[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / CodeGen / CGExprScalar.cpp
blob1a7a3f97bb779a089d71a4c58705aea476687014
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Support/TypeSize.h"
44 #include <cstdarg>
45 #include <optional>
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
51 //===----------------------------------------------------------------------===//
52 // Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
55 namespace {
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63 BinaryOperator::Opcode Opcode, bool Signed,
64 llvm::APInt &Result) {
65 // Assume overflow is possible, unless we can prove otherwise.
66 bool Overflow = true;
67 const auto &LHSAP = LHS->getValue();
68 const auto &RHSAP = RHS->getValue();
69 if (Opcode == BO_Add) {
70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71 : LHSAP.uadd_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Sub) {
73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74 : LHSAP.usub_ov(RHSAP, Overflow);
75 } else if (Opcode == BO_Mul) {
76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77 : LHSAP.umul_ov(RHSAP, Overflow);
78 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79 if (Signed && !RHS->isZero())
80 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81 else
82 return false;
84 return Overflow;
87 struct BinOpInfo {
88 Value *LHS;
89 Value *RHS;
90 QualType Ty; // Computation Type.
91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92 FPOptions FPFeatures;
93 const Expr *E; // Entire expr, for error unsupported. May not be binop.
95 /// Check if the binop can result in integer overflow.
96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100 if (!LHSCI || !RHSCI)
101 return true;
103 llvm::APInt Result;
104 return ::mayHaveIntegerOverflow(
105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108 /// Check if the binop computes a division or a remainder.
109 bool isDivremOp() const {
110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111 Opcode == BO_RemAssign;
114 /// Check if the binop can result in an integer division by zero.
115 bool mayHaveIntegerDivisionByZero() const {
116 if (isDivremOp())
117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118 return CI->isZero();
119 return true;
122 /// Check if the binop can result in a float division by zero.
123 bool mayHaveFloatDivisionByZero() const {
124 if (isDivremOp())
125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126 return CFP->isZero();
127 return true;
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142 return UnOp->getSubExpr()->getType()->isFixedPointType();
143 return false;
147 static bool MustVisitNullValue(const Expr *E) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E->getType()->isNullPtrType();
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156 const Expr *E) {
157 const Expr *Base = E->IgnoreImpCasts();
158 if (E == Base)
159 return std::nullopt;
161 QualType BaseTy = Base->getType();
162 if (!Ctx.isPromotableIntegerType(BaseTy) ||
163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164 return std::nullopt;
166 return BaseTy;
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171 return getUnwidenedIntegerType(Ctx, E).has_value();
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177 "Expected a unary or binary operator");
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op.mayHaveIntegerOverflow())
182 return true;
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186 return !UO->canOverflow();
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO = cast<BinaryOperator>(Op.E);
191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192 if (!OptionalLHSTy)
193 return false;
195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196 if (!OptionalRHSTy)
197 return false;
199 QualType LHSTy = *OptionalLHSTy;
200 QualType RHSTy = *OptionalRHSTy;
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206 return true;
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
215 class ScalarExprEmitter
216 : public StmtVisitor<ScalarExprEmitter, Value*> {
217 CodeGenFunction &CGF;
218 CGBuilderTy &Builder;
219 bool IgnoreResultAssign;
220 llvm::LLVMContext &VMContext;
221 public:
223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225 VMContext(cgf.getLLVMContext()) {
228 //===--------------------------------------------------------------------===//
229 // Utilities
230 //===--------------------------------------------------------------------===//
232 bool TestAndClearIgnoreResultAssign() {
233 bool I = IgnoreResultAssign;
234 IgnoreResultAssign = false;
235 return I;
238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241 return CGF.EmitCheckedLValue(E, TCK);
244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245 const BinOpInfo &Info);
247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252 const AlignValueAttr *AVAttr = nullptr;
253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254 const ValueDecl *VD = DRE->getDecl();
256 if (VD->getType()->isReferenceType()) {
257 if (const auto *TTy =
258 VD->getType().getNonReferenceType()->getAs<TypedefType>())
259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260 } else {
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267 return;
269 AVAttr = VD->getAttr<AlignValueAttr>();
273 if (!AVAttr)
274 if (const auto *TTy = E->getType()->getAs<TypedefType>())
275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277 if (!AVAttr)
278 return;
280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
285 /// EmitLoadOfLValue - Given an expression with complex type that represents a
286 /// value l-value, this method emits the address of the l-value, then loads
287 /// and returns the result.
288 Value *EmitLoadOfLValue(const Expr *E) {
289 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290 E->getExprLoc());
292 EmitLValueAlignmentAssumption(E, V);
293 return V;
296 /// EmitConversionToBool - Convert the specified expression value to a
297 /// boolean (i1) truth value. This is equivalent to "Val != 0".
298 Value *EmitConversionToBool(Value *Src, QualType DstTy);
300 /// Emit a check that a conversion from a floating-point type does not
301 /// overflow.
302 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303 Value *Src, QualType SrcType, QualType DstType,
304 llvm::Type *DstTy, SourceLocation Loc);
306 /// Known implicit conversion check kinds.
307 /// Keep in sync with the enum of the same name in ubsan_handlers.h
308 enum ImplicitConversionCheckKind : unsigned char {
309 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310 ICCK_UnsignedIntegerTruncation = 1,
311 ICCK_SignedIntegerTruncation = 2,
312 ICCK_IntegerSignChange = 3,
313 ICCK_SignedIntegerTruncationOrSignChange = 4,
316 /// Emit a check that an [implicit] truncation of an integer does not
317 /// discard any bits. It is not UB, so we use the value after truncation.
318 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319 QualType DstType, SourceLocation Loc);
321 /// Emit a check that an [implicit] conversion of an integer does not change
322 /// the sign of the value. It is not UB, so we use the value after conversion.
323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325 QualType DstType, SourceLocation Loc);
327 /// Emit a conversion from the specified type to the specified destination
328 /// type, both of which are LLVM scalar types.
329 struct ScalarConversionOpts {
330 bool TreatBooleanAsSigned;
331 bool EmitImplicitIntegerTruncationChecks;
332 bool EmitImplicitIntegerSignChangeChecks;
334 ScalarConversionOpts()
335 : TreatBooleanAsSigned(false),
336 EmitImplicitIntegerTruncationChecks(false),
337 EmitImplicitIntegerSignChangeChecks(false) {}
339 ScalarConversionOpts(clang::SanitizerSet SanOpts)
340 : TreatBooleanAsSigned(false),
341 EmitImplicitIntegerTruncationChecks(
342 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343 EmitImplicitIntegerSignChangeChecks(
344 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
346 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347 llvm::Type *SrcTy, llvm::Type *DstTy,
348 ScalarConversionOpts Opts);
349 Value *
350 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351 SourceLocation Loc,
352 ScalarConversionOpts Opts = ScalarConversionOpts());
354 /// Convert between either a fixed point and other fixed point or fixed point
355 /// and an integer.
356 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357 SourceLocation Loc);
359 /// Emit a conversion from the specified complex type to the specified
360 /// destination type, where the destination type is an LLVM scalar type.
