1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/Frontend/Offloading/Utility.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/ReplaceConstant.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/VirtualFileSystem.h"
30 using namespace clang
;
31 using namespace CodeGen
;
34 constexpr unsigned CudaFatMagic
= 0x466243b1;
35 constexpr unsigned HIPFatMagic
= 0x48495046; // "HIPF"
37 class CGNVCUDARuntime
: public CGCUDARuntime
{
40 llvm::IntegerType
*IntTy
, *SizeTy
;
42 llvm::PointerType
*CharPtrTy
, *VoidPtrTy
, *VoidPtrPtrTy
;
44 /// Convenience reference to LLVM Context
45 llvm::LLVMContext
&Context
;
46 /// Convenience reference to the current module
47 llvm::Module
&TheModule
;
48 /// Keeps track of kernel launch stubs and handles emitted in this module
50 llvm::Function
*Kernel
; // stub function to help launch kernel
53 llvm::SmallVector
<KernelInfo
, 16> EmittedKernels
;
54 // Map a kernel mangled name to a symbol for identifying kernel in host code
55 // For CUDA, the symbol for identifying the kernel is the same as the device
56 // stub function. For HIP, they are different.
57 llvm::DenseMap
<StringRef
, llvm::GlobalValue
*> KernelHandles
;
58 // Map a kernel handle to the kernel stub.
59 llvm::DenseMap
<llvm::GlobalValue
*, llvm::Function
*> KernelStubs
;
61 llvm::GlobalVariable
*Var
;
65 llvm::SmallVector
<VarInfo
, 16> DeviceVars
;
66 /// Keeps track of variable containing handle of GPU binary. Populated by
67 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
68 /// ModuleDtorFunction()
69 llvm::GlobalVariable
*GpuBinaryHandle
= nullptr;
70 /// Whether we generate relocatable device code.
71 bool RelocatableDeviceCode
;
72 /// Mangle context for device.
73 std::unique_ptr
<MangleContext
> DeviceMC
;
74 /// Some zeros used for GEPs.
75 llvm::Constant
*Zeros
[2];
77 llvm::FunctionCallee
getSetupArgumentFn() const;
78 llvm::FunctionCallee
getLaunchFn() const;
80 llvm::FunctionType
*getRegisterGlobalsFnTy() const;
81 llvm::FunctionType
*getCallbackFnTy() const;
82 llvm::FunctionType
*getRegisterLinkedBinaryFnTy() const;
83 std::string
addPrefixToName(StringRef FuncName
) const;
84 std::string
addUnderscoredPrefixToName(StringRef FuncName
) const;
86 /// Creates a function to register all kernel stubs generated in this module.
87 llvm::Function
*makeRegisterGlobalsFn();
89 /// Helper function that generates a constant string and returns a pointer to
90 /// the start of the string. The result of this function can be used anywhere
91 /// where the C code specifies const char*.
92 llvm::Constant
*makeConstantString(const std::string
&Str
,
93 const std::string
&Name
= "") {
94 auto ConstStr
= CGM
.GetAddrOfConstantCString(Str
, Name
.c_str());
95 return llvm::ConstantExpr::getGetElementPtr(ConstStr
.getElementType(),
96 ConstStr
.getPointer(), Zeros
);
99 /// Helper function which generates an initialized constant array from Str,
100 /// and optionally sets section name and alignment. AddNull specifies whether
101 /// the array should nave NUL termination.
102 llvm::Constant
*makeConstantArray(StringRef Str
,
104 StringRef SectionName
= "",
105 unsigned Alignment
= 0,
106 bool AddNull
= false) {
107 llvm::Constant
*Value
=
108 llvm::ConstantDataArray::getString(Context
, Str
, AddNull
);
109 auto *GV
= new llvm::GlobalVariable(
110 TheModule
, Value
->getType(), /*isConstant=*/true,
111 llvm::GlobalValue::PrivateLinkage
, Value
, Name
);
112 if (!SectionName
.empty()) {
113 GV
->setSection(SectionName
);
114 // Mark the address as used which make sure that this section isn't
115 // merged and we will really have it in the object file.
116 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None
);
119 GV
->setAlignment(llvm::Align(Alignment
));
120 return llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
123 /// Helper function that generates an empty dummy function returning void.
124 llvm::Function
*makeDummyFunction(llvm::FunctionType
*FnTy
) {
125 assert(FnTy
->getReturnType()->isVoidTy() &&
126 "Can only generate dummy functions returning void!");
127 llvm::Function
*DummyFunc
= llvm::Function::Create(
128 FnTy
, llvm::GlobalValue::InternalLinkage
, "dummy", &TheModule
);
130 llvm::BasicBlock
*DummyBlock
=
131 llvm::BasicBlock::Create(Context
, "", DummyFunc
);
132 CGBuilderTy
FuncBuilder(CGM
, Context
);
133 FuncBuilder
.SetInsertPoint(DummyBlock
);
134 FuncBuilder
.CreateRetVoid();
139 void emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
140 void emitDeviceStubBodyNew(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
141 std::string
getDeviceSideName(const NamedDecl
*ND
) override
;
143 void registerDeviceVar(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
144 bool Extern
, bool Constant
) {
145 DeviceVars
.push_back({&Var
,
147 {DeviceVarFlags::Variable
, Extern
, Constant
,
148 VD
->hasAttr
<HIPManagedAttr
>(),
149 /*Normalized*/ false, 0}});
151 void registerDeviceSurf(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
152 bool Extern
, int Type
) {
153 DeviceVars
.push_back({&Var
,
155 {DeviceVarFlags::Surface
, Extern
, /*Constant*/ false,
157 /*Normalized*/ false, Type
}});
159 void registerDeviceTex(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
160 bool Extern
, int Type
, bool Normalized
) {
161 DeviceVars
.push_back({&Var
,
163 {DeviceVarFlags::Texture
, Extern
, /*Constant*/ false,
164 /*Managed*/ false, Normalized
, Type
}});
167 /// Creates module constructor function
168 llvm::Function
*makeModuleCtorFunction();
169 /// Creates module destructor function
170 llvm::Function
*makeModuleDtorFunction();
171 /// Transform managed variables for device compilation.
172 void transformManagedVars();
173 /// Create offloading entries to register globals in RDC mode.
