[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / CodeGen / CGExprConstant.cpp
blob69616dcc07efe1fa8a2c2b12ddd8476c0cab0aeb
1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include <optional>
34 using namespace clang;
35 using namespace CodeGen;
37 //===----------------------------------------------------------------------===//
38 // ConstantAggregateBuilder
39 //===----------------------------------------------------------------------===//
41 namespace {
42 class ConstExprEmitter;
44 struct ConstantAggregateBuilderUtils {
45 CodeGenModule &CGM;
47 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
49 CharUnits getAlignment(const llvm::Constant *C) const {
50 return CharUnits::fromQuantity(
51 CGM.getDataLayout().getABITypeAlign(C->getType()));
54 CharUnits getSize(llvm::Type *Ty) const {
55 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
58 CharUnits getSize(const llvm::Constant *C) const {
59 return getSize(C->getType());
62 llvm::Constant *getPadding(CharUnits PadSize) const {
63 llvm::Type *Ty = CGM.CharTy;
64 if (PadSize > CharUnits::One())
65 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
66 return llvm::UndefValue::get(Ty);
69 llvm::Constant *getZeroes(CharUnits ZeroSize) const {
70 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
71 return llvm::ConstantAggregateZero::get(Ty);
75 /// Incremental builder for an llvm::Constant* holding a struct or array
76 /// constant.
77 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
78 /// The elements of the constant. These two arrays must have the same size;
79 /// Offsets[i] describes the offset of Elems[i] within the constant. The
80 /// elements are kept in increasing offset order, and we ensure that there
81 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
82 ///
83 /// This may contain explicit padding elements (in order to create a
84 /// natural layout), but need not. Gaps between elements are implicitly
85 /// considered to be filled with undef.
86 llvm::SmallVector<llvm::Constant*, 32> Elems;
87 llvm::SmallVector<CharUnits, 32> Offsets;
89 /// The size of the constant (the maximum end offset of any added element).
90 /// May be larger than the end of Elems.back() if we split the last element
91 /// and removed some trailing undefs.
92 CharUnits Size = CharUnits::Zero();
94 /// This is true only if laying out Elems in order as the elements of a
95 /// non-packed LLVM struct will give the correct layout.
96 bool NaturalLayout = true;
98 bool split(size_t Index, CharUnits Hint);
99 std::optional<size_t> splitAt(CharUnits Pos);
101 static llvm::Constant *buildFrom(CodeGenModule &CGM,
102 ArrayRef<llvm::Constant *> Elems,
103 ArrayRef<CharUnits> Offsets,
104 CharUnits StartOffset, CharUnits Size,
105 bool NaturalLayout, llvm::Type *DesiredTy,
106 bool AllowOversized);
108 public:
109 ConstantAggregateBuilder(CodeGenModule &CGM)
110 : ConstantAggregateBuilderUtils(CGM) {}
112 /// Update or overwrite the value starting at \p Offset with \c C.
114 /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
115 /// a constant that has already been added. This flag is only used to
116 /// detect bugs.
117 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
119 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
120 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
122 /// Attempt to condense the value starting at \p Offset to a constant of type
123 /// \p DesiredTy.
124 void condense(CharUnits Offset, llvm::Type *DesiredTy);
126 /// Produce a constant representing the entire accumulated value, ideally of
127 /// the specified type. If \p AllowOversized, the constant might be larger
128 /// than implied by \p DesiredTy (eg, if there is a flexible array member).
129 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
130 /// even if we can't represent it as that type.
131 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
132 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
133 NaturalLayout, DesiredTy, AllowOversized);
137 template<typename Container, typename Range = std::initializer_list<
138 typename Container::value_type>>
139 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
140 assert(BeginOff <= EndOff && "invalid replacement range");
141 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
144 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
145 bool AllowOverwrite) {
146 // Common case: appending to a layout.
147 if (Offset >= Size) {
148 CharUnits Align = getAlignment(C);
149 CharUnits AlignedSize = Size.alignTo(Align);
150 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
151 NaturalLayout = false;
152 else if (AlignedSize < Offset) {
153 Elems.push_back(getPadding(Offset - Size));
154 Offsets.push_back(Size);
156 Elems.push_back(C);
157 Offsets.push_back(Offset);
158 Size = Offset + getSize(C);
159 return true;
162 // Uncommon case: constant overlaps what we've already created.
163 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
164 if (!FirstElemToReplace)
165 return false;
167 CharUnits CSize = getSize(C);
168 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
169 if (!LastElemToReplace)
170 return false;
172 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
173 "unexpectedly overwriting field");
175 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
176 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
177 Size = std::max(Size, Offset + CSize);
178 NaturalLayout = false;
179 return true;
182 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
183 bool AllowOverwrite) {
184 const ASTContext &Context = CGM.getContext();
185 const uint64_t CharWidth = CGM.getContext().getCharWidth();
187 // Offset of where we want the first bit to go within the bits of the
188 // current char.
189 unsigned OffsetWithinChar = OffsetInBits % CharWidth;
191 // We split bit-fields up into individual bytes. Walk over the bytes and
192 // update them.
193 for (CharUnits OffsetInChars =
194 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
195 /**/; ++OffsetInChars) {
196 // Number of bits we want to fill in this char.
197 unsigned WantedBits =
198 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
200 // Get a char containing the bits we want in the right places. The other
201 // bits have unspecified values.
202 llvm::APInt BitsThisChar = Bits;
203 if (BitsThisChar.getBitWidth() < CharWidth)
204 BitsThisChar = BitsThisChar.zext(CharWidth);
205 if (CGM.getDataLayout().isBigEndian()) {
206 // Figure out how much to shift by. We may need to left-shift if we have
207 // less than one byte of Bits left.
208 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
209 if (Shift > 0)
210 BitsThisChar.lshrInPlace(Shift);
211 else if (Shift < 0)
212 BitsThisChar = BitsThisChar.shl(-Shift);
213 } else {
214 BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
216 if (BitsThisChar.getBitWidth() > CharWidth)
217 BitsThisChar = BitsThisChar.trunc(CharWidth);
219 if (WantedBits == CharWidth) {
220 // Got a full byte: just add it directly.
221 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
222 OffsetInChars, AllowOverwrite);
223 } else {
224 // Partial byte: update the existing integer if there is one. If we
225 // can't split out a 1-CharUnit range to update, then we can't add
226 // these bits and fail the entire constant emission.
227 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
228 if (!FirstElemToUpdate)
229 return false;
230 std::optional<size_t> LastElemToUpdate =
231 splitAt(OffsetInChars + CharUnits::One());
232 if (!LastElemToUpdate)
233 return false;
234 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
235 "should have at most one element covering one byte");
237 // Figure out which bits we want and discard the rest.
238 llvm::APInt UpdateMask(CharWidth, 0);
239 if (CGM.getDataLayout().isBigEndian())
240 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
241 CharWidth - OffsetWithinChar);
242 else
243 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
244 BitsThisChar &= UpdateMask;
246 if (*FirstElemToUpdate == *LastElemToUpdate ||
247 Elems[*FirstElemToUpdate]->isNullValue() ||
248 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
249 // All existing bits are either zero or undef.
250 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
251 OffsetInChars, /*AllowOverwrite*/ true);
252 } else {
253 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
254 // In order to perform a partial update, we need the existing bitwise
255 // value, which we can only extract for a constant int.
256 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
257 if (!CI)
258 return false;
259 // Because this is a 1-CharUnit range, the constant occupying it must
260 // be exactly one CharUnit wide.
261 assert(CI->getBitWidth() == CharWidth && "splitAt failed");
262 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
263 "unexpectedly overwriting bitfield");
264 BitsThisChar |= (CI->getValue() & ~UpdateMask);
265 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
269 // Stop if we've added all the bits.
270 if (WantedBits == Bits.getBitWidth())
271 break;
273 // Remove the consumed bits from Bits.
274 if (!CGM.getDataLayout().isBigEndian())
275 Bits.lshrInPlace(WantedBits);
276 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
278 // The remanining bits go at the start of the following bytes.
279 OffsetWithinChar = 0;
282 return true;
285 /// Returns a position within Elems and Offsets such that all elements
286 /// before the returned index end before Pos and all elements at or after
287 /// the returned index begin at or after Pos. Splits elements as necessary
288 /// to ensure this. Returns std::nullopt if we find something we can't split.
289 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
290 if (Pos >= Size)
291 return Offsets.size();
293 while (true) {
294 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
295 if (FirstAfterPos == Offsets.begin())
296 return 0;
298 // If we already have an element starting at Pos, we're done.
