1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Decl nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
42 using namespace clang
;
43 using namespace CodeGen
;
45 static_assert(clang::Sema::MaximumAlignment
<= llvm::Value::MaximumAlignment
,
46 "Clang max alignment greater than what LLVM supports?");
48 void CodeGenFunction::EmitDecl(const Decl
&D
) {
49 switch (D
.getKind()) {
50 case Decl::BuiltinTemplate
:
51 case Decl::TranslationUnit
:
52 case Decl::ExternCContext
:
54 case Decl::UnresolvedUsingTypename
:
55 case Decl::ClassTemplateSpecialization
:
56 case Decl::ClassTemplatePartialSpecialization
:
57 case Decl::VarTemplateSpecialization
:
58 case Decl::VarTemplatePartialSpecialization
:
59 case Decl::TemplateTypeParm
:
60 case Decl::UnresolvedUsingValue
:
61 case Decl::NonTypeTemplateParm
:
62 case Decl::CXXDeductionGuide
:
64 case Decl::CXXConstructor
:
65 case Decl::CXXDestructor
:
66 case Decl::CXXConversion
:
68 case Decl::MSProperty
:
69 case Decl::IndirectField
:
71 case Decl::ObjCAtDefsField
:
73 case Decl::ImplicitParam
:
74 case Decl::ClassTemplate
:
75 case Decl::VarTemplate
:
76 case Decl::FunctionTemplate
:
77 case Decl::TypeAliasTemplate
:
78 case Decl::TemplateTemplateParm
:
79 case Decl::ObjCMethod
:
80 case Decl::ObjCCategory
:
81 case Decl::ObjCProtocol
:
82 case Decl::ObjCInterface
:
83 case Decl::ObjCCategoryImpl
:
84 case Decl::ObjCImplementation
:
85 case Decl::ObjCProperty
:
86 case Decl::ObjCCompatibleAlias
:
87 case Decl::PragmaComment
:
88 case Decl::PragmaDetectMismatch
:
89 case Decl::AccessSpec
:
90 case Decl::LinkageSpec
:
92 case Decl::ObjCPropertyImpl
:
93 case Decl::FileScopeAsm
:
94 case Decl::TopLevelStmt
:
96 case Decl::FriendTemplate
:
99 case Decl::UsingShadow
:
100 case Decl::ConstructorUsingShadow
:
101 case Decl::ObjCTypeParam
:
103 case Decl::UnresolvedUsingIfExists
:
104 case Decl::HLSLBuffer
:
105 llvm_unreachable("Declaration should not be in declstmts!");
106 case Decl::Record
: // struct/union/class X;
107 case Decl::CXXRecord
: // struct/union/class X; [C++]
108 if (CGDebugInfo
*DI
= getDebugInfo())
109 if (cast
<RecordDecl
>(D
).getDefinition())
110 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(&D
)));
112 case Decl::Enum
: // enum X;
113 if (CGDebugInfo
*DI
= getDebugInfo())
114 if (cast
<EnumDecl
>(D
).getDefinition())
115 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(&D
)));
117 case Decl::Function
: // void X();
118 case Decl::EnumConstant
: // enum ? { X = ? }
119 case Decl::StaticAssert
: // static_assert(X, ""); [C++0x]
120 case Decl::Label
: // __label__ x;
122 case Decl::MSGuid
: // __declspec(uuid("..."))
123 case Decl::UnnamedGlobalConstant
:
124 case Decl::TemplateParamObject
:
125 case Decl::OMPThreadPrivate
:
126 case Decl::OMPAllocate
:
127 case Decl::OMPCapturedExpr
:
128 case Decl::OMPRequires
:
131 case Decl::ImplicitConceptSpecialization
:
132 case Decl::LifetimeExtendedTemporary
:
133 case Decl::RequiresExprBody
:
134 // None of these decls require codegen support.
137 case Decl::NamespaceAlias
:
138 if (CGDebugInfo
*DI
= getDebugInfo())
139 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(D
));
141 case Decl::Using
: // using X; [C++]
142 if (CGDebugInfo
*DI
= getDebugInfo())
143 DI
->EmitUsingDecl(cast
<UsingDecl
>(D
));
145 case Decl::UsingEnum
: // using enum X; [C++]
146 if (CGDebugInfo
*DI
= getDebugInfo())
147 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(D
));
149 case Decl::UsingPack
:
150 for (auto *Using
: cast
<UsingPackDecl
>(D
).expansions())
153 case Decl::UsingDirective
: // using namespace X; [C++]
154 if (CGDebugInfo
*DI
= getDebugInfo())
155 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(D
));
158 case Decl::Decomposition
: {
159 const VarDecl
&VD
= cast
<VarDecl
>(D
);
160 assert(VD
.isLocalVarDecl() &&
161 "Should not see file-scope variables inside a function!");
163 if (auto *DD
= dyn_cast
<DecompositionDecl
>(&VD
))
164 for (auto *B
: DD
->bindings())
165 if (auto *HD
= B
->getHoldingVar())
170 case Decl::OMPDeclareReduction
:
171 return CGM
.EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(&D
), this);
173 case Decl::OMPDeclareMapper
:
174 return CGM
.EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(&D
), this);
176 case Decl::Typedef
: // typedef int X;
177 case Decl::TypeAlias
: { // using X = int; [C++0x]
178 QualType Ty
= cast
<TypedefNameDecl
>(D
).getUnderlyingType();
179 if (CGDebugInfo
*DI
= getDebugInfo())
180 DI
->EmitAndRetainType(Ty
);
181 if (Ty
->isVariablyModifiedType())
182 EmitVariablyModifiedType(Ty
);
188 /// EmitVarDecl - This method handles emission of any variable declaration
189 /// inside a function, including static vars etc.
190 void CodeGenFunction::EmitVarDecl(const VarDecl
&D
) {
191 if (D
.hasExternalStorage())
192 // Don't emit it now, allow it to be emitted lazily on its first use.
195 // Some function-scope variable does not have static storage but still
196 // needs to be emitted like a static variable, e.g. a function-scope
197 // variable in constant address space in OpenCL.
198 if (D
.getStorageDuration() != SD_Automatic
) {
199 // Static sampler variables translated to function calls.
200 if (D
.getType()->isSamplerT())
203 llvm::GlobalValue::LinkageTypes Linkage
=
204 CGM
.getLLVMLinkageVarDefinition(&D
);
206 // FIXME: We need to force the emission/use of a guard variable for
207 // some variables even if we can constant-evaluate them because
208 // we can't guarantee every translation unit will constant-evaluate them.
210 return EmitStaticVarDecl(D
, Linkage
);
213 if (D
.getType().getAddressSpace() == LangAS::opencl_local
)
214 return CGM
.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D
);
216 assert(D
.hasLocalStorage());
217 return EmitAutoVarDecl(D
);
220 static std::string
getStaticDeclName(CodeGenModule
&CGM
, const VarDecl
&D
) {
221 if (CGM
.getLangOpts().CPlusPlus
)
222 return CGM
.getMangledName(&D
).str();
224 // If this isn't C++, we don't need a mangled name, just a pretty one.
225 assert(!D
.isExternallyVisible() && "name shouldn't matter");
226 std::string ContextName
;
227 const DeclContext
*DC
= D
.getDeclContext();
228 if (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
229 DC
= cast
<DeclContext
>(CD
->getNonClosureContext());
230 if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
231 ContextName
= std::string(CGM
.getMangledName(FD
));
232 else if (const auto *BD
= dyn_cast
<BlockDecl
>(DC
))
233 ContextName
= std::string(CGM
.getBlockMangledName(GlobalDecl(), BD
));
234 else if (const auto *OMD
= dyn_cast
<ObjCMethodDecl
>(DC
))
235 ContextName
= OMD
->getSelector().getAsString();
237 llvm_unreachable("Unknown context for static var decl");
239 ContextName
+= "." + D
.getNameAsString();
243 llvm::Constant
*CodeGenModule::getOrCreateStaticVarDecl(
244 const VarDecl
&D
, llvm::GlobalValue::LinkageTypes Linkage
) {
245 // In general, we don't always emit static var decls once before we reference
246 // them. It is possible to reference them before emitting the function that
247 // contains them, and it is possible to emit the containing function multiple
249 if (llvm::Constant
*ExistingGV
= StaticLocalDeclMap
[&D
])
252 QualType Ty
= D
.getType();
253 assert(Ty
->isConstantSizeType() && "VLAs can't be static");
255 // Use the label if the variable is renamed with the asm-label extension.
257 if (D
.hasAttr
<AsmLabelAttr
>())
258 Name
= std::string(getMangledName(&D
));
260 Name
= getStaticDeclName(*this, D
);
262 llvm::Type
*LTy
= getTypes().ConvertTypeForMem(Ty
);
263 LangAS AS
= GetGlobalVarAddressSpace(&D
);
264 unsigned TargetAS
= getContext().getTargetAddressSpace(AS
);
266 // OpenCL variables in local address space and CUDA shared
267 // variables cannot have an initializer.
268 llvm::Constant
*Init
= nullptr;
269 if (Ty
.getAddressSpace() == LangAS::opencl_local
||
270 D
.hasAttr
<CUDASharedAttr
>() || D
.hasAttr
<LoaderUninitializedAttr
>())
271 Init
= llvm::UndefValue::get(LTy
);
273 Init
= EmitNullConstant(Ty
);
275 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
276 getModule(), LTy
, Ty
.isConstant(getContext()), Linkage
, Init
, Name
,
277 nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
278 GV
->setAlignment(getContext().getDeclAlign(&D
).getAsAlign());
280 if (supportsCOMDAT() && GV
->isWeakForLinker())
281 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
286 setGVProperties(GV
, &D
);
288 // Make sure the result is of the correct type.
289 LangAS ExpectedAS
= Ty
.getAddressSpace();
290 llvm::Constant
*Addr
= GV
;
291 if (AS
!= ExpectedAS
) {
292 Addr
= getTargetCodeGenInfo().performAddrSpaceCast(
293 *this, GV
, AS
, ExpectedAS
,
294 llvm::PointerType::get(getLLVMContext(),
295 getContext().getTargetAddressSpace(ExpectedAS
)));
298 setStaticLocalDeclAddress(&D
, Addr
);
300 // Ensure that the static local gets initialized by making sure the parent
301 // function gets emitted eventually.
302 const Decl
*DC
= cast
<Decl
>(D
.getDeclContext());
304 // We can't name blocks or captured statements directly, so try to emit their
306 if (isa
<BlockDecl
>(DC
) || isa
<CapturedDecl
>(DC
)) {
307 DC
= DC
->getNonClosureContext();
308 // FIXME: Ensure that global blocks get emitted.
314 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(DC
))
315 GD
= GlobalDecl(CD
, Ctor_Base
);
316 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(DC
))
317 GD
= GlobalDecl(DD
, Dtor_Base
);
318 else if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
321 // Don't do anything for Obj-C method decls or global closures. We should
323 assert(isa
<ObjCMethodDecl
>(DC
) && "unexpected parent code decl");
326 // Disable emission of the parent function for the OpenMP device codegen.
327 CGOpenMPRuntime::DisableAutoDeclareTargetRAII
NoDeclTarget(*this);
328 (void)GetAddrOfGlobal(GD
);
334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335 /// global variable that has already been created for it. If the initializer
336 /// has a different type than GV does, this may free GV and return a different
337 /// one. Otherwise it just returns GV.
338 llvm::GlobalVariable
*
339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl
&D
,
340 llvm::GlobalVariable
*GV
) {
341 ConstantEmitter
emitter(*this);
342 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(D
);
344 // If constant emission failed, then this should be a C++ static
347 if (!getLangOpts().CPlusPlus
)
348 CGM
.ErrorUnsupported(D
.getInit(), "constant l-value expression");
349 else if (D
.hasFlexibleArrayInit(getContext()))
350 CGM
.ErrorUnsupported(D
.getInit(), "flexible array initializer");
351 else if (HaveInsertPoint()) {
352 // Since we have a static initializer, this global variable can't
354 GV
->setConstant(false);
356 EmitCXXGuardedInit(D
, GV
, /*PerformInit*/true);
362 CharUnits VarSize
= CGM
.getContext().getTypeSizeInChars(D
.getType()) +
363 D
.getFlexibleArrayInitChars(getContext());
364 CharUnits CstSize
= CharUnits::fromQuantity(
365 CGM
.getDataLayout().getTypeAllocSize(Init
->getType()));
366 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
369 // The initializer may differ in type from the global. Rewrite
370 // the global to match the initializer. (We have to do this
371 // because some types, like unions, can't be completely represented
372 // in the LLVM type system.)
373 if (GV
->getValueType() != Init
->getType()) {
374 llvm::GlobalVariable
*OldGV
= GV
;
376 GV
= new llvm::GlobalVariable(
377 CGM
.getModule(), Init
->getType(), OldGV
->isConstant(),
378 OldGV
->getLinkage(), Init
, "",
379 /*InsertBefore*/ OldGV
, OldGV
->getThreadLocalMode(),
380 OldGV
->getType()->getPointerAddressSpace());
381 GV
->setVisibility(OldGV
->getVisibility());
382 GV
->setDSOLocal(OldGV
->isDSOLocal());
383 GV
->setComdat(OldGV
->getComdat());
385 // Steal the name of the old global
388 // Replace all uses of the old global with the new global
389 OldGV
->replaceAllUsesWith(GV
);
391 // Erase the old global, since it is no longer used.
392 OldGV
->eraseFromParent();
396 D
.needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
399 D
.getType().isConstantStorage(getContext(), true, !NeedsDtor
));
400 GV
->setInitializer(Init
);
402 emitter
.finalize(GV
);
404 if (NeedsDtor
&& HaveInsertPoint()) {
405 // We have a constant initializer, but a nontrivial destructor. We still
406 // need to perform a guarded "initialization" in order to register the
408 EmitCXXGuardedInit(D
, GV
, /*PerformInit*/false);
414 void CodeGenFunction::EmitStaticVarDecl(const VarDecl
&D
,
415 llvm::GlobalValue::LinkageTypes Linkage
) {
416 // Check to see if we already have a global variable for this
417 // declaration. This can happen when double-emitting function
418 // bodies, e.g. with complete and base constructors.
419 llvm::Constant
*addr
= CGM
.getOrCreateStaticVarDecl(D
, Linkage
);
420 CharUnits alignment
= getContext().getDeclAlign(&D
);
422 // Store into LocalDeclMap before generating initializer to handle
423 // circular references.