361 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362 QualType SrcTy, QualType DstTy,
363 SourceLocation Loc);
365 /// EmitNullValue - Emit a value that corresponds to null for the given type.
366 Value *EmitNullValue(QualType Ty);
368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
369 Value *EmitFloatToBoolConversion(Value *V) {
370 // Compare against 0.0 for fp scalars.
371 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372 return Builder.CreateFCmpUNE(V, Zero, "tobool");
375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
376 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
379 return Builder.CreateICmpNE(V, Zero, "tobool");
382 Value *EmitIntToBoolConversion(Value *V) {
383 // Because of the type rules of C, we often end up computing a
384 // logical value, then zero extending it to int, then wanting it
385 // as a logical value again. Optimize this common case.
386 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388 Value *Result = ZI->getOperand(0);
389 // If there aren't any more uses, zap the instruction to save space.
390 // Note that there can be more uses, for example if this
391 // is the result of an assignment.
392 if (ZI->use_empty())
393 ZI->eraseFromParent();
394 return Result;
398 return Builder.CreateIsNotNull(V, "tobool");
401 //===--------------------------------------------------------------------===//
402 // Visitor Methods
403 //===--------------------------------------------------------------------===//
405 Value *Visit(Expr *E) {
406 ApplyDebugLocation DL(CGF, E);
407 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410 Value *VisitStmt(Stmt *S) {
411 S->dump(llvm::errs(), CGF.getContext());
412 llvm_unreachable("Stmt can't have complex result type!");
414 Value *VisitExpr(Expr *S);
416 Value *VisitConstantExpr(ConstantExpr *E) {
417 // A constant expression of type 'void' generates no code and produces no
418 // value.
419 if (E->getType()->isVoidType())
420 return nullptr;
422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423 if (E->isGLValue())
424 return CGF.Builder.CreateLoad(Address(
425 Result, CGF.ConvertTypeForMem(E->getType()),
426 CGF.getContext().getTypeAlignInChars(E->getType())));
427 return Result;
429 return Visit(E->getSubExpr());
431 Value *VisitParenExpr(ParenExpr *PE) {
432 return Visit(PE->getSubExpr());
434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435 return Visit(E->getReplacement());
437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438 return Visit(GE->getResultExpr());
440 Value *VisitCoawaitExpr(CoawaitExpr *S) {
441 return CGF.EmitCoawaitExpr(*S).getScalarVal();
443 Value *VisitCoyieldExpr(CoyieldExpr *S) {
444 return CGF.EmitCoyieldExpr(*S).getScalarVal();
446 Value *VisitUnaryCoawait(const UnaryOperator *E) {
447 return Visit(E->getSubExpr());
450 // Leaves.
451 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452 return Builder.getInt(E->getValue());
454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455 return Builder.getInt(E->getValue());
457 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458 return llvm::ConstantFP::get(VMContext, E->getValue());
460 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470 if (E->getType()->isVoidType())
471 return nullptr;
473 return EmitNullValue(E->getType());
475 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476 return EmitNullValue(E->getType());
478 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
480 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482 return Builder.CreateBitCast(V, ConvertType(E->getType()));
485 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496 if (E->isGLValue())
497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498 E->getExprLoc());
500 // Otherwise, assume the mapping is the scalar directly.
501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
504 // l-values.
505 Value *VisitDeclRefExpr(DeclRefExpr *E) {
506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507 return CGF.emitScalarConstant(Constant, E);
508 return EmitLoadOfLValue(E);
511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512 return CGF.EmitObjCSelectorExpr(E);
514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515 return CGF.EmitObjCProtocolExpr(E);
517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518 return EmitLoadOfLValue(E);
520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521 if (E->getMethodDecl() &&
522 E->getMethodDecl()->getReturnType()->isReferenceType())
523 return EmitLoadOfLValue(E);
524 return CGF.EmitObjCMessageExpr(E).getScalarVal();
527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528 LValue LV = CGF.EmitObjCIsaExpr(E);
529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530 return V;
533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534 VersionTuple Version = E->getVersion();
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 return CGF.EmitBuiltinAvailable(Version);
544 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548 Value *VisitMemberExpr(MemberExpr *E);
549 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
550 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553 // literals aren't l-values in C++. We do so simply because that's the
554 // cleanest way to handle compound literals in C++.
555 // See the discussion here: https://reviews.llvm.org/D64464
556 return EmitLoadOfLValue(E);
559 Value *VisitInitListExpr(InitListExpr *E);
561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564 return CGF.getArrayInitIndex();
567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
574 Value *VisitCastExpr(CastExpr *E);
576 Value *VisitCallExpr(const CallExpr *E) {
577 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E);
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
586 Value *VisitStmtExpr(const StmtExpr *E);
588 // Unary Operators.
589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
618 return EmitLValue(E->getSubExpr()).getPointer(CGF);
620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
626 Value *VisitUnaryPlus(const UnaryOperator *E,
627 QualType PromotionType = QualType());
628 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629 Value *VisitUnaryMinus(const UnaryOperator *E,
630 QualType PromotionType = QualType());
631 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
633 Value *VisitUnaryNot (const UnaryOperator *E);
634 Value *VisitUnaryLNot (const UnaryOperator *E);
635 Value *VisitUnaryReal(const UnaryOperator *E,
636 QualType PromotionType = QualType());
637 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638 Value *VisitUnaryImag(const UnaryOperator *E,
639 QualType PromotionType = QualType());
640 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
641 Value *VisitUnaryExtension(const UnaryOperator *E) {
642 return Visit(E->getSubExpr());
645 // C++
646 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647 return EmitLoadOfLValue(E);
649 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650 auto &Ctx = CGF.getContext();
651 APValue Evaluated =
652 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
653 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
654 SLE->getType());
657 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659 return Visit(DAE->getExpr());
661 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663 return Visit(DIE->getExpr());
665 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666 return CGF.LoadCXXThis();
669 Value *VisitExprWithCleanups(ExprWithCleanups *E);
670 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671 return CGF.EmitCXXNewExpr(E);
673 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674 CGF.EmitCXXDeleteExpr(E);
675 return nullptr;
678 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
682 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683 return Builder.getInt1(E->isSatisfied());
686 Value *VisitRequiresExpr(const RequiresExpr *E) {
687 return Builder.getInt1(E->isSatisfied());
690 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
694 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
698 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699 // C++ [expr.pseudo]p1:
700 // The result shall only be used as the operand for the function call
701 // operator (), and the result of such a call has type void. The only
702 // effect is the evaluation of the postfix-expression before the dot or
703 // arrow.
704 CGF.EmitScalarExpr(E->getBase());
705 return nullptr;
708 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709 return EmitNullValue(E->getType());
712 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713 CGF.EmitCXXThrowExpr(E);
714 return nullptr;
717 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718 return Builder.getInt1(E->getValue());
721 // Binary Operators.