299 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
300 if (Offsets[LastAtOrBeforePosIndex] == Pos)
301 return LastAtOrBeforePosIndex;
303 // We found an element starting before Pos. Check for overlap.
304 if (Offsets[LastAtOrBeforePosIndex] +
305 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
306 return LastAtOrBeforePosIndex + 1;
308 // Try to decompose it into smaller constants.
309 if (!split(LastAtOrBeforePosIndex, Pos))
310 return std::nullopt;
314 /// Split the constant at index Index, if possible. Return true if we did.
315 /// Hint indicates the location at which we'd like to split, but may be
316 /// ignored.
317 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
318 NaturalLayout = false;
319 llvm::Constant *C = Elems[Index];
320 CharUnits Offset = Offsets[Index];
322 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
323 // Expand the sequence into its contained elements.
324 // FIXME: This assumes vector elements are byte-sized.
325 replace(Elems, Index, Index + 1,
326 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
327 [&](unsigned Op) { return CA->getOperand(Op); }));
328 if (isa<llvm::ArrayType>(CA->getType()) ||
329 isa<llvm::VectorType>(CA->getType())) {
330 // Array or vector.
331 llvm::Type *ElemTy =
332 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
333 CharUnits ElemSize = getSize(ElemTy);
334 replace(
335 Offsets, Index, Index + 1,
336 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
337 [&](unsigned Op) { return Offset + Op * ElemSize; }));
338 } else {
339 // Must be a struct.
340 auto *ST = cast<llvm::StructType>(CA->getType());
341 const llvm::StructLayout *Layout =
342 CGM.getDataLayout().getStructLayout(ST);
343 replace(Offsets, Index, Index + 1,
344 llvm::map_range(
345 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
346 return Offset + CharUnits::fromQuantity(
347 Layout->getElementOffset(Op));
348 }));
350 return true;
353 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
354 // Expand the sequence into its contained elements.
355 // FIXME: This assumes vector elements are byte-sized.
356 // FIXME: If possible, split into two ConstantDataSequentials at Hint.
357 CharUnits ElemSize = getSize(CDS->getElementType());
358 replace(Elems, Index, Index + 1,
359 llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
360 [&](unsigned Elem) {
361 return CDS->getElementAsConstant(Elem);
362 }));
363 replace(Offsets, Index, Index + 1,
364 llvm::map_range(
365 llvm::seq(0u, CDS->getNumElements()),
366 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
367 return true;
370 if (isa<llvm::ConstantAggregateZero>(C)) {
371 // Split into two zeros at the hinted offset.
372 CharUnits ElemSize = getSize(C);
373 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
374 replace(Elems, Index, Index + 1,
375 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
376 replace(Offsets, Index, Index + 1, {Offset, Hint});
377 return true;
380 if (isa<llvm::UndefValue>(C)) {
381 // Drop undef; it doesn't contribute to the final layout.
382 replace(Elems, Index, Index + 1, {});
383 replace(Offsets, Index, Index + 1, {});
384 return true;
387 // FIXME: We could split a ConstantInt if the need ever arose.
388 // We don't need to do this to handle bit-fields because we always eagerly
389 // split them into 1-byte chunks.
391 return false;
394 static llvm::Constant *
395 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
396 llvm::Type *CommonElementType, unsigned ArrayBound,
397 SmallVectorImpl<llvm::Constant *> &Elements,
398 llvm::Constant *Filler);
400 llvm::Constant *ConstantAggregateBuilder::buildFrom(
401 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
402 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
403 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
404 ConstantAggregateBuilderUtils Utils(CGM);
406 if (Elems.empty())
407 return llvm::UndefValue::get(DesiredTy);
409 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
411 // If we want an array type, see if all the elements are the same type and
412 // appropriately spaced.
413 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
414 assert(!AllowOversized && "oversized array emission not supported");
416 bool CanEmitArray = true;
417 llvm::Type *CommonType = Elems[0]->getType();
418 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
419 CharUnits ElemSize = Utils.getSize(ATy->getElementType());
420 SmallVector<llvm::Constant*, 32> ArrayElements;
421 for (size_t I = 0; I != Elems.size(); ++I) {
422 // Skip zeroes; we'll use a zero value as our array filler.
423 if (Elems[I]->isNullValue())
424 continue;
426 // All remaining elements must be the same type.
427 if (Elems[I]->getType() != CommonType ||
428 Offset(I) % ElemSize != 0) {
429 CanEmitArray = false;
430 break;
432 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
433 ArrayElements.back() = Elems[I];
436 if (CanEmitArray) {
437 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
438 ArrayElements, Filler);
441 // Can't emit as an array, carry on to emit as a struct.
444 // The size of the constant we plan to generate. This is usually just
445 // the size of the initialized type, but in AllowOversized mode (i.e.
446 // flexible array init), it can be larger.
447 CharUnits DesiredSize = Utils.getSize(DesiredTy);
448 if (Size > DesiredSize) {
449 assert(AllowOversized && "Elems are oversized");
450 DesiredSize = Size;
453 // The natural alignment of an unpacked LLVM struct with the given elements.
454 CharUnits Align = CharUnits::One();
455 for (llvm::Constant *C : Elems)
456 Align = std::max(Align, Utils.getAlignment(C));
458 // The natural size of an unpacked LLVM struct with the given elements.
459 CharUnits AlignedSize = Size.alignTo(Align);
461 bool Packed = false;
462 ArrayRef<llvm::Constant*> UnpackedElems = Elems;
463 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
464 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
465 // The natural layout would be too big; force use of a packed layout.
466 NaturalLayout = false;
467 Packed = true;
468 } else if (DesiredSize > AlignedSize) {
469 // The natural layout would be too small. Add padding to fix it. (This
470 // is ignored if we choose a packed layout.)
471 UnpackedElemStorage.assign(Elems.begin(), Elems.end());
472 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
473 UnpackedElems = UnpackedElemStorage;
476 // If we don't have a natural layout, insert padding as necessary.
477 // As we go, double-check to see if we can actually just emit Elems
478 // as a non-packed struct and do so opportunistically if possible.
479 llvm::SmallVector<llvm::Constant*, 32> PackedElems;
480 if (!NaturalLayout) {
481 CharUnits SizeSoFar = CharUnits::Zero();
482 for (size_t I = 0; I != Elems.size(); ++I) {
483 CharUnits Align = Utils.getAlignment(Elems[I]);
484 CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
485 CharUnits DesiredOffset = Offset(I);
486 assert(DesiredOffset >= SizeSoFar && "elements out of order");
488 if (DesiredOffset != NaturalOffset)
489 Packed = true;
490 if (DesiredOffset != SizeSoFar)
491 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
492 PackedElems.push_back(Elems[I]);
493 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
495 // If we're using the packed layout, pad it out to the desired size if
496 // necessary.
497 if (Packed) {
498 assert(SizeSoFar <= DesiredSize &&
499 "requested size is too small for contents");
500 if (SizeSoFar < DesiredSize)
501 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
505 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
506 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
508 // Pick the type to use. If the type is layout identical to the desired
509 // type then use it, otherwise use whatever the builder produced for us.
510 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
511 if (DesiredSTy->isLayoutIdentical(STy))
512 STy = DesiredSTy;
515 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
518 void ConstantAggregateBuilder::condense(CharUnits Offset,
519 llvm::Type *DesiredTy) {
520 CharUnits Size = getSize(DesiredTy);
522 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
523 if (!FirstElemToReplace)
524 return;
525 size_t First = *FirstElemToReplace;
527 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
528 if (!LastElemToReplace)
529 return;
530 size_t Last = *LastElemToReplace;
532 size_t Length = Last - First;
533 if (Length == 0)
534 return;
536 if (Length == 1 && Offsets[First] == Offset &&
537 getSize(Elems[First]) == Size) {
538 // Re-wrap single element structs if necessary. Otherwise, leave any single
539 // element constant of the right size alone even if it has the wrong type.
