1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
35 using namespace clang
;
36 using namespace CodeGen
;
38 /// Return the best known alignment for an unknown pointer to a
40 CharUnits
CodeGenModule::getClassPointerAlignment(const CXXRecordDecl
*RD
) {
41 if (!RD
->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
44 auto &layout
= getContext().getASTRecordLayout(RD
);
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD
->isEffectivelyFinal())
49 return layout
.getAlignment();
51 // Otherwise, we have to assume it could be a subclass.
52 return layout
.getNonVirtualAlignment();
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits
CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl
*RD
) {
60 if (!RD
->hasDefinition())
61 return CharUnits::One();
63 auto &layout
= getContext().getASTRecordLayout(RD
);
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD
->isEffectivelyFinal())
68 return layout
.getSize();
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout
.getNonVirtualSize(), CharUnits::One());
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits
CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign
,
77 const CXXRecordDecl
*derivedClass
,
78 const CXXRecordDecl
*vbaseClass
) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
82 assert(vbaseClass
->isCompleteDefinition());
83 auto &baseLayout
= getContext().getASTRecordLayout(vbaseClass
);
84 CharUnits expectedVBaseAlign
= baseLayout
.getNonVirtualAlignment();
86 return getDynamicOffsetAlignment(actualDerivedAlign
, derivedClass
,
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign
,
92 const CXXRecordDecl
*baseDecl
,
93 CharUnits expectedTargetAlign
) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl
->isCompleteDefinition())
97 return std::min(actualBaseAlign
, expectedTargetAlign
);
99 auto &baseLayout
= getContext().getASTRecordLayout(baseDecl
);
100 CharUnits expectedBaseAlign
= baseLayout
.getNonVirtualAlignment();
102 // If the class is properly aligned, assume the target offset is, too.
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign
>= expectedBaseAlign
) {
121 return expectedTargetAlign
;
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(actualBaseAlign
, expectedTargetAlign
);
130 Address
CodeGenFunction::LoadCXXThisAddress() {
131 assert(CurFuncDecl
&& "loading 'this' without a func declaration?");
132 auto *MD
= cast
<CXXMethodDecl
>(CurFuncDecl
);
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment
.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment
= CGM
.getClassPointerAlignment(MD
->getParent());
142 llvm::Type
*Ty
= ConvertType(MD
->getFunctionObjectParameterType());
143 return Address(LoadCXXThis(), Ty
, CXXThisAlignment
, KnownNonNull
);
146 /// Emit the address of a field using a member data pointer.
148 /// \param E Only used for emergency diagnostics
150 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr
*E
, Address base
,
151 llvm::Value
*memberPtr
,
152 const MemberPointerType
*memberPtrType
,
153 LValueBaseInfo
*BaseInfo
,
154 TBAAAccessInfo
*TBAAInfo
) {
155 // Ask the ABI to compute the actual address.
157 CGM
.getCXXABI().EmitMemberDataPointerAddress(*this, E
, base
,
158 memberPtr
, memberPtrType
);
160 QualType memberType
= memberPtrType
->getPointeeType();
161 CharUnits memberAlign
=
162 CGM
.getNaturalTypeAlignment(memberType
, BaseInfo
, TBAAInfo
);
164 CGM
.getDynamicOffsetAlignment(base
.getAlignment(),
165 memberPtrType
->getClass()->getAsCXXRecordDecl(),
167 return Address(ptr
, ConvertTypeForMem(memberPtrType
->getPointeeType()),
171 CharUnits
CodeGenModule::computeNonVirtualBaseClassOffset(
172 const CXXRecordDecl
*DerivedClass
, CastExpr::path_const_iterator Start
,
173 CastExpr::path_const_iterator End
) {
174 CharUnits Offset
= CharUnits::Zero();
176 const ASTContext
&Context
= getContext();
177 const CXXRecordDecl
*RD
= DerivedClass
;
179 for (CastExpr::path_const_iterator I
= Start
; I
!= End
; ++I
) {
180 const CXXBaseSpecifier
*Base
= *I
;
181 assert(!Base
->isVirtual() && "Should not see virtual bases here!");
184 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
186 const auto *BaseDecl
=
187 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
190 Offset
+= Layout
.getBaseClassOffset(BaseDecl
);
199 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl
*ClassDecl
,
200 CastExpr::path_const_iterator PathBegin
,
201 CastExpr::path_const_iterator PathEnd
) {
202 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
205 computeNonVirtualBaseClassOffset(ClassDecl
, PathBegin
, PathEnd
);
209 llvm::Type
*PtrDiffTy
=
210 Types
.ConvertType(getContext().getPointerDiffType());
212 return llvm::ConstantInt::get(PtrDiffTy
, Offset
.getQuantity());
215 /// Gets the address of a direct base class within a complete object.
216 /// This should only be used for (1) non-virtual bases or (2) virtual bases
217 /// when the type is known to be complete (e.g. in complete destructors).
219 /// The object pointed to by 'This' is assumed to be non-null.
221 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This
,
222 const CXXRecordDecl
*Derived
,
223 const CXXRecordDecl
*Base
,
224 bool BaseIsVirtual
) {
225 // 'this' must be a pointer (in some address space) to Derived.
226 assert(This
.getElementType() == ConvertType(Derived
));
228 // Compute the offset of the virtual base.
230 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(Derived
);
232 Offset
= Layout
.getVBaseClassOffset(Base
);
234 Offset
= Layout
.getBaseClassOffset(Base
);
236 // Shift and cast down to the base type.
237 // TODO: for complete types, this should be possible with a GEP.
239 if (!Offset
.isZero()) {
240 V
= V
.withElementType(Int8Ty
);
241 V
= Builder
.CreateConstInBoundsByteGEP(V
, Offset
);
243 return V
.withElementType(ConvertType(Base
));
247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction
&CGF
, Address addr
,
248 CharUnits nonVirtualOffset
,
249 llvm::Value
*virtualOffset
,
250 const CXXRecordDecl
*derivedClass
,
251 const CXXRecordDecl
*nearestVBase
) {
252 // Assert that we have something to do.
253 assert(!nonVirtualOffset
.isZero() || virtualOffset
!= nullptr);
255 // Compute the offset from the static and dynamic components.
256 llvm::Value
*baseOffset
;
257 if (!nonVirtualOffset
.isZero()) {
258 llvm::Type
*OffsetType
=
259 (CGF
.CGM
.getTarget().getCXXABI().isItaniumFamily() &&
260 CGF
.CGM
.getItaniumVTableContext().isRelativeLayout())
264 llvm::ConstantInt::get(OffsetType
, nonVirtualOffset
.getQuantity());
266 baseOffset
= CGF
.Builder
.CreateAdd(virtualOffset
, baseOffset
);
269 baseOffset
= virtualOffset
;
272 // Apply the base offset.
273 llvm::Value
*ptr
= addr
.getPointer();
274 ptr
= CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, ptr
, baseOffset
, "add.ptr");
276 // If we have a virtual component, the alignment of the result will
277 // be relative only to the known alignment of that vbase.
280 assert(nearestVBase
&& "virtual offset without vbase?");
281 alignment
= CGF
.CGM
.getVBaseAlignment(addr
.getAlignment(),
282 derivedClass
, nearestVBase
);
284 alignment
= addr
.getAlignment();
286 alignment
= alignment
.alignmentAtOffset(nonVirtualOffset
);
288 return Address(ptr
, CGF
.Int8Ty
, alignment
);
291 Address
CodeGenFunction::GetAddressOfBaseClass(
292 Address Value
, const CXXRecordDecl
*Derived
,
293 CastExpr::path_const_iterator PathBegin
,
294 CastExpr::path_const_iterator PathEnd
, bool NullCheckValue
,
295 SourceLocation Loc
) {
296 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
298 CastExpr::path_const_iterator Start
= PathBegin
;
299 const CXXRecordDecl
*VBase
= nullptr;
301 // Sema has done some convenient canonicalization here: if the
302 // access path involved any virtual steps, the conversion path will
303 // *start* with a step down to the correct virtual base subobject,
304 // and hence will not require any further steps.
305 if ((*Start
)->isVirtual()) {
306 VBase
= cast
<CXXRecordDecl
>(
307 (*Start
)->getType()->castAs
<RecordType
>()->getDecl());
311 // Compute the static offset of the ultimate destination within its
312 // allocating subobject (the virtual base, if there is one, or else
313 // the "complete" object that we see).
314 CharUnits NonVirtualOffset
= CGM
.computeNonVirtualBaseClassOffset(
315 VBase
? VBase
: Derived
, Start
, PathEnd
);
317 // If there's a virtual step, we can sometimes "devirtualize" it.
318 // For now, that's limited to when the derived type is final.
319 // TODO: "devirtualize" this for accesses to known-complete objects.
320 if (VBase
&& Derived
->hasAttr
<FinalAttr
>()) {
321 const ASTRecordLayout
&layout
= getContext().getASTRecordLayout(Derived
);
322 CharUnits vBaseOffset
= layout
.getVBaseClassOffset(VBase
);
323 NonVirtualOffset
+= vBaseOffset
;
324 VBase
= nullptr; // we no longer have a virtual step
327 // Get the base pointer type.
328 llvm::Type
*BaseValueTy
= ConvertType((PathEnd
[-1])->getType());
329 llvm::Type
*PtrTy
= llvm::PointerType::get(
330 CGM
.getLLVMContext(), Value
.getType()->getPointerAddressSpace());
332 QualType DerivedTy
= getContext().getRecordType(Derived
);
333 CharUnits DerivedAlign
= CGM
.getClassPointerAlignment(Derived
);
335 // If the static offset is zero and we don't have a virtual step,
336 // just do a bitcast; null checks are unnecessary.
337 if (NonVirtualOffset
.isZero() && !VBase
) {
338 if (sanitizePerformTypeCheck()) {
339 SanitizerSet SkippedChecks
;
340 SkippedChecks
.set(SanitizerKind::Null
, !NullCheckValue
);
341 EmitTypeCheck(TCK_Upcast
, Loc
, Value
.getPointer(),
342 DerivedTy
, DerivedAlign
, SkippedChecks
);
344 return Value
.withElementType(BaseValueTy
);
347 llvm::BasicBlock
*origBB
= nullptr;
348 llvm::BasicBlock
*endBB
= nullptr;
350 // Skip over the offset (and the vtable load) if we're supposed to
351 // null-check the pointer.
352 if (NullCheckValue
) {
353 origBB
= Builder
.GetInsertBlock();
354 llvm::BasicBlock
*notNullBB
= createBasicBlock("cast.notnull");
355 endBB
= createBasicBlock("cast.end");
357 llvm::Value
*isNull
= Builder
.CreateIsNull(Value
.getPointer());
358 Builder
.CreateCondBr(isNull
, endBB
, notNullBB
);
359 EmitBlock(notNullBB
);
362 if (sanitizePerformTypeCheck()) {
363 SanitizerSet SkippedChecks
;
364 SkippedChecks
.set(SanitizerKind::Null
, true);
365 EmitTypeCheck(VBase
? TCK_UpcastToVirtualBase
: TCK_Upcast
, Loc
,
366 Value
.getPointer(), DerivedTy
, DerivedAlign
, SkippedChecks
);
369 // Compute the virtual offset.
370 llvm::Value
*VirtualOffset
= nullptr;
373 CGM
.getCXXABI().GetVirtualBaseClassOffset(*this, Value
, Derived
, VBase
);
376 // Apply both offsets.
377 Value
= ApplyNonVirtualAndVirtualOffset(*this, Value
, NonVirtualOffset
,
378 VirtualOffset
, Derived
, VBase
);
380 // Cast to the destination type.
381 Value
= Value
.withElementType(BaseValueTy
);
383 // Build a phi if we needed a null check.
384 if (NullCheckValue
) {
385 llvm::BasicBlock
*notNullBB
= Builder
.GetInsertBlock();
386 Builder
.CreateBr(endBB
);
389 llvm::PHINode
*PHI
= Builder
.CreatePHI(PtrTy
, 2, "cast.result");
390 PHI
->addIncoming(Value
.getPointer(), notNullBB
);
391 PHI
->addIncoming(llvm::Constant::getNullValue(PtrTy
), origBB
);
392 Value
= Value
.withPointer(PHI
, NotKnownNonNull
);
399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr
,
400 const CXXRecordDecl
*Derived
,
401 CastExpr::path_const_iterator PathBegin
,
402 CastExpr::path_const_iterator PathEnd
,
403 bool NullCheckValue
) {
404 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
407 getContext().getCanonicalType(getContext().getTagDeclType(Derived
));
408 llvm::Type
*DerivedValueTy
= ConvertType(DerivedTy
);
410 llvm::Value
*NonVirtualOffset
=
411 CGM
.GetNonVirtualBaseClassOffset(Derived
, PathBegin
, PathEnd
);
413 if (!NonVirtualOffset
) {
414 // No offset, we can just cast back.
415 return BaseAddr
.withElementType(DerivedValueTy
);
418 llvm::BasicBlock
*CastNull
= nullptr;
419 llvm::BasicBlock
*CastNotNull
= nullptr;
420 llvm::BasicBlock
*CastEnd
= nullptr;
422 if (NullCheckValue
) {
423 CastNull
= createBasicBlock("cast.null");
424 CastNotNull
= createBasicBlock("cast.notnull");
425 CastEnd
= createBasicBlock("cast.end");
427 llvm::Value
*IsNull
= Builder
.CreateIsNull(BaseAddr
.getPointer());
428 Builder
.CreateCondBr(IsNull
, CastNull
, CastNotNull
);
429 EmitBlock(CastNotNull
);
433 llvm::Value
*Value
= BaseAddr
.getPointer();
434 Value
= Builder
.CreateInBoundsGEP(
435 Int8Ty
, Value
, Builder
.CreateNeg(NonVirtualOffset
), "sub.ptr");
437 // Produce a PHI if we had a null-check.
438 if (NullCheckValue
) {
439 Builder
.CreateBr(CastEnd
);
441 Builder
.CreateBr(CastEnd
);
444 llvm::PHINode
*PHI
= Builder
.CreatePHI(Value
->getType(), 2);
445 PHI
->addIncoming(Value
, CastNotNull
);
446 PHI
->addIncoming(llvm::Constant::getNullValue(Value
->getType()), CastNull
);
450 return Address(Value
, DerivedValueTy
, CGM
.getClassPointerAlignment(Derived
));
453 llvm::Value
*CodeGenFunction::GetVTTParameter(GlobalDecl GD
,
456 if (!CGM
.getCXXABI().NeedsVTTParameter(GD
)) {
457 // This constructor/destructor does not need a VTT parameter.
461 const CXXRecordDecl
*RD
= cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent();
462 const CXXRecordDecl
*Base
= cast
<CXXMethodDecl
>(GD
.getDecl())->getParent();
464 uint64_t SubVTTIndex
;
467 // If this is a delegating constructor call, just load the VTT.
