[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / CodeGen / CGExpr.cpp
blob46d0b5b8c277f004d29786d38a8a73930cff60f1
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicsWebAssembly.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/MatrixBuilder.h"
41 #include "llvm/Passes/OptimizationLevel.h"
42 #include "llvm/Support/ConvertUTF.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/xxhash.h"
47 #include "llvm/Transforms/Utils/SanitizerStats.h"
49 #include <optional>
50 #include <string>
52 using namespace clang;
53 using namespace CodeGen;
55 // Experiment to make sanitizers easier to debug
56 static llvm::cl::opt<bool> ClSanitizeDebugDeoptimization(
57 "ubsan-unique-traps", llvm::cl::Optional,
58 llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check"),
59 llvm::cl::init(false));
61 //===--------------------------------------------------------------------===//
62 // Miscellaneous Helper Methods
63 //===--------------------------------------------------------------------===//
65 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
66 /// block.
67 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
68 CharUnits Align,
69 const Twine &Name,
70 llvm::Value *ArraySize) {
71 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
72 Alloca->setAlignment(Align.getAsAlign());
73 return Address(Alloca, Ty, Align, KnownNonNull);
76 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
77 /// block. The alloca is casted to default address space if necessary.
78 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
79 const Twine &Name,
80 llvm::Value *ArraySize,
81 Address *AllocaAddr) {
82 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
83 if (AllocaAddr)
84 *AllocaAddr = Alloca;
85 llvm::Value *V = Alloca.getPointer();
86 // Alloca always returns a pointer in alloca address space, which may
87 // be different from the type defined by the language. For example,
88 // in C++ the auto variables are in the default address space. Therefore
89 // cast alloca to the default address space when necessary.
90 if (getASTAllocaAddressSpace() != LangAS::Default) {
91 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
92 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
93 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
94 // otherwise alloca is inserted at the current insertion point of the
95 // builder.
96 if (!ArraySize)
97 Builder.SetInsertPoint(getPostAllocaInsertPoint());
98 V = getTargetHooks().performAddrSpaceCast(
99 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
100 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
103 return Address(V, Ty, Align, KnownNonNull);
106 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
107 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
108 /// insertion point of the builder.
109 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
110 const Twine &Name,
111 llvm::Value *ArraySize) {
112 if (ArraySize)
113 return Builder.CreateAlloca(Ty, ArraySize, Name);
114 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
115 ArraySize, Name, AllocaInsertPt);
118 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
119 /// default alignment of the corresponding LLVM type, which is *not*
120 /// guaranteed to be related in any way to the expected alignment of
121 /// an AST type that might have been lowered to Ty.
122 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
123 const Twine &Name) {
124 CharUnits Align =
125 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
126 return CreateTempAlloca(Ty, Align, Name);
129 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
130 CharUnits Align = getContext().getTypeAlignInChars(Ty);
131 return CreateTempAlloca(ConvertType(Ty), Align, Name);
134 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
135 Address *Alloca) {
136 // FIXME: Should we prefer the preferred type alignment here?
137 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
141 const Twine &Name, Address *Alloca) {
142 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
143 /*ArraySize=*/nullptr, Alloca);
145 if (Ty->isConstantMatrixType()) {
146 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
147 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
148 ArrayTy->getNumElements());
150 Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(),
151 KnownNonNull);
153 return Result;
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
157 const Twine &Name) {
158 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
162 const Twine &Name) {
163 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
164 Name);
167 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
168 /// expression and compare the result against zero, returning an Int1Ty value.
169 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
170 PGO.setCurrentStmt(E);
171 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
172 llvm::Value *MemPtr = EmitScalarExpr(E);
173 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176 QualType BoolTy = getContext().BoolTy;
177 SourceLocation Loc = E->getExprLoc();
178 CGFPOptionsRAII FPOptsRAII(*this, E);
179 if (!E->getType()->isAnyComplexType())
180 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
182 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
183 Loc);
186 /// EmitIgnoredExpr - Emit code to compute the specified expression,
187 /// ignoring the result.
188 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
189 if (E->isPRValue())
190 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
192 // if this is a bitfield-resulting conditional operator, we can special case
193 // emit this. The normal 'EmitLValue' version of this is particularly
194 // difficult to codegen for, since creating a single "LValue" for two
195 // different sized arguments here is not particularly doable.
196 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
197 E->IgnoreParenNoopCasts(getContext()))) {
198 if (CondOp->getObjectKind() == OK_BitField)
199 return EmitIgnoredConditionalOperator(CondOp);
202 // Just emit it as an l-value and drop the result.
203 EmitLValue(E);
206 /// EmitAnyExpr - Emit code to compute the specified expression which
207 /// can have any type. The result is returned as an RValue struct.
208 /// If this is an aggregate expression, AggSlot indicates where the
209 /// result should be returned.
210 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
211 AggValueSlot aggSlot,
212 bool ignoreResult) {
213 switch (getEvaluationKind(E->getType())) {
214 case TEK_Scalar:
215 return RValue::get(EmitScalarExpr(E, ignoreResult));
216 case TEK_Complex:
217 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
218 case TEK_Aggregate:
219 if (!ignoreResult && aggSlot.isIgnored())
220 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
221 EmitAggExpr(E, aggSlot);
222 return aggSlot.asRValue();
224 llvm_unreachable("bad evaluation kind");
227 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
228 /// always be accessible even if no aggregate location is provided.
229 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
230 AggValueSlot AggSlot = AggValueSlot::ignored();
232 if (hasAggregateEvaluationKind(E->getType()))
233 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
234 return EmitAnyExpr(E, AggSlot);
237 /// EmitAnyExprToMem - Evaluate an expression into a given memory
238 /// location.
239 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
240 Address Location,
241 Qualifiers Quals,
242 bool IsInit) {
243 // FIXME: This function should take an LValue as an argument.
244 switch (getEvaluationKind(E->getType())) {
245 case TEK_Complex:
246 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
247 /*isInit*/ false);
248 return;
250 case TEK_Aggregate: {
251 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
252 AggValueSlot::IsDestructed_t(IsInit),
253 AggValueSlot::DoesNotNeedGCBarriers,
254 AggValueSlot::IsAliased_t(!IsInit),
255 AggValueSlot::MayOverlap));
256 return;
259 case TEK_Scalar: {
260 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
261 LValue LV = MakeAddrLValue(Location, E->getType());
262 EmitStoreThroughLValue(RV, LV);
263 return;
266 llvm_unreachable("bad evaluation kind");
269 static void
270 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
271 const Expr *E, Address ReferenceTemporary) {
272 // Objective-C++ ARC:
273 // If we are binding a reference to a temporary that has ownership, we
274 // need to perform retain/release operations on the temporary.
276 // FIXME: This should be looking at E, not M.
277 if (auto Lifetime = M->getType().getObjCLifetime()) {
278 switch (Lifetime) {
279 case Qualifiers::OCL_None:
280 case Qualifiers::OCL_ExplicitNone:
281 // Carry on to normal cleanup handling.
282 break;
284 case Qualifiers::OCL_Autoreleasing:
285 // Nothing to do; cleaned up by an autorelease pool.
286 return;
288 case Qualifiers::OCL_Strong:
289 case Qualifiers::OCL_Weak:
290 switch (StorageDuration Duration = M->getStorageDuration()) {
291 case SD_Static:
292 // Note: we intentionally do not register a cleanup to release
293 // the object on program termination.
294 return;
296 case SD_Thread:
297 // FIXME: We should probably register a cleanup in this case.
298 return;
300 case SD_Automatic:
301 case SD_FullExpression:
302 CodeGenFunction::Destroyer *Destroy;
303 CleanupKind CleanupKind;
304 if (Lifetime == Qualifiers::OCL_Strong) {
305 const ValueDecl *VD = M->getExtendingDecl();
306 bool Precise =
307 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
308 CleanupKind = CGF.getARCCleanupKind();
309 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
310 : &CodeGenFunction::destroyARCStrongImprecise;
311 } else {
312 // __weak objects always get EH cleanups; otherwise, exceptions
313 // could cause really nasty crashes instead of mere leaks.
314 CleanupKind = NormalAndEHCleanup;
315 Destroy = &CodeGenFunction::destroyARCWeak;
317 if (Duration == SD_FullExpression)
318 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
319 M->getType(), *Destroy,
320 CleanupKind & EHCleanup);
321 else
322 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
323 M->getType(),
324 *Destroy, CleanupKind & EHCleanup);
325 return;
327 case SD_Dynamic:
328 llvm_unreachable("temporary cannot have dynamic storage duration");
330 llvm_unreachable("unknown storage duration");
334 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
335 if (const RecordType *RT =
336 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
337 // Get the destructor for the reference temporary.
338 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
339 if (!ClassDecl->hasTrivialDestructor())
340 ReferenceTemporaryDtor = ClassDecl->getDestructor();
343 if (!ReferenceTemporaryDtor)
344 return;
346 // Call the destructor for the temporary.
347 switch (M->getStorageDuration()) {
348 case SD_Static:
349 case SD_Thread: {
350 llvm::FunctionCallee CleanupFn;
351 llvm::Constant *CleanupArg;
352 if (E->getType()->isArrayType()) {
353 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
354 ReferenceTemporary, E->getType(),
355 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
356 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
357 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
358 } else {
359 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
360 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
361 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
363 CGF.CGM.getCXXABI().registerGlobalDtor(
364 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
365 break;
368 case SD_FullExpression:
369 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
370 CodeGenFunction::destroyCXXObject,
371 CGF.getLangOpts().Exceptions);
372 break;
374 case SD_Automatic:
375 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
376 ReferenceTemporary, E->getType(),
377 CodeGenFunction::destroyCXXObject,
378 CGF.getLangOpts().Exceptions);
379 break;
381 case SD_Dynamic:
382 llvm_unreachable("temporary cannot have dynamic storage duration");
386 static Address createReferenceTemporary(CodeGenFunction &CGF,
387 const MaterializeTemporaryExpr *M,
388 const Expr *Inner,
389 Address *Alloca = nullptr) {
390 auto &TCG = CGF.getTargetHooks();
391 switch (M->getStorageDuration()) {
392 case SD_FullExpression:
393 case SD_Automatic: {
394 // If we have a constant temporary array or record try to promote it into a
395 // constant global under the same rules a normal constant would've been
396 // promoted. This is easier on the optimizer and generally emits fewer
397 // instructions.
398 QualType Ty = Inner->getType();
399 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
400 (Ty->isArrayType() || Ty->isRecordType()) &&
401 Ty.isConstantStorage(CGF.getContext(), true, false))
402 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
403 auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
404 auto *GV = new llvm::GlobalVariable(
405 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
406 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
407 llvm::GlobalValue::NotThreadLocal,
408 CGF.getContext().getTargetAddressSpace(AS));
409 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
410 GV->setAlignment(alignment.getAsAlign());
411 llvm::Constant *C = GV;
412 if (AS != LangAS::Default)
413 C = TCG.performAddrSpaceCast(
414 CGF.CGM, GV, AS, LangAS::Default,
415 GV->getValueType()->getPointerTo(
416 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
417 // FIXME: Should we put the new global into a COMDAT?
418 return Address(C, GV->getValueType(), alignment);
420 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
422 case SD_Thread:
423 case SD_Static:
424 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
426 case SD_Dynamic:
427 llvm_unreachable("temporary can't have dynamic storage duration");
429 llvm_unreachable("unknown storage duration");
432 /// Helper method to check if the underlying ABI is AAPCS
433 static bool isAAPCS(const TargetInfo &TargetInfo) {
434 return TargetInfo.getABI().startswith("aapcs");
437 LValue CodeGenFunction::
438 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
439 const Expr *E = M->getSubExpr();
441 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
442 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
443 "Reference should never be pseudo-strong!");
445 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
446 // as that will cause the lifetime adjustment to be lost for ARC
447 auto ownership = M->getType().getObjCLifetime();
448 if (ownership != Qualifiers::OCL_None &&
449 ownership != Qualifiers::OCL_ExplicitNone) {
450 Address Object = createReferenceTemporary(*this, M, E);
451 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
452 llvm::Type *Ty = ConvertTypeForMem(E->getType());
453 Object = Object.withElementType(Ty);
455 // createReferenceTemporary will promote the temporary to a global with a
456 // constant initializer if it can. It can only do this to a value of
457 // ARC-manageable type if the value is global and therefore "immune" to
458 // ref-counting operations. Therefore we have no need to emit either a
459 // dynamic initialization or a cleanup and we can just return the address
460 // of the temporary.
461 if (Var->hasInitializer())
462 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
464 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
466 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467 AlignmentSource::Decl);
469 switch (getEvaluationKind(E->getType())) {
470 default: llvm_unreachable("expected scalar or aggregate expression");
471 case TEK_Scalar:
472 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473 break;
474 case TEK_Aggregate: {
475 EmitAggExpr(E, AggValueSlot::forAddr(Object,
476 E->getType().getQualifiers(),
477 AggValueSlot::IsDestructed,
478 AggValueSlot::DoesNotNeedGCBarriers,
479 AggValueSlot::IsNotAliased,
480 AggValueSlot::DoesNotOverlap));
481 break;
485 pushTemporaryCleanup(*this, M, E, Object);
486 return RefTempDst;
489 SmallVector<const Expr *, 2> CommaLHSs;
490 SmallVector<SubobjectAdjustment, 2> Adjustments;
491 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
493 for (const auto &Ignored : CommaLHSs)
494 EmitIgnoredExpr(Ignored);
496 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497 if (opaque->getType()->isRecordType()) {
498 assert(Adjustments.empty());
499 return EmitOpaqueValueLValue(opaque);
503 // Create and initialize the reference temporary.
504 Address Alloca = Address::invalid();
505 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507 Object.getPointer()->stripPointerCasts())) {
508 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
509 Object = Object.withElementType(TemporaryType);
510 // If the temporary is a global and has a constant initializer or is a
511 // constant temporary that we promoted to a global, we may have already
512 // initialized it.
513 if (!Var->hasInitializer()) {
514 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
515 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
517 } else {
518 switch (M->getStorageDuration()) {
519 case SD_Automatic:
520 if (auto *Size = EmitLifetimeStart(
521 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
522 Alloca.getPointer())) {
523 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
524 Alloca, Size);
526 break;
528 case SD_FullExpression: {
529 if (!ShouldEmitLifetimeMarkers)
530 break;
532 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
533 // marker. Instead, start the lifetime of a conditional temporary earlier
534 // so that it's unconditional. Don't do this with sanitizers which need
535 // more precise lifetime marks. However when inside an "await.suspend"
536 // block, we should always avoid conditional cleanup because it creates
537 // boolean marker that lives across await_suspend, which can destroy coro
538 // frame.
539 ConditionalEvaluation *OldConditional = nullptr;
540 CGBuilderTy::InsertPoint OldIP;
541 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
542 ((!SanOpts.has(SanitizerKind::HWAddress) &&
543 !SanOpts.has(SanitizerKind::Memory) &&
544 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) ||
545 inSuspendBlock())) {
546 OldConditional = OutermostConditional;
547 OutermostConditional = nullptr;
549 OldIP = Builder.saveIP();
550 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
551 Builder.restoreIP(CGBuilderTy::InsertPoint(
552 Block, llvm::BasicBlock::iterator(Block->back())));
555 if (auto *Size = EmitLifetimeStart(
556 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
557 Alloca.getPointer())) {
558 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
559 Size);
562 if (OldConditional) {
563 OutermostConditional = OldConditional;
564 Builder.restoreIP(OldIP);
566 break;
569 default:
570 break;
572 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
574 pushTemporaryCleanup(*this, M, E, Object);
576 // Perform derived-to-base casts and/or field accesses, to get from the
577 // temporary object we created (and, potentially, for which we extended
578 // the lifetime) to the subobject we're binding the reference to.
579 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
580 switch (Adjustment.Kind) {
581 case SubobjectAdjustment::DerivedToBaseAdjustment:
582 Object =
583 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
584 Adjustment.DerivedToBase.BasePath->path_begin(),
585 Adjustment.DerivedToBase.BasePath->path_end(),
586 /*NullCheckValue=*/ false, E->getExprLoc());
587 break;
589 case SubobjectAdjustment::FieldAdjustment: {
590 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
591 LV = EmitLValueForField(LV, Adjustment.Field);
592 assert(LV.isSimple() &&
593 "materialized temporary field is not a simple lvalue");
594 Object = LV.getAddress(*this);
595 break;
598 case SubobjectAdjustment::MemberPointerAdjustment: {
599 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
600 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
601 Adjustment.Ptr.MPT);
602 break;
607 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
610 RValue
611 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
612 // Emit the expression as an lvalue.
613 LValue LV = EmitLValue(E);
614 assert(LV.isSimple());
615 llvm::Value *Value = LV.getPointer(*this);
617 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
618 // C++11 [dcl.ref]p5 (as amended by core issue 453):
619 // If a glvalue to which a reference is directly bound designates neither
620 // an existing object or function of an appropriate type nor a region of
621 // storage of suitable size and alignment to contain an object of the
622 // reference's type, the behavior is undefined.
623 QualType Ty = E->getType();
624 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
627 return RValue::get(Value);
631 /// getAccessedFieldNo - Given an encoded value and a result number, return the
632 /// input field number being accessed.
633 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
634 const llvm::Constant *Elts) {
635 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
636 ->getZExtValue();
639 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
640 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
641 llvm::Value *High) {
642 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
643 llvm::Value *K47 = Builder.getInt64(47);
644 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
645 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
646 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
647 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
648 return Builder.CreateMul(B1, KMul);
651 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
652 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
653 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
656 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
657 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
658 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
659 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
660 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
661 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
664 bool CodeGenFunction::sanitizePerformTypeCheck() const {
665 return SanOpts.has(SanitizerKind::Null) ||
666 SanOpts.has(SanitizerKind::Alignment) ||
667 SanOpts.has(SanitizerKind::ObjectSize) ||
668 SanOpts.has(SanitizerKind::Vptr);
671 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
672 llvm::Value *Ptr, QualType Ty,
673 CharUnits Alignment,
674 SanitizerSet SkippedChecks,
675 llvm::Value *ArraySize) {
676 if (!sanitizePerformTypeCheck())
677 return;
679 // Don't check pointers outside the default address space. The null check
680 // isn't correct, the object-size check isn't supported by LLVM, and we can't
681 // communicate the addresses to the runtime handler for the vptr check.
682 if (Ptr->getType()->getPointerAddressSpace())
683 return;
685 // Don't check pointers to volatile data. The behavior here is implementation-
686 // defined.
687 if (Ty.isVolatileQualified())
688 return;
690 SanitizerScope SanScope(this);
692 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
693 llvm::BasicBlock *Done = nullptr;
695 // Quickly determine whether we have a pointer to an alloca. It's possible
696 // to skip null checks, and some alignment checks, for these pointers. This
697 // can reduce compile-time significantly.
698 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
700 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
701 llvm::Value *IsNonNull = nullptr;
702 bool IsGuaranteedNonNull =
703 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
704 bool AllowNullPointers = isNullPointerAllowed(TCK);
705 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
706 !IsGuaranteedNonNull) {
707 // The glvalue must not be an empty glvalue.
708 IsNonNull = Builder.CreateIsNotNull(Ptr);
710 // The IR builder can constant-fold the null check if the pointer points to
711 // a constant.
712 IsGuaranteedNonNull = IsNonNull == True;
714 // Skip the null check if the pointer is known to be non-null.
715 if (!IsGuaranteedNonNull) {
716 if (AllowNullPointers) {
717 // When performing pointer casts, it's OK if the value is null.
718 // Skip the remaining checks in that case.
719 Done = createBasicBlock("null");
720 llvm::BasicBlock *Rest = createBasicBlock("not.null");
721 Builder.CreateCondBr(IsNonNull, Rest, Done);
722 EmitBlock(Rest);
723 } else {
724 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729 if (SanOpts.has(SanitizerKind::ObjectSize) &&
730 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
731 !Ty->isIncompleteType()) {
732 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
733 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
734 if (ArraySize)
735 Size = Builder.CreateMul(Size, ArraySize);
737 // Degenerate case: new X[0] does not need an objectsize check.
738 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
739 if (!ConstantSize || !ConstantSize->isNullValue()) {
740 // The glvalue must refer to a large enough storage region.
741 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
742 // to check this.
743 // FIXME: Get object address space
744 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
745 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
746 llvm::Value *Min = Builder.getFalse();
747 llvm::Value *NullIsUnknown = Builder.getFalse();
748 llvm::Value *Dynamic = Builder.getFalse();
749 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750 Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size);
751 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
755 llvm::MaybeAlign AlignVal;
756 llvm::Value *PtrAsInt = nullptr;
758 if (SanOpts.has(SanitizerKind::Alignment) &&
759 !SkippedChecks.has(SanitizerKind::Alignment)) {
760 AlignVal = Alignment.getAsMaybeAlign();
761 if (!Ty->isIncompleteType() && !AlignVal)
762 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
763 /*ForPointeeType=*/true)
764 .getAsMaybeAlign();
766 // The glvalue must be suitably aligned.
