[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Analysis / CloneDetection.cpp
blob65ac4ad6a5e53f8745705a2bdb105161d353fd32
1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements classes for searching and analyzing source code clones.
10 ///
11 //===----------------------------------------------------------------------===//
13 #include "clang/Analysis/CloneDetection.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/DataCollection.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
21 using namespace clang;
23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24 unsigned StartIndex, unsigned EndIndex)
25 : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26 assert(Stmt && "Stmt must not be a nullptr");
27 assert(StartIndex < EndIndex && "Given array should not be empty");
28 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32 : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
34 StmtSequence::StmtSequence()
35 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
37 bool StmtSequence::contains(const StmtSequence &Other) const {
38 // If both sequences reside in different declarations, they can never contain
39 // each other.
40 if (D != Other.D)
41 return false;
43 const SourceManager &SM = getASTContext().getSourceManager();
45 // Otherwise check if the start and end locations of the current sequence
46 // surround the other sequence.
47 bool StartIsInBounds =
48 SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49 getBeginLoc() == Other.getBeginLoc();
50 if (!StartIsInBounds)
51 return false;
53 bool EndIsInBounds =
54 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55 Other.getEndLoc() == getEndLoc();
56 return EndIsInBounds;
59 StmtSequence::iterator StmtSequence::begin() const {
60 if (!holdsSequence()) {
61 return &S;
63 auto CS = cast<CompoundStmt>(S);
64 return CS->body_begin() + StartIndex;
67 StmtSequence::iterator StmtSequence::end() const {
68 if (!holdsSequence()) {
69 return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
71 auto CS = cast<CompoundStmt>(S);
72 return CS->body_begin() + EndIndex;
75 ASTContext &StmtSequence::getASTContext() const {
76 assert(D);
77 return D->getASTContext();
80 SourceLocation StmtSequence::getBeginLoc() const {
81 return front()->getBeginLoc();
84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
86 SourceRange StmtSequence::getSourceRange() const {
87 return SourceRange(getBeginLoc(), getEndLoc());
90 void CloneDetector::analyzeCodeBody(const Decl *D) {
91 assert(D);
92 assert(D->hasBody());
94 Sequences.push_back(StmtSequence(D->getBody(), D));
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
99 static bool containsAnyInGroup(StmtSequence &Seq,
100 CloneDetector::CloneGroup &Group) {
101 for (StmtSequence &GroupSeq : Group) {
102 if (Seq.contains(GroupSeq))
103 return true;
105 return false;
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
110 static bool containsGroup(CloneDetector::CloneGroup &Group,
111 CloneDetector::CloneGroup &OtherGroup) {
112 // We have less sequences in the current group than we have in the other,
113 // so we will never fulfill the requirement for returning true. This is only
114 // possible because we know that a sequence in Group can contain at most
115 // one sequence in OtherGroup.
116 if (Group.size() < OtherGroup.size())
117 return false;
119 for (StmtSequence &Stmt : Group) {
120 if (!containsAnyInGroup(Stmt, OtherGroup))
121 return false;
123 return true;
126 void OnlyLargestCloneConstraint::constrain(
127 std::vector<CloneDetector::CloneGroup> &Result) {
128 std::vector<unsigned> IndexesToRemove;
130 // Compare every group in the result with the rest. If one groups contains
131 // another group, we only need to return the bigger group.
132 // Note: This doesn't scale well, so if possible avoid calling any heavy
133 // function from this loop to minimize the performance impact.
134 for (unsigned i = 0; i < Result.size(); ++i) {
135 for (unsigned j = 0; j < Result.size(); ++j) {
136 // Don't compare a group with itself.
137 if (i == j)
138 continue;
140 if (containsGroup(Result[j], Result[i])) {
141 IndexesToRemove.push_back(i);
142 break;
147 // Erasing a list of indexes from the vector should be done with decreasing
148 // indexes. As IndexesToRemove is constructed with increasing values, we just
149 // reverse iterate over it to get the desired order.