469 } else if (RD
== Base
) {
470 // If the record matches the base, this is the complete ctor/dtor
471 // variant calling the base variant in a class with virtual bases.
472 assert(!CGM
.getCXXABI().NeedsVTTParameter(CurGD
) &&
473 "doing no-op VTT offset in base dtor/ctor?");
474 assert(!ForVirtualBase
&& "Can't have same class as virtual base!");
477 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
478 CharUnits BaseOffset
= ForVirtualBase
?
479 Layout
.getVBaseClassOffset(Base
) :
480 Layout
.getBaseClassOffset(Base
);
483 CGM
.getVTables().getSubVTTIndex(RD
, BaseSubobject(Base
, BaseOffset
));
484 assert(SubVTTIndex
!= 0 && "Sub-VTT index must be greater than zero!");
487 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
488 // A VTT parameter was passed to the constructor, use it.
489 llvm::Value
*VTT
= LoadCXXVTT();
490 return Builder
.CreateConstInBoundsGEP1_64(VoidPtrTy
, VTT
, SubVTTIndex
);
492 // We're the complete constructor, so get the VTT by name.
493 llvm::GlobalValue
*VTT
= CGM
.getVTables().GetAddrOfVTT(RD
);
494 return Builder
.CreateConstInBoundsGEP2_64(
495 VTT
->getValueType(), VTT
, 0, SubVTTIndex
);
500 /// Call the destructor for a direct base class.
501 struct CallBaseDtor final
: EHScopeStack::Cleanup
{
502 const CXXRecordDecl
*BaseClass
;
504 CallBaseDtor(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
505 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
507 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
508 const CXXRecordDecl
*DerivedClass
=
509 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
511 const CXXDestructorDecl
*D
= BaseClass
->getDestructor();
512 // We are already inside a destructor, so presumably the object being
513 // destroyed should have the expected type.
514 QualType ThisTy
= D
->getFunctionObjectParameterType();
516 CGF
.GetAddressOfDirectBaseInCompleteClass(CGF
.LoadCXXThisAddress(),
517 DerivedClass
, BaseClass
,
519 CGF
.EmitCXXDestructorCall(D
, Dtor_Base
, BaseIsVirtual
,
520 /*Delegating=*/false, Addr
, ThisTy
);
524 /// A visitor which checks whether an initializer uses 'this' in a
525 /// way which requires the vtable to be properly set.
526 struct DynamicThisUseChecker
: ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> {
527 typedef ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> super
;
531 DynamicThisUseChecker(const ASTContext
&C
) : super(C
), UsesThis(false) {}
533 // Black-list all explicit and implicit references to 'this'.
535 // Do we need to worry about external references to 'this' derived
536 // from arbitrary code? If so, then anything which runs arbitrary
537 // external code might potentially access the vtable.
538 void VisitCXXThisExpr(const CXXThisExpr
*E
) { UsesThis
= true; }
540 } // end anonymous namespace
542 static bool BaseInitializerUsesThis(ASTContext
&C
, const Expr
*Init
) {
543 DynamicThisUseChecker
Checker(C
);
545 return Checker
.UsesThis
;
548 static void EmitBaseInitializer(CodeGenFunction
&CGF
,
549 const CXXRecordDecl
*ClassDecl
,
550 CXXCtorInitializer
*BaseInit
) {
551 assert(BaseInit
->isBaseInitializer() &&
552 "Must have base initializer!");
554 Address ThisPtr
= CGF
.LoadCXXThisAddress();
556 const Type
*BaseType
= BaseInit
->getBaseClass();
557 const auto *BaseClassDecl
=
558 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
560 bool isBaseVirtual
= BaseInit
->isBaseVirtual();
562 // If the initializer for the base (other than the constructor
563 // itself) accesses 'this' in any way, we need to initialize the
565 if (BaseInitializerUsesThis(CGF
.getContext(), BaseInit
->getInit()))
566 CGF
.InitializeVTablePointers(ClassDecl
);
568 // We can pretend to be a complete class because it only matters for
569 // virtual bases, and we only do virtual bases for complete ctors.
571 CGF
.GetAddressOfDirectBaseInCompleteClass(ThisPtr
, ClassDecl
,
574 AggValueSlot AggSlot
=
575 AggValueSlot::forAddr(
577 AggValueSlot::IsDestructed
,
578 AggValueSlot::DoesNotNeedGCBarriers
,
579 AggValueSlot::IsNotAliased
,
580 CGF
.getOverlapForBaseInit(ClassDecl
, BaseClassDecl
, isBaseVirtual
));
582 CGF
.EmitAggExpr(BaseInit
->getInit(), AggSlot
);
584 if (CGF
.CGM
.getLangOpts().Exceptions
&&
585 !BaseClassDecl
->hasTrivialDestructor())
586 CGF
.EHStack
.pushCleanup
<CallBaseDtor
>(EHCleanup
, BaseClassDecl
,
590 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl
*D
) {
591 auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
);
592 if (!(CD
&& CD
->isCopyOrMoveConstructor()) &&
593 !D
->isCopyAssignmentOperator() && !D
->isMoveAssignmentOperator())
596 // We can emit a memcpy for a trivial copy or move constructor/assignment.
597 if (D
->isTrivial() && !D
->getParent()->mayInsertExtraPadding())
600 // We *must* emit a memcpy for a defaulted union copy or move op.
601 if (D
->getParent()->isUnion() && D
->isDefaulted())
607 static void EmitLValueForAnyFieldInitialization(CodeGenFunction
&CGF
,
608 CXXCtorInitializer
*MemberInit
,
610 FieldDecl
*Field
= MemberInit
->getAnyMember();
611 if (MemberInit
->isIndirectMemberInitializer()) {
612 // If we are initializing an anonymous union field, drill down to the field.
613 IndirectFieldDecl
*IndirectField
= MemberInit
->getIndirectMember();
614 for (const auto *I
: IndirectField
->chain())
615 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, cast
<FieldDecl
>(I
));
617 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, Field
);
621 static void EmitMemberInitializer(CodeGenFunction
&CGF
,
622 const CXXRecordDecl
*ClassDecl
,
623 CXXCtorInitializer
*MemberInit
,
624 const CXXConstructorDecl
*Constructor
,
625 FunctionArgList
&Args
) {
626 ApplyDebugLocation
Loc(CGF
, MemberInit
->getSourceLocation());
627 assert(MemberInit
->isAnyMemberInitializer() &&
628 "Must have member initializer!");
629 assert(MemberInit
->getInit() && "Must have initializer!");
631 // non-static data member initializers.
632 FieldDecl
*Field
= MemberInit
->getAnyMember();
633 QualType FieldType
= Field
->getType();
635 llvm::Value
*ThisPtr
= CGF
.LoadCXXThis();
636 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
639 // If a base constructor is being emitted, create an LValue that has the
640 // non-virtual alignment.
641 if (CGF
.CurGD
.getCtorType() == Ctor_Base
)
642 LHS
= CGF
.MakeNaturalAlignPointeeAddrLValue(ThisPtr
, RecordTy
);
644 LHS
= CGF
.MakeNaturalAlignAddrLValue(ThisPtr
, RecordTy
);
646 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, LHS
);
648 // Special case: if we are in a copy or move constructor, and we are copying
649 // an array of PODs or classes with trivial copy constructors, ignore the
650 // AST and perform the copy we know is equivalent.
651 // FIXME: This is hacky at best... if we had a bit more explicit information
652 // in the AST, we could generalize it more easily.
653 const ConstantArrayType
*Array
654 = CGF
.getContext().getAsConstantArrayType(FieldType
);
655 if (Array
&& Constructor
->isDefaulted() &&
656 Constructor
->isCopyOrMoveConstructor()) {
657 QualType BaseElementTy
= CGF
.getContext().getBaseElementType(Array
);
658 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
659 if (BaseElementTy
.isPODType(CGF
.getContext()) ||
660 (CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor()))) {
661 unsigned SrcArgIndex
=
662 CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(Constructor
, Args
);
664 = CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(Args
[SrcArgIndex
]));
665 LValue ThisRHSLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
666 LValue Src
= CGF
.EmitLValueForFieldInitialization(ThisRHSLV
, Field
);
668 // Copy the aggregate.
669 CGF
.EmitAggregateCopy(LHS
, Src
, FieldType
, CGF
.getOverlapForFieldInit(Field
),
670 LHS
.isVolatileQualified());
671 // Ensure that we destroy the objects if an exception is thrown later in
673 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
674 if (CGF
.needsEHCleanup(dtorKind
))
675 CGF
.pushEHDestroy(dtorKind
, LHS
.getAddress(CGF
), FieldType
);
680 CGF
.EmitInitializerForField(Field
, LHS
, MemberInit
->getInit());
683 void CodeGenFunction::EmitInitializerForField(FieldDecl
*Field
, LValue LHS
,
685 QualType FieldType
= Field
->getType();
686 switch (getEvaluationKind(FieldType
)) {
688 if (LHS
.isSimple()) {
689 EmitExprAsInit(Init
, Field
, LHS
, false);
691 RValue RHS
= RValue::get(EmitScalarExpr(Init
));
692 EmitStoreThroughLValue(RHS
, LHS
);
696 EmitComplexExprIntoLValue(Init
, LHS
, /*isInit*/ true);
698 case TEK_Aggregate
: {
699 AggValueSlot Slot
= AggValueSlot::forLValue(
700 LHS
, *this, AggValueSlot::IsDestructed
,
701 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
702 getOverlapForFieldInit(Field
), AggValueSlot::IsNotZeroed
,
703 // Checks are made by the code that calls constructor.
704 AggValueSlot::IsSanitizerChecked
);
705 EmitAggExpr(Init
, Slot
);
710 // Ensure that we destroy this object if an exception is thrown
711 // later in the constructor.
712 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
713 if (needsEHCleanup(dtorKind
))
714 pushEHDestroy(dtorKind
, LHS
.getAddress(*this), FieldType
);
717 /// Checks whether the given constructor is a valid subject for the
718 /// complete-to-base constructor delegation optimization, i.e.
719 /// emitting the complete constructor as a simple call to the base
721 bool CodeGenFunction::IsConstructorDelegationValid(
722 const CXXConstructorDecl
*Ctor
) {
724 // Currently we disable the optimization for classes with virtual
725 // bases because (1) the addresses of parameter variables need to be
726 // consistent across all initializers but (2) the delegate function
727 // call necessarily creates a second copy of the parameter variable.
729 // The limiting example (purely theoretical AFAIK):
730 // struct A { A(int &c) { c++; } };
731 // struct B : virtual A {
732 // B(int count) : A(count) { printf("%d\n", count); }
734 // ...although even this example could in principle be emitted as a
735 // delegation since the address of the parameter doesn't escape.
736 if (Ctor
->getParent()->getNumVBases()) {
737 // TODO: white-list trivial vbase initializers. This case wouldn't
738 // be subject to the restrictions below.
740 // TODO: white-list cases where:
741 // - there are no non-reference parameters to the constructor
742 // - the initializers don't access any non-reference parameters
743 // - the initializers don't take the address of non-reference
746 // If we ever add any of the above cases, remember that:
747 // - function-try-blocks will always exclude this optimization
748 // - we need to perform the constructor prologue and cleanup in
749 // EmitConstructorBody.
754 // We also disable the optimization for variadic functions because
755 // it's impossible to "re-pass" varargs.
756 if (Ctor
->getType()->castAs
<FunctionProtoType
>()->isVariadic())
759 // FIXME: Decide if we can do a delegation of a delegating constructor.
760 if (Ctor
->isDelegatingConstructor())
766 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767 // to poison the extra field paddings inserted under
768 // -fsanitize-address-field-padding=1|2.
769 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue
) {
770 ASTContext
&Context
= getContext();
771 const CXXRecordDecl
*ClassDecl
=
772 Prologue
? cast
<CXXConstructorDecl
>(CurGD
.getDecl())->getParent()
773 : cast
<CXXDestructorDecl
>(CurGD
.getDecl())->getParent();
774 if (!ClassDecl
->mayInsertExtraPadding()) return;
776 struct SizeAndOffset
{
781 unsigned PtrSize
= CGM
.getDataLayout().getPointerSizeInBits();
782 const ASTRecordLayout
&Info
= Context
.getASTRecordLayout(ClassDecl
);
784 // Populate sizes and offsets of fields.
785 SmallVector
<SizeAndOffset
, 16> SSV(Info
.getFieldCount());
786 for (unsigned i
= 0, e
= Info
.getFieldCount(); i
!= e
; ++i
)
788 Context
.toCharUnitsFromBits(Info
.getFieldOffset(i
)).getQuantity();
790 size_t NumFields
= 0;
791 for (const auto *Field
: ClassDecl
->fields()) {
792 const FieldDecl
*D
= Field
;
793 auto FieldInfo
= Context
.getTypeInfoInChars(D
->getType());
794 CharUnits FieldSize
= FieldInfo
.Width
;
795 assert(NumFields
< SSV
.size());
796 SSV
[NumFields
].Size
= D
->isBitField() ? 0 : FieldSize
.getQuantity();
799 assert(NumFields
== SSV
.size());
800 if (SSV
.size() <= 1) return;
802 // We will insert calls to __asan_* run-time functions.
803 // LLVM AddressSanitizer pass may decide to inline them later.
804 llvm::Type
*Args
[2] = {IntPtrTy
, IntPtrTy
};
805 llvm::FunctionType
*FTy
=
806 llvm::FunctionType::get(CGM
.VoidTy
, Args
, false);
807 llvm::FunctionCallee F
= CGM
.CreateRuntimeFunction(
808 FTy
, Prologue
? "__asan_poison_intra_object_redzone"
809 : "__asan_unpoison_intra_object_redzone");
811 llvm::Value
*ThisPtr
= LoadCXXThis();
812 ThisPtr
= Builder
.CreatePtrToInt(ThisPtr
, IntPtrTy
);
813 uint64_t TypeSize
= Info
.getNonVirtualSize().getQuantity();
814 // For each field check if it has sufficient padding,
815 // if so (un)poison it with a call.
816 for (size_t i
= 0; i
< SSV
.size(); i
++) {
817 uint64_t AsanAlignment
= 8;
818 uint64_t NextField
= i
== SSV
.size() - 1 ? TypeSize
: SSV
[i
+ 1].Offset
;
819 uint64_t PoisonSize
= NextField
- SSV
[i
].Offset
- SSV
[i
].Size
;
820 uint64_t EndOffset
= SSV
[i
].Offset
+ SSV
[i
].Size
;
821 if (PoisonSize
< AsanAlignment
|| !SSV
[i
].Size
||
822 (NextField
% AsanAlignment
) != 0)
825 F
, {Builder
.CreateAdd(ThisPtr
, Builder
.getIntN(PtrSize
, EndOffset
)),
826 Builder
.getIntN(PtrSize
, PoisonSize
)});
830 /// EmitConstructorBody - Emits the body of the current constructor.