767 if (AlignVal && *AlignVal > llvm::Align(1) &&
768 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
769 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770 llvm::Value *Align = Builder.CreateAnd(
771 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
772 llvm::Value *Aligned =
773 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774 if (Aligned != True)
775 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
779 if (Checks.size() > 0) {
780 llvm::Constant *StaticData[] = {
781 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
782 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
783 llvm::ConstantInt::get(Int8Ty, TCK)};
784 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
785 PtrAsInt ? PtrAsInt : Ptr);
788 // If possible, check that the vptr indicates that there is a subobject of
789 // type Ty at offset zero within this object.
791 // C++11 [basic.life]p5,6:
792 // [For storage which does not refer to an object within its lifetime]
793 // The program has undefined behavior if:
794 // -- the [pointer or glvalue] is used to access a non-static data member
795 // or call a non-static member function
796 if (SanOpts.has(SanitizerKind::Vptr) &&
797 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
798 // Ensure that the pointer is non-null before loading it. If there is no
799 // compile-time guarantee, reuse the run-time null check or emit a new one.
800 if (!IsGuaranteedNonNull) {
801 if (!IsNonNull)
802 IsNonNull = Builder.CreateIsNotNull(Ptr);
803 if (!Done)
804 Done = createBasicBlock("vptr.null");
805 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
806 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
807 EmitBlock(VptrNotNull);
810 // Compute a hash of the mangled name of the type.
812 // FIXME: This is not guaranteed to be deterministic! Move to a
813 // fingerprinting mechanism once LLVM provides one. For the time
814 // being the implementation happens to be deterministic.
815 SmallString<64> MangledName;
816 llvm::raw_svector_ostream Out(MangledName);
817 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
818 Out);
820 // Contained in NoSanitizeList based on the mangled type.
821 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
822 Out.str())) {
823 llvm::hash_code TypeHash = hash_value(Out.str());
825 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
826 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
827 Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign());
828 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
829 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
831 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
832 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
834 // Look the hash up in our cache.
835 const int CacheSize = 128;
836 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
837 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
838 "__ubsan_vptr_type_cache");
839 llvm::Value *Slot = Builder.CreateAnd(Hash,
840 llvm::ConstantInt::get(IntPtrTy,
841 CacheSize-1));
842 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
843 llvm::Value *CacheVal = Builder.CreateAlignedLoad(
844 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
845 getPointerAlign());
847 // If the hash isn't in the cache, call a runtime handler to perform the
848 // hard work of checking whether the vptr is for an object of the right
849 // type. This will either fill in the cache and return, or produce a
850 // diagnostic.
851 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
852 llvm::Constant *StaticData[] = {
853 EmitCheckSourceLocation(Loc),
854 EmitCheckTypeDescriptor(Ty),
855 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
856 llvm::ConstantInt::get(Int8Ty, TCK)
858 llvm::Value *DynamicData[] = { Ptr, Hash };
859 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
860 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
861 DynamicData);
865 if (Done) {
866 Builder.CreateBr(Done);
867 EmitBlock(Done);
871 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
872 QualType EltTy) {
873 ASTContext &C = getContext();
874 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
875 if (!EltSize)
876 return nullptr;
878 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
879 if (!ArrayDeclRef)
880 return nullptr;
882 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
883 if (!ParamDecl)
884 return nullptr;
886 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
887 if (!POSAttr)
888 return nullptr;
890 // Don't load the size if it's a lower bound.
891 int POSType = POSAttr->getType();
892 if (POSType != 0 && POSType != 1)
893 return nullptr;
895 // Find the implicit size parameter.
896 auto PassedSizeIt = SizeArguments.find(ParamDecl);
897 if (PassedSizeIt == SizeArguments.end())
898 return nullptr;
900 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
901 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
902 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
903 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
904 C.getSizeType(), E->getExprLoc());
905 llvm::Value *SizeOfElement =
906 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
907 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
910 /// If Base is known to point to the start of an array, return the length of
911 /// that array. Return 0 if the length cannot be determined.
912 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
913 const Expr *Base,
914 QualType &IndexedType,
915 LangOptions::StrictFlexArraysLevelKind
916 StrictFlexArraysLevel) {
917 // For the vector indexing extension, the bound is the number of elements.
918 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
919 IndexedType = Base->getType();
920 return CGF.Builder.getInt32(VT->getNumElements());
923 Base = Base->IgnoreParens();
925 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
926 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
927 !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
928 StrictFlexArraysLevel)) {
929 CodeGenFunction::SanitizerScope SanScope(&CGF);
931 IndexedType = CE->getSubExpr()->getType();
932 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
933 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
934 return CGF.Builder.getInt(CAT->getSize());
936 if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
937 return CGF.getVLASize(VAT).NumElts;
938 // Ignore pass_object_size here. It's not applicable on decayed pointers.
941 if (FieldDecl *FD = CGF.FindCountedByField(Base, StrictFlexArraysLevel)) {
942 const auto *ME = dyn_cast<MemberExpr>(CE->getSubExpr());
943 IndexedType = Base->getType();
944 return CGF
945 .EmitAnyExprToTemp(MemberExpr::CreateImplicit(
946 CGF.getContext(), const_cast<Expr *>(ME->getBase()),
947 ME->isArrow(), FD, FD->getType(), VK_LValue, OK_Ordinary))
948 .getScalarVal();
952 CodeGenFunction::SanitizerScope SanScope(&CGF);
954 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
955 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
956 IndexedType = Base->getType();
957 return POS;
960 return nullptr;
963 FieldDecl *CodeGenFunction::FindCountedByField(
964 const Expr *Base,
965 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel) {
966 const ValueDecl *VD = nullptr;
968 Base = Base->IgnoreParenImpCasts();
970 if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
971 VD = dyn_cast<ValueDecl>(ME->getMemberDecl());
972 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
973 // Pointing to the full structure.
974 VD = dyn_cast<ValueDecl>(DRE->getDecl());
976 QualType Ty = VD->getType();
977 if (Ty->isPointerType())
978 Ty = Ty->getPointeeType();
980 if (const auto *RD = Ty->getAsRecordDecl())
981 VD = RD->getLastField();
982 } else if (const auto *CE = dyn_cast<CastExpr>(Base)) {
983 if (const auto *ME = dyn_cast<MemberExpr>(CE->getSubExpr()))
984 VD = dyn_cast<ValueDecl>(ME->getMemberDecl());
987 const auto *FD = dyn_cast_if_present<FieldDecl>(VD);
988 if (!FD || !FD->getParent() ||
989 !Decl::isFlexibleArrayMemberLike(getContext(), FD, FD->getType(),
990 StrictFlexArraysLevel, true))
991 return nullptr;
993 const auto *CBA = FD->getAttr<CountedByAttr>();
994 if (!CBA)
995 return nullptr;
997 StringRef FieldName = CBA->getCountedByField()->getName();
998 auto It =
999 llvm::find_if(FD->getParent()->fields(), [&](const FieldDecl *Field) {
1000 return FieldName == Field->getName();
1002 return It != FD->getParent()->field_end() ? *It : nullptr;
1005 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
1006 llvm::Value *Index, QualType IndexType,
1007 bool Accessed) {
1008 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1009 "should not be called unless adding bounds checks");
1010 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
1011 getLangOpts().getStrictFlexArraysLevel();
1013 QualType IndexedType;
1014 llvm::Value *Bound =
1015 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1016 if (!Bound)
1017 return;
1019 SanitizerScope SanScope(this);
1021 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1022 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1023 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1025 llvm::Constant *StaticData[] = {
1026 EmitCheckSourceLocation(E->getExprLoc()),
1027 EmitCheckTypeDescriptor(IndexedType),
1028 EmitCheckTypeDescriptor(IndexType)
1030 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1031 : Builder.CreateICmpULE(IndexVal, BoundVal);
1032 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1033 SanitizerHandler::OutOfBounds, StaticData, Index);
1037 CodeGenFunction::ComplexPairTy CodeGenFunction::
1038 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1039 bool isInc, bool isPre) {
1040 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1042 llvm::Value *NextVal;
1043 if (isa<llvm::IntegerType>(InVal.first->getType())) {
1044 uint64_t AmountVal = isInc ? 1 : -1;
1045 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1047 // Add the inc/dec to the real part.
1048 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1049 } else {
1050 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1051 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1052 if (!isInc)
1053 FVal.changeSign();
1054 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1056 // Add the inc/dec to the real part.
1057 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1060 ComplexPairTy IncVal(NextVal, InVal.second);
1062 // Store the updated result through the lvalue.
1063 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1064 if (getLangOpts().OpenMP)
1065 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1066 E->getSubExpr());
1068 // If this is a postinc, return the value read from memory, otherwise use the
1069 // updated value.
1070 return isPre ? IncVal : InVal;
1073 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1074 CodeGenFunction *CGF) {
1075 // Bind VLAs in the cast type.
1076 if (CGF && E->getType()->isVariablyModifiedType())
1077 CGF->EmitVariablyModifiedType(E->getType());
1079 if (CGDebugInfo *DI = getModuleDebugInfo())
1080 DI->EmitExplicitCastType(E->getType());
1083 //===----------------------------------------------------------------------===//
1084 // LValue Expression Emission
1085 //===----------------------------------------------------------------------===//
1087 static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo,
1088 TBAAAccessInfo *TBAAInfo,
1089 KnownNonNull_t IsKnownNonNull,
1090 CodeGenFunction &CGF) {
1091 // We allow this with ObjC object pointers because of fragile ABIs.
1092 assert(E->getType()->isPointerType() ||
1093 E->getType()->isObjCObjectPointerType());
1094 E = E->IgnoreParens();
1096 // Casts:
1097 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1098 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1099 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
1101 switch (CE->getCastKind()) {
1102 // Non-converting casts (but not C's implicit conversion from void*).
1103 case CK_BitCast:
1104 case CK_NoOp:
1105 case CK_AddressSpaceConversion:
1106 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1107 if (PtrTy->getPointeeType()->isVoidType())
1108 break;
1110 LValueBaseInfo InnerBaseInfo;
1111 TBAAAccessInfo InnerTBAAInfo;
1112 Address Addr = CGF.EmitPointerWithAlignment(
1113 CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull);
1114 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1115 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1117 if (isa<ExplicitCastExpr>(CE)) {
1118 LValueBaseInfo TargetTypeBaseInfo;
1119 TBAAAccessInfo TargetTypeTBAAInfo;
1120 CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(
1121 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1122 if (TBAAInfo)
1123 *TBAAInfo =
1124 CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo);
1125 // If the source l-value is opaque, honor the alignment of the
1126 // casted-to type.
1127 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1128 if (BaseInfo)
1129 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1130 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align,
1131 IsKnownNonNull);
1135 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1136 CE->getCastKind() == CK_BitCast) {
1137 if (auto PT = E->getType()->getAs<PointerType>())
1138 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1139 /*MayBeNull=*/true,
1140 CodeGenFunction::CFITCK_UnrelatedCast,
1141 CE->getBeginLoc());
1144 llvm::Type *ElemTy =
1145 CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1146 Addr = Addr.withElementType(ElemTy);
1147 if (CE->getCastKind() == CK_AddressSpaceConversion)
1148 Addr = CGF.Builder.CreateAddrSpaceCast(Addr,
1149 CGF.ConvertType(E->getType()));
1150 return Addr;
1152 break;
1154 // Array-to-pointer decay.
1155 case CK_ArrayToPointerDecay:
1156 return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1158 // Derived-to-base conversions.
1159 case CK_UncheckedDerivedToBase:
1160 case CK_DerivedToBase: {
1161 // TODO: Support accesses to members of base classes in TBAA. For now, we
1162 // conservatively pretend that the complete object is of the base class
1163 // type.
1164 if (TBAAInfo)
1165 *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType());
1166 Address Addr = CGF.EmitPointerWithAlignment(
1167 CE->getSubExpr(), BaseInfo, nullptr,
1168 (KnownNonNull_t)(IsKnownNonNull ||
1169 CE->getCastKind() == CK_UncheckedDerivedToBase));
1170 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1171 return CGF.GetAddressOfBaseClass(
1172 Addr, Derived, CE->path_begin(), CE->path_end(),
1173 CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1176 // TODO: Is there any reason to treat base-to-derived conversions
1177 // specially?
1178 default:
1179 break;
1183 // Unary &.
1184 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1185 if (UO->getOpcode() == UO_AddrOf) {
1186 LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull);
1187 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1188 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1189 return LV.getAddress(CGF);
1193 // std::addressof and variants.
1194 if (auto *Call = dyn_cast<CallExpr>(E)) {
1195 switch (Call->getBuiltinCallee()) {
1196 default:
1197 break;
1198 case Builtin::BIaddressof:
1199 case Builtin::BI__addressof:
1200 case Builtin::BI__builtin_addressof: {
1201 LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull);
1202 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1203 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1204 return LV.getAddress(CGF);
1209 // TODO: conditional operators, comma.
1211 // Otherwise, use the alignment of the type.
1212 CharUnits Align =
1213 CGF.CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1214 llvm::Type *ElemTy = CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1215 return Address(CGF.EmitScalarExpr(E), ElemTy, Align, IsKnownNonNull);
1218 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1219 /// derive a more accurate bound on the alignment of the pointer.
1220 Address CodeGenFunction::EmitPointerWithAlignment(
1221 const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo,
1222 KnownNonNull_t IsKnownNonNull) {
1223 Address Addr =
1224 ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this);
1225 if (IsKnownNonNull && !Addr.isKnownNonNull())
1226 Addr.setKnownNonNull();
1227 return Addr;
1230 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1231 llvm::Value *V = RV.getScalarVal();
1232 if (auto MPT = T->getAs<MemberPointerType>())
1233 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1234 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1237 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1238 if (Ty->isVoidType())
1239 return RValue::get(nullptr);
1241 switch (getEvaluationKind(Ty)) {
1242 case TEK_Complex: {
1243 llvm::Type *EltTy =
1244 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1245 llvm::Value *U = llvm::UndefValue::get(EltTy);
1246 return RValue::getComplex(std::make_pair(U, U));
1249 // If this is a use of an undefined aggregate type, the aggregate must have an
1250 // identifiable address. Just because the contents of the value are undefined
1251 // doesn't mean that the address can't be taken and compared.
1252 case TEK_Aggregate: {
1253 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1254 return RValue::getAggregate(DestPtr);
1257 case TEK_Scalar:
1258 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1260 llvm_unreachable("bad evaluation kind");
1263 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1264 const char *Name) {
1265 ErrorUnsupported(E, Name);
1266 return GetUndefRValue(E->getType());
1269 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1270 const char *Name) {
1271 ErrorUnsupported(E, Name);
1272 llvm::Type *ElTy = ConvertType(E->getType());
1273 llvm::Type *Ty = UnqualPtrTy;
1274 return MakeAddrLValue(
1275 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1278 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1279 const Expr *Base = Obj;
1280 while (!isa<CXXThisExpr>(Base)) {
1281 // The result of a dynamic_cast can be null.
1282 if (isa<CXXDynamicCastExpr>(Base))
1283 return false;
1285 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1286 Base = CE->getSubExpr();
1287 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1288 Base = PE->getSubExpr();
1289 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1290 if (UO->getOpcode() == UO_Extension)
1291 Base = UO->getSubExpr();
1292 else
1293 return false;
1294 } else {
1295 return false;
1298 return true;
1301 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1302 LValue LV;
1303 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1304 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1305 else
1306 LV = EmitLValue(E);
1307 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1308 SanitizerSet SkippedChecks;
1309 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1310 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1311 if (IsBaseCXXThis)
1312 SkippedChecks.set(SanitizerKind::Alignment, true);
1313 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1314 SkippedChecks.set(SanitizerKind::Null, true);
1316 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1317 LV.getAlignment(), SkippedChecks);
1319 return LV;
1322 /// EmitLValue - Emit code to compute a designator that specifies the location
1323 /// of the expression.
1325 /// This can return one of two things: a simple address or a bitfield reference.
1326 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1327 /// an LLVM pointer type.
1329 /// If this returns a bitfield reference, nothing about the pointee type of the
1330 /// LLVM value is known: For example, it may not be a pointer to an integer.
1332 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1333 /// this method guarantees that the returned pointer type will point to an LLVM
1334 /// type of the same size of the lvalue's type. If the lvalue has a variable
1335 /// length type, this is not possible.
1337 LValue CodeGenFunction::EmitLValue(const Expr *E,
1338 KnownNonNull_t IsKnownNonNull) {
1339 LValue LV = EmitLValueHelper(E, IsKnownNonNull);
1340 if (IsKnownNonNull && !LV.isKnownNonNull())
1341 LV.setKnownNonNull();
1342 return LV;
1345 LValue CodeGenFunction::EmitLValueHelper(const Expr *E,
1346 KnownNonNull_t IsKnownNonNull) {
1347 ApplyDebugLocation DL(*this, E);
1348 switch (E->getStmtClass()) {
1349 default: return EmitUnsupportedLValue(E, "l-value expression");
1351 case Expr::ObjCPropertyRefExprClass:
1352 llvm_unreachable("cannot emit a property reference directly");
1354 case Expr::ObjCSelectorExprClass:
1355 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1356 case Expr::ObjCIsaExprClass:
1357 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1358 case Expr::BinaryOperatorClass:
1359 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1360 case Expr::CompoundAssignOperatorClass: {
1361 QualType Ty = E->getType();
1362 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1363 Ty = AT->getValueType();
1364 if (!Ty->isAnyComplexType())
1365 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1366 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1368 case Expr::CallExprClass:
1369 case Expr::CXXMemberCallExprClass:
1370 case Expr::CXXOperatorCallExprClass:
1371 case Expr::UserDefinedLiteralClass:
1372 return EmitCallExprLValue(cast<CallExpr>(E));
1373 case Expr::CXXRewrittenBinaryOperatorClass:
1374 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
1375 IsKnownNonNull);
1376 case Expr::VAArgExprClass:
1377 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1378 case Expr::DeclRefExprClass:
1379 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1380 case Expr::ConstantExprClass: {
1381 const ConstantExpr *CE = cast<ConstantExpr>(E);
1382 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1383 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1384 ->getCallReturnType(getContext())
1385 ->getPointeeType();
1386 return MakeNaturalAlignAddrLValue(Result, RetType);
1388 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull);
1390 case Expr::ParenExprClass:
1391 return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull);
1392 case Expr::GenericSelectionExprClass:
1393 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(),
1394 IsKnownNonNull);
1395 case Expr::PredefinedExprClass:
1396 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1397 case Expr::StringLiteralClass:
1398 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1399 case Expr::ObjCEncodeExprClass:
1400 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1401 case Expr::PseudoObjectExprClass:
1402 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1403 case Expr::InitListExprClass:
1404 return EmitInitListLValue(cast<InitListExpr>(E));
1405 case Expr::CXXTemporaryObjectExprClass:
1406 case Expr::CXXConstructExprClass:
1407 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1408 case Expr::CXXBindTemporaryExprClass:
1409 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1410 case Expr::CXXUuidofExprClass:
1411 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1412 case Expr::LambdaExprClass:
1413 return EmitAggExprToLValue(E);
1415 case Expr::ExprWithCleanupsClass: {
1416 const auto *cleanups = cast<ExprWithCleanups>(E);
1417 RunCleanupsScope Scope(*this);
1418 LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull);
1419 if (LV.isSimple()) {
1420 // Defend against branches out of gnu statement expressions surrounded by
1421 // cleanups.
1422 Address Addr = LV.getAddress(*this);
1423 llvm::Value *V = Addr.getPointer();
1424 Scope.ForceCleanup({&V});
1425 return LValue::MakeAddr(Addr.withPointer(V, Addr.isKnownNonNull()),
1426 LV.getType(), getContext(), LV.getBaseInfo(),
1427 LV.getTBAAInfo());
1429 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1430 // bitfield lvalue or some other non-simple lvalue?