722 Value *EmitMul(const BinOpInfo &Ops) {
723 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
725 case LangOptions::SOB_Defined:
726 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
727 case LangOptions::SOB_Undefined:
728 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730 [[fallthrough]];
731 case LangOptions::SOB_Trapping:
732 if (CanElideOverflowCheck(CGF.getContext(), Ops))
733 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734 return EmitOverflowCheckedBinOp(Ops);
738 if (Ops.Ty->isConstantMatrixType()) {
739 llvm::MatrixBuilder MB(Builder);
740 // We need to check the types of the operands of the operator to get the
741 // correct matrix dimensions.
742 auto *BO = cast<BinaryOperator>(Ops.E);
743 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744 BO->getLHS()->getType().getCanonicalType());
745 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746 BO->getRHS()->getType().getCanonicalType());
747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748 if (LHSMatTy && RHSMatTy)
749 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750 LHSMatTy->getNumColumns(),
751 RHSMatTy->getNumColumns());
752 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
755 if (Ops.Ty->isUnsignedIntegerType() &&
756 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757 !CanElideOverflowCheck(CGF.getContext(), Ops))
758 return EmitOverflowCheckedBinOp(Ops);
760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761 // Preserve the old values
762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
765 if (Ops.isFixedPointOp())
766 return EmitFixedPointBinOp(Ops);
767 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
769 /// Create a binary op that checks for overflow.
770 /// Currently only supports +, - and *.
771 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
773 // Check for undefined division and modulus behaviors.
774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775 llvm::Value *Zero,bool isDiv);
776 // Common helper for getting how wide LHS of shift is.
777 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780 // non powers of two.
781 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
783 Value *EmitDiv(const BinOpInfo &Ops);
784 Value *EmitRem(const BinOpInfo &Ops);
785 Value *EmitAdd(const BinOpInfo &Ops);
786 Value *EmitSub(const BinOpInfo &Ops);
787 Value *EmitShl(const BinOpInfo &Ops);
788 Value *EmitShr(const BinOpInfo &Ops);
789 Value *EmitAnd(const BinOpInfo &Ops) {
790 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
792 Value *EmitXor(const BinOpInfo &Ops) {
793 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
795 Value *EmitOr (const BinOpInfo &Ops) {
796 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
799 // Helper functions for fixed point binary operations.
800 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
802 BinOpInfo EmitBinOps(const BinaryOperator *E,
803 QualType PromotionTy = QualType());
805 Value *EmitPromotedValue(Value *result, QualType PromotionType);
806 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807 Value *EmitPromoted(const Expr *E, QualType PromotionType);
809 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811 Value *&Result);
813 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
816 QualType getPromotionType(QualType Ty) {
817 const auto &Ctx = CGF.getContext();
818 if (auto *CT = Ty->getAs<ComplexType>()) {
819 QualType ElementType = CT->getElementType();
820 if (ElementType.UseExcessPrecision(Ctx))
821 return Ctx.getComplexType(Ctx.FloatTy);
824 if (Ty.UseExcessPrecision(Ctx)) {
825 if (auto *VT = Ty->getAs<VectorType>()) {
826 unsigned NumElements = VT->getNumElements();
827 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
829 return Ctx.FloatTy;
832 return QualType();
835 // Binary operators and binary compound assignment operators.
836 #define HANDLEBINOP(OP) \
837 Value *VisitBin##OP(const BinaryOperator *E) { \
838 QualType promotionTy = getPromotionType(E->getType()); \
839 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
840 if (result && !promotionTy.isNull()) \
841 result = EmitUnPromotedValue(result, E->getType()); \
842 return result; \
844 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
845 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
847 HANDLEBINOP(Mul)
848 HANDLEBINOP(Div)
849 HANDLEBINOP(Rem)
850 HANDLEBINOP(Add)
851 HANDLEBINOP(Sub)
852 HANDLEBINOP(Shl)
853 HANDLEBINOP(Shr)
854 HANDLEBINOP(And)
855 HANDLEBINOP(Xor)
856 HANDLEBINOP(Or)
857 #undef HANDLEBINOP
859 // Comparisons.
860 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
861 llvm::CmpInst::Predicate SICmpOpc,
862 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
863 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
864 Value *VisitBin##CODE(const BinaryOperator *E) { \
865 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
866 llvm::FCmpInst::FP, SIG); }
867 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
868 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
869 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
870 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
871 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
872 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
873 #undef VISITCOMP
875 Value *VisitBinAssign (const BinaryOperator *E);
877 Value *VisitBinLAnd (const BinaryOperator *E);
878 Value *VisitBinLOr (const BinaryOperator *E);
879 Value *VisitBinComma (const BinaryOperator *E);
881 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
882 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
884 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
885 return Visit(E->getSemanticForm());
888 // Other Operators.
889 Value *VisitBlockExpr(const BlockExpr *BE);
890 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
891 Value *VisitChooseExpr(ChooseExpr *CE);
892 Value *VisitVAArgExpr(VAArgExpr *VE);
893 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
894 return CGF.EmitObjCStringLiteral(E);
896 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
897 return CGF.EmitObjCBoxedExpr(E);
899 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
900 return CGF.EmitObjCArrayLiteral(E);
902 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
903 return CGF.EmitObjCDictionaryLiteral(E);
905 Value *VisitAsTypeExpr(AsTypeExpr *CE);
906 Value *VisitAtomicExpr(AtomicExpr *AE);
908 } // end anonymous namespace.
910 //===----------------------------------------------------------------------===//
911 // Utilities
912 //===----------------------------------------------------------------------===//
914 /// EmitConversionToBool - Convert the specified expression value to a
915 /// boolean (i1) truth value. This is equivalent to "Val != 0".
916 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
917 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
919 if (SrcType->isRealFloatingType())
920 return EmitFloatToBoolConversion(Src);
922 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
923 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
925 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
926 "Unknown scalar type to convert");
928 if (isa<llvm::IntegerType>(Src->getType()))
929 return EmitIntToBoolConversion(Src);
931 assert(isa<llvm::PointerType>(Src->getType()));
932 return EmitPointerToBoolConversion(Src, SrcType);
935 void ScalarExprEmitter::EmitFloatConversionCheck(
936 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
937 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
938 assert(SrcType->isFloatingType() && "not a conversion from floating point");
939 if (!isa<llvm::IntegerType>(DstTy))
940 return;
942 CodeGenFunction::SanitizerScope SanScope(&CGF);
943 using llvm::APFloat;
944 using llvm::APSInt;
946 llvm::Value *Check = nullptr;
947 const llvm::fltSemantics &SrcSema =
948 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
950 // Floating-point to integer. This has undefined behavior if the source is
951 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
952 // to an integer).
953 unsigned Width = CGF.getContext().getIntWidth(DstType);
954 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
956 APSInt Min = APSInt::getMinValue(Width, Unsigned);
957 APFloat MinSrc(SrcSema, APFloat::uninitialized);
958 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
959 APFloat::opOverflow)
960 // Don't need an overflow check for lower bound. Just check for
961 // -Inf/NaN.
962 MinSrc = APFloat::getInf(SrcSema, true);
963 else
964 // Find the largest value which is too small to represent (before
965 // truncation toward zero).
966 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
968 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
969 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
970 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
971 APFloat::opOverflow)
972 // Don't need an overflow check for upper bound. Just check for
973 // +Inf/NaN.