831 void CodeGenFunction::EmitConstructorBody(FunctionArgList
&Args
) {
832 EmitAsanPrologueOrEpilogue(true);
833 const CXXConstructorDecl
*Ctor
= cast
<CXXConstructorDecl
>(CurGD
.getDecl());
834 CXXCtorType CtorType
= CurGD
.getCtorType();
836 assert((CGM
.getTarget().getCXXABI().hasConstructorVariants() ||
837 CtorType
== Ctor_Complete
) &&
838 "can only generate complete ctor for this ABI");
840 // Before we go any further, try the complete->base constructor
841 // delegation optimization.
842 if (CtorType
== Ctor_Complete
&& IsConstructorDelegationValid(Ctor
) &&
843 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
844 EmitDelegateCXXConstructorCall(Ctor
, Ctor_Base
, Args
, Ctor
->getEndLoc());
848 const FunctionDecl
*Definition
= nullptr;
849 Stmt
*Body
= Ctor
->getBody(Definition
);
850 assert(Definition
== Ctor
&& "emitting wrong constructor body");
852 // Enter the function-try-block before the constructor prologue if
854 bool IsTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
856 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
858 incrementProfileCounter(Body
);
860 RunCleanupsScope
RunCleanups(*this);
862 // TODO: in restricted cases, we can emit the vbase initializers of
863 // a complete ctor and then delegate to the base ctor.
865 // Emit the constructor prologue, i.e. the base and member
867 EmitCtorPrologue(Ctor
, CtorType
, Args
);
869 // Emit the body of the statement.
871 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
875 // Emit any cleanup blocks associated with the member or base
876 // initializers, which includes (along the exceptional path) the
877 // destructors for those members and bases that were fully
879 RunCleanups
.ForceCleanup();
882 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
886 /// RAII object to indicate that codegen is copying the value representation
887 /// instead of the object representation. Useful when copying a struct or
888 /// class which has uninitialized members and we're only performing
889 /// lvalue-to-rvalue conversion on the object but not its members.
890 class CopyingValueRepresentation
{
892 explicit CopyingValueRepresentation(CodeGenFunction
&CGF
)
893 : CGF(CGF
), OldSanOpts(CGF
.SanOpts
) {
894 CGF
.SanOpts
.set(SanitizerKind::Bool
, false);
895 CGF
.SanOpts
.set(SanitizerKind::Enum
, false);
897 ~CopyingValueRepresentation() {
898 CGF
.SanOpts
= OldSanOpts
;
901 CodeGenFunction
&CGF
;
902 SanitizerSet OldSanOpts
;
904 } // end anonymous namespace
907 class FieldMemcpyizer
{
909 FieldMemcpyizer(CodeGenFunction
&CGF
, const CXXRecordDecl
*ClassDecl
,
910 const VarDecl
*SrcRec
)
911 : CGF(CGF
), ClassDecl(ClassDecl
), SrcRec(SrcRec
),
912 RecLayout(CGF
.getContext().getASTRecordLayout(ClassDecl
)),
913 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
914 LastFieldOffset(0), LastAddedFieldIndex(0) {}
916 bool isMemcpyableField(FieldDecl
*F
) const {
917 // Never memcpy fields when we are adding poisoned paddings.
918 if (CGF
.getContext().getLangOpts().SanitizeAddressFieldPadding
)
920 Qualifiers Qual
= F
->getType().getQualifiers();
921 if (Qual
.hasVolatile() || Qual
.hasObjCLifetime())
926 void addMemcpyableField(FieldDecl
*F
) {
927 if (F
->isZeroSize(CGF
.getContext()))
935 CharUnits
getMemcpySize(uint64_t FirstByteOffset
) const {
936 ASTContext
&Ctx
= CGF
.getContext();
937 unsigned LastFieldSize
=
938 LastField
->isBitField()
939 ? LastField
->getBitWidthValue(Ctx
)
941 Ctx
.getTypeInfoDataSizeInChars(LastField
->getType()).Width
);
942 uint64_t MemcpySizeBits
= LastFieldOffset
+ LastFieldSize
-
943 FirstByteOffset
+ Ctx
.getCharWidth() - 1;
944 CharUnits MemcpySize
= Ctx
.toCharUnitsFromBits(MemcpySizeBits
);
949 // Give the subclass a chance to bail out if it feels the memcpy isn't
950 // worth it (e.g. Hasn't aggregated enough data).
955 uint64_t FirstByteOffset
;
956 if (FirstField
->isBitField()) {
957 const CGRecordLayout
&RL
=
958 CGF
.getTypes().getCGRecordLayout(FirstField
->getParent());
959 const CGBitFieldInfo
&BFInfo
= RL
.getBitFieldInfo(FirstField
);
960 // FirstFieldOffset is not appropriate for bitfields,
961 // we need to use the storage offset instead.
962 FirstByteOffset
= CGF
.getContext().toBits(BFInfo
.StorageOffset
);
964 FirstByteOffset
= FirstFieldOffset
;
967 CharUnits MemcpySize
= getMemcpySize(FirstByteOffset
);
968 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
969 Address ThisPtr
= CGF
.LoadCXXThisAddress();
970 LValue DestLV
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
971 LValue Dest
= CGF
.EmitLValueForFieldInitialization(DestLV
, FirstField
);
972 llvm::Value
*SrcPtr
= CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(SrcRec
));
973 LValue SrcLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
974 LValue Src
= CGF
.EmitLValueForFieldInitialization(SrcLV
, FirstField
);
977 Dest
.isBitField() ? Dest
.getBitFieldAddress() : Dest
.getAddress(CGF
),
978 Src
.isBitField() ? Src
.getBitFieldAddress() : Src
.getAddress(CGF
),
984 FirstField
= nullptr;
988 CodeGenFunction
&CGF
;
989 const CXXRecordDecl
*ClassDecl
;
992 void emitMemcpyIR(Address DestPtr
, Address SrcPtr
, CharUnits Size
) {
993 DestPtr
= DestPtr
.withElementType(CGF
.Int8Ty
);
994 SrcPtr
= SrcPtr
.withElementType(CGF
.Int8Ty
);
995 CGF
.Builder
.CreateMemCpy(DestPtr
, SrcPtr
, Size
.getQuantity());
998 void addInitialField(FieldDecl
*F
) {
1001 FirstFieldOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1002 LastFieldOffset
= FirstFieldOffset
;
1003 LastAddedFieldIndex
= F
->getFieldIndex();
1006 void addNextField(FieldDecl
*F
) {
1007 // For the most part, the following invariant will hold:
1008 // F->getFieldIndex() == LastAddedFieldIndex + 1
1009 // The one exception is that Sema won't add a copy-initializer for an
1010 // unnamed bitfield, which will show up here as a gap in the sequence.
1011 assert(F
->getFieldIndex() >= LastAddedFieldIndex
+ 1 &&
1012 "Cannot aggregate fields out of order.");
1013 LastAddedFieldIndex
= F
->getFieldIndex();
1015 // The 'first' and 'last' fields are chosen by offset, rather than field
1016 // index. This allows the code to support bitfields, as well as regular
1018 uint64_t FOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1019 if (FOffset
< FirstFieldOffset
) {
1021 FirstFieldOffset
= FOffset
;
1022 } else if (FOffset
>= LastFieldOffset
) {
1024 LastFieldOffset
= FOffset
;
1028 const VarDecl
*SrcRec
;
1029 const ASTRecordLayout
&RecLayout
;
1030 FieldDecl
*FirstField
;
1031 FieldDecl
*LastField
;
1032 uint64_t FirstFieldOffset
, LastFieldOffset
;
1033 unsigned LastAddedFieldIndex
;
1036 class ConstructorMemcpyizer
: public FieldMemcpyizer
{
1038 /// Get source argument for copy constructor. Returns null if not a copy
1040 static const VarDecl
*getTrivialCopySource(CodeGenFunction
&CGF
,
1041 const CXXConstructorDecl
*CD
,
1042 FunctionArgList
&Args
) {
1043 if (CD
->isCopyOrMoveConstructor() && CD
->isDefaulted())
1044 return Args
[CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(CD
, Args
)];
1048 // Returns true if a CXXCtorInitializer represents a member initialization
1049 // that can be rolled into a memcpy.
1050 bool isMemberInitMemcpyable(CXXCtorInitializer
*MemberInit
) const {
1051 if (!MemcpyableCtor
)
1053 FieldDecl
*Field
= MemberInit
->getMember();
1054 assert(Field
&& "No field for member init.");
1055 QualType FieldType
= Field
->getType();
1056 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
1058 // Bail out on non-memcpyable, not-trivially-copyable members.
1059 if (!(CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor())) &&
1060 !(FieldType
.isTriviallyCopyableType(CGF
.getContext()) ||
1061 FieldType
->isReferenceType()))
1064 // Bail out on volatile fields.
1065 if (!isMemcpyableField(Field
))
1068 // Otherwise we're good.
1073 ConstructorMemcpyizer(CodeGenFunction
&CGF
, const CXXConstructorDecl
*CD
,
1074 FunctionArgList
&Args
)
1075 : FieldMemcpyizer(CGF
, CD
->getParent(), getTrivialCopySource(CGF
, CD
, Args
)),
1076 ConstructorDecl(CD
),
1077 MemcpyableCtor(CD
->isDefaulted() &&
1078 CD
->isCopyOrMoveConstructor() &&
1079 CGF
.getLangOpts().getGC() == LangOptions::NonGC
),
1082 void addMemberInitializer(CXXCtorInitializer
*MemberInit
) {
1083 if (isMemberInitMemcpyable(MemberInit
)) {
1084 AggregatedInits
.push_back(MemberInit
);
1085 addMemcpyableField(MemberInit
->getMember());
1087 emitAggregatedInits();
1088 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(), MemberInit
,
1089 ConstructorDecl
, Args
);
1093 void emitAggregatedInits() {
1094 if (AggregatedInits
.size() <= 1) {
1095 // This memcpy is too small to be worthwhile. Fall back on default
1097 if (!AggregatedInits
.empty()) {
1098 CopyingValueRepresentation
CVR(CGF
);
1099 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(),
1100 AggregatedInits
[0], ConstructorDecl
, Args
);
1101 AggregatedInits
.clear();
1107 pushEHDestructors();
1109 AggregatedInits
.clear();
1112 void pushEHDestructors() {
1113 Address ThisPtr
= CGF
.LoadCXXThisAddress();
1114 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
1115 LValue LHS
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
1117 for (unsigned i
= 0; i
< AggregatedInits
.size(); ++i
) {
1118 CXXCtorInitializer
*MemberInit
= AggregatedInits
[i
];
1119 QualType FieldType
= MemberInit
->getAnyMember()->getType();
1120 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
1121 if (!CGF
.needsEHCleanup(dtorKind
))
1123 LValue FieldLHS
= LHS
;
1124 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, FieldLHS
);
1125 CGF
.pushEHDestroy(dtorKind
, FieldLHS
.getAddress(CGF
), FieldType
);
1130 emitAggregatedInits();
1134 const CXXConstructorDecl
*ConstructorDecl
;
1135 bool MemcpyableCtor
;
1136 FunctionArgList
&Args
;
1137 SmallVector
<CXXCtorInitializer
*, 16> AggregatedInits
;
1140 class AssignmentMemcpyizer
: public FieldMemcpyizer
{
1142 // Returns the memcpyable field copied by the given statement, if one
1143 // exists. Otherwise returns null.
1144 FieldDecl
*getMemcpyableField(Stmt
*S
) {
1145 if (!AssignmentsMemcpyable
)
1147 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(S
)) {
1148 // Recognise trivial assignments.
1149 if (BO
->getOpcode() != BO_Assign
)
1151 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(BO
->getLHS());
1154 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1155 if (!Field
|| !isMemcpyableField(Field
))
1157 Stmt
*RHS
= BO
->getRHS();
1158 if (ImplicitCastExpr
*EC
= dyn_cast
<ImplicitCastExpr
>(RHS
))
1159 RHS
= EC
->getSubExpr();
1162 if (MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(RHS
)) {
1163 if (ME2
->getMemberDecl() == Field
)
1167 } else if (CXXMemberCallExpr
*MCE
= dyn_cast
<CXXMemberCallExpr
>(S
)) {
1168 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MCE
->getCalleeDecl());
1169 if (!(MD
&& isMemcpyEquivalentSpecialMember(MD
)))
1171 MemberExpr
*IOA
= dyn_cast
<MemberExpr
>(MCE
->getImplicitObjectArgument());
1174 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(IOA
->getMemberDecl());
1175 if (!Field
|| !isMemcpyableField(Field
))
1177 MemberExpr
*Arg0
= dyn_cast
<MemberExpr
>(MCE
->getArg(0));
1178 if (!Arg0
|| Field
!= dyn_cast
<FieldDecl
>(Arg0
->getMemberDecl()))
1181 } else if (CallExpr
*CE
= dyn_cast
<CallExpr
>(S
)) {
1182 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CE
->getCalleeDecl());
1183 if (!FD
|| FD
->getBuiltinID() != Builtin::BI__builtin_memcpy
)
1185 Expr
*DstPtr
= CE
->getArg(0);
1186 if (ImplicitCastExpr
*DC
= dyn_cast
<ImplicitCastExpr
>(DstPtr
))
1187 DstPtr
= DC
->getSubExpr();
1188 UnaryOperator
*DUO
= dyn_cast
<UnaryOperator
>(DstPtr
);
1189 if (!DUO
|| DUO
->getOpcode() != UO_AddrOf
)
1191 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(DUO
->getSubExpr());
1194 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1195 if (!Field
|| !isMemcpyableField(Field
))
1197 Expr
*SrcPtr
= CE
->getArg(1);
1198 if (ImplicitCastExpr
*SC
= dyn_cast
<ImplicitCastExpr
>(SrcPtr
))
1199 SrcPtr
= SC
->getSubExpr();
1200 UnaryOperator
*SUO
= dyn_cast
<UnaryOperator
>(SrcPtr
);
1201 if (!SUO
|| SUO
->getOpcode() != UO_AddrOf
)
1203 MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(SUO
->getSubExpr());
1204 if (!ME2
|| Field
!= dyn_cast
<FieldDecl
>(ME2
->getMemberDecl()))
1212 bool AssignmentsMemcpyable
;
1213 SmallVector
<Stmt
*, 16> AggregatedStmts
;
1216 AssignmentMemcpyizer(CodeGenFunction
&CGF
, const CXXMethodDecl
*AD
,
1217 FunctionArgList
&Args
)
1218 : FieldMemcpyizer(CGF
, AD
->getParent(), Args
[Args
.size() - 1]),
1219 AssignmentsMemcpyable(CGF
.getLangOpts().getGC() == LangOptions::NonGC
) {
1220 assert(Args
.size() == 2);
1223 void emitAssignment(Stmt
*S
) {
1224 FieldDecl
*F
= getMemcpyableField(S
);
1226 addMemcpyableField(F
);
1227 AggregatedStmts
.push_back(S
);
1229 emitAggregatedStmts();
1234 void emitAggregatedStmts() {
1235 if (AggregatedStmts
.size() <= 1) {
1236 if (!AggregatedStmts
.empty()) {
1237 CopyingValueRepresentation
CVR(CGF
);
1238 CGF
.EmitStmt(AggregatedStmts
[0]);
1244 AggregatedStmts
.clear();
1248 emitAggregatedStmts();
1251 } // end anonymous namespace
1253 static bool isInitializerOfDynamicClass(const CXXCtorInitializer
*BaseInit
) {
1254 const Type
*BaseType
= BaseInit
->getBaseClass();
1255 const auto *BaseClassDecl
=
1256 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
1257 return BaseClassDecl
->isDynamicClass();
1260 /// EmitCtorPrologue - This routine generates necessary code to initialize
1261 /// base classes and non-static data members belonging to this constructor.
