStackPointerBias();
2615 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2616 DAG.getConstant(regSpillArea, dl, VT));
2617 SDValue Ops[2] = { NewVal, Chain };
2618 return DAG.getMergeValues(Ops, dl);
2622 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2623 SDLoc dl(Op);
2624 SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2625 dl, MVT::Other, DAG.getEntryNode());
2626 return Chain;
2629 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2630 const SparcSubtarget *Subtarget,
2631 bool AlwaysFlush = false) {
2632 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2633 MFI.setFrameAddressIsTaken(true);
2635 EVT VT = Op.getValueType();
2636 SDLoc dl(Op);
2637 unsigned FrameReg = SP::I6;
2638 unsigned stackBias = Subtarget->getStackPointerBias();
2640 SDValue FrameAddr;
2641 SDValue Chain;
2643 // flush first to make sure the windowed registers' values are in stack
2644 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
2646 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2648 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2650 while (depth--) {
2651 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2652 DAG.getIntPtrConstant(Offset, dl));
2653 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2655 if (Subtarget->is64Bit())
2656 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2657 DAG.getIntPtrConstant(stackBias, dl));
2658 return FrameAddr;
2662 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2663 const SparcSubtarget *Subtarget) {
2665 uint64_t depth = Op.getConstantOperandVal(0);
2667 return getFRAMEADDR(depth, Op, DAG, Subtarget);
2671 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2672 const SparcTargetLowering &TLI,
2673 const SparcSubtarget *Subtarget) {
2674 MachineFunction &MF = DAG.getMachineFunction();
2675 MachineFrameInfo &MFI = MF.getFrameInfo();
2676 MFI.setReturnAddressIsTaken(true);
2678 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2679 return SDValue();
2681 EVT VT = Op.getValueType();
2682 SDLoc dl(Op);
2683 uint64_t depth = Op.getConstantOperandVal(0);
2685 SDValue RetAddr;
2686 if (depth == 0) {
2687 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2688 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2689 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2690 return RetAddr;
2693 // Need frame address to find return address of the caller.
2694 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
2696 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2697 SDValue Ptr = DAG.getNode(ISD::ADD,
2698 dl, VT,
2699 FrameAddr,
2700 DAG.getIntPtrConstant(Offset, dl));
2701 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2703 return RetAddr;
2706 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2707 unsigned opcode) {
2708 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2709 assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2711 // Lower fneg/fabs on f64 to fneg/fabs on f32.
2712 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2713 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2715 // Note: in little-endian, the floating-point value is stored in the
2716 // registers are in the opposite order, so the subreg with the sign
2717 // bit is the highest-numbered (odd), rather than the
2718 // lowest-numbered (even).
2720 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2721 SrcReg64);
2722 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2723 SrcReg64);
2725 if (DAG.getDataLayout().isLittleEndian())
2726 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2727 else
2728 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2730 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2731 dl, MVT::f64), 0);
2732 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2733 DstReg64, Hi32);
2734 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2735 DstReg64, Lo32);
2736 return DstReg64;
2739 // Lower a f128 load into two f64 loads.
2740 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2742 SDLoc dl(Op);
2743 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2744 assert(LdNode->getOffset().isUndef() && "Unexpected node type");
2746 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8);
2748 SDValue Hi64 =
2749 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2750 LdNode->getPointerInfo(), Alignment);
2751 EVT addrVT = LdNode->getBasePtr().getValueType();
2752 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2753 LdNode->getBasePtr(),
2754 DAG.getConstant(8, dl, addrVT));
2755 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2756 LdNode->getPointerInfo().getWithOffset(8),
2757 Alignment);
2759 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2760 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2762 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2763 dl, MVT::f128);
2764 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2765 MVT::f128,
2766 SDValue(InFP128, 0),
2767 Hi64,
2768 SubRegEven);
2769 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2770 MVT::f128,
2771 SDValue(InFP128, 0),
2772 Lo64,
2773 SubRegOdd);
2774 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2775 SDValue(Lo64.getNode(), 1) };
2776 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2777 SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2778 return DAG.getMergeValues(Ops, dl);
2781 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2783 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2785 EVT MemVT = LdNode->getMemoryVT();
2786 if (MemVT == MVT::f128)
2787 return LowerF128Load(Op, DAG);
2789 return Op;
2792 // Lower a f128 store into two f64 stores.
