1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements classes for searching and analyzing source code clones.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Analysis/CloneDetection.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/DataCollection.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
21 using namespace clang
;
23 StmtSequence::StmtSequence(const CompoundStmt
*Stmt
, const Decl
*D
,
24 unsigned StartIndex
, unsigned EndIndex
)
25 : S(Stmt
), D(D
), StartIndex(StartIndex
), EndIndex(EndIndex
) {
26 assert(Stmt
&& "Stmt must not be a nullptr");
27 assert(StartIndex
< EndIndex
&& "Given array should not be empty");
28 assert(EndIndex
<= Stmt
->size() && "Given array too big for this Stmt");
31 StmtSequence::StmtSequence(const Stmt
*Stmt
, const Decl
*D
)
32 : S(Stmt
), D(D
), StartIndex(0), EndIndex(0) {}
34 StmtSequence::StmtSequence()
35 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
37 bool StmtSequence::contains(const StmtSequence
&Other
) const {
38 // If both sequences reside in different declarations, they can never contain
43 const SourceManager
&SM
= getASTContext().getSourceManager();
45 // Otherwise check if the start and end locations of the current sequence
46 // surround the other sequence.
47 bool StartIsInBounds
=
48 SM
.isBeforeInTranslationUnit(getBeginLoc(), Other
.getBeginLoc()) ||
49 getBeginLoc() == Other
.getBeginLoc();
54 SM
.isBeforeInTranslationUnit(Other
.getEndLoc(), getEndLoc()) ||
55 Other
.getEndLoc() == getEndLoc();
59 StmtSequence::iterator
StmtSequence::begin() const {
60 if (!holdsSequence()) {
63 auto CS
= cast
<CompoundStmt
>(S
);
64 return CS
->body_begin() + StartIndex
;
67 StmtSequence::iterator
StmtSequence::end() const {
68 if (!holdsSequence()) {
69 return reinterpret_cast<StmtSequence::iterator
>(&S
) + 1;
71 auto CS
= cast
<CompoundStmt
>(S
);
72 return CS
->body_begin() + EndIndex
;
75 ASTContext
&StmtSequence::getASTContext() const {
77 return D
->getASTContext();
80 SourceLocation
StmtSequence::getBeginLoc() const {
81 return front()->getBeginLoc();
84 SourceLocation
StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
86 SourceRange
StmtSequence::getSourceRange() const {
87 return SourceRange(getBeginLoc(), getEndLoc());
90 void CloneDetector::analyzeCodeBody(const Decl
*D
) {
94 Sequences
.push_back(StmtSequence(D
->getBody(), D
));
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
99 static bool containsAnyInGroup(StmtSequence
&Seq
,
100 CloneDetector::CloneGroup
&Group
) {
101 for (StmtSequence
&GroupSeq
: Group
) {
102 if (Seq
.contains(GroupSeq
))
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
110 static bool containsGroup(CloneDetector::CloneGroup
&Group
,
111 CloneDetector::CloneGroup
&OtherGroup
) {
112 // We have less sequences in the current group than we have in the other,
113 // so we will never fulfill the requirement for returning true. This is only
114 // possible because we know that a sequence in Group can contain at most
115 // one sequence in OtherGroup.
116 if (Group
.size() < OtherGroup
.size())
119 for (StmtSequence
&Stmt
: Group
) {
120 if (!containsAnyInGroup(Stmt
, OtherGroup
))
126 void OnlyLargestCloneConstraint::constrain(
127 std::vector
<CloneDetector::CloneGroup
> &Result
) {
128 std::vector
<unsigned> IndexesToRemove
;
130 // Compare every group in the result with the rest. If one groups contains
131 // another group, we only need to return the bigger group.
132 // Note: This doesn't scale well, so if possible avoid calling any heavy
133 // function from this loop to minimize the performance impact.
134 for (unsigned i
= 0; i
< Result
.size(); ++i
) {
135 for (unsigned j
= 0; j
< Result
.size(); ++j
) {
136 // Don't compare a group with itself.
140 if (containsGroup(Result
[j
], Result
[i
])) {
141 IndexesToRemove
.push_back(i
);
147 // Erasing a list of indexes from the vector should be done with decreasing
148 // indexes. As IndexesToRemove is constructed with increasing values, we just
149 // reverse iterate over it to get the desired order.