1431 return LV;
1434 case Expr::CXXDefaultArgExprClass: {
1435 auto *DAE = cast<CXXDefaultArgExpr>(E);
1436 CXXDefaultArgExprScope Scope(*this, DAE);
1437 return EmitLValue(DAE->getExpr(), IsKnownNonNull);
1439 case Expr::CXXDefaultInitExprClass: {
1440 auto *DIE = cast<CXXDefaultInitExpr>(E);
1441 CXXDefaultInitExprScope Scope(*this, DIE);
1442 return EmitLValue(DIE->getExpr(), IsKnownNonNull);
1444 case Expr::CXXTypeidExprClass:
1445 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1447 case Expr::ObjCMessageExprClass:
1448 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1449 case Expr::ObjCIvarRefExprClass:
1450 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1451 case Expr::StmtExprClass:
1452 return EmitStmtExprLValue(cast<StmtExpr>(E));
1453 case Expr::UnaryOperatorClass:
1454 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1455 case Expr::ArraySubscriptExprClass:
1456 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1457 case Expr::MatrixSubscriptExprClass:
1458 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1459 case Expr::OMPArraySectionExprClass:
1460 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1461 case Expr::ExtVectorElementExprClass:
1462 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1463 case Expr::CXXThisExprClass:
1464 return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
1465 case Expr::MemberExprClass:
1466 return EmitMemberExpr(cast<MemberExpr>(E));
1467 case Expr::CompoundLiteralExprClass:
1468 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1469 case Expr::ConditionalOperatorClass:
1470 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1471 case Expr::BinaryConditionalOperatorClass:
1472 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1473 case Expr::ChooseExprClass:
1474 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull);
1475 case Expr::OpaqueValueExprClass:
1476 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1477 case Expr::SubstNonTypeTemplateParmExprClass:
1478 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
1479 IsKnownNonNull);
1480 case Expr::ImplicitCastExprClass:
1481 case Expr::CStyleCastExprClass:
1482 case Expr::CXXFunctionalCastExprClass:
1483 case Expr::CXXStaticCastExprClass:
1484 case Expr::CXXDynamicCastExprClass:
1485 case Expr::CXXReinterpretCastExprClass:
1486 case Expr::CXXConstCastExprClass:
1487 case Expr::CXXAddrspaceCastExprClass:
1488 case Expr::ObjCBridgedCastExprClass:
1489 return EmitCastLValue(cast<CastExpr>(E));
1491 case Expr::MaterializeTemporaryExprClass:
1492 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1494 case Expr::CoawaitExprClass:
1495 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1496 case Expr::CoyieldExprClass:
1497 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1501 /// Given an object of the given canonical type, can we safely copy a
1502 /// value out of it based on its initializer?
1503 static bool isConstantEmittableObjectType(QualType type) {
1504 assert(type.isCanonical());
1505 assert(!type->isReferenceType());
1507 // Must be const-qualified but non-volatile.
1508 Qualifiers qs = type.getLocalQualifiers();
1509 if (!qs.hasConst() || qs.hasVolatile()) return false;
1511 // Otherwise, all object types satisfy this except C++ classes with
1512 // mutable subobjects or non-trivial copy/destroy behavior.
1513 if (const auto *RT = dyn_cast<RecordType>(type))
1514 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1515 if (RD->hasMutableFields() || !RD->isTrivial())
1516 return false;
1518 return true;
1521 /// Can we constant-emit a load of a reference to a variable of the
1522 /// given type? This is different from predicates like
1523 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1524 /// in situations that don't necessarily satisfy the language's rules
1525 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1526 /// to do this with const float variables even if those variables
1527 /// aren't marked 'constexpr'.
1528 enum ConstantEmissionKind {
1529 CEK_None,
1530 CEK_AsReferenceOnly,
1531 CEK_AsValueOrReference,
1532 CEK_AsValueOnly
1534 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1535 type = type.getCanonicalType();
1536 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1537 if (isConstantEmittableObjectType(ref->getPointeeType()))
1538 return CEK_AsValueOrReference;
1539 return CEK_AsReferenceOnly;
1541 if (isConstantEmittableObjectType(type))
1542 return CEK_AsValueOnly;
1543 return CEK_None;
1546 /// Try to emit a reference to the given value without producing it as
1547 /// an l-value. This is just an optimization, but it avoids us needing
1548 /// to emit global copies of variables if they're named without triggering
1549 /// a formal use in a context where we can't emit a direct reference to them,
1550 /// for instance if a block or lambda or a member of a local class uses a
1551 /// const int variable or constexpr variable from an enclosing function.
1552 CodeGenFunction::ConstantEmission
1553 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1554 ValueDecl *value = refExpr->getDecl();
1556 // The value needs to be an enum constant or a constant variable.
1557 ConstantEmissionKind CEK;
1558 if (isa<ParmVarDecl>(value)) {
1559 CEK = CEK_None;
1560 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1561 CEK = checkVarTypeForConstantEmission(var->getType());
1562 } else if (isa<EnumConstantDecl>(value)) {
1563 CEK = CEK_AsValueOnly;
1564 } else {
1565 CEK = CEK_None;
1567 if (CEK == CEK_None) return ConstantEmission();
1569 Expr::EvalResult result;
1570 bool resultIsReference;
1571 QualType resultType;
1573 // It's best to evaluate all the way as an r-value if that's permitted.
1574 if (CEK != CEK_AsReferenceOnly &&
1575 refExpr->EvaluateAsRValue(result, getContext())) {
1576 resultIsReference = false;
1577 resultType = refExpr->getType();
1579 // Otherwise, try to evaluate as an l-value.
1580 } else if (CEK != CEK_AsValueOnly &&
1581 refExpr->EvaluateAsLValue(result, getContext())) {
1582 resultIsReference = true;
1583 resultType = value->getType();
1585 // Failure.
1586 } else {
1587 return ConstantEmission();
1590 // In any case, if the initializer has side-effects, abandon ship.
1591 if (result.HasSideEffects)
1592 return ConstantEmission();
1594 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1595 // referencing a global host variable by copy. In this case the lambda should
1596 // make a copy of the value of the global host variable. The DRE of the
1597 // captured reference variable cannot be emitted as load from the host
1598 // global variable as compile time constant, since the host variable is not
1599 // accessible on device. The DRE of the captured reference variable has to be
1600 // loaded from captures.
1601 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1602 refExpr->refersToEnclosingVariableOrCapture()) {
1603 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1604 if (MD && MD->getParent()->isLambda() &&
1605 MD->getOverloadedOperator() == OO_Call) {
1606 const APValue::LValueBase &base = result.Val.getLValueBase();
1607 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1608 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1609 if (!VD->hasAttr<CUDADeviceAttr>()) {
1610 return ConstantEmission();
1617 // Emit as a constant.
1618 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1619 result.Val, resultType);
1621 // Make sure we emit a debug reference to the global variable.
1622 // This should probably fire even for
1623 if (isa<VarDecl>(value)) {
1624 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1625 EmitDeclRefExprDbgValue(refExpr, result.Val);
1626 } else {
1627 assert(isa<EnumConstantDecl>(value));
1628 EmitDeclRefExprDbgValue(refExpr, result.Val);
1631 // If we emitted a reference constant, we need to dereference that.
1632 if (resultIsReference)
1633 return ConstantEmission::forReference(C);
1635 return ConstantEmission::forValue(C);
1638 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1639 const MemberExpr *ME) {
1640 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1641 // Try to emit static variable member expressions as DREs.
1642 return DeclRefExpr::Create(
1643 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1644 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1645 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1647 return nullptr;
1650 CodeGenFunction::ConstantEmission
1651 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1652 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1653 return tryEmitAsConstant(DRE);
1654 return ConstantEmission();
1657 llvm::Value *CodeGenFunction::emitScalarConstant(
1658 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1659 assert(Constant && "not a constant");
1660 if (Constant.isReference())
1661 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1662 E->getExprLoc())
1663 .getScalarVal();
1664 return Constant.getValue();
1667 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1668 SourceLocation Loc) {
1669 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1670 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1671 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1674 static bool hasBooleanRepresentation(QualType Ty) {
1675 if (Ty->isBooleanType())
1676 return true;
1678 if (const EnumType *ET = Ty->getAs<EnumType>())
1679 return ET->getDecl()->getIntegerType()->isBooleanType();
1681 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1682 return hasBooleanRepresentation(AT->getValueType());
1684 return false;
1687 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1688 llvm::APInt &Min, llvm::APInt &End,
1689 bool StrictEnums, bool IsBool) {
1690 const EnumType *ET = Ty->getAs<EnumType>();
1691 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1692 ET && !ET->getDecl()->isFixed();
1693 if (!IsBool && !IsRegularCPlusPlusEnum)
1694 return false;
1696 if (IsBool) {
1697 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1698 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1699 } else {
1700 const EnumDecl *ED = ET->getDecl();
1701 ED->getValueRange(End, Min);
1703 return true;
1706 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1707 llvm::APInt Min, End;
1708 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1709 hasBooleanRepresentation(Ty)))
1710 return nullptr;
1712 llvm::MDBuilder MDHelper(getLLVMContext());
1713 return MDHelper.createRange(Min, End);
1716 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1717 SourceLocation Loc) {
1718 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1719 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1720 if (!HasBoolCheck && !HasEnumCheck)
1721 return false;
1723 bool IsBool = hasBooleanRepresentation(Ty) ||
1724 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1725 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1726 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1727 if (!NeedsBoolCheck && !NeedsEnumCheck)
1728 return false;
1730 // Single-bit booleans don't need to be checked. Special-case this to avoid
1731 // a bit width mismatch when handling bitfield values. This is handled by
1732 // EmitFromMemory for the non-bitfield case.
1733 if (IsBool &&
1734 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1735 return false;
1737 llvm::APInt Min, End;
1738 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1739 return true;
1741 auto &Ctx = getLLVMContext();
1742 SanitizerScope SanScope(this);
1743 llvm::Value *Check;
1744 --End;
1745 if (!Min) {
1746 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1747 } else {
1748 llvm::Value *Upper =
1749 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1750 llvm::Value *Lower =
1751 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1752 Check = Builder.CreateAnd(Upper, Lower);
1754 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1755 EmitCheckTypeDescriptor(Ty)};
1756 SanitizerMask Kind =
1757 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1758 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1759 StaticArgs, EmitCheckValue(Value));
1760 return true;
1763 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1764 QualType Ty,
1765 SourceLocation Loc,
1766 LValueBaseInfo BaseInfo,
1767 TBAAAccessInfo TBAAInfo,
1768 bool isNontemporal) {
1769 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1770 if (GV->isThreadLocal())
1771 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
1772 NotKnownNonNull);
1774 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1775 // Boolean vectors use `iN` as storage type.
1776 if (ClangVecTy->isExtVectorBoolType()) {
1777 llvm::Type *ValTy = ConvertType(Ty);
1778 unsigned ValNumElems =
1779 cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1780 // Load the `iP` storage object (P is the padded vector size).
1781 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1782 const auto *RawIntTy = RawIntV->getType();
1783 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1784 // Bitcast iP --> <P x i1>.
1785 auto *PaddedVecTy = llvm::FixedVectorType::get(
1786 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1787 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1788 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1789 V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1791 return EmitFromMemory(V, Ty);
1794 // Handle vectors of size 3 like size 4 for better performance.
1795 const llvm::Type *EltTy = Addr.getElementType();
1796 const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1798 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1800 llvm::VectorType *vec4Ty =
1801 llvm::FixedVectorType::get(VTy->getElementType(), 4);
1802 Address Cast = Addr.withElementType(vec4Ty);
1803 // Now load value.
1804 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1806 // Shuffle vector to get vec3.
1807 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1808 return EmitFromMemory(V, Ty);
1812 // Atomic operations have to be done on integral types.
1813 LValue AtomicLValue =
1814 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1815 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1816 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1819 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1820 if (isNontemporal) {
1821 llvm::MDNode *Node = llvm::MDNode::get(
1822 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1823 Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
1826 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1828 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1829 // In order to prevent the optimizer from throwing away the check, don't
1830 // attach range metadata to the load.
1831 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1832 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
1833 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1834 Load->setMetadata(llvm::LLVMContext::MD_noundef,
1835 llvm::MDNode::get(getLLVMContext(), std::nullopt));
1838 return EmitFromMemory(Load, Ty);
1841 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1842 // Bool has a different representation in memory than in registers.
1843 if (hasBooleanRepresentation(Ty)) {
1844 // This should really always be an i1, but sometimes it's already
1845 // an i8, and it's awkward to track those cases down.
1846 if (Value->getType()->isIntegerTy(1))
1847 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1848 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1849 "wrong value rep of bool");
1852 return Value;
1855 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1856 // Bool has a different representation in memory than in registers.
1857 if (hasBooleanRepresentation(Ty)) {
1858 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1859 "wrong value rep of bool");
1860 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1862 if (Ty->isExtVectorBoolType()) {
1863 const auto *RawIntTy = Value->getType();
1864 // Bitcast iP --> <P x i1>.
1865 auto *PaddedVecTy = llvm::FixedVectorType::get(
1866 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1867 auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1868 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1869 llvm::Type *ValTy = ConvertType(Ty);
1870 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1871 return emitBoolVecConversion(V, ValNumElems, "extractvec");
1874 return Value;
1877 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1878 // MatrixType), if it points to a array (the memory type of MatrixType).
1879 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1880 bool IsVector = true) {
1881 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1882 if (ArrayTy && IsVector) {
1883 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1884 ArrayTy->getNumElements());
1886 return Addr.withElementType(VectorTy);
1888 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1889 if (VectorTy && !IsVector) {
1890 auto *ArrayTy = llvm::ArrayType::get(
1891 VectorTy->getElementType(),
1892 cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1894 return Addr.withElementType(ArrayTy);
1897 return Addr;
1900 // Emit a store of a matrix LValue. This may require casting the original
1901 // pointer to memory address (ArrayType) to a pointer to the value type
1902 // (VectorType).
1903 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1904 bool isInit, CodeGenFunction &CGF) {
1905 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1906 value->getType()->isVectorTy());
1907 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1908 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1909 lvalue.isNontemporal());
1912 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1913 bool Volatile, QualType Ty,
1914 LValueBaseInfo BaseInfo,
1915 TBAAAccessInfo TBAAInfo,
1916 bool isInit, bool isNontemporal) {
1917 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1918 if (GV->isThreadLocal())
1919 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
1920 NotKnownNonNull);
1922 llvm::Type *SrcTy = Value->getType();
1923 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1924 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1925 if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1926 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1927 // Expand to the memory bit width.
1928 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1929 // <N x i1> --> <P x i1>.
1930 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1931 // <P x i1> --> iP.
1932 Value = Builder.CreateBitCast(Value, MemIntTy);
1933 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1934 // Handle vec3 special.
1935 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1936 // Our source is a vec3, do a shuffle vector to make it a vec4.
1937 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1938 "extractVec");
1939 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1941 if (Addr.getElementType() != SrcTy) {
1942 Addr = Addr.withElementType(SrcTy);
1947 Value = EmitToMemory(Value, Ty);
1949 LValue AtomicLValue =
1950 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1951 if (Ty->isAtomicType() ||
1952 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1953 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1954 return;
1957 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1958 if (isNontemporal) {
1959 llvm::MDNode *Node =
1960 llvm::MDNode::get(Store->getContext(),
1961 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1962 Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
1965 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1968 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1969 bool isInit) {
1970 if (lvalue.getType()->isConstantMatrixType()) {
1971 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1972 return;
1975 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1976 lvalue.getType(), lvalue.getBaseInfo(),
1977 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1980 // Emit a load of a LValue of matrix type. This may require casting the pointer
1981 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1982 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1983 CodeGenFunction &CGF) {
1984 assert(LV.getType()->isConstantMatrixType());
1985 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1986 LV.setAddress(Addr);
1987 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1990 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1991 /// method emits the address of the lvalue, then loads the result as an rvalue,
1992 /// returning the rvalue.
1993 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1994 if (LV.isObjCWeak()) {
1995 // load of a __weak object.
1996 Address AddrWeakObj = LV.getAddress(*this);
1997 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1998 AddrWeakObj));
2000 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
2001 // In MRC mode, we do a load+autorelease.
2002 if (!getLangOpts().ObjCAutoRefCount) {
2003 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
2006 // In ARC mode, we load retained and then consume the value.
2007 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
2008 Object = EmitObjCConsumeObject(LV.getType(), Object);
2009 return RValue::get(Object);
2012 if (LV.isSimple()) {
2013 assert(!LV.getType()->isFunctionType());
2015 if (LV.getType()->isConstantMatrixType())
2016 return EmitLoadOfMatrixLValue(LV, Loc, *this);
2018 // Everything needs a load.
2019 return RValue::get(EmitLoadOfScalar(LV, Loc));
2022 if (LV.isVectorElt()) {
2023 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
2024 LV.isVolatileQualified());
2025 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
2026 "vecext"));
2029 // If this is a reference to a subset of the elements of a vector, either
2030 // shuffle the input or extract/insert them as appropriate.
2031 if (LV.isExtVectorElt()) {
2032 return EmitLoadOfExtVectorElementLValue(LV);
2035 // Global Register variables always invoke intrinsics
2036 if (LV.isGlobalReg())
2037 return EmitLoadOfGlobalRegLValue(LV);
2039 if (LV.isMatrixElt()) {
2040 llvm::Value *Idx = LV.getMatrixIdx();
2041 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2042 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2043 llvm::MatrixBuilder MB(Builder);
2044 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2046 llvm::LoadInst *Load =
2047 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2048 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2051 assert(LV.isBitField() && "Unknown LValue type!");
2052 return EmitLoadOfBitfieldLValue(LV, Loc);
2055 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2056 SourceLocation Loc) {
2057 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2059 // Get the output type.
2060 llvm::Type *ResLTy = ConvertType(LV.getType());
2062 Address Ptr = LV.getBitFieldAddress();
2063 llvm::Value *Val =
2064 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2066 bool UseVolatile = LV.isVolatileQualified() &&
2067 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2068 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2069 const unsigned StorageSize =
2070 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2071 if (Info.IsSigned) {
2072 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2073 unsigned HighBits = StorageSize - Offset - Info.Size;
2074 if (HighBits)
2075 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2076 if (Offset + HighBits)
2077 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2078 } else {
2079 if (Offset)
2080 Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2081 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2082 Val = Builder.CreateAnd(
2083 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2085 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2086 EmitScalarRangeCheck(Val, LV.getType(), Loc);
2087 return RValue::get(Val);
2090 // If this is a reference to a subset of the elements of a vector, create an
2091 // appropriate shufflevector.
2092 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2093 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2094 LV.isVolatileQualified());
2096 const llvm::Constant *Elts = LV.getExtVectorElts();
2098 // If the result of the expression is a non-vector type, we must be extracting
2099 // a single element. Just codegen as an extractelement.
2100 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2101 if (!ExprVT) {
2102 unsigned InIdx = getAccessedFieldNo(0, Elts);
2103 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2104 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2107 // Always use shuffle vector to try to retain the original program structure
2108 unsigned NumResultElts = ExprVT->getNumElements();
2110 SmallVector<int, 4> Mask;
2111 for (unsigned i = 0; i != NumResultElts; ++i)
2112 Mask.push_back(getAccessedFieldNo(i, Elts));
2114 Vec = Builder.CreateShuffleVector(Vec, Mask);
2115 return RValue::get(Vec);
2118 /// Generates lvalue for partial ext_vector access.
2119 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2120 Address VectorAddress = LV.getExtVectorAddress();
2121 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2122 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2124 Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy);
2126 const llvm::Constant *Elts = LV.getExtVectorElts();
2127 unsigned ix = getAccessedFieldNo(0, Elts);
2129 Address VectorBasePtrPlusIx =
2130 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2131 "vector.elt");
2133 return VectorBasePtrPlusIx;
2136 /// Load of global gamed gegisters are always calls to intrinsics.
2137 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2138 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2139 "Bad type for register variable");
2140 llvm::MDNode *RegName = cast<llvm::MDNode>(
2141 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2143 // We accept integer and pointer types only
2144 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2145 llvm::Type *Ty = OrigTy;
2146 if (OrigTy->isPointerTy())
2147 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2148 llvm::Type *Types[] = { Ty };
2150 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2151 llvm::Value *Call = Builder.CreateCall(
2152 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2153 if (OrigTy->isPointerTy())
2154 Call = Builder.CreateIntToPtr(Call, OrigTy);
2155 return RValue::get(Call);
2158 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2159 /// lvalue, where both are guaranteed to the have the same type, and that type
2160 /// is 'Ty'.
2161 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2162 bool isInit) {
2163 if (!Dst.isSimple()) {
2164 if (Dst.isVectorElt()) {
2165 // Read/modify/write the vector, inserting the new element.
2166 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2167 Dst.isVolatileQualified());
2168 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2169 if (IRStoreTy) {
2170 auto *IRVecTy = llvm::FixedVectorType::get(
2171 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2172 Vec = Builder.CreateBitCast(Vec, IRVecTy);
2173 // iN --> <N x i1>.
2175 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2176 Dst.getVectorIdx(), "vecins");
2177 if (IRStoreTy) {
2178 // <N x i1> --> <iN>.
2179 Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2181 Builder.CreateStore(Vec, Dst.getVectorAddress(),
2182 Dst.isVolatileQualified());
2183 return;
2186 // If this is an update of extended vector elements, insert them as
2187 // appropriate.
2188 if (Dst.isExtVectorElt())
2189 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2191 if (Dst.isGlobalReg())
2192 return EmitStoreThroughGlobalRegLValue(Src, Dst);
2194 if (Dst.isMatrixElt()) {
2195 llvm::Value *Idx = Dst.getMatrixIdx();
2196 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2197 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2198 llvm::MatrixBuilder MB(Builder);
2199 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2201 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2202 llvm::Value *Vec =
2203 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2204 Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2205 Dst.isVolatileQualified());
2206 return;
2209 assert(Dst.isBitField() && "Unknown LValue type");
2210 return EmitStoreThroughBitfieldLValue(Src, Dst);
2213 // There's special magic for assigning into an ARC-qualified l-value.