174 void createOffloadingEntries();
177 CGNVCUDARuntime(CodeGenModule
&CGM
);
179 llvm::GlobalValue
*getKernelHandle(llvm::Function
*F
, GlobalDecl GD
) override
;
180 llvm::Function
*getKernelStub(llvm::GlobalValue
*Handle
) override
{
181 auto Loc
= KernelStubs
.find(Handle
);
182 assert(Loc
!= KernelStubs
.end());
185 void emitDeviceStub(CodeGenFunction
&CGF
, FunctionArgList
&Args
) override
;
186 void handleVarRegistration(const VarDecl
*VD
,
187 llvm::GlobalVariable
&Var
) override
;
189 internalizeDeviceSideVar(const VarDecl
*D
,
190 llvm::GlobalValue::LinkageTypes
&Linkage
) override
;
192 llvm::Function
*finalizeModule() override
;
195 } // end anonymous namespace
197 std::string
CGNVCUDARuntime::addPrefixToName(StringRef FuncName
) const {
198 if (CGM
.getLangOpts().HIP
)
199 return ((Twine("hip") + Twine(FuncName
)).str());
200 return ((Twine("cuda") + Twine(FuncName
)).str());
203 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName
) const {
204 if (CGM
.getLangOpts().HIP
)
205 return ((Twine("__hip") + Twine(FuncName
)).str());
206 return ((Twine("__cuda") + Twine(FuncName
)).str());
209 static std::unique_ptr
<MangleContext
> InitDeviceMC(CodeGenModule
&CGM
) {
210 // If the host and device have different C++ ABIs, mark it as the device
211 // mangle context so that the mangling needs to retrieve the additional
212 // device lambda mangling number instead of the regular host one.
213 if (CGM
.getContext().getAuxTargetInfo() &&
214 CGM
.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
215 CGM
.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
216 return std::unique_ptr
<MangleContext
>(
217 CGM
.getContext().createDeviceMangleContext(
218 *CGM
.getContext().getAuxTargetInfo()));
221 return std::unique_ptr
<MangleContext
>(CGM
.getContext().createMangleContext(
222 CGM
.getContext().getAuxTargetInfo()));
225 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule
&CGM
)
226 : CGCUDARuntime(CGM
), Context(CGM
.getLLVMContext()),
227 TheModule(CGM
.getModule()),
228 RelocatableDeviceCode(CGM
.getLangOpts().GPURelocatableDeviceCode
),
229 DeviceMC(InitDeviceMC(CGM
)) {
233 Zeros
[0] = llvm::ConstantInt::get(SizeTy
, 0);
236 CharPtrTy
= CGM
.UnqualPtrTy
;
237 VoidPtrTy
= CGM
.UnqualPtrTy
;
238 VoidPtrPtrTy
= CGM
.UnqualPtrTy
;
241 llvm::FunctionCallee
CGNVCUDARuntime::getSetupArgumentFn() const {
242 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
243 llvm::Type
*Params
[] = {VoidPtrTy
, SizeTy
, SizeTy
};
244 return CGM
.CreateRuntimeFunction(
245 llvm::FunctionType::get(IntTy
, Params
, false),
246 addPrefixToName("SetupArgument"));
249 llvm::FunctionCallee
CGNVCUDARuntime::getLaunchFn() const {
250 if (CGM
.getLangOpts().HIP
) {
251 // hipError_t hipLaunchByPtr(char *);
252 return CGM
.CreateRuntimeFunction(
253 llvm::FunctionType::get(IntTy
, CharPtrTy
, false), "hipLaunchByPtr");
255 // cudaError_t cudaLaunch(char *);
256 return CGM
.CreateRuntimeFunction(
257 llvm::FunctionType::get(IntTy
, CharPtrTy
, false), "cudaLaunch");
260 llvm::FunctionType
*CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
261 return llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false);
264 llvm::FunctionType
*CGNVCUDARuntime::getCallbackFnTy() const {
265 return llvm::FunctionType::get(VoidTy
, VoidPtrTy
, false);
268 llvm::FunctionType
*CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
269 llvm::Type
*Params
[] = {llvm::PointerType::getUnqual(Context
), VoidPtrTy
,
270 VoidPtrTy
, llvm::PointerType::getUnqual(Context
)};
271 return llvm::FunctionType::get(VoidTy
, Params
, false);
274 std::string
CGNVCUDARuntime::getDeviceSideName(const NamedDecl
*ND
) {
276 // D could be either a kernel or a variable.
277 if (auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
278 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
281 std::string DeviceSideName
;
283 if (CGM
.getLangOpts().CUDAIsDevice
)
284 MC
= &CGM
.getCXXABI().getMangleContext();
287 if (MC
->shouldMangleDeclName(ND
)) {
288 SmallString
<256> Buffer
;
289 llvm::raw_svector_ostream
Out(Buffer
);
290 MC
->mangleName(GD
, Out
);
291 DeviceSideName
= std::string(Out
.str());
293 DeviceSideName
= std::string(ND
->getIdentifier()->getName());
295 // Make unique name for device side static file-scope variable for HIP.
296 if (CGM
.getContext().shouldExternalize(ND
) &&
297 CGM
.getLangOpts().GPURelocatableDeviceCode
) {
298 SmallString
<256> Buffer
;
299 llvm::raw_svector_ostream
Out(Buffer
);
300 Out
<< DeviceSideName
;
301 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
302 DeviceSideName
= std::string(Out
.str());
304 return DeviceSideName
;
307 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction
&CGF
,
308 FunctionArgList
&Args
) {
309 EmittedKernels
.push_back({CGF
.CurFn
, CGF
.CurFuncDecl
});
311 dyn_cast
<llvm::GlobalVariable
>(KernelHandles
[CGF
.CurFn
->getName()])) {
312 GV
->setLinkage(CGF
.CurFn
->getLinkage());
313 GV
->setInitializer(CGF
.CurFn
);
315 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
316 CudaFeature::CUDA_USES_NEW_LAUNCH
) ||
317 (CGF
.getLangOpts().HIP
&& CGF
.getLangOpts().HIPUseNewLaunchAPI
))
318 emitDeviceStubBodyNew(CGF
, Args
);
320 emitDeviceStubBodyLegacy(CGF
, Args
);
323 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
324 // array and kernels are launched using cudaLaunchKernel().
325 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction
&CGF
,
326 FunctionArgList
&Args
) {
327 // Build the shadow stack entry at the very start of the function.
329 // Calculate amount of space we will need for all arguments. If we have no
330 // args, allocate a single pointer so we still have a valid pointer to the
331 // argument array that we can pass to runtime, even if it will be unused.
332 Address KernelArgs
= CGF
.CreateTempAlloca(
333 VoidPtrTy
, CharUnits::fromQuantity(16), "kernel_args",
334 llvm::ConstantInt::get(SizeTy
, std::max
<size_t>(1, Args
.size())));
335 // Store pointers to the arguments in a locally allocated launch_args.