150 for (unsigned I : llvm::reverse(IndexesToRemove))
151 Result.erase(Result.begin() + I);
154 bool FilenamePatternConstraint::isAutoGenerated(
155 const CloneDetector::CloneGroup &Group) {
156 if (IgnoredFilesPattern.empty() || Group.empty() ||
157 !IgnoredFilesRegex->isValid())
158 return false;
160 for (const StmtSequence &S : Group) {
161 const SourceManager &SM = S.getASTContext().getSourceManager();
162 StringRef Filename = llvm::sys::path::filename(
163 SM.getFilename(S.getContainingDecl()->getLocation()));
164 if (IgnoredFilesRegex->match(Filename))
165 return true;
168 return false;
171 /// This class defines what a type II code clone is: If it collects for two
172 /// statements the same data, then those two statements are considered to be
173 /// clones of each other.
175 /// All collected data is forwarded to the given data consumer of the type T.
176 /// The data consumer class needs to provide a member method with the signature:
177 /// update(StringRef Str)
178 namespace {
179 template <class T>
180 class CloneTypeIIStmtDataCollector
181 : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
182 ASTContext &Context;
183 /// The data sink to which all data is forwarded.
184 T &DataConsumer;
186 template <class Ty> void addData(const Ty &Data) {
187 data_collection::addDataToConsumer(DataConsumer, Data);
190 public:
191 CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
192 T &DataConsumer)
193 : Context(Context), DataConsumer(DataConsumer) {
194 this->Visit(S);
197 // Define a visit method for each class to collect data and subsequently visit
198 // all parent classes. This uses a template so that custom visit methods by us
199 // take precedence.
200 #define DEF_ADD_DATA(CLASS, CODE) \
201 template <class = void> void Visit##CLASS(const CLASS *S) { \
202 CODE; \
203 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
206 #include "clang/AST/StmtDataCollectors.inc"
208 // Type II clones ignore variable names and literals, so let's skip them.
209 #define SKIP(CLASS) \
210 void Visit##CLASS(const CLASS *S) { \
211 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
213 SKIP(DeclRefExpr)
214 SKIP(MemberExpr)
215 SKIP(IntegerLiteral)
216 SKIP(FloatingLiteral)
217 SKIP(StringLiteral)
218 SKIP(CXXBoolLiteralExpr)
219 SKIP(CharacterLiteral)
220 #undef SKIP
222 } // end anonymous namespace
224 static size_t createHash(llvm::MD5 &Hash) {
225 size_t HashCode;
227 // Create the final hash code for the current Stmt.
228 llvm::MD5::MD5Result HashResult;
229 Hash.final(HashResult);
231 // Copy as much as possible of the generated hash code to the Stmt's hash
232 // code.
233 std::memcpy(&HashCode, &HashResult,
234 std::min(sizeof(HashCode), sizeof(HashResult)));
236 return HashCode;
239 /// Generates and saves a hash code for the given Stmt.
240 /// \param S The given Stmt.
241 /// \param D The Decl containing S.
242 /// \param StmtsByHash Output parameter that will contain the hash codes for
243 /// each StmtSequence in the given Stmt.
244 /// \return The hash code of the given Stmt.
246 /// If the given Stmt is a CompoundStmt, this method will also generate
247 /// hashes for all possible StmtSequences in the children of this Stmt.
248 static size_t
249 saveHash(const Stmt *S, const Decl *D,
250 std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
251 llvm::MD5 Hash;
252 ASTContext &Context = D->getASTContext();
254 CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
256 auto CS = dyn_cast<CompoundStmt>(S);
257 SmallVector<size_t, 8> ChildHashes;
259 for (const Stmt *Child : S->children()) {
260 if (Child == nullptr) {
261 ChildHashes.push_back(0);
262 continue;
264 size_t ChildHash = saveHash(Child, D, StmtsByHash);
265 Hash.update(
266 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
267 ChildHashes.push_back(ChildHash);
270 if (CS) {
271 // If we're in a CompoundStmt, we hash all possible combinations of child
272 // statements to find clones in those subsequences.