540 auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
541 if (STy && STy->getNumElements() == 1 &&
542 STy->getElementType(0) == Elems[First]->getType())
543 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
544 return;
547 llvm::Constant *Replacement = buildFrom(
548 CGM, ArrayRef(Elems).slice(First, Length),
549 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
550 /*known to have natural layout=*/false, DesiredTy, false);
551 replace(Elems, First, Last, {Replacement});
552 replace(Offsets, First, Last, {Offset});
555 //===----------------------------------------------------------------------===//
556 // ConstStructBuilder
557 //===----------------------------------------------------------------------===//
559 class ConstStructBuilder {
560 CodeGenModule &CGM;
561 ConstantEmitter &Emitter;
562 ConstantAggregateBuilder &Builder;
563 CharUnits StartOffset;
565 public:
566 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567 InitListExpr *ILE, QualType StructTy);
568 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
569 const APValue &Value, QualType ValTy);
570 static bool UpdateStruct(ConstantEmitter &Emitter,
571 ConstantAggregateBuilder &Const, CharUnits Offset,
572 InitListExpr *Updater);
574 private:
575 ConstStructBuilder(ConstantEmitter &Emitter,
576 ConstantAggregateBuilder &Builder, CharUnits StartOffset)
577 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
578 StartOffset(StartOffset) {}
580 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
581 llvm::Constant *InitExpr, bool AllowOverwrite = false);
583 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
584 bool AllowOverwrite = false);
586 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
587 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
589 bool Build(InitListExpr *ILE, bool AllowOverwrite);
590 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
591 const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
592 llvm::Constant *Finalize(QualType Ty);
595 bool ConstStructBuilder::AppendField(
596 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
597 bool AllowOverwrite) {
598 const ASTContext &Context = CGM.getContext();
600 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
602 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
605 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
606 llvm::Constant *InitCst,
607 bool AllowOverwrite) {
608 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
611 bool ConstStructBuilder::AppendBitField(
612 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
613 bool AllowOverwrite) {
614 const CGRecordLayout &RL =
615 CGM.getTypes().getCGRecordLayout(Field->getParent());
616 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
617 llvm::APInt FieldValue = CI->getValue();
619 // Promote the size of FieldValue if necessary
620 // FIXME: This should never occur, but currently it can because initializer
621 // constants are cast to bool, and because clang is not enforcing bitfield
622 // width limits.
623 if (Info.Size > FieldValue.getBitWidth())
624 FieldValue = FieldValue.zext(Info.Size);
626 // Truncate the size of FieldValue to the bit field size.
627 if (Info.Size < FieldValue.getBitWidth())
628 FieldValue = FieldValue.trunc(Info.Size);
630 return Builder.addBits(FieldValue,
631 CGM.getContext().toBits(StartOffset) + FieldOffset,
632 AllowOverwrite);
635 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
636 ConstantAggregateBuilder &Const,
637 CharUnits Offset, QualType Type,
638 InitListExpr *Updater) {
639 if (Type->isRecordType())
640 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
642 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
643 if (!CAT)
644 return false;
645 QualType ElemType = CAT->getElementType();
646 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
647 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
649 llvm::Constant *FillC = nullptr;
650 if (Expr *Filler = Updater->getArrayFiller()) {
651 if (!isa<NoInitExpr>(Filler)) {
652 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
653 if (!FillC)
654 return false;
658 unsigned NumElementsToUpdate =
659 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
660 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
661 Expr *Init = nullptr;
662 if (I < Updater->getNumInits())
663 Init = Updater->getInit(I);
665 if (!Init && FillC) {
666 if (!Const.add(FillC, Offset, true))
667 return false;
668 } else if (!Init || isa<NoInitExpr>(Init)) {
669 continue;
670 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
671 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
672 ChildILE))
673 return false;
674 // Attempt to reduce the array element to a single constant if necessary.
675 Const.condense(Offset, ElemTy);
676 } else {
677 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
678 if (!Const.add(Val, Offset, true))
679 return false;
683 return true;
686 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
687 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
688 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
690 unsigned FieldNo = -1;
691 unsigned ElementNo = 0;
693 // Bail out if we have base classes. We could support these, but they only
694 // arise in C++1z where we will have already constant folded most interesting
695 // cases. FIXME: There are still a few more cases we can handle this way.
696 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
697 if (CXXRD->getNumBases())
698 return false;
700 for (FieldDecl *Field : RD->fields()) {
701 ++FieldNo;
703 // If this is a union, skip all the fields that aren't being initialized.
704 if (RD->isUnion() &&
705 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
706 continue;
708 // Don't emit anonymous bitfields.
709 if (Field->isUnnamedBitfield())
710 continue;
712 // Get the initializer. A struct can include fields without initializers,
713 // we just use explicit null values for them.
714 Expr *Init = nullptr;
715 if (ElementNo < ILE->getNumInits())
716 Init = ILE->getInit(ElementNo++);
717 if (Init && isa<NoInitExpr>(Init))
718 continue;
720 // Zero-sized fields are not emitted, but their initializers may still
721 // prevent emission of this struct as a constant.
722 if (Field->isZeroSize(CGM.getContext())) {
723 if (Init->HasSideEffects(CGM.getContext()))
724 return false;
725 continue;
728 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
729 // represents additional overwriting of our current constant value, and not
730 // a new constant to emit independently.
731 if (AllowOverwrite &&
732 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
733 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
734 CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
735 Layout.getFieldOffset(FieldNo));
736 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
737 Field->getType(), SubILE))
738 return false;
739 // If we split apart the field's value, try to collapse it down to a
740 // single value now.
741 Builder.condense(StartOffset + Offset,
742 CGM.getTypes().ConvertTypeForMem(Field->getType()));
743 continue;
747 llvm::Constant *EltInit =
748 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
749 : Emitter.emitNullForMemory(Field->getType());
750 if (!EltInit)
751 return false;
753 if (!Field->isBitField()) {
754 // Handle non-bitfield members.
755 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
756 AllowOverwrite))
757 return false;
758 // After emitting a non-empty field with [[no_unique_address]], we may
759 // need to overwrite its tail padding.
760 if (Field->hasAttr<NoUniqueAddressAttr>())
761 AllowOverwrite = true;
762 } else {
763 // Otherwise we have a bitfield.
764 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
765 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
766 AllowOverwrite))
767 return false;
768 } else {
769 // We are trying to initialize a bitfield with a non-trivial constant,
770 // this must require run-time code.
771 return false;
776 return true;
779 namespace {
780 struct BaseInfo {
781 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
782 : Decl(Decl), Offset(Offset), Index(Index) {
785 const CXXRecordDecl *Decl;
786 CharUnits Offset;
787 unsigned Index;
789 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
793 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
794 bool IsPrimaryBase,
795 const CXXRecordDecl *VTableClass,
796 CharUnits Offset) {
797 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
799 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
800 // Add a vtable pointer, if we need one and it hasn't already been added.
801 if (Layout.hasOwnVFPtr()) {
802 llvm::Constant *VTableAddressPoint =
803 CGM.getCXXABI().getVTableAddressPointForConstExpr(
804 BaseSubobject(CD, Offset), VTableClass);
805 if (!AppendBytes(Offset, VTableAddressPoint))
806 return false;
809 // Accumulate and sort bases, in order to visit them in address order, which
810 // may not be the same as declaration order.
811 SmallVector<BaseInfo, 8> Bases;
812 Bases.reserve(CD->getNumBases());
813 unsigned BaseNo = 0;
814 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
815 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
816 assert(!Base->isVirtual() && "should not have virtual bases here");
817 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
818 CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
819 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
821 llvm::stable_sort(Bases);
823 for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
824 BaseInfo &Base = Bases[I];
826 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
827 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
828 VTableClass, Offset + Base.Offset);
832 unsigned FieldNo = 0;
833 uint64_t OffsetBits = CGM.getContext().toBits(Offset);
835 bool AllowOverwrite = false;
836 for (RecordDecl::field_iterator Field = RD->field_begin(),
837 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
838 // If this is a union, skip all the fields that aren't being initialized.
839 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
840 continue;
842 // Don't emit anonymous bitfields or zero-sized fields.
843 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
844 continue;
846 // Emit the value of the initializer.
847 const APValue &FieldValue =
848 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
849 llvm::Constant *EltInit =
850 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
851 if (!EltInit)
852 return false;
854 if (!Field->isBitField()) {
855 // Handle non-bitfield members.
856 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
857 EltInit, AllowOverwrite))
858 return false;
859 // After emitting a non-empty field with [[no_unique_address]], we may
860 // need to overwrite its tail padding.
861 if (Field->hasAttr<NoUniqueAddressAttr>())
862 AllowOverwrite = true;
863 } else {
864 // Otherwise we have a bitfield.