2214 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2215 switch (Lifetime) {
2216 case Qualifiers::OCL_None:
2217 llvm_unreachable("present but none");
2219 case Qualifiers::OCL_ExplicitNone:
2220 // nothing special
2221 break;
2223 case Qualifiers::OCL_Strong:
2224 if (isInit) {
2225 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2226 break;
2228 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2229 return;
2231 case Qualifiers::OCL_Weak:
2232 if (isInit)
2233 // Initialize and then skip the primitive store.
2234 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2235 else
2236 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2237 /*ignore*/ true);
2238 return;
2240 case Qualifiers::OCL_Autoreleasing:
2241 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2242 Src.getScalarVal()));
2243 // fall into the normal path
2244 break;
2248 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2249 // load of a __weak object.
2250 Address LvalueDst = Dst.getAddress(*this);
2251 llvm::Value *src = Src.getScalarVal();
2252 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2253 return;
2256 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2257 // load of a __strong object.
2258 Address LvalueDst = Dst.getAddress(*this);
2259 llvm::Value *src = Src.getScalarVal();
2260 if (Dst.isObjCIvar()) {
2261 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2262 llvm::Type *ResultType = IntPtrTy;
2263 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2264 llvm::Value *RHS = dst.getPointer();
2265 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2266 llvm::Value *LHS =
2267 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2268 "sub.ptr.lhs.cast");
2269 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2270 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2271 BytesBetween);
2272 } else if (Dst.isGlobalObjCRef()) {
2273 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2274 Dst.isThreadLocalRef());
2276 else
2277 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2278 return;
2281 assert(Src.isScalar() && "Can't emit an agg store with this method");
2282 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2285 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2286 llvm::Value **Result) {
2287 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2288 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2289 Address Ptr = Dst.getBitFieldAddress();
2291 // Get the source value, truncated to the width of the bit-field.
2292 llvm::Value *SrcVal = Src.getScalarVal();
2294 // Cast the source to the storage type and shift it into place.
2295 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2296 /*isSigned=*/false);
2297 llvm::Value *MaskedVal = SrcVal;
2299 const bool UseVolatile =
2300 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2301 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2302 const unsigned StorageSize =
2303 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2304 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2305 // See if there are other bits in the bitfield's storage we'll need to load
2306 // and mask together with source before storing.
2307 if (StorageSize != Info.Size) {
2308 assert(StorageSize > Info.Size && "Invalid bitfield size.");
2309 llvm::Value *Val =
2310 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2312 // Mask the source value as needed.
2313 if (!hasBooleanRepresentation(Dst.getType()))
2314 SrcVal = Builder.CreateAnd(
2315 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2316 "bf.value");
2317 MaskedVal = SrcVal;
2318 if (Offset)
2319 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2321 // Mask out the original value.
2322 Val = Builder.CreateAnd(
2323 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2324 "bf.clear");
2326 // Or together the unchanged values and the source value.
2327 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2328 } else {
2329 assert(Offset == 0);
2330 // According to the AACPS:
2331 // When a volatile bit-field is written, and its container does not overlap
2332 // with any non-bit-field member, its container must be read exactly once
2333 // and written exactly once using the access width appropriate to the type
2334 // of the container. The two accesses are not atomic.
2335 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2336 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2337 Builder.CreateLoad(Ptr, true, "bf.load");
2340 // Write the new value back out.
2341 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2343 // Return the new value of the bit-field, if requested.
2344 if (Result) {
2345 llvm::Value *ResultVal = MaskedVal;
2347 // Sign extend the value if needed.
2348 if (Info.IsSigned) {
2349 assert(Info.Size <= StorageSize);
2350 unsigned HighBits = StorageSize - Info.Size;
2351 if (HighBits) {
2352 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2353 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2357 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2358 "bf.result.cast");
2359 *Result = EmitFromMemory(ResultVal, Dst.getType());
2363 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2364 LValue Dst) {
2365 // This access turns into a read/modify/write of the vector. Load the input
2366 // value now.
2367 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2368 Dst.isVolatileQualified());
2369 const llvm::Constant *Elts = Dst.getExtVectorElts();
2371 llvm::Value *SrcVal = Src.getScalarVal();
2373 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2374 unsigned NumSrcElts = VTy->getNumElements();
2375 unsigned NumDstElts =
2376 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2377 if (NumDstElts == NumSrcElts) {
2378 // Use shuffle vector is the src and destination are the same number of
2379 // elements and restore the vector mask since it is on the side it will be
2380 // stored.
2381 SmallVector<int, 4> Mask(NumDstElts);
2382 for (unsigned i = 0; i != NumSrcElts; ++i)
2383 Mask[getAccessedFieldNo(i, Elts)] = i;
2385 Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2386 } else if (NumDstElts > NumSrcElts) {
2387 // Extended the source vector to the same length and then shuffle it
2388 // into the destination.
2389 // FIXME: since we're shuffling with undef, can we just use the indices
2390 // into that? This could be simpler.
2391 SmallVector<int, 4> ExtMask;
2392 for (unsigned i = 0; i != NumSrcElts; ++i)
2393 ExtMask.push_back(i);
2394 ExtMask.resize(NumDstElts, -1);
2395 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2396 // build identity
2397 SmallVector<int, 4> Mask;
2398 for (unsigned i = 0; i != NumDstElts; ++i)
2399 Mask.push_back(i);
2401 // When the vector size is odd and .odd or .hi is used, the last element
2402 // of the Elts constant array will be one past the size of the vector.
2403 // Ignore the last element here, if it is greater than the mask size.
2404 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2405 NumSrcElts--;
2407 // modify when what gets shuffled in
2408 for (unsigned i = 0; i != NumSrcElts; ++i)
2409 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2410 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2411 } else {
2412 // We should never shorten the vector
2413 llvm_unreachable("unexpected shorten vector length");
2415 } else {
2416 // If the Src is a scalar (not a vector) it must be updating one element.
2417 unsigned InIdx = getAccessedFieldNo(0, Elts);
2418 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2419 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2422 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2423 Dst.isVolatileQualified());
2426 /// Store of global named registers are always calls to intrinsics.
2427 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2428 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2429 "Bad type for register variable");
2430 llvm::MDNode *RegName = cast<llvm::MDNode>(
2431 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2432 assert(RegName && "Register LValue is not metadata");
2434 // We accept integer and pointer types only
2435 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2436 llvm::Type *Ty = OrigTy;
2437 if (OrigTy->isPointerTy())
2438 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2439 llvm::Type *Types[] = { Ty };
2441 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2442 llvm::Value *Value = Src.getScalarVal();
2443 if (OrigTy->isPointerTy())
2444 Value = Builder.CreatePtrToInt(Value, Ty);
2445 Builder.CreateCall(
2446 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2449 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2450 // generating write-barries API. It is currently a global, ivar,
2451 // or neither.
2452 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2453 LValue &LV,
2454 bool IsMemberAccess=false) {
2455 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2456 return;
2458 if (isa<ObjCIvarRefExpr>(E)) {
2459 QualType ExpTy = E->getType();
2460 if (IsMemberAccess && ExpTy->isPointerType()) {
2461 // If ivar is a structure pointer, assigning to field of
2462 // this struct follows gcc's behavior and makes it a non-ivar
2463 // writer-barrier conservatively.
2464 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2465 if (ExpTy->isRecordType()) {
2466 LV.setObjCIvar(false);
2467 return;
2470 LV.setObjCIvar(true);
2471 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2472 LV.setBaseIvarExp(Exp->getBase());
2473 LV.setObjCArray(E->getType()->isArrayType());
2474 return;
2477 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2478 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2479 if (VD->hasGlobalStorage()) {
2480 LV.setGlobalObjCRef(true);
2481 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2484 LV.setObjCArray(E->getType()->isArrayType());
2485 return;
2488 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2489 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2490 return;
2493 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2494 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2495 if (LV.isObjCIvar()) {
2496 // If cast is to a structure pointer, follow gcc's behavior and make it
2497 // a non-ivar write-barrier.
2498 QualType ExpTy = E->getType();
2499 if (ExpTy->isPointerType())
2500 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2501 if (ExpTy->isRecordType())
2502 LV.setObjCIvar(false);
2504 return;
2507 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2508 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2509 return;
2512 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2513 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2514 return;
2517 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2518 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2519 return;
2522 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2523 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2524 return;
2527 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2528 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2529 if (LV.isObjCIvar() && !LV.isObjCArray())
2530 // Using array syntax to assigning to what an ivar points to is not
2531 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2532 LV.setObjCIvar(false);
2533 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2534 // Using array syntax to assigning to what global points to is not
2535 // same as assigning to the global itself. {id *G;} G[i] = 0;
2536 LV.setGlobalObjCRef(false);
2537 return;
2540 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2541 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2542 // We don't know if member is an 'ivar', but this flag is looked at
2543 // only in the context of LV.isObjCIvar().
2544 LV.setObjCArray(E->getType()->isArrayType());
2545 return;
2549 static LValue EmitThreadPrivateVarDeclLValue(
2550 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2551 llvm::Type *RealVarTy, SourceLocation Loc) {
2552 if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2553 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2554 CGF, VD, Addr, Loc);
2555 else
2556 Addr =
2557 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2559 Addr = Addr.withElementType(RealVarTy);
2560 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2563 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2564 const VarDecl *VD, QualType T) {
2565 std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2566 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2567 // Return an invalid address if variable is MT_To (or MT_Enter starting with
2568 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2569 // and MT_To (or MT_Enter) with unified memory, return a valid address.
2570 if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2571 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2572 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2573 return Address::invalid();
2574 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2575 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2576 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2577 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2578 "Expected link clause OR to clause with unified memory enabled.");
2579 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2580 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2581 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2584 Address
2585 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2586 LValueBaseInfo *PointeeBaseInfo,
2587 TBAAAccessInfo *PointeeTBAAInfo) {
2588 llvm::LoadInst *Load =
2589 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2590 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2592 QualType PointeeType = RefLVal.getType()->getPointeeType();
2593 CharUnits Align = CGM.getNaturalTypeAlignment(
2594 PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2595 /* forPointeeType= */ true);
2596 return Address(Load, ConvertTypeForMem(PointeeType), Align);
2599 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2600 LValueBaseInfo PointeeBaseInfo;
2601 TBAAAccessInfo PointeeTBAAInfo;
2602 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2603 &PointeeTBAAInfo);
2604 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2605 PointeeBaseInfo, PointeeTBAAInfo);
2608 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2609 const PointerType *PtrTy,
2610 LValueBaseInfo *BaseInfo,
2611 TBAAAccessInfo *TBAAInfo) {
2612 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2613 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2614 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2615 TBAAInfo,
2616 /*forPointeeType=*/true));
2619 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2620 const PointerType *PtrTy) {
2621 LValueBaseInfo BaseInfo;
2622 TBAAAccessInfo TBAAInfo;
2623 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2624 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2627 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2628 const Expr *E, const VarDecl *VD) {
2629 QualType T = E->getType();
2631 // If it's thread_local, emit a call to its wrapper function instead.
2632 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2633 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2634 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2635 // Check if the variable is marked as declare target with link clause in
2636 // device codegen.
2637 if (CGF.getLangOpts().OpenMPIsTargetDevice) {
2638 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2639 if (Addr.isValid())
2640 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2643 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2645 if (VD->getTLSKind() != VarDecl::TLS_None)
2646 V = CGF.Builder.CreateThreadLocalAddress(V);
2648 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2649 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2650 Address Addr(V, RealVarTy, Alignment);
2651 // Emit reference to the private copy of the variable if it is an OpenMP
2652 // threadprivate variable.
2653 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2654 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2655 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2656 E->getExprLoc());
2658 LValue LV = VD->getType()->isReferenceType() ?
2659 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2660 AlignmentSource::Decl) :
2661 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2662 setObjCGCLValueClass(CGF.getContext(), E, LV);
2663 return LV;
2666 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2667 GlobalDecl GD) {
2668 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2669 if (FD->hasAttr<WeakRefAttr>()) {
2670 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2671 return aliasee.getPointer();
2674 llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2675 return V;
2678 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2679 GlobalDecl GD) {
2680 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2681 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2682 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2683 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2684 AlignmentSource::Decl);
2687 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2688 llvm::Value *ThisValue) {
2690 return CGF.EmitLValueForLambdaField(FD, ThisValue);
2693 /// Named Registers are named metadata pointing to the register name
2694 /// which will be read from/written to as an argument to the intrinsic
2695 /// @llvm.read/write_register.
2696 /// So far, only the name is being passed down, but other options such as
2697 /// register type, allocation type or even optimization options could be
2698 /// passed down via the metadata node.
2699 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2700 SmallString<64> Name("llvm.named.register.");
2701 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2702 assert(Asm->getLabel().size() < 64-Name.size() &&
2703 "Register name too big");
2704 Name.append(Asm->getLabel());
2705 llvm::NamedMDNode *M =
2706 CGM.getModule().getOrInsertNamedMetadata(Name);
2707 if (M->getNumOperands() == 0) {
2708 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2709 Asm->getLabel());
2710 llvm::Metadata *Ops[] = {Str};
2711 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2714 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2716 llvm::Value *Ptr =
2717 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2718 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2721 /// Determine whether we can emit a reference to \p VD from the current
2722 /// context, despite not necessarily having seen an odr-use of the variable in
2723 /// this context.
2724 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2725 const DeclRefExpr *E,
2726 const VarDecl *VD) {
2727 // For a variable declared in an enclosing scope, do not emit a spurious
2728 // reference even if we have a capture, as that will emit an unwarranted
2729 // reference to our capture state, and will likely generate worse code than
2730 // emitting a local copy.
2731 if (E->refersToEnclosingVariableOrCapture())
2732 return false;
2734 // For a local declaration declared in this function, we can always reference
2735 // it even if we don't have an odr-use.
2736 if (VD->hasLocalStorage()) {
2737 return VD->getDeclContext() ==
2738 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2741 // For a global declaration, we can emit a reference to it if we know
2742 // for sure that we are able to emit a definition of it.
2743 VD = VD->getDefinition(CGF.getContext());
2744 if (!VD)
2745 return false;
2747 // Don't emit a spurious reference if it might be to a variable that only
2748 // exists on a different device / target.
2749 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2750 // cross-target reference.
2751 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2752 CGF.getLangOpts().OpenCL) {
2753 return false;
2756 // We can emit a spurious reference only if the linkage implies that we'll
2757 // be emitting a non-interposable symbol that will be retained until link
2758 // time.
2759 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) {
2760 case llvm::GlobalValue::ExternalLinkage:
2761 case llvm::GlobalValue::LinkOnceODRLinkage:
2762 case llvm::GlobalValue::WeakODRLinkage:
2763 case llvm::GlobalValue::InternalLinkage:
2764 case llvm::GlobalValue::PrivateLinkage:
2765 return true;
2766 default:
2767 return false;
2771 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2772 const NamedDecl *ND = E->getDecl();
2773 QualType T = E->getType();
2775 assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2776 "should not emit an unevaluated operand");
2778 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2779 // Global Named registers access via intrinsics only
2780 if (VD->getStorageClass() == SC_Register &&
2781 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2782 return EmitGlobalNamedRegister(VD, CGM);
2784 // If this DeclRefExpr does not constitute an odr-use of the variable,
2785 // we're not permitted to emit a reference to it in general, and it might
2786 // not be captured if capture would be necessary for a use. Emit the
2787 // constant value directly instead.
2788 if (E->isNonOdrUse() == NOUR_Constant &&
2789 (VD->getType()->isReferenceType() ||
2790 !canEmitSpuriousReferenceToVariable(*this, E, VD))) {
2791 VD->getAnyInitializer(VD);
2792 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2793 E->getLocation(), *VD->evaluateValue(), VD->getType());
2794 assert(Val && "failed to emit constant expression");
2796 Address Addr = Address::invalid();
2797 if (!VD->getType()->isReferenceType()) {
2798 // Spill the constant value to a global.
2799 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2800 getContext().getDeclAlign(VD));
2801 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2802 auto *PTy = llvm::PointerType::get(
2803 VarTy, getTypes().getTargetAddressSpace(VD->getType()));
2804 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2805 } else {
2806 // Should we be using the alignment of the constant pointer we emitted?
2807 CharUnits Alignment =
2808 CGM.getNaturalTypeAlignment(E->getType(),
2809 /* BaseInfo= */ nullptr,
2810 /* TBAAInfo= */ nullptr,
2811 /* forPointeeType= */ true);
2812 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2814 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2817 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2819 // Check for captured variables.
2820 if (E->refersToEnclosingVariableOrCapture()) {
2821 VD = VD->getCanonicalDecl();
2822 if (auto *FD = LambdaCaptureFields.lookup(VD))
2823 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2824 if (CapturedStmtInfo) {
2825 auto I = LocalDeclMap.find(VD);
2826 if (I != LocalDeclMap.end()) {
2827 LValue CapLVal;
2828 if (VD->getType()->isReferenceType())
2829 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2830 AlignmentSource::Decl);
2831 else
2832 CapLVal = MakeAddrLValue(I->second, T);
2833 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2834 // in simd context.
2835 if (getLangOpts().OpenMP &&
2836 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2837 CapLVal.setNontemporal(/*Value=*/true);
2838 return CapLVal;
2840 LValue CapLVal =
2841 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2842 CapturedStmtInfo->getContextValue());
2843 Address LValueAddress = CapLVal.getAddress(*this);
2844 CapLVal = MakeAddrLValue(
2845 Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2846 getContext().getDeclAlign(VD)),
2847 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2848 CapLVal.getTBAAInfo());
2849 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2850 // in simd context.
2851 if (getLangOpts().OpenMP &&
2852 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2853 CapLVal.setNontemporal(/*Value=*/true);
2854 return CapLVal;
2857 assert(isa<BlockDecl>(CurCodeDecl));
2858 Address addr = GetAddrOfBlockDecl(VD);
2859 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2863 // FIXME: We should be able to assert this for FunctionDecls as well!
2864 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2865 // those with a valid source location.
2866 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2867 !E->getLocation().isValid()) &&
2868 "Should not use decl without marking it used!");
2870 if (ND->hasAttr<WeakRefAttr>()) {
2871 const auto *VD = cast<ValueDecl>(ND);
2872 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2873 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2876 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2877 // Check if this is a global variable.
2878 if (VD->hasLinkage() || VD->isStaticDataMember())
2879 return EmitGlobalVarDeclLValue(*this, E, VD);
2881 Address addr = Address::invalid();
2883 // The variable should generally be present in the local decl map.
2884 auto iter = LocalDeclMap.find(VD);
2885 if (iter != LocalDeclMap.end()) {
2886 addr = iter->second;
2888 // Otherwise, it might be static local we haven't emitted yet for
2889 // some reason; most likely, because it's in an outer function.
2890 } else if (VD->isStaticLocal()) {
2891 llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2892 *VD, CGM.getLLVMLinkageVarDefinition(VD));
2893 addr = Address(
2894 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2896 // No other cases for now.
2897 } else {
2898 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2901 // Handle threadlocal function locals.
2902 if (VD->getTLSKind() != VarDecl::TLS_None)
2903 addr = addr.withPointer(
2904 Builder.CreateThreadLocalAddress(addr.getPointer()), NotKnownNonNull);
2906 // Check for OpenMP threadprivate variables.
2907 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2908 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2909 return EmitThreadPrivateVarDeclLValue(
2910 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2911 E->getExprLoc());
2914 // Drill into block byref variables.
2915 bool isBlockByref = VD->isEscapingByref();
2916 if (isBlockByref) {
2917 addr = emitBlockByrefAddress(addr, VD);
2920 // Drill into reference types.
2921 LValue LV = VD->getType()->isReferenceType() ?
2922 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2923 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2925 bool isLocalStorage = VD->hasLocalStorage();
2927 bool NonGCable = isLocalStorage &&
2928 !VD->getType()->isReferenceType() &&
2929 !isBlockByref;
2930 if (NonGCable) {
2931 LV.getQuals().removeObjCGCAttr();
2932 LV.setNonGC(true);
2935 bool isImpreciseLifetime =
2936 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2937 if (isImpreciseLifetime)
2938 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2939 setObjCGCLValueClass(getContext(), E, LV);
2940 return LV;
2943 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2944 LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2946 // Emit debuginfo for the function declaration if the target wants to.
2947 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2948 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2949 auto *Fn =
2950 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2951 if (!Fn->getSubprogram())
2952 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2956 return LV;
2959 // FIXME: While we're emitting a binding from an enclosing scope, all other
2960 // DeclRefExprs we see should be implicitly treated as if they also refer to
2961 // an enclosing scope.
2962 if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
2963 if (E->refersToEnclosingVariableOrCapture()) {
2964 auto *FD = LambdaCaptureFields.lookup(BD);
2965 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2967 return EmitLValue(BD->getBinding());
2970 // We can form DeclRefExprs naming GUID declarations when reconstituting
2971 // non-type template parameters into expressions.