1262 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl
*CD
,
1263 CXXCtorType CtorType
,
1264 FunctionArgList
&Args
) {
1265 if (CD
->isDelegatingConstructor())
1266 return EmitDelegatingCXXConstructorCall(CD
, Args
);
1268 const CXXRecordDecl
*ClassDecl
= CD
->getParent();
1270 CXXConstructorDecl::init_const_iterator B
= CD
->init_begin(),
1273 // Virtual base initializers first, if any. They aren't needed if:
1274 // - This is a base ctor variant
1275 // - There are no vbases
1276 // - The class is abstract, so a complete object of it cannot be constructed
1278 // The check for an abstract class is necessary because sema may not have
1279 // marked virtual base destructors referenced.
1280 bool ConstructVBases
= CtorType
!= Ctor_Base
&&
1281 ClassDecl
->getNumVBases() != 0 &&
1282 !ClassDecl
->isAbstract();
1284 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1285 // constructor of a class with virtual bases takes an additional parameter to
1286 // conditionally construct the virtual bases. Emit that check here.
1287 llvm::BasicBlock
*BaseCtorContinueBB
= nullptr;
1288 if (ConstructVBases
&&
1289 !CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
1290 BaseCtorContinueBB
=
1291 CGM
.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl
);
1292 assert(BaseCtorContinueBB
);
1295 for (; B
!= E
&& (*B
)->isBaseInitializer() && (*B
)->isBaseVirtual(); B
++) {
1296 if (!ConstructVBases
)
1298 SaveAndRestore
ThisRAII(CXXThisValue
);
1299 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1300 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1301 isInitializerOfDynamicClass(*B
))
1302 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1303 EmitBaseInitializer(*this, ClassDecl
, *B
);
1306 if (BaseCtorContinueBB
) {
1307 // Complete object handler should continue to the remaining initializers.
1308 Builder
.CreateBr(BaseCtorContinueBB
);
1309 EmitBlock(BaseCtorContinueBB
);
1312 // Then, non-virtual base initializers.
1313 for (; B
!= E
&& (*B
)->isBaseInitializer(); B
++) {
1314 assert(!(*B
)->isBaseVirtual());
1315 SaveAndRestore
ThisRAII(CXXThisValue
);
1316 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1317 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1318 isInitializerOfDynamicClass(*B
))
1319 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1320 EmitBaseInitializer(*this, ClassDecl
, *B
);
1323 InitializeVTablePointers(ClassDecl
);
1325 // And finally, initialize class members.
1326 FieldConstructionScope
FCS(*this, LoadCXXThisAddress());
1327 ConstructorMemcpyizer
CM(*this, CD
, Args
);
1328 for (; B
!= E
; B
++) {
1329 CXXCtorInitializer
*Member
= (*B
);
1330 assert(!Member
->isBaseInitializer());
1331 assert(Member
->isAnyMemberInitializer() &&
1332 "Delegating initializer on non-delegating constructor");
1333 CM
.addMemberInitializer(Member
);
1339 FieldHasTrivialDestructorBody(ASTContext
&Context
, const FieldDecl
*Field
);
1342 HasTrivialDestructorBody(ASTContext
&Context
,
1343 const CXXRecordDecl
*BaseClassDecl
,
1344 const CXXRecordDecl
*MostDerivedClassDecl
)
1346 // If the destructor is trivial we don't have to check anything else.
1347 if (BaseClassDecl
->hasTrivialDestructor())
1350 if (!BaseClassDecl
->getDestructor()->hasTrivialBody())
1354 for (const auto *Field
: BaseClassDecl
->fields())
1355 if (!FieldHasTrivialDestructorBody(Context
, Field
))
1358 // Check non-virtual bases.
1359 for (const auto &I
: BaseClassDecl
->bases()) {
1363 const CXXRecordDecl
*NonVirtualBase
=
1364 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1365 if (!HasTrivialDestructorBody(Context
, NonVirtualBase
,
1366 MostDerivedClassDecl
))
1370 if (BaseClassDecl
== MostDerivedClassDecl
) {
1371 // Check virtual bases.
1372 for (const auto &I
: BaseClassDecl
->vbases()) {
1373 const CXXRecordDecl
*VirtualBase
=
1374 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1375 if (!HasTrivialDestructorBody(Context
, VirtualBase
,
1376 MostDerivedClassDecl
))
1385 FieldHasTrivialDestructorBody(ASTContext
&Context
,
1386 const FieldDecl
*Field
)
1388 QualType FieldBaseElementType
= Context
.getBaseElementType(Field
->getType());
1390 const RecordType
*RT
= FieldBaseElementType
->getAs
<RecordType
>();
1394 CXXRecordDecl
*FieldClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
1396 // The destructor for an implicit anonymous union member is never invoked.
1397 if (FieldClassDecl
->isUnion() && FieldClassDecl
->isAnonymousStructOrUnion())
1400 return HasTrivialDestructorBody(Context
, FieldClassDecl
, FieldClassDecl
);
1403 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1404 /// any vtable pointers before calling this destructor.
1405 static bool CanSkipVTablePointerInitialization(CodeGenFunction
&CGF
,
1406 const CXXDestructorDecl
*Dtor
) {
1407 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1408 if (!ClassDecl
->isDynamicClass())
1411 // For a final class, the vtable pointer is known to already point to the
1413 if (ClassDecl
->isEffectivelyFinal())
1416 if (!Dtor
->hasTrivialBody())
1419 // Check the fields.
1420 for (const auto *Field
: ClassDecl
->fields())
1421 if (!FieldHasTrivialDestructorBody(CGF
.getContext(), Field
))
1427 /// EmitDestructorBody - Emits the body of the current destructor.
1428 void CodeGenFunction::EmitDestructorBody(FunctionArgList
&Args
) {
1429 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CurGD
.getDecl());
1430 CXXDtorType DtorType
= CurGD
.getDtorType();
1432 // For an abstract class, non-base destructors are never used (and can't
1433 // be emitted in general, because vbase dtors may not have been validated
1434 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1435 // in fact emit references to them from other compilations, so emit them
1436 // as functions containing a trap instruction.
1437 if (DtorType
!= Dtor_Base
&& Dtor
->getParent()->isAbstract()) {
1438 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
1439 TrapCall
->setDoesNotReturn();
1440 TrapCall
->setDoesNotThrow();
1441 Builder
.CreateUnreachable();
1442 Builder
.ClearInsertionPoint();
1446 Stmt
*Body
= Dtor
->getBody();
1448 incrementProfileCounter(Body
);
1450 // The call to operator delete in a deleting destructor happens
1451 // outside of the function-try-block, which means it's always
1452 // possible to delegate the destructor body to the complete
1453 // destructor. Do so.
1454 if (DtorType
== Dtor_Deleting
) {
1455 RunCleanupsScope
DtorEpilogue(*this);
1456 EnterDtorCleanups(Dtor
, Dtor_Deleting
);
1457 if (HaveInsertPoint()) {
1458 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1459 EmitCXXDestructorCall(Dtor
, Dtor_Complete
, /*ForVirtualBase=*/false,
1460 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1465 // If the body is a function-try-block, enter the try before
1467 bool isTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
1469 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1470 EmitAsanPrologueOrEpilogue(false);
1472 // Enter the epilogue cleanups.
1473 RunCleanupsScope
DtorEpilogue(*this);
1475 // If this is the complete variant, just invoke the base variant;
1476 // the epilogue will destruct the virtual bases. But we can't do
1477 // this optimization if the body is a function-try-block, because
1478 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1479 // always delegate because we might not have a definition in this TU.
1481 case Dtor_Comdat
: llvm_unreachable("not expecting a COMDAT");
1482 case Dtor_Deleting
: llvm_unreachable("already handled deleting case");
1485 assert((Body
|| getTarget().getCXXABI().isMicrosoft()) &&
1486 "can't emit a dtor without a body for non-Microsoft ABIs");
1488 // Enter the cleanup scopes for virtual bases.
1489 EnterDtorCleanups(Dtor
, Dtor_Complete
);
1492 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1493 EmitCXXDestructorCall(Dtor
, Dtor_Base
, /*ForVirtualBase=*/false,
1494 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1498 // Fallthrough: act like we're in the base variant.
1504 // Enter the cleanup scopes for fields and non-virtual bases.
1505 EnterDtorCleanups(Dtor
, Dtor_Base
);
1507 // Initialize the vtable pointers before entering the body.
1508 if (!CanSkipVTablePointerInitialization(*this, Dtor
)) {
1509 // Insert the llvm.launder.invariant.group intrinsic before initializing
1510 // the vptrs to cancel any previous assumptions we might have made.
1511 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1512 CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1513 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1514 InitializeVTablePointers(Dtor
->getParent());
1518 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
1522 assert(Dtor
->isImplicit() && "bodyless dtor not implicit");
1523 // nothing to do besides what's in the epilogue
1525 // -fapple-kext must inline any call to this dtor into
1526 // the caller's body.
1527 if (getLangOpts().AppleKext
)
1528 CurFn
->addFnAttr(llvm::Attribute::AlwaysInline
);
1533 // Jump out through the epilogue cleanups.
1534 DtorEpilogue
.ForceCleanup();
1536 // Exit the try if applicable.
1538 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1541 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList
&Args
) {
1542 const CXXMethodDecl
*AssignOp
= cast
<CXXMethodDecl
>(CurGD
.getDecl());
1543 const Stmt
*RootS
= AssignOp
->getBody();
1544 assert(isa
<CompoundStmt
>(RootS
) &&
1545 "Body of an implicit assignment operator should be compound stmt.");
1546 const CompoundStmt
*RootCS
= cast
<CompoundStmt
>(RootS
);
1548 LexicalScope
Scope(*this, RootCS
->getSourceRange());
1550 incrementProfileCounter(RootCS
);
1551 AssignmentMemcpyizer
AM(*this, AssignOp
, Args
);
1552 for (auto *I
: RootCS
->body())
1553 AM
.emitAssignment(I
);
1558 llvm::Value
*LoadThisForDtorDelete(CodeGenFunction
&CGF
,
1559 const CXXDestructorDecl
*DD
) {
1560 if (Expr
*ThisArg
= DD
->getOperatorDeleteThisArg())
1561 return CGF
.EmitScalarExpr(ThisArg
);
1562 return CGF
.LoadCXXThis();
1565 /// Call the operator delete associated with the current destructor.
1566 struct CallDtorDelete final
: EHScopeStack::Cleanup
{
1569 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1570 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1571 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1572 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1573 LoadThisForDtorDelete(CGF
, Dtor
),
1574 CGF
.getContext().getTagDeclType(ClassDecl
));
1578 void EmitConditionalDtorDeleteCall(CodeGenFunction
&CGF
,
1579 llvm::Value
*ShouldDeleteCondition
,
1580 bool ReturnAfterDelete
) {
1581 llvm::BasicBlock
*callDeleteBB
= CGF
.createBasicBlock("dtor.call_delete");
1582 llvm::BasicBlock
*continueBB
= CGF
.createBasicBlock("dtor.continue");
1583 llvm::Value
*ShouldCallDelete
1584 = CGF
.Builder
.CreateIsNull(ShouldDeleteCondition
);
1585 CGF
.Builder
.CreateCondBr(ShouldCallDelete
, continueBB
, callDeleteBB
);
1587 CGF
.EmitBlock(callDeleteBB
);
1588 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1589 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1590 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1591 LoadThisForDtorDelete(CGF
, Dtor
),
1592 CGF
.getContext().getTagDeclType(ClassDecl
));
1593 assert(Dtor
->getOperatorDelete()->isDestroyingOperatorDelete() ==
1594 ReturnAfterDelete
&&
1595 "unexpected value for ReturnAfterDelete");
1596 if (ReturnAfterDelete
)
1597 CGF
.EmitBranchThroughCleanup(CGF
.ReturnBlock
);
1599 CGF
.Builder
.CreateBr(continueBB
);
1601 CGF
.EmitBlock(continueBB
);
1604 struct CallDtorDeleteConditional final
: EHScopeStack::Cleanup
{
1605 llvm::Value
*ShouldDeleteCondition
;
1608 CallDtorDeleteConditional(llvm::Value
*ShouldDeleteCondition
)
1609 : ShouldDeleteCondition(ShouldDeleteCondition
) {
1610 assert(ShouldDeleteCondition
!= nullptr);
1613 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1614 EmitConditionalDtorDeleteCall(CGF
, ShouldDeleteCondition
,
1615 /*ReturnAfterDelete*/false);
1619 class DestroyField final
: public EHScopeStack::Cleanup
{
1620 const FieldDecl
*field
;
1621 CodeGenFunction::Destroyer
*destroyer
;
1622 bool useEHCleanupForArray
;
1625 DestroyField(const FieldDecl
*field
, CodeGenFunction::Destroyer
*destroyer
,
1626 bool useEHCleanupForArray
)
1627 : field(field
), destroyer(destroyer
),
1628 useEHCleanupForArray(useEHCleanupForArray
) {}
1630 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1631 // Find the address of the field.