2793 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
2794 SDLoc dl(Op);
2795 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
2796 assert(StNode->getOffset().isUndef() && "Unexpected node type");
2798 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2799 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2801 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2803 MVT::f64,
2804 StNode->getValue(),
2805 SubRegEven);
2806 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2808 MVT::f64,
2809 StNode->getValue(),
2810 SubRegOdd);
2812 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8);
2814 SDValue OutChains[2];
2815 OutChains[0] =
2816 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
2817 StNode->getBasePtr(), StNode->getPointerInfo(),
2818 Alignment);
2819 EVT addrVT = StNode->getBasePtr().getValueType();
2820 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2821 StNode->getBasePtr(),
2822 DAG.getConstant(8, dl, addrVT));
2823 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
2824 StNode->getPointerInfo().getWithOffset(8),
2825 Alignment);
2826 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2829 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
2831 SDLoc dl(Op);
2832 StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
2834 EVT MemVT = St->getMemoryVT();
2835 if (MemVT == MVT::f128)
2836 return LowerF128Store(Op, DAG);
2838 if (MemVT == MVT::i64) {
2839 // Custom handling for i64 stores: turn it into a bitcast and a
2840 // v2i32 store.
2841 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
2842 SDValue Chain = DAG.getStore(
2843 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
2844 St->getOriginalAlign(), St->getMemOperand()->getFlags(),
2845 St->getAAInfo());
2846 return Chain;
2849 return SDValue();
2852 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
2853 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
2854 && "invalid opcode");
2856 SDLoc dl(Op);
2858 if (Op.getValueType() == MVT::f64)
2859 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
2860 if (Op.getValueType() != MVT::f128)
2861 return Op;
2863 // Lower fabs/fneg on f128 to fabs/fneg on f64
2864 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
2865 // (As with LowerF64Op, on little-endian, we need to negate the odd
2866 // subreg)
2868 SDValue SrcReg128 = Op.getOperand(0);
2869 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
2870 SrcReg128);
2871 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
2872 SrcReg128);
2874 if (DAG.getDataLayout().isLittleEndian()) {
2875 if (isV9)
2876 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
2877 else
2878 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
2879 } else {
2880 if (isV9)
2881 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
2882 else
2883 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
2886 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2887 dl, MVT::f128), 0);
2888 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
2889 DstReg128, Hi64);
2890 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
2891 DstReg128, Lo64);
2892 return DstReg128;
2895 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2897 if (Op.getValueType() != MVT::i64)
2898 return Op;
2900 SDLoc dl(Op);
2901 SDValue Src1 = Op.getOperand(0);
2902 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
2903 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
2904 DAG.getConstant(32, dl, MVT::i64));
2905 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
2907 SDValue Src2 = Op.getOperand(1);
2908 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
2909 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
2910 DAG.getConstant(32, dl, MVT::i64));
2911 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
2914 bool hasChain = false;
2915 unsigned hiOpc = Op.getOpcode();
2916 switch (Op.getOpcode()) {
2917 default: llvm_unreachable("Invalid opcode");
2918 case ISD::ADDC: hiOpc = ISD::ADDE; break;
2919 case ISD::ADDE: hasChain = true; break;
2920 case ISD::SUBC: hiOpc = ISD::SUBE; break;
2921 case ISD::SUBE: hasChain = true; break;
2923 SDValue Lo;
2924 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
2925 if (hasChain) {
2926 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
2927 Op.getOperand(2));
2928 } else {
2929 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
2931 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
2932 SDValue Carry = Hi.getValue(1);
2934 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
2935 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
2936 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
2937 DAG.getConstant(32, dl, MVT::i64));
2939 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
2940 SDValue Ops[2] = { Dst, Carry };
2941 return DAG.getMergeValues(Ops, dl);
2944 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
2945 // in LegalizeDAG.cpp except the order of arguments to the library function.