865 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
866 cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
867 return false;
871 return true;
874 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
875 Type = Type.getNonReferenceType();
876 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
877 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
878 return Builder.build(ValTy, RD->hasFlexibleArrayMember());
881 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
882 InitListExpr *ILE,
883 QualType ValTy) {
884 ConstantAggregateBuilder Const(Emitter.CGM);
885 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
887 if (!Builder.Build(ILE, /*AllowOverwrite*/false))
888 return nullptr;
890 return Builder.Finalize(ValTy);
893 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
894 const APValue &Val,
895 QualType ValTy) {
896 ConstantAggregateBuilder Const(Emitter.CGM);
897 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
899 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
900 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
901 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
902 return nullptr;
904 return Builder.Finalize(ValTy);
907 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
908 ConstantAggregateBuilder &Const,
909 CharUnits Offset, InitListExpr *Updater) {
910 return ConstStructBuilder(Emitter, Const, Offset)
911 .Build(Updater, /*AllowOverwrite*/ true);
914 //===----------------------------------------------------------------------===//
915 // ConstExprEmitter
916 //===----------------------------------------------------------------------===//
918 static ConstantAddress
919 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
920 const CompoundLiteralExpr *E) {
921 CodeGenModule &CGM = emitter.CGM;
922 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
923 if (llvm::GlobalVariable *Addr =
924 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
925 return ConstantAddress(Addr, Addr->getValueType(), Align);
927 LangAS addressSpace = E->getType().getAddressSpace();
928 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
929 addressSpace, E->getType());
930 if (!C) {
931 assert(!E->isFileScope() &&
932 "file-scope compound literal did not have constant initializer!");
933 return ConstantAddress::invalid();
936 auto GV = new llvm::GlobalVariable(
937 CGM.getModule(), C->getType(),
938 E->getType().isConstantStorage(CGM.getContext(), true, false),
939 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
940 llvm::GlobalVariable::NotThreadLocal,
941 CGM.getContext().getTargetAddressSpace(addressSpace));
942 emitter.finalize(GV);
943 GV->setAlignment(Align.getAsAlign());
944 CGM.setAddrOfConstantCompoundLiteral(E, GV);
945 return ConstantAddress(GV, GV->getValueType(), Align);
948 static llvm::Constant *
949 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
950 llvm::Type *CommonElementType, unsigned ArrayBound,
951 SmallVectorImpl<llvm::Constant *> &Elements,
952 llvm::Constant *Filler) {
953 // Figure out how long the initial prefix of non-zero elements is.
954 unsigned NonzeroLength = ArrayBound;
955 if (Elements.size() < NonzeroLength && Filler->isNullValue())
956 NonzeroLength = Elements.size();
957 if (NonzeroLength == Elements.size()) {
958 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
959 --NonzeroLength;
962 if (NonzeroLength == 0)
963 return llvm::ConstantAggregateZero::get(DesiredType);
965 // Add a zeroinitializer array filler if we have lots of trailing zeroes.
966 unsigned TrailingZeroes = ArrayBound - NonzeroLength;
967 if (TrailingZeroes >= 8) {
968 assert(Elements.size() >= NonzeroLength &&
969 "missing initializer for non-zero element");
971 // If all the elements had the same type up to the trailing zeroes, emit a
972 // struct of two arrays (the nonzero data and the zeroinitializer).
973 if (CommonElementType && NonzeroLength >= 8) {
974 llvm::Constant *Initial = llvm::ConstantArray::get(
975 llvm::ArrayType::get(CommonElementType, NonzeroLength),
976 ArrayRef(Elements).take_front(NonzeroLength));
977 Elements.resize(2);
978 Elements[0] = Initial;
979 } else {
980 Elements.resize(NonzeroLength + 1);
983 auto *FillerType =
984 CommonElementType ? CommonElementType : DesiredType->getElementType();
985 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
986 Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
987 CommonElementType = nullptr;
988 } else if (Elements.size() != ArrayBound) {
989 // Otherwise pad to the right size with the filler if necessary.
990 Elements.resize(ArrayBound, Filler);
991 if (Filler->getType() != CommonElementType)
992 CommonElementType = nullptr;
995 // If all elements have the same type, just emit an array constant.
996 if (CommonElementType)
997 return llvm::ConstantArray::get(
998 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1000 // We have mixed types. Use a packed struct.
1001 llvm::SmallVector<llvm::Type *, 16> Types;
1002 Types.reserve(Elements.size());
1003 for (llvm::Constant *Elt : Elements)
1004 Types.push_back(Elt->getType());
1005 llvm::StructType *SType =
1006 llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1007 return llvm::ConstantStruct::get(SType, Elements);
1010 // This class only needs to handle arrays, structs and unions. Outside C++11
1011 // mode, we don't currently constant fold those types. All other types are
1012 // handled by constant folding.
1014 // Constant folding is currently missing support for a few features supported
1015 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1016 class ConstExprEmitter :
1017 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1018 CodeGenModule &CGM;
1019 ConstantEmitter &Emitter;
1020 llvm::LLVMContext &VMContext;
1021 public:
1022 ConstExprEmitter(ConstantEmitter &emitter)
1023 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1026 //===--------------------------------------------------------------------===//
1027 // Visitor Methods
1028 //===--------------------------------------------------------------------===//
1030 llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1031 return nullptr;
1034 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1035 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1036 return Result;
1037 return Visit(CE->getSubExpr(), T);
1040 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1041 return Visit(PE->getSubExpr(), T);
1044 llvm::Constant *
1045 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1046 QualType T) {
1047 return Visit(PE->getReplacement(), T);
1050 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1051 QualType T) {
1052 return Visit(GE->getResultExpr(), T);
1055 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1056 return Visit(CE->getChosenSubExpr(), T);
1059 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1060 return Visit(E->getInitializer(), T);
1063 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1064 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1065 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1066 Expr *subExpr = E->getSubExpr();
1068 switch (E->getCastKind()) {
1069 case CK_ToUnion: {
1070 // GCC cast to union extension
1071 assert(E->getType()->isUnionType() &&
1072 "Destination type is not union type!");
1074 auto field = E->getTargetUnionField();
1076 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1077 if (!C) return nullptr;
1079 auto destTy = ConvertType(destType);
1080 if (C->getType() == destTy) return C;
1082 // Build a struct with the union sub-element as the first member,
1083 // and padded to the appropriate size.
1084 SmallVector<llvm::Constant*, 2> Elts;
1085 SmallVector<llvm::Type*, 2> Types;
1086 Elts.push_back(C);
1087 Types.push_back(C->getType());
1088 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1089 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1091 assert(CurSize <= TotalSize && "Union size mismatch!");
1092 if (unsigned NumPadBytes = TotalSize - CurSize) {
1093 llvm::Type *Ty = CGM.CharTy;
1094 if (NumPadBytes > 1)
1095 Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1097 Elts.push_back(llvm::UndefValue::get(Ty));
1098 Types.push_back(Ty);
1101 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1102 return llvm::ConstantStruct::get(STy, Elts);
1105 case CK_AddressSpaceConversion: {
1106 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1107 if (!C) return nullptr;
1108 LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1109 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1110 llvm::Type *destTy = ConvertType(E->getType());
1111 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1112 destAS, destTy);
1115 case CK_LValueToRValue: {
1116 // We don't really support doing lvalue-to-rvalue conversions here; any
1117 // interesting conversions should be done in Evaluate(). But as a
1118 // special case, allow compound literals to support the gcc extension
1119 // allowing "struct x {int x;} x = (struct x) {};".
1120 if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1121 return Visit(E->getInitializer(), destType);
1122 return nullptr;
1125 case CK_AtomicToNonAtomic:
1126 case CK_NonAtomicToAtomic:
1127 case CK_NoOp:
1128 case CK_ConstructorConversion:
1129 return Visit(subExpr, destType);
1131 case CK_ArrayToPointerDecay:
1132 if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1133 return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1134 return nullptr;
1135 case CK_NullToPointer:
1136 if (Visit(subExpr, destType))
1137 return CGM.EmitNullConstant(destType);
1138 return nullptr;
1140 case CK_IntToOCLSampler:
1141 llvm_unreachable("global sampler variables are not generated");
1143 case CK_IntegralCast: {
1144 QualType FromType = subExpr->getType();
1145 // See also HandleIntToIntCast in ExprConstant.cpp
1146 if (FromType->isIntegerType())
1147 if (llvm::Constant *C = Visit(subExpr, FromType))
1148 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1149 unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1150 unsigned DstWidth = CGM.getContext().getIntWidth(destType);
1151 if (DstWidth == SrcWidth)
1152 return CI;
1153 llvm::APInt A = FromType->isSignedIntegerType()
1154 ? CI->getValue().sextOrTrunc(DstWidth)
1155 : CI->getValue().zextOrTrunc(DstWidth);
1156 return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1158 return nullptr;
1161 case CK_Dependent: llvm_unreachable("saw dependent cast!");
1163 case CK_BuiltinFnToFnPtr:
1164 llvm_unreachable("builtin functions are handled elsewhere");
1166 case CK_ReinterpretMemberPointer:
1167 case CK_DerivedToBaseMemberPointer:
1168 case CK_BaseToDerivedMemberPointer: {
1169 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1170 if (!C) return nullptr;
1171 return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1174 // These will never be supported.