336 for (unsigned i
= 0; i
< Args
.size(); ++i
) {
337 llvm::Value
* VarPtr
= CGF
.GetAddrOfLocalVar(Args
[i
]).getPointer();
338 llvm::Value
*VoidVarPtr
= CGF
.Builder
.CreatePointerCast(VarPtr
, VoidPtrTy
);
339 CGF
.Builder
.CreateDefaultAlignedStore(
341 CGF
.Builder
.CreateConstGEP1_32(VoidPtrTy
, KernelArgs
.getPointer(), i
));
344 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
346 // Lookup cudaLaunchKernel/hipLaunchKernel function.
347 // HIP kernel launching API name depends on -fgpu-default-stream option. For
348 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
349 // it is hipLaunchKernel_spt.
350 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
351 // void **args, size_t sharedMem,
352 // cudaStream_t stream);
353 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
354 // dim3 blockDim, void **args,
355 // size_t sharedMem, hipStream_t stream);
356 TranslationUnitDecl
*TUDecl
= CGM
.getContext().getTranslationUnitDecl();
357 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
358 std::string KernelLaunchAPI
= "LaunchKernel";
359 if (CGF
.getLangOpts().GPUDefaultStream
==
360 LangOptions::GPUDefaultStreamKind::PerThread
) {
361 if (CGF
.getLangOpts().HIP
)
362 KernelLaunchAPI
= KernelLaunchAPI
+ "_spt";
363 else if (CGF
.getLangOpts().CUDA
)
364 KernelLaunchAPI
= KernelLaunchAPI
+ "_ptsz";
366 auto LaunchKernelName
= addPrefixToName(KernelLaunchAPI
);
367 IdentifierInfo
&cudaLaunchKernelII
=
368 CGM
.getContext().Idents
.get(LaunchKernelName
);
369 FunctionDecl
*cudaLaunchKernelFD
= nullptr;
370 for (auto *Result
: DC
->lookup(&cudaLaunchKernelII
)) {
371 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Result
))
372 cudaLaunchKernelFD
= FD
;
375 if (cudaLaunchKernelFD
== nullptr) {
376 CGM
.Error(CGF
.CurFuncDecl
->getLocation(),
377 "Can't find declaration for " + LaunchKernelName
);
380 // Create temporary dim3 grid_dim, block_dim.
381 ParmVarDecl
*GridDimParam
= cudaLaunchKernelFD
->getParamDecl(1);
382 QualType Dim3Ty
= GridDimParam
->getType();
384 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "grid_dim");
386 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "block_dim");
388 CGF
.CreateTempAlloca(SizeTy
, CGM
.getSizeAlign(), "shmem_size");
390 CGF
.CreateTempAlloca(VoidPtrTy
, CGM
.getPointerAlign(), "stream");
391 llvm::FunctionCallee cudaPopConfigFn
= CGM
.CreateRuntimeFunction(
392 llvm::FunctionType::get(IntTy
,
393 {/*gridDim=*/GridDim
.getType(),
394 /*blockDim=*/BlockDim
.getType(),
395 /*ShmemSize=*/ShmemSize
.getType(),
396 /*Stream=*/Stream
.getType()},
398 addUnderscoredPrefixToName("PopCallConfiguration"));
400 CGF
.EmitRuntimeCallOrInvoke(cudaPopConfigFn
,
401 {GridDim
.getPointer(), BlockDim
.getPointer(),
402 ShmemSize
.getPointer(), Stream
.getPointer()});
404 // Emit the call to cudaLaunch
405 llvm::Value
*Kernel
= CGF
.Builder
.CreatePointerCast(
406 KernelHandles
[CGF
.CurFn
->getName()], VoidPtrTy
);
407 CallArgList LaunchKernelArgs
;
408 LaunchKernelArgs
.add(RValue::get(Kernel
),
409 cudaLaunchKernelFD
->getParamDecl(0)->getType());
410 LaunchKernelArgs
.add(RValue::getAggregate(GridDim
), Dim3Ty
);
411 LaunchKernelArgs
.add(RValue::getAggregate(BlockDim
), Dim3Ty
);
412 LaunchKernelArgs
.add(RValue::get(KernelArgs
.getPointer()),
413 cudaLaunchKernelFD
->getParamDecl(3)->getType());
414 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(ShmemSize
)),
415 cudaLaunchKernelFD
->getParamDecl(4)->getType());
416 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(Stream
)),
417 cudaLaunchKernelFD
->getParamDecl(5)->getType());
419 QualType QT
= cudaLaunchKernelFD
->getType();
420 QualType CQT
= QT
.getCanonicalType();
421 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(CQT
);
422 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
424 const CGFunctionInfo
&FI
=
425 CGM
.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD
);
426 llvm::FunctionCallee cudaLaunchKernelFn
=
427 CGM
.CreateRuntimeFunction(FTy
, LaunchKernelName
);
428 CGF
.EmitCall(FI
, CGCallee::forDirect(cudaLaunchKernelFn
), ReturnValueSlot(),
430 CGF
.EmitBranch(EndBlock
);
432 CGF
.EmitBlock(EndBlock
);
435 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
,
436 FunctionArgList
&Args
) {
437 // Emit a call to cudaSetupArgument for each arg in Args.
438 llvm::FunctionCallee cudaSetupArgFn
= getSetupArgumentFn();
439 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
440 CharUnits Offset
= CharUnits::Zero();
441 for (const VarDecl
*A
: Args
) {
442 auto TInfo
= CGM
.getContext().getTypeInfoInChars(A
->getType());
443 Offset
= Offset
.alignTo(TInfo
.Align
);
444 llvm::Value
*Args
[] = {
445 CGF
.Builder
.CreatePointerCast(CGF
.GetAddrOfLocalVar(A
).getPointer(),
447 llvm::ConstantInt::get(SizeTy
, TInfo
.Width
.getQuantity()),
448 llvm::ConstantInt::get(SizeTy
, Offset
.getQuantity()),
450 llvm::CallBase
*CB
= CGF
.EmitRuntimeCallOrInvoke(cudaSetupArgFn
, Args
);
451 llvm::Constant
*Zero
= llvm::ConstantInt::get(IntTy
, 0);
452 llvm::Value
*CBZero
= CGF
.Builder
.CreateICmpEQ(CB
, Zero
);
453 llvm::BasicBlock
*NextBlock
= CGF
.createBasicBlock("setup.next");
454 CGF
.Builder
.CreateCondBr(CBZero
, NextBlock
, EndBlock
);
455 CGF
.EmitBlock(NextBlock
);
456 Offset
+= TInfo
.Width
;
459 // Emit the call to cudaLaunch
460 llvm::FunctionCallee cudaLaunchFn
= getLaunchFn();
461 llvm::Value
*Arg
= CGF
.Builder
.CreatePointerCast(
462 KernelHandles
[CGF
.CurFn
->getName()], CharPtrTy
);
463 CGF
.EmitRuntimeCallOrInvoke(cudaLaunchFn
, Arg
);
464 CGF
.EmitBranch(EndBlock
);
466 CGF
.EmitBlock(EndBlock
);
469 // Replace the original variable Var with the address loaded from variable
470 // ManagedVar populated by HIP runtime.