2946 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
2947 const SparcTargetLowering &TLI)
2949 unsigned opcode = Op.getOpcode();
2950 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
2952 bool isSigned = (opcode == ISD::SMULO);
2953 EVT VT = MVT::i64;
2954 EVT WideVT = MVT::i128;
2955 SDLoc dl(Op);
2956 SDValue LHS = Op.getOperand(0);
2958 if (LHS.getValueType() != VT)
2959 return Op;
2961 SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
2963 SDValue RHS = Op.getOperand(1);
2964 SDValue HiLHS, HiRHS;
2965 if (isSigned) {
2966 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
2967 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
2968 } else {
2969 HiLHS = DAG.getConstant(0, dl, VT);
2970 HiRHS = DAG.getConstant(0, dl, MVT::i64);
2973 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
2975 TargetLowering::MakeLibCallOptions CallOptions;
2976 CallOptions.setSExt(isSigned);
2977 SDValue MulResult = TLI.makeLibCall(DAG,
2978 RTLIB::MUL_I128, WideVT,
2979 Args, CallOptions, dl).first;
2980 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
2981 MulResult, DAG.getIntPtrConstant(0, dl));
2982 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
2983 MulResult, DAG.getIntPtrConstant(1, dl));
2984 if (isSigned) {
2985 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
2986 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
2987 } else {
2988 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
2989 ISD::SETNE);
2991 // MulResult is a node with an illegal type. Because such things are not
2992 // generally permitted during this phase of legalization, ensure that
2993 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
2994 // been folded.
2995 assert(MulResult->use_empty() && "Illegally typed node still in use!");
2997 SDValue Ops[2] = { BottomHalf, TopHalf } ;
2998 return DAG.getMergeValues(Ops, dl);
3001 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
3002 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) {
3003 // Expand with a fence.
3004 return SDValue();
3007 // Monotonic load/stores are legal.
3008 return Op;
3011 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3012 SelectionDAG &DAG) const {
3013 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3014 SDLoc dl(Op);
3015 switch (IntNo) {
3016 default: return SDValue(); // Don't custom lower most intrinsics.
3017 case Intrinsic::thread_pointer: {
3018 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3019 return DAG.getRegister(SP::G7, PtrVT);
3024 SDValue SparcTargetLowering::
3025 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3027 bool hasHardQuad = Subtarget->hasHardQuad();
3028 bool isV9 = Subtarget->isV9();
3030 switch (Op.getOpcode()) {
3031 default: llvm_unreachable("Should not custom lower this!");
3033 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
3034 Subtarget);
3035 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
3036 Subtarget);
3037 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3038 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3039 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3040 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3041 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
3042 hasHardQuad);
3043 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
3044 hasHardQuad);
3045 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
3046 hasHardQuad);
3047 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
3048 hasHardQuad);
3049 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
3050 hasHardQuad);
3051 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
3052 hasHardQuad);
3053 case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
3054 case ISD::VAARG: return LowerVAARG(Op, DAG);
3055 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3056 Subtarget);
3058 case ISD::LOAD: return LowerLOAD(Op, DAG);
3059 case ISD::STORE: return LowerSTORE(Op, DAG);
3060 case ISD::FADD: return LowerF128Op(Op, DAG,
3061 getLibcallName(RTLIB::ADD_F128), 2);
3062 case ISD::FSUB: return LowerF128Op(Op, DAG,
3063 getLibcallName(RTLIB::SUB_F128), 2);
3064 case ISD::FMUL: return LowerF128Op(Op, DAG,
3065 getLibcallName(RTLIB::MUL_F128), 2);
3066 case ISD::FDIV: return LowerF128Op(Op, DAG,
3067 getLibcallName(RTLIB::DIV_F128), 2);
3068 case ISD::FSQRT: return LowerF128Op(Op, DAG,
3069 getLibcallName(RTLIB::SQRT_F128),1);
3070 case ISD::FABS:
3071 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
3072 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
3073 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
3074 case ISD::ADDC:
3075 case ISD::ADDE:
3076 case ISD::SUBC:
3077 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3078 case ISD::UMULO:
3079 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
3080 case ISD::ATOMIC_LOAD:
3081 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
3082 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3086 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
3087 const SDLoc &DL,
3088 SelectionDAG &DAG) const {
3089 APInt V = C->getValueAPF().bitcastToAPInt();
3090 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
3091 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
3092 if (DAG.getDataLayout().isLittleEndian())
3093 std::swap(Lo, Hi);
3094 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
3097 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
3098 DAGCombinerInfo &DCI) const {
3099 SDLoc dl(N);
3100 SDValue Src = N->getOperand(0);
3102 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
3103 Src.getSimpleValueType() == MVT::f64)
3104 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
3106 return SDValue();
3109 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
3110 DAGCombinerInfo &DCI) const {
3111 switch (N->getOpcode()) {
3112 default:
3113 break;
3114 case ISD::BITCAST:
3115 return PerformBITCASTCombine(N, DCI);
3117 return SDValue();
3120 MachineBasicBlock *
3121 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3122 MachineBasicBlock *BB) const {
3123 switch (MI.getOpcode()) {
3124 default: llvm_unreachable("Unknown SELECT_CC!");
3125 case SP::SELECT_CC_Int_ICC:
3126 case SP::SELECT_CC_FP_ICC:
3127 case SP::SELECT_CC_DFP_ICC:
3128 case SP::SELECT_CC_QFP_ICC:
3129 return expandSelectCC(MI, BB, SP::BCOND);
3130 case SP::SELECT_CC_Int_FCC:
3131 case SP::SELECT_CC_FP_FCC:
3132 case SP::SELECT_CC_DFP_FCC:
3133 case SP::SELECT_CC_QFP_FCC:
3134 return expandSelectCC(MI, BB, SP::FBCOND);
3138 MachineBasicBlock *
3139 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3140 unsigned BROpcode) const {
3141 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3142 DebugLoc dl = MI.getDebugLoc();
3143 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3145 // To "insert" a SELECT_CC instruction, we actually have to insert the
3146 // triangle control-flow pattern. The incoming instruction knows the
3147 // destination vreg to set, the condition code register to branch on, the
3148 // true/false values to select between, and the condition code for the branch.
3150 // We produce the following control flow:
3151 // ThisMBB
3152 // | \
3153 // | IfFalseMBB
3154 // | /
3155 // SinkMBB
3156 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3157 MachineFunction::iterator It = ++BB->getIterator();
3159 MachineBasicBlock *ThisMBB = BB;
3160 MachineFunction *F = BB->getParent();
3161 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3162 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3163 F->insert(It, IfFalseMBB);
3164 F->insert(It, SinkMBB);
3166 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3167 SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3168 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3169 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3171 // Set the new successors for ThisMBB.
3172 ThisMBB->addSuccessor(IfFalseMBB);
3173 ThisMBB->addSuccessor(SinkMBB);
3175 BuildMI(ThisMBB, dl, TII.get(BROpcode))
3176 .addMBB(SinkMBB)
3177 .addImm(CC);
3179 // IfFalseMBB just falls through to SinkMBB.
3180 IfFalseMBB->addSuccessor(SinkMBB);
3182 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3183 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3184 MI.getOperand(0).getReg())
3185 .addReg(MI.getOperand(1).getReg())
3186 .addMBB(ThisMBB)
3187 .addReg(MI.getOperand(2).getReg())
3188 .addMBB(IfFalseMBB);
3190 MI.eraseFromParent(); // The pseudo instruction is gone now.
3191 return SinkMBB;
3194 //===----------------------------------------------------------------------===//
3195 // Sparc Inline Assembly Support
3196 //===----------------------------------------------------------------------===//
3198 /// getConstraintType - Given a constraint letter, return the type of
3199 /// constraint it is for this target.