273 // We first go through every possible starting position of a subsequence.
274 for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
275 // Then we try all possible lengths this subsequence could have and
276 // reuse the same hash object to make sure we only hash every child
277 // hash exactly once.
278 llvm::MD5 Hash;
279 for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
280 // Grab the current child hash and put it into our hash. We do
281 // -1 on the index because we start counting the length at 1.
282 size_t ChildHash = ChildHashes[Pos + Length - 1];
283 Hash.update(
284 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
285 // If we have at least two elements in our subsequence, we can start
286 // saving it.
287 if (Length > 1) {
288 llvm::MD5 SubHash = Hash;
289 StmtsByHash.push_back(std::make_pair(
290 createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
296 size_t HashCode = createHash(Hash);
297 StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
298 return HashCode;
301 namespace {
302 /// Wrapper around FoldingSetNodeID that it can be used as the template
303 /// argument of the StmtDataCollector.
304 class FoldingSetNodeIDWrapper {
306 llvm::FoldingSetNodeID &FS;
308 public:
309 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
311 void update(StringRef Str) { FS.AddString(Str); }
313 } // end anonymous namespace
315 /// Writes the relevant data from all statements and child statements
316 /// in the given StmtSequence into the given FoldingSetNodeID.
317 static void CollectStmtSequenceData(const StmtSequence &Sequence,
318 FoldingSetNodeIDWrapper &OutputData) {
319 for (const Stmt *S : Sequence) {
320 CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
321 S, Sequence.getASTContext(), OutputData);
323 for (const Stmt *Child : S->children()) {
324 if (!Child)
325 continue;
327 CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
328 OutputData);
333 /// Returns true if both sequences are clones of each other.
334 static bool areSequencesClones(const StmtSequence &LHS,
335 const StmtSequence &RHS) {
336 // We collect the data from all statements in the sequence as we did before
337 // when generating a hash value for each sequence. But this time we don't
338 // hash the collected data and compare the whole data set instead. This
339 // prevents any false-positives due to hash code collisions.
340 llvm::FoldingSetNodeID DataLHS, DataRHS;
341 FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
342 FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
344 CollectStmtSequenceData(LHS, LHSWrapper);
345 CollectStmtSequenceData(RHS, RHSWrapper);
347 return DataLHS == DataRHS;
350 void RecursiveCloneTypeIIHashConstraint::constrain(
351 std::vector<CloneDetector::CloneGroup> &Sequences) {
352 // FIXME: Maybe we can do this in-place and don't need this additional vector.
353 std::vector<CloneDetector::CloneGroup> Result;
355 for (CloneDetector::CloneGroup &Group : Sequences) {
356 // We assume in the following code that the Group is non-empty, so we
357 // skip all empty groups.
358 if (Group.empty())
359 continue;
361 std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
363 // Generate hash codes for all children of S and save them in StmtsByHash.
364 for (const StmtSequence &S : Group) {
365 saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
368 // Sort hash_codes in StmtsByHash.
369 llvm::stable_sort(StmtsByHash, llvm::less_first());
371 // Check for each StmtSequence if its successor has the same hash value.
372 // We don't check the last StmtSequence as it has no successor.
373 // Note: The 'size - 1 ' in the condition is safe because we check for an
374 // empty Group vector at the beginning of this function.
375 for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
376 const auto Current = StmtsByHash[i];
378 // It's likely that we just found a sequence of StmtSequences that
379 // represent a CloneGroup, so we create a new group and start checking and
380 // adding the StmtSequences in this sequence.
381 CloneDetector::CloneGroup NewGroup;
383 size_t PrototypeHash = Current.first;
385 for (; i < StmtsByHash.size(); ++i) {
386 // A different hash value means we have reached the end of the sequence.