1175 case CK_ObjCObjectLValueCast:
1176 case CK_ARCProduceObject:
1177 case CK_ARCConsumeObject:
1178 case CK_ARCReclaimReturnedObject:
1179 case CK_ARCExtendBlockObject:
1180 case CK_CopyAndAutoreleaseBlockObject:
1181 return nullptr;
1183 // These don't need to be handled here because Evaluate knows how to
1184 // evaluate them in the cases where they can be folded.
1185 case CK_BitCast:
1186 case CK_ToVoid:
1187 case CK_Dynamic:
1188 case CK_LValueBitCast:
1189 case CK_LValueToRValueBitCast:
1190 case CK_NullToMemberPointer:
1191 case CK_UserDefinedConversion:
1192 case CK_CPointerToObjCPointerCast:
1193 case CK_BlockPointerToObjCPointerCast:
1194 case CK_AnyPointerToBlockPointerCast:
1195 case CK_FunctionToPointerDecay:
1196 case CK_BaseToDerived:
1197 case CK_DerivedToBase:
1198 case CK_UncheckedDerivedToBase:
1199 case CK_MemberPointerToBoolean:
1200 case CK_VectorSplat:
1201 case CK_FloatingRealToComplex:
1202 case CK_FloatingComplexToReal:
1203 case CK_FloatingComplexToBoolean:
1204 case CK_FloatingComplexCast:
1205 case CK_FloatingComplexToIntegralComplex:
1206 case CK_IntegralRealToComplex:
1207 case CK_IntegralComplexToReal:
1208 case CK_IntegralComplexToBoolean:
1209 case CK_IntegralComplexCast:
1210 case CK_IntegralComplexToFloatingComplex:
1211 case CK_PointerToIntegral:
1212 case CK_PointerToBoolean:
1213 case CK_BooleanToSignedIntegral:
1214 case CK_IntegralToPointer:
1215 case CK_IntegralToBoolean:
1216 case CK_IntegralToFloating:
1217 case CK_FloatingToIntegral:
1218 case CK_FloatingToBoolean:
1219 case CK_FloatingCast:
1220 case CK_FloatingToFixedPoint:
1221 case CK_FixedPointToFloating:
1222 case CK_FixedPointCast:
1223 case CK_FixedPointToBoolean:
1224 case CK_FixedPointToIntegral:
1225 case CK_IntegralToFixedPoint:
1226 case CK_ZeroToOCLOpaqueType:
1227 case CK_MatrixCast:
1228 return nullptr;
1230 llvm_unreachable("Invalid CastKind");
1233 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1234 // No need for a DefaultInitExprScope: we don't handle 'this' in a
1235 // constant expression.
1236 return Visit(DIE->getExpr(), T);
1239 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1240 return Visit(E->getSubExpr(), T);
1243 llvm::Constant *VisitIntegerLiteral(IntegerLiteral *I, QualType T) {
1244 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1247 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1248 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1249 assert(CAT && "can't emit array init for non-constant-bound array");
1250 unsigned NumInitElements = ILE->getNumInits();
1251 unsigned NumElements = CAT->getSize().getZExtValue();
1253 // Initialising an array requires us to automatically
1254 // initialise any elements that have not been initialised explicitly
1255 unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1257 QualType EltType = CAT->getElementType();
1259 // Initialize remaining array elements.
1260 llvm::Constant *fillC = nullptr;
1261 if (Expr *filler = ILE->getArrayFiller()) {
1262 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1263 if (!fillC)
1264 return nullptr;
1267 // Copy initializer elements.
1268 SmallVector<llvm::Constant*, 16> Elts;
1269 if (fillC && fillC->isNullValue())
1270 Elts.reserve(NumInitableElts + 1);
1271 else
1272 Elts.reserve(NumElements);
1274 llvm::Type *CommonElementType = nullptr;
1275 for (unsigned i = 0; i < NumInitableElts; ++i) {
1276 Expr *Init = ILE->getInit(i);
1277 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1278 if (!C)
1279 return nullptr;
1280 if (i == 0)
1281 CommonElementType = C->getType();
1282 else if (C->getType() != CommonElementType)
1283 CommonElementType = nullptr;
1284 Elts.push_back(C);
1287 llvm::ArrayType *Desired =
1288 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1289 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1290 fillC);
1293 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1294 return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1297 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1298 QualType T) {
1299 return CGM.EmitNullConstant(T);
1302 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1303 if (ILE->isTransparent())
1304 return Visit(ILE->getInit(0), T);
1306 if (ILE->getType()->isArrayType())
1307 return EmitArrayInitialization(ILE, T);
1309 if (ILE->getType()->isRecordType())
1310 return EmitRecordInitialization(ILE, T);
1312 return nullptr;
1315 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1316 QualType destType) {
1317 auto C = Visit(E->getBase(), destType);
1318 if (!C)
1319 return nullptr;
1321 ConstantAggregateBuilder Const(CGM);
1322 Const.add(C, CharUnits::Zero(), false);
1324 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1325 E->getUpdater()))
1326 return nullptr;
1328 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1329 bool HasFlexibleArray = false;
1330 if (auto *RT = destType->getAs<RecordType>())
1331 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1332 return Const.build(ValTy, HasFlexibleArray);
1335 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1336 if (!E->getConstructor()->isTrivial())
1337 return nullptr;
1339 // Only default and copy/move constructors can be trivial.
1340 if (E->getNumArgs()) {
1341 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1342 assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1343 "trivial ctor has argument but isn't a copy/move ctor");
1345 Expr *Arg = E->getArg(0);
1346 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1347 "argument to copy ctor is of wrong type");
1349 // Look through the temporary; it's just converting the value to an
1350 // lvalue to pass it to the constructor.
1351 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1352 return Visit(MTE->getSubExpr(), Ty);
1353 // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1354 return nullptr;
1357 return CGM.EmitNullConstant(Ty);
1360 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1361 // This is a string literal initializing an array in an initializer.
1362 return CGM.GetConstantArrayFromStringLiteral(E);
1365 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1366 // This must be an @encode initializing an array in a static initializer.
1367 // Don't emit it as the address of the string, emit the string data itself
1368 // as an inline array.
1369 std::string Str;
1370 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1371 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1372 assert(CAT && "String data not of constant array type!");
1374 // Resize the string to the right size, adding zeros at the end, or
1375 // truncating as needed.
1376 Str.resize(CAT->getSize().getZExtValue(), '\0');
1377 return llvm::ConstantDataArray::getString(VMContext, Str, false);
1380 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1381 return Visit(E->getSubExpr(), T);
1384 llvm::Constant *VisitUnaryMinus(UnaryOperator *U, QualType T) {
1385 if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1386 if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1387 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1388 return nullptr;
1391 // Utility methods
1392 llvm::Type *ConvertType(QualType T) {
1393 return CGM.getTypes().ConvertType(T);
1397 } // end anonymous namespace.
1399 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1400 AbstractState saved) {
1401 Abstract = saved.OldValue;
1403 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1404 "created a placeholder while doing an abstract emission?");
1406 // No validation necessary for now.
1407 // No cleanup to do for now.