424 llvm::Type
*elemTy
= ConvertTypeForMem(D
.getType());
425 setAddrOfLocalVar(&D
, Address(addr
, elemTy
, alignment
));
427 // We can't have a VLA here, but we can have a pointer to a VLA,
428 // even though that doesn't really make any sense.
429 // Make sure to evaluate VLA bounds now so that we have them for later.
430 if (D
.getType()->isVariablyModifiedType())
431 EmitVariablyModifiedType(D
.getType());
433 // Save the type in case adding the initializer forces a type change.
434 llvm::Type
*expectedType
= addr
->getType();
436 llvm::GlobalVariable
*var
=
437 cast
<llvm::GlobalVariable
>(addr
->stripPointerCasts());
439 // CUDA's local and local static __shared__ variables should not
440 // have any non-empty initializers. This is ensured by Sema.
441 // Whatever initializer such variable may have when it gets here is
442 // a no-op and should not be emitted.
443 bool isCudaSharedVar
= getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
444 D
.hasAttr
<CUDASharedAttr
>();
445 // If this value has an initializer, emit it.
446 if (D
.getInit() && !isCudaSharedVar
)
447 var
= AddInitializerToStaticVarDecl(D
, var
);
449 var
->setAlignment(alignment
.getAsAlign());
451 if (D
.hasAttr
<AnnotateAttr
>())
452 CGM
.AddGlobalAnnotations(&D
, var
);
454 if (auto *SA
= D
.getAttr
<PragmaClangBSSSectionAttr
>())
455 var
->addAttribute("bss-section", SA
->getName());
456 if (auto *SA
= D
.getAttr
<PragmaClangDataSectionAttr
>())
457 var
->addAttribute("data-section", SA
->getName());
458 if (auto *SA
= D
.getAttr
<PragmaClangRodataSectionAttr
>())
459 var
->addAttribute("rodata-section", SA
->getName());
460 if (auto *SA
= D
.getAttr
<PragmaClangRelroSectionAttr
>())
461 var
->addAttribute("relro-section", SA
->getName());
463 if (const SectionAttr
*SA
= D
.getAttr
<SectionAttr
>())
464 var
->setSection(SA
->getName());
466 if (D
.hasAttr
<RetainAttr
>())
467 CGM
.addUsedGlobal(var
);
468 else if (D
.hasAttr
<UsedAttr
>())
469 CGM
.addUsedOrCompilerUsedGlobal(var
);
471 if (CGM
.getCodeGenOpts().KeepPersistentStorageVariables
)
472 CGM
.addUsedOrCompilerUsedGlobal(var
);
474 // We may have to cast the constant because of the initializer
477 // FIXME: It is really dangerous to store this in the map; if anyone
478 // RAUW's the GV uses of this constant will be invalid.
479 llvm::Constant
*castedAddr
=
480 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var
, expectedType
);
481 LocalDeclMap
.find(&D
)->second
= Address(castedAddr
, elemTy
, alignment
);
482 CGM
.setStaticLocalDeclAddress(&D
, castedAddr
);
484 CGM
.getSanitizerMetadata()->reportGlobal(var
, D
);
486 // Emit global variable debug descriptor for static vars.
487 CGDebugInfo
*DI
= getDebugInfo();
488 if (DI
&& CGM
.getCodeGenOpts().hasReducedDebugInfo()) {
489 DI
->setLocation(D
.getLocation());
490 DI
->EmitGlobalVariable(var
, &D
);
495 struct DestroyObject final
: EHScopeStack::Cleanup
{
496 DestroyObject(Address addr
, QualType type
,
497 CodeGenFunction::Destroyer
*destroyer
,
498 bool useEHCleanupForArray
)
499 : addr(addr
), type(type
), destroyer(destroyer
),
500 useEHCleanupForArray(useEHCleanupForArray
) {}
504 CodeGenFunction::Destroyer
*destroyer
;
505 bool useEHCleanupForArray
;
507 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
508 // Don't use an EH cleanup recursively from an EH cleanup.
509 bool useEHCleanupForArray
=
510 flags
.isForNormalCleanup() && this->useEHCleanupForArray
;
512 CGF
.emitDestroy(addr
, type
, destroyer
, useEHCleanupForArray
);
516 template <class Derived
>
517 struct DestroyNRVOVariable
: EHScopeStack::Cleanup
{
518 DestroyNRVOVariable(Address addr
, QualType type
, llvm::Value
*NRVOFlag
)
519 : NRVOFlag(NRVOFlag
), Loc(addr
), Ty(type
) {}
521 llvm::Value
*NRVOFlag
;
525 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
526 // Along the exceptions path we always execute the dtor.
527 bool NRVO
= flags
.isForNormalCleanup() && NRVOFlag
;
529 llvm::BasicBlock
*SkipDtorBB
= nullptr;
531 // If we exited via NRVO, we skip the destructor call.
532 llvm::BasicBlock
*RunDtorBB
= CGF
.createBasicBlock("nrvo.unused");
533 SkipDtorBB
= CGF
.createBasicBlock("nrvo.skipdtor");
534 llvm::Value
*DidNRVO
=
535 CGF
.Builder
.CreateFlagLoad(NRVOFlag
, "nrvo.val");
536 CGF
.Builder
.CreateCondBr(DidNRVO
, SkipDtorBB
, RunDtorBB
);
537 CGF
.EmitBlock(RunDtorBB
);
540 static_cast<Derived
*>(this)->emitDestructorCall(CGF
);
542 if (NRVO
) CGF
.EmitBlock(SkipDtorBB
);
545 virtual ~DestroyNRVOVariable() = default;
548 struct DestroyNRVOVariableCXX final
549 : DestroyNRVOVariable
<DestroyNRVOVariableCXX
> {
550 DestroyNRVOVariableCXX(Address addr
, QualType type
,
551 const CXXDestructorDecl
*Dtor
, llvm::Value
*NRVOFlag
)
552 : DestroyNRVOVariable
<DestroyNRVOVariableCXX
>(addr
, type
, NRVOFlag
),
555 const CXXDestructorDecl
*Dtor
;
557 void emitDestructorCall(CodeGenFunction
&CGF
) {
558 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
559 /*ForVirtualBase=*/false,
560 /*Delegating=*/false, Loc
, Ty
);
564 struct DestroyNRVOVariableC final
565 : DestroyNRVOVariable
<DestroyNRVOVariableC
> {
566 DestroyNRVOVariableC(Address addr
, llvm::Value
*NRVOFlag
, QualType Ty
)
567 : DestroyNRVOVariable
<DestroyNRVOVariableC
>(addr
, Ty
, NRVOFlag
) {}
569 void emitDestructorCall(CodeGenFunction
&CGF
) {
570 CGF
.destroyNonTrivialCStruct(CGF
, Loc
, Ty
);
574 struct CallStackRestore final
: EHScopeStack::Cleanup
{
576 CallStackRestore(Address Stack
) : Stack(Stack
) {}
577 bool isRedundantBeforeReturn() override
{ return true; }
578 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
579 llvm::Value
*V
= CGF
.Builder
.CreateLoad(Stack
);
580 CGF
.Builder
.CreateStackRestore(V
);
584 struct KmpcAllocFree final
: EHScopeStack::Cleanup
{
585 std::pair
<llvm::Value
*, llvm::Value
*> AddrSizePair
;
586 KmpcAllocFree(const std::pair
<llvm::Value
*, llvm::Value
*> &AddrSizePair
)
587 : AddrSizePair(AddrSizePair
) {}
588 void Emit(CodeGenFunction
&CGF
, Flags EmissionFlags
) override
{
589 auto &RT
= CGF
.CGM
.getOpenMPRuntime();
590 RT
.getKmpcFreeShared(CGF
, AddrSizePair
);
594 struct ExtendGCLifetime final
: EHScopeStack::Cleanup
{
596 ExtendGCLifetime(const VarDecl
*var
) : Var(*var
) {}
598 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
599 // Compute the address of the local variable, in case it's a
600 // byref or something.
601 DeclRefExpr
DRE(CGF
.getContext(), const_cast<VarDecl
*>(&Var
), false,
602 Var
.getType(), VK_LValue
, SourceLocation());
603 llvm::Value
*value
= CGF
.EmitLoadOfScalar(CGF
.EmitDeclRefLValue(&DRE
),
605 CGF
.EmitExtendGCLifetime(value
);
609 struct CallCleanupFunction final
: EHScopeStack::Cleanup
{
610 llvm::Constant
*CleanupFn
;
611 const CGFunctionInfo
&FnInfo
;
614 CallCleanupFunction(llvm::Constant
*CleanupFn
, const CGFunctionInfo
*Info
,
616 : CleanupFn(CleanupFn
), FnInfo(*Info
), Var(*Var
) {}
618 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
619 DeclRefExpr
DRE(CGF
.getContext(), const_cast<VarDecl
*>(&Var
), false,
620 Var
.getType(), VK_LValue
, SourceLocation());
621 // Compute the address of the local variable, in case it's a byref
623 llvm::Value
*Addr
= CGF
.EmitDeclRefLValue(&DRE
).getPointer(CGF
);
625 // In some cases, the type of the function argument will be different from
626 // the type of the pointer. An example of this is
627 // void f(void* arg);
628 // __attribute__((cleanup(f))) void *g;
630 // To fix this we insert a bitcast here.
631 QualType ArgTy
= FnInfo
.arg_begin()->type
;
633 CGF
.Builder
.CreateBitCast(Addr
, CGF
.ConvertType(ArgTy
));
636 Args
.add(RValue::get(Arg
),
637 CGF
.getContext().getPointerType(Var
.getType()));
638 auto Callee
= CGCallee::forDirect(CleanupFn
);
639 CGF
.EmitCall(FnInfo
, Callee
, ReturnValueSlot(), Args
);
642 } // end anonymous namespace
644 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
645 /// variable with lifetime.
646 static void EmitAutoVarWithLifetime(CodeGenFunction
&CGF
, const VarDecl
&var
,
648 Qualifiers::ObjCLifetime lifetime
) {
650 case Qualifiers::OCL_None
:
651 llvm_unreachable("present but none");
653 case Qualifiers::OCL_ExplicitNone
:
657 case Qualifiers::OCL_Strong
: {
658 CodeGenFunction::Destroyer
*destroyer
=
659 (var
.hasAttr
<ObjCPreciseLifetimeAttr
>()
660 ? CodeGenFunction::destroyARCStrongPrecise
661 : CodeGenFunction::destroyARCStrongImprecise
);
663 CleanupKind cleanupKind
= CGF
.getARCCleanupKind();
664 CGF
.pushDestroy(cleanupKind
, addr
, var
.getType(), destroyer
,
665 cleanupKind
& EHCleanup
);
668 case Qualifiers::OCL_Autoreleasing
:
672 case Qualifiers::OCL_Weak
:
673 // __weak objects always get EH cleanups; otherwise, exceptions
674 // could cause really nasty crashes instead of mere leaks.
675 CGF
.pushDestroy(NormalAndEHCleanup
, addr
, var
.getType(),
676 CodeGenFunction::destroyARCWeak
,
677 /*useEHCleanup*/ true);
682 static bool isAccessedBy(const VarDecl
&var
, const Stmt
*s
) {
683 if (const Expr
*e
= dyn_cast
<Expr
>(s
)) {
684 // Skip the most common kinds of expressions that make
685 // hierarchy-walking expensive.
686 s
= e
= e
->IgnoreParenCasts();
688 if (const DeclRefExpr
*ref
= dyn_cast
<DeclRefExpr
>(e
))
689 return (ref
->getDecl() == &var
);
690 if (const BlockExpr
*be
= dyn_cast
<BlockExpr
>(e
)) {
691 const BlockDecl
*block
= be
->getBlockDecl();
692 for (const auto &I
: block
->captures()) {
693 if (I
.getVariable() == &var
)
699 for (const Stmt
*SubStmt
: s
->children())
700 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
701 if (SubStmt
&& isAccessedBy(var
, SubStmt
))
707 static bool isAccessedBy(const ValueDecl
*decl
, const Expr
*e
) {
708 if (!decl
) return false;
709 if (!isa
<VarDecl
>(decl
)) return false;
710 const VarDecl
*var
= cast
<VarDecl
>(decl
);
711 return isAccessedBy(*var
, e
);
714 static bool tryEmitARCCopyWeakInit(CodeGenFunction
&CGF
,
715 const LValue
&destLV
, const Expr
*init
) {
716 bool needsCast
= false;
718 while (auto castExpr
= dyn_cast
<CastExpr
>(init
->IgnoreParens())) {
719 switch (castExpr
->getCastKind()) {
720 // Look through casts that don't require representation changes.
723 case CK_BlockPointerToObjCPointerCast
:
727 // If we find an l-value to r-value cast from a __weak variable,
728 // emit this operation as a copy or move.
729 case CK_LValueToRValue
: {
730 const Expr
*srcExpr
= castExpr
->getSubExpr();
731 if (srcExpr
->getType().getObjCLifetime() != Qualifiers::OCL_Weak
)
734 // Emit the source l-value.
735 LValue srcLV
= CGF
.EmitLValue(srcExpr
);
737 // Handle a formal type change to avoid asserting.
738 auto srcAddr
= srcLV
.getAddress(CGF
);
741 srcAddr
.withElementType(destLV
.getAddress(CGF
).getElementType());
744 // If it was an l-value, use objc_copyWeak.
745 if (srcExpr
->isLValue()) {
746 CGF
.EmitARCCopyWeak(destLV
.getAddress(CGF
), srcAddr
);
748 assert(srcExpr
->isXValue());
749 CGF
.EmitARCMoveWeak(destLV
.getAddress(CGF
), srcAddr
);
754 // Stop at anything else.
759 init
= castExpr
->getSubExpr();
764 static void drillIntoBlockVariable(CodeGenFunction
&CGF
,
766 const VarDecl
*var
) {
767 lvalue
.setAddress(CGF
.emitBlockByrefAddress(lvalue
.getAddress(CGF
), var
));
770 void CodeGenFunction::EmitNullabilityCheck(LValue LHS
, llvm::Value
*RHS
,
771 SourceLocation Loc
) {
772 if (!SanOpts
.has(SanitizerKind::NullabilityAssign
))
775 auto Nullability
= LHS
.getType()->getNullability();
776 if (!Nullability
|| *Nullability
!= NullabilityKind::NonNull
)
779 // Check if the right hand side of the assignment is nonnull, if the left
780 // hand side must be nonnull.