3200 SparcTargetLowering::ConstraintType
3201 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3202 if (Constraint.size() == 1) {
3203 switch (Constraint[0]) {
3204 default: break;
3205 case 'r':
3206 case 'f':
3207 case 'e':
3208 return C_RegisterClass;
3209 case 'I': // SIMM13
3210 return C_Immediate;
3214 return TargetLowering::getConstraintType(Constraint);
3217 TargetLowering::ConstraintWeight SparcTargetLowering::
3218 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3219 const char *constraint) const {
3220 ConstraintWeight weight = CW_Invalid;
3221 Value *CallOperandVal = info.CallOperandVal;
3222 // If we don't have a value, we can't do a match,
3223 // but allow it at the lowest weight.
3224 if (!CallOperandVal)
3225 return CW_Default;
3227 // Look at the constraint type.
3228 switch (*constraint) {
3229 default:
3230 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3231 break;
3232 case 'I': // SIMM13
3233 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3234 if (isInt<13>(C->getSExtValue()))
3235 weight = CW_Constant;
3237 break;
3239 return weight;
3242 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3243 /// vector. If it is invalid, don't add anything to Ops.
3244 void SparcTargetLowering::
3245 LowerAsmOperandForConstraint(SDValue Op,
3246 std::string &Constraint,
3247 std::vector<SDValue> &Ops,
3248 SelectionDAG &DAG) const {
3249 SDValue Result;
3251 // Only support length 1 constraints for now.
3252 if (Constraint.length() > 1)
3253 return;
3255 char ConstraintLetter = Constraint[0];
3256 switch (ConstraintLetter) {
3257 default: break;
3258 case 'I':
3259 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3260 if (isInt<13>(C->getSExtValue())) {
3261 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3262 Op.getValueType());
3263 break;
3265 return;
3269 if (Result.getNode()) {
3270 Ops.push_back(Result);
3271 return;
3273 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3276 std::pair<unsigned, const TargetRegisterClass *>
3277 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3278 StringRef Constraint,
3279 MVT VT) const {
3280 if (Constraint.size() == 1) {
3281 switch (Constraint[0]) {
3282 case 'r':
3283 if (VT == MVT::v2i32)
3284 return std::make_pair(0U, &SP::IntPairRegClass);
3285 else if (Subtarget->is64Bit())
3286 return std::make_pair(0U, &SP::I64RegsRegClass);
3287 else
3288 return std::make_pair(0U, &SP::IntRegsRegClass);
3289 case 'f':
3290 if (VT == MVT::f32 || VT == MVT::i32)
3291 return std::make_pair(0U, &SP::FPRegsRegClass);
3292 else if (VT == MVT::f64 || VT == MVT::i64)
3293 return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3294 else if (VT == MVT::f128)
3295 return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3296 // This will generate an error message
3297 return std::make_pair(0U, nullptr);
3298 case 'e':
3299 if (VT == MVT::f32 || VT == MVT::i32)
3300 return std::make_pair(0U, &SP::FPRegsRegClass);
3301 else if (VT == MVT::f64 || VT == MVT::i64 )
3302 return std::make_pair(0U, &SP::DFPRegsRegClass);
3303 else if (VT == MVT::f128)
3304 return std::make_pair(0U, &SP::QFPRegsRegClass);
3305 // This will generate an error message
3306 return std::make_pair(0U, nullptr);
3308 } else if (!Constraint.empty() && Constraint.size() <= 5
3309 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
3310 // constraint = '{r<d>}'
3311 // Remove the braces from around the name.