2972 if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2973 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2974 AlignmentSource::Decl);
2976 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2977 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2978 AlignmentSource::Decl);
2980 llvm_unreachable("Unhandled DeclRefExpr");
2983 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2984 // __extension__ doesn't affect lvalue-ness.
2985 if (E->getOpcode() == UO_Extension)
2986 return EmitLValue(E->getSubExpr());
2988 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2989 switch (E->getOpcode()) {
2990 default: llvm_unreachable("Unknown unary operator lvalue!");
2991 case UO_Deref: {
2992 QualType T = E->getSubExpr()->getType()->getPointeeType();
2993 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2995 LValueBaseInfo BaseInfo;
2996 TBAAAccessInfo TBAAInfo;
2997 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2998 &TBAAInfo);
2999 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
3000 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
3002 // We should not generate __weak write barrier on indirect reference
3003 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
3004 // But, we continue to generate __strong write barrier on indirect write
3005 // into a pointer to object.
3006 if (getLangOpts().ObjC &&
3007 getLangOpts().getGC() != LangOptions::NonGC &&
3008 LV.isObjCWeak())
3009 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3010 return LV;
3012 case UO_Real:
3013 case UO_Imag: {
3014 LValue LV = EmitLValue(E->getSubExpr());
3015 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
3017 // __real is valid on scalars. This is a faster way of testing that.
3018 // __imag can only produce an rvalue on scalars.
3019 if (E->getOpcode() == UO_Real &&
3020 !LV.getAddress(*this).getElementType()->isStructTy()) {
3021 assert(E->getSubExpr()->getType()->isArithmeticType());
3022 return LV;
3025 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3027 Address Component =
3028 (E->getOpcode() == UO_Real
3029 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
3030 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
3031 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3032 CGM.getTBAAInfoForSubobject(LV, T));
3033 ElemLV.getQuals().addQualifiers(LV.getQuals());
3034 return ElemLV;
3036 case UO_PreInc:
3037 case UO_PreDec: {
3038 LValue LV = EmitLValue(E->getSubExpr());
3039 bool isInc = E->getOpcode() == UO_PreInc;
3041 if (E->getType()->isAnyComplexType())
3042 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3043 else
3044 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3045 return LV;
3050 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3051 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3052 E->getType(), AlignmentSource::Decl);
3055 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3056 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3057 E->getType(), AlignmentSource::Decl);
3060 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3061 auto SL = E->getFunctionName();
3062 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3063 StringRef FnName = CurFn->getName();
3064 if (FnName.startswith("\01"))
3065 FnName = FnName.substr(1);
3066 StringRef NameItems[] = {
3067 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3068 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3069 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3070 std::string Name = std::string(SL->getString());
3071 if (!Name.empty()) {
3072 unsigned Discriminator =
3073 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3074 if (Discriminator)
3075 Name += "_" + Twine(Discriminator + 1).str();
3076 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3077 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3078 } else {
3079 auto C =
3080 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3081 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3084 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3085 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3088 /// Emit a type description suitable for use by a runtime sanitizer library. The
3089 /// format of a type descriptor is
3091 /// \code
3092 /// { i16 TypeKind, i16 TypeInfo }
3093 /// \endcode
3095 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3096 /// integer, 1 for a floating point value, and -1 for anything else.
3097 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3098 // Only emit each type's descriptor once.
3099 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3100 return C;
3102 uint16_t TypeKind = -1;
3103 uint16_t TypeInfo = 0;
3105 if (T->isIntegerType()) {
3106 TypeKind = 0;
3107 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3108 (T->isSignedIntegerType() ? 1 : 0);
3109 } else if (T->isFloatingType()) {
3110 TypeKind = 1;
3111 TypeInfo = getContext().getTypeSize(T);
3114 // Format the type name as if for a diagnostic, including quotes and
3115 // optionally an 'aka'.
3116 SmallString<32> Buffer;
3117 CGM.getDiags().ConvertArgToString(
3118 DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(),
3119 StringRef(), std::nullopt, Buffer, std::nullopt);
3121 llvm::Constant *Components[] = {
3122 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3123 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3125 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3127 auto *GV = new llvm::GlobalVariable(
3128 CGM.getModule(), Descriptor->getType(),
3129 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3130 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3131 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3133 // Remember the descriptor for this type.
3134 CGM.setTypeDescriptorInMap(T, GV);
3136 return GV;
3139 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3140 llvm::Type *TargetTy = IntPtrTy;
3142 if (V->getType() == TargetTy)
3143 return V;
3145 // Floating-point types which fit into intptr_t are bitcast to integers
3146 // and then passed directly (after zero-extension, if necessary).
3147 if (V->getType()->isFloatingPointTy()) {
3148 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
3149 if (Bits <= TargetTy->getIntegerBitWidth())
3150 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3151 Bits));
3154 // Integers which fit in intptr_t are zero-extended and passed directly.
3155 if (V->getType()->isIntegerTy() &&
3156 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3157 return Builder.CreateZExt(V, TargetTy);
3159 // Pointers are passed directly, everything else is passed by address.
3160 if (!V->getType()->isPointerTy()) {
3161 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3162 Builder.CreateStore(V, Ptr);
3163 V = Ptr.getPointer();
3165 return Builder.CreatePtrToInt(V, TargetTy);
3168 /// Emit a representation of a SourceLocation for passing to a handler
3169 /// in a sanitizer runtime library. The format for this data is:
3170 /// \code
3171 /// struct SourceLocation {
3172 /// const char *Filename;
3173 /// int32_t Line, Column;
3174 /// };
3175 /// \endcode
3176 /// For an invalid SourceLocation, the Filename pointer is null.
3177 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3178 llvm::Constant *Filename;
3179 int Line, Column;
3181 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3182 if (PLoc.isValid()) {
3183 StringRef FilenameString = PLoc.getFilename();
3185 int PathComponentsToStrip =
3186 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3187 if (PathComponentsToStrip < 0) {
3188 assert(PathComponentsToStrip != INT_MIN);
3189 int PathComponentsToKeep = -PathComponentsToStrip;
3190 auto I = llvm::sys::path::rbegin(FilenameString);
3191 auto E = llvm::sys::path::rend(FilenameString);
3192 while (I != E && --PathComponentsToKeep)
3193 ++I;
3195 FilenameString = FilenameString.substr(I - E);
3196 } else if (PathComponentsToStrip > 0) {
3197 auto I = llvm::sys::path::begin(FilenameString);
3198 auto E = llvm::sys::path::end(FilenameString);
3199 while (I != E && PathComponentsToStrip--)
3200 ++I;
3202 if (I != E)
3203 FilenameString =
3204 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3205 else
3206 FilenameString = llvm::sys::path::filename(FilenameString);
3209 auto FilenameGV =
3210 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3211 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3212 cast<llvm::GlobalVariable>(
3213 FilenameGV.getPointer()->stripPointerCasts()));
3214 Filename = FilenameGV.getPointer();
3215 Line = PLoc.getLine();
3216 Column = PLoc.getColumn();
3217 } else {
3218 Filename = llvm::Constant::getNullValue(Int8PtrTy);
3219 Line = Column = 0;
3222 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3223 Builder.getInt32(Column)};
3225 return llvm::ConstantStruct::getAnon(Data);
3228 namespace {
3229 /// Specify under what conditions this check can be recovered
3230 enum class CheckRecoverableKind {
3231 /// Always terminate program execution if this check fails.
3232 Unrecoverable,
3233 /// Check supports recovering, runtime has both fatal (noreturn) and
3234 /// non-fatal handlers for this check.
3235 Recoverable,
3236 /// Runtime conditionally aborts, always need to support recovery.
3237 AlwaysRecoverable
3241 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3242 assert(Kind.countPopulation() == 1);
3243 if (Kind == SanitizerKind::Vptr)
3244 return CheckRecoverableKind::AlwaysRecoverable;
3245 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3246 return CheckRecoverableKind::Unrecoverable;
3247 else
3248 return CheckRecoverableKind::Recoverable;
3251 namespace {
3252 struct SanitizerHandlerInfo {
3253 char const *const Name;
3254 unsigned Version;
3258 const SanitizerHandlerInfo SanitizerHandlers[] = {
3259 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3260 LIST_SANITIZER_CHECKS
3261 #undef SANITIZER_CHECK
3264 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3265 llvm::FunctionType *FnType,
3266 ArrayRef<llvm::Value *> FnArgs,
3267 SanitizerHandler CheckHandler,
3268 CheckRecoverableKind RecoverKind, bool IsFatal,
3269 llvm::BasicBlock *ContBB) {
3270 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3271 std::optional<ApplyDebugLocation> DL;
3272 if (!CGF.Builder.getCurrentDebugLocation()) {
3273 // Ensure that the call has at least an artificial debug location.
3274 DL.emplace(CGF, SourceLocation());
3276 bool NeedsAbortSuffix =
3277 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3278 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3279 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3280 const StringRef CheckName = CheckInfo.Name;
3281 std::string FnName = "__ubsan_handle_" + CheckName.str();
3282 if (CheckInfo.Version && !MinimalRuntime)
3283 FnName += "_v" + llvm::utostr(CheckInfo.Version);
3284 if (MinimalRuntime)
3285 FnName += "_minimal";
3286 if (NeedsAbortSuffix)
3287 FnName += "_abort";
3288 bool MayReturn =
3289 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3291 llvm::AttrBuilder B(CGF.getLLVMContext());
3292 if (!MayReturn) {
3293 B.addAttribute(llvm::Attribute::NoReturn)
3294 .addAttribute(llvm::Attribute::NoUnwind);
3296 B.addUWTableAttr(llvm::UWTableKind::Default);
3298 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3299 FnType, FnName,
3300 llvm::AttributeList::get(CGF.getLLVMContext(),
3301 llvm::AttributeList::FunctionIndex, B),
3302 /*Local=*/true);
3303 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3304 if (!MayReturn) {
3305 HandlerCall->setDoesNotReturn();
3306 CGF.Builder.CreateUnreachable();
3307 } else {
3308 CGF.Builder.CreateBr(ContBB);
3312 void CodeGenFunction::EmitCheck(
3313 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3314 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3315 ArrayRef<llvm::Value *> DynamicArgs) {
3316 assert(IsSanitizerScope);
3317 assert(Checked.size() > 0);
3318 assert(CheckHandler >= 0 &&
3319 size_t(CheckHandler) < std::size(SanitizerHandlers));
3320 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3322 llvm::Value *FatalCond = nullptr;
3323 llvm::Value *RecoverableCond = nullptr;
3324 llvm::Value *TrapCond = nullptr;
3325 for (int i = 0, n = Checked.size(); i < n; ++i) {
3326 llvm::Value *Check = Checked[i].first;
3327 // -fsanitize-trap= overrides -fsanitize-recover=.
3328 llvm::Value *&Cond =
3329 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3330 ? TrapCond
3331 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3332 ? RecoverableCond
3333 : FatalCond;
3334 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3337 if (TrapCond)
3338 EmitTrapCheck(TrapCond, CheckHandler);
3339 if (!FatalCond && !RecoverableCond)
3340 return;
3342 llvm::Value *JointCond;
3343 if (FatalCond && RecoverableCond)
3344 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3345 else
3346 JointCond = FatalCond ? FatalCond : RecoverableCond;
3347 assert(JointCond);
3349 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3350 assert(SanOpts.has(Checked[0].second));
3351 #ifndef NDEBUG
3352 for (int i = 1, n = Checked.size(); i < n; ++i) {
3353 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3354 "All recoverable kinds in a single check must be same!");
3355 assert(SanOpts.has(Checked[i].second));
3357 #endif
3359 llvm::BasicBlock *Cont = createBasicBlock("cont");
3360 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3361 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3362 // Give hint that we very much don't expect to execute the handler
3363 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3364 llvm::MDBuilder MDHelper(getLLVMContext());
3365 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3366 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3367 EmitBlock(Handlers);
3369 // Handler functions take an i8* pointing to the (handler-specific) static
3370 // information block, followed by a sequence of intptr_t arguments
3371 // representing operand values.
3372 SmallVector<llvm::Value *, 4> Args;
3373 SmallVector<llvm::Type *, 4> ArgTypes;
3374 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3375 Args.reserve(DynamicArgs.size() + 1);
3376 ArgTypes.reserve(DynamicArgs.size() + 1);
3378 // Emit handler arguments and create handler function type.
3379 if (!StaticArgs.empty()) {
3380 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3381 auto *InfoPtr = new llvm::GlobalVariable(
3382 CGM.getModule(), Info->getType(), false,
3383 llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
3384 llvm::GlobalVariable::NotThreadLocal,
3385 CGM.getDataLayout().getDefaultGlobalsAddressSpace());
3386 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3387 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3388 Args.push_back(InfoPtr);
3389 ArgTypes.push_back(Args.back()->getType());
3392 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3393 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3394 ArgTypes.push_back(IntPtrTy);
3398 llvm::FunctionType *FnType =
3399 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3401 if (!FatalCond || !RecoverableCond) {
3402 // Simple case: we need to generate a single handler call, either
3403 // fatal, or non-fatal.
3404 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3405 (FatalCond != nullptr), Cont);
3406 } else {
3407 // Emit two handler calls: first one for set of unrecoverable checks,
3408 // another one for recoverable.
3409 llvm::BasicBlock *NonFatalHandlerBB =
3410 createBasicBlock("non_fatal." + CheckName);
3411 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3412 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3413 EmitBlock(FatalHandlerBB);
3414 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3415 NonFatalHandlerBB);
3416 EmitBlock(NonFatalHandlerBB);
3417 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3418 Cont);
3421 EmitBlock(Cont);
3424 void CodeGenFunction::EmitCfiSlowPathCheck(
3425 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3426 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3427 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3429 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3430 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3432 llvm::MDBuilder MDHelper(getLLVMContext());
3433 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3434 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3436 EmitBlock(CheckBB);
3438 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3440 llvm::CallInst *CheckCall;
3441 llvm::FunctionCallee SlowPathFn;
3442 if (WithDiag) {
3443 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3444 auto *InfoPtr =
3445 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3446 llvm::GlobalVariable::PrivateLinkage, Info);
3447 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3448 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3450 SlowPathFn = CGM.getModule().getOrInsertFunction(
3451 "__cfi_slowpath_diag",
3452 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3453 false));
3454 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr});
3455 } else {
3456 SlowPathFn = CGM.getModule().getOrInsertFunction(
3457 "__cfi_slowpath",
3458 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3459 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3462 CGM.setDSOLocal(
3463 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3464 CheckCall->setDoesNotThrow();
3466 EmitBlock(Cont);
3469 // Emit a stub for __cfi_check function so that the linker knows about this
3470 // symbol in LTO mode.
3471 void CodeGenFunction::EmitCfiCheckStub() {
3472 llvm::Module *M = &CGM.getModule();
3473 auto &Ctx = M->getContext();
3474 llvm::Function *F = llvm::Function::Create(
3475 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3476 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3477 F->setAlignment(llvm::Align(4096));
3478 CGM.setDSOLocal(F);
3479 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3480 // CrossDSOCFI pass is not executed if there is no executable code.
3481 SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)};
3482 llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB);
3483 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3486 // This function is basically a switch over the CFI failure kind, which is
3487 // extracted from CFICheckFailData (1st function argument). Each case is either
3488 // llvm.trap or a call to one of the two runtime handlers, based on
3489 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3490 // failure kind) traps, but this should really never happen. CFICheckFailData
3491 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3492 // check kind; in this case __cfi_check_fail traps as well.
3493 void CodeGenFunction::EmitCfiCheckFail() {
3494 SanitizerScope SanScope(this);
3495 FunctionArgList Args;
3496 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3497 ImplicitParamDecl::Other);
3498 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3499 ImplicitParamDecl::Other);
3500 Args.push_back(&ArgData);
3501 Args.push_back(&ArgAddr);
3503 const CGFunctionInfo &FI =
3504 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3506 llvm::Function *F = llvm::Function::Create(
3507 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3508 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3510 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3511 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3512 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3514 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3515 SourceLocation());
3517 // This function is not affected by NoSanitizeList. This function does
3518 // not have a source location, but "src:*" would still apply. Revert any
3519 // changes to SanOpts made in StartFunction.
3520 SanOpts = CGM.getLangOpts().Sanitize;
3522 llvm::Value *Data =
3523 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3524 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3525 llvm::Value *Addr =
3526 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3527 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3529 // Data == nullptr means the calling module has trap behaviour for this check.
3530 llvm::Value *DataIsNotNullPtr =
3531 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3532 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3534 llvm::StructType *SourceLocationTy =
3535 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3536 llvm::StructType *CfiCheckFailDataTy =
3537 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3539 llvm::Value *V = Builder.CreateConstGEP2_32(
3540 CfiCheckFailDataTy,
3541 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3544 Address CheckKindAddr(V, Int8Ty, getIntAlign());
3545 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3547 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3548 CGM.getLLVMContext(),
3549 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3550 llvm::Value *ValidVtable = Builder.CreateZExt(
3551 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3552 {Addr, AllVtables}),
3553 IntPtrTy);
3555 const std::pair<int, SanitizerMask> CheckKinds[] = {
3556 {CFITCK_VCall, SanitizerKind::CFIVCall},
3557 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3558 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3559 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3560 {CFITCK_ICall, SanitizerKind::CFIICall}};
3562 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3563 for (auto CheckKindMaskPair : CheckKinds) {
3564 int Kind = CheckKindMaskPair.first;
3565 SanitizerMask Mask = CheckKindMaskPair.second;
3566 llvm::Value *Cond =
3567 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3568 if (CGM.getLangOpts().Sanitize.has(Mask))
3569 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3570 {Data, Addr, ValidVtable});
3571 else
3572 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3575 FinishFunction();
3576 // The only reference to this function will be created during LTO link.
3577 // Make sure it survives until then.
3578 CGM.addUsedGlobal(F);
3581 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3582 if (SanOpts.has(SanitizerKind::Unreachable)) {
3583 SanitizerScope SanScope(this);
3584 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3585 SanitizerKind::Unreachable),
3586 SanitizerHandler::BuiltinUnreachable,
3587 EmitCheckSourceLocation(Loc), std::nullopt);
3589 Builder.CreateUnreachable();
3592 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3593 SanitizerHandler CheckHandlerID) {
3594 llvm::BasicBlock *Cont = createBasicBlock("cont");
3596 // If we're optimizing, collapse all calls to trap down to just one per
3597 // check-type per function to save on code size.
3598 if (TrapBBs.size() <= CheckHandlerID)
3599 TrapBBs.resize(CheckHandlerID + 1);
3601 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3603 if (!ClSanitizeDebugDeoptimization &&
3604 CGM.getCodeGenOpts().OptimizationLevel && TrapBB &&
3605 (!CurCodeDecl || !CurCodeDecl->hasAttr<OptimizeNoneAttr>())) {
3606 auto Call = TrapBB->begin();
3607 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3609 Call->applyMergedLocation(Call->getDebugLoc(),
3610 Builder.getCurrentDebugLocation());
3611 Builder.CreateCondBr(Checked, Cont, TrapBB);
3612 } else {
3613 TrapBB = createBasicBlock("trap");
3614 Builder.CreateCondBr(Checked, Cont, TrapBB);
3615 EmitBlock(TrapBB);
3617 llvm::CallInst *TrapCall = Builder.CreateCall(
3618 CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3619 llvm::ConstantInt::get(CGM.Int8Ty, ClSanitizeDebugDeoptimization
3620 ? TrapBB->getParent()->size()
3621 : CheckHandlerID));
3623 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3624 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3625 CGM.getCodeGenOpts().TrapFuncName);
3626 TrapCall->addFnAttr(A);
3628 TrapCall->setDoesNotReturn();
3629 TrapCall->setDoesNotThrow();
3630 Builder.CreateUnreachable();
3633 EmitBlock(Cont);
3636 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3637 llvm::CallInst *TrapCall =
3638 Builder.CreateCall(CGM.getIntrinsic(IntrID));
3640 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3641 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3642 CGM.getCodeGenOpts().TrapFuncName);
3643 TrapCall->addFnAttr(A);
3646 return TrapCall;
3649 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3650 LValueBaseInfo *BaseInfo,
3651 TBAAAccessInfo *TBAAInfo) {
3652 assert(E->getType()->isArrayType() &&
3653 "Array to pointer decay must have array source type!");
3655 // Expressions of array type can't be bitfields or vector elements.
3656 LValue LV = EmitLValue(E);
3657 Address Addr = LV.getAddress(*this);
3659 // If the array type was an incomplete type, we need to make sure
3660 // the decay ends up being the right type.
3661 llvm::Type *NewTy = ConvertType(E->getType());
3662 Addr = Addr.withElementType(NewTy);
3664 // Note that VLA pointers are always decayed, so we don't need to do
3665 // anything here.