150 for (unsigned I
: llvm::reverse(IndexesToRemove
))
151 Result
.erase(Result
.begin() + I
);
154 bool FilenamePatternConstraint::isAutoGenerated(
155 const CloneDetector::CloneGroup
&Group
) {
156 if (IgnoredFilesPattern
.empty() || Group
.empty() ||
157 !IgnoredFilesRegex
->isValid())
160 for (const StmtSequence
&S
: Group
) {
161 const SourceManager
&SM
= S
.getASTContext().getSourceManager();
162 StringRef Filename
= llvm::sys::path::filename(
163 SM
.getFilename(S
.getContainingDecl()->getLocation()));
164 if (IgnoredFilesRegex
->match(Filename
))
171 /// This class defines what a type II code clone is: If it collects for two
172 /// statements the same data, then those two statements are considered to be
173 /// clones of each other.
175 /// All collected data is forwarded to the given data consumer of the type T.
176 /// The data consumer class needs to provide a member method with the signature:
177 /// update(StringRef Str)
180 class CloneTypeIIStmtDataCollector
181 : public ConstStmtVisitor
<CloneTypeIIStmtDataCollector
<T
>> {
183 /// The data sink to which all data is forwarded.
186 template <class Ty
> void addData(const Ty
&Data
) {
187 data_collection::addDataToConsumer(DataConsumer
, Data
);
191 CloneTypeIIStmtDataCollector(const Stmt
*S
, ASTContext
&Context
,
193 : Context(Context
), DataConsumer(DataConsumer
) {
197 // Define a visit method for each class to collect data and subsequently visit
198 // all parent classes. This uses a template so that custom visit methods by us
200 #define DEF_ADD_DATA(CLASS, CODE) \
201 template <class = void> void Visit##CLASS(const CLASS *S) { \
203 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
206 #include "clang/AST/StmtDataCollectors.inc"
208 // Type II clones ignore variable names and literals, so let's skip them.
209 #define SKIP(CLASS) \
210 void Visit##CLASS(const CLASS *S) { \
211 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
216 SKIP(FloatingLiteral
)
218 SKIP(CXXBoolLiteralExpr
)
219 SKIP(CharacterLiteral
)
222 } // end anonymous namespace
224 static size_t createHash(llvm::MD5
&Hash
) {
227 // Create the final hash code for the current Stmt.
228 llvm::MD5::MD5Result HashResult
;
229 Hash
.final(HashResult
);
231 // Copy as much as possible of the generated hash code to the Stmt's hash
233 std::memcpy(&HashCode
, &HashResult
,
234 std::min(sizeof(HashCode
), sizeof(HashResult
)));
239 /// Generates and saves a hash code for the given Stmt.
240 /// \param S The given Stmt.
241 /// \param D The Decl containing S.
242 /// \param StmtsByHash Output parameter that will contain the hash codes for
243 /// each StmtSequence in the given Stmt.
244 /// \return The hash code of the given Stmt.
246 /// If the given Stmt is a CompoundStmt, this method will also generate
247 /// hashes for all possible StmtSequences in the children of this Stmt.
249 saveHash(const Stmt
*S
, const Decl
*D
,
250 std::vector
<std::pair
<size_t, StmtSequence
>> &StmtsByHash
) {
252 ASTContext
&Context
= D
->getASTContext();
254 CloneTypeIIStmtDataCollector
<llvm::MD5
>(S
, Context
, Hash
);
256 auto CS
= dyn_cast
<CompoundStmt
>(S
);
257 SmallVector
<size_t, 8> ChildHashes
;
259 for (const Stmt
*Child
: S
->children()) {
260 if (Child
== nullptr) {
261 ChildHashes
.push_back(0);
264 size_t ChildHash
= saveHash(Child
, D
, StmtsByHash
);
266 StringRef(reinterpret_cast<char *>(&ChildHash
), sizeof(ChildHash
)));
267 ChildHashes
.push_back(ChildHash
);
271 // If we're in a CompoundStmt, we hash all possible combinations of child
272 // statements to find clones in those subsequences.
273 // We first go through every possible starting position of a subsequence.
274 for (unsigned Pos
= 0; Pos
< CS
->size(); ++Pos
) {
275 // Then we try all possible lengths this subsequence could have and
276 // reuse the same hash object to make sure we only hash every child
277 // hash exactly once.