1632 Address thisValue
= CGF
.LoadCXXThisAddress();
1633 QualType RecordTy
= CGF
.getContext().getTagDeclType(field
->getParent());
1634 LValue ThisLV
= CGF
.MakeAddrLValue(thisValue
, RecordTy
);
1635 LValue LV
= CGF
.EmitLValueForField(ThisLV
, field
);
1636 assert(LV
.isSimple());
1638 CGF
.emitDestroy(LV
.getAddress(CGF
), field
->getType(), destroyer
,
1639 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1643 class DeclAsInlineDebugLocation
{
1645 llvm::MDNode
*InlinedAt
;
1646 std::optional
<ApplyDebugLocation
> Location
;
1649 DeclAsInlineDebugLocation(CodeGenFunction
&CGF
, const NamedDecl
&Decl
)
1650 : DI(CGF
.getDebugInfo()) {
1653 InlinedAt
= DI
->getInlinedAt();
1654 DI
->setInlinedAt(CGF
.Builder
.getCurrentDebugLocation());
1655 Location
.emplace(CGF
, Decl
.getLocation());
1658 ~DeclAsInlineDebugLocation() {
1662 DI
->setInlinedAt(InlinedAt
);
1666 static void EmitSanitizerDtorCallback(
1667 CodeGenFunction
&CGF
, StringRef Name
, llvm::Value
*Ptr
,
1668 std::optional
<CharUnits::QuantityType
> PoisonSize
= {}) {
1669 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
1670 // Pass in void pointer and size of region as arguments to runtime
1672 SmallVector
<llvm::Value
*, 2> Args
= {Ptr
};
1673 SmallVector
<llvm::Type
*, 2> ArgTypes
= {CGF
.VoidPtrTy
};
1675 if (PoisonSize
.has_value()) {
1676 Args
.emplace_back(llvm::ConstantInt::get(CGF
.SizeTy
, *PoisonSize
));
1677 ArgTypes
.emplace_back(CGF
.SizeTy
);
1680 llvm::FunctionType
*FnType
=
1681 llvm::FunctionType::get(CGF
.VoidTy
, ArgTypes
, false);
1682 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(FnType
, Name
);
1684 CGF
.EmitNounwindRuntimeCall(Fn
, Args
);
1688 EmitSanitizerDtorFieldsCallback(CodeGenFunction
&CGF
, llvm::Value
*Ptr
,
1689 CharUnits::QuantityType PoisonSize
) {
1690 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_fields", Ptr
,
1694 /// Poison base class with a trivial destructor.
1695 struct SanitizeDtorTrivialBase final
: EHScopeStack::Cleanup
{
1696 const CXXRecordDecl
*BaseClass
;
1698 SanitizeDtorTrivialBase(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
1699 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
1701 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1702 const CXXRecordDecl
*DerivedClass
=
1703 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
1705 Address Addr
= CGF
.GetAddressOfDirectBaseInCompleteClass(
1706 CGF
.LoadCXXThisAddress(), DerivedClass
, BaseClass
, BaseIsVirtual
);
1708 const ASTRecordLayout
&BaseLayout
=
1709 CGF
.getContext().getASTRecordLayout(BaseClass
);
1710 CharUnits BaseSize
= BaseLayout
.getSize();
1712 if (!BaseSize
.isPositive())
1715 // Use the base class declaration location as inline DebugLocation. All
1716 // fields of the class are destroyed.
1717 DeclAsInlineDebugLocation
InlineHere(CGF
, *BaseClass
);
1718 EmitSanitizerDtorFieldsCallback(CGF
, Addr
.getPointer(),
1719 BaseSize
.getQuantity());
1721 // Prevent the current stack frame from disappearing from the stack trace.
1722 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1726 class SanitizeDtorFieldRange final
: public EHScopeStack::Cleanup
{
1727 const CXXDestructorDecl
*Dtor
;
1728 unsigned StartIndex
;
1732 SanitizeDtorFieldRange(const CXXDestructorDecl
*Dtor
, unsigned StartIndex
,
1734 : Dtor(Dtor
), StartIndex(StartIndex
), EndIndex(EndIndex
) {}
1736 // Generate function call for handling object poisoning.
1737 // Disables tail call elimination, to prevent the current stack frame
1738 // from disappearing from the stack trace.
1739 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1740 const ASTContext
&Context
= CGF
.getContext();
1741 const ASTRecordLayout
&Layout
=
1742 Context
.getASTRecordLayout(Dtor
->getParent());
1744 // It's a first trivial field so it should be at the begining of a char,
1745 // still round up start offset just in case.
1746 CharUnits PoisonStart
= Context
.toCharUnitsFromBits(
1747 Layout
.getFieldOffset(StartIndex
) + Context
.getCharWidth() - 1);
1748 llvm::ConstantInt
*OffsetSizePtr
=
1749 llvm::ConstantInt::get(CGF
.SizeTy
, PoisonStart
.getQuantity());
1751 llvm::Value
*OffsetPtr
=
1752 CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, CGF
.LoadCXXThis(), OffsetSizePtr
);
1754 CharUnits PoisonEnd
;
1755 if (EndIndex
>= Layout
.getFieldCount()) {
1756 PoisonEnd
= Layout
.getNonVirtualSize();
1759 Context
.toCharUnitsFromBits(Layout
.getFieldOffset(EndIndex
));
1761 CharUnits PoisonSize
= PoisonEnd
- PoisonStart
;
1762 if (!PoisonSize
.isPositive())
1765 // Use the top field declaration location as inline DebugLocation.
1766 DeclAsInlineDebugLocation
InlineHere(
1767 CGF
, **std::next(Dtor
->getParent()->field_begin(), StartIndex
));
1768 EmitSanitizerDtorFieldsCallback(CGF
, OffsetPtr
, PoisonSize
.getQuantity());
1770 // Prevent the current stack frame from disappearing from the stack trace.
1771 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1775 class SanitizeDtorVTable final
: public EHScopeStack::Cleanup
{
1776 const CXXDestructorDecl
*Dtor
;
1779 SanitizeDtorVTable(const CXXDestructorDecl
*Dtor
) : Dtor(Dtor
) {}
1781 // Generate function call for handling vtable pointer poisoning.
1782 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1783 assert(Dtor
->getParent()->isDynamicClass());
1785 // Poison vtable and vtable ptr if they exist for this class.
1786 llvm::Value
*VTablePtr
= CGF
.LoadCXXThis();
1788 // Pass in void pointer and size of region as arguments to runtime
1790 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_vptr",
1795 class SanitizeDtorCleanupBuilder
{
1796 ASTContext
&Context
;
1797 EHScopeStack
&EHStack
;
1798 const CXXDestructorDecl
*DD
;
1799 std::optional
<unsigned> StartIndex
;
1802 SanitizeDtorCleanupBuilder(ASTContext
&Context
, EHScopeStack
&EHStack
,
1803 const CXXDestructorDecl
*DD
)
1804 : Context(Context
), EHStack(EHStack
), DD(DD
), StartIndex(std::nullopt
) {}
1805 void PushCleanupForField(const FieldDecl
*Field
) {
1806 if (Field
->isZeroSize(Context
))
1808 unsigned FieldIndex
= Field
->getFieldIndex();
1809 if (FieldHasTrivialDestructorBody(Context
, Field
)) {
1811 StartIndex
= FieldIndex
;
1812 } else if (StartIndex
) {
1813 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1814 *StartIndex
, FieldIndex
);
1815 StartIndex
= std::nullopt
;
1820 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1824 } // end anonymous namespace
1826 /// Emit all code that comes at the end of class's
1827 /// destructor. This is to call destructors on members and base classes
1828 /// in reverse order of their construction.
1830 /// For a deleting destructor, this also handles the case where a destroying
1831 /// operator delete completely overrides the definition.
1832 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl
*DD
,
1833 CXXDtorType DtorType
) {
1834 assert((!DD
->isTrivial() || DD
->hasAttr
<DLLExportAttr
>()) &&
1835 "Should not emit dtor epilogue for non-exported trivial dtor!");
1837 // The deleting-destructor phase just needs to call the appropriate
1838 // operator delete that Sema picked up.
1839 if (DtorType
== Dtor_Deleting
) {
1840 assert(DD
->getOperatorDelete() &&
1841 "operator delete missing - EnterDtorCleanups");
1842 if (CXXStructorImplicitParamValue
) {
1843 // If there is an implicit param to the deleting dtor, it's a boolean
1844 // telling whether this is a deleting destructor.
1845 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete())
1846 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue
,
1847 /*ReturnAfterDelete*/true);
1849 EHStack
.pushCleanup
<CallDtorDeleteConditional
>(
1850 NormalAndEHCleanup
, CXXStructorImplicitParamValue
);
1852 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete()) {
1853 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1854 EmitDeleteCall(DD
->getOperatorDelete(),
1855 LoadThisForDtorDelete(*this, DD
),
1856 getContext().getTagDeclType(ClassDecl
));
1857 EmitBranchThroughCleanup(ReturnBlock
);
1859 EHStack
.pushCleanup
<CallDtorDelete
>(NormalAndEHCleanup
);
1865 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1867 // Unions have no bases and do not call field destructors.
1868 if (ClassDecl
->isUnion())
1871 // The complete-destructor phase just destructs all the virtual bases.
1872 if (DtorType
== Dtor_Complete
) {
1873 // Poison the vtable pointer such that access after the base
1874 // and member destructors are invoked is invalid.
1875 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1876 SanOpts
.has(SanitizerKind::Memory
) && ClassDecl
->getNumVBases() &&
1877 ClassDecl
->isPolymorphic())
1878 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1880 // We push them in the forward order so that they'll be popped in
1881 // the reverse order.
1882 for (const auto &Base
: ClassDecl
->vbases()) {
1883 auto *BaseClassDecl
=
1884 cast
<CXXRecordDecl
>(Base
.getType()->castAs
<RecordType
>()->getDecl());
1886 if (BaseClassDecl
->hasTrivialDestructor()) {
1887 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1888 // memory. For non-trival base classes the same is done in the class
1890 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1891 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1892 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1894 /*BaseIsVirtual*/ true);
1896 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1897 /*BaseIsVirtual*/ true);
1904 assert(DtorType
== Dtor_Base
);
1905 // Poison the vtable pointer if it has no virtual bases, but inherits
1906 // virtual functions.
1907 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1908 SanOpts
.has(SanitizerKind::Memory
) && !ClassDecl
->getNumVBases() &&
1909 ClassDecl
->isPolymorphic())
1910 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1912 // Destroy non-virtual bases.
1913 for (const auto &Base
: ClassDecl
->bases()) {
1914 // Ignore virtual bases.
1915 if (Base
.isVirtual())
1918 CXXRecordDecl
*BaseClassDecl
= Base
.getType()->getAsCXXRecordDecl();
1920 if (BaseClassDecl
->hasTrivialDestructor()) {
1921 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1922 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1923 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1925 /*BaseIsVirtual*/ false);
1927 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1928 /*BaseIsVirtual*/ false);
1932 // Poison fields such that access after their destructors are
1933 // invoked, and before the base class destructor runs, is invalid.
1934 bool SanitizeFields
= CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1935 SanOpts
.has(SanitizerKind::Memory
);
1936 SanitizeDtorCleanupBuilder
SanitizeBuilder(getContext(), EHStack
, DD
);
1938 // Destroy direct fields.
1939 for (const auto *Field
: ClassDecl
->fields()) {
1941 SanitizeBuilder
.PushCleanupForField(Field
);
1943 QualType type
= Field
->getType();
1944 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1948 // Anonymous union members do not have their destructors called.
1949 const RecordType
*RT
= type
->getAsUnionType();
1950 if (RT
&& RT
->getDecl()->isAnonymousStructOrUnion())
1953 CleanupKind cleanupKind
= getCleanupKind(dtorKind
);
1954 EHStack
.pushCleanup
<DestroyField
>(
1955 cleanupKind
, Field
, getDestroyer(dtorKind
), cleanupKind
& EHCleanup
);
1959 SanitizeBuilder
.End();
1962 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1963 /// constructor for each of several members of an array.
1965 /// \param ctor the constructor to call for each element
1966 /// \param arrayType the type of the array to initialize
1967 /// \param arrayBegin an arrayType*
1968 /// \param zeroInitialize true if each element should be
1969 /// zero-initialized before it is constructed
1970 void CodeGenFunction::EmitCXXAggrConstructorCall(
1971 const CXXConstructorDecl
*ctor
, const ArrayType
*arrayType
,
1972 Address arrayBegin
, const CXXConstructExpr
*E
, bool NewPointerIsChecked
,
1973 bool zeroInitialize
) {
1974 QualType elementType
;
1975 llvm::Value
*numElements
=
1976 emitArrayLength(arrayType
, elementType
, arrayBegin
);
1978 EmitCXXAggrConstructorCall(ctor
, numElements
, arrayBegin
, E
,
1979 NewPointerIsChecked
, zeroInitialize
);
1982 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1983 /// constructor for each of several members of an array.
1985 /// \param ctor the constructor to call for each element
1986 /// \param numElements the number of elements in the array;
1988 /// \param arrayBase a T*, where T is the type constructed by ctor
1989 /// \param zeroInitialize true if each element should be
1990 /// zero-initialized before it is constructed
1991 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl
*ctor
,
1992 llvm::Value
*numElements
,
1994 const CXXConstructExpr
*E
,
1995 bool NewPointerIsChecked
,
1996 bool zeroInitialize
) {
1997 // It's legal for numElements to be zero. This can happen both
1998 // dynamically, because x can be zero in 'new A[x]', and statically,
1999 // because of GCC extensions that permit zero-length arrays. There
2000 // are probably legitimate places where we could assume that this
2001 // doesn't happen, but it's not clear that it's worth it.
2002 llvm::BranchInst
*zeroCheckBranch
= nullptr;
2004 // Optimize for a constant count.
2005 llvm::ConstantInt
*constantCount
2006 = dyn_cast
<llvm::ConstantInt
>(numElements
);
2007 if (constantCount
) {
2008 // Just skip out if the constant count is zero.
2009 if (constantCount
->isZero()) return;
2011 // Otherwise, emit the check.
2013 llvm::BasicBlock
*loopBB
= createBasicBlock("new.ctorloop");
2014 llvm::Value
*iszero
= Builder
.CreateIsNull(numElements
, "isempty");
2015 zeroCheckBranch
= Builder
.CreateCondBr(iszero
, loopBB
, loopBB
);
2019 // Find the end of the array.
2020 llvm::Type
*elementType
= arrayBase
.getElementType();
2021 llvm::Value
*arrayBegin
= arrayBase
.getPointer();
2022 llvm::Value
*arrayEnd
= Builder
.CreateInBoundsGEP(
2023 elementType
, arrayBegin
, numElements
, "arrayctor.end");
2025 // Enter the loop, setting up a phi for the current location to initialize.
2026 llvm::BasicBlock
*entryBB
= Builder
.GetInsertBlock();
2027 llvm::BasicBlock
*loopBB
= createBasicBlock("arrayctor.loop");
2029 llvm::PHINode
*cur
= Builder
.CreatePHI(arrayBegin
->getType(), 2,
2031 cur
->addIncoming(arrayBegin
, entryBB
);
2033 // Inside the loop body, emit the constructor call on the array element.
2035 // The alignment of the base, adjusted by the size of a single element,
2036 // provides a conservative estimate of the alignment of every element.
2037 // (This assumes we never start tracking offsetted alignments.)