3666 if (!E->getType()->isVariableArrayType()) {
3667 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3668 "Expected pointer to array");
3669 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3672 // The result of this decay conversion points to an array element within the
3673 // base lvalue. However, since TBAA currently does not support representing
3674 // accesses to elements of member arrays, we conservatively represent accesses
3675 // to the pointee object as if it had no any base lvalue specified.
3676 // TODO: Support TBAA for member arrays.
3677 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3678 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3679 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3681 return Addr.withElementType(ConvertTypeForMem(EltType));
3684 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3685 /// array to pointer, return the array subexpression.
3686 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3687 // If this isn't just an array->pointer decay, bail out.
3688 const auto *CE = dyn_cast<CastExpr>(E);
3689 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3690 return nullptr;
3692 // If this is a decay from variable width array, bail out.
3693 const Expr *SubExpr = CE->getSubExpr();
3694 if (SubExpr->getType()->isVariableArrayType())
3695 return nullptr;
3697 return SubExpr;
3700 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3701 llvm::Type *elemType,
3702 llvm::Value *ptr,
3703 ArrayRef<llvm::Value*> indices,
3704 bool inbounds,
3705 bool signedIndices,
3706 SourceLocation loc,
3707 const llvm::Twine &name = "arrayidx") {
3708 if (inbounds) {
3709 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3710 CodeGenFunction::NotSubtraction, loc,
3711 name);
3712 } else {
3713 return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3717 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3718 llvm::Value *idx,
3719 CharUnits eltSize) {
3720 // If we have a constant index, we can use the exact offset of the
3721 // element we're accessing.
3722 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3723 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3724 return arrayAlign.alignmentAtOffset(offset);
3726 // Otherwise, use the worst-case alignment for any element.
3727 } else {
3728 return arrayAlign.alignmentOfArrayElement(eltSize);
3732 static QualType getFixedSizeElementType(const ASTContext &ctx,
3733 const VariableArrayType *vla) {
3734 QualType eltType;
3735 do {
3736 eltType = vla->getElementType();
3737 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3738 return eltType;
3741 /// Given an array base, check whether its member access belongs to a record
3742 /// with preserve_access_index attribute or not.
3743 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3744 if (!ArrayBase || !CGF.getDebugInfo())
3745 return false;
3747 // Only support base as either a MemberExpr or DeclRefExpr.
3748 // DeclRefExpr to cover cases like:
3749 // struct s { int a; int b[10]; };
3750 // struct s *p;
3751 // p[1].a
3752 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3753 // p->b[5] is a MemberExpr example.
3754 const Expr *E = ArrayBase->IgnoreImpCasts();
3755 if (const auto *ME = dyn_cast<MemberExpr>(E))
3756 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3758 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3759 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3760 if (!VarDef)
3761 return false;
3763 const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3764 if (!PtrT)
3765 return false;
3767 const auto *PointeeT = PtrT->getPointeeType()
3768 ->getUnqualifiedDesugaredType();
3769 if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3770 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3771 return false;
3774 return false;
3777 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3778 ArrayRef<llvm::Value *> indices,
3779 QualType eltType, bool inbounds,
3780 bool signedIndices, SourceLocation loc,
3781 QualType *arrayType = nullptr,
3782 const Expr *Base = nullptr,
3783 const llvm::Twine &name = "arrayidx") {
3784 // All the indices except that last must be zero.
3785 #ifndef NDEBUG
3786 for (auto *idx : indices.drop_back())
3787 assert(isa<llvm::ConstantInt>(idx) &&
3788 cast<llvm::ConstantInt>(idx)->isZero());
3789 #endif
3791 // Determine the element size of the statically-sized base. This is
3792 // the thing that the indices are expressed in terms of.
3793 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3794 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3797 // We can use that to compute the best alignment of the element.
3798 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3799 CharUnits eltAlign =
3800 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3802 llvm::Value *eltPtr;
3803 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3804 if (!LastIndex ||
3805 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3806 eltPtr = emitArraySubscriptGEP(
3807 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3808 signedIndices, loc, name);
3809 } else {
3810 // Remember the original array subscript for bpf target
3811 unsigned idx = LastIndex->getZExtValue();
3812 llvm::DIType *DbgInfo = nullptr;
3813 if (arrayType)
3814 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3815 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3816 addr.getPointer(),
3817 indices.size() - 1,
3818 idx, DbgInfo);
3821 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3824 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3825 bool Accessed) {
3826 // The index must always be an integer, which is not an aggregate. Emit it
3827 // in lexical order (this complexity is, sadly, required by C++17).
3828 llvm::Value *IdxPre =
3829 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3830 bool SignedIndices = false;
3831 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3832 auto *Idx = IdxPre;
3833 if (E->getLHS() != E->getIdx()) {
3834 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3835 Idx = EmitScalarExpr(E->getIdx());
3838 QualType IdxTy = E->getIdx()->getType();
3839 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3840 SignedIndices |= IdxSigned;
3842 if (SanOpts.has(SanitizerKind::ArrayBounds))
3843 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3845 // Extend or truncate the index type to 32 or 64-bits.
3846 if (Promote && Idx->getType() != IntPtrTy)
3847 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3849 return Idx;
3851 IdxPre = nullptr;
3853 // If the base is a vector type, then we are forming a vector element lvalue
3854 // with this subscript.
3855 if (E->getBase()->getType()->isVectorType() &&
3856 !isa<ExtVectorElementExpr>(E->getBase())) {
3857 // Emit the vector as an lvalue to get its address.
3858 LValue LHS = EmitLValue(E->getBase());
3859 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3860 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3861 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3862 E->getBase()->getType(), LHS.getBaseInfo(),
3863 TBAAAccessInfo());
3866 // All the other cases basically behave like simple offsetting.
3868 // Handle the extvector case we ignored above.
3869 if (isa<ExtVectorElementExpr>(E->getBase())) {
3870 LValue LV = EmitLValue(E->getBase());
3871 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3872 Address Addr = EmitExtVectorElementLValue(LV);
3874 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3875 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3876 SignedIndices, E->getExprLoc());
3877 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3878 CGM.getTBAAInfoForSubobject(LV, EltType));
3881 LValueBaseInfo EltBaseInfo;
3882 TBAAAccessInfo EltTBAAInfo;
3883 Address Addr = Address::invalid();
3884 if (const VariableArrayType *vla =
3885 getContext().getAsVariableArrayType(E->getType())) {
3886 // The base must be a pointer, which is not an aggregate. Emit
3887 // it. It needs to be emitted first in case it's what captures
3888 // the VLA bounds.
3889 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3890 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3892 // The element count here is the total number of non-VLA elements.
3893 llvm::Value *numElements = getVLASize(vla).NumElts;
3895 // Effectively, the multiply by the VLA size is part of the GEP.
3896 // GEP indexes are signed, and scaling an index isn't permitted to
3897 // signed-overflow, so we use the same semantics for our explicit
3898 // multiply. We suppress this if overflow is not undefined behavior.
3899 if (getLangOpts().isSignedOverflowDefined()) {
3900 Idx = Builder.CreateMul(Idx, numElements);
3901 } else {
3902 Idx = Builder.CreateNSWMul(Idx, numElements);
3905 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3906 !getLangOpts().isSignedOverflowDefined(),
3907 SignedIndices, E->getExprLoc());
3909 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3910 // Indexing over an interface, as in "NSString *P; P[4];"
3912 // Emit the base pointer.
3913 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3914 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3916 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3917 llvm::Value *InterfaceSizeVal =
3918 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3920 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3922 // We don't necessarily build correct LLVM struct types for ObjC
3923 // interfaces, so we can't rely on GEP to do this scaling
3924 // correctly, so we need to cast to i8*. FIXME: is this actually
3925 // true? A lot of other things in the fragile ABI would break...
3926 llvm::Type *OrigBaseElemTy = Addr.getElementType();
3928 // Do the GEP.
3929 CharUnits EltAlign =
3930 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3931 llvm::Value *EltPtr =
3932 emitArraySubscriptGEP(*this, Int8Ty, Addr.getPointer(), ScaledIdx,
3933 false, SignedIndices, E->getExprLoc());
3934 Addr = Address(EltPtr, OrigBaseElemTy, EltAlign);
3935 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3936 // If this is A[i] where A is an array, the frontend will have decayed the
3937 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3938 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3939 // "gep x, i" here. Emit one "gep A, 0, i".
3940 assert(Array->getType()->isArrayType() &&
3941 "Array to pointer decay must have array source type!");
3942 LValue ArrayLV;
3943 // For simple multidimensional array indexing, set the 'accessed' flag for
3944 // better bounds-checking of the base expression.
3945 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3946 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3947 else
3948 ArrayLV = EmitLValue(Array);
3949 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3951 // Propagate the alignment from the array itself to the result.
3952 QualType arrayType = Array->getType();
3953 Addr = emitArraySubscriptGEP(
3954 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3955 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3956 E->getExprLoc(), &arrayType, E->getBase());
3957 EltBaseInfo = ArrayLV.getBaseInfo();
3958 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3959 } else {
3960 // The base must be a pointer; emit it with an estimate of its alignment.
3961 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3962 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3963 QualType ptrType = E->getBase()->getType();
3964 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3965 !getLangOpts().isSignedOverflowDefined(),
3966 SignedIndices, E->getExprLoc(), &ptrType,
3967 E->getBase());
3970 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3972 if (getLangOpts().ObjC &&
3973 getLangOpts().getGC() != LangOptions::NonGC) {
3974 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3975 setObjCGCLValueClass(getContext(), E, LV);
3977 return LV;
3980 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3981 assert(
3982 !E->isIncomplete() &&
3983 "incomplete matrix subscript expressions should be rejected during Sema");
3984 LValue Base = EmitLValue(E->getBase());
3985 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3986 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3987 llvm::Value *NumRows = Builder.getIntN(
3988 RowIdx->getType()->getScalarSizeInBits(),
3989 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3990 llvm::Value *FinalIdx =
3991 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3992 return LValue::MakeMatrixElt(
3993 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3994 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3997 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3998 LValueBaseInfo &BaseInfo,
3999 TBAAAccessInfo &TBAAInfo,
4000 QualType BaseTy, QualType ElTy,
4001 bool IsLowerBound) {
4002 LValue BaseLVal;
4003 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
4004 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
4005 if (BaseTy->isArrayType()) {
4006 Address Addr = BaseLVal.getAddress(CGF);
4007 BaseInfo = BaseLVal.getBaseInfo();
4009 // If the array type was an incomplete type, we need to make sure
4010 // the decay ends up being the right type.
4011 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
4012 Addr = Addr.withElementType(NewTy);
4014 // Note that VLA pointers are always decayed, so we don't need to do
4015 // anything here.
4016 if (!BaseTy->isVariableArrayType()) {
4017 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
4018 "Expected pointer to array");
4019 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
4022 return Addr.withElementType(CGF.ConvertTypeForMem(ElTy));
4024 LValueBaseInfo TypeBaseInfo;
4025 TBAAAccessInfo TypeTBAAInfo;
4026 CharUnits Align =
4027 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4028 BaseInfo.mergeForCast(TypeBaseInfo);
4029 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4030 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
4031 CGF.ConvertTypeForMem(ElTy), Align);
4033 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4036 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4037 bool IsLowerBound) {
4038 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4039 QualType ResultExprTy;
4040 if (auto *AT = getContext().getAsArrayType(BaseTy))
4041 ResultExprTy = AT->getElementType();
4042 else
4043 ResultExprTy = BaseTy->getPointeeType();
4044 llvm::Value *Idx = nullptr;
4045 if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4046 // Requesting lower bound or upper bound, but without provided length and
4047 // without ':' symbol for the default length -> length = 1.
4048 // Idx = LowerBound ?: 0;
4049 if (auto *LowerBound = E->getLowerBound()) {
4050 Idx = Builder.CreateIntCast(
4051 EmitScalarExpr(LowerBound), IntPtrTy,
4052 LowerBound->getType()->hasSignedIntegerRepresentation());
4053 } else
4054 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4055 } else {
4056 // Try to emit length or lower bound as constant. If this is possible, 1
4057 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4058 // IR (LB + Len) - 1.
4059 auto &C = CGM.getContext();
4060 auto *Length = E->getLength();
4061 llvm::APSInt ConstLength;
4062 if (Length) {
4063 // Idx = LowerBound + Length - 1;
4064 if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4065 ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4066 Length = nullptr;
4068 auto *LowerBound = E->getLowerBound();
4069 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4070 if (LowerBound) {
4071 if (std::optional<llvm::APSInt> LB =
4072 LowerBound->getIntegerConstantExpr(C)) {
4073 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4074 LowerBound = nullptr;
4077 if (!Length)
4078 --ConstLength;
4079 else if (!LowerBound)
4080 --ConstLowerBound;
4082 if (Length || LowerBound) {
4083 auto *LowerBoundVal =
4084 LowerBound
4085 ? Builder.CreateIntCast(
4086 EmitScalarExpr(LowerBound), IntPtrTy,
4087 LowerBound->getType()->hasSignedIntegerRepresentation())
4088 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4089 auto *LengthVal =
4090 Length
4091 ? Builder.CreateIntCast(
4092 EmitScalarExpr(Length), IntPtrTy,
4093 Length->getType()->hasSignedIntegerRepresentation())
4094 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4095 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4096 /*HasNUW=*/false,
4097 !getLangOpts().isSignedOverflowDefined());
4098 if (Length && LowerBound) {
4099 Idx = Builder.CreateSub(
4100 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4101 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4103 } else
4104 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4105 } else {
4106 // Idx = ArraySize - 1;
4107 QualType ArrayTy = BaseTy->isPointerType()
4108 ? E->getBase()->IgnoreParenImpCasts()->getType()
4109 : BaseTy;
4110 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4111 Length = VAT->getSizeExpr();
4112 if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4113 ConstLength = *L;
4114 Length = nullptr;
4116 } else {
4117 auto *CAT = C.getAsConstantArrayType(ArrayTy);
4118 assert(CAT && "unexpected type for array initializer");
4119 ConstLength = CAT->getSize();
4121 if (Length) {
4122 auto *LengthVal = Builder.CreateIntCast(
4123 EmitScalarExpr(Length), IntPtrTy,
4124 Length->getType()->hasSignedIntegerRepresentation());
4125 Idx = Builder.CreateSub(
4126 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4127 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4128 } else {
4129 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4130 --ConstLength;
4131 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4135 assert(Idx);
4137 Address EltPtr = Address::invalid();
4138 LValueBaseInfo BaseInfo;
4139 TBAAAccessInfo TBAAInfo;
4140 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4141 // The base must be a pointer, which is not an aggregate. Emit
4142 // it. It needs to be emitted first in case it's what captures
4143 // the VLA bounds.
4144 Address Base =
4145 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4146 BaseTy, VLA->getElementType(), IsLowerBound);
4147 // The element count here is the total number of non-VLA elements.
4148 llvm::Value *NumElements = getVLASize(VLA).NumElts;
4150 // Effectively, the multiply by the VLA size is part of the GEP.
4151 // GEP indexes are signed, and scaling an index isn't permitted to
4152 // signed-overflow, so we use the same semantics for our explicit
4153 // multiply. We suppress this if overflow is not undefined behavior.
4154 if (getLangOpts().isSignedOverflowDefined())
4155 Idx = Builder.CreateMul(Idx, NumElements);
4156 else
4157 Idx = Builder.CreateNSWMul(Idx, NumElements);
4158 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4159 !getLangOpts().isSignedOverflowDefined(),
4160 /*signedIndices=*/false, E->getExprLoc());
4161 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4162 // If this is A[i] where A is an array, the frontend will have decayed the
4163 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4164 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4165 // "gep x, i" here. Emit one "gep A, 0, i".
4166 assert(Array->getType()->isArrayType() &&
4167 "Array to pointer decay must have array source type!");
4168 LValue ArrayLV;
4169 // For simple multidimensional array indexing, set the 'accessed' flag for
4170 // better bounds-checking of the base expression.
4171 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4172 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4173 else
4174 ArrayLV = EmitLValue(Array);
4176 // Propagate the alignment from the array itself to the result.
4177 EltPtr = emitArraySubscriptGEP(
4178 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4179 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4180 /*signedIndices=*/false, E->getExprLoc());
4181 BaseInfo = ArrayLV.getBaseInfo();
4182 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4183 } else {
4184 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4185 TBAAInfo, BaseTy, ResultExprTy,
4186 IsLowerBound);
4187 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4188 !getLangOpts().isSignedOverflowDefined(),
4189 /*signedIndices=*/false, E->getExprLoc());
4192 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4195 LValue CodeGenFunction::
4196 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4197 // Emit the base vector as an l-value.
4198 LValue Base;
4200 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4201 if (E->isArrow()) {
4202 // If it is a pointer to a vector, emit the address and form an lvalue with
4203 // it.
4204 LValueBaseInfo BaseInfo;
4205 TBAAAccessInfo TBAAInfo;
4206 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4207 const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4208 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4209 Base.getQuals().removeObjCGCAttr();
4210 } else if (E->getBase()->isGLValue()) {
4211 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4212 // emit the base as an lvalue.
4213 assert(E->getBase()->getType()->isVectorType());
4214 Base = EmitLValue(E->getBase());
4215 } else {
4216 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4217 assert(E->getBase()->getType()->isVectorType() &&
4218 "Result must be a vector");
4219 llvm::Value *Vec = EmitScalarExpr(E->getBase());
4221 // Store the vector to memory (because LValue wants an address).
4222 Address VecMem = CreateMemTemp(E->getBase()->getType());
4223 Builder.CreateStore(Vec, VecMem);
4224 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4225 AlignmentSource::Decl);
4228 QualType type =
4229 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4231 // Encode the element access list into a vector of unsigned indices.
4232 SmallVector<uint32_t, 4> Indices;
4233 E->getEncodedElementAccess(Indices);
4235 if (Base.isSimple()) {
4236 llvm::Constant *CV =
4237 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4238 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4239 Base.getBaseInfo(), TBAAAccessInfo());
4241 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4243 llvm::Constant *BaseElts = Base.getExtVectorElts();
4244 SmallVector<llvm::Constant *, 4> CElts;
4246 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4247 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4248 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4249 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4250 Base.getBaseInfo(), TBAAAccessInfo());
4253 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4254 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4255 EmitIgnoredExpr(E->getBase());
4256 return EmitDeclRefLValue(DRE);
4259 Expr *BaseExpr = E->getBase();
4260 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4261 LValue BaseLV;
4262 if (E->isArrow()) {
4263 LValueBaseInfo BaseInfo;
4264 TBAAAccessInfo TBAAInfo;
4265 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4266 QualType PtrTy = BaseExpr->getType()->getPointeeType();
4267 SanitizerSet SkippedChecks;
4268 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4269 if (IsBaseCXXThis)
4270 SkippedChecks.set(SanitizerKind::Alignment, true);
4271 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4272 SkippedChecks.set(SanitizerKind::Null, true);
4273 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4274 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4275 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4276 } else
4277 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4279 NamedDecl *ND = E->getMemberDecl();
4280 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4281 LValue LV = EmitLValueForField(BaseLV, Field);
4282 setObjCGCLValueClass(getContext(), E, LV);
4283 if (getLangOpts().OpenMP) {
4284 // If the member was explicitly marked as nontemporal, mark it as
4285 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4286 // to children as nontemporal too.
4287 if ((IsWrappedCXXThis(BaseExpr) &&
4288 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4289 BaseLV.isNontemporal())
4290 LV.setNontemporal(/*Value=*/true);
4292 return LV;
4295 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4296 return EmitFunctionDeclLValue(*this, E, FD);
4298 llvm_unreachable("Unhandled member declaration!");
4301 /// Given that we are currently emitting a lambda, emit an l-value for
4302 /// one of its members.
4304 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field,
4305 llvm::Value *ThisValue) {
4306 bool HasExplicitObjectParameter = false;
4307 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl)) {
4308 HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction();
4309 assert(MD->getParent()->isLambda());
4310 assert(MD->getParent() == Field->getParent());
4312 LValue LambdaLV;
4313 if (HasExplicitObjectParameter) {
4314 const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0);
4315 auto It = LocalDeclMap.find(D);
4316 assert(It != LocalDeclMap.end() && "explicit parameter not loaded?");
4317 Address AddrOfExplicitObject = It->getSecond();
4318 if (D->getType()->isReferenceType())
4319 LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(),
4320 AlignmentSource::Decl);
4321 else
4322 LambdaLV = MakeNaturalAlignAddrLValue(AddrOfExplicitObject.getPointer(),
4323 D->getType().getNonReferenceType());
4324 } else {
4325 QualType LambdaTagType = getContext().getTagDeclType(Field->getParent());
4326 LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType);
4328 return EmitLValueForField(LambdaLV, Field);
4331 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4332 return EmitLValueForLambdaField(Field, CXXABIThisValue);
4335 /// Get the field index in the debug info. The debug info structure/union
4336 /// will ignore the unnamed bitfields.