1408 return C;
1411 llvm::Constant *
1412 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1413 auto state = pushAbstract();
1414 auto C = tryEmitPrivateForVarInit(D);
1415 return validateAndPopAbstract(C, state);
1418 llvm::Constant *
1419 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1420 auto state = pushAbstract();
1421 auto C = tryEmitPrivate(E, destType);
1422 return validateAndPopAbstract(C, state);
1425 llvm::Constant *
1426 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1427 auto state = pushAbstract();
1428 auto C = tryEmitPrivate(value, destType);
1429 return validateAndPopAbstract(C, state);
1432 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1433 if (!CE->hasAPValueResult())
1434 return nullptr;
1436 QualType RetType = CE->getType();
1437 if (CE->isGLValue())
1438 RetType = CGM.getContext().getLValueReferenceType(RetType);
1440 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1443 llvm::Constant *
1444 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1445 auto state = pushAbstract();
1446 auto C = tryEmitPrivate(E, destType);
1447 C = validateAndPopAbstract(C, state);
1448 if (!C) {
1449 CGM.Error(E->getExprLoc(),
1450 "internal error: could not emit constant value \"abstractly\"");
1451 C = CGM.EmitNullConstant(destType);
1453 return C;
1456 llvm::Constant *
1457 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1458 QualType destType) {
1459 auto state = pushAbstract();
1460 auto C = tryEmitPrivate(value, destType);
1461 C = validateAndPopAbstract(C, state);
1462 if (!C) {
1463 CGM.Error(loc,
1464 "internal error: could not emit constant value \"abstractly\"");
1465 C = CGM.EmitNullConstant(destType);
1467 return C;
1470 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1471 initializeNonAbstract(D.getType().getAddressSpace());
1472 return markIfFailed(tryEmitPrivateForVarInit(D));
1475 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1476 LangAS destAddrSpace,
1477 QualType destType) {
1478 initializeNonAbstract(destAddrSpace);
1479 return markIfFailed(tryEmitPrivateForMemory(E, destType));
1482 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1483 LangAS destAddrSpace,
1484 QualType destType) {
1485 initializeNonAbstract(destAddrSpace);
1486 auto C = tryEmitPrivateForMemory(value, destType);
1487 assert(C && "couldn't emit constant value non-abstractly?");
1488 return C;
1491 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1492 assert(!Abstract && "cannot get current address for abstract constant");
1496 // Make an obviously ill-formed global that should blow up compilation
1497 // if it survives.
1498 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1499 llvm::GlobalValue::PrivateLinkage,
1500 /*init*/ nullptr,
1501 /*name*/ "",
1502 /*before*/ nullptr,
1503 llvm::GlobalVariable::NotThreadLocal,
1504 CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1506 PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1508 return global;
1511 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1512 llvm::GlobalValue *placeholder) {
1513 assert(!PlaceholderAddresses.empty());
1514 assert(PlaceholderAddresses.back().first == nullptr);
1515 assert(PlaceholderAddresses.back().second == placeholder);
1516 PlaceholderAddresses.back().first = signal;
1519 namespace {
1520 struct ReplacePlaceholders {
1521 CodeGenModule &CGM;
1523 /// The base address of the global.
1524 llvm::Constant *Base;
1525 llvm::Type *BaseValueTy = nullptr;
1527 /// The placeholder addresses that were registered during emission.
1528 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1530 /// The locations of the placeholder signals.
1531 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1533 /// The current index stack. We use a simple unsigned stack because
1534 /// we assume that placeholders will be relatively sparse in the
1535 /// initializer, but we cache the index values we find just in case.
1536 llvm::SmallVector<unsigned, 8> Indices;
1537 llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1539 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1540 ArrayRef<std::pair<llvm::Constant*,
1541 llvm::GlobalVariable*>> addresses)
1542 : CGM(CGM), Base(base),
1543 PlaceholderAddresses(addresses.begin(), addresses.end()) {
1546 void replaceInInitializer(llvm::Constant *init) {
1547 // Remember the type of the top-most initializer.
1548 BaseValueTy = init->getType();
1550 // Initialize the stack.
1551 Indices.push_back(0);
1552 IndexValues.push_back(nullptr);
1554 // Recurse into the initializer.
1555 findLocations(init);
1557 // Check invariants.
1558 assert(IndexValues.size() == Indices.size() && "mismatch");
1559 assert(Indices.size() == 1 && "didn't pop all indices");
1561 // Do the replacement; this basically invalidates 'init'.
1562 assert(Locations.size() == PlaceholderAddresses.size() &&
1563 "missed a placeholder?");
1565 // We're iterating over a hashtable, so this would be a source of
1566 // non-determinism in compiler output *except* that we're just
1567 // messing around with llvm::Constant structures, which never itself
1568 // does anything that should be visible in compiler output.
1569 for (auto &entry : Locations) {
1570 assert(entry.first->getParent() == nullptr && "not a placeholder!");
1571 entry.first->replaceAllUsesWith(entry.second);
1572 entry.first->eraseFromParent();
1576 private:
1577 void findLocations(llvm::Constant *init) {
1578 // Recurse into aggregates.
1579 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1580 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1581 Indices.push_back(i);
1582 IndexValues.push_back(nullptr);
1584 findLocations(agg->getOperand(i));
1586 IndexValues.pop_back();
1587 Indices.pop_back();
1589 return;
1592 // Otherwise, check for registered constants.
1593 while (true) {
1594 auto it = PlaceholderAddresses.find(init);
1595 if (it != PlaceholderAddresses.end()) {
1596 setLocation(it->second);
1597 break;
1600 // Look through bitcasts or other expressions.
1601 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1602 init = expr->getOperand(0);
1603 } else {
1604 break;
1609 void setLocation(llvm::GlobalVariable *placeholder) {
1610 assert(!Locations.contains(placeholder) &&
1611 "already found location for placeholder!");
1613 // Lazily fill in IndexValues with the values from Indices.
1614 // We do this in reverse because we should always have a strict
1615 // prefix of indices from the start.
1616 assert(Indices.size() == IndexValues.size());
1617 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1618 if (IndexValues[i]) {
1619 #ifndef NDEBUG
1620 for (size_t j = 0; j != i + 1; ++j) {
1621 assert(IndexValues[j] &&
1622 isa<llvm::ConstantInt>(IndexValues[j]) &&
1623 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1624 == Indices[j]);
1626 #endif
1627 break;
1630 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1633 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1634 BaseValueTy, Base, IndexValues);
1636 Locations.insert({placeholder, location});
1641 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1642 assert(InitializedNonAbstract &&
1643 "finalizing emitter that was used for abstract emission?");
1644 assert(!Finalized && "finalizing emitter multiple times");
1645 assert(global->getInitializer());
1647 // Note that we might also be Failed.
1648 Finalized = true;
1650 if (!PlaceholderAddresses.empty()) {
1651 ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1652 .replaceInInitializer(global->getInitializer());
1653 PlaceholderAddresses.clear(); // satisfy
1657 ConstantEmitter::~ConstantEmitter() {
1658 assert((!InitializedNonAbstract || Finalized || Failed) &&
1659 "not finalized after being initialized for non-abstract emission");
1660 assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1663 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1664 if (auto AT = type->getAs<AtomicType>()) {
1665 return CGM.getContext().getQualifiedType(AT->getValueType(),
1666 type.getQualifiers());
1668 return type;
1671 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1672 // Make a quick check if variable can be default NULL initialized
1673 // and avoid going through rest of code which may do, for c++11,
1674 // initialization of memory to all NULLs.
1675 if (!D.hasLocalStorage()) {
1676 QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1677 if (Ty->isRecordType())
1678 if (const CXXConstructExpr *E =
1679 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1680 const CXXConstructorDecl *CD = E->getConstructor();
1681 if (CD->isTrivial() && CD->isDefaultConstructor())
1682 return CGM.EmitNullConstant(D.getType());
1685 InConstantContext = D.hasConstantInitialization();
1687 QualType destType = D.getType();
1688 const Expr *E = D.getInit();
1689 assert(E && "No initializer to emit");
1691 if (!destType->isReferenceType()) {
1692 QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1693 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(const_cast<Expr *>(E),
1694 nonMemoryDestType))
1695 return emitForMemory(C, destType);
1698 // Try to emit the initializer. Note that this can allow some things that
1699 // are not allowed by tryEmitPrivateForMemory alone.
1700 if (APValue *value = D.evaluateValue())
1701 return tryEmitPrivateForMemory(*value, destType);
1703 return nullptr;
1706 llvm::Constant *
1707 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1708 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1709 auto C = tryEmitAbstract(E, nonMemoryDestType);
1710 return (C ? emitForMemory(C, destType) : nullptr);
1713 llvm::Constant *
1714 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1715 QualType destType) {
1716 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1717 auto C = tryEmitAbstract(value, nonMemoryDestType);
1718 return (C ? emitForMemory(C, destType) : nullptr);
1721 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1722 QualType destType) {
1723 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1724 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1725 return (C ? emitForMemory(C, destType) : nullptr);
1728 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1729 QualType destType) {
1730 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1731 auto C = tryEmitPrivate(value, nonMemoryDestType);
1732 return (C ? emitForMemory(C, destType) : nullptr);
1735 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1736 llvm::Constant *C,
1737 QualType destType) {
1738 // For an _Atomic-qualified constant, we may need to add tail padding.