974 MaxSrc = APFloat::getInf(SrcSema, false);
975 else
976 // Find the smallest value which is too large to represent (before
977 // truncation toward zero).
978 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
980 // If we're converting from __half, convert the range to float to match
981 // the type of src.
982 if (OrigSrcType->isHalfType()) {
983 const llvm::fltSemantics &Sema =
984 CGF.getContext().getFloatTypeSemantics(SrcType);
985 bool IsInexact;
986 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
987 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
990 llvm::Value *GE =
991 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
992 llvm::Value *LE =
993 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
994 Check = Builder.CreateAnd(GE, LE);
996 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
997 CGF.EmitCheckTypeDescriptor(OrigSrcType),
998 CGF.EmitCheckTypeDescriptor(DstType)};
999 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1000 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1003 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1004 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1005 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1006 std::pair<llvm::Value *, SanitizerMask>>
1007 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1008 QualType DstType, CGBuilderTy &Builder) {
1009 llvm::Type *SrcTy = Src->getType();
1010 llvm::Type *DstTy = Dst->getType();
1011 (void)DstTy; // Only used in assert()
1013 // This should be truncation of integral types.
1014 assert(Src != Dst);
1015 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1016 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1017 "non-integer llvm type");
1019 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1020 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1022 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1023 // Else, it is a signed truncation.
1024 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1025 SanitizerMask Mask;
1026 if (!SrcSigned && !DstSigned) {
1027 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1028 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1029 } else {
1030 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1031 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1034 llvm::Value *Check = nullptr;
1035 // 1. Extend the truncated value back to the same width as the Src.
1036 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1037 // 2. Equality-compare with the original source value
1038 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1039 // If the comparison result is 'i1 false', then the truncation was lossy.
1040 return std::make_pair(Kind, std::make_pair(Check, Mask));
1043 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1044 QualType SrcType, QualType DstType) {
1045 return SrcType->isIntegerType() && DstType->isIntegerType();
1048 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1049 Value *Dst, QualType DstType,
1050 SourceLocation Loc) {
1051 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1052 return;
1054 // We only care about int->int conversions here.
1055 // We ignore conversions to/from pointer and/or bool.
1056 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1057 DstType))
1058 return;
1060 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1061 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1062 // This must be truncation. Else we do not care.
1063 if (SrcBits <= DstBits)
1064 return;
1066 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1068 // If the integer sign change sanitizer is enabled,
1069 // and we are truncating from larger unsigned type to smaller signed type,
1070 // let that next sanitizer deal with it.
1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1074 (!SrcSigned && DstSigned))
1075 return;
1077 CodeGenFunction::SanitizerScope SanScope(&CGF);
1079 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1080 std::pair<llvm::Value *, SanitizerMask>>
1081 Check =
1082 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1083 // If the comparison result is 'i1 false', then the truncation was lossy.
1085 // Do we care about this type of truncation?
1086 if (!CGF.SanOpts.has(Check.second.second))
1087 return;
1089 llvm::Constant *StaticArgs[] = {
1090 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1091 CGF.EmitCheckTypeDescriptor(DstType),
1092 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1093 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1094 {Src, Dst});
1097 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1098 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1099 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1100 std::pair<llvm::Value *, SanitizerMask>>
1101 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1102 QualType DstType, CGBuilderTy &Builder) {
1103 llvm::Type *SrcTy = Src->getType();
1104 llvm::Type *DstTy = Dst->getType();
1106 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1107 "non-integer llvm type");
1109 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1110 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1111 (void)SrcSigned; // Only used in assert()
1112 (void)DstSigned; // Only used in assert()
1113 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1114 unsigned DstBits = DstTy->getScalarSizeInBits();
1115 (void)SrcBits; // Only used in assert()
1116 (void)DstBits; // Only used in assert()
1118 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1119 "either the widths should be different, or the signednesses.");
1121 // NOTE: zero value is considered to be non-negative.
1122 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1123 const char *Name) -> Value * {
1124 // Is this value a signed type?
1125 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1126 llvm::Type *VTy = V->getType();
1127 if (!VSigned) {
1128 // If the value is unsigned, then it is never negative.
1129 // FIXME: can we encounter non-scalar VTy here?
1130 return llvm::ConstantInt::getFalse(VTy->getContext());
1132 // Get the zero of the same type with which we will be comparing.
1133 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1134 // %V.isnegative = icmp slt %V, 0
1135 // I.e is %V *strictly* less than zero, does it have negative value?
1136 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1137 llvm::Twine(Name) + "." + V->getName() +
1138 ".negativitycheck");
1141 // 1. Was the old Value negative?
1142 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1143 // 2. Is the new Value negative?
1144 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1145 // 3. Now, was the 'negativity status' preserved during the conversion?
1146 // NOTE: conversion from negative to zero is considered to change the sign.
1147 // (We want to get 'false' when the conversion changed the sign)
1148 // So we should just equality-compare the negativity statuses.
1149 llvm::Value *Check = nullptr;
1150 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1151 // If the comparison result is 'false', then the conversion changed the sign.
1152 return std::make_pair(
1153 ScalarExprEmitter::ICCK_IntegerSignChange,
1154 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1157 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1158 Value *Dst, QualType DstType,
1159 SourceLocation Loc) {
1160 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1161 return;
1163 llvm::Type *SrcTy = Src->getType();
1164 llvm::Type *DstTy = Dst->getType();
1166 // We only care about int->int conversions here.
1167 // We ignore conversions to/from pointer and/or bool.
1168 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1169 DstType))
1170 return;
1172 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1173 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1174 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1175 unsigned DstBits = DstTy->getScalarSizeInBits();
1177 // Now, we do not need to emit the check in *all* of the cases.
1178 // We can avoid emitting it in some obvious cases where it would have been
1179 // dropped by the opt passes (instcombine) always anyways.
1180 // If it's a cast between effectively the same type, no check.
1181 // NOTE: this is *not* equivalent to checking the canonical types.
1182 if (SrcSigned == DstSigned && SrcBits == DstBits)
1183 return;
1184 // At least one of the values needs to have signed type.
1185 // If both are unsigned, then obviously, neither of them can be negative.
1186 if (!SrcSigned && !DstSigned)
1187 return;
1188 // If the conversion is to *larger* *signed* type, then no check is needed.
1189 // Because either sign-extension happens (so the sign will remain),
1190 // or zero-extension will happen (the sign bit will be zero.)
1191 if ((DstBits > SrcBits) && DstSigned)
1192 return;
1193 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1194 (SrcBits > DstBits) && SrcSigned) {
1195 // If the signed integer truncation sanitizer is enabled,
1196 // and this is a truncation from signed type, then no check is needed.
1197 // Because here sign change check is interchangeable with truncation check.
1198 return;
1200 // That's it. We can't rule out any more cases with the data we have.
1202 CodeGenFunction::SanitizerScope SanScope(&CGF);
1204 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1205 std::pair<llvm::Value *, SanitizerMask>>
1206 Check;
1208 // Each of these checks needs to return 'false' when an issue was detected.