781 SanitizerScope
SanScope(this);
782 llvm::Value
*IsNotNull
= Builder
.CreateIsNotNull(RHS
);
783 llvm::Constant
*StaticData
[] = {
784 EmitCheckSourceLocation(Loc
), EmitCheckTypeDescriptor(LHS
.getType()),
785 llvm::ConstantInt::get(Int8Ty
, 0), // The LogAlignment info is unused.
786 llvm::ConstantInt::get(Int8Ty
, TCK_NonnullAssign
)};
787 EmitCheck({{IsNotNull
, SanitizerKind::NullabilityAssign
}},
788 SanitizerHandler::TypeMismatch
, StaticData
, RHS
);
791 void CodeGenFunction::EmitScalarInit(const Expr
*init
, const ValueDecl
*D
,
792 LValue lvalue
, bool capturedByInit
) {
793 Qualifiers::ObjCLifetime lifetime
= lvalue
.getObjCLifetime();
795 llvm::Value
*value
= EmitScalarExpr(init
);
797 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
798 EmitNullabilityCheck(lvalue
, value
, init
->getExprLoc());
799 EmitStoreThroughLValue(RValue::get(value
), lvalue
, true);
803 if (const CXXDefaultInitExpr
*DIE
= dyn_cast
<CXXDefaultInitExpr
>(init
))
804 init
= DIE
->getExpr();
806 // If we're emitting a value with lifetime, we have to do the
807 // initialization *before* we leave the cleanup scopes.
808 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(init
)) {
809 CodeGenFunction::RunCleanupsScope
Scope(*this);
810 return EmitScalarInit(EWC
->getSubExpr(), D
, lvalue
, capturedByInit
);
813 // We have to maintain the illusion that the variable is
814 // zero-initialized. If the variable might be accessed in its
815 // initializer, zero-initialize before running the initializer, then
816 // actually perform the initialization with an assign.
817 bool accessedByInit
= false;
818 if (lifetime
!= Qualifiers::OCL_ExplicitNone
)
819 accessedByInit
= (capturedByInit
|| isAccessedBy(D
, init
));
820 if (accessedByInit
) {
821 LValue tempLV
= lvalue
;
822 // Drill down to the __block object if necessary.
823 if (capturedByInit
) {
824 // We can use a simple GEP for this because it can't have been
826 tempLV
.setAddress(emitBlockByrefAddress(tempLV
.getAddress(*this),
832 cast
<llvm::PointerType
>(tempLV
.getAddress(*this).getElementType());
833 llvm::Value
*zero
= CGM
.getNullPointer(ty
, tempLV
.getType());
835 // If __weak, we want to use a barrier under certain conditions.
836 if (lifetime
== Qualifiers::OCL_Weak
)
837 EmitARCInitWeak(tempLV
.getAddress(*this), zero
);
839 // Otherwise just do a simple store.
841 EmitStoreOfScalar(zero
, tempLV
, /* isInitialization */ true);
844 // Emit the initializer.
845 llvm::Value
*value
= nullptr;
848 case Qualifiers::OCL_None
:
849 llvm_unreachable("present but none");
851 case Qualifiers::OCL_Strong
: {
852 if (!D
|| !isa
<VarDecl
>(D
) || !cast
<VarDecl
>(D
)->isARCPseudoStrong()) {
853 value
= EmitARCRetainScalarExpr(init
);
856 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
857 // that we omit the retain, and causes non-autoreleased return values to be
858 // immediately released.
862 case Qualifiers::OCL_ExplicitNone
:
863 value
= EmitARCUnsafeUnretainedScalarExpr(init
);
866 case Qualifiers::OCL_Weak
: {
867 // If it's not accessed by the initializer, try to emit the
868 // initialization with a copy or move.
869 if (!accessedByInit
&& tryEmitARCCopyWeakInit(*this, lvalue
, init
)) {
873 // No way to optimize a producing initializer into this. It's not
874 // worth optimizing for, because the value will immediately
875 // disappear in the common case.
876 value
= EmitScalarExpr(init
);
878 if (capturedByInit
) drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
880 EmitARCStoreWeak(lvalue
.getAddress(*this), value
, /*ignored*/ true);
882 EmitARCInitWeak(lvalue
.getAddress(*this), value
);
886 case Qualifiers::OCL_Autoreleasing
:
887 value
= EmitARCRetainAutoreleaseScalarExpr(init
);
891 if (capturedByInit
) drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
893 EmitNullabilityCheck(lvalue
, value
, init
->getExprLoc());
895 // If the variable might have been accessed by its initializer, we
896 // might have to initialize with a barrier. We have to do this for
897 // both __weak and __strong, but __weak got filtered out above.
898 if (accessedByInit
&& lifetime
== Qualifiers::OCL_Strong
) {
899 llvm::Value
*oldValue
= EmitLoadOfScalar(lvalue
, init
->getExprLoc());
900 EmitStoreOfScalar(value
, lvalue
, /* isInitialization */ true);
901 EmitARCRelease(oldValue
, ARCImpreciseLifetime
);
905 EmitStoreOfScalar(value
, lvalue
, /* isInitialization */ true);
908 /// Decide whether we can emit the non-zero parts of the specified initializer
909 /// with equal or fewer than NumStores scalar stores.
910 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant
*Init
,
911 unsigned &NumStores
) {
912 // Zero and Undef never requires any extra stores.
913 if (isa
<llvm::ConstantAggregateZero
>(Init
) ||
914 isa
<llvm::ConstantPointerNull
>(Init
) ||
915 isa
<llvm::UndefValue
>(Init
))
917 if (isa
<llvm::ConstantInt
>(Init
) || isa
<llvm::ConstantFP
>(Init
) ||
918 isa
<llvm::ConstantVector
>(Init
) || isa
<llvm::BlockAddress
>(Init
) ||
919 isa
<llvm::ConstantExpr
>(Init
))
920 return Init
->isNullValue() || NumStores
--;
922 // See if we can emit each element.
923 if (isa
<llvm::ConstantArray
>(Init
) || isa
<llvm::ConstantStruct
>(Init
)) {
924 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
925 llvm::Constant
*Elt
= cast
<llvm::Constant
>(Init
->getOperand(i
));
926 if (!canEmitInitWithFewStoresAfterBZero(Elt
, NumStores
))
932 if (llvm::ConstantDataSequential
*CDS
=
933 dyn_cast
<llvm::ConstantDataSequential
>(Init
)) {
934 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
935 llvm::Constant
*Elt
= CDS
->getElementAsConstant(i
);
936 if (!canEmitInitWithFewStoresAfterBZero(Elt
, NumStores
))
942 // Anything else is hard and scary.
946 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
947 /// the scalar stores that would be required.
948 static void emitStoresForInitAfterBZero(CodeGenModule
&CGM
,
949 llvm::Constant
*Init
, Address Loc
,
950 bool isVolatile
, CGBuilderTy
&Builder
,
952 assert(!Init
->isNullValue() && !isa
<llvm::UndefValue
>(Init
) &&
953 "called emitStoresForInitAfterBZero for zero or undef value.");
955 if (isa
<llvm::ConstantInt
>(Init
) || isa
<llvm::ConstantFP
>(Init
) ||
956 isa
<llvm::ConstantVector
>(Init
) || isa
<llvm::BlockAddress
>(Init
) ||
957 isa
<llvm::ConstantExpr
>(Init
)) {
958 auto *I
= Builder
.CreateStore(Init
, Loc
, isVolatile
);
960 I
->addAnnotationMetadata("auto-init");
964 if (llvm::ConstantDataSequential
*CDS
=
965 dyn_cast
<llvm::ConstantDataSequential
>(Init
)) {
966 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
967 llvm::Constant
*Elt
= CDS
->getElementAsConstant(i
);
969 // If necessary, get a pointer to the element and emit it.
970 if (!Elt
->isNullValue() && !isa
<llvm::UndefValue
>(Elt
))
971 emitStoresForInitAfterBZero(
972 CGM
, Elt
, Builder
.CreateConstInBoundsGEP2_32(Loc
, 0, i
), isVolatile
,
973 Builder
, IsAutoInit
);
978 assert((isa
<llvm::ConstantStruct
>(Init
) || isa
<llvm::ConstantArray
>(Init
)) &&
979 "Unknown value type!");
981 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
982 llvm::Constant
*Elt
= cast
<llvm::Constant
>(Init
->getOperand(i
));
984 // If necessary, get a pointer to the element and emit it.
985 if (!Elt
->isNullValue() && !isa
<llvm::UndefValue
>(Elt
))
986 emitStoresForInitAfterBZero(CGM
, Elt
,
987 Builder
.CreateConstInBoundsGEP2_32(Loc
, 0, i
),
988 isVolatile
, Builder
, IsAutoInit
);
992 /// Decide whether we should use bzero plus some stores to initialize a local
993 /// variable instead of using a memcpy from a constant global. It is beneficial
994 /// to use bzero if the global is all zeros, or mostly zeros and large.
995 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant
*Init
,
996 uint64_t GlobalSize
) {
997 // If a global is all zeros, always use a bzero.
998 if (isa
<llvm::ConstantAggregateZero
>(Init
)) return true;
1000 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
1001 // do it if it will require 6 or fewer scalar stores.
1002 // TODO: Should budget depends on the size? Avoiding a large global warrants
1003 // plopping in more stores.
1004 unsigned StoreBudget
= 6;
1005 uint64_t SizeLimit
= 32;
1007 return GlobalSize
> SizeLimit
&&
1008 canEmitInitWithFewStoresAfterBZero(Init
, StoreBudget
);
1011 /// Decide whether we should use memset to initialize a local variable instead
1012 /// of using a memcpy from a constant global. Assumes we've already decided to
1014 /// FIXME We could be more clever, as we are for bzero above, and generate
1015 /// memset followed by stores. It's unclear that's worth the effort.
1016 static llvm::Value
*shouldUseMemSetToInitialize(llvm::Constant
*Init
,
1017 uint64_t GlobalSize
,
1018 const llvm::DataLayout
&DL
) {
1019 uint64_t SizeLimit
= 32;
1020 if (GlobalSize
<= SizeLimit
)
1022 return llvm::isBytewiseValue(Init
, DL
);
1025 /// Decide whether we want to split a constant structure or array store into a
1026 /// sequence of its fields' stores. This may cost us code size and compilation
1027 /// speed, but plays better with store optimizations.
1028 static bool shouldSplitConstantStore(CodeGenModule
&CGM
,
1029 uint64_t GlobalByteSize
) {
1030 // Don't break things that occupy more than one cacheline.
1031 uint64_t ByteSizeLimit
= 64;
1032 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1034 if (GlobalByteSize
<= ByteSizeLimit
)
1039 enum class IsPattern
{ No
, Yes
};
1041 /// Generate a constant filled with either a pattern or zeroes.
1042 static llvm::Constant
*patternOrZeroFor(CodeGenModule
&CGM
, IsPattern isPattern
,
1044 if (isPattern
== IsPattern::Yes
)
1045 return initializationPatternFor(CGM
, Ty
);
1047 return llvm::Constant::getNullValue(Ty
);
1050 static llvm::Constant
*constWithPadding(CodeGenModule
&CGM
, IsPattern isPattern
,
1051 llvm::Constant
*constant
);
1053 /// Helper function for constWithPadding() to deal with padding in structures.
1054 static llvm::Constant
*constStructWithPadding(CodeGenModule
&CGM
,
1055 IsPattern isPattern
,
1056 llvm::StructType
*STy
,
1057 llvm::Constant
*constant
) {
1058 const llvm::DataLayout
&DL
= CGM
.getDataLayout();
1059 const llvm::StructLayout
*Layout
= DL
.getStructLayout(STy
);
1060 llvm::Type
*Int8Ty
= llvm::IntegerType::getInt8Ty(CGM
.getLLVMContext());
1061 unsigned SizeSoFar
= 0;
1062 SmallVector
<llvm::Constant
*, 8> Values
;
1063 bool NestedIntact
= true;
1064 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; i
++) {
1065 unsigned CurOff
= Layout
->getElementOffset(i
);
1066 if (SizeSoFar
< CurOff
) {
1067 assert(!STy
->isPacked());
1068 auto *PadTy
= llvm::ArrayType::get(Int8Ty
, CurOff
- SizeSoFar
);
1069 Values
.push_back(patternOrZeroFor(CGM
, isPattern
, PadTy
));
1071 llvm::Constant
*CurOp
;
1072 if (constant
->isZeroValue())
1073 CurOp
= llvm::Constant::getNullValue(STy
->getElementType(i
));
1075 CurOp
= cast
<llvm::Constant
>(constant
->getAggregateElement(i
));
1076 auto *NewOp
= constWithPadding(CGM
, isPattern
, CurOp
);
1078 NestedIntact
= false;
1079 Values
.push_back(NewOp
);
1080 SizeSoFar
= CurOff
+ DL
.getTypeAllocSize(CurOp
->getType());
1082 unsigned TotalSize
= Layout
->getSizeInBytes();
1083 if (SizeSoFar
< TotalSize
) {
1084 auto *PadTy
= llvm::ArrayType::get(Int8Ty
, TotalSize
- SizeSoFar
);
1085 Values
.push_back(patternOrZeroFor(CGM
, isPattern
, PadTy
));
1087 if (NestedIntact
&& Values
.size() == STy
->getNumElements())
1089 return llvm::ConstantStruct::getAnon(Values
, STy
->isPacked());
1092 /// Replace all padding bytes in a given constant with either a pattern byte or
1094 static llvm::Constant
*constWithPadding(CodeGenModule
&CGM
, IsPattern isPattern
,
1095 llvm::Constant
*constant
) {
1096 llvm::Type
*OrigTy
= constant
->getType();
1097 if (const auto STy
= dyn_cast
<llvm::StructType
>(OrigTy
))
1098 return constStructWithPadding(CGM
, isPattern
, STy
, constant
);
1099 if (auto *ArrayTy
= dyn_cast
<llvm::ArrayType
>(OrigTy
)) {
1100 llvm::SmallVector
<llvm::Constant
*, 8> Values
;
1101 uint64_t Size
= ArrayTy
->getNumElements();
1104 llvm::Type
*ElemTy
= ArrayTy
->getElementType();
1105 bool ZeroInitializer
= constant
->isNullValue();
1106 llvm::Constant
*OpValue
, *PaddedOp
;
1107 if (ZeroInitializer
) {
1108 OpValue
= llvm::Constant::getNullValue(ElemTy
);
1109 PaddedOp
= constWithPadding(CGM
, isPattern
, OpValue
);
1111 for (unsigned Op
= 0; Op
!= Size
; ++Op
) {
1112 if (!ZeroInitializer
) {
1113 OpValue
= constant
->getAggregateElement(Op
);
1114 PaddedOp
= constWithPadding(CGM
, isPattern
, OpValue
);
1116 Values
.push_back(PaddedOp
);
1118 auto *NewElemTy
= Values
[0]->getType();
1119 if (NewElemTy
== ElemTy
)
1121 auto *NewArrayTy
= llvm::ArrayType::get(NewElemTy
, Size
);
1122 return llvm::ConstantArray::get(NewArrayTy
, Values
);
1124 // FIXME: Add handling for tail padding in vectors. Vectors don't
1125 // have padding between or inside elements, but the total amount of
1126 // data can be less than the allocated size.