279 for (unsigned Length
= 1; Length
<= CS
->size() - Pos
; ++Length
) {
280 // Grab the current child hash and put it into our hash. We do
281 // -1 on the index because we start counting the length at 1.
282 size_t ChildHash
= ChildHashes
[Pos
+ Length
- 1];
284 StringRef(reinterpret_cast<char *>(&ChildHash
), sizeof(ChildHash
)));
285 // If we have at least two elements in our subsequence, we can start
288 llvm::MD5 SubHash
= Hash
;
289 StmtsByHash
.push_back(std::make_pair(
290 createHash(SubHash
), StmtSequence(CS
, D
, Pos
, Pos
+ Length
)));
296 size_t HashCode
= createHash(Hash
);
297 StmtsByHash
.push_back(std::make_pair(HashCode
, StmtSequence(S
, D
)));
302 /// Wrapper around FoldingSetNodeID that it can be used as the template
303 /// argument of the StmtDataCollector.
304 class FoldingSetNodeIDWrapper
{
306 llvm::FoldingSetNodeID
&FS
;
309 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID
&FS
) : FS(FS
) {}
311 void update(StringRef Str
) { FS
.AddString(Str
); }
313 } // end anonymous namespace
315 /// Writes the relevant data from all statements and child statements
316 /// in the given StmtSequence into the given FoldingSetNodeID.
317 static void CollectStmtSequenceData(const StmtSequence
&Sequence
,
318 FoldingSetNodeIDWrapper
&OutputData
) {
319 for (const Stmt
*S
: Sequence
) {
320 CloneTypeIIStmtDataCollector
<FoldingSetNodeIDWrapper
>(
321 S
, Sequence
.getASTContext(), OutputData
);
323 for (const Stmt
*Child
: S
->children()) {
327 CollectStmtSequenceData(StmtSequence(Child
, Sequence
.getContainingDecl()),
333 /// Returns true if both sequences are clones of each other.
334 static bool areSequencesClones(const StmtSequence
&LHS
,
335 const StmtSequence
&RHS
) {
336 // We collect the data from all statements in the sequence as we did before
337 // when generating a hash value for each sequence. But this time we don't
338 // hash the collected data and compare the whole data set instead. This
339 // prevents any false-positives due to hash code collisions.
340 llvm::FoldingSetNodeID DataLHS
, DataRHS
;
341 FoldingSetNodeIDWrapper
LHSWrapper(DataLHS
);
342 FoldingSetNodeIDWrapper
RHSWrapper(DataRHS
);
344 CollectStmtSequenceData(LHS
, LHSWrapper
);
345 CollectStmtSequenceData(RHS
, RHSWrapper
);
347 return DataLHS
== DataRHS
;
350 void RecursiveCloneTypeIIHashConstraint::constrain(
351 std::vector
<CloneDetector::CloneGroup
> &Sequences
) {
352 // FIXME: Maybe we can do this in-place and don't need this additional vector.
353 std::vector
<CloneDetector::CloneGroup
> Result
;
355 for (CloneDetector::CloneGroup
&Group
: Sequences
) {
356 // We assume in the following code that the Group is non-empty, so we
357 // skip all empty groups.
361 std::vector
<std::pair
<size_t, StmtSequence
>> StmtsByHash
;
363 // Generate hash codes for all children of S and save them in StmtsByHash.
364 for (const StmtSequence
&S
: Group
) {
365 saveHash(S
.front(), S
.getContainingDecl(), StmtsByHash
);
368 // Sort hash_codes in StmtsByHash.
369 llvm::stable_sort(StmtsByHash
, llvm::less_first());
371 // Check for each StmtSequence if its successor has the same hash value.
372 // We don't check the last StmtSequence as it has no successor.
373 // Note: The 'size - 1 ' in the condition is safe because we check for an
374 // empty Group vector at the beginning of this function.
375 for (unsigned i
= 0; i
< StmtsByHash
.size() - 1; ++i
) {
376 const auto Current
= StmtsByHash
[i
];
378 // It's likely that we just found a sequence of StmtSequences that
379 // represent a CloneGroup, so we create a new group and start checking and
380 // adding the StmtSequences in this sequence.
381 CloneDetector::CloneGroup NewGroup
;
383 size_t PrototypeHash
= Current
.first
;
385 for (; i
< StmtsByHash
.size(); ++i
) {
386 // A different hash value means we have reached the end of the sequence.