1209 ImplicitConversionCheckKind CheckKind;
1210 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1211 // So we can 'and' all the checks together, and still get 'false',
1212 // if at least one of the checks detected an issue.
1214 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1215 CheckKind = Check.first;
1216 Checks.emplace_back(Check.second);
1218 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1219 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1220 // If the signed integer truncation sanitizer was enabled,
1221 // and we are truncating from larger unsigned type to smaller signed type,
1222 // let's handle the case we skipped in that check.
1223 Check =
1224 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1225 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1226 Checks.emplace_back(Check.second);
1227 // If the comparison result is 'i1 false', then the truncation was lossy.
1230 llvm::Constant *StaticArgs[] = {
1231 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1232 CGF.EmitCheckTypeDescriptor(DstType),
1233 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1234 // EmitCheck() will 'and' all the checks together.
1235 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1236 {Src, Dst});
1239 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1240 QualType DstType, llvm::Type *SrcTy,
1241 llvm::Type *DstTy,
1242 ScalarConversionOpts Opts) {
1243 // The Element types determine the type of cast to perform.
1244 llvm::Type *SrcElementTy;
1245 llvm::Type *DstElementTy;
1246 QualType SrcElementType;
1247 QualType DstElementType;
1248 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1249 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1250 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1251 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1252 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1253 } else {
1254 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1255 "cannot cast between matrix and non-matrix types");
1256 SrcElementTy = SrcTy;
1257 DstElementTy = DstTy;
1258 SrcElementType = SrcType;
1259 DstElementType = DstType;
1262 if (isa<llvm::IntegerType>(SrcElementTy)) {
1263 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1264 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1265 InputSigned = true;
1268 if (isa<llvm::IntegerType>(DstElementTy))
1269 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1270 if (InputSigned)
1271 return Builder.CreateSIToFP(Src, DstTy, "conv");
1272 return Builder.CreateUIToFP(Src, DstTy, "conv");
1275 if (isa<llvm::IntegerType>(DstElementTy)) {
1276 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1277 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1279 // If we can't recognize overflow as undefined behavior, assume that
1280 // overflow saturates. This protects against normal optimizations if we are
1281 // compiling with non-standard FP semantics.
1282 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1283 llvm::Intrinsic::ID IID =
1284 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1285 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1288 if (IsSigned)
1289 return Builder.CreateFPToSI(Src, DstTy, "conv");
1290 return Builder.CreateFPToUI(Src, DstTy, "conv");
1293 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1294 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1295 return Builder.CreateFPExt(Src, DstTy, "conv");
1298 /// Emit a conversion from the specified type to the specified destination type,
1299 /// both of which are LLVM scalar types.
1300 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1301 QualType DstType,
1302 SourceLocation Loc,
1303 ScalarConversionOpts Opts) {
1304 // All conversions involving fixed point types should be handled by the
1305 // EmitFixedPoint family functions. This is done to prevent bloating up this
1306 // function more, and although fixed point numbers are represented by
1307 // integers, we do not want to follow any logic that assumes they should be
1308 // treated as integers.
1309 // TODO(leonardchan): When necessary, add another if statement checking for
1310 // conversions to fixed point types from other types.
1311 if (SrcType->isFixedPointType()) {
1312 if (DstType->isBooleanType())
1313 // It is important that we check this before checking if the dest type is
1314 // an integer because booleans are technically integer types.
1315 // We do not need to check the padding bit on unsigned types if unsigned
1316 // padding is enabled because overflow into this bit is undefined
1317 // behavior.
1318 return Builder.CreateIsNotNull(Src, "tobool");
1319 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1320 DstType->isRealFloatingType())
1321 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1323 llvm_unreachable(
1324 "Unhandled scalar conversion from a fixed point type to another type.");
1325 } else if (DstType->isFixedPointType()) {
1326 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1327 // This also includes converting booleans and enums to fixed point types.
1328 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1330 llvm_unreachable(
1331 "Unhandled scalar conversion to a fixed point type from another type.");
1334 QualType NoncanonicalSrcType = SrcType;
1335 QualType NoncanonicalDstType = DstType;
1337 SrcType = CGF.getContext().getCanonicalType(SrcType);
1338 DstType = CGF.getContext().getCanonicalType(DstType);
1339 if (SrcType == DstType) return Src;
1341 if (DstType->isVoidType()) return nullptr;
1343 llvm::Value *OrigSrc = Src;
1344 QualType OrigSrcType = SrcType;
1345 llvm::Type *SrcTy = Src->getType();
1347 // Handle conversions to bool first, they are special: comparisons against 0.
1348 if (DstType->isBooleanType())
1349 return EmitConversionToBool(Src, SrcType);
1351 llvm::Type *DstTy = ConvertType(DstType);
1353 // Cast from half through float if half isn't a native type.
1354 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1355 // Cast to FP using the intrinsic if the half type itself isn't supported.
1356 if (DstTy->isFloatingPointTy()) {
1357 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1358 return Builder.CreateCall(
1359 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1360 Src);
1361 } else {
1362 // Cast to other types through float, using either the intrinsic or FPExt,
1363 // depending on whether the half type itself is supported
1364 // (as opposed to operations on half, available with NativeHalfType).
1365 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1366 Src = Builder.CreateCall(
1367 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1368 CGF.CGM.FloatTy),
1369 Src);
1370 } else {
1371 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1373 SrcType = CGF.getContext().FloatTy;
1374 SrcTy = CGF.FloatTy;
1378 // Ignore conversions like int -> uint.
1379 if (SrcTy == DstTy) {
1380 if (Opts.EmitImplicitIntegerSignChangeChecks)
1381 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1382 NoncanonicalDstType, Loc);
1384 return Src;
1387 // Handle pointer conversions next: pointers can only be converted to/from
1388 // other pointers and integers. Check for pointer types in terms of LLVM, as
1389 // some native types (like Obj-C id) may map to a pointer type.
1390 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1391 // The source value may be an integer, or a pointer.
1392 if (isa<llvm::PointerType>(SrcTy))
1393 return Builder.CreateBitCast(Src, DstTy, "conv");
1395 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1396 // First, convert to the correct width so that we control the kind of
1397 // extension.
1398 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1399 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1400 llvm::Value* IntResult =
1401 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1402 // Then, cast to pointer.
1403 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1406 if (isa<llvm::PointerType>(SrcTy)) {
1407 // Must be an ptr to int cast.
1408 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1409 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1412 // A scalar can be splatted to an extended vector of the same element type
1413 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1414 // Sema should add casts to make sure that the source expression's type is
1415 // the same as the vector's element type (sans qualifiers)
1416 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1417 SrcType.getTypePtr() &&
1418 "Splatted expr doesn't match with vector element type?");
1420 // Splat the element across to all elements
1421 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1422 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1425 if (SrcType->isMatrixType() && DstType->isMatrixType())
1426 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1428 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1429 // Allow bitcast from vector to integer/fp of the same size.