2039 // Note that these are complete objects and so we don't need to
2040 // use the non-virtual size or alignment.
2041 QualType type
= getContext().getTypeDeclType(ctor
->getParent());
2042 CharUnits eltAlignment
=
2043 arrayBase
.getAlignment()
2044 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type
));
2045 Address curAddr
= Address(cur
, elementType
, eltAlignment
);
2047 // Zero initialize the storage, if requested.
2049 EmitNullInitialization(curAddr
, type
);
2051 // C++ [class.temporary]p4:
2052 // There are two contexts in which temporaries are destroyed at a different
2053 // point than the end of the full-expression. The first context is when a
2054 // default constructor is called to initialize an element of an array.
2055 // If the constructor has one or more default arguments, the destruction of
2056 // every temporary created in a default argument expression is sequenced
2057 // before the construction of the next array element, if any.
2060 RunCleanupsScope
Scope(*this);
2062 // Evaluate the constructor and its arguments in a regular
2063 // partial-destroy cleanup.
2064 if (getLangOpts().Exceptions
&&
2065 !ctor
->getParent()->hasTrivialDestructor()) {
2066 Destroyer
*destroyer
= destroyCXXObject
;
2067 pushRegularPartialArrayCleanup(arrayBegin
, cur
, type
, eltAlignment
,
2070 auto currAVS
= AggValueSlot::forAddr(
2071 curAddr
, type
.getQualifiers(), AggValueSlot::IsDestructed
,
2072 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
2073 AggValueSlot::DoesNotOverlap
, AggValueSlot::IsNotZeroed
,
2074 NewPointerIsChecked
? AggValueSlot::IsSanitizerChecked
2075 : AggValueSlot::IsNotSanitizerChecked
);
2076 EmitCXXConstructorCall(ctor
, Ctor_Complete
, /*ForVirtualBase=*/false,
2077 /*Delegating=*/false, currAVS
, E
);
2080 // Go to the next element.
2081 llvm::Value
*next
= Builder
.CreateInBoundsGEP(
2082 elementType
, cur
, llvm::ConstantInt::get(SizeTy
, 1), "arrayctor.next");
2083 cur
->addIncoming(next
, Builder
.GetInsertBlock());
2085 // Check whether that's the end of the loop.
2086 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, arrayEnd
, "arrayctor.done");
2087 llvm::BasicBlock
*contBB
= createBasicBlock("arrayctor.cont");
2088 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2090 // Patch the earlier check to skip over the loop.
2091 if (zeroCheckBranch
) zeroCheckBranch
->setSuccessor(0, contBB
);
2096 void CodeGenFunction::destroyCXXObject(CodeGenFunction
&CGF
,
2099 const RecordType
*rtype
= type
->castAs
<RecordType
>();
2100 const CXXRecordDecl
*record
= cast
<CXXRecordDecl
>(rtype
->getDecl());
2101 const CXXDestructorDecl
*dtor
= record
->getDestructor();
2102 assert(!dtor
->isTrivial());
2103 CGF
.EmitCXXDestructorCall(dtor
, Dtor_Complete
, /*for vbase*/ false,
2104 /*Delegating=*/false, addr
, type
);
2107 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2109 bool ForVirtualBase
,
2111 AggValueSlot ThisAVS
,
2112 const CXXConstructExpr
*E
) {
2114 Address This
= ThisAVS
.getAddress();
2115 LangAS SlotAS
= ThisAVS
.getQualifiers().getAddressSpace();
2116 LangAS ThisAS
= D
->getFunctionObjectParameterType().getAddressSpace();
2117 llvm::Value
*ThisPtr
= This
.getPointer();
2119 if (SlotAS
!= ThisAS
) {
2120 unsigned TargetThisAS
= getContext().getTargetAddressSpace(ThisAS
);
2121 llvm::Type
*NewType
=
2122 llvm::PointerType::get(getLLVMContext(), TargetThisAS
);
2123 ThisPtr
= getTargetHooks().performAddrSpaceCast(*this, This
.getPointer(),
2124 ThisAS
, SlotAS
, NewType
);
2127 // Push the this ptr.
2128 Args
.add(RValue::get(ThisPtr
), D
->getThisType());
2130 // If this is a trivial constructor, emit a memcpy now before we lose
2131 // the alignment information on the argument.
2132 // FIXME: It would be better to preserve alignment information into CallArg.
2133 if (isMemcpyEquivalentSpecialMember(D
)) {
2134 assert(E
->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2136 const Expr
*Arg
= E
->getArg(0);
2137 LValue Src
= EmitLValue(Arg
);
2138 QualType DestTy
= getContext().getTypeDeclType(D
->getParent());
2139 LValue Dest
= MakeAddrLValue(This
, DestTy
);
2140 EmitAggregateCopyCtor(Dest
, Src
, ThisAVS
.mayOverlap());
2144 // Add the rest of the user-supplied arguments.
2145 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2146 EvaluationOrder Order
= E
->isListInitialization()
2147 ? EvaluationOrder::ForceLeftToRight
2148 : EvaluationOrder::Default
;
2149 EmitCallArgs(Args
, FPT
, E
->arguments(), E
->getConstructor(),
2150 /*ParamsToSkip*/ 0, Order
);
2152 EmitCXXConstructorCall(D
, Type
, ForVirtualBase
, Delegating
, This
, Args
,
2153 ThisAVS
.mayOverlap(), E
->getExprLoc(),
2154 ThisAVS
.isSanitizerChecked());
2157 static bool canEmitDelegateCallArgs(CodeGenFunction
&CGF
,
2158 const CXXConstructorDecl
*Ctor
,
2159 CXXCtorType Type
, CallArgList
&Args
) {
2160 // We can't forward a variadic call.
2161 if (Ctor
->isVariadic())
2164 if (CGF
.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2165 // If the parameters are callee-cleanup, it's not safe to forward.
2166 for (auto *P
: Ctor
->parameters())
2167 if (P
->needsDestruction(CGF
.getContext()))
2170 // Likewise if they're inalloca.
2171 const CGFunctionInfo
&Info
=
2172 CGF
.CGM
.getTypes().arrangeCXXConstructorCall(Args
, Ctor
, Type
, 0, 0);
2173 if (Info
.usesInAlloca())
2177 // Anything else should be OK.
2181 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2183 bool ForVirtualBase
,
2187 AggValueSlot::Overlap_t Overlap
,
2189 bool NewPointerIsChecked
) {
2190 const CXXRecordDecl
*ClassDecl
= D
->getParent();
2192 if (!NewPointerIsChecked
)
2193 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall
, Loc
, This
.getPointer(),
2194 getContext().getRecordType(ClassDecl
), CharUnits::Zero());
2196 if (D
->isTrivial() && D
->isDefaultConstructor()) {
2197 assert(Args
.size() == 1 && "trivial default ctor with args");
2201 // If this is a trivial constructor, just emit what's needed. If this is a
2202 // union copy constructor, we must emit a memcpy, because the AST does not
2204 if (isMemcpyEquivalentSpecialMember(D
)) {
2205 assert(Args
.size() == 2 && "unexpected argcount for trivial ctor");
2207 QualType SrcTy
= D
->getParamDecl(0)->getType().getNonReferenceType();
2208 Address Src
= Address(Args
[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy
),
2209 CGM
.getNaturalTypeAlignment(SrcTy
));
2210 LValue SrcLVal
= MakeAddrLValue(Src
, SrcTy
);
2211 QualType DestTy
= getContext().getTypeDeclType(ClassDecl
);
2212 LValue DestLVal
= MakeAddrLValue(This
, DestTy
);
2213 EmitAggregateCopyCtor(DestLVal
, SrcLVal
, Overlap
);
2217 bool PassPrototypeArgs
= true;
2218 // Check whether we can actually emit the constructor before trying to do so.
2219 if (auto Inherited
= D
->getInheritedConstructor()) {
2220 PassPrototypeArgs
= getTypes().inheritingCtorHasParams(Inherited
, Type
);
2221 if (PassPrototypeArgs
&& !canEmitDelegateCallArgs(*this, D
, Type
, Args
)) {
2222 EmitInlinedInheritingCXXConstructorCall(D
, Type
, ForVirtualBase
,
2228 // Insert any ABI-specific implicit constructor arguments.
2229 CGCXXABI::AddedStructorArgCounts ExtraArgs
=
2230 CGM
.getCXXABI().addImplicitConstructorArgs(*this, D
, Type
, ForVirtualBase
,
2234 llvm::Constant
*CalleePtr
= CGM
.getAddrOfCXXStructor(GlobalDecl(D
, Type
));
2235 const CGFunctionInfo
&Info
= CGM
.getTypes().arrangeCXXConstructorCall(
2236 Args
, D
, Type
, ExtraArgs
.Prefix
, ExtraArgs
.Suffix
, PassPrototypeArgs
);
2237 CGCallee Callee
= CGCallee::forDirect(CalleePtr
, GlobalDecl(D
, Type
));
2238 EmitCall(Info
, Callee
, ReturnValueSlot(), Args
, nullptr, false, Loc
);
2240 // Generate vtable assumptions if we're constructing a complete object
2241 // with a vtable. We don't do this for base subobjects for two reasons:
2242 // first, it's incorrect for classes with virtual bases, and second, we're
2243 // about to overwrite the vptrs anyway.
2244 // We also have to make sure if we can refer to vtable:
2245 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2246 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2247 // sure that definition of vtable is not hidden,
2248 // then we are always safe to refer to it.
2249 // FIXME: It looks like InstCombine is very inefficient on dealing with
2250 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2251 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2252 ClassDecl
->isDynamicClass() && Type
!= Ctor_Base
&&
2253 CGM
.getCXXABI().canSpeculativelyEmitVTable(ClassDecl
) &&
2254 CGM
.getCodeGenOpts().StrictVTablePointers
)
2255 EmitVTableAssumptionLoads(ClassDecl
, This
);
2258 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2259 const CXXConstructorDecl
*D
, bool ForVirtualBase
, Address This
,
2260 bool InheritedFromVBase
, const CXXInheritedCtorInitExpr
*E
) {
2262 CallArg
ThisArg(RValue::get(This
.getPointer()), D
->getThisType());
2264 // Forward the parameters.
2265 if (InheritedFromVBase
&&
2266 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
2267 // Nothing to do; this construction is not responsible for constructing
2268 // the base class containing the inherited constructor.
2269 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2270 // have constructor variants?
2271 Args
.push_back(ThisArg
);
2272 } else if (!CXXInheritedCtorInitExprArgs
.empty()) {
2273 // The inheriting constructor was inlined; just inject its arguments.
2274 assert(CXXInheritedCtorInitExprArgs
.size() >= D
->getNumParams() &&
2275 "wrong number of parameters for inherited constructor call");
2276 Args
= CXXInheritedCtorInitExprArgs
;
2279 // The inheriting constructor was not inlined. Emit delegating arguments.
2280 Args
.push_back(ThisArg
);
2281 const auto *OuterCtor
= cast
<CXXConstructorDecl
>(CurCodeDecl
);
2282 assert(OuterCtor
->getNumParams() == D
->getNumParams());
2283 assert(!OuterCtor
->isVariadic() && "should have been inlined");
2285 for (const auto *Param
: OuterCtor
->parameters()) {
2286 assert(getContext().hasSameUnqualifiedType(
2287 OuterCtor
->getParamDecl(Param
->getFunctionScopeIndex())->getType(),
2289 EmitDelegateCallArg(Args
, Param
, E
->getLocation());
2291 // Forward __attribute__(pass_object_size).
2292 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
2293 auto *POSParam
= SizeArguments
[Param
];
2294 assert(POSParam
&& "missing pass_object_size value for forwarding");
2295 EmitDelegateCallArg(Args
, POSParam
, E
->getLocation());
2300 EmitCXXConstructorCall(D
, Ctor_Base
, ForVirtualBase
, /*Delegating*/false,
2301 This
, Args
, AggValueSlot::MayOverlap
,
2302 E
->getLocation(), /*NewPointerIsChecked*/true);
2305 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2306 const CXXConstructorDecl
*Ctor
, CXXCtorType CtorType
, bool ForVirtualBase
,
2307 bool Delegating
, CallArgList
&Args
) {
2308 GlobalDecl
GD(Ctor
, CtorType
);
2309 InlinedInheritingConstructorScope
Scope(*this, GD
);
2310 ApplyInlineDebugLocation
DebugScope(*this, GD
);
2311 RunCleanupsScope
RunCleanups(*this);
2313 // Save the arguments to be passed to the inherited constructor.
2314 CXXInheritedCtorInitExprArgs
= Args
;
2316 FunctionArgList Params
;
2317 QualType RetType
= BuildFunctionArgList(CurGD
, Params
);
2320 // Insert any ABI-specific implicit constructor arguments.
2321 CGM
.getCXXABI().addImplicitConstructorArgs(*this, Ctor
, CtorType
,
2322 ForVirtualBase
, Delegating
, Args
);
2324 // Emit a simplified prolog. We only need to emit the implicit params.
2325 assert(Args
.size() >= Params
.size() && "too few arguments for call");
2326 for (unsigned I
= 0, N
= Args
.size(); I
!= N
; ++I
) {
2327 if (I
< Params
.size() && isa
<ImplicitParamDecl
>(Params
[I
])) {
2328 const RValue
&RV
= Args
[I
].getRValue(*this);
2329 assert(!RV
.isComplex() && "complex indirect params not supported");
2330 ParamValue Val
= RV
.isScalar()
2331 ? ParamValue::forDirect(RV
.getScalarVal())
2332 : ParamValue::forIndirect(RV
.getAggregateAddress());
2333 EmitParmDecl(*Params
[I
], Val
, I
+ 1);
2337 // Create a return value slot if the ABI implementation wants one.
2338 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2340 if (!RetType
->isVoidType())
2341 ReturnValue
= CreateIRTemp(RetType
, "retval.inhctor");
2343 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
2344 CXXThisValue
= CXXABIThisValue
;
2346 // Directly emit the constructor initializers.
2347 EmitCtorPrologue(Ctor
, CtorType
, Params
);
2350 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr
&Vptr
, Address This
) {
2351 llvm::Value
*VTableGlobal
=
2352 CGM
.getCXXABI().getVTableAddressPoint(Vptr
.Base
, Vptr
.VTableClass
);
2356 // We can just use the base offset in the complete class.
2357 CharUnits NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2359 if (!NonVirtualOffset
.isZero())
2361 ApplyNonVirtualAndVirtualOffset(*this, This
, NonVirtualOffset
, nullptr,
2362 Vptr
.VTableClass
, Vptr
.NearestVBase
);
2364 llvm::Value
*VPtrValue
=
2365 GetVTablePtr(This
, VTableGlobal
->getType(), Vptr
.VTableClass
);
2367 Builder
.CreateICmpEQ(VPtrValue
, VTableGlobal
, "cmp.vtables");
2368 Builder
.CreateAssumption(Cmp
);
2371 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl
*ClassDecl
,
2373 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(ClassDecl
))
2374 for (const VPtr
&Vptr
: getVTablePointers(ClassDecl
))
2375 EmitVTableAssumptionLoad(Vptr
, This
);
2379 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl
*D
,
2380 Address This
, Address Src
,
2381 const CXXConstructExpr
*E
) {
2382 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2386 // Push the this ptr.