471 static void replaceManagedVar(llvm::GlobalVariable
*Var
,
472 llvm::GlobalVariable
*ManagedVar
) {
473 SmallVector
<SmallVector
<llvm::User
*, 8>, 8> WorkList
;
474 for (auto &&VarUse
: Var
->uses()) {
475 WorkList
.push_back({VarUse
.getUser()});
477 while (!WorkList
.empty()) {
478 auto &&WorkItem
= WorkList
.pop_back_val();
479 auto *U
= WorkItem
.back();
480 if (isa
<llvm::ConstantExpr
>(U
)) {
481 for (auto &&UU
: U
->uses()) {
482 WorkItem
.push_back(UU
.getUser());
483 WorkList
.push_back(WorkItem
);
488 if (auto *I
= dyn_cast
<llvm::Instruction
>(U
)) {
489 llvm::Value
*OldV
= Var
;
490 llvm::Instruction
*NewV
=
491 new llvm::LoadInst(Var
->getType(), ManagedVar
, "ld.managed", false,
492 llvm::Align(Var
->getAlignment()), I
);
494 // Replace constant expressions directly or indirectly using the managed
495 // variable with instructions.
496 for (auto &&Op
: WorkItem
) {
497 auto *CE
= cast
<llvm::ConstantExpr
>(Op
);
498 auto *NewInst
= CE
->getAsInstruction(I
);
499 NewInst
->replaceUsesOfWith(OldV
, NewV
);
503 I
->replaceUsesOfWith(OldV
, NewV
);
505 llvm_unreachable("Invalid use of managed variable");
510 /// Creates a function that sets up state on the host side for CUDA objects that
511 /// have a presence on both the host and device sides. Specifically, registers
512 /// the host side of kernel functions and device global variables with the CUDA
515 /// void __cuda_register_globals(void** GpuBinaryHandle) {
516 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
518 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
519 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
521 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
524 llvm::Function
*CGNVCUDARuntime::makeRegisterGlobalsFn() {
525 // No need to register anything
526 if (EmittedKernels
.empty() && DeviceVars
.empty())
529 llvm::Function
*RegisterKernelsFunc
= llvm::Function::Create(
530 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage
,
531 addUnderscoredPrefixToName("_register_globals"), &TheModule
);
532 llvm::BasicBlock
*EntryBB
=
533 llvm::BasicBlock::Create(Context
, "entry", RegisterKernelsFunc
);
534 CGBuilderTy
Builder(CGM
, Context
);
535 Builder
.SetInsertPoint(EntryBB
);
537 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
538 // int, uint3*, uint3*, dim3*, dim3*, int*)
539 llvm::Type
*RegisterFuncParams
[] = {
540 VoidPtrPtrTy
, CharPtrTy
,
541 CharPtrTy
, CharPtrTy
,
543 VoidPtrTy
, VoidPtrTy
,
544 VoidPtrTy
, llvm::PointerType::getUnqual(Context
)};
545 llvm::FunctionCallee RegisterFunc
= CGM
.CreateRuntimeFunction(
546 llvm::FunctionType::get(IntTy
, RegisterFuncParams
, false),
547 addUnderscoredPrefixToName("RegisterFunction"));
549 // Extract GpuBinaryHandle passed as the first argument passed to
550 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
551 // each emitted kernel.
552 llvm::Argument
&GpuBinaryHandlePtr
= *RegisterKernelsFunc
->arg_begin();
553 for (auto &&I
: EmittedKernels
) {
554 llvm::Constant
*KernelName
=
555 makeConstantString(getDeviceSideName(cast
<NamedDecl
>(I
.D
)));
556 llvm::Constant
*NullPtr
= llvm::ConstantPointerNull::get(VoidPtrTy
);
557 llvm::Value
*Args
[] = {
559 KernelHandles
[I
.Kernel
->getName()],
562 llvm::ConstantInt::get(IntTy
, -1),
567 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context
))};
568 Builder
.CreateCall(RegisterFunc
, Args
);
571 llvm::Type
*VarSizeTy
= IntTy
;
572 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
573 if (CGM
.getLangOpts().HIP
||
574 ToCudaVersion(CGM
.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90
)
577 // void __cudaRegisterVar(void **, char *, char *, const char *,
578 // int, int, int, int)
579 llvm::Type
*RegisterVarParams
[] = {VoidPtrPtrTy
, CharPtrTy
, CharPtrTy
,
580 CharPtrTy
, IntTy
, VarSizeTy
,
582 llvm::FunctionCallee RegisterVar
= CGM
.CreateRuntimeFunction(
583 llvm::FunctionType::get(VoidTy
, RegisterVarParams
, false),
584 addUnderscoredPrefixToName("RegisterVar"));
585 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
587 llvm::Type
*RegisterManagedVarParams
[] = {VoidPtrPtrTy
, CharPtrTy
, CharPtrTy
,
588 CharPtrTy
, VarSizeTy
, IntTy
};
589 llvm::FunctionCallee RegisterManagedVar
= CGM
.CreateRuntimeFunction(
590 llvm::FunctionType::get(VoidTy
, RegisterManagedVarParams
, false),
591 addUnderscoredPrefixToName("RegisterManagedVar"));
592 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
593 // const void **, const char *, int, int);
594 llvm::FunctionCallee RegisterSurf
= CGM
.CreateRuntimeFunction(
595 llvm::FunctionType::get(
596 VoidTy
, {VoidPtrPtrTy
, VoidPtrTy
, CharPtrTy
, CharPtrTy
, IntTy
, IntTy
},
598 addUnderscoredPrefixToName("RegisterSurface"));
599 // void __cudaRegisterTexture(void **, const struct textureReference *,
600 // const void **, const char *, int, int, int)
601 llvm::FunctionCallee RegisterTex
= CGM
.CreateRuntimeFunction(
602 llvm::FunctionType::get(
604 {VoidPtrPtrTy
, VoidPtrTy
, CharPtrTy
, CharPtrTy
, IntTy
, IntTy
, IntTy
},
606 addUnderscoredPrefixToName("RegisterTexture"));
607 for (auto &&Info
: DeviceVars
) {
608 llvm::GlobalVariable
*Var
= Info
.Var
;
609 assert((!Var
->isDeclaration() || Info
.Flags
.isManaged()) &&
610 "External variables should not show up here, except HIP managed "
612 llvm::Constant
*VarName
= makeConstantString(getDeviceSideName(Info
.D
));
613 switch (Info
.Flags
.getKind()) {
614 case DeviceVarFlags::Variable
: {
616 CGM
.getDataLayout().getTypeAllocSize(Var
->getValueType());
617 if (Info
.Flags
.isManaged()) {
618 auto *ManagedVar
= new llvm::GlobalVariable(
619 CGM
.getModule(), Var
->getType(),
620 /*isConstant=*/false, Var
->getLinkage(),
621 /*Init=*/Var
->isDeclaration()
623 : llvm::ConstantPointerNull::get(Var