1430 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1431 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1432 if (SrcSize == DstSize)
1433 return Builder.CreateBitCast(Src, DstTy, "conv");
1435 // Conversions between vectors of different sizes are not allowed except
1436 // when vectors of half are involved. Operations on storage-only half
1437 // vectors require promoting half vector operands to float vectors and
1438 // truncating the result, which is either an int or float vector, to a
1439 // short or half vector.
1441 // Source and destination are both expected to be vectors.
1442 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1443 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1444 (void)DstElementTy;
1446 assert(((SrcElementTy->isIntegerTy() &&
1447 DstElementTy->isIntegerTy()) ||
1448 (SrcElementTy->isFloatingPointTy() &&
1449 DstElementTy->isFloatingPointTy())) &&
1450 "unexpected conversion between a floating-point vector and an "
1451 "integer vector");
1453 // Truncate an i32 vector to an i16 vector.
1454 if (SrcElementTy->isIntegerTy())
1455 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1457 // Truncate a float vector to a half vector.
1458 if (SrcSize > DstSize)
1459 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1461 // Promote a half vector to a float vector.
1462 return Builder.CreateFPExt(Src, DstTy, "conv");
1465 // Finally, we have the arithmetic types: real int/float.
1466 Value *Res = nullptr;
1467 llvm::Type *ResTy = DstTy;
1469 // An overflowing conversion has undefined behavior if either the source type
1470 // or the destination type is a floating-point type. However, we consider the
1471 // range of representable values for all floating-point types to be
1472 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1473 // floating-point type.
1474 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1475 OrigSrcType->isFloatingType())
1476 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1477 Loc);
1479 // Cast to half through float if half isn't a native type.
1480 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1481 // Make sure we cast in a single step if from another FP type.
1482 if (SrcTy->isFloatingPointTy()) {
1483 // Use the intrinsic if the half type itself isn't supported
1484 // (as opposed to operations on half, available with NativeHalfType).
1485 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1486 return Builder.CreateCall(
1487 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1488 // If the half type is supported, just use an fptrunc.
1489 return Builder.CreateFPTrunc(Src, DstTy);
1491 DstTy = CGF.FloatTy;
1494 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1496 if (DstTy != ResTy) {
1497 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1498 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1499 Res = Builder.CreateCall(
1500 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1501 Res);
1502 } else {
1503 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1507 if (Opts.EmitImplicitIntegerTruncationChecks)
1508 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1509 NoncanonicalDstType, Loc);
1511 if (Opts.EmitImplicitIntegerSignChangeChecks)
1512 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1513 NoncanonicalDstType, Loc);
1515 return Res;
1518 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1519 QualType DstTy,
1520 SourceLocation Loc) {
1521 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1522 llvm::Value *Result;
1523 if (SrcTy->isRealFloatingType())
1524 Result = FPBuilder.CreateFloatingToFixed(Src,
1525 CGF.getContext().getFixedPointSemantics(DstTy));
1526 else if (DstTy->isRealFloatingType())
1527 Result = FPBuilder.CreateFixedToFloating(Src,
1528 CGF.getContext().getFixedPointSemantics(SrcTy),
1529 ConvertType(DstTy));
1530 else {
1531 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1532 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1534 if (DstTy->isIntegerType())
1535 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1536 DstFPSema.getWidth(),
1537 DstFPSema.isSigned());
1538 else if (SrcTy->isIntegerType())
1539 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1540 DstFPSema);
1541 else
1542 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1544 return Result;
1547 /// Emit a conversion from the specified complex type to the specified
1548 /// destination type, where the destination type is an LLVM scalar type.
1549 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1551 SourceLocation Loc) {
1552 // Get the source element type.
1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1555 // Handle conversions to bool first, they are special: comparisons against 0.
1556 if (DstTy->isBooleanType()) {
1557 // Complex != 0 -> (Real != 0) | (Imag != 0)
1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1560 return Builder.CreateOr(Src.first, Src.second, "tobool");
1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564 // the imaginary part of the complex value is discarded and the value of the
1565 // real part is converted according to the conversion rules for the
1566 // corresponding real type.
1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1570 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1574 /// Emit a sanitization check for the given "binary" operation (which
1575 /// might actually be a unary increment which has been lowered to a binary
1576 /// operation). The check passes if all values in \p Checks (which are \c i1),
1577 /// are \c true.
1578 void ScalarExprEmitter::EmitBinOpCheck(
1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1580 assert(CGF.IsSanitizerScope);
1581 SanitizerHandler Check;
1582 SmallVector<llvm::Constant *, 4> StaticData;
1583 SmallVector<llvm::Value *, 2> DynamicData;
1585 BinaryOperatorKind Opcode = Info.Opcode;
1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1587 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1591 if (UO && UO->getOpcode() == UO_Minus) {
1592 Check = SanitizerHandler::NegateOverflow;
1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1594 DynamicData.push_back(Info.RHS);
1595 } else {
1596 if (BinaryOperator::isShiftOp(Opcode)) {
1597 // Shift LHS negative or too large, or RHS out of bounds.
1598 Check = SanitizerHandler::ShiftOutOfBounds;
1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1600 StaticData.push_back(
1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1602 StaticData.push_back(
1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606 Check = SanitizerHandler::DivremOverflow;
1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1608 } else {
1609 // Arithmetic overflow (+, -, *).
1610 switch (Opcode) {
1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1614 default: llvm_unreachable("unexpected opcode for bin op check");
1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1618 DynamicData.push_back(Info.LHS);
1619 DynamicData.push_back(Info.RHS);
1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1625 //===----------------------------------------------------------------------===//
1626 // Visitor Methods
1627 //===----------------------------------------------------------------------===//
1629 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1630 CGF.ErrorUnsupported(E, "scalar expression");
1631 if (E->getType()->isVoidType())
1632 return nullptr;
1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1636 Value *
1637 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1638 ASTContext &Context = CGF.getContext();
1639 unsigned AddrSpace =
1640 Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1641 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1642 E->ComputeName(Context), "__usn_str", AddrSpace);
1644 llvm::Type *ExprTy = ConvertType(E->getType());
1645 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1646 "usn_addr_cast");
1649 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1650 // Vector Mask Case
1651 if (E->getNumSubExprs() == 2) {
1652 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1653 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1654 Value *Mask;
1656 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1657 unsigned LHSElts = LTy->getNumElements();
1659 Mask = RHS;
1661 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1663 // Mask off the high bits of each shuffle index.
1664 Value *MaskBits =
1665 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1666 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1668 // newv = undef
1669 // mask = mask & maskbits
1670 // for each elt
1671 // n = extract mask i
1672 // x = extract val n
1673 // newv = insert newv, x, i
1674 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1675 MTy->getNumElements());
1676 Value* NewV = llvm::PoisonValue::get(RTy);
1677 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1678 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1679 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1681 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1682 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1684 return NewV;
1687 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1688 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1690 SmallVector<int, 32> Indices;
1691 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1692 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1693 // Check for -1 and output it as undef in the IR.