2387 Args
.add(RValue::get(This
.getPointer()), D
->getThisType());
2389 // Push the src ptr.
2390 QualType QT
= *(FPT
->param_type_begin());
2391 llvm::Type
*t
= CGM
.getTypes().ConvertType(QT
);
2392 llvm::Value
*SrcVal
= Builder
.CreateBitCast(Src
.getPointer(), t
);
2393 Args
.add(RValue::get(SrcVal
), QT
);
2395 // Skip over first argument (Src).
2396 EmitCallArgs(Args
, FPT
, drop_begin(E
->arguments(), 1), E
->getConstructor(),
2397 /*ParamsToSkip*/ 1);
2399 EmitCXXConstructorCall(D
, Ctor_Complete
, /*ForVirtualBase*/false,
2400 /*Delegating*/false, This
, Args
,
2401 AggValueSlot::MayOverlap
, E
->getExprLoc(),
2402 /*NewPointerIsChecked*/false);
2406 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2407 CXXCtorType CtorType
,
2408 const FunctionArgList
&Args
,
2409 SourceLocation Loc
) {
2410 CallArgList DelegateArgs
;
2412 FunctionArgList::const_iterator I
= Args
.begin(), E
= Args
.end();
2413 assert(I
!= E
&& "no parameters to constructor");
2416 Address This
= LoadCXXThisAddress();
2417 DelegateArgs
.add(RValue::get(This
.getPointer()), (*I
)->getType());
2420 // FIXME: The location of the VTT parameter in the parameter list is
2421 // specific to the Itanium ABI and shouldn't be hardcoded here.
2422 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
2423 assert(I
!= E
&& "cannot skip vtt parameter, already done with args");
2424 assert((*I
)->getType()->isPointerType() &&
2425 "skipping parameter not of vtt type");
2429 // Explicit arguments.
2430 for (; I
!= E
; ++I
) {
2431 const VarDecl
*param
= *I
;
2432 // FIXME: per-argument source location
2433 EmitDelegateCallArg(DelegateArgs
, param
, Loc
);
2436 EmitCXXConstructorCall(Ctor
, CtorType
, /*ForVirtualBase=*/false,
2437 /*Delegating=*/true, This
, DelegateArgs
,
2438 AggValueSlot::MayOverlap
, Loc
,
2439 /*NewPointerIsChecked=*/true);
2443 struct CallDelegatingCtorDtor final
: EHScopeStack::Cleanup
{
2444 const CXXDestructorDecl
*Dtor
;
2448 CallDelegatingCtorDtor(const CXXDestructorDecl
*D
, Address Addr
,
2450 : Dtor(D
), Addr(Addr
), Type(Type
) {}
2452 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2453 // We are calling the destructor from within the constructor.
2454 // Therefore, "this" should have the expected type.
2455 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
2456 CGF
.EmitCXXDestructorCall(Dtor
, Type
, /*ForVirtualBase=*/false,
2457 /*Delegating=*/true, Addr
, ThisTy
);
2460 } // end anonymous namespace
2463 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2464 const FunctionArgList
&Args
) {
2465 assert(Ctor
->isDelegatingConstructor());
2467 Address ThisPtr
= LoadCXXThisAddress();
2469 AggValueSlot AggSlot
=
2470 AggValueSlot::forAddr(ThisPtr
, Qualifiers(),
2471 AggValueSlot::IsDestructed
,
2472 AggValueSlot::DoesNotNeedGCBarriers
,
2473 AggValueSlot::IsNotAliased
,
2474 AggValueSlot::MayOverlap
,
2475 AggValueSlot::IsNotZeroed
,
2476 // Checks are made by the code that calls constructor.
2477 AggValueSlot::IsSanitizerChecked
);
2479 EmitAggExpr(Ctor
->init_begin()[0]->getInit(), AggSlot
);
2481 const CXXRecordDecl
*ClassDecl
= Ctor
->getParent();
2482 if (CGM
.getLangOpts().Exceptions
&& !ClassDecl
->hasTrivialDestructor()) {
2484 CurGD
.getCtorType() == Ctor_Complete
? Dtor_Complete
: Dtor_Base
;
2486 EHStack
.pushCleanup
<CallDelegatingCtorDtor
>(EHCleanup
,
2487 ClassDecl
->getDestructor(),
2492 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl
*DD
,
2494 bool ForVirtualBase
,
2495 bool Delegating
, Address This
,
2497 CGM
.getCXXABI().EmitDestructorCall(*this, DD
, Type
, ForVirtualBase
,
2498 Delegating
, This
, ThisTy
);
2502 struct CallLocalDtor final
: EHScopeStack::Cleanup
{
2503 const CXXDestructorDecl
*Dtor
;
2507 CallLocalDtor(const CXXDestructorDecl
*D
, Address Addr
, QualType Ty
)
2508 : Dtor(D
), Addr(Addr
), Ty(Ty
) {}
2510 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2511 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
2512 /*ForVirtualBase=*/false,
2513 /*Delegating=*/false, Addr
, Ty
);
2516 } // end anonymous namespace
2518 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl
*D
,
2519 QualType T
, Address Addr
) {
2520 EHStack
.pushCleanup
<CallLocalDtor
>(NormalAndEHCleanup
, D
, Addr
, T
);
2523 void CodeGenFunction::PushDestructorCleanup(QualType T
, Address Addr
) {
2524 CXXRecordDecl
*ClassDecl
= T
->getAsCXXRecordDecl();
2525 if (!ClassDecl
) return;
2526 if (ClassDecl
->hasTrivialDestructor()) return;
2528 const CXXDestructorDecl
*D
= ClassDecl
->getDestructor();
2529 assert(D
&& D
->isUsed() && "destructor not marked as used!");
2530 PushDestructorCleanup(D
, T
, Addr
);
2533 void CodeGenFunction::InitializeVTablePointer(const VPtr
&Vptr
) {
2534 // Compute the address point.
2535 llvm::Value
*VTableAddressPoint
=
2536 CGM
.getCXXABI().getVTableAddressPointInStructor(
2537 *this, Vptr
.VTableClass
, Vptr
.Base
, Vptr
.NearestVBase
);
2539 if (!VTableAddressPoint
)
2542 // Compute where to store the address point.
2543 llvm::Value
*VirtualOffset
= nullptr;
2544 CharUnits NonVirtualOffset
= CharUnits::Zero();
2546 if (CGM
.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr
)) {
2547 // We need to use the virtual base offset offset because the virtual base
2548 // might have a different offset in the most derived class.
2550 VirtualOffset
= CGM
.getCXXABI().GetVirtualBaseClassOffset(
2551 *this, LoadCXXThisAddress(), Vptr
.VTableClass
, Vptr
.NearestVBase
);
2552 NonVirtualOffset
= Vptr
.OffsetFromNearestVBase
;
2554 // We can just use the base offset in the complete class.
2555 NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2558 // Apply the offsets.
2559 Address VTableField
= LoadCXXThisAddress();
2560 if (!NonVirtualOffset
.isZero() || VirtualOffset
)
2561 VTableField
= ApplyNonVirtualAndVirtualOffset(
2562 *this, VTableField
, NonVirtualOffset
, VirtualOffset
, Vptr
.VTableClass
,
2565 // Finally, store the address point. Use the same LLVM types as the field to
2566 // support optimization.
2567 unsigned GlobalsAS
= CGM
.getDataLayout().getDefaultGlobalsAddressSpace();
2568 llvm::Type
*PtrTy
= llvm::PointerType::get(CGM
.getLLVMContext(), GlobalsAS
);
2569 // vtable field is derived from `this` pointer, therefore they should be in
2570 // the same addr space. Note that this might not be LLVM address space 0.
2571 VTableField
= VTableField
.withElementType(PtrTy
);
2573 llvm::StoreInst
*Store
= Builder
.CreateStore(VTableAddressPoint
, VTableField
);
2574 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(PtrTy
);
2575 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
2576 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2577 CGM
.getCodeGenOpts().StrictVTablePointers
)
2578 CGM
.DecorateInstructionWithInvariantGroup(Store
, Vptr
.VTableClass
);
2581 CodeGenFunction::VPtrsVector
2582 CodeGenFunction::getVTablePointers(const CXXRecordDecl
*VTableClass
) {
2583 CodeGenFunction::VPtrsVector VPtrsResult
;
2584 VisitedVirtualBasesSetTy VBases
;
2585 getVTablePointers(BaseSubobject(VTableClass
, CharUnits::Zero()),
2586 /*NearestVBase=*/nullptr,
2587 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2588 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass
, VBases
,
2593 void CodeGenFunction::getVTablePointers(BaseSubobject Base
,
2594 const CXXRecordDecl
*NearestVBase
,
2595 CharUnits OffsetFromNearestVBase
,
2596 bool BaseIsNonVirtualPrimaryBase
,
2597 const CXXRecordDecl
*VTableClass
,
2598 VisitedVirtualBasesSetTy
&VBases
,
2599 VPtrsVector
&Vptrs
) {
2600 // If this base is a non-virtual primary base the address point has already
2602 if (!BaseIsNonVirtualPrimaryBase
) {
2603 // Initialize the vtable pointer for this base.
2604 VPtr Vptr
= {Base
, NearestVBase
, OffsetFromNearestVBase
, VTableClass
};
2605 Vptrs
.push_back(Vptr
);
2608 const CXXRecordDecl
*RD
= Base
.getBase();
2611 for (const auto &I
: RD
->bases()) {
2613 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
2615 // Ignore classes without a vtable.
2616 if (!BaseDecl
->isDynamicClass())
2619 CharUnits BaseOffset
;
2620 CharUnits BaseOffsetFromNearestVBase
;
2621 bool BaseDeclIsNonVirtualPrimaryBase
;
2623 if (I
.isVirtual()) {
2624 // Check if we've visited this virtual base before.
2625 if (!VBases
.insert(BaseDecl
).second
)
2628 const ASTRecordLayout
&Layout
=
2629 getContext().getASTRecordLayout(VTableClass
);
2631 BaseOffset
= Layout
.getVBaseClassOffset(BaseDecl
);
2632 BaseOffsetFromNearestVBase
= CharUnits::Zero();
2633 BaseDeclIsNonVirtualPrimaryBase
= false;
2635 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
2637 BaseOffset
= Base
.getBaseOffset() + Layout
.getBaseClassOffset(BaseDecl
);
2638 BaseOffsetFromNearestVBase
=
2639 OffsetFromNearestVBase
+ Layout
.getBaseClassOffset(BaseDecl
);
2640 BaseDeclIsNonVirtualPrimaryBase
= Layout
.getPrimaryBase() == BaseDecl
;
2644 BaseSubobject(BaseDecl
, BaseOffset
),
2645 I
.isVirtual() ? BaseDecl
: NearestVBase
, BaseOffsetFromNearestVBase
,
2646 BaseDeclIsNonVirtualPrimaryBase
, VTableClass
, VBases
, Vptrs
);
2650 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl
*RD
) {
2651 // Ignore classes without a vtable.
2652 if (!RD
->isDynamicClass())
2655 // Initialize the vtable pointers for this class and all of its bases.
2656 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(RD
))
2657 for (const VPtr
&Vptr
: getVTablePointers(RD
))
2658 InitializeVTablePointer(Vptr
);
2660 if (RD
->getNumVBases())
2661 CGM
.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD
);
2664 llvm::Value
*CodeGenFunction::GetVTablePtr(Address This
,
2665 llvm::Type
*VTableTy
,
2666 const CXXRecordDecl
*RD
) {
2667 Address VTablePtrSrc
= This
.withElementType(VTableTy
);
2668 llvm::Instruction
*VTable
= Builder
.CreateLoad(VTablePtrSrc
, "vtable");
2669 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(VTableTy
);
2670 CGM
.DecorateInstructionWithTBAA(VTable
, TBAAInfo
);
2672 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2673 CGM
.getCodeGenOpts().StrictVTablePointers
)
2674 CGM
.DecorateInstructionWithInvariantGroup(VTable
, RD
);
2679 // If a class has a single non-virtual base and does not introduce or override
2680 // virtual member functions or fields, it will have the same layout as its base.
2681 // This function returns the least derived such class.
2683 // Casting an instance of a base class to such a derived class is technically
2684 // undefined behavior, but it is a relatively common hack for introducing member
2685 // functions on class instances with specific properties (e.g. llvm::Operator)
2686 // that works under most compilers and should not have security implications, so
2687 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2688 static const CXXRecordDecl
*
2689 LeastDerivedClassWithSameLayout(const CXXRecordDecl
*RD
) {
2690 if (!RD
->field_empty())
2693 if (RD
->getNumVBases() != 0)
2696 if (RD
->getNumBases() != 1)
2699 for (const CXXMethodDecl
*MD
: RD
->methods()) {
2700 if (MD
->isVirtual()) {
2701 // Virtual member functions are only ok if they are implicit destructors
2702 // because the implicit destructor will have the same semantics as the
2703 // base class's destructor if no fields are added.
2704 if (isa
<CXXDestructorDecl
>(MD
) && MD
->isImplicit())
2710 return LeastDerivedClassWithSameLayout(
2711 RD
->bases_begin()->getType()->getAsCXXRecordDecl());
2714 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl
*RD
,
2715 llvm::Value
*VTable
,
2716 SourceLocation Loc
) {
2717 if (SanOpts
.has(SanitizerKind::CFIVCall
))
2718 EmitVTablePtrCheckForCall(RD
, VTable
, CodeGenFunction::CFITCK_VCall
, Loc
);
2719 else if (CGM
.getCodeGenOpts().WholeProgramVTables
&&
2720 // Don't insert type test assumes if we are forcing public
2722 !CGM
.AlwaysHasLTOVisibilityPublic(RD
)) {
2723 QualType Ty
= QualType(RD
->getTypeForDecl(), 0);
2724 llvm::Metadata
*MD
= CGM
.CreateMetadataIdentifierForType(Ty
);
2725 llvm::Value
*TypeId
=
2726 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2728 // If we already know that the call has hidden LTO visibility, emit
2729 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2730 // will convert to @llvm.type.test() if we assert at link time that we have
2731 // whole program visibility.