387 if (PrototypeHash
!= StmtsByHash
[i
].first
) {
388 // The current sequence could be the start of a new CloneGroup. So we
389 // decrement i so that we visit it again in the outer loop.
390 // Note: i can never be 0 at this point because we are just comparing
391 // the hash of the Current StmtSequence with itself in the 'if' above.
396 // Same hash value means we should add the StmtSequence to the current
398 NewGroup
.push_back(StmtsByHash
[i
].second
);
401 // We created a new clone group with matching hash codes and move it to
402 // the result vector.
403 Result
.push_back(NewGroup
);
406 // Sequences is the output parameter, so we copy our result into it.
410 void RecursiveCloneTypeIIVerifyConstraint::constrain(
411 std::vector
<CloneDetector::CloneGroup
> &Sequences
) {
412 CloneConstraint::splitCloneGroups(
413 Sequences
, [](const StmtSequence
&A
, const StmtSequence
&B
) {
414 return areSequencesClones(A
, B
);
418 size_t MinComplexityConstraint::calculateStmtComplexity(
419 const StmtSequence
&Seq
, std::size_t Limit
,
420 const std::string
&ParentMacroStack
) {
424 size_t Complexity
= 1;
426 ASTContext
&Context
= Seq
.getASTContext();
428 // Look up what macros expanded into the current statement.
429 std::string MacroStack
=
430 data_collection::getMacroStack(Seq
.getBeginLoc(), Context
);
432 // First, check if ParentMacroStack is not empty which means we are currently
433 // dealing with a parent statement which was expanded from a macro.
434 // If this parent statement was expanded from the same macros as this
435 // statement, we reduce the initial complexity of this statement to zero.
436 // This causes that a group of statements that were generated by a single
437 // macro expansion will only increase the total complexity by one.
438 // Note: This is not the final complexity of this statement as we still
439 // add the complexity of the child statements to the complexity value.
440 if (!ParentMacroStack
.empty() && MacroStack
== ParentMacroStack
) {
444 // Iterate over the Stmts in the StmtSequence and add their complexity values
445 // to the current complexity value.
446 if (Seq
.holdsSequence()) {
447 for (const Stmt
*S
: Seq
) {
448 Complexity
+= calculateStmtComplexity(
449 StmtSequence(S
, Seq
.getContainingDecl()), Limit
, MacroStack
);
450 if (Complexity
>= Limit
)
454 for (const Stmt
*S
: Seq
.front()->children()) {
455 Complexity
+= calculateStmtComplexity(
456 StmtSequence(S
, Seq
.getContainingDecl()), Limit
, MacroStack
);
457 if (Complexity
>= Limit
)
464 void MatchingVariablePatternConstraint::constrain(
465 std::vector
<CloneDetector::CloneGroup
> &CloneGroups
) {
466 CloneConstraint::splitCloneGroups(
467 CloneGroups
, [](const StmtSequence
&A
, const StmtSequence
&B
) {
468 VariablePattern
PatternA(A
);
469 VariablePattern
PatternB(B
);
470 return PatternA
.countPatternDifferences(PatternB
) == 0;
474 void CloneConstraint::splitCloneGroups(
475 std::vector
<CloneDetector::CloneGroup
> &CloneGroups
,
476 llvm::function_ref
<bool(const StmtSequence
&, const StmtSequence
&)>
478 std::vector
<CloneDetector::CloneGroup
> Result
;
479 for (auto &HashGroup
: CloneGroups
) {
480 // Contains all indexes in HashGroup that were already added to a
482 std::vector
<char> Indexes
;
483 Indexes
.resize(HashGroup
.size());
485 for (unsigned i
= 0; i
< HashGroup
.size(); ++i
) {
486 // Skip indexes that are already part of a CloneGroup.
490 // Pick the first unhandled StmtSequence and consider it as the
492 // of a new CloneGroup for now.
493 // We don't add i to Indexes because we never iterate back.
494 StmtSequence Prototype
= HashGroup
[i
];
495 CloneDetector::CloneGroup PotentialGroup
= {Prototype
};
498 // Check all following StmtSequences for clones.
499 for (unsigned j
= i
+ 1; j
< HashGroup
.size(); ++j
) {
500 // Skip indexes that are already part of a CloneGroup.
504 // If a following StmtSequence belongs to our CloneGroup, we add it.