1694 if (Idx.isSigned() && Idx.isAllOnes())
1695 Indices.push_back(-1);
1696 else
1697 Indices.push_back(Idx.getZExtValue());
1700 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1703 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1704 QualType SrcType = E->getSrcExpr()->getType(),
1705 DstType = E->getType();
1707 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1709 SrcType = CGF.getContext().getCanonicalType(SrcType);
1710 DstType = CGF.getContext().getCanonicalType(DstType);
1711 if (SrcType == DstType) return Src;
1713 assert(SrcType->isVectorType() &&
1714 "ConvertVector source type must be a vector");
1715 assert(DstType->isVectorType() &&
1716 "ConvertVector destination type must be a vector");
1718 llvm::Type *SrcTy = Src->getType();
1719 llvm::Type *DstTy = ConvertType(DstType);
1721 // Ignore conversions like int -> uint.
1722 if (SrcTy == DstTy)
1723 return Src;
1725 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1726 DstEltType = DstType->castAs<VectorType>()->getElementType();
1728 assert(SrcTy->isVectorTy() &&
1729 "ConvertVector source IR type must be a vector");
1730 assert(DstTy->isVectorTy() &&
1731 "ConvertVector destination IR type must be a vector");
1733 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1734 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1736 if (DstEltType->isBooleanType()) {
1737 assert((SrcEltTy->isFloatingPointTy() ||
1738 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1740 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1741 if (SrcEltTy->isFloatingPointTy()) {
1742 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1743 } else {
1744 return Builder.CreateICmpNE(Src, Zero, "tobool");
1748 // We have the arithmetic types: real int/float.
1749 Value *Res = nullptr;
1751 if (isa<llvm::IntegerType>(SrcEltTy)) {
1752 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1753 if (isa<llvm::IntegerType>(DstEltTy))
1754 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1755 else if (InputSigned)
1756 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1757 else
1758 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1759 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1760 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1761 if (DstEltType->isSignedIntegerOrEnumerationType())
1762 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1763 else
1764 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1765 } else {
1766 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1767 "Unknown real conversion");
1768 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1769 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1770 else
1771 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1774 return Res;
1777 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1778 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1779 CGF.EmitIgnoredExpr(E->getBase());
1780 return CGF.emitScalarConstant(Constant, E);
1781 } else {
1782 Expr::EvalResult Result;
1783 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1784 llvm::APSInt Value = Result.Val.getInt();
1785 CGF.EmitIgnoredExpr(E->getBase());
1786 return Builder.getInt(Value);
1790 return EmitLoadOfLValue(E);
1793 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1794 TestAndClearIgnoreResultAssign();
1796 // Emit subscript expressions in rvalue context's. For most cases, this just
1797 // loads the lvalue formed by the subscript expr. However, we have to be
1798 // careful, because the base of a vector subscript is occasionally an rvalue,
1799 // so we can't get it as an lvalue.
1800 if (!E->getBase()->getType()->isVectorType() &&
1801 !E->getBase()->getType()->isSveVLSBuiltinType())
1802 return EmitLoadOfLValue(E);
1804 // Handle the vector case. The base must be a vector, the index must be an
1805 // integer value.
1806 Value *Base = Visit(E->getBase());
1807 Value *Idx = Visit(E->getIdx());
1808 QualType IdxTy = E->getIdx()->getType();
1810 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1811 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1813 return Builder.CreateExtractElement(Base, Idx, "vecext");
1816 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1817 TestAndClearIgnoreResultAssign();
1819 // Handle the vector case. The base must be a vector, the index must be an
1820 // integer value.
1821 Value *RowIdx = Visit(E->getRowIdx());
1822 Value *ColumnIdx = Visit(E->getColumnIdx());
1824 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1825 unsigned NumRows = MatrixTy->getNumRows();
1826 llvm::MatrixBuilder MB(Builder);
1827 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1828 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1829 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1831 Value *Matrix = Visit(E->getBase());
1833 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1834 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1837 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1838 unsigned Off) {
1839 int MV = SVI->getMaskValue(Idx);
1840 if (MV == -1)
1841 return -1;
1842 return Off + MV;
1845 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1846 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1847 "Index operand too large for shufflevector mask!");
1848 return C->getZExtValue();
1851 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1852 bool Ignore = TestAndClearIgnoreResultAssign();
1853 (void)Ignore;
1854 assert (Ignore == false && "init list ignored");
1855 unsigned NumInitElements = E->getNumInits();
1857 if (E->hadArrayRangeDesignator())
1858 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1860 llvm::VectorType *VType =
1861 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1863 if (!VType) {
1864 if (NumInitElements == 0) {
1865 // C++11 value-initialization for the scalar.
1866 return EmitNullValue(E->getType());
1868 // We have a scalar in braces. Just use the first element.
1869 return Visit(E->getInit(0));
1872 if (isa<llvm::ScalableVectorType>(VType)) {
1873 if (NumInitElements == 0) {
1874 // C++11 value-initialization for the vector.
1875 return EmitNullValue(E->getType());
1878 if (NumInitElements == 1) {
1879 Expr *InitVector = E->getInit(0);
1881 // Initialize from another scalable vector of the same type.
1882 if (InitVector->getType() == E->getType())
1883 return Visit(InitVector);
1886 llvm_unreachable("Unexpected initialization of a scalable vector!");
1889 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1891 // Loop over initializers collecting the Value for each, and remembering
1892 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1893 // us to fold the shuffle for the swizzle into the shuffle for the vector
1894 // initializer, since LLVM optimizers generally do not want to touch
1895 // shuffles.
1896 unsigned CurIdx = 0;
1897 bool VIsUndefShuffle = false;
1898 llvm::Value *V = llvm::UndefValue::get(VType);
1899 for (unsigned i = 0; i != NumInitElements; ++i) {
1900 Expr *IE = E->getInit(i);
1901 Value *Init = Visit(IE);
1902 SmallVector<int, 16> Args;
1904 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1906 // Handle scalar elements. If the scalar initializer is actually one
1907 // element of a different vector of the same width, use shuffle instead of
1908 // extract+insert.
1909 if (!VVT) {
1910 if (isa<ExtVectorElementExpr>(IE)) {
1911 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1913 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1914 ->getNumElements() == ResElts) {
1915 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1916 Value *LHS = nullptr, *RHS = nullptr;
1917 if (CurIdx == 0) {
1918 // insert into undef -> shuffle (src, undef)
1919 // shufflemask must use an i32
1920 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1921 Args.resize(ResElts, -1);
1923 LHS = EI->getVectorOperand();
1924 RHS = V;
1925 VIsUndefShuffle = true;
1926 } else if (VIsUndefShuffle) {
1927 // insert into undefshuffle && size match -> shuffle (v, src)
1928 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1929 for (unsigned j = 0; j != CurIdx; ++j)
1930 Args.push_back(getMaskElt(SVV, j, 0));
1931 Args.push_back(ResElts + C->getZExtValue());
1932 Args.resize(ResElts, -1);
1934 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1935 RHS = EI->getVectorOperand();
1936 VIsUndefShuffle = false;
1938 if (!Args.empty()) {
1939 V = Builder.CreateShuffleVector(LHS, RHS, Args);
1940 ++CurIdx;
1941 continue;
1945 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1946 "vecinit");
1947 VIsUndefShuffle = false;
1948 ++CurIdx;
1949 continue;
1952 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1954 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1955 // input is the same width as the vector being constructed, generate an
1956 // optimized shuffle of the swizzle input into the result.