2732 llvm::Intrinsic::ID IID
= CGM
.HasHiddenLTOVisibility(RD
)
2733 ? llvm::Intrinsic::type_test
2734 : llvm::Intrinsic::public_type_test
;
2735 llvm::Value
*TypeTest
=
2736 Builder
.CreateCall(CGM
.getIntrinsic(IID
), {VTable
, TypeId
});
2737 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::assume
), TypeTest
);
2741 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl
*RD
,
2742 llvm::Value
*VTable
,
2743 CFITypeCheckKind TCK
,
2744 SourceLocation Loc
) {
2745 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2746 RD
= LeastDerivedClassWithSameLayout(RD
);
2748 EmitVTablePtrCheck(RD
, VTable
, TCK
, Loc
);
2751 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T
, Address Derived
,
2753 CFITypeCheckKind TCK
,
2754 SourceLocation Loc
) {
2755 if (!getLangOpts().CPlusPlus
)
2758 auto *ClassTy
= T
->getAs
<RecordType
>();
2762 const CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(ClassTy
->getDecl());
2764 if (!ClassDecl
->isCompleteDefinition() || !ClassDecl
->isDynamicClass())
2767 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2768 ClassDecl
= LeastDerivedClassWithSameLayout(ClassDecl
);
2770 llvm::BasicBlock
*ContBlock
= nullptr;
2773 llvm::Value
*DerivedNotNull
=
2774 Builder
.CreateIsNotNull(Derived
.getPointer(), "cast.nonnull");
2776 llvm::BasicBlock
*CheckBlock
= createBasicBlock("cast.check");
2777 ContBlock
= createBasicBlock("cast.cont");
2779 Builder
.CreateCondBr(DerivedNotNull
, CheckBlock
, ContBlock
);
2781 EmitBlock(CheckBlock
);
2784 llvm::Value
*VTable
;
2785 std::tie(VTable
, ClassDecl
) =
2786 CGM
.getCXXABI().LoadVTablePtr(*this, Derived
, ClassDecl
);
2788 EmitVTablePtrCheck(ClassDecl
, VTable
, TCK
, Loc
);
2791 Builder
.CreateBr(ContBlock
);
2792 EmitBlock(ContBlock
);
2796 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl
*RD
,
2797 llvm::Value
*VTable
,
2798 CFITypeCheckKind TCK
,
2799 SourceLocation Loc
) {
2800 if (!CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&&
2801 !CGM
.HasHiddenLTOVisibility(RD
))
2805 llvm::SanitizerStatKind SSK
;
2808 M
= SanitizerKind::CFIVCall
;
2809 SSK
= llvm::SanStat_CFI_VCall
;
2812 M
= SanitizerKind::CFINVCall
;
2813 SSK
= llvm::SanStat_CFI_NVCall
;
2815 case CFITCK_DerivedCast
:
2816 M
= SanitizerKind::CFIDerivedCast
;
2817 SSK
= llvm::SanStat_CFI_DerivedCast
;
2819 case CFITCK_UnrelatedCast
:
2820 M
= SanitizerKind::CFIUnrelatedCast
;
2821 SSK
= llvm::SanStat_CFI_UnrelatedCast
;
2824 case CFITCK_NVMFCall
:
2825 case CFITCK_VMFCall
:
2826 llvm_unreachable("unexpected sanitizer kind");
2829 std::string TypeName
= RD
->getQualifiedNameAsString();
2830 if (getContext().getNoSanitizeList().containsType(M
, TypeName
))
2833 SanitizerScope
SanScope(this);
2834 EmitSanitizerStatReport(SSK
);
2836 llvm::Metadata
*MD
=
2837 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2838 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
2840 llvm::Value
*TypeTest
= Builder
.CreateCall(
2841 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, TypeId
});
2843 llvm::Constant
*StaticData
[] = {
2844 llvm::ConstantInt::get(Int8Ty
, TCK
),
2845 EmitCheckSourceLocation(Loc
),
2846 EmitCheckTypeDescriptor(QualType(RD
->getTypeForDecl(), 0)),
2849 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
2850 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
2851 EmitCfiSlowPathCheck(M
, TypeTest
, CrossDsoTypeId
, VTable
, StaticData
);
2855 if (CGM
.getCodeGenOpts().SanitizeTrap
.has(M
)) {
2856 EmitTrapCheck(TypeTest
, SanitizerHandler::CFICheckFail
);
2860 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
2861 CGM
.getLLVMContext(),
2862 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
2863 llvm::Value
*ValidVtable
= Builder
.CreateCall(
2864 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, AllVtables
});
2865 EmitCheck(std::make_pair(TypeTest
, M
), SanitizerHandler::CFICheckFail
,
2866 StaticData
, {VTable
, ValidVtable
});
2869 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl
*RD
) {
2870 if (!CGM
.getCodeGenOpts().WholeProgramVTables
||
2871 !CGM
.HasHiddenLTOVisibility(RD
))
2874 if (CGM
.getCodeGenOpts().VirtualFunctionElimination
)
2877 if (!SanOpts
.has(SanitizerKind::CFIVCall
) ||
2878 !CGM
.getCodeGenOpts().SanitizeTrap
.has(SanitizerKind::CFIVCall
))
2881 std::string TypeName
= RD
->getQualifiedNameAsString();
2882 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2886 llvm::Value
*CodeGenFunction::EmitVTableTypeCheckedLoad(
2887 const CXXRecordDecl
*RD
, llvm::Value
*VTable
, llvm::Type
*VTableTy
,
2888 uint64_t VTableByteOffset
) {
2889 SanitizerScope
SanScope(this);
2891 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall
);
2893 llvm::Metadata
*MD
=
2894 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2895 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2897 llvm::Value
*CheckedLoad
= Builder
.CreateCall(
2898 CGM
.getIntrinsic(llvm::Intrinsic::type_checked_load
),
2899 {VTable
, llvm::ConstantInt::get(Int32Ty
, VTableByteOffset
), TypeId
});
2900 llvm::Value
*CheckResult
= Builder
.CreateExtractValue(CheckedLoad
, 1);
2902 std::string TypeName
= RD
->getQualifiedNameAsString();
2903 if (SanOpts
.has(SanitizerKind::CFIVCall
) &&
2904 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2906 EmitCheck(std::make_pair(CheckResult
, SanitizerKind::CFIVCall
),
2907 SanitizerHandler::CFICheckFail
, {}, {});
2910 return Builder
.CreateBitCast(Builder
.CreateExtractValue(CheckedLoad
, 0),
2914 void CodeGenFunction::EmitForwardingCallToLambda(
2915 const CXXMethodDecl
*callOperator
, CallArgList
&callArgs
,
2916 const CGFunctionInfo
*calleeFnInfo
, llvm::Constant
*calleePtr
) {
2917 // Get the address of the call operator.
2919 calleeFnInfo
= &CGM
.getTypes().arrangeCXXMethodDeclaration(callOperator
);
2923 CGM
.GetAddrOfFunction(GlobalDecl(callOperator
),
2924 CGM
.getTypes().GetFunctionType(*calleeFnInfo
));
2926 // Prepare the return slot.
2927 const FunctionProtoType
*FPT
=
2928 callOperator
->getType()->castAs
<FunctionProtoType
>();
2929 QualType resultType
= FPT
->getReturnType();
2930 ReturnValueSlot returnSlot
;
2931 if (!resultType
->isVoidType() &&
2932 calleeFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
&&
2933 !hasScalarEvaluationKind(calleeFnInfo
->getReturnType()))
2935 ReturnValueSlot(ReturnValue
, resultType
.isVolatileQualified(),
2936 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2938 // We don't need to separately arrange the call arguments because
2939 // the call can't be variadic anyway --- it's impossible to forward
2940 // variadic arguments.
2942 // Now emit our call.
2943 auto callee
= CGCallee::forDirect(calleePtr
, GlobalDecl(callOperator
));
2944 RValue RV
= EmitCall(*calleeFnInfo
, callee
, returnSlot
, callArgs
);
2946 // If necessary, copy the returned value into the slot.
2947 if (!resultType
->isVoidType() && returnSlot
.isNull()) {
2948 if (getLangOpts().ObjCAutoRefCount
&& resultType
->isObjCRetainableType()) {
2949 RV
= RValue::get(EmitARCRetainAutoreleasedReturnValue(RV
.getScalarVal()));
2951 EmitReturnOfRValue(RV
, resultType
);
2953 EmitBranchThroughCleanup(ReturnBlock
);
2956 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2957 const BlockDecl
*BD
= BlockInfo
->getBlockDecl();
2958 const VarDecl
*variable
= BD
->capture_begin()->getVariable();
2959 const CXXRecordDecl
*Lambda
= variable
->getType()->getAsCXXRecordDecl();
2960 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
2962 if (CallOp
->isVariadic()) {
2963 // FIXME: Making this work correctly is nasty because it requires either
2964 // cloning the body of the call operator or making the call operator
2966 CGM
.ErrorUnsupported(CurCodeDecl
, "lambda conversion to variadic function");
2970 // Start building arguments for forwarding call
2971 CallArgList CallArgs
;
2973 QualType ThisType
= getContext().getPointerType(getContext().getRecordType(Lambda
));
2974 Address ThisPtr
= GetAddrOfBlockDecl(variable
);
2975 CallArgs
.add(RValue::get(ThisPtr
.getPointer()), ThisType
);
2977 // Add the rest of the parameters.
2978 for (auto *param
: BD
->parameters())
2979 EmitDelegateCallArg(CallArgs
, param
, param
->getBeginLoc());
2981 assert(!Lambda
->isGenericLambda() &&
2982 "generic lambda interconversion to block not implemented");
2983 EmitForwardingCallToLambda(CallOp
, CallArgs
);
2986 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl
*MD
) {
2987 if (MD
->isVariadic()) {
2988 // FIXME: Making this work correctly is nasty because it requires either
2989 // cloning the body of the call operator or making the call operator
2991 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
2995 const CXXRecordDecl
*Lambda
= MD
->getParent();
2997 // Start building arguments for forwarding call
2998 CallArgList CallArgs
;
3000 QualType LambdaType
= getContext().getRecordType(Lambda
);
3001 QualType ThisType
= getContext().getPointerType(LambdaType
);
3002 Address ThisPtr
= CreateMemTemp(LambdaType
, "unused.capture");
3003 CallArgs
.add(RValue::get(ThisPtr
.getPointer()), ThisType
);
3005 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3008 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl
*MD
,
3009 CallArgList
&CallArgs
) {
3010 // Add the rest of the forwarded parameters.
3011 for (auto *Param
: MD
->parameters())
3012 EmitDelegateCallArg(CallArgs
, Param
, Param
->getBeginLoc());
3014 const CXXRecordDecl
*Lambda
= MD
->getParent();
3015 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
3016 // For a generic lambda, find the corresponding call operator specialization
3017 // to which the call to the static-invoker shall be forwarded.
3018 if (Lambda
->isGenericLambda()) {
3019 assert(MD
->isFunctionTemplateSpecialization());
3020 const TemplateArgumentList
*TAL
= MD
->getTemplateSpecializationArgs();
3021 FunctionTemplateDecl
*CallOpTemplate
= CallOp
->getDescribedFunctionTemplate();
3022 void *InsertPos
= nullptr;
3023 FunctionDecl
*CorrespondingCallOpSpecialization
=
3024 CallOpTemplate
->findSpecialization(TAL
->asArray(), InsertPos
);
3025 assert(CorrespondingCallOpSpecialization
);
3026 CallOp
= cast
<CXXMethodDecl
>(CorrespondingCallOpSpecialization
);
3029 // Special lambda forwarding when there are inalloca parameters.
3030 if (hasInAllocaArg(MD
)) {
3031 const CGFunctionInfo
*ImplFnInfo
= nullptr;
3032 llvm::Function
*ImplFn
= nullptr;
3033 EmitLambdaInAllocaImplFn(CallOp
, &ImplFnInfo
, &ImplFn
);
3035 EmitForwardingCallToLambda(CallOp
, CallArgs
, ImplFnInfo
, ImplFn
);
3039 EmitForwardingCallToLambda(CallOp
, CallArgs
);
3042 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl
*MD
) {
3043 if (MD
->isVariadic()) {
3044 // FIXME: Making this work correctly is nasty because it requires either
3045 // cloning the body of the call operator or making the call operator forward.
3046 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
3050 // Forward %this argument.
3051 CallArgList CallArgs
;
3052 QualType LambdaType
= getContext().getRecordType(MD
->getParent());
3053 QualType ThisType
= getContext().getPointerType(LambdaType
);
3054 llvm::Value
*ThisArg
= CurFn
->getArg(0);
3055 CallArgs
.add(RValue::get(ThisArg
), ThisType
);
3057 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3060 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3061 const CXXMethodDecl
*CallOp
, const CGFunctionInfo
**ImplFnInfo
,
3062 llvm::Function
**ImplFn
) {
3063 const CGFunctionInfo
&FnInfo
=
3064 CGM
.getTypes().arrangeCXXMethodDeclaration(CallOp
);
3065 llvm::Function
*CallOpFn
=
3066 cast
<llvm::Function
>(CGM
.GetAddrOfFunction(GlobalDecl(CallOp
)));
3068 // Emit function containing the original call op body. __invoke will delegate
3069 // to this function.
3070 SmallVector
<CanQualType
, 4> ArgTypes
;
3071 for (auto I
= FnInfo
.arg_begin(); I
!= FnInfo
.arg_end(); ++I
)
3072 ArgTypes
.push_back(I
->type
);
3073 *ImplFnInfo
= &CGM
.getTypes().arrangeLLVMFunctionInfo(
3074 FnInfo
.getReturnType(), FnInfoOpts::IsDelegateCall
, ArgTypes
,
3075 FnInfo
.getExtInfo(), {}, FnInfo
.getRequiredArgs());
3077 // Create mangled name as if this was a method named __impl. If for some
3078 // reason the name doesn't look as expected then just tack __impl to the
3080 // TODO: Use the name mangler to produce the right name instead of using
3081 // string replacement.
3082 StringRef CallOpName
= CallOpFn
->getName();
3083 std::string ImplName
;
3084 if (size_t Pos
= CallOpName
.find_first_of("<lambda"))
3085 ImplName
= ("?__impl@" + CallOpName
.drop_front(Pos
)).str();
3087 ImplName
= ("__impl" + CallOpName
).str();
3089 llvm::Function
*Fn
= CallOpFn
->getParent()->getFunction(ImplName
);
3091 Fn
= llvm::Function::Create(CGM
.getTypes().GetFunctionType(**ImplFnInfo
),
3092 llvm::GlobalValue::InternalLinkage
, ImplName
,
3094 CGM
.SetInternalFunctionAttributes(CallOp
, Fn
, **ImplFnInfo
);
3096 const GlobalDecl
&GD
= GlobalDecl(CallOp
);
3097 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
3098 CodeGenFunction(CGM
).GenerateCode(GD
, Fn
, **ImplFnInfo
);
3099 CGM
.SetLLVMFunctionAttributesForDefinition(D
, Fn
);