4337 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4338 unsigned FieldIndex) {
4339 unsigned I = 0, Skipped = 0;
4341 for (auto *F : Rec->getDefinition()->fields()) {
4342 if (I == FieldIndex)
4343 break;
4344 if (F->isUnnamedBitfield())
4345 Skipped++;
4346 I++;
4349 return FieldIndex - Skipped;
4352 /// Get the address of a zero-sized field within a record. The resulting
4353 /// address doesn't necessarily have the right type.
4354 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4355 const FieldDecl *Field) {
4356 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4357 CGF.getContext().getFieldOffset(Field));
4358 if (Offset.isZero())
4359 return Base;
4360 Base = Base.withElementType(CGF.Int8Ty);
4361 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4364 /// Drill down to the storage of a field without walking into
4365 /// reference types.
4367 /// The resulting address doesn't necessarily have the right type.
4368 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4369 const FieldDecl *field) {
4370 if (field->isZeroSize(CGF.getContext()))
4371 return emitAddrOfZeroSizeField(CGF, base, field);
4373 const RecordDecl *rec = field->getParent();
4375 unsigned idx =
4376 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4378 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4381 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4382 Address addr, const FieldDecl *field) {
4383 const RecordDecl *rec = field->getParent();
4384 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4385 base.getType(), rec->getLocation());
4387 unsigned idx =
4388 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4390 return CGF.Builder.CreatePreserveStructAccessIndex(
4391 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4394 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4395 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4396 if (!RD)
4397 return false;
4399 if (RD->isDynamicClass())
4400 return true;
4402 for (const auto &Base : RD->bases())
4403 if (hasAnyVptr(Base.getType(), Context))
4404 return true;
4406 for (const FieldDecl *Field : RD->fields())
4407 if (hasAnyVptr(Field->getType(), Context))
4408 return true;
4410 return false;
4413 LValue CodeGenFunction::EmitLValueForField(LValue base,
4414 const FieldDecl *field) {
4415 LValueBaseInfo BaseInfo = base.getBaseInfo();
4417 if (field->isBitField()) {
4418 const CGRecordLayout &RL =
4419 CGM.getTypes().getCGRecordLayout(field->getParent());
4420 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4421 const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4422 CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4423 Info.VolatileStorageSize != 0 &&
4424 field->getType()
4425 .withCVRQualifiers(base.getVRQualifiers())
4426 .isVolatileQualified();
4427 Address Addr = base.getAddress(*this);
4428 unsigned Idx = RL.getLLVMFieldNo(field);
4429 const RecordDecl *rec = field->getParent();
4430 if (!UseVolatile) {
4431 if (!IsInPreservedAIRegion &&
4432 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4433 if (Idx != 0)
4434 // For structs, we GEP to the field that the record layout suggests.
4435 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4436 } else {
4437 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4438 getContext().getRecordType(rec), rec->getLocation());
4439 Addr = Builder.CreatePreserveStructAccessIndex(
4440 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4441 DbgInfo);
4444 const unsigned SS =
4445 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4446 // Get the access type.
4447 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4448 Addr = Addr.withElementType(FieldIntTy);
4449 if (UseVolatile) {
4450 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4451 if (VolatileOffset)
4452 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4455 QualType fieldType =
4456 field->getType().withCVRQualifiers(base.getVRQualifiers());
4457 // TODO: Support TBAA for bit fields.
4458 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4459 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4460 TBAAAccessInfo());
4463 // Fields of may-alias structures are may-alias themselves.
4464 // FIXME: this should get propagated down through anonymous structs
4465 // and unions.
4466 QualType FieldType = field->getType();
4467 const RecordDecl *rec = field->getParent();
4468 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4469 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4470 TBAAAccessInfo FieldTBAAInfo;
4471 if (base.getTBAAInfo().isMayAlias() ||
4472 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4473 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4474 } else if (rec->isUnion()) {
4475 // TODO: Support TBAA for unions.
4476 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4477 } else {
4478 // If no base type been assigned for the base access, then try to generate
4479 // one for this base lvalue.
4480 FieldTBAAInfo = base.getTBAAInfo();
4481 if (!FieldTBAAInfo.BaseType) {
4482 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4483 assert(!FieldTBAAInfo.Offset &&
4484 "Nonzero offset for an access with no base type!");
4487 // Adjust offset to be relative to the base type.
4488 const ASTRecordLayout &Layout =
4489 getContext().getASTRecordLayout(field->getParent());
4490 unsigned CharWidth = getContext().getCharWidth();
4491 if (FieldTBAAInfo.BaseType)
4492 FieldTBAAInfo.Offset +=
4493 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4495 // Update the final access type and size.
4496 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4497 FieldTBAAInfo.Size =
4498 getContext().getTypeSizeInChars(FieldType).getQuantity();
4501 Address addr = base.getAddress(*this);
4502 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4503 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4504 ClassDef->isDynamicClass()) {
4505 // Getting to any field of dynamic object requires stripping dynamic
4506 // information provided by invariant.group. This is because accessing
4507 // fields may leak the real address of dynamic object, which could result
4508 // in miscompilation when leaked pointer would be compared.
4509 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4510 addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4514 unsigned RecordCVR = base.getVRQualifiers();
4515 if (rec->isUnion()) {
4516 // For unions, there is no pointer adjustment.
4517 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4518 hasAnyVptr(FieldType, getContext()))
4519 // Because unions can easily skip invariant.barriers, we need to add
4520 // a barrier every time CXXRecord field with vptr is referenced.
4521 addr = Builder.CreateLaunderInvariantGroup(addr);
4523 if (IsInPreservedAIRegion ||
4524 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4525 // Remember the original union field index
4526 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4527 rec->getLocation());
4528 addr = Address(
4529 Builder.CreatePreserveUnionAccessIndex(
4530 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4531 addr.getElementType(), addr.getAlignment());
4534 if (FieldType->isReferenceType())
4535 addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4536 } else {
4537 if (!IsInPreservedAIRegion &&
4538 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4539 // For structs, we GEP to the field that the record layout suggests.
4540 addr = emitAddrOfFieldStorage(*this, addr, field);
4541 else
4542 // Remember the original struct field index
4543 addr = emitPreserveStructAccess(*this, base, addr, field);
4546 // If this is a reference field, load the reference right now.
4547 if (FieldType->isReferenceType()) {
4548 LValue RefLVal =
4549 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4550 if (RecordCVR & Qualifiers::Volatile)
4551 RefLVal.getQuals().addVolatile();
4552 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4554 // Qualifiers on the struct don't apply to the referencee.
4555 RecordCVR = 0;
4556 FieldType = FieldType->getPointeeType();
4559 // Make sure that the address is pointing to the right type. This is critical
4560 // for both unions and structs.
4561 addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4563 if (field->hasAttr<AnnotateAttr>())
4564 addr = EmitFieldAnnotations(field, addr);
4566 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4567 LV.getQuals().addCVRQualifiers(RecordCVR);
4569 // __weak attribute on a field is ignored.
4570 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4571 LV.getQuals().removeObjCGCAttr();
4573 return LV;
4576 LValue
4577 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4578 const FieldDecl *Field) {
4579 QualType FieldType = Field->getType();
4581 if (!FieldType->isReferenceType())
4582 return EmitLValueForField(Base, Field);
4584 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4586 // Make sure that the address is pointing to the right type.
4587 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4588 V = V.withElementType(llvmType);
4590 // TODO: Generate TBAA information that describes this access as a structure
4591 // member access and not just an access to an object of the field's type. This
4592 // should be similar to what we do in EmitLValueForField().
4593 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4594 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4595 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4596 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4597 CGM.getTBAAInfoForSubobject(Base, FieldType));
4600 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4601 if (E->isFileScope()) {
4602 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4603 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4605 if (E->getType()->isVariablyModifiedType())
4606 // make sure to emit the VLA size.
4607 EmitVariablyModifiedType(E->getType());
4609 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4610 const Expr *InitExpr = E->getInitializer();
4611 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4613 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4614 /*Init*/ true);
4616 // Block-scope compound literals are destroyed at the end of the enclosing
4617 // scope in C.
4618 if (!getLangOpts().CPlusPlus)
4619 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4620 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4621 E->getType(), getDestroyer(DtorKind),
4622 DtorKind & EHCleanup);
4624 return Result;
4627 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4628 if (!E->isGLValue())
4629 // Initializing an aggregate temporary in C++11: T{...}.
4630 return EmitAggExprToLValue(E);
4632 // An lvalue initializer list must be initializing a reference.
4633 assert(E->isTransparent() && "non-transparent glvalue init list");
4634 return EmitLValue(E->getInit(0));
4637 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4638 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4639 /// LValue is returned and the current block has been terminated.
4640 static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4641 const Expr *Operand) {
4642 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4643 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4644 return std::nullopt;
4647 return CGF.EmitLValue(Operand);
4650 namespace {
4651 // Handle the case where the condition is a constant evaluatable simple integer,
4652 // which means we don't have to separately handle the true/false blocks.
4653 std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4654 CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4655 const Expr *condExpr = E->getCond();
4656 bool CondExprBool;
4657 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4658 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4659 if (!CondExprBool)
4660 std::swap(Live, Dead);
4662 if (!CGF.ContainsLabel(Dead)) {
4663 // If the true case is live, we need to track its region.
4664 if (CondExprBool)
4665 CGF.incrementProfileCounter(E);
4666 // If a throw expression we emit it and return an undefined lvalue
4667 // because it can't be used.
4668 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4669 CGF.EmitCXXThrowExpr(ThrowExpr);
4670 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4671 llvm::Type *Ty = CGF.UnqualPtrTy;
4672 return CGF.MakeAddrLValue(
4673 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4674 Dead->getType());
4676 return CGF.EmitLValue(Live);
4679 return std::nullopt;
4681 struct ConditionalInfo {
4682 llvm::BasicBlock *lhsBlock, *rhsBlock;
4683 std::optional<LValue> LHS, RHS;
4686 // Create and generate the 3 blocks for a conditional operator.
4687 // Leaves the 'current block' in the continuation basic block.
4688 template<typename FuncTy>
4689 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4690 const AbstractConditionalOperator *E,
4691 const FuncTy &BranchGenFunc) {
4692 ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4693 CGF.createBasicBlock("cond.false"), std::nullopt,
4694 std::nullopt};
4695 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4697 CodeGenFunction::ConditionalEvaluation eval(CGF);
4698 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4699 CGF.getProfileCount(E));
4701 // Any temporaries created here are conditional.
4702 CGF.EmitBlock(Info.lhsBlock);
4703 CGF.incrementProfileCounter(E);
4704 eval.begin(CGF);
4705 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4706 eval.end(CGF);
4707 Info.lhsBlock = CGF.Builder.GetInsertBlock();
4709 if (Info.LHS)
4710 CGF.Builder.CreateBr(endBlock);
4712 // Any temporaries created here are conditional.
4713 CGF.EmitBlock(Info.rhsBlock);
4714 eval.begin(CGF);
4715 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4716 eval.end(CGF);
4717 Info.rhsBlock = CGF.Builder.GetInsertBlock();
4718 CGF.EmitBlock(endBlock);
4720 return Info;
4722 } // namespace
4724 void CodeGenFunction::EmitIgnoredConditionalOperator(
4725 const AbstractConditionalOperator *E) {
4726 if (!E->isGLValue()) {
4727 // ?: here should be an aggregate.
4728 assert(hasAggregateEvaluationKind(E->getType()) &&
4729 "Unexpected conditional operator!");
4730 return (void)EmitAggExprToLValue(E);
4733 OpaqueValueMapping binding(*this, E);
4734 if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4735 return;
4737 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4738 CGF.EmitIgnoredExpr(E);
4739 return LValue{};
4742 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4743 const AbstractConditionalOperator *expr) {
4744 if (!expr->isGLValue()) {
4745 // ?: here should be an aggregate.
4746 assert(hasAggregateEvaluationKind(expr->getType()) &&
4747 "Unexpected conditional operator!");
4748 return EmitAggExprToLValue(expr);
4751 OpaqueValueMapping binding(*this, expr);
4752 if (std::optional<LValue> Res =
4753 HandleConditionalOperatorLValueSimpleCase(*this, expr))
4754 return *Res;
4756 ConditionalInfo Info = EmitConditionalBlocks(
4757 *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4758 return EmitLValueOrThrowExpression(CGF, E);
4761 if ((Info.LHS && !Info.LHS->isSimple()) ||
4762 (Info.RHS && !Info.RHS->isSimple()))
4763 return EmitUnsupportedLValue(expr, "conditional operator");
4765 if (Info.LHS && Info.RHS) {
4766 Address lhsAddr = Info.LHS->getAddress(*this);
4767 Address rhsAddr = Info.RHS->getAddress(*this);
4768 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4769 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4770 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4771 Address result(phi, lhsAddr.getElementType(),
4772 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4773 AlignmentSource alignSource =
4774 std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4775 Info.RHS->getBaseInfo().getAlignmentSource());
4776 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4777 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4778 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4779 TBAAInfo);
4780 } else {
4781 assert((Info.LHS || Info.RHS) &&
4782 "both operands of glvalue conditional are throw-expressions?");
4783 return Info.LHS ? *Info.LHS : *Info.RHS;
4787 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4788 /// type. If the cast is to a reference, we can have the usual lvalue result,
4789 /// otherwise if a cast is needed by the code generator in an lvalue context,
4790 /// then it must mean that we need the address of an aggregate in order to
4791 /// access one of its members. This can happen for all the reasons that casts
4792 /// are permitted with aggregate result, including noop aggregate casts, and
4793 /// cast from scalar to union.
4794 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4795 switch (E->getCastKind()) {
4796 case CK_ToVoid:
4797 case CK_BitCast:
4798 case CK_LValueToRValueBitCast:
4799 case CK_ArrayToPointerDecay:
4800 case CK_FunctionToPointerDecay:
4801 case CK_NullToMemberPointer:
4802 case CK_NullToPointer:
4803 case CK_IntegralToPointer:
4804 case CK_PointerToIntegral:
4805 case CK_PointerToBoolean:
4806 case CK_VectorSplat:
4807 case CK_IntegralCast:
4808 case CK_BooleanToSignedIntegral:
4809 case CK_IntegralToBoolean:
4810 case CK_IntegralToFloating:
4811 case CK_FloatingToIntegral:
4812 case CK_FloatingToBoolean:
4813 case CK_FloatingCast:
4814 case CK_FloatingRealToComplex:
4815 case CK_FloatingComplexToReal:
4816 case CK_FloatingComplexToBoolean:
4817 case CK_FloatingComplexCast:
4818 case CK_FloatingComplexToIntegralComplex:
4819 case CK_IntegralRealToComplex:
4820 case CK_IntegralComplexToReal:
4821 case CK_IntegralComplexToBoolean:
4822 case CK_IntegralComplexCast:
4823 case CK_IntegralComplexToFloatingComplex:
4824 case CK_DerivedToBaseMemberPointer:
4825 case CK_BaseToDerivedMemberPointer:
4826 case CK_MemberPointerToBoolean:
4827 case CK_ReinterpretMemberPointer:
4828 case CK_AnyPointerToBlockPointerCast:
4829 case CK_ARCProduceObject:
4830 case CK_ARCConsumeObject:
4831 case CK_ARCReclaimReturnedObject:
4832 case CK_ARCExtendBlockObject:
4833 case CK_CopyAndAutoreleaseBlockObject:
4834 case CK_IntToOCLSampler:
4835 case CK_FloatingToFixedPoint:
4836 case CK_FixedPointToFloating:
4837 case CK_FixedPointCast:
4838 case CK_FixedPointToBoolean:
4839 case CK_FixedPointToIntegral:
4840 case CK_IntegralToFixedPoint:
4841 case CK_MatrixCast:
4842 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4844 case CK_Dependent:
4845 llvm_unreachable("dependent cast kind in IR gen!");
4847 case CK_BuiltinFnToFnPtr:
4848 llvm_unreachable("builtin functions are handled elsewhere");
4850 // These are never l-values; just use the aggregate emission code.
4851 case CK_NonAtomicToAtomic:
4852 case CK_AtomicToNonAtomic:
4853 return EmitAggExprToLValue(E);
4855 case CK_Dynamic: {
4856 LValue LV = EmitLValue(E->getSubExpr());
4857 Address V = LV.getAddress(*this);
4858 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4859 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4862 case CK_ConstructorConversion:
4863 case CK_UserDefinedConversion:
4864 case CK_CPointerToObjCPointerCast:
4865 case CK_BlockPointerToObjCPointerCast:
4866 case CK_LValueToRValue:
4867 return EmitLValue(E->getSubExpr());
4869 case CK_NoOp: {
4870 // CK_NoOp can model a qualification conversion, which can remove an array
4871 // bound and change the IR type.
4872 // FIXME: Once pointee types are removed from IR, remove this.
4873 LValue LV = EmitLValue(E->getSubExpr());
4874 // Propagate the volatile qualifer to LValue, if exist in E.
4875 if (E->changesVolatileQualification())
4876 LV.getQuals() = E->getType().getQualifiers();
4877 if (LV.isSimple()) {
4878 Address V = LV.getAddress(*this);
4879 if (V.isValid()) {
4880 llvm::Type *T = ConvertTypeForMem(E->getType());
4881 if (V.getElementType() != T)
4882 LV.setAddress(V.withElementType(T));
4885 return LV;
4888 case CK_UncheckedDerivedToBase:
4889 case CK_DerivedToBase: {
4890 const auto *DerivedClassTy =
4891 E->getSubExpr()->getType()->castAs<RecordType>();
4892 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4894 LValue LV = EmitLValue(E->getSubExpr());
4895 Address This = LV.getAddress(*this);
4897 // Perform the derived-to-base conversion
4898 Address Base = GetAddressOfBaseClass(
4899 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4900 /*NullCheckValue=*/false, E->getExprLoc());
4902 // TODO: Support accesses to members of base classes in TBAA. For now, we
4903 // conservatively pretend that the complete object is of the base class
4904 // type.
4905 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4906 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4908 case CK_ToUnion:
4909 return EmitAggExprToLValue(E);
4910 case CK_BaseToDerived: {
4911 const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4912 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4914 LValue LV = EmitLValue(E->getSubExpr());
4916 // Perform the base-to-derived conversion
4917 Address Derived = GetAddressOfDerivedClass(
4918 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4919 /*NullCheckValue=*/false);
4921 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4922 // performed and the object is not of the derived type.
4923 if (sanitizePerformTypeCheck())
4924 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4925 Derived.getPointer(), E->getType());
4927 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4928 EmitVTablePtrCheckForCast(E->getType(), Derived,
4929 /*MayBeNull=*/false, CFITCK_DerivedCast,
4930 E->getBeginLoc());
4932 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4933 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4935 case CK_LValueBitCast: {
4936 // This must be a reinterpret_cast (or c-style equivalent).
4937 const auto *CE = cast<ExplicitCastExpr>(E);
4939 CGM.EmitExplicitCastExprType(CE, this);
4940 LValue LV = EmitLValue(E->getSubExpr());
4941 Address V = LV.getAddress(*this).withElementType(
4942 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4944 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4945 EmitVTablePtrCheckForCast(E->getType(), V,
4946 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4947 E->getBeginLoc());
4949 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4950 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4952 case CK_AddressSpaceConversion: {
4953 LValue LV = EmitLValue(E->getSubExpr());
4954 QualType DestTy = getContext().getPointerType(E->getType());
4955 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4956 *this, LV.getPointer(*this),
4957 E->getSubExpr()->getType().getAddressSpace(),
4958 E->getType().getAddressSpace(), ConvertType(DestTy));
4959 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4960 LV.getAddress(*this).getAlignment()),
4961 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4963 case CK_ObjCObjectLValueCast: {
4964 LValue LV = EmitLValue(E->getSubExpr());
4965 Address V = LV.getAddress(*this).withElementType(ConvertType(E->getType()));
4966 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4967 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4969 case CK_ZeroToOCLOpaqueType:
4970 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4973 llvm_unreachable("Unhandled lvalue cast kind?");
4976 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4977 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4978 return getOrCreateOpaqueLValueMapping(e);
4981 LValue
4982 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4983 assert(OpaqueValueMapping::shouldBindAsLValue(e));
4985 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4986 it = OpaqueLValues.find(e);
4988 if (it != OpaqueLValues.end())
4989 return it->second;
4991 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4992 return EmitLValue(e->getSourceExpr());
4995 RValue
4996 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4997 assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4999 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
5000 it = OpaqueRValues.find(e);
5002 if (it != OpaqueRValues.end())
5003 return it->second;
5005 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
5006 return EmitAnyExpr(e->getSourceExpr());
5009 RValue CodeGenFunction::EmitRValueForField(LValue LV,
5010 const FieldDecl *FD,
5011 SourceLocation Loc) {
5012 QualType FT = FD->getType();
5013 LValue FieldLV = EmitLValueForField(LV, FD);
5014 switch (getEvaluationKind(FT)) {
5015 case TEK_Complex:
5016 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
5017 case TEK_Aggregate:
5018 return FieldLV.asAggregateRValue(*this);
5019 case TEK_Scalar:
5020 // This routine is used to load fields one-by-one to perform a copy, so
5021 // don't load reference fields.