->getType()),
624 /*Name=*/"", /*InsertBefore=*/nullptr,
625 llvm::GlobalVariable::NotThreadLocal
);
626 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
627 ManagedVar
->setVisibility(Var
->getVisibility());
628 ManagedVar
->setExternallyInitialized(true);
629 ManagedVar
->takeName(Var
);
630 Var
->setName(Twine(ManagedVar
->getName() + ".managed"));
631 replaceManagedVar(Var
, ManagedVar
);
632 llvm::Value
*Args
[] = {
637 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
638 llvm::ConstantInt::get(IntTy
, Var
->getAlignment())};
639 if (!Var
->isDeclaration())
640 Builder
.CreateCall(RegisterManagedVar
, Args
);
642 llvm::Value
*Args
[] = {
647 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern()),
648 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
649 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isConstant()),
650 llvm::ConstantInt::get(IntTy
, 0)};
651 Builder
.CreateCall(RegisterVar
, Args
);
655 case DeviceVarFlags::Surface
:
658 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
659 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
660 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
662 case DeviceVarFlags::Texture
:
665 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
666 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
667 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isNormalized()),
668 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
673 Builder
.CreateRetVoid();
674 return RegisterKernelsFunc
;
677 /// Creates a global constructor function for the module:
681 /// void __cuda_module_ctor() {
682 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
683 /// __cuda_register_globals(Handle);
689 /// void __hip_module_ctor() {
690 /// if (__hip_gpubin_handle == 0) {
691 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
692 /// __hip_register_globals(__hip_gpubin_handle);
696 llvm::Function
*CGNVCUDARuntime::makeModuleCtorFunction() {
697 bool IsHIP
= CGM
.getLangOpts().HIP
;
698 bool IsCUDA
= CGM
.getLangOpts().CUDA
;
699 // No need to generate ctors/dtors if there is no GPU binary.
700 StringRef CudaGpuBinaryFileName
= CGM
.getCodeGenOpts().CudaGpuBinaryFileName
;
701 if (CudaGpuBinaryFileName
.empty() && !IsHIP
)
703 if ((IsHIP
|| (IsCUDA
&& !RelocatableDeviceCode
)) && EmittedKernels
.empty() &&
707 // void __{cuda|hip}_register_globals(void* handle);
708 llvm::Function
*RegisterGlobalsFunc
= makeRegisterGlobalsFn();
709 // We always need a function to pass in as callback. Create a dummy
710 // implementation if we don't need to register anything.
711 if (RelocatableDeviceCode
&& !RegisterGlobalsFunc
)
712 RegisterGlobalsFunc
= makeDummyFunction(getRegisterGlobalsFnTy());
714 // void ** __{cuda|hip}RegisterFatBinary(void *);
715 llvm::FunctionCallee RegisterFatbinFunc
= CGM
.CreateRuntimeFunction(
716 llvm::FunctionType::get(VoidPtrPtrTy
, VoidPtrTy
, false),
717 addUnderscoredPrefixToName("RegisterFatBinary"));
718 // struct { int magic, int version, void * gpu_binary, void * dont_care };
719 llvm::StructType
*FatbinWrapperTy
=
720 llvm::StructType::get(IntTy
, IntTy
, VoidPtrTy
, VoidPtrTy
);
722 // Register GPU binary with the CUDA runtime, store returned handle in a
723 // global variable and save a reference in GpuBinaryHandle to be cleaned up
724 // in destructor on exit. Then associate all known kernels with the GPU binary
725 // handle so CUDA runtime can figure out what to call on the GPU side.
726 std::unique_ptr
<llvm::MemoryBuffer
> CudaGpuBinary
= nullptr;
727 if (!CudaGpuBinaryFileName
.empty()) {
728 auto VFS
= CGM
.getFileSystem();
729 auto CudaGpuBinaryOrErr
=
730 VFS
->getBufferForFile(CudaGpuBinaryFileName
, -1, false);
731 if (std::error_code EC
= CudaGpuBinaryOrErr
.getError()) {
732 CGM
.getDiags().Report(diag::err_cannot_open_file
)
733 << CudaGpuBinaryFileName
<< EC
.message();
736 CudaGpuBinary
= std::move(CudaGpuBinaryOrErr
.get());
739 llvm::Function
*ModuleCtorFunc
= llvm::Function::Create(
740 llvm::FunctionType::get(VoidTy
, false),
741 llvm::GlobalValue::InternalLinkage
,
742 addUnderscoredPrefixToName("_module_ctor"), &TheModule
);
743 llvm::BasicBlock
*CtorEntryBB
=
744 llvm::BasicBlock::Create(Context
, "entry", ModuleCtorFunc
);
745 CGBuilderTy
CtorBuilder(CGM
, Context
);
747 CtorBuilder
.SetInsertPoint(CtorEntryBB
);
749 const char *FatbinConstantName
;
750 const char *FatbinSectionName
;
751 const char *ModuleIDSectionName
;
752 StringRef ModuleIDPrefix
;
753 llvm::Constant
*FatBinStr
;
756 FatbinConstantName
= ".hip_fatbin";
757 FatbinSectionName
= ".hipFatBinSegment";
759 ModuleIDSectionName
= "__hip_module_id";
760 ModuleIDPrefix
= "__hip_";
763 // If fatbin is available from early finalization, create a string
764 // literal containing the fat binary loaded from the given file.
765 const unsigned HIPCodeObjectAlign
= 4096;
766 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
767 FatbinConstantName
, HIPCodeObjectAlign
);
769 // If fatbin is not available, create an external symbol
770 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
771 // to contain the fat binary but will be populated somewhere else,
772 // e.g. by lld through link script.
773 FatBinStr
= new llvm::GlobalVariable(
774 CGM
.getModule(), CGM
.Int8Ty
,
775 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr,
776 "__hip_fatbin", nullptr,
777 llvm::GlobalVariable::NotThreadLocal
);
778 cast
<llvm::GlobalVariable
>(FatBinStr
)->setSection(FatbinConstantName
);
781 FatMagic
= HIPFatMagic
;
783 if (RelocatableDeviceCode
)
784 FatbinConstantName
= CGM
.getTriple().isMacOSX()
785 ? "__NV_CUDA,__nv_relfatbin"
789 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
790 // NVIDIA's cuobjdump looks for fatbins in this section.