3312 StringRef name(Constraint.data()+1, Constraint.size()-2);
3313 // Handle register aliases:
3314 // r0-r7 -> g0-g7
3315 // r8-r15 -> o0-o7
3316 // r16-r23 -> l0-l7
3317 // r24-r31 -> i0-i7
3318 uint64_t intVal = 0;
3319 if (name.substr(0, 1).equals("r")
3320 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
3321 const char regTypes[] = { 'g', 'o', 'l', 'i' };
3322 char regType = regTypes[intVal/8];
3323 char regIdx = '0' + (intVal % 8);
3324 char tmp[] = { '{', regType, regIdx, '}', 0 };
3325 std::string newConstraint = std::string(tmp);
3326 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3327 VT);
3329 if (name.substr(0, 1).equals("f") &&
3330 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) {
3331 std::string newConstraint;
3333 if (VT == MVT::f32 || VT == MVT::Other) {
3334 newConstraint = "{f" + utostr(intVal) + "}";
3335 } else if (VT == MVT::f64 && (intVal % 2 == 0)) {
3336 newConstraint = "{d" + utostr(intVal / 2) + "}";
3337 } else if (VT == MVT::f128 && (intVal % 4 == 0)) {
3338 newConstraint = "{q" + utostr(intVal / 4) + "}";
3339 } else {
3340 return std::make_pair(0U, nullptr);
3342 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3343 VT);
3347 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3350 bool
3351 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3352 // The Sparc target isn't yet aware of offsets.
3353 return false;
3356 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3357 SmallVectorImpl<SDValue>& Results,
3358 SelectionDAG &DAG) const {
3360 SDLoc dl(N);
3362 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3364 switch (N->getOpcode()) {
3365 default:
3366 llvm_unreachable("Do not know how to custom type legalize this operation!");
3368 case ISD::FP_TO_SINT:
3369 case ISD::FP_TO_UINT:
3370 // Custom lower only if it involves f128 or i64.
3371 if (N->getOperand(0).getValueType() != MVT::f128
3372 || N->getValueType(0) != MVT::i64)
3373 return;
3374 libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3375 ? RTLIB::FPTOSINT_F128_I64
3376 : RTLIB::FPTOUINT_F128_I64);
3378 Results.push_back(LowerF128Op(SDValue(N, 0),
3379 DAG,
3380 getLibcallName(libCall),
3381 1));
3382 return;
3383 case ISD::READCYCLECOUNTER: {
3384 assert(Subtarget->hasLeonCycleCounter());
3385 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
3386 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
3387 SDValue Ops[] = { Lo, Hi };
3388 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
3389 Results.push_back(Pair);
3390 Results.push_back(N->getOperand(0));
3391 return;
3393 case ISD::SINT_TO_FP:
3394 case ISD::UINT_TO_FP:
3395 // Custom lower only if it involves f128 or i64.
3396 if (N->getValueType(0) != MVT::f128
3397 || N->getOperand(0).getValueType() != MVT::i64)
3398 return;
3400 libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3401 ? RTLIB::SINTTOFP_I64_F128
3402 : RTLIB::UINTTOFP_I64_F128);
3404 Results.push_back(LowerF128Op(SDValue(N, 0),
3405 DAG,
3406 getLibcallName(libCall),
3407 1));
3408 return;
3409 case ISD::LOAD: {
3410 LoadSDNode *Ld = cast<LoadSDNode>(N);
3411 // Custom handling only for i64: turn i64 load into a v2i32 load,
3412 // and a bitcast.
3413 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3414 return;
3416 SDLoc dl(N);
3417 SDValue LoadRes = DAG.getExtLoad(
3418 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3419 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32,
3420 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(),
3421 Ld->getAAInfo());
3423 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3424 Results.push_back(Res);
3425 Results.push_back(LoadRes.getValue(1));
3426 return;
3431 // Override to enable LOAD_STACK_GUARD lowering on Linux.
3432 bool SparcTargetLowering::useLoadStackGuardNode() const {
3433 if (!Subtarget->isTargetLinux())
3434 return TargetLowering::useLoadStackGuardNode();
3435 return true;
3438 // Override to disable global variable loading on Linux.
3439 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3440 if (!Subtarget->isTargetLinux())
3441 return TargetLowering::insertSSPDeclarations(M);