1739 if (auto AT = destType->getAs<AtomicType>()) {
1740 QualType destValueType = AT->getValueType();
1741 C = emitForMemory(CGM, C, destValueType);
1743 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1744 uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1745 if (innerSize == outerSize)
1746 return C;
1748 assert(innerSize < outerSize && "emitted over-large constant for atomic");
1749 llvm::Constant *elts[] = {
1751 llvm::ConstantAggregateZero::get(
1752 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1754 return llvm::ConstantStruct::getAnon(elts);
1757 // Zero-extend bool.
1758 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1759 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1760 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1761 llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1762 assert(Res && "Constant folding must succeed");
1763 return Res;
1766 return C;
1769 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1770 QualType destType) {
1771 assert(!destType->isVoidType() && "can't emit a void constant");
1773 if (!destType->isReferenceType())
1774 if (llvm::Constant *C =
1775 ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), destType))
1776 return C;
1778 Expr::EvalResult Result;
1780 bool Success = false;
1782 if (destType->isReferenceType())
1783 Success = E->EvaluateAsLValue(Result, CGM.getContext());
1784 else
1785 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1787 if (Success && !Result.HasSideEffects)
1788 return tryEmitPrivate(Result.Val, destType);
1790 return nullptr;
1793 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1794 return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1797 namespace {
1798 /// A struct which can be used to peephole certain kinds of finalization
1799 /// that normally happen during l-value emission.
1800 struct ConstantLValue {
1801 llvm::Constant *Value;
1802 bool HasOffsetApplied;
1804 /*implicit*/ ConstantLValue(llvm::Constant *value,
1805 bool hasOffsetApplied = false)
1806 : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1808 /*implicit*/ ConstantLValue(ConstantAddress address)
1809 : ConstantLValue(address.getPointer()) {}
1812 /// A helper class for emitting constant l-values.
1813 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1814 ConstantLValue> {
1815 CodeGenModule &CGM;
1816 ConstantEmitter &Emitter;
1817 const APValue &Value;
1818 QualType DestType;
1820 // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1821 friend StmtVisitorBase;
1823 public:
1824 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1825 QualType destType)
1826 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1828 llvm::Constant *tryEmit();
1830 private:
1831 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1832 ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1834 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1835 ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1836 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1837 ConstantLValue VisitStringLiteral(const StringLiteral *E);
1838 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1839 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1840 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1841 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1842 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1843 ConstantLValue VisitCallExpr(const CallExpr *E);
1844 ConstantLValue VisitBlockExpr(const BlockExpr *E);
1845 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1846 ConstantLValue VisitMaterializeTemporaryExpr(
1847 const MaterializeTemporaryExpr *E);
1849 bool hasNonZeroOffset() const {
1850 return !Value.getLValueOffset().isZero();
1853 /// Return the value offset.
1854 llvm::Constant *getOffset() {
1855 return llvm::ConstantInt::get(CGM.Int64Ty,
1856 Value.getLValueOffset().getQuantity());
1859 /// Apply the value offset to the given constant.
1860 llvm::Constant *applyOffset(llvm::Constant *C) {
1861 if (!hasNonZeroOffset())
1862 return C;
1864 llvm::Type *origPtrTy = C->getType();
1865 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1866 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1867 return C;
1873 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1874 const APValue::LValueBase &base = Value.getLValueBase();
1876 // The destination type should be a pointer or reference
1877 // type, but it might also be a cast thereof.
1879 // FIXME: the chain of casts required should be reflected in the APValue.
1880 // We need this in order to correctly handle things like a ptrtoint of a
1881 // non-zero null pointer and addrspace casts that aren't trivially
1882 // represented in LLVM IR.
1883 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1884 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1886 // If there's no base at all, this is a null or absolute pointer,
1887 // possibly cast back to an integer type.
1888 if (!base) {
1889 return tryEmitAbsolute(destTy);
1892 // Otherwise, try to emit the base.
1893 ConstantLValue result = tryEmitBase(base);
1895 // If that failed, we're done.
1896 llvm::Constant *value = result.Value;
1897 if (!value) return nullptr;
1899 // Apply the offset if necessary and not already done.
1900 if (!result.HasOffsetApplied) {
1901 value = applyOffset(value);
1904 // Convert to the appropriate type; this could be an lvalue for
1905 // an integer. FIXME: performAddrSpaceCast
1906 if (isa<llvm::PointerType>(destTy))
1907 return llvm::ConstantExpr::getPointerCast(value, destTy);
1909 return llvm::ConstantExpr::getPtrToInt(value, destTy);
1912 /// Try to emit an absolute l-value, such as a null pointer or an integer
1913 /// bitcast to pointer type.
1914 llvm::Constant *
1915 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1916 // If we're producing a pointer, this is easy.
1917 auto destPtrTy = cast<llvm::PointerType>(destTy);
1918 if (Value.isNullPointer()) {
1919 // FIXME: integer offsets from non-zero null pointers.
1920 return CGM.getNullPointer(destPtrTy, DestType);
1923 // Convert the integer to a pointer-sized integer before converting it
1924 // to a pointer.
1925 // FIXME: signedness depends on the original integer type.
1926 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1927 llvm::Constant *C;
1928 C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
1929 CGM.getDataLayout());
1930 assert(C && "Must have folded, as Offset is a ConstantInt");
1931 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1932 return C;
1935 ConstantLValue
1936 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1937 // Handle values.
1938 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1939 // The constant always points to the canonical declaration. We want to look
1940 // at properties of the most recent declaration at the point of emission.
1941 D = cast<ValueDecl>(D->getMostRecentDecl());
1943 if (D->hasAttr<WeakRefAttr>())
1944 return CGM.GetWeakRefReference(D).getPointer();
1946 if (auto FD = dyn_cast<FunctionDecl>(D))
1947 return CGM.GetAddrOfFunction(FD);
1949 if (auto VD = dyn_cast<VarDecl>(D)) {
1950 // We can never refer to a variable with local storage.
1951 if (!VD->hasLocalStorage()) {
1952 if (VD->isFileVarDecl() || VD->hasExternalStorage())
1953 return CGM.GetAddrOfGlobalVar(VD);
1955 if (VD->isLocalVarDecl()) {
1956 return CGM.getOrCreateStaticVarDecl(
1957 *VD, CGM.getLLVMLinkageVarDefinition(VD));
1962 if (auto *GD = dyn_cast<MSGuidDecl>(D))
1963 return CGM.GetAddrOfMSGuidDecl(GD);
1965 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1966 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1968 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1969 return CGM.GetAddrOfTemplateParamObject(TPO);
1971 return nullptr;
1974 // Handle typeid(T).
1975 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
1976 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1978 // Otherwise, it must be an expression.
1979 return Visit(base.get<const Expr*>());
1982 ConstantLValue
1983 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1984 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1985 return Result;
1986 return Visit(E->getSubExpr());
1989 ConstantLValue
1990 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1991 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
1992 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
1993 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
1996 ConstantLValue
1997 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1998 return CGM.GetAddrOfConstantStringFromLiteral(E);
2001 ConstantLValue
2002 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2003 return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2006 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2007 QualType T,
2008 CodeGenModule &CGM) {
2009 auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2010 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2013 ConstantLValue
2014 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2015 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2018 ConstantLValue
2019 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2020 assert(E->isExpressibleAsConstantInitializer() &&
2021 "this boxed expression can't be emitted as a compile-time constant");
2022 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2023 return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2026 ConstantLValue
2027 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2028 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2031 ConstantLValue
2032 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2033 assert(Emitter.CGF && "Invalid address of label expression outside function");
2034 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2035 return Ptr;
2038 ConstantLValue
2039 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2040 unsigned builtin = E->getBuiltinCallee();
2041 if (builtin == Builtin::BI__builtin_function_start)
2042 return CGM.GetFunctionStart(
2043 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2044 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2045 builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2046 return nullptr;
2048 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2049 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2050 return CGM.getObjCRuntime().GenerateConstantString(literal);
2051 } else {
2052 // FIXME: need to deal with UCN conversion issues.