387 if (PrototypeHash != StmtsByHash[i].first) {
388 // The current sequence could be the start of a new CloneGroup. So we
389 // decrement i so that we visit it again in the outer loop.
390 // Note: i can never be 0 at this point because we are just comparing
391 // the hash of the Current StmtSequence with itself in the 'if' above.
392 assert(i != 0);
393 --i;
394 break;
396 // Same hash value means we should add the StmtSequence to the current
397 // group.
398 NewGroup.push_back(StmtsByHash[i].second);
401 // We created a new clone group with matching hash codes and move it to
402 // the result vector.
403 Result.push_back(NewGroup);
406 // Sequences is the output parameter, so we copy our result into it.
407 Sequences = Result;
410 void RecursiveCloneTypeIIVerifyConstraint::constrain(
411 std::vector<CloneDetector::CloneGroup> &Sequences) {
412 CloneConstraint::splitCloneGroups(
413 Sequences, [](const StmtSequence &A, const StmtSequence &B) {
414 return areSequencesClones(A, B);
418 size_t MinComplexityConstraint::calculateStmtComplexity(
419 const StmtSequence &Seq, std::size_t Limit,
420 const std::string &ParentMacroStack) {
421 if (Seq.empty())
422 return 0;
424 size_t Complexity = 1;
426 ASTContext &Context = Seq.getASTContext();
428 // Look up what macros expanded into the current statement.
429 std::string MacroStack =
430 data_collection::getMacroStack(Seq.getBeginLoc(), Context);
432 // First, check if ParentMacroStack is not empty which means we are currently
433 // dealing with a parent statement which was expanded from a macro.
434 // If this parent statement was expanded from the same macros as this
435 // statement, we reduce the initial complexity of this statement to zero.
436 // This causes that a group of statements that were generated by a single
437 // macro expansion will only increase the total complexity by one.
438 // Note: This is not the final complexity of this statement as we still
439 // add the complexity of the child statements to the complexity value.
440 if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
441 Complexity = 0;
444 // Iterate over the Stmts in the StmtSequence and add their complexity values
445 // to the current complexity value.
446 if (Seq.holdsSequence()) {
447 for (const Stmt *S : Seq) {
448 Complexity += calculateStmtComplexity(
449 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
450 if (Complexity >= Limit)
451 return Limit;
453 } else {
454 for (const Stmt *S : Seq.front()->children()) {
455 Complexity += calculateStmtComplexity(
456 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
457 if (Complexity >= Limit)
458 return Limit;
461 return Complexity;
464 void MatchingVariablePatternConstraint::constrain(
465 std::vector<CloneDetector::CloneGroup> &CloneGroups) {
466 CloneConstraint::splitCloneGroups(
467 CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
468 VariablePattern PatternA(A);
469 VariablePattern PatternB(B);
470 return PatternA.countPatternDifferences(PatternB) == 0;
474 void CloneConstraint::splitCloneGroups(
475 std::vector<CloneDetector::CloneGroup> &CloneGroups,
476 llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
477 Compare) {
478 std::vector<CloneDetector::CloneGroup> Result;
479 for (auto &HashGroup : CloneGroups) {
480 // Contains all indexes in HashGroup that were already added to a
481 // CloneGroup.
482 std::vector<char> Indexes;
483 Indexes.resize(HashGroup.size());
485 for (unsigned i = 0; i < HashGroup.size(); ++i) {
486 // Skip indexes that are already part of a CloneGroup.
487 if (Indexes[i])
488 continue;
490 // Pick the first unhandled StmtSequence and consider it as the
491 // beginning
492 // of a new CloneGroup for now.
493 // We don't add i to Indexes because we never iterate back.
494 StmtSequence Prototype = HashGroup[i];
495 CloneDetector::CloneGroup PotentialGroup = {Prototype};
496 ++Indexes[i];
498 // Check all following StmtSequences for clones.
499 for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
500 // Skip indexes that are already part of a CloneGroup.
501 if (Indexes[j])
502 continue;
504 // If a following StmtSequence belongs to our CloneGroup, we add it.