1130 Address
CodeGenModule::createUnnamedGlobalFrom(const VarDecl
&D
,
1131 llvm::Constant
*Constant
,
1133 auto FunctionName
= [&](const DeclContext
*DC
) -> std::string
{
1134 if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
)) {
1135 if (const auto *CC
= dyn_cast
<CXXConstructorDecl
>(FD
))
1136 return CC
->getNameAsString();
1137 if (const auto *CD
= dyn_cast
<CXXDestructorDecl
>(FD
))
1138 return CD
->getNameAsString();
1139 return std::string(getMangledName(FD
));
1140 } else if (const auto *OM
= dyn_cast
<ObjCMethodDecl
>(DC
)) {
1141 return OM
->getNameAsString();
1142 } else if (isa
<BlockDecl
>(DC
)) {
1144 } else if (isa
<CapturedDecl
>(DC
)) {
1145 return "<captured>";
1147 llvm_unreachable("expected a function or method");
1151 // Form a simple per-variable cache of these values in case we find we
1152 // want to reuse them.
1153 llvm::GlobalVariable
*&CacheEntry
= InitializerConstants
[&D
];
1154 if (!CacheEntry
|| CacheEntry
->getInitializer() != Constant
) {
1155 auto *Ty
= Constant
->getType();
1156 bool isConstant
= true;
1157 llvm::GlobalVariable
*InsertBefore
= nullptr;
1159 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1161 if (D
.hasGlobalStorage())
1162 Name
= getMangledName(&D
).str() + ".const";
1163 else if (const DeclContext
*DC
= D
.getParentFunctionOrMethod())
1164 Name
= ("__const." + FunctionName(DC
) + "." + D
.getName()).str();
1166 llvm_unreachable("local variable has no parent function or method");
1167 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
1168 getModule(), Ty
, isConstant
, llvm::GlobalValue::PrivateLinkage
,
1169 Constant
, Name
, InsertBefore
, llvm::GlobalValue::NotThreadLocal
, AS
);
1170 GV
->setAlignment(Align
.getAsAlign());
1171 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
1173 } else if (CacheEntry
->getAlignment() < uint64_t(Align
.getQuantity())) {
1174 CacheEntry
->setAlignment(Align
.getAsAlign());
1177 return Address(CacheEntry
, CacheEntry
->getValueType(), Align
);
1180 static Address
createUnnamedGlobalForMemcpyFrom(CodeGenModule
&CGM
,
1182 CGBuilderTy
&Builder
,
1183 llvm::Constant
*Constant
,
1185 Address SrcPtr
= CGM
.createUnnamedGlobalFrom(D
, Constant
, Align
);
1186 return SrcPtr
.withElementType(CGM
.Int8Ty
);
1189 static void emitStoresForConstant(CodeGenModule
&CGM
, const VarDecl
&D
,
1190 Address Loc
, bool isVolatile
,
1191 CGBuilderTy
&Builder
,
1192 llvm::Constant
*constant
, bool IsAutoInit
) {
1193 auto *Ty
= constant
->getType();
1194 uint64_t ConstantSize
= CGM
.getDataLayout().getTypeAllocSize(Ty
);
1198 bool canDoSingleStore
= Ty
->isIntOrIntVectorTy() ||
1199 Ty
->isPtrOrPtrVectorTy() || Ty
->isFPOrFPVectorTy();
1200 if (canDoSingleStore
) {
1201 auto *I
= Builder
.CreateStore(constant
, Loc
, isVolatile
);
1203 I
->addAnnotationMetadata("auto-init");
1207 auto *SizeVal
= llvm::ConstantInt::get(CGM
.IntPtrTy
, ConstantSize
);
1209 // If the initializer is all or mostly the same, codegen with bzero / memset
1210 // then do a few stores afterward.
1211 if (shouldUseBZeroPlusStoresToInitialize(constant
, ConstantSize
)) {
1212 auto *I
= Builder
.CreateMemSet(Loc
, llvm::ConstantInt::get(CGM
.Int8Ty
, 0),
1213 SizeVal
, isVolatile
);
1215 I
->addAnnotationMetadata("auto-init");
1217 bool valueAlreadyCorrect
=
1218 constant
->isNullValue() || isa
<llvm::UndefValue
>(constant
);
1219 if (!valueAlreadyCorrect
) {
1220 Loc
= Loc
.withElementType(Ty
);
1221 emitStoresForInitAfterBZero(CGM
, constant
, Loc
, isVolatile
, Builder
,
1227 // If the initializer is a repeated byte pattern, use memset.
1228 llvm::Value
*Pattern
=
1229 shouldUseMemSetToInitialize(constant
, ConstantSize
, CGM
.getDataLayout());
1231 uint64_t Value
= 0x00;
1232 if (!isa
<llvm::UndefValue
>(Pattern
)) {
1233 const llvm::APInt
&AP
= cast
<llvm::ConstantInt
>(Pattern
)->getValue();
1234 assert(AP
.getBitWidth() <= 8);
1235 Value
= AP
.getLimitedValue();
1237 auto *I
= Builder
.CreateMemSet(
1238 Loc
, llvm::ConstantInt::get(CGM
.Int8Ty
, Value
), SizeVal
, isVolatile
);
1240 I
->addAnnotationMetadata("auto-init");
1244 // If the initializer is small, use a handful of stores.
1245 if (shouldSplitConstantStore(CGM
, ConstantSize
)) {
1246 if (auto *STy
= dyn_cast
<llvm::StructType
>(Ty
)) {
1247 // FIXME: handle the case when STy != Loc.getElementType().
1248 if (STy
== Loc
.getElementType()) {
1249 for (unsigned i
= 0; i
!= constant
->getNumOperands(); i
++) {
1250 Address EltPtr
= Builder
.CreateStructGEP(Loc
, i
);
1251 emitStoresForConstant(
1252 CGM
, D
, EltPtr
, isVolatile
, Builder
,
1253 cast
<llvm::Constant
>(Builder
.CreateExtractValue(constant
, i
)),
1258 } else if (auto *ATy
= dyn_cast
<llvm::ArrayType
>(Ty
)) {
1259 // FIXME: handle the case when ATy != Loc.getElementType().
1260 if (ATy
== Loc
.getElementType()) {
1261 for (unsigned i
= 0; i
!= ATy
->getNumElements(); i
++) {
1262 Address EltPtr
= Builder
.CreateConstArrayGEP(Loc
, i
);
1263 emitStoresForConstant(
1264 CGM
, D
, EltPtr
, isVolatile
, Builder
,
1265 cast
<llvm::Constant
>(Builder
.CreateExtractValue(constant
, i
)),
1273 // Copy from a global.
1275 Builder
.CreateMemCpy(Loc
,
1276 createUnnamedGlobalForMemcpyFrom(
1277 CGM
, D
, Builder
, constant
, Loc
.getAlignment()),
1278 SizeVal
, isVolatile
);
1280 I
->addAnnotationMetadata("auto-init");
1283 static void emitStoresForZeroInit(CodeGenModule
&CGM
, const VarDecl
&D
,
1284 Address Loc
, bool isVolatile
,
1285 CGBuilderTy
&Builder
) {
1286 llvm::Type
*ElTy
= Loc
.getElementType();
1287 llvm::Constant
*constant
=
1288 constWithPadding(CGM
, IsPattern::No
, llvm::Constant::getNullValue(ElTy
));
1289 emitStoresForConstant(CGM
, D
, Loc
, isVolatile
, Builder
, constant
,
1290 /*IsAutoInit=*/true);
1293 static void emitStoresForPatternInit(CodeGenModule
&CGM
, const VarDecl
&D
,
1294 Address Loc
, bool isVolatile
,
1295 CGBuilderTy
&Builder
) {
1296 llvm::Type
*ElTy
= Loc
.getElementType();
1297 llvm::Constant
*constant
= constWithPadding(
1298 CGM
, IsPattern::Yes
, initializationPatternFor(CGM
, ElTy
));
1299 assert(!isa
<llvm::UndefValue
>(constant
));
1300 emitStoresForConstant(CGM
, D
, Loc
, isVolatile
, Builder
, constant
,
1301 /*IsAutoInit=*/true);
1304 static bool containsUndef(llvm::Constant
*constant
) {
1305 auto *Ty
= constant
->getType();
1306 if (isa
<llvm::UndefValue
>(constant
))
1308 if (Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy())
1309 for (llvm::Use
&Op
: constant
->operands())
1310 if (containsUndef(cast
<llvm::Constant
>(Op
)))
1315 static llvm::Constant
*replaceUndef(CodeGenModule
&CGM
, IsPattern isPattern
,
1316 llvm::Constant
*constant
) {
1317 auto *Ty
= constant
->getType();
1318 if (isa
<llvm::UndefValue
>(constant
))
1319 return patternOrZeroFor(CGM
, isPattern
, Ty
);
1320 if (!(Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy()))
1322 if (!containsUndef(constant
))
1324 llvm::SmallVector
<llvm::Constant
*, 8> Values(constant
->getNumOperands());
1325 for (unsigned Op
= 0, NumOp
= constant
->getNumOperands(); Op
!= NumOp
; ++Op
) {
1326 auto *OpValue
= cast
<llvm::Constant
>(constant
->getOperand(Op
));
1327 Values
[Op
] = replaceUndef(CGM
, isPattern
, OpValue
);
1329 if (Ty
->isStructTy())
1330 return llvm::ConstantStruct::get(cast
<llvm::StructType
>(Ty
), Values
);
1331 if (Ty
->isArrayTy())
1332 return llvm::ConstantArray::get(cast
<llvm::ArrayType
>(Ty
), Values
);
1333 assert(Ty
->isVectorTy());
1334 return llvm::ConstantVector::get(Values
);
1337 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1338 /// variable declaration with auto, register, or no storage class specifier.
1339 /// These turn into simple stack objects, or GlobalValues depending on target.
1340 void CodeGenFunction::EmitAutoVarDecl(const VarDecl
&D
) {
1341 AutoVarEmission emission
= EmitAutoVarAlloca(D
);
1342 EmitAutoVarInit(emission
);
1343 EmitAutoVarCleanups(emission
);
1346 /// Emit a lifetime.begin marker if some criteria are satisfied.
1347 /// \return a pointer to the temporary size Value if a marker was emitted, null
1349 llvm::Value
*CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size
,
1350 llvm::Value
*Addr
) {
1351 if (!ShouldEmitLifetimeMarkers
)
1354 assert(Addr
->getType()->getPointerAddressSpace() ==
1355 CGM
.getDataLayout().getAllocaAddrSpace() &&
1356 "Pointer should be in alloca address space");
1357 llvm::Value
*SizeV
= llvm::ConstantInt::get(
1358 Int64Ty
, Size
.isScalable() ? -1 : Size
.getFixedValue());
1360 Builder
.CreateCall(CGM
.getLLVMLifetimeStartFn(), {SizeV
, Addr
});
1361 C
->setDoesNotThrow();
1365 void CodeGenFunction::EmitLifetimeEnd(llvm::Value
*Size
, llvm::Value
*Addr
) {
1366 assert(Addr
->getType()->getPointerAddressSpace() ==
1367 CGM
.getDataLayout().getAllocaAddrSpace() &&
1368 "Pointer should be in alloca address space");
1370 Builder
.CreateCall(CGM
.getLLVMLifetimeEndFn(), {Size
, Addr
});
1371 C
->setDoesNotThrow();
1374 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1375 CGDebugInfo
*DI
, const VarDecl
&D
, bool EmitDebugInfo
) {
1376 // For each dimension stores its QualType and corresponding
1377 // size-expression Value.
1378 SmallVector
<CodeGenFunction::VlaSizePair
, 4> Dimensions
;
1379 SmallVector
<IdentifierInfo
*, 4> VLAExprNames
;
1381 // Break down the array into individual dimensions.
1382 QualType Type1D
= D
.getType();
1383 while (getContext().getAsVariableArrayType(Type1D
)) {
1384 auto VlaSize
= getVLAElements1D(Type1D
);
1385 if (auto *C
= dyn_cast
<llvm::ConstantInt
>(VlaSize
.NumElts
))
1386 Dimensions
.emplace_back(C
, Type1D
.getUnqualifiedType());
1388 // Generate a locally unique name for the size expression.
1389 Twine Name
= Twine("__vla_expr") + Twine(VLAExprCounter
++);
1390 SmallString
<12> Buffer
;
1391 StringRef NameRef
= Name
.toStringRef(Buffer
);
1392 auto &Ident
= getContext().Idents
.getOwn(NameRef
);
1393 VLAExprNames
.push_back(&Ident
);
1395 CreateDefaultAlignTempAlloca(VlaSize
.NumElts
->getType(), NameRef
);
1396 Builder
.CreateStore(VlaSize
.NumElts
, SizeExprAddr
);
1397 Dimensions
.emplace_back(SizeExprAddr
.getPointer(),
1398 Type1D
.getUnqualifiedType());
1400 Type1D
= VlaSize
.Type
;
1406 // Register each dimension's size-expression with a DILocalVariable,
1407 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1408 // to describe this array.
1409 unsigned NameIdx
= 0;
1410 for (auto &VlaSize
: Dimensions
) {
1412 if (auto *C
= dyn_cast
<llvm::ConstantInt
>(VlaSize
.NumElts
))
1413 MD
= llvm::ConstantAsMetadata::get(C
);
1415 // Create an artificial VarDecl to generate debug info for.
1416 IdentifierInfo
*NameIdent
= VLAExprNames
[NameIdx
++];
1417 auto QT
= getContext().getIntTypeForBitwidth(
1418 SizeTy
->getScalarSizeInBits(), false);
1419 auto *ArtificialDecl
= VarDecl::Create(
1420 getContext(), const_cast<DeclContext
*>(D
.getDeclContext()),
1421 D
.getLocation(), D
.getLocation(), NameIdent
, QT
,
1422 getContext().CreateTypeSourceInfo(QT
), SC_Auto
);
1423 ArtificialDecl
->setImplicit();
1425 MD
= DI
->EmitDeclareOfAutoVariable(ArtificialDecl
, VlaSize
.NumElts
,
1428 assert(MD
&& "No Size expression debug node created");
1429 DI
->registerVLASizeExpression(VlaSize
.Type
, MD
);
1433 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1434 /// local variable. Does not emit initialization or destruction.