792 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
794 ModuleIDSectionName
= CGM
.getTriple().isMacOSX()
795 ? "__NV_CUDA,__nv_module_id"
797 ModuleIDPrefix
= "__nv_";
799 // For CUDA, create a string literal containing the fat binary loaded from
801 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
802 FatbinConstantName
, 8);
803 FatMagic
= CudaFatMagic
;
806 // Create initialized wrapper structure that points to the loaded GPU binary
807 ConstantInitBuilder
Builder(CGM
);
808 auto Values
= Builder
.beginStruct(FatbinWrapperTy
);
809 // Fatbin wrapper magic.
810 Values
.addInt(IntTy
, FatMagic
);
812 Values
.addInt(IntTy
, 1);
814 Values
.add(FatBinStr
);
815 // Unused in fatbin v1.
816 Values
.add(llvm::ConstantPointerNull::get(VoidPtrTy
));
817 llvm::GlobalVariable
*FatbinWrapper
= Values
.finishAndCreateGlobal(
818 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM
.getPointerAlign(),
820 FatbinWrapper
->setSection(FatbinSectionName
);
822 // There is only one HIP fat binary per linked module, however there are
823 // multiple constructor functions. Make sure the fat binary is registered
824 // only once. The constructor functions are executed by the dynamic loader
825 // before the program gains control. The dynamic loader cannot execute the
826 // constructor functions concurrently since doing that would not guarantee
827 // thread safety of the loaded program. Therefore we can assume sequential
828 // execution of constructor functions here.
830 auto Linkage
= CudaGpuBinary
? llvm::GlobalValue::InternalLinkage
:
831 llvm::GlobalValue::LinkOnceAnyLinkage
;
832 llvm::BasicBlock
*IfBlock
=
833 llvm::BasicBlock::Create(Context
, "if", ModuleCtorFunc
);
834 llvm::BasicBlock
*ExitBlock
=
835 llvm::BasicBlock::Create(Context
, "exit", ModuleCtorFunc
);
836 // The name, size, and initialization pattern of this variable is part
838 GpuBinaryHandle
= new llvm::GlobalVariable(
839 TheModule
, VoidPtrPtrTy
, /*isConstant=*/false,
841 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy
),
842 "__hip_gpubin_handle");
843 if (Linkage
== llvm::GlobalValue::LinkOnceAnyLinkage
)
844 GpuBinaryHandle
->setComdat(
845 CGM
.getModule().getOrInsertComdat(GpuBinaryHandle
->getName()));
846 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
847 // Prevent the weak symbol in different shared libraries being merged.
848 if (Linkage
!= llvm::GlobalValue::InternalLinkage
)
849 GpuBinaryHandle
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
850 Address
GpuBinaryAddr(
851 GpuBinaryHandle
, VoidPtrPtrTy
,
852 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
854 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
855 llvm::Constant
*Zero
=
856 llvm::Constant::getNullValue(HandleValue
->getType());
857 llvm::Value
*EQZero
= CtorBuilder
.CreateICmpEQ(HandleValue
, Zero
);
858 CtorBuilder
.CreateCondBr(EQZero
, IfBlock
, ExitBlock
);
861 CtorBuilder
.SetInsertPoint(IfBlock
);
862 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
863 llvm::CallInst
*RegisterFatbinCall
=
864 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
865 CtorBuilder
.CreateStore(RegisterFatbinCall
, GpuBinaryAddr
);
866 CtorBuilder
.CreateBr(ExitBlock
);
869 CtorBuilder
.SetInsertPoint(ExitBlock
);
870 // Call __hip_register_globals(GpuBinaryHandle);
871 if (RegisterGlobalsFunc
) {
872 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
873 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, HandleValue
);
876 } else if (!RelocatableDeviceCode
) {
877 // Register binary with CUDA runtime. This is substantially different in
878 // default mode vs. separate compilation!
879 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
880 llvm::CallInst
*RegisterFatbinCall
=
881 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
882 GpuBinaryHandle
= new llvm::GlobalVariable(
883 TheModule
, VoidPtrPtrTy
, false, llvm::GlobalValue::InternalLinkage
,
884 llvm::ConstantPointerNull::get(VoidPtrPtrTy
), "__cuda_gpubin_handle");
885 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
886 CtorBuilder
.CreateAlignedStore(RegisterFatbinCall
, GpuBinaryHandle
,
887 CGM
.getPointerAlign());
889 // Call __cuda_register_globals(GpuBinaryHandle);
890 if (RegisterGlobalsFunc
)
891 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, RegisterFatbinCall
);
893 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
894 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
895 CudaFeature::CUDA_USES_FATBIN_REGISTER_END
)) {
896 // void __cudaRegisterFatBinaryEnd(void **);
897 llvm::FunctionCallee RegisterFatbinEndFunc
= CGM
.CreateRuntimeFunction(
898 llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false),
899 "__cudaRegisterFatBinaryEnd");
900 CtorBuilder
.CreateCall(RegisterFatbinEndFunc
, RegisterFatbinCall
);
903 // Generate a unique module ID.
904 SmallString
<64> ModuleID
;
905 llvm::raw_svector_ostream
OS(ModuleID
);
906 OS
<< ModuleIDPrefix
<< llvm::format("%" PRIx64
, FatbinWrapper
->getGUID());
907 llvm::Constant
*ModuleIDConstant
= makeConstantArray(
908 std::string(ModuleID
.str()), "", ModuleIDSectionName
, 32, /*AddNull=*/true);
910 // Create an alias for the FatbinWrapper that nvcc will look for.
911 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage
,
912 Twine("__fatbinwrap") + ModuleID
, FatbinWrapper
);
914 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
915 // void *, void (*)(void **))
916 SmallString
<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
917 RegisterLinkedBinaryName
+= ModuleID
;
918 llvm::FunctionCallee RegisterLinkedBinaryFunc
= CGM
.CreateRuntimeFunction(
919 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName
);
921 assert(RegisterGlobalsFunc
&& "Expecting at least dummy function!");
922 llvm::Value
*Args
[] = {RegisterGlobalsFunc
, FatbinWrapper
, ModuleIDConstant
,
923 makeDummyFunction(getCallbackFnTy())};
924 CtorBuilder
.CreateCall(RegisterLinkedBinaryFunc
, Args
);
927 // Create destructor and register it with atexit() the way NVCC does it. Doing
928 // it during regular destructor phase worked in CUDA before 9.2 but results in
929 // double-free in 9.2.