2053 return CGM.GetAddrOfConstantCFString(literal);
2057 ConstantLValue
2058 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2059 StringRef functionName;
2060 if (auto CGF = Emitter.CGF)
2061 functionName = CGF->CurFn->getName();
2062 else
2063 functionName = "global";
2065 return CGM.GetAddrOfGlobalBlock(E, functionName);
2068 ConstantLValue
2069 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2070 QualType T;
2071 if (E->isTypeOperand())
2072 T = E->getTypeOperand(CGM.getContext());
2073 else
2074 T = E->getExprOperand()->getType();
2075 return CGM.GetAddrOfRTTIDescriptor(T);
2078 ConstantLValue
2079 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2080 const MaterializeTemporaryExpr *E) {
2081 assert(E->getStorageDuration() == SD_Static);
2082 SmallVector<const Expr *, 2> CommaLHSs;
2083 SmallVector<SubobjectAdjustment, 2> Adjustments;
2084 const Expr *Inner =
2085 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2086 return CGM.GetAddrOfGlobalTemporary(E, Inner);
2089 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2090 QualType DestType) {
2091 switch (Value.getKind()) {
2092 case APValue::None:
2093 case APValue::Indeterminate:
2094 // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2095 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2096 case APValue::LValue:
2097 return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2098 case APValue::Int:
2099 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2100 case APValue::FixedPoint:
2101 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2102 Value.getFixedPoint().getValue());
2103 case APValue::ComplexInt: {
2104 llvm::Constant *Complex[2];
2106 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2107 Value.getComplexIntReal());
2108 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2109 Value.getComplexIntImag());
2111 // FIXME: the target may want to specify that this is packed.
2112 llvm::StructType *STy =
2113 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2114 return llvm::ConstantStruct::get(STy, Complex);
2116 case APValue::Float: {
2117 const llvm::APFloat &Init = Value.getFloat();
2118 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2119 !CGM.getContext().getLangOpts().NativeHalfType &&
2120 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2121 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2122 Init.bitcastToAPInt());
2123 else
2124 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2126 case APValue::ComplexFloat: {
2127 llvm::Constant *Complex[2];
2129 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2130 Value.getComplexFloatReal());
2131 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2132 Value.getComplexFloatImag());
2134 // FIXME: the target may want to specify that this is packed.
2135 llvm::StructType *STy =
2136 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2137 return llvm::ConstantStruct::get(STy, Complex);
2139 case APValue::Vector: {
2140 unsigned NumElts = Value.getVectorLength();
2141 SmallVector<llvm::Constant *, 4> Inits(NumElts);
2143 for (unsigned I = 0; I != NumElts; ++I) {
2144 const APValue &Elt = Value.getVectorElt(I);
2145 if (Elt.isInt())
2146 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2147 else if (Elt.isFloat())
2148 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2149 else if (Elt.isIndeterminate())
2150 Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2151 DestType->castAs<VectorType>()->getElementType()));
2152 else
2153 llvm_unreachable("unsupported vector element type");
2155 return llvm::ConstantVector::get(Inits);
2157 case APValue::AddrLabelDiff: {
2158 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2159 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2160 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2161 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2162 if (!LHS || !RHS) return nullptr;
2164 // Compute difference
2165 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2166 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2167 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2168 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2170 // LLVM is a bit sensitive about the exact format of the
2171 // address-of-label difference; make sure to truncate after
2172 // the subtraction.
2173 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2175 case APValue::Struct:
2176 case APValue::Union:
2177 return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2178 case APValue::Array: {
2179 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2180 unsigned NumElements = Value.getArraySize();
2181 unsigned NumInitElts = Value.getArrayInitializedElts();
2183 // Emit array filler, if there is one.
2184 llvm::Constant *Filler = nullptr;
2185 if (Value.hasArrayFiller()) {
2186 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2187 ArrayTy->getElementType());
2188 if (!Filler)
2189 return nullptr;
2192 // Emit initializer elements.
2193 SmallVector<llvm::Constant*, 16> Elts;
2194 if (Filler && Filler->isNullValue())
2195 Elts.reserve(NumInitElts + 1);
2196 else
2197 Elts.reserve(NumElements);
2199 llvm::Type *CommonElementType = nullptr;
2200 for (unsigned I = 0; I < NumInitElts; ++I) {
2201 llvm::Constant *C = tryEmitPrivateForMemory(
2202 Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2203 if (!C) return nullptr;
2205 if (I == 0)
2206 CommonElementType = C->getType();
2207 else if (C->getType() != CommonElementType)
2208 CommonElementType = nullptr;
2209 Elts.push_back(C);
2212 llvm::ArrayType *Desired =
2213 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2215 // Fix the type of incomplete arrays if the initializer isn't empty.
2216 if (DestType->isIncompleteArrayType() && !Elts.empty())
2217 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2219 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2220 Filler);
2222 case APValue::MemberPointer:
2223 return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2225 llvm_unreachable("Unknown APValue kind");
2228 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2229 const CompoundLiteralExpr *E) {
2230 return EmittedCompoundLiterals.lookup(E);
2233 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2234 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2235 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2236 (void)Ok;
2237 assert(Ok && "CLE has already been emitted!");
2240 ConstantAddress
2241 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2242 assert(E->isFileScope() && "not a file-scope compound literal expr");
2243 ConstantEmitter emitter(*this);
2244 return tryEmitGlobalCompoundLiteral(emitter, E);
2247 llvm::Constant *
2248 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2249 // Member pointer constants always have a very particular form.
2250 const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2251 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2253 // A member function pointer.
2254 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2255 return getCXXABI().EmitMemberFunctionPointer(method);
2257 // Otherwise, a member data pointer.
2258 uint64_t fieldOffset = getContext().getFieldOffset(decl);
2259 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2260 return getCXXABI().EmitMemberDataPointer(type, chars);
2263 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2264 llvm::Type *baseType,
2265 const CXXRecordDecl *base);
2267 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2268 const RecordDecl *record,
2269 bool asCompleteObject) {
2270 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2271 llvm::StructType *structure =
2272 (asCompleteObject ? layout.getLLVMType()
2273 : layout.getBaseSubobjectLLVMType());
2275 unsigned numElements = structure->getNumElements();
2276 std::vector<llvm::Constant *> elements(numElements);
2278 auto CXXR = dyn_cast<CXXRecordDecl>(record);
2279 // Fill in all the bases.
2280 if (CXXR) {
2281 for (const auto &I : CXXR->bases()) {
2282 if (I.isVirtual()) {
2283 // Ignore virtual bases; if we're laying out for a complete
2284 // object, we'll lay these out later.
2285 continue;
2288 const CXXRecordDecl *base =
2289 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2291 // Ignore empty bases.
2292 if (base->isEmpty() ||
2293 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2294 .isZero())
2295 continue;
2297 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2298 llvm::Type *baseType = structure->getElementType(fieldIndex);
2299 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2303 // Fill in all the fields.
2304 for (const auto *Field : record->fields()) {
2305 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2306 // will fill in later.)
2307 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2308 unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2309 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2312 // For unions, stop after the first named field.
2313 if (record->isUnion()) {
2314 if (Field->getIdentifier())
2315 break;
2316 if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2317 if (FieldRD->findFirstNamedDataMember())
2318 break;
2322 // Fill in the virtual bases, if we're working with the complete object.
2323 if (CXXR && asCompleteObject) {
2324 for (const auto &I : CXXR->vbases()) {
2325 const CXXRecordDecl *base =
2326 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2328 // Ignore empty bases.
2329 if (base->isEmpty())
2330 continue;
2332 unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2334 // We might have already laid this field out.
2335 if (elements[fieldIndex]) continue;
2337 llvm::Type *baseType = structure->getElementType(fieldIndex);
2338 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2342 // Now go through all other fields and zero them out.
2343 for (unsigned i = 0; i != numElements; ++i) {
2344 if (!elements[i])
2345 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2348 return llvm::ConstantStruct::get(structure, elements);
2351 /// Emit the null constant for a base subobject.
2352 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2353 llvm::Type *baseType,
2354 const CXXRecordDecl *base) {
2355 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2357 // Just zero out bases that don't have any pointer to data members.
2358 if (baseLayout.isZeroInitializableAsBase())
2359 return llvm::Constant::getNullValue(baseType);
2361 // Otherwise, we can just use its null constant.
2362 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2365 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2366 QualType T) {
2367 return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2370 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2371 if (T->getAs<PointerType>())
2372 return getNullPointer(
2373 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2375 if (getTypes().isZeroInitializable(T))
2376 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2378 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2379 llvm::ArrayType *ATy =
2380 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2382 QualType ElementTy = CAT->getElementType();
2384 llvm::Constant *Element =
2385 ConstantEmitter::emitNullForMemory(*this, ElementTy);
2386 unsigned NumElements = CAT->getSize().getZExtValue();
2387 SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2388 return llvm::ConstantArray::get(ATy, Array);
2391 if (const RecordType *RT = T->getAs<RecordType>())
2392 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2394 assert(T->isMemberDataPointerType() &&
2395 "Should only see pointers to data members here!");
2397 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2400 llvm::Constant *
2401 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2402 return ::EmitNullConstant(*this, Record, false);