1435 CodeGenFunction::AutoVarEmission
1436 CodeGenFunction::EmitAutoVarAlloca(const VarDecl
&D
) {
1437 QualType Ty
= D
.getType();
1439 Ty
.getAddressSpace() == LangAS::Default
||
1440 (Ty
.getAddressSpace() == LangAS::opencl_private
&& getLangOpts().OpenCL
));
1442 AutoVarEmission
emission(D
);
1444 bool isEscapingByRef
= D
.isEscapingByref();
1445 emission
.IsEscapingByRef
= isEscapingByRef
;
1447 CharUnits alignment
= getContext().getDeclAlign(&D
);
1449 // If the type is variably-modified, emit all the VLA sizes for it.
1450 if (Ty
->isVariablyModifiedType())
1451 EmitVariablyModifiedType(Ty
);
1453 auto *DI
= getDebugInfo();
1454 bool EmitDebugInfo
= DI
&& CGM
.getCodeGenOpts().hasReducedDebugInfo();
1456 Address address
= Address::invalid();
1457 Address AllocaAddr
= Address::invalid();
1458 Address OpenMPLocalAddr
= Address::invalid();
1459 if (CGM
.getLangOpts().OpenMPIRBuilder
)
1460 OpenMPLocalAddr
= OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D
);
1463 getLangOpts().OpenMP
1464 ? CGM
.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D
)
1465 : Address::invalid();
1467 bool NRVO
= getLangOpts().ElideConstructors
&& D
.isNRVOVariable();
1469 if (getLangOpts().OpenMP
&& OpenMPLocalAddr
.isValid()) {
1470 address
= OpenMPLocalAddr
;
1471 AllocaAddr
= OpenMPLocalAddr
;
1472 } else if (Ty
->isConstantSizeType()) {
1473 // If this value is an array or struct with a statically determinable
1474 // constant initializer, there are optimizations we can do.
1476 // TODO: We should constant-evaluate the initializer of any variable,
1477 // as long as it is initialized by a constant expression. Currently,
1478 // isConstantInitializer produces wrong answers for structs with
1479 // reference or bitfield members, and a few other cases, and checking
1480 // for POD-ness protects us from some of these.
1481 if (D
.getInit() && (Ty
->isArrayType() || Ty
->isRecordType()) &&
1483 ((Ty
.isPODType(getContext()) ||
1484 getContext().getBaseElementType(Ty
)->isObjCObjectPointerType()) &&
1485 D
.getInit()->isConstantInitializer(getContext(), false)))) {
1487 // If the variable's a const type, and it's neither an NRVO
1488 // candidate nor a __block variable and has no mutable members,
1489 // emit it as a global instead.
1490 // Exception is if a variable is located in non-constant address space
1493 D
.needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
1494 if ((!getLangOpts().OpenCL
||
1495 Ty
.getAddressSpace() == LangAS::opencl_constant
) &&
1496 (CGM
.getCodeGenOpts().MergeAllConstants
&& !NRVO
&&
1498 Ty
.isConstantStorage(getContext(), true, !NeedsDtor
))) {
1499 EmitStaticVarDecl(D
, llvm::GlobalValue::InternalLinkage
);
1501 // Signal this condition to later callbacks.
1502 emission
.Addr
= Address::invalid();
1503 assert(emission
.wasEmittedAsGlobal());
1507 // Otherwise, tell the initialization code that we're in this case.
1508 emission
.IsConstantAggregate
= true;
1511 // A normal fixed sized variable becomes an alloca in the entry block,
1513 // - it's an NRVO variable.
1514 // - we are compiling OpenMP and it's an OpenMP local variable.
1516 // The named return value optimization: allocate this variable in the
1517 // return slot, so that we can elide the copy when returning this
1518 // variable (C++0x [class.copy]p34).
1519 address
= ReturnValue
;
1520 AllocaAddr
= ReturnValue
;
1522 if (const RecordType
*RecordTy
= Ty
->getAs
<RecordType
>()) {
1523 const auto *RD
= RecordTy
->getDecl();
1524 const auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
);
1525 if ((CXXRD
&& !CXXRD
->hasTrivialDestructor()) ||
1526 RD
->isNonTrivialToPrimitiveDestroy()) {
1527 // Create a flag that is used to indicate when the NRVO was applied
1528 // to this variable. Set it to zero to indicate that NRVO was not
1530 llvm::Value
*Zero
= Builder
.getFalse();
1532 CreateTempAlloca(Zero
->getType(), CharUnits::One(), "nrvo");
1533 EnsureInsertPoint();
1534 Builder
.CreateStore(Zero
, NRVOFlag
);
1536 // Record the NRVO flag for this variable.
1537 NRVOFlags
[&D
] = NRVOFlag
.getPointer();
1538 emission
.NRVOFlag
= NRVOFlag
.getPointer();
1542 CharUnits allocaAlignment
;
1543 llvm::Type
*allocaTy
;
1544 if (isEscapingByRef
) {
1545 auto &byrefInfo
= getBlockByrefInfo(&D
);
1546 allocaTy
= byrefInfo
.Type
;
1547 allocaAlignment
= byrefInfo
.ByrefAlignment
;
1549 allocaTy
= ConvertTypeForMem(Ty
);
1550 allocaAlignment
= alignment
;
1553 // Create the alloca. Note that we set the name separately from
1554 // building the instruction so that it's there even in no-asserts
1556 address
= CreateTempAlloca(allocaTy
, allocaAlignment
, D
.getName(),
1557 /*ArraySize=*/nullptr, &AllocaAddr
);
1559 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1560 // the catch parameter starts in the catchpad instruction, and we can't
1561 // insert code in those basic blocks.
1562 bool IsMSCatchParam
=
1563 D
.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1565 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1566 // if we don't have a valid insertion point (?).
1567 if (HaveInsertPoint() && !IsMSCatchParam
) {
1568 // If there's a jump into the lifetime of this variable, its lifetime
1569 // gets broken up into several regions in IR, which requires more work
1570 // to handle correctly. For now, just omit the intrinsics; this is a
1571 // rare case, and it's better to just be conservatively correct.
1574 // We have to do this in all language modes if there's a jump past the
1575 // declaration. We also have to do it in C if there's a jump to an
1576 // earlier point in the current block because non-VLA lifetimes begin as
1577 // soon as the containing block is entered, not when its variables
1578 // actually come into scope; suppressing the lifetime annotations
1579 // completely in this case is unnecessarily pessimistic, but again, this
1581 if (!Bypasses
.IsBypassed(&D
) &&
1582 !(!getLangOpts().CPlusPlus
&& hasLabelBeenSeenInCurrentScope())) {
1583 llvm::TypeSize Size
= CGM
.getDataLayout().getTypeAllocSize(allocaTy
);
1584 emission
.SizeForLifetimeMarkers
=
1585 EmitLifetimeStart(Size
, AllocaAddr
.getPointer());
1588 assert(!emission
.useLifetimeMarkers());
1592 EnsureInsertPoint();
1594 // Delayed globalization for variable length declarations. This ensures that
1595 // the expression representing the length has been emitted and can be used
1596 // by the definition of the VLA. Since this is an escaped declaration, in
1597 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1598 // deallocation call to __kmpc_free_shared() is emitted later.
1599 bool VarAllocated
= false;
1600 if (getLangOpts().OpenMPIsTargetDevice
) {
1601 auto &RT
= CGM
.getOpenMPRuntime();
1602 if (RT
.isDelayedVariableLengthDecl(*this, &D
)) {
1603 // Emit call to __kmpc_alloc_shared() instead of the alloca.
1604 std::pair
<llvm::Value
*, llvm::Value
*> AddrSizePair
=
1605 RT
.getKmpcAllocShared(*this, &D
);
1607 // Save the address of the allocation:
1608 LValue Base
= MakeAddrLValue(AddrSizePair
.first
, D
.getType(),
1609 CGM
.getContext().getDeclAlign(&D
),
1610 AlignmentSource::Decl
);
1611 address
= Base
.getAddress(*this);
1613 // Push a cleanup block to emit the call to __kmpc_free_shared in the
1614 // appropriate location at the end of the scope of the
1615 // __kmpc_alloc_shared functions:
1616 pushKmpcAllocFree(NormalCleanup
, AddrSizePair
);
1618 // Mark variable as allocated:
1619 VarAllocated
= true;
1623 if (!VarAllocated
) {
1624 if (!DidCallStackSave
) {
1627 CreateDefaultAlignTempAlloca(AllocaInt8PtrTy
, "saved_stack");
1629 llvm::Value
*V
= Builder
.CreateStackSave();
1630 assert(V
->getType() == AllocaInt8PtrTy
);
1631 Builder
.CreateStore(V
, Stack
);
1633 DidCallStackSave
= true;
1635 // Push a cleanup block and restore the stack there.
1636 // FIXME: in general circumstances, this should be an EH cleanup.
1637 pushStackRestore(NormalCleanup
, Stack
);
1640 auto VlaSize
= getVLASize(Ty
);
1641 llvm::Type
*llvmTy
= ConvertTypeForMem(VlaSize
.Type
);
1643 // Allocate memory for the array.
1644 address
= CreateTempAlloca(llvmTy
, alignment
, "vla", VlaSize
.NumElts
,
1648 // If we have debug info enabled, properly describe the VLA dimensions for
1649 // this type by registering the vla size expression for each of the
1651 EmitAndRegisterVariableArrayDimensions(DI
, D
, EmitDebugInfo
);
1654 setAddrOfLocalVar(&D
, address
);
1655 emission
.Addr
= address
;
1656 emission
.AllocaAddr
= AllocaAddr
;
1658 // Emit debug info for local var declaration.
1659 if (EmitDebugInfo
&& HaveInsertPoint()) {
1660 Address DebugAddr
= address
;
1661 bool UsePointerValue
= NRVO
&& ReturnValuePointer
.isValid();
1662 DI
->setLocation(D
.getLocation());
1664 // If NRVO, use a pointer to the return address.
1665 if (UsePointerValue
) {
1666 DebugAddr
= ReturnValuePointer
;
1667 AllocaAddr
= ReturnValuePointer
;
1669 (void)DI
->EmitDeclareOfAutoVariable(&D
, AllocaAddr
.getPointer(), Builder
,
1673 if (D
.hasAttr
<AnnotateAttr
>() && HaveInsertPoint())
1674 EmitVarAnnotations(&D
, address
.getPointer());
1676 // Make sure we call @llvm.lifetime.end.
1677 if (emission
.useLifetimeMarkers())
1678 EHStack
.pushCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
,
1679 emission
.getOriginalAllocatedAddress(),
1680 emission
.getSizeForLifetimeMarkers());
1685 static bool isCapturedBy(const VarDecl
&, const Expr
*);
1687 /// Determines whether the given __block variable is potentially
1688 /// captured by the given statement.
1689 static bool isCapturedBy(const VarDecl
&Var
, const Stmt
*S
) {
1690 if (const Expr
*E
= dyn_cast
<Expr
>(S
))
1691 return isCapturedBy(Var
, E
);
1692 for (const Stmt
*SubStmt
: S
->children())
1693 if (isCapturedBy(Var
, SubStmt
))
1698 /// Determines whether the given __block variable is potentially
1699 /// captured by the given expression.
1700 static bool isCapturedBy(const VarDecl
&Var
, const Expr
*E
) {
1701 // Skip the most common kinds of expressions that make
1702 // hierarchy-walking expensive.
1703 E
= E
->IgnoreParenCasts();
1705 if (const BlockExpr
*BE
= dyn_cast
<BlockExpr
>(E
)) {
1706 const BlockDecl
*Block
= BE
->getBlockDecl();
1707 for (const auto &I
: Block
->captures()) {
1708 if (I
.getVariable() == &Var
)
1712 // No need to walk into the subexpressions.
1716 if (const StmtExpr
*SE
= dyn_cast
<StmtExpr
>(E
)) {
1717 const CompoundStmt
*CS
= SE
->getSubStmt();
1718 for (const auto *BI
: CS
->body())
1719 if (const auto *BIE
= dyn_cast
<Expr
>(BI
)) {
1720 if (isCapturedBy(Var
, BIE
))
1723 else if (const auto *DS
= dyn_cast
<DeclStmt
>(BI
)) {
1724 // special case declarations
1725 for (const auto *I
: DS
->decls()) {
1726 if (const auto *VD
= dyn_cast
<VarDecl
>((I
))) {
1727 const Expr
*Init
= VD
->getInit();
1728 if (Init
&& isCapturedBy(Var
, Init
))
1734 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1735 // Later, provide code to poke into statements for capture analysis.
1740 for (const Stmt
*SubStmt
: E
->children())
1741 if (isCapturedBy(Var
, SubStmt
))
1747 /// Determine whether the given initializer is trivial in the sense
1748 /// that it requires no code to be generated.
1749 bool CodeGenFunction::isTrivialInitializer(const Expr
*Init
) {
1753 if (const CXXConstructExpr
*Construct
= dyn_cast
<CXXConstructExpr
>(Init
))
1754 if (CXXConstructorDecl
*Constructor
= Construct
->getConstructor())
1755 if (Constructor
->isTrivial() &&
1756 Constructor
->isDefaultConstructor() &&
1757 !Construct
->requiresZeroInitialization())
1763 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type
,
1766 auto trivialAutoVarInit
= getContext().getLangOpts().getTrivialAutoVarInit();
1767 CharUnits Size
= getContext().getTypeSizeInChars(type
);
1768 bool isVolatile
= type
.isVolatileQualified();
1769 if (!Size
.isZero()) {
1770 switch (trivialAutoVarInit
) {
1771 case LangOptions::TrivialAutoVarInitKind::Uninitialized
:
1772 llvm_unreachable("Uninitialized handled by caller");
1773 case LangOptions::TrivialAutoVarInitKind::Zero
:
1774 if (CGM
.stopAutoInit())
1776 emitStoresForZeroInit(CGM
, D
, Loc
, isVolatile
, Builder
);
1778 case LangOptions::TrivialAutoVarInitKind::Pattern
:
1779 if (CGM
.stopAutoInit())
1781 emitStoresForPatternInit(CGM
, D
, Loc
, isVolatile
, Builder
);
1787 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1788 // them, so emit a memcpy with the VLA size to initialize each element.