930 if (llvm::Function
*CleanupFn
= makeModuleDtorFunction()) {
931 // extern "C" int atexit(void (*f)(void));
932 llvm::FunctionType
*AtExitTy
=
933 llvm::FunctionType::get(IntTy
, CleanupFn
->getType(), false);
934 llvm::FunctionCallee AtExitFunc
=
935 CGM
.CreateRuntimeFunction(AtExitTy
, "atexit", llvm::AttributeList(),
937 CtorBuilder
.CreateCall(AtExitFunc
, CleanupFn
);
940 CtorBuilder
.CreateRetVoid();
941 return ModuleCtorFunc
;
944 /// Creates a global destructor function that unregisters the GPU code blob
945 /// registered by constructor.
949 /// void __cuda_module_dtor() {
950 /// __cudaUnregisterFatBinary(Handle);
956 /// void __hip_module_dtor() {
957 /// if (__hip_gpubin_handle) {
958 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
959 /// __hip_gpubin_handle = 0;
963 llvm::Function
*CGNVCUDARuntime::makeModuleDtorFunction() {
964 // No need for destructor if we don't have a handle to unregister.
965 if (!GpuBinaryHandle
)
968 // void __cudaUnregisterFatBinary(void ** handle);
969 llvm::FunctionCallee UnregisterFatbinFunc
= CGM
.CreateRuntimeFunction(
970 llvm::FunctionType::get(VoidTy
, VoidPtrPtrTy
, false),
971 addUnderscoredPrefixToName("UnregisterFatBinary"));
973 llvm::Function
*ModuleDtorFunc
= llvm::Function::Create(
974 llvm::FunctionType::get(VoidTy
, false),
975 llvm::GlobalValue::InternalLinkage
,
976 addUnderscoredPrefixToName("_module_dtor"), &TheModule
);
978 llvm::BasicBlock
*DtorEntryBB
=
979 llvm::BasicBlock::Create(Context
, "entry", ModuleDtorFunc
);
980 CGBuilderTy
DtorBuilder(CGM
, Context
);
981 DtorBuilder
.SetInsertPoint(DtorEntryBB
);
983 Address
GpuBinaryAddr(
984 GpuBinaryHandle
, GpuBinaryHandle
->getValueType(),
985 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
986 auto *HandleValue
= DtorBuilder
.CreateLoad(GpuBinaryAddr
);
987 // There is only one HIP fat binary per linked module, however there are
988 // multiple destructor functions. Make sure the fat binary is unregistered
990 if (CGM
.getLangOpts().HIP
) {
991 llvm::BasicBlock
*IfBlock
=
992 llvm::BasicBlock::Create(Context
, "if", ModuleDtorFunc
);
993 llvm::BasicBlock
*ExitBlock
=
994 llvm::BasicBlock::Create(Context
, "exit", ModuleDtorFunc
);
995 llvm::Constant
*Zero
= llvm::Constant::getNullValue(HandleValue
->getType());
996 llvm::Value
*NEZero
= DtorBuilder
.CreateICmpNE(HandleValue
, Zero
);
997 DtorBuilder
.CreateCondBr(NEZero
, IfBlock
, ExitBlock
);
999 DtorBuilder
.SetInsertPoint(IfBlock
);
1000 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1001 DtorBuilder
.CreateStore(Zero
, GpuBinaryAddr
);
1002 DtorBuilder
.CreateBr(ExitBlock
);
1004 DtorBuilder
.SetInsertPoint(ExitBlock
);
1006 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
1008 DtorBuilder
.CreateRetVoid();
1009 return ModuleDtorFunc
;
1012 CGCUDARuntime
*CodeGen::CreateNVCUDARuntime(CodeGenModule
&CGM
) {
1013 return new CGNVCUDARuntime(CGM
);
1016 void CGNVCUDARuntime::internalizeDeviceSideVar(
1017 const VarDecl
*D
, llvm::GlobalValue::LinkageTypes
&Linkage
) {
1018 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1019 // global variables become internal definitions. These have to be internal in
1020 // order to prevent name conflicts with global host variables with the same
1021 // name in a different TUs.
1023 // For -fgpu-rdc, the shadow variables should not be internalized because
1024 // they may be accessed by different TU.
1025 if (CGM
.getLangOpts().GPURelocatableDeviceCode
)
1028 // __shared__ variables are odd. Shadows do get created, but
1029 // they are not registered with the CUDA runtime, so they
1030 // can't really be used to access their device-side
1031 // counterparts. It's not clear yet whether it's nvcc's bug or
1032 // a feature, but we've got to do the same for compatibility.
1033 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
1034 D
->hasAttr
<CUDASharedAttr
>() ||
1035 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1036 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1037 Linkage
= llvm::GlobalValue::InternalLinkage
;
1041 void CGNVCUDARuntime::handleVarRegistration(const VarDecl
*D
,
1042 llvm::GlobalVariable
&GV
) {
1043 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>()) {
1044 // Shadow variables and their properties must be registered with CUDA
1045 // runtime. Skip Extern global variables, which will be registered in
1046 // the TU where they are defined.
1048 // Don't register a C++17 inline variable. The local symbol can be
1049 // discarded and referencing a discarded local symbol from outside the
1050 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1052 // HIP managed variables need to be always recorded in device and host
1053 // compilations for transformation.
1055 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1056 // added to llvm.compiler-used, therefore they are safe to be registered.
1057 if ((!D
->hasExternalStorage() && !D
->isInline()) ||
1058 CGM
.getContext().CUDADeviceVarODRUsedByHost
.contains(D
) ||
1059 D
->hasAttr
<HIPManagedAttr
>()) {
1060 registerDeviceVar(D
, GV
, !D
->hasDefinition(),
1061 D
->hasAttr
<CUDAConstantAttr
>());
1063 } else if (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1064 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1065 // Builtin surfaces and textures and their template arguments are
1066 // also registered with CUDA runtime.
1067 const auto *TD
= cast
<ClassTemplateSpecializationDecl
>(
1068 D
->getType()->castAs
<RecordType
>()->getDecl());
1069 const TemplateArgumentList
&Args
= TD
->getTemplateArgs();
1070 if (TD
->hasAttr
<CUDADeviceBuiltinSurfaceTypeAttr
>()) {
1071 assert(Args
.size() == 2 &&
1072 "Unexpected number of template arguments of CUDA device "
1073 "builtin surface type.");
1074 auto SurfType
= Args
[1].getAsIntegral();
1075 if (!D
->hasExternalStorage())
1076 registerDeviceSurf(D
, GV
, !D
->hasDefinition(), SurfType
.getSExtValue());
1078 assert(Args
.size() == 3 &&
1079 "Unexpected number of template arguments of CUDA device "
1080 "builtin texture type.");
1081 auto TexType
= Args
[1].getAsIntegral();
1082 auto Normalized
= Args
[2].getAsIntegral();
1083 if (!D
->hasExternalStorage())
1084 registerDeviceTex(D
, GV
, !D
->hasDefinition(), TexType
.getSExtValue(),
1085 Normalized
.getZExtValue());
1090 // Transform managed variables to pointers to managed variables in device code.