5022 if (FD->getType()->isReferenceType())
5023 return RValue::get(FieldLV.getPointer(*this));
5024 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
5025 // primitive load.
5026 if (FieldLV.isBitField())
5027 return EmitLoadOfLValue(FieldLV, Loc);
5028 return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
5030 llvm_unreachable("bad evaluation kind");
5033 //===--------------------------------------------------------------------===//
5034 // Expression Emission
5035 //===--------------------------------------------------------------------===//
5037 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
5038 ReturnValueSlot ReturnValue) {
5039 // Builtins never have block type.
5040 if (E->getCallee()->getType()->isBlockPointerType())
5041 return EmitBlockCallExpr(E, ReturnValue);
5043 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5044 return EmitCXXMemberCallExpr(CE, ReturnValue);
5046 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5047 return EmitCUDAKernelCallExpr(CE, ReturnValue);
5049 // A CXXOperatorCallExpr is created even for explicit object methods, but
5050 // these should be treated like static function call.
5051 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5052 if (const auto *MD =
5053 dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl());
5054 MD && MD->isImplicitObjectMemberFunction())
5055 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5057 CGCallee callee = EmitCallee(E->getCallee());
5059 if (callee.isBuiltin()) {
5060 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5061 E, ReturnValue);
5064 if (callee.isPseudoDestructor()) {
5065 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5068 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5071 /// Emit a CallExpr without considering whether it might be a subclass.
5072 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5073 ReturnValueSlot ReturnValue) {
5074 CGCallee Callee = EmitCallee(E->getCallee());
5075 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5078 // Detect the unusual situation where an inline version is shadowed by a
5079 // non-inline version. In that case we should pick the external one
5080 // everywhere. That's GCC behavior too.
5081 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5082 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5083 if (!PD->isInlineBuiltinDeclaration())
5084 return false;
5085 return true;
5088 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5089 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5091 if (auto builtinID = FD->getBuiltinID()) {
5092 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5093 std::string NoBuiltins = "no-builtins";
5095 StringRef Ident = CGF.CGM.getMangledName(GD);
5096 std::string FDInlineName = (Ident + ".inline").str();
5098 bool IsPredefinedLibFunction =
5099 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5100 bool HasAttributeNoBuiltin =
5101 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5102 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5104 // When directing calling an inline builtin, call it through it's mangled
5105 // name to make it clear it's not the actual builtin.
5106 if (CGF.CurFn->getName() != FDInlineName &&
5107 OnlyHasInlineBuiltinDeclaration(FD)) {
5108 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5109 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5110 llvm::Module *M = Fn->getParent();
5111 llvm::Function *Clone = M->getFunction(FDInlineName);
5112 if (!Clone) {
5113 Clone = llvm::Function::Create(Fn->getFunctionType(),
5114 llvm::GlobalValue::InternalLinkage,
5115 Fn->getAddressSpace(), FDInlineName, M);
5116 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5118 return CGCallee::forDirect(Clone, GD);
5121 // Replaceable builtins provide their own implementation of a builtin. If we
5122 // are in an inline builtin implementation, avoid trivial infinite
5123 // recursion. Honor __attribute__((no_builtin("foo"))) or
5124 // __attribute__((no_builtin)) on the current function unless foo is
5125 // not a predefined library function which means we must generate the
5126 // builtin no matter what.
5127 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5128 return CGCallee::forBuiltin(builtinID, FD);
5131 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5132 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5133 FD->hasAttr<CUDAGlobalAttr>())
5134 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5135 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5137 return CGCallee::forDirect(CalleePtr, GD);
5140 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5141 E = E->IgnoreParens();
5143 // Look through function-to-pointer decay.
5144 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5145 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5146 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5147 return EmitCallee(ICE->getSubExpr());
5150 // Resolve direct calls.
5151 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5152 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5153 return EmitDirectCallee(*this, FD);
5155 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5156 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5157 EmitIgnoredExpr(ME->getBase());
5158 return EmitDirectCallee(*this, FD);
5161 // Look through template substitutions.
5162 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5163 return EmitCallee(NTTP->getReplacement());
5165 // Treat pseudo-destructor calls differently.
5166 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5167 return CGCallee::forPseudoDestructor(PDE);
5170 // Otherwise, we have an indirect reference.
5171 llvm::Value *calleePtr;
5172 QualType functionType;
5173 if (auto ptrType = E->getType()->getAs<PointerType>()) {
5174 calleePtr = EmitScalarExpr(E);
5175 functionType = ptrType->getPointeeType();
5176 } else {
5177 functionType = E->getType();
5178 calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this);
5180 assert(functionType->isFunctionType());
5182 GlobalDecl GD;
5183 if (const auto *VD =
5184 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5185 GD = GlobalDecl(VD);
5187 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5188 CGCallee callee(calleeInfo, calleePtr);
5189 return callee;
5192 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5193 // Comma expressions just emit their LHS then their RHS as an l-value.
5194 if (E->getOpcode() == BO_Comma) {
5195 EmitIgnoredExpr(E->getLHS());
5196 EnsureInsertPoint();
5197 return EmitLValue(E->getRHS());
5200 if (E->getOpcode() == BO_PtrMemD ||
5201 E->getOpcode() == BO_PtrMemI)
5202 return EmitPointerToDataMemberBinaryExpr(E);
5204 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5206 // Note that in all of these cases, __block variables need the RHS
5207 // evaluated first just in case the variable gets moved by the RHS.
5209 switch (getEvaluationKind(E->getType())) {
5210 case TEK_Scalar: {
5211 switch (E->getLHS()->getType().getObjCLifetime()) {
5212 case Qualifiers::OCL_Strong:
5213 return EmitARCStoreStrong(E, /*ignored*/ false).first;
5215 case Qualifiers::OCL_Autoreleasing:
5216 return EmitARCStoreAutoreleasing(E).first;
5218 // No reason to do any of these differently.
5219 case Qualifiers::OCL_None:
5220 case Qualifiers::OCL_ExplicitNone:
5221 case Qualifiers::OCL_Weak:
5222 break;
5225 RValue RV = EmitAnyExpr(E->getRHS());
5226 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5227 if (RV.isScalar())
5228 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5229 EmitStoreThroughLValue(RV, LV);
5230 if (getLangOpts().OpenMP)
5231 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5232 E->getLHS());
5233 return LV;
5236 case TEK_Complex:
5237 return EmitComplexAssignmentLValue(E);
5239 case TEK_Aggregate:
5240 return EmitAggExprToLValue(E);
5242 llvm_unreachable("bad evaluation kind");
5245 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5246 RValue RV = EmitCallExpr(E);
5248 if (!RV.isScalar())
5249 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5250 AlignmentSource::Decl);
5252 assert(E->getCallReturnType(getContext())->isReferenceType() &&
5253 "Can't have a scalar return unless the return type is a "
5254 "reference type!");
5256 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5259 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5260 // FIXME: This shouldn't require another copy.
5261 return EmitAggExprToLValue(E);
5264 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5265 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5266 && "binding l-value to type which needs a temporary");
5267 AggValueSlot Slot = CreateAggTemp(E->getType());
5268 EmitCXXConstructExpr(E, Slot);
5269 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5272 LValue
5273 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5274 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5277 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5278 return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl())
5279 .withElementType(ConvertType(E->getType()));
5282 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5283 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5284 AlignmentSource::Decl);
5287 LValue
5288 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5289 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5290 Slot.setExternallyDestructed();
5291 EmitAggExpr(E->getSubExpr(), Slot);
5292 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5293 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5296 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5297 RValue RV = EmitObjCMessageExpr(E);
5299 if (!RV.isScalar())
5300 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5301 AlignmentSource::Decl);
5303 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5304 "Can't have a scalar return unless the return type is a "
5305 "reference type!");
5307 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5310 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5311 Address V =
5312 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5313 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5316 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5317 const ObjCIvarDecl *Ivar) {
5318 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5321 llvm::Value *
5322 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
5323 const ObjCIvarDecl *Ivar) {
5324 llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
5325 QualType PointerDiffType = getContext().getPointerDiffType();
5326 return Builder.CreateZExtOrTrunc(OffsetValue,
5327 getTypes().ConvertType(PointerDiffType));
5330 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5331 llvm::Value *BaseValue,
5332 const ObjCIvarDecl *Ivar,
5333 unsigned CVRQualifiers) {
5334 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5335 Ivar, CVRQualifiers);
5338 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5339 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5340 llvm::Value *BaseValue = nullptr;
5341 const Expr *BaseExpr = E->getBase();
5342 Qualifiers BaseQuals;
5343 QualType ObjectTy;
5344 if (E->isArrow()) {
5345 BaseValue = EmitScalarExpr(BaseExpr);
5346 ObjectTy = BaseExpr->getType()->getPointeeType();
5347 BaseQuals = ObjectTy.getQualifiers();
5348 } else {
5349 LValue BaseLV = EmitLValue(BaseExpr);
5350 BaseValue = BaseLV.getPointer(*this);
5351 ObjectTy = BaseExpr->getType();
5352 BaseQuals = ObjectTy.getQualifiers();
5355 LValue LV =
5356 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5357 BaseQuals.getCVRQualifiers());
5358 setObjCGCLValueClass(getContext(), E, LV);
5359 return LV;
5362 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5363 // Can only get l-value for message expression returning aggregate type
5364 RValue RV = EmitAnyExprToTemp(E);
5365 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5366 AlignmentSource::Decl);
5369 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5370 const CallExpr *E, ReturnValueSlot ReturnValue,
5371 llvm::Value *Chain) {
5372 // Get the actual function type. The callee type will always be a pointer to
5373 // function type or a block pointer type.
5374 assert(CalleeType->isFunctionPointerType() &&
5375 "Call must have function pointer type!");
5377 const Decl *TargetDecl =
5378 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5380 assert((!isa_and_present<FunctionDecl>(TargetDecl) ||
5381 !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) &&
5382 "trying to emit a call to an immediate function");
5384 CalleeType = getContext().getCanonicalType(CalleeType);
5386 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5388 CGCallee Callee = OrigCallee;
5390 if (SanOpts.has(SanitizerKind::Function) &&
5391 (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) &&
5392 !isa<FunctionNoProtoType>(PointeeType)) {
5393 if (llvm::Constant *PrefixSig =
5394 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5395 SanitizerScope SanScope(this);
5396 auto *TypeHash = getUBSanFunctionTypeHash(PointeeType);
5398 llvm::Type *PrefixSigType = PrefixSig->getType();
5399 llvm::StructType *PrefixStructTy = llvm::StructType::get(
5400 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5402 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5404 // On 32-bit Arm, the low bit of a function pointer indicates whether
5405 // it's using the Arm or Thumb instruction set. The actual first
5406 // instruction lives at the same address either way, so we must clear
5407 // that low bit before using the function address to find the prefix
5408 // structure.
5410 // This applies to both Arm and Thumb target triples, because
5411 // either one could be used in an interworking context where it
5412 // might be passed function pointers of both types.
5413 llvm::Value *AlignedCalleePtr;
5414 if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) {
5415 llvm::Value *CalleeAddress =
5416 Builder.CreatePtrToInt(CalleePtr, IntPtrTy);
5417 llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1);
5418 llvm::Value *AlignedCalleeAddress =
5419 Builder.CreateAnd(CalleeAddress, Mask);
5420 AlignedCalleePtr =
5421 Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType());
5422 } else {
5423 AlignedCalleePtr = CalleePtr;
5426 llvm::Value *CalleePrefixStruct = AlignedCalleePtr;
5427 llvm::Value *CalleeSigPtr =
5428 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0);
5429 llvm::Value *CalleeSig =
5430 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5431 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5433 llvm::BasicBlock *Cont = createBasicBlock("cont");
5434 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5435 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5437 EmitBlock(TypeCheck);
5438 llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad(
5439 Int32Ty,
5440 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1),
5441 getPointerAlign());
5442 llvm::Value *CalleeTypeHashMatch =
5443 Builder.CreateICmpEQ(CalleeTypeHash, TypeHash);
5444 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5445 EmitCheckTypeDescriptor(CalleeType)};
5446 EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function),
5447 SanitizerHandler::FunctionTypeMismatch, StaticData,
5448 {CalleePtr});
5450 Builder.CreateBr(Cont);
5451 EmitBlock(Cont);
5455 const auto *FnType = cast<FunctionType>(PointeeType);
5457 // If we are checking indirect calls and this call is indirect, check that the
5458 // function pointer is a member of the bit set for the function type.
5459 if (SanOpts.has(SanitizerKind::CFIICall) &&
5460 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5461 SanitizerScope SanScope(this);
5462 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5464 llvm::Metadata *MD;
5465 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5466 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5467 else
5468 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5470 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5472 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5473 llvm::Value *TypeTest = Builder.CreateCall(
5474 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId});
5476 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5477 llvm::Constant *StaticData[] = {
5478 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5479 EmitCheckSourceLocation(E->getBeginLoc()),
5480 EmitCheckTypeDescriptor(QualType(FnType, 0)),
5482 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5483 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5484 CalleePtr, StaticData);
5485 } else {
5486 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5487 SanitizerHandler::CFICheckFail, StaticData,
5488 {CalleePtr, llvm::UndefValue::get(IntPtrTy)});
5492 CallArgList Args;
5493 if (Chain)
5494 Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy);
5496 // C++17 requires that we evaluate arguments to a call using assignment syntax
5497 // right-to-left, and that we evaluate arguments to certain other operators
5498 // left-to-right. Note that we allow this to override the order dictated by
5499 // the calling convention on the MS ABI, which means that parameter
5500 // destruction order is not necessarily reverse construction order.
5501 // FIXME: Revisit this based on C++ committee response to unimplementability.
5502 EvaluationOrder Order = EvaluationOrder::Default;
5503 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5504 if (OCE->isAssignmentOp())
5505 Order = EvaluationOrder::ForceRightToLeft;
5506 else {
5507 switch (OCE->getOperator()) {
5508 case OO_LessLess:
5509 case OO_GreaterGreater:
5510 case OO_AmpAmp:
5511 case OO_PipePipe:
5512 case OO_Comma:
5513 case OO_ArrowStar:
5514 Order = EvaluationOrder::ForceLeftToRight;
5515 break;
5516 default:
5517 break;
5522 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5523 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5525 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5526 Args, FnType, /*ChainCall=*/Chain);
5528 // C99 6.5.2.2p6:
5529 // If the expression that denotes the called function has a type
5530 // that does not include a prototype, [the default argument
5531 // promotions are performed]. If the number of arguments does not
5532 // equal the number of parameters, the behavior is undefined. If
5533 // the function is defined with a type that includes a prototype,
5534 // and either the prototype ends with an ellipsis (, ...) or the
5535 // types of the arguments after promotion are not compatible with
5536 // the types of the parameters, the behavior is undefined. If the
5537 // function is defined with a type that does not include a
5538 // prototype, and the types of the arguments after promotion are
5539 // not compatible with those of the parameters after promotion,
5540 // the behavior is undefined [except in some trivial cases].
5541 // That is, in the general case, we should assume that a call
5542 // through an unprototyped function type works like a *non-variadic*
5543 // call. The way we make this work is to cast to the exact type
5544 // of the promoted arguments.
5546 // Chain calls use this same code path to add the invisible chain parameter
5547 // to the function type.
5548 if (isa<FunctionNoProtoType>(FnType) || Chain) {
5549 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5550 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5551 CalleeTy = CalleeTy->getPointerTo(AS);
5553 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5554 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5555 Callee.setFunctionPointer(CalleePtr);
5558 // HIP function pointer contains kernel handle when it is used in triple
5559 // chevron. The kernel stub needs to be loaded from kernel handle and used
5560 // as callee.
5561 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5562 isa<CUDAKernelCallExpr>(E) &&
5563 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5564 llvm::Value *Handle = Callee.getFunctionPointer();
5565 auto *Stub = Builder.CreateLoad(
5566 Address(Handle, Handle->getType(), CGM.getPointerAlign()));
5567 Callee.setFunctionPointer(Stub);
5569 llvm::CallBase *CallOrInvoke = nullptr;
5570 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5571 E == MustTailCall, E->getExprLoc());
5573 // Generate function declaration DISuprogram in order to be used
5574 // in debug info about call sites.
5575 if (CGDebugInfo *DI = getDebugInfo()) {
5576 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5577 FunctionArgList Args;
5578 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5579 DI->EmitFuncDeclForCallSite(CallOrInvoke,
5580 DI->getFunctionType(CalleeDecl, ResTy, Args),
5581 CalleeDecl);
5585 return Call;
5588 LValue CodeGenFunction::
5589 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5590 Address BaseAddr = Address::invalid();
5591 if (E->getOpcode() == BO_PtrMemI) {
5592 BaseAddr = EmitPointerWithAlignment(E->getLHS());
5593 } else {
5594 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5597 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5598 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5600 LValueBaseInfo BaseInfo;
5601 TBAAAccessInfo TBAAInfo;
5602 Address MemberAddr =
5603 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5604 &TBAAInfo);
5606 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5609 /// Given the address of a temporary variable, produce an r-value of
5610 /// its type.
5611 RValue CodeGenFunction::convertTempToRValue(Address addr,
5612 QualType type,
5613 SourceLocation loc) {
5614 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5615 switch (getEvaluationKind(type)) {
5616 case TEK_Complex:
5617 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5618 case TEK_Aggregate:
5619 return lvalue.asAggregateRValue(*this);
5620 case TEK_Scalar:
5621 return RValue::get(EmitLoadOfScalar(lvalue, loc));
5623 llvm_unreachable("bad evaluation kind");
5626 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5627 assert(Val->getType()->isFPOrFPVectorTy());
5628 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5629 return;
5631 llvm::MDBuilder MDHelper(getLLVMContext());
5632 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5634 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5637 void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) {
5638 llvm::Type *EltTy = Val->getType()->getScalarType();
5639 if (!EltTy->isFloatTy())
5640 return;
5642 if ((getLangOpts().OpenCL &&
5643 !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
5644 (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
5645 !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
5646 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
5648 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
5649 // build option allows an application to specify that single precision
5650 // floating-point divide (x/y and 1/x) and sqrt used in the program
5651 // source are correctly rounded.
5653 // TODO: CUDA has a prec-sqrt flag
5654 SetFPAccuracy(Val, 3.0f);
5658 void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) {
5659 llvm::Type *EltTy = Val->getType()->getScalarType();
5660 if (!EltTy->isFloatTy())
5661 return;
5663 if ((getLangOpts().OpenCL &&
5664 !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
5665 (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
5666 !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
5667 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
5669 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
5670 // build option allows an application to specify that single precision
5671 // floating-point divide (x/y and 1/x) and sqrt used in the program
5672 // source are correctly rounded.
5674 // TODO: CUDA has a prec-div flag
5675 SetFPAccuracy(Val, 2.5f);
5679 namespace {
5680 struct LValueOrRValue {
5681 LValue LV;
5682 RValue RV;
5686 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5687 const PseudoObjectExpr *E,
5688 bool forLValue,
5689 AggValueSlot slot) {
5690 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5692 // Find the result expression, if any.
5693 const Expr *resultExpr = E->getResultExpr();
5694 LValueOrRValue result;
5696 for (PseudoObjectExpr::const_semantics_iterator
5697 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5698 const Expr *semantic = *i;
5700 // If this semantic expression is an opaque value, bind it
5701 // to the result of its source expression.
5702 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5703 // Skip unique OVEs.
5704 if (ov->isUnique()) {
5705 assert(ov != resultExpr &&
5706 "A unique OVE cannot be used as the result expression");
5707 continue;
5710 // If this is the result expression, we may need to evaluate
5711 // directly into the slot.
5712 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5713 OVMA opaqueData;
5714 if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5715 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5716 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5717 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5718 AlignmentSource::Decl);
5719 opaqueData = OVMA::bind(CGF, ov, LV);
5720 result.RV = slot.asRValue();
5722 // Otherwise, emit as normal.
5723 } else {
5724 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5726 // If this is the result, also evaluate the result now.
5727 if (ov == resultExpr) {
5728 if (forLValue)
5729 result.LV = CGF.EmitLValue(ov);
5730 else
5731 result.RV = CGF.EmitAnyExpr(ov, slot);
5735 opaques.push_back(opaqueData);
5737 // Otherwise, if the expression is the result, evaluate it
5738 // and remember the result.
5739 } else if (semantic == resultExpr) {
5740 if (forLValue)
5741 result.LV = CGF.EmitLValue(semantic);
5742 else
5743 result.RV = CGF.EmitAnyExpr(semantic, slot);
5745 // Otherwise, evaluate the expression in an ignored context.
5746 } else {
5747 CGF.EmitIgnoredExpr(semantic);
5751 // Unbind all the opaques now.
5752 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5753 opaques[i].unbind(CGF);
5755 return result;
5758 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5759 AggValueSlot slot) {
5760 return emitPseudoObjectExpr(*this, E, false, slot).RV;
5763 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5764 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;