1789 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1790 // will catch that code, but there exists code which generates zero-sized
1791 // VLAs. Be nice and initialize whatever they requested.
1792 const auto *VlaType
= getContext().getAsVariableArrayType(type
);
1795 auto VlaSize
= getVLASize(VlaType
);
1796 auto SizeVal
= VlaSize
.NumElts
;
1797 CharUnits EltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
1798 switch (trivialAutoVarInit
) {
1799 case LangOptions::TrivialAutoVarInitKind::Uninitialized
:
1800 llvm_unreachable("Uninitialized handled by caller");
1802 case LangOptions::TrivialAutoVarInitKind::Zero
: {
1803 if (CGM
.stopAutoInit())
1805 if (!EltSize
.isOne())
1806 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(EltSize
));
1807 auto *I
= Builder
.CreateMemSet(Loc
, llvm::ConstantInt::get(Int8Ty
, 0),
1808 SizeVal
, isVolatile
);
1809 I
->addAnnotationMetadata("auto-init");
1813 case LangOptions::TrivialAutoVarInitKind::Pattern
: {
1814 if (CGM
.stopAutoInit())
1816 llvm::Type
*ElTy
= Loc
.getElementType();
1817 llvm::Constant
*Constant
= constWithPadding(
1818 CGM
, IsPattern::Yes
, initializationPatternFor(CGM
, ElTy
));
1819 CharUnits ConstantAlign
= getContext().getTypeAlignInChars(VlaSize
.Type
);
1820 llvm::BasicBlock
*SetupBB
= createBasicBlock("vla-setup.loop");
1821 llvm::BasicBlock
*LoopBB
= createBasicBlock("vla-init.loop");
1822 llvm::BasicBlock
*ContBB
= createBasicBlock("vla-init.cont");
1823 llvm::Value
*IsZeroSizedVLA
= Builder
.CreateICmpEQ(
1824 SizeVal
, llvm::ConstantInt::get(SizeVal
->getType(), 0),
1826 Builder
.CreateCondBr(IsZeroSizedVLA
, ContBB
, SetupBB
);
1828 if (!EltSize
.isOne())
1829 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(EltSize
));
1830 llvm::Value
*BaseSizeInChars
=
1831 llvm::ConstantInt::get(IntPtrTy
, EltSize
.getQuantity());
1832 Address Begin
= Loc
.withElementType(Int8Ty
);
1833 llvm::Value
*End
= Builder
.CreateInBoundsGEP(
1834 Begin
.getElementType(), Begin
.getPointer(), SizeVal
, "vla.end");
1835 llvm::BasicBlock
*OriginBB
= Builder
.GetInsertBlock();
1837 llvm::PHINode
*Cur
= Builder
.CreatePHI(Begin
.getType(), 2, "vla.cur");
1838 Cur
->addIncoming(Begin
.getPointer(), OriginBB
);
1839 CharUnits CurAlign
= Loc
.getAlignment().alignmentOfArrayElement(EltSize
);
1841 Builder
.CreateMemCpy(Address(Cur
, Int8Ty
, CurAlign
),
1842 createUnnamedGlobalForMemcpyFrom(
1843 CGM
, D
, Builder
, Constant
, ConstantAlign
),
1844 BaseSizeInChars
, isVolatile
);
1845 I
->addAnnotationMetadata("auto-init");
1847 Builder
.CreateInBoundsGEP(Int8Ty
, Cur
, BaseSizeInChars
, "vla.next");
1848 llvm::Value
*Done
= Builder
.CreateICmpEQ(Next
, End
, "vla-init.isdone");
1849 Builder
.CreateCondBr(Done
, ContBB
, LoopBB
);
1850 Cur
->addIncoming(Next
, LoopBB
);
1856 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission
&emission
) {
1857 assert(emission
.Variable
&& "emission was not valid!");
1859 // If this was emitted as a global constant, we're done.
1860 if (emission
.wasEmittedAsGlobal()) return;
1862 const VarDecl
&D
= *emission
.Variable
;
1863 auto DL
= ApplyDebugLocation::CreateDefaultArtificial(*this, D
.getLocation());
1864 QualType type
= D
.getType();
1866 // If this local has an initializer, emit it now.
1867 const Expr
*Init
= D
.getInit();
1869 // If we are at an unreachable point, we don't need to emit the initializer
1870 // unless it contains a label.
1871 if (!HaveInsertPoint()) {
1872 if (!Init
|| !ContainsLabel(Init
)) return;
1873 EnsureInsertPoint();
1876 // Initialize the structure of a __block variable.
1877 if (emission
.IsEscapingByRef
)
1878 emitByrefStructureInit(emission
);
1880 // Initialize the variable here if it doesn't have a initializer and it is a
1881 // C struct that is non-trivial to initialize or an array containing such a
1884 type
.isNonTrivialToPrimitiveDefaultInitialize() ==
1885 QualType::PDIK_Struct
) {
1886 LValue Dst
= MakeAddrLValue(emission
.getAllocatedAddress(), type
);
1887 if (emission
.IsEscapingByRef
)
1888 drillIntoBlockVariable(*this, Dst
, &D
);
1889 defaultInitNonTrivialCStructVar(Dst
);
1893 // Check whether this is a byref variable that's potentially
1894 // captured and moved by its own initializer. If so, we'll need to
1895 // emit the initializer first, then copy into the variable.
1896 bool capturedByInit
=
1897 Init
&& emission
.IsEscapingByRef
&& isCapturedBy(D
, Init
);
1899 bool locIsByrefHeader
= !capturedByInit
;
1901 locIsByrefHeader
? emission
.getObjectAddress(*this) : emission
.Addr
;
1903 // Note: constexpr already initializes everything correctly.
1904 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit
=
1906 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1907 : (D
.getAttr
<UninitializedAttr
>()
1908 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1909 : getContext().getLangOpts().getTrivialAutoVarInit()));
1911 auto initializeWhatIsTechnicallyUninitialized
= [&](Address Loc
) {
1912 if (trivialAutoVarInit
==
1913 LangOptions::TrivialAutoVarInitKind::Uninitialized
)
1916 // Only initialize a __block's storage: we always initialize the header.
1917 if (emission
.IsEscapingByRef
&& !locIsByrefHeader
)
1918 Loc
= emitBlockByrefAddress(Loc
, &D
, /*follow=*/false);
1920 return emitZeroOrPatternForAutoVarInit(type
, D
, Loc
);
1923 if (isTrivialInitializer(Init
))
1924 return initializeWhatIsTechnicallyUninitialized(Loc
);
1926 llvm::Constant
*constant
= nullptr;
1927 if (emission
.IsConstantAggregate
||
1928 D
.mightBeUsableInConstantExpressions(getContext())) {
1929 assert(!capturedByInit
&& "constant init contains a capturing block?");
1930 constant
= ConstantEmitter(*this).tryEmitAbstractForInitializer(D
);
1931 if (constant
&& !constant
->isZeroValue() &&
1932 (trivialAutoVarInit
!=
1933 LangOptions::TrivialAutoVarInitKind::Uninitialized
)) {
1934 IsPattern isPattern
=
1935 (trivialAutoVarInit
== LangOptions::TrivialAutoVarInitKind::Pattern
)
1938 // C guarantees that brace-init with fewer initializers than members in
1939 // the aggregate will initialize the rest of the aggregate as-if it were
1940 // static initialization. In turn static initialization guarantees that
1941 // padding is initialized to zero bits. We could instead pattern-init if D
1942 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1944 constant
= constWithPadding(CGM
, IsPattern::No
,
1945 replaceUndef(CGM
, isPattern
, constant
));
1950 initializeWhatIsTechnicallyUninitialized(Loc
);
1951 LValue lv
= MakeAddrLValue(Loc
, type
);
1953 return EmitExprAsInit(Init
, &D
, lv
, capturedByInit
);
1956 if (!emission
.IsConstantAggregate
) {
1957 // For simple scalar/complex initialization, store the value directly.
1958 LValue lv
= MakeAddrLValue(Loc
, type
);
1960 return EmitStoreThroughLValue(RValue::get(constant
), lv
, true);
1963 emitStoresForConstant(CGM
, D
, Loc
.withElementType(CGM
.Int8Ty
),
1964 type
.isVolatileQualified(), Builder
, constant
,
1965 /*IsAutoInit=*/false);
1968 /// Emit an expression as an initializer for an object (variable, field, etc.)
1969 /// at the given location. The expression is not necessarily the normal
1970 /// initializer for the object, and the address is not necessarily
1971 /// its normal location.
1973 /// \param init the initializing expression
1974 /// \param D the object to act as if we're initializing
1975 /// \param lvalue the lvalue to initialize
1976 /// \param capturedByInit true if \p D is a __block variable
1977 /// whose address is potentially changed by the initializer
1978 void CodeGenFunction::EmitExprAsInit(const Expr
*init
, const ValueDecl
*D
,
1979 LValue lvalue
, bool capturedByInit
) {
1980 QualType type
= D
->getType();
1982 if (type
->isReferenceType()) {
1983 RValue rvalue
= EmitReferenceBindingToExpr(init
);
1985 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
1986 EmitStoreThroughLValue(rvalue
, lvalue
, true);
1989 switch (getEvaluationKind(type
)) {
1991 EmitScalarInit(init
, D
, lvalue
, capturedByInit
);
1994 ComplexPairTy
complex = EmitComplexExpr(init
);
1996 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
1997 EmitStoreOfComplex(complex, lvalue
, /*init*/ true);
2001 if (type
->isAtomicType()) {
2002 EmitAtomicInit(const_cast<Expr
*>(init
), lvalue
);
2004 AggValueSlot::Overlap_t Overlap
= AggValueSlot::MayOverlap
;
2005 if (isa
<VarDecl
>(D
))
2006 Overlap
= AggValueSlot::DoesNotOverlap
;
2007 else if (auto *FD
= dyn_cast
<FieldDecl
>(D
))
2008 Overlap
= getOverlapForFieldInit(FD
);
2009 // TODO: how can we delay here if D is captured by its initializer?
2010 EmitAggExpr(init
, AggValueSlot::forLValue(
2011 lvalue
, *this, AggValueSlot::IsDestructed
,
2012 AggValueSlot::DoesNotNeedGCBarriers
,
2013 AggValueSlot::IsNotAliased
, Overlap
));
2017 llvm_unreachable("bad evaluation kind");
2020 /// Enter a destroy cleanup for the given local variable.
2021 void CodeGenFunction::emitAutoVarTypeCleanup(
2022 const CodeGenFunction::AutoVarEmission
&emission
,
2023 QualType::DestructionKind dtorKind
) {
2024 assert(dtorKind
!= QualType::DK_none
);
2026 // Note that for __block variables, we want to destroy the
2027 // original stack object, not the possibly forwarded object.
2028 Address addr
= emission
.getObjectAddress(*this);
2030 const VarDecl
*var
= emission
.Variable
;
2031 QualType type
= var
->getType();
2033 CleanupKind cleanupKind
= NormalAndEHCleanup
;
2034 CodeGenFunction::Destroyer
*destroyer
= nullptr;
2037 case QualType::DK_none
:
2038 llvm_unreachable("no cleanup for trivially-destructible variable");
2040 case QualType::DK_cxx_destructor
:
2041 // If there's an NRVO flag on the emission, we need a different
2043 if (emission
.NRVOFlag
) {
2044 assert(!type
->isArrayType());
2045 CXXDestructorDecl
*dtor
= type
->getAsCXXRecordDecl()->getDestructor();
2046 EHStack
.pushCleanup
<DestroyNRVOVariableCXX
>(cleanupKind
, addr
, type
, dtor
,
2052 case QualType::DK_objc_strong_lifetime
:
2053 // Suppress cleanups for pseudo-strong variables.
2054 if (var
->isARCPseudoStrong()) return;
2056 // Otherwise, consider whether to use an EH cleanup or not.
2057 cleanupKind
= getARCCleanupKind();
2059 // Use the imprecise destroyer by default.
2060 if (!var
->hasAttr
<ObjCPreciseLifetimeAttr
>())
2061 destroyer
= CodeGenFunction::destroyARCStrongImprecise
;
2064 case QualType::DK_objc_weak_lifetime
:
2067 case QualType::DK_nontrivial_c_struct
:
2068 destroyer
= CodeGenFunction::destroyNonTrivialCStruct
;
2069 if (emission
.NRVOFlag
) {
2070 assert(!type
->isArrayType());
2071 EHStack
.pushCleanup
<DestroyNRVOVariableC
>(cleanupKind
, addr
,
2072 emission
.NRVOFlag
, type
);
2078 // If we haven't chosen a more specific destroyer, use the default.
2079 if (!destroyer
) destroyer
= getDestroyer(dtorKind
);
2081 // Use an EH cleanup in array destructors iff the destructor itself
2082 // is being pushed as an EH cleanup.
2083 bool useEHCleanup
= (cleanupKind
& EHCleanup
);
2084 EHStack
.pushCleanup
<DestroyObject
>(cleanupKind
, addr
, type
, destroyer
,
2088 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission
&emission
) {
2089 assert(emission
.Variable
&& "emission was not valid!");
2091 // If this was emitted as a global constant, we're done.
2092 if (emission
.wasEmittedAsGlobal()) return;
2094 // If we don't have an insertion point, we're done. Sema prevents
2095 // us from jumping into any of these scopes anyway.
2096 if (!HaveInsertPoint()) return;
2098 const VarDecl
&D
= *emission
.Variable
;
2100 // Check the type for a cleanup.
2101 if (QualType::DestructionKind dtorKind
= D
.needsDestruction(getContext()))
2102 emitAutoVarTypeCleanup(emission
, dtorKind
);
2104 // In GC mode, honor objc_precise_lifetime.
2105 if (getLangOpts().getGC() != LangOptions::NonGC
&&
2106 D
.hasAttr
<ObjCPreciseLifetimeAttr
>()) {
2107 EHStack
.pushCleanup
<ExtendGCLifetime
>(NormalCleanup
, &D
);
2110 // Handle the cleanup attribute.