1091 // Each use of the original managed variable is replaced by a load from the
1092 // transformed managed variable. The transformed managed variable contains
1093 // the address of managed memory which will be allocated by the runtime.
1094 void CGNVCUDARuntime::transformManagedVars() {
1095 for (auto &&Info
: DeviceVars
) {
1096 llvm::GlobalVariable
*Var
= Info
.Var
;
1097 if (Info
.Flags
.getKind() == DeviceVarFlags::Variable
&&
1098 Info
.Flags
.isManaged()) {
1099 auto *ManagedVar
= new llvm::GlobalVariable(
1100 CGM
.getModule(), Var
->getType(),
1101 /*isConstant=*/false, Var
->getLinkage(),
1102 /*Init=*/Var
->isDeclaration()
1104 : llvm::ConstantPointerNull::get(Var
->getType()),
1105 /*Name=*/"", /*InsertBefore=*/nullptr,
1106 llvm::GlobalVariable::NotThreadLocal
,
1107 CGM
.getContext().getTargetAddressSpace(LangAS::cuda_device
));
1108 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
1109 ManagedVar
->setVisibility(Var
->getVisibility());
1110 ManagedVar
->setExternallyInitialized(true);
1111 replaceManagedVar(Var
, ManagedVar
);
1112 ManagedVar
->takeName(Var
);
1113 Var
->setName(Twine(ManagedVar
->getName()) + ".managed");
1114 // Keep managed variables even if they are not used in device code since
1115 // they need to be allocated by the runtime.
1116 if (!Var
->isDeclaration()) {
1117 assert(!ManagedVar
->isDeclaration());
1118 CGM
.addCompilerUsedGlobal(Var
);
1119 CGM
.addCompilerUsedGlobal(ManagedVar
);
1125 // Creates offloading entries for all the kernels and globals that must be
1126 // registered. The linker will provide a pointer to this section so we can
1127 // register the symbols with the linked device image.
1128 void CGNVCUDARuntime::createOffloadingEntries() {
1129 StringRef Section
= CGM
.getLangOpts().HIP
? "hip_offloading_entries"
1130 : "cuda_offloading_entries";
1131 llvm::Module
&M
= CGM
.getModule();
1132 for (KernelInfo
&I
: EmittedKernels
)
1133 llvm::offloading::emitOffloadingEntry(
1134 M
, KernelHandles
[I
.Kernel
->getName()],
1135 getDeviceSideName(cast
<NamedDecl
>(I
.D
)), 0,
1136 DeviceVarFlags::OffloadGlobalEntry
, Section
);
1138 for (VarInfo
&I
: DeviceVars
) {
1140 CGM
.getDataLayout().getTypeAllocSize(I
.Var
->getValueType());
1141 if (I
.Flags
.getKind() == DeviceVarFlags::Variable
) {
1142 llvm::offloading::emitOffloadingEntry(
1143 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1144 I
.Flags
.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
1145 : DeviceVarFlags::OffloadGlobalEntry
,
1147 } else if (I
.Flags
.getKind() == DeviceVarFlags::Surface
) {
1148 llvm::offloading::emitOffloadingEntry(
1149 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1150 DeviceVarFlags::OffloadGlobalSurfaceEntry
, Section
);
1151 } else if (I
.Flags
.getKind() == DeviceVarFlags::Texture
) {
1152 llvm::offloading::emitOffloadingEntry(
1153 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1154 DeviceVarFlags::OffloadGlobalTextureEntry
, Section
);
1159 // Returns module constructor to be added.
1160 llvm::Function
*CGNVCUDARuntime::finalizeModule() {
1161 if (CGM
.getLangOpts().CUDAIsDevice
) {
1162 transformManagedVars();
1164 // Mark ODR-used device variables as compiler used to prevent it from being
1165 // eliminated by optimization. This is necessary for device variables
1166 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1167 // matter whether they are ODR-used by device or host functions.
1169 // We do not need to do this if the variable has used attribute since it
1170 // has already been added.
1172 // Static device variables have been externalized at this point, therefore
1173 // variables with LLVM private or internal linkage need not be added.
1174 for (auto &&Info
: DeviceVars
) {
1175 auto Kind
= Info
.Flags
.getKind();
1176 if (!Info
.Var
->isDeclaration() &&
1177 !llvm::GlobalValue::isLocalLinkage(Info
.Var
->getLinkage()) &&
1178 (Kind
== DeviceVarFlags::Variable
||
1179 Kind
== DeviceVarFlags::Surface
||
1180 Kind
== DeviceVarFlags::Texture
) &&
1181 Info
.D
->isUsed() && !Info
.D
->hasAttr
<UsedAttr
>()) {
1182 CGM
.addCompilerUsedGlobal(Info
.Var
);
1187 if (CGM
.getLangOpts().OffloadingNewDriver
&& RelocatableDeviceCode
)
1188 createOffloadingEntries();
1190 return makeModuleCtorFunction();
1195 llvm::GlobalValue
*CGNVCUDARuntime::getKernelHandle(llvm::Function
*F
,
1197 auto Loc
= KernelHandles
.find(F
->getName());
1198 if (Loc
!= KernelHandles
.end()) {
1199 auto OldHandle
= Loc
->second
;
1200 if (KernelStubs
[OldHandle
] == F
)
1203 // We've found the function name, but F itself has changed, so we need to
1204 // update the references.
1205 if (CGM
.getLangOpts().HIP
) {
1206 // For HIP compilation the handle itself does not change, so we only need
1207 // to update the Stub value.
1208 KernelStubs
[OldHandle
] = F
;
1211 // For non-HIP compilation, erase the old Stub and fall-through to creating
1213 KernelStubs
.erase(OldHandle
);
1216 if (!CGM
.getLangOpts().HIP
) {
1217 KernelHandles
[F
->getName()] = F
;
1222 auto *Var
= new llvm::GlobalVariable(
1223 TheModule
, F
->getType(), /*isConstant=*/true, F
->getLinkage(),
1224 /*Initializer=*/nullptr,
1226 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
)));
1227 Var
->setAlignment(CGM
.getPointerAlign().getAsAlign());
1228 Var
->setDSOLocal(F
->isDSOLocal());
1229 Var
->setVisibility(F
->getVisibility());
1230 auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
1231 auto *FT
= FD
->getPrimaryTemplate();
1232 if (!FT
|| FT
->isThisDeclarationADefinition())
1233 CGM
.maybeSetTrivialComdat(*FD
, *Var
);
1234 KernelHandles
[F
->getName()] = Var
;
1235 KernelStubs
[Var
] = F
;