505 const StmtSequence
&Candidate
= HashGroup
[j
];
507 if (!Compare(Prototype
, Candidate
))
510 PotentialGroup
.push_back(Candidate
);
511 // Make sure we never visit this StmtSequence again.
515 // Otherwise, add it to the result and continue searching for more
517 Result
.push_back(PotentialGroup
);
520 assert(llvm::all_of(Indexes
, [](char c
) { return c
== 1; }));
522 CloneGroups
= Result
;
525 void VariablePattern::addVariableOccurence(const VarDecl
*VarDecl
,
526 const Stmt
*Mention
) {
527 // First check if we already reference this variable
528 for (size_t KindIndex
= 0; KindIndex
< Variables
.size(); ++KindIndex
) {
529 if (Variables
[KindIndex
] == VarDecl
) {
530 // If yes, add a new occurrence that points to the existing entry in
531 // the Variables vector.
532 Occurences
.emplace_back(KindIndex
, Mention
);
536 // If this variable wasn't already referenced, add it to the list of
537 // referenced variables and add a occurrence that points to this new entry.
538 Occurences
.emplace_back(Variables
.size(), Mention
);
539 Variables
.push_back(VarDecl
);
542 void VariablePattern::addVariables(const Stmt
*S
) {
543 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
544 // children). We skip such statements as they don't reference any
549 // Check if S is a reference to a variable. If yes, add it to the pattern.
550 if (auto D
= dyn_cast
<DeclRefExpr
>(S
)) {
551 if (auto VD
= dyn_cast
<VarDecl
>(D
->getDecl()->getCanonicalDecl()))
552 addVariableOccurence(VD
, D
);
555 // Recursively check all children of the given statement.
556 for (const Stmt
*Child
: S
->children()) {
561 unsigned VariablePattern::countPatternDifferences(
562 const VariablePattern
&Other
,
563 VariablePattern::SuspiciousClonePair
*FirstMismatch
) {
564 unsigned NumberOfDifferences
= 0;
566 assert(Other
.Occurences
.size() == Occurences
.size());
567 for (unsigned i
= 0; i
< Occurences
.size(); ++i
) {
568 auto ThisOccurence
= Occurences
[i
];
569 auto OtherOccurence
= Other
.Occurences
[i
];
570 if (ThisOccurence
.KindID
== OtherOccurence
.KindID
)
573 ++NumberOfDifferences
;
575 // If FirstMismatch is not a nullptr, we need to store information about
576 // the first difference between the two patterns.
577 if (FirstMismatch
== nullptr)
580 // Only proceed if we just found the first difference as we only store
581 // information about the first difference.
582 if (NumberOfDifferences
!= 1)
585 const VarDecl
*FirstSuggestion
= nullptr;
586 // If there is a variable available in the list of referenced variables
587 // which wouldn't break the pattern if it is used in place of the
588 // current variable, we provide this variable as the suggested fix.
589 if (OtherOccurence
.KindID
< Variables
.size())
590 FirstSuggestion
= Variables
[OtherOccurence
.KindID
];
592 // Store information about the first clone.
593 FirstMismatch
->FirstCloneInfo
=
594 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
595 Variables
[ThisOccurence
.KindID
], ThisOccurence
.Mention
,
598 // Same as above but with the other clone. We do this for both clones as
599 // we don't know which clone is the one containing the unintended
601 const VarDecl
*SecondSuggestion
= nullptr;
602 if (ThisOccurence
.KindID
< Other
.Variables
.size())
603 SecondSuggestion
= Other
.Variables
[ThisOccurence
.KindID
];
605 // Store information about the second clone.
606 FirstMismatch
->SecondCloneInfo
=
607 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
608 Other
.Variables
[OtherOccurence
.KindID
], OtherOccurence
.Mention
,
611 // SuspiciousClonePair guarantees that the first clone always has a
612 // suggested variable associated with it. As we know that one of the two
613 // clones in the pair always has suggestion, we swap the two clones
614 // in case the first clone has no suggested variable which means that
615 // the second clone has a suggested variable and should be first.
616 if (!FirstMismatch
->FirstCloneInfo
.Suggestion
)
617 std::swap(FirstMismatch
->FirstCloneInfo
, FirstMismatch
->SecondCloneInfo
);
619 // This ensures that we always have at least one suggestion in a pair.
620 assert(FirstMismatch
->FirstCloneInfo
.Suggestion
);
623 return NumberOfDifferences
;