2111 if (const CleanupAttr
*CA
= D
.getAttr
<CleanupAttr
>()) {
2112 const FunctionDecl
*FD
= CA
->getFunctionDecl();
2114 llvm::Constant
*F
= CGM
.GetAddrOfFunction(FD
);
2115 assert(F
&& "Could not find function!");
2117 const CGFunctionInfo
&Info
= CGM
.getTypes().arrangeFunctionDeclaration(FD
);
2118 EHStack
.pushCleanup
<CallCleanupFunction
>(NormalAndEHCleanup
, F
, &Info
, &D
);
2121 // If this is a block variable, call _Block_object_destroy
2122 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2124 if (emission
.IsEscapingByRef
&&
2125 CGM
.getLangOpts().getGC() != LangOptions::GCOnly
) {
2126 BlockFieldFlags Flags
= BLOCK_FIELD_IS_BYREF
;
2127 if (emission
.Variable
->getType().isObjCGCWeak())
2128 Flags
|= BLOCK_FIELD_IS_WEAK
;
2129 enterByrefCleanup(NormalAndEHCleanup
, emission
.Addr
, Flags
,
2130 /*LoadBlockVarAddr*/ false,
2131 cxxDestructorCanThrow(emission
.Variable
->getType()));
2135 CodeGenFunction::Destroyer
*
2136 CodeGenFunction::getDestroyer(QualType::DestructionKind kind
) {
2138 case QualType::DK_none
: llvm_unreachable("no destroyer for trivial dtor");
2139 case QualType::DK_cxx_destructor
:
2140 return destroyCXXObject
;
2141 case QualType::DK_objc_strong_lifetime
:
2142 return destroyARCStrongPrecise
;
2143 case QualType::DK_objc_weak_lifetime
:
2144 return destroyARCWeak
;
2145 case QualType::DK_nontrivial_c_struct
:
2146 return destroyNonTrivialCStruct
;
2148 llvm_unreachable("Unknown DestructionKind");
2151 /// pushEHDestroy - Push the standard destructor for the given type as
2152 /// an EH-only cleanup.
2153 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind
,
2154 Address addr
, QualType type
) {
2155 assert(dtorKind
&& "cannot push destructor for trivial type");
2156 assert(needsEHCleanup(dtorKind
));
2158 pushDestroy(EHCleanup
, addr
, type
, getDestroyer(dtorKind
), true);
2161 /// pushDestroy - Push the standard destructor for the given type as
2162 /// at least a normal cleanup.
2163 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind
,
2164 Address addr
, QualType type
) {
2165 assert(dtorKind
&& "cannot push destructor for trivial type");
2167 CleanupKind cleanupKind
= getCleanupKind(dtorKind
);
2168 pushDestroy(cleanupKind
, addr
, type
, getDestroyer(dtorKind
),
2169 cleanupKind
& EHCleanup
);
2172 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind
, Address addr
,
2173 QualType type
, Destroyer
*destroyer
,
2174 bool useEHCleanupForArray
) {
2175 pushFullExprCleanup
<DestroyObject
>(cleanupKind
, addr
, type
,
2176 destroyer
, useEHCleanupForArray
);
2179 void CodeGenFunction::pushStackRestore(CleanupKind Kind
, Address SPMem
) {
2180 EHStack
.pushCleanup
<CallStackRestore
>(Kind
, SPMem
);
2183 void CodeGenFunction::pushKmpcAllocFree(
2184 CleanupKind Kind
, std::pair
<llvm::Value
*, llvm::Value
*> AddrSizePair
) {
2185 EHStack
.pushCleanup
<KmpcAllocFree
>(Kind
, AddrSizePair
);
2188 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind
,
2189 Address addr
, QualType type
,
2190 Destroyer
*destroyer
,
2191 bool useEHCleanupForArray
) {
2192 // If we're not in a conditional branch, we don't need to bother generating a
2193 // conditional cleanup.
2194 if (!isInConditionalBranch()) {
2195 // Push an EH-only cleanup for the object now.
2196 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2197 // around in case a temporary's destructor throws an exception.
2198 if (cleanupKind
& EHCleanup
)
2199 EHStack
.pushCleanup
<DestroyObject
>(
2200 static_cast<CleanupKind
>(cleanupKind
& ~NormalCleanup
), addr
, type
,
2201 destroyer
, useEHCleanupForArray
);
2203 return pushCleanupAfterFullExprWithActiveFlag
<DestroyObject
>(
2204 cleanupKind
, Address::invalid(), addr
, type
, destroyer
, useEHCleanupForArray
);
2207 // Otherwise, we should only destroy the object if it's been initialized.
2208 // Re-use the active flag and saved address across both the EH and end of
2211 using SavedType
= typename DominatingValue
<Address
>::saved_type
;
2212 using ConditionalCleanupType
=
2213 EHScopeStack::ConditionalCleanup
<DestroyObject
, Address
, QualType
,
2216 Address ActiveFlag
= createCleanupActiveFlag();
2217 SavedType SavedAddr
= saveValueInCond(addr
);
2219 if (cleanupKind
& EHCleanup
) {
2220 EHStack
.pushCleanup
<ConditionalCleanupType
>(
2221 static_cast<CleanupKind
>(cleanupKind
& ~NormalCleanup
), SavedAddr
, type
,
2222 destroyer
, useEHCleanupForArray
);
2223 initFullExprCleanupWithFlag(ActiveFlag
);
2226 pushCleanupAfterFullExprWithActiveFlag
<ConditionalCleanupType
>(
2227 cleanupKind
, ActiveFlag
, SavedAddr
, type
, destroyer
,
2228 useEHCleanupForArray
);
2231 /// emitDestroy - Immediately perform the destruction of the given
2234 /// \param addr - the address of the object; a type*
2235 /// \param type - the type of the object; if an array type, all
2236 /// objects are destroyed in reverse order
2237 /// \param destroyer - the function to call to destroy individual
2239 /// \param useEHCleanupForArray - whether an EH cleanup should be
2240 /// used when destroying array elements, in case one of the
2241 /// destructions throws an exception
2242 void CodeGenFunction::emitDestroy(Address addr
, QualType type
,
2243 Destroyer
*destroyer
,
2244 bool useEHCleanupForArray
) {
2245 const ArrayType
*arrayType
= getContext().getAsArrayType(type
);
2247 return destroyer(*this, addr
, type
);
2249 llvm::Value
*length
= emitArrayLength(arrayType
, type
, addr
);
2251 CharUnits elementAlign
=
2253 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type
));
2255 // Normally we have to check whether the array is zero-length.
2256 bool checkZeroLength
= true;
2258 // But if the array length is constant, we can suppress that.
2259 if (llvm::ConstantInt
*constLength
= dyn_cast
<llvm::ConstantInt
>(length
)) {
2260 // ...and if it's constant zero, we can just skip the entire thing.
2261 if (constLength
->isZero()) return;
2262 checkZeroLength
= false;
2265 llvm::Value
*begin
= addr
.getPointer();
2267 Builder
.CreateInBoundsGEP(addr
.getElementType(), begin
, length
);
2268 emitArrayDestroy(begin
, end
, type
, elementAlign
, destroyer
,
2269 checkZeroLength
, useEHCleanupForArray
);
2272 /// emitArrayDestroy - Destroys all the elements of the given array,
2273 /// beginning from last to first. The array cannot be zero-length.
2275 /// \param begin - a type* denoting the first element of the array
2276 /// \param end - a type* denoting one past the end of the array
2277 /// \param elementType - the element type of the array
2278 /// \param destroyer - the function to call to destroy elements
2279 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2280 /// the remaining elements in case the destruction of a single
2282 void CodeGenFunction::emitArrayDestroy(llvm::Value
*begin
,
2284 QualType elementType
,
2285 CharUnits elementAlign
,
2286 Destroyer
*destroyer
,
2287 bool checkZeroLength
,
2288 bool useEHCleanup
) {
2289 assert(!elementType
->isArrayType());
2291 // The basic structure here is a do-while loop, because we don't
2292 // need to check for the zero-element case.
2293 llvm::BasicBlock
*bodyBB
= createBasicBlock("arraydestroy.body");
2294 llvm::BasicBlock
*doneBB
= createBasicBlock("arraydestroy.done");
2296 if (checkZeroLength
) {
2297 llvm::Value
*isEmpty
= Builder
.CreateICmpEQ(begin
, end
,
2298 "arraydestroy.isempty");
2299 Builder
.CreateCondBr(isEmpty
, doneBB
, bodyBB
);
2302 // Enter the loop body, making that address the current address.
2303 llvm::BasicBlock
*entryBB
= Builder
.GetInsertBlock();
2305 llvm::PHINode
*elementPast
=
2306 Builder
.CreatePHI(begin
->getType(), 2, "arraydestroy.elementPast");
2307 elementPast
->addIncoming(end
, entryBB
);
2309 // Shift the address back by one element.
2310 llvm::Value
*negativeOne
= llvm::ConstantInt::get(SizeTy
, -1, true);
2311 llvm::Type
*llvmElementType
= ConvertTypeForMem(elementType
);
2312 llvm::Value
*element
= Builder
.CreateInBoundsGEP(
2313 llvmElementType
, elementPast
, negativeOne
, "arraydestroy.element");
2316 pushRegularPartialArrayCleanup(begin
, element
, elementType
, elementAlign
,
2319 // Perform the actual destruction there.
2320 destroyer(*this, Address(element
, llvmElementType
, elementAlign
),
2326 // Check whether we've reached the end.
2327 llvm::Value
*done
= Builder
.CreateICmpEQ(element
, begin
, "arraydestroy.done");
2328 Builder
.CreateCondBr(done
, doneBB
, bodyBB
);
2329 elementPast
->addIncoming(element
, Builder
.GetInsertBlock());
2335 /// Perform partial array destruction as if in an EH cleanup. Unlike
2336 /// emitArrayDestroy, the element type here may still be an array type.
2337 static void emitPartialArrayDestroy(CodeGenFunction
&CGF
,
2338 llvm::Value
*begin
, llvm::Value
*end
,
2339 QualType type
, CharUnits elementAlign
,
2340 CodeGenFunction::Destroyer
*destroyer
) {
2341 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(type
);
2343 // If the element type is itself an array, drill down.
2344 unsigned arrayDepth
= 0;
2345 while (const ArrayType
*arrayType
= CGF
.getContext().getAsArrayType(type
)) {
2346 // VLAs don't require a GEP index to walk into.
2347 if (!isa
<VariableArrayType
>(arrayType
))
2349 type
= arrayType
->getElementType();
2353 llvm::Value
*zero
= llvm::ConstantInt::get(CGF
.SizeTy
, 0);
2355 SmallVector
<llvm::Value
*,4> gepIndices(arrayDepth
+1, zero
);
2356 begin
= CGF
.Builder
.CreateInBoundsGEP(
2357 elemTy
, begin
, gepIndices
, "pad.arraybegin");
2358 end
= CGF
.Builder
.CreateInBoundsGEP(
2359 elemTy
, end
, gepIndices
, "pad.arrayend");
2362 // Destroy the array. We don't ever need an EH cleanup because we
2363 // assume that we're in an EH cleanup ourselves, so a throwing
2364 // destructor causes an immediate terminate.
2365 CGF
.emitArrayDestroy(begin
, end
, type
, elementAlign
, destroyer
,
2366 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2370 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2371 /// array destroy where the end pointer is regularly determined and
2372 /// does not need to be loaded from a local.
2373 class RegularPartialArrayDestroy final
: public EHScopeStack::Cleanup
{
2374 llvm::Value
*ArrayBegin
;
2375 llvm::Value
*ArrayEnd
;
2376 QualType ElementType
;
2377 CodeGenFunction::Destroyer
*Destroyer
;
2378 CharUnits ElementAlign
;
2380 RegularPartialArrayDestroy(llvm::Value
*arrayBegin
, llvm::Value
*arrayEnd
,
2381 QualType elementType
, CharUnits elementAlign
,
2382 CodeGenFunction::Destroyer
*destroyer
)
2383 : ArrayBegin(arrayBegin
), ArrayEnd(arrayEnd
),
2384 ElementType(elementType
), Destroyer(destroyer
),
2385 ElementAlign(elementAlign
) {}
2387 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2388 emitPartialArrayDestroy(CGF
, ArrayBegin
, ArrayEnd
,
2389 ElementType
, ElementAlign
, Destroyer
);
2393 /// IrregularPartialArrayDestroy - a cleanup which performs a
2394 /// partial array destroy where the end pointer is irregularly
2395 /// determined and must be loaded from a local.
2396 class IrregularPartialArrayDestroy final
: public EHScopeStack::Cleanup
{
2397 llvm::Value
*ArrayBegin
;
2398 Address ArrayEndPointer
;
2399 QualType ElementType
;
2400 CodeGenFunction::Destroyer
*Destroyer
;
2401 CharUnits ElementAlign
;
2403 IrregularPartialArrayDestroy(llvm::Value
*arrayBegin
,
2404 Address arrayEndPointer
,
2405 QualType elementType
,
2406 CharUnits elementAlign
,
2407 CodeGenFunction::Destroyer
*destroyer
)
2408 : ArrayBegin(arrayBegin
), ArrayEndPointer(arrayEndPointer
),
2409 ElementType(elementType
), Destroyer(destroyer
),
2410 ElementAlign(elementAlign
) {}
2412 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2413 llvm::Value
*arrayEnd
= CGF
.Builder
.CreateLoad(ArrayEndPointer
);
2414 emitPartialArrayDestroy(CGF
, ArrayBegin
, arrayEnd
,
2415 ElementType
, ElementAlign
, Destroyer
);
2418 } // end anonymous namespace
2420 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2421 /// already-constructed elements of the given array. The cleanup
2422 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2424 /// \param elementType - the immediate element type of the array;
2425 /// possibly still an array type
2426 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value
*arrayBegin
,
2427 Address arrayEndPointer
,
2428 QualType elementType
,
2429 CharUnits elementAlign
,
2430 Destroyer
*destroyer
) {
2431 pushFullExprCleanup
<IrregularPartialArrayDestroy
>(EHCleanup
,
2432 arrayBegin
, arrayEndPointer
,
2433 elementType
, elementAlign
,
2437 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2438 /// already-constructed elements of the given array. The cleanup
2439 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2441 /// \param elementType - the immediate element type of the array;
2442 /// possibly still an array type
2443 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value
*arrayBegin
,
2444 llvm::Value
*arrayEnd
,
2445 QualType elementType
,
2446 CharUnits elementAlign
,
2447 Destroyer
*destroyer
) {
2448 pushFullExprCleanup
<RegularPartialArrayDestroy
>(EHCleanup
,
2449 arrayBegin
, arrayEnd
,
2450 elementType
, elementAlign
,
2454 /// Lazily declare the @llvm.lifetime.start intrinsic.