505 const StmtSequence &Candidate = HashGroup[j];
507 if (!Compare(Prototype, Candidate))
508 continue;
510 PotentialGroup.push_back(Candidate);
511 // Make sure we never visit this StmtSequence again.
512 ++Indexes[j];
515 // Otherwise, add it to the result and continue searching for more
516 // groups.
517 Result.push_back(PotentialGroup);
520 assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
522 CloneGroups = Result;
525 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
526 const Stmt *Mention) {
527 // First check if we already reference this variable
528 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
529 if (Variables[KindIndex] == VarDecl) {
530 // If yes, add a new occurrence that points to the existing entry in
531 // the Variables vector.
532 Occurences.emplace_back(KindIndex, Mention);
533 return;
536 // If this variable wasn't already referenced, add it to the list of
537 // referenced variables and add a occurrence that points to this new entry.
538 Occurences.emplace_back(Variables.size(), Mention);
539 Variables.push_back(VarDecl);
542 void VariablePattern::addVariables(const Stmt *S) {
543 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
544 // children). We skip such statements as they don't reference any
545 // variables.
546 if (!S)
547 return;
549 // Check if S is a reference to a variable. If yes, add it to the pattern.
550 if (auto D = dyn_cast<DeclRefExpr>(S)) {
551 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
552 addVariableOccurence(VD, D);
555 // Recursively check all children of the given statement.
556 for (const Stmt *Child : S->children()) {
557 addVariables(Child);
561 unsigned VariablePattern::countPatternDifferences(
562 const VariablePattern &Other,
563 VariablePattern::SuspiciousClonePair *FirstMismatch) {
564 unsigned NumberOfDifferences = 0;
566 assert(Other.Occurences.size() == Occurences.size());
567 for (unsigned i = 0; i < Occurences.size(); ++i) {
568 auto ThisOccurence = Occurences[i];
569 auto OtherOccurence = Other.Occurences[i];
570 if (ThisOccurence.KindID == OtherOccurence.KindID)
571 continue;
573 ++NumberOfDifferences;
575 // If FirstMismatch is not a nullptr, we need to store information about
576 // the first difference between the two patterns.
577 if (FirstMismatch == nullptr)
578 continue;
580 // Only proceed if we just found the first difference as we only store
581 // information about the first difference.
582 if (NumberOfDifferences != 1)
583 continue;
585 const VarDecl *FirstSuggestion = nullptr;
586 // If there is a variable available in the list of referenced variables
587 // which wouldn't break the pattern if it is used in place of the
588 // current variable, we provide this variable as the suggested fix.
589 if (OtherOccurence.KindID < Variables.size())
590 FirstSuggestion = Variables[OtherOccurence.KindID];
592 // Store information about the first clone.
593 FirstMismatch->FirstCloneInfo =
594 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
595 Variables[ThisOccurence.KindID], ThisOccurence.Mention,
596 FirstSuggestion);
598 // Same as above but with the other clone. We do this for both clones as
599 // we don't know which clone is the one containing the unintended
600 // pattern error.
601 const VarDecl *SecondSuggestion = nullptr;
602 if (ThisOccurence.KindID < Other.Variables.size())
603 SecondSuggestion = Other.Variables[ThisOccurence.KindID];
605 // Store information about the second clone.
606 FirstMismatch->SecondCloneInfo =
607 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
608 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
609 SecondSuggestion);
611 // SuspiciousClonePair guarantees that the first clone always has a
612 // suggested variable associated with it. As we know that one of the two
613 // clones in the pair always has suggestion, we swap the two clones
614 // in case the first clone has no suggested variable which means that
615 // the second clone has a suggested variable and should be first.
616 if (!FirstMismatch->FirstCloneInfo.Suggestion)
617 std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
619 // This ensures that we always have at least one suggestion in a pair.
620 assert(FirstMismatch->FirstCloneInfo.Suggestion);
623 return NumberOfDifferences;