2455 llvm::Function
*CodeGenModule::getLLVMLifetimeStartFn() {
2456 if (LifetimeStartFn
)
2457 return LifetimeStartFn
;
2458 LifetimeStartFn
= llvm::Intrinsic::getDeclaration(&getModule(),
2459 llvm::Intrinsic::lifetime_start
, AllocaInt8PtrTy
);
2460 return LifetimeStartFn
;
2463 /// Lazily declare the @llvm.lifetime.end intrinsic.
2464 llvm::Function
*CodeGenModule::getLLVMLifetimeEndFn() {
2466 return LifetimeEndFn
;
2467 LifetimeEndFn
= llvm::Intrinsic::getDeclaration(&getModule(),
2468 llvm::Intrinsic::lifetime_end
, AllocaInt8PtrTy
);
2469 return LifetimeEndFn
;
2473 /// A cleanup to perform a release of an object at the end of a
2474 /// function. This is used to balance out the incoming +1 of a
2475 /// ns_consumed argument when we can't reasonably do that just by
2476 /// not doing the initial retain for a __block argument.
2477 struct ConsumeARCParameter final
: EHScopeStack::Cleanup
{
2478 ConsumeARCParameter(llvm::Value
*param
,
2479 ARCPreciseLifetime_t precise
)
2480 : Param(param
), Precise(precise
) {}
2483 ARCPreciseLifetime_t Precise
;
2485 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2486 CGF
.EmitARCRelease(Param
, Precise
);
2489 } // end anonymous namespace
2491 /// Emit an alloca (or GlobalValue depending on target)
2492 /// for the specified parameter and set up LocalDeclMap.
2493 void CodeGenFunction::EmitParmDecl(const VarDecl
&D
, ParamValue Arg
,
2495 bool NoDebugInfo
= false;
2496 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2497 assert((isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
)) &&
2498 "Invalid argument to EmitParmDecl");
2500 // Set the name of the parameter's initial value to make IR easier to
2501 // read. Don't modify the names of globals.
2502 if (!isa
<llvm::GlobalValue
>(Arg
.getAnyValue()))
2503 Arg
.getAnyValue()->setName(D
.getName());
2505 QualType Ty
= D
.getType();
2507 // Use better IR generation for certain implicit parameters.
2508 if (auto IPD
= dyn_cast
<ImplicitParamDecl
>(&D
)) {
2509 // The only implicit argument a block has is its literal.
2510 // This may be passed as an inalloca'ed value on Windows x86.
2512 llvm::Value
*V
= Arg
.isIndirect()
2513 ? Builder
.CreateLoad(Arg
.getIndirectAddress())
2514 : Arg
.getDirectValue();
2515 setBlockContextParameter(IPD
, ArgNo
, V
);
2518 // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2519 // debug info of TLS variables.
2521 (IPD
->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar
);
2524 Address DeclPtr
= Address::invalid();
2525 Address AllocaPtr
= Address::invalid();
2526 bool DoStore
= false;
2527 bool IsScalar
= hasScalarEvaluationKind(Ty
);
2528 bool UseIndirectDebugAddress
= false;
2530 // If we already have a pointer to the argument, reuse the input pointer.
2531 if (Arg
.isIndirect()) {
2532 DeclPtr
= Arg
.getIndirectAddress();
2533 DeclPtr
= DeclPtr
.withElementType(ConvertTypeForMem(Ty
));
2534 // Indirect argument is in alloca address space, which may be different
2535 // from the default address space.
2536 auto AllocaAS
= CGM
.getASTAllocaAddressSpace();
2537 auto *V
= DeclPtr
.getPointer();
2538 AllocaPtr
= DeclPtr
;
2540 // For truly ABI indirect arguments -- those that are not `byval` -- store
2541 // the address of the argument on the stack to preserve debug information.
2542 ABIArgInfo ArgInfo
= CurFnInfo
->arguments()[ArgNo
- 1].info
;
2543 if (ArgInfo
.isIndirect())
2544 UseIndirectDebugAddress
= !ArgInfo
.getIndirectByVal();
2545 if (UseIndirectDebugAddress
) {
2546 auto PtrTy
= getContext().getPointerType(Ty
);
2547 AllocaPtr
= CreateMemTemp(PtrTy
, getContext().getTypeAlignInChars(PtrTy
),
2548 D
.getName() + ".indirect_addr");
2549 EmitStoreOfScalar(V
, AllocaPtr
, /* Volatile */ false, PtrTy
);
2552 auto SrcLangAS
= getLangOpts().OpenCL
? LangAS::opencl_private
: AllocaAS
;
2554 getLangOpts().OpenCL
? LangAS::opencl_private
: LangAS::Default
;
2555 if (SrcLangAS
!= DestLangAS
) {
2556 assert(getContext().getTargetAddressSpace(SrcLangAS
) ==
2557 CGM
.getDataLayout().getAllocaAddrSpace());
2558 auto DestAS
= getContext().getTargetAddressSpace(DestLangAS
);
2559 auto *T
= llvm::PointerType::get(getLLVMContext(), DestAS
);
2561 DeclPtr
.withPointer(getTargetHooks().performAddrSpaceCast(
2562 *this, V
, SrcLangAS
, DestLangAS
, T
, true),
2563 DeclPtr
.isKnownNonNull());
2566 // Push a destructor cleanup for this parameter if the ABI requires it.
2567 // Don't push a cleanup in a thunk for a method that will also emit a
2569 if (Ty
->isRecordType() && !CurFuncIsThunk
&&
2570 Ty
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee()) {
2571 if (QualType::DestructionKind DtorKind
=
2572 D
.needsDestruction(getContext())) {
2573 assert((DtorKind
== QualType::DK_cxx_destructor
||
2574 DtorKind
== QualType::DK_nontrivial_c_struct
) &&
2575 "unexpected destructor type");
2576 pushDestroy(DtorKind
, DeclPtr
, Ty
);
2577 CalleeDestructedParamCleanups
[cast
<ParmVarDecl
>(&D
)] =
2578 EHStack
.stable_begin();
2582 // Check if the parameter address is controlled by OpenMP runtime.
2583 Address OpenMPLocalAddr
=
2584 getLangOpts().OpenMP
2585 ? CGM
.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D
)
2586 : Address::invalid();
2587 if (getLangOpts().OpenMP
&& OpenMPLocalAddr
.isValid()) {
2588 DeclPtr
= OpenMPLocalAddr
;
2589 AllocaPtr
= DeclPtr
;
2591 // Otherwise, create a temporary to hold the value.
2592 DeclPtr
= CreateMemTemp(Ty
, getContext().getDeclAlign(&D
),
2593 D
.getName() + ".addr", &AllocaPtr
);
2598 llvm::Value
*ArgVal
= (DoStore
? Arg
.getDirectValue() : nullptr);
2600 LValue lv
= MakeAddrLValue(DeclPtr
, Ty
);
2602 Qualifiers qs
= Ty
.getQualifiers();
2603 if (Qualifiers::ObjCLifetime lt
= qs
.getObjCLifetime()) {
2604 // We honor __attribute__((ns_consumed)) for types with lifetime.
2605 // For __strong, it's handled by just skipping the initial retain;
2606 // otherwise we have to balance out the initial +1 with an extra
2607 // cleanup to do the release at the end of the function.
2608 bool isConsumed
= D
.hasAttr
<NSConsumedAttr
>();
2610 // If a parameter is pseudo-strong then we can omit the implicit retain.
2611 if (D
.isARCPseudoStrong()) {
2612 assert(lt
== Qualifiers::OCL_Strong
&&
2613 "pseudo-strong variable isn't strong?");
2614 assert(qs
.hasConst() && "pseudo-strong variable should be const!");
2615 lt
= Qualifiers::OCL_ExplicitNone
;
2618 // Load objects passed indirectly.
2619 if (Arg
.isIndirect() && !ArgVal
)
2620 ArgVal
= Builder
.CreateLoad(DeclPtr
);
2622 if (lt
== Qualifiers::OCL_Strong
) {
2624 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2625 // use objc_storeStrong(&dest, value) for retaining the
2626 // object. But first, store a null into 'dest' because
2627 // objc_storeStrong attempts to release its old value.
2628 llvm::Value
*Null
= CGM
.EmitNullConstant(D
.getType());
2629 EmitStoreOfScalar(Null
, lv
, /* isInitialization */ true);
2630 EmitARCStoreStrongCall(lv
.getAddress(*this), ArgVal
, true);
2634 // Don't use objc_retainBlock for block pointers, because we
2635 // don't want to Block_copy something just because we got it
2637 ArgVal
= EmitARCRetainNonBlock(ArgVal
);
2640 // Push the cleanup for a consumed parameter.
2642 ARCPreciseLifetime_t precise
= (D
.hasAttr
<ObjCPreciseLifetimeAttr
>()
2643 ? ARCPreciseLifetime
: ARCImpreciseLifetime
);
2644 EHStack
.pushCleanup
<ConsumeARCParameter
>(getARCCleanupKind(), ArgVal
,
2648 if (lt
== Qualifiers::OCL_Weak
) {
2649 EmitARCInitWeak(DeclPtr
, ArgVal
);
2650 DoStore
= false; // The weak init is a store, no need to do two.
2654 // Enter the cleanup scope.
2655 EmitAutoVarWithLifetime(*this, D
, DeclPtr
, lt
);
2659 // Store the initial value into the alloca.
2661 EmitStoreOfScalar(ArgVal
, lv
, /* isInitialization */ true);
2663 setAddrOfLocalVar(&D
, DeclPtr
);
2665 // Emit debug info for param declarations in non-thunk functions.
2666 if (CGDebugInfo
*DI
= getDebugInfo()) {
2667 if (CGM
.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk
&&
2669 llvm::DILocalVariable
*DILocalVar
= DI
->EmitDeclareOfArgVariable(
2670 &D
, AllocaPtr
.getPointer(), ArgNo
, Builder
, UseIndirectDebugAddress
);
2671 if (const auto *Var
= dyn_cast_or_null
<ParmVarDecl
>(&D
))
2672 DI
->getParamDbgMappings().insert({Var
, DILocalVar
});
2676 if (D
.hasAttr
<AnnotateAttr
>())
2677 EmitVarAnnotations(&D
, DeclPtr
.getPointer());
2679 // We can only check return value nullability if all arguments to the
2680 // function satisfy their nullability preconditions. This makes it necessary
2681 // to emit null checks for args in the function body itself.
2682 if (requiresReturnValueNullabilityCheck()) {
2683 auto Nullability
= Ty
->getNullability();
2684 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
) {
2685 SanitizerScope
SanScope(this);
2686 RetValNullabilityPrecondition
=
2687 Builder
.CreateAnd(RetValNullabilityPrecondition
,
2688 Builder
.CreateIsNotNull(Arg
.getAnyValue()));
2693 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl
*D
,
2694 CodeGenFunction
*CGF
) {
2695 if (!LangOpts
.OpenMP
|| (!LangOpts
.EmitAllDecls
&& !D
->isUsed()))
2697 getOpenMPRuntime().emitUserDefinedReduction(CGF
, D
);
2700 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl
*D
,
2701 CodeGenFunction
*CGF
) {
2702 if (!LangOpts
.OpenMP
|| LangOpts
.OpenMPSimd
||
2703 (!LangOpts
.EmitAllDecls
&& !D
->isUsed()))
2705 getOpenMPRuntime().emitUserDefinedMapper(D
, CGF
);
2708 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl
*D
) {
2709 getOpenMPRuntime().processRequiresDirective(D
);
2712 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl
*D
) {
2713 for (const Expr
*E
: D
->varlists()) {
2714 const auto *DE
= cast
<DeclRefExpr
>(E
);
2715 const auto *VD
= cast
<VarDecl
>(DE
->getDecl());
2717 // Skip all but globals.
2718 if (!VD
->hasGlobalStorage())
2721 // Check if the global has been materialized yet or not. If not, we are done
2722 // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2723 // we already emitted the global we might have done so before the
2724 // OMPAllocateDeclAttr was attached, leading to the wrong address space
2725 // (potentially). While not pretty, common practise is to remove the old IR
2726 // global and generate a new one, so we do that here too. Uses are replaced
2728 StringRef MangledName
= getMangledName(VD
);
2729 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
2733 // We can also keep the existing global if the address space is what we
2734 // expect it to be, if not, it is replaced.
2735 QualType ASTTy
= VD
->getType();
2736 clang::LangAS GVAS
= GetGlobalVarAddressSpace(VD
);
2737 auto TargetAS
= getContext().getTargetAddressSpace(GVAS
);
2738 if (Entry
->getType()->getAddressSpace() == TargetAS
)
2741 // Make a new global with the correct type / address space.
2742 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(ASTTy
);
2743 llvm::PointerType
*PTy
= llvm::PointerType::get(Ty
, TargetAS
);
2745 // Replace all uses of the old global with a cast. Since we mutate the type
2746 // in place we neeed an intermediate that takes the spot of the old entry
2747 // until we can create the cast.
2748 llvm::GlobalVariable
*DummyGV
= new llvm::GlobalVariable(
2749 getModule(), Entry
->getValueType(), false,
2750 llvm::GlobalValue::CommonLinkage
, nullptr, "dummy", nullptr,
2751 llvm::GlobalVariable::NotThreadLocal
, Entry
->getAddressSpace());
2752 Entry
->replaceAllUsesWith(DummyGV
);
2754 Entry
->mutateType(PTy
);
2755 llvm::Constant
*NewPtrForOldDecl
=
2756 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2757 Entry
, DummyGV
->getType());
2759 // Now we have a casted version of the changed global, the dummy can be
2760 // replaced and deleted.
2761 DummyGV
->replaceAllUsesWith(NewPtrForOldDecl
);
2762 DummyGV
->eraseFromParent();
2766 std::optional
<CharUnits
>
2767 CodeGenModule::getOMPAllocateAlignment(const VarDecl
*VD
) {
2768 if (const auto *AA
= VD
->getAttr
<OMPAllocateDeclAttr
>()) {
2769 if (Expr
*Alignment
= AA
->getAlignment()) {
2770 unsigned UserAlign
=
2771 Alignment
->EvaluateKnownConstInt(getContext()).getExtValue();
2772 CharUnits NaturalAlign
=
2773 getNaturalTypeAlignment(VD
->getType().getNonReferenceType());
2775 // OpenMP5.1 pg 185 lines 7-10
2776 // Each item in the align modifier list must be aligned to the maximum
2777 // of the specified alignment and the type's natural alignment.
2778 return CharUnits::fromQuantity(
2779 std::max
<unsigned>(UserAlign
, NaturalAlign
.getQuantity()));
2782 return std::nullopt
;