1957 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1958 if (isa<ExtVectorElementExpr>(IE)) {
1959 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1960 Value *SVOp = SVI->getOperand(0);
1961 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1963 if (OpTy->getNumElements() == ResElts) {
1964 for (unsigned j = 0; j != CurIdx; ++j) {
1965 // If the current vector initializer is a shuffle with undef, merge
1966 // this shuffle directly into it.
1967 if (VIsUndefShuffle) {
1968 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1969 } else {
1970 Args.push_back(j);
1973 for (unsigned j = 0, je = InitElts; j != je; ++j)
1974 Args.push_back(getMaskElt(SVI, j, Offset));
1975 Args.resize(ResElts, -1);
1977 if (VIsUndefShuffle)
1978 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1980 Init = SVOp;
1984 // Extend init to result vector length, and then shuffle its contribution
1985 // to the vector initializer into V.
1986 if (Args.empty()) {
1987 for (unsigned j = 0; j != InitElts; ++j)
1988 Args.push_back(j);
1989 Args.resize(ResElts, -1);
1990 Init = Builder.CreateShuffleVector(Init, Args, "vext");
1992 Args.clear();
1993 for (unsigned j = 0; j != CurIdx; ++j)
1994 Args.push_back(j);
1995 for (unsigned j = 0; j != InitElts; ++j)
1996 Args.push_back(j + Offset);
1997 Args.resize(ResElts, -1);
2000 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
2001 // merging subsequent shuffles into this one.
2002 if (CurIdx == 0)
2003 std::swap(V, Init);
2004 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2005 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
2006 CurIdx += InitElts;
2009 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2010 // Emit remaining default initializers.
2011 llvm::Type *EltTy = VType->getElementType();
2013 // Emit remaining default initializers
2014 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2015 Value *Idx = Builder.getInt32(CurIdx);
2016 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2017 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2019 return V;
2022 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2023 const Expr *E = CE->getSubExpr();
2025 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2026 return false;
2028 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2029 // We always assume that 'this' is never null.
2030 return false;
2033 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2034 // And that glvalue casts are never null.
2035 if (ICE->isGLValue())
2036 return false;
2039 return true;
2042 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2043 // have to handle a more broad range of conversions than explicit casts, as they
2044 // handle things like function to ptr-to-function decay etc.
2045 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2046 Expr *E = CE->getSubExpr();
2047 QualType DestTy = CE->getType();
2048 CastKind Kind = CE->getCastKind();
2049 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2051 // These cases are generally not written to ignore the result of
2052 // evaluating their sub-expressions, so we clear this now.
2053 bool Ignored = TestAndClearIgnoreResultAssign();
2055 // Since almost all cast kinds apply to scalars, this switch doesn't have
2056 // a default case, so the compiler will warn on a missing case. The cases
2057 // are in the same order as in the CastKind enum.
2058 switch (Kind) {
2059 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2060 case CK_BuiltinFnToFnPtr:
2061 llvm_unreachable("builtin functions are handled elsewhere");
2063 case CK_LValueBitCast:
2064 case CK_ObjCObjectLValueCast: {
2065 Address Addr = EmitLValue(E).getAddress(CGF);
2066 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2067 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2068 return EmitLoadOfLValue(LV, CE->getExprLoc());
2071 case CK_LValueToRValueBitCast: {
2072 LValue SourceLVal = CGF.EmitLValue(E);
2073 Address Addr = SourceLVal.getAddress(CGF).withElementType(
2074 CGF.ConvertTypeForMem(DestTy));
2075 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2076 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2077 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2080 case CK_CPointerToObjCPointerCast:
2081 case CK_BlockPointerToObjCPointerCast:
2082 case CK_AnyPointerToBlockPointerCast:
2083 case CK_BitCast: {
2084 Value *Src = Visit(const_cast<Expr*>(E));
2085 llvm::Type *SrcTy = Src->getType();
2086 llvm::Type *DstTy = ConvertType(DestTy);
2087 assert(
2088 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2089 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2090 "Address-space cast must be used to convert address spaces");
2092 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2093 if (auto *PT = DestTy->getAs<PointerType>()) {
2094 CGF.EmitVTablePtrCheckForCast(
2095 PT->getPointeeType(),
2096 Address(Src,
2097 CGF.ConvertTypeForMem(
2098 E->getType()->castAs<PointerType>()->getPointeeType()),
2099 CGF.getPointerAlign()),
2100 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2101 CE->getBeginLoc());
2105 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2106 const QualType SrcType = E->getType();
2108 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2109 // Casting to pointer that could carry dynamic information (provided by
2110 // invariant.group) requires launder.
2111 Src = Builder.CreateLaunderInvariantGroup(Src);
2112 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2113 // Casting to pointer that does not carry dynamic information (provided
2114 // by invariant.group) requires stripping it. Note that we don't do it
2115 // if the source could not be dynamic type and destination could be
2116 // dynamic because dynamic information is already laundered. It is
2117 // because launder(strip(src)) == launder(src), so there is no need to
2118 // add extra strip before launder.
2119 Src = Builder.CreateStripInvariantGroup(Src);
2123 // Update heapallocsite metadata when there is an explicit pointer cast.
2124 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2125 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2126 !isa<CastExpr>(E)) {
2127 QualType PointeeType = DestTy->getPointeeType();
2128 if (!PointeeType.isNull())
2129 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2130 CE->getExprLoc());
2134 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2135 // same element type, use the llvm.vector.insert intrinsic to perform the
2136 // bitcast.
2137 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2138 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2139 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2140 // vector, use a vector insert and bitcast the result.
2141 bool NeedsBitCast = false;
2142 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2143 llvm::Type *OrigType = DstTy;
2144 if (ScalableDst == PredType &&
2145 FixedSrc->getElementType() == Builder.getInt8Ty()) {
2146 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2147 ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2148 NeedsBitCast = true;
2150 if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2151 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2152 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2153 llvm::Value *Result = Builder.CreateInsertVector(
2154 DstTy, UndefVec, Src, Zero, "cast.scalable");
2155 if (NeedsBitCast)
2156 Result = Builder.CreateBitCast(Result, OrigType);
2157 return Result;
2162 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2163 // same element type, use the llvm.vector.extract intrinsic to perform the
2164 // bitcast.
2165 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2166 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2167 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2168 // vector, bitcast the source and use a vector extract.
2169 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2170 if (ScalableSrc == PredType &&
2171 FixedDst->getElementType() == Builder.getInt8Ty()) {
2172 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2173 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2174 Src = Builder.CreateBitCast(Src, SrcTy);
2176 if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2177 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2178 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2183 // Perform VLAT <-> VLST bitcast through memory.
2184 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2185 // require the element types of the vectors to be the same, we
2186 // need to keep this around for bitcasts between VLAT <-> VLST where
2187 // the element types of the vectors are not the same, until we figure
2188 // out a better way of doing these casts.
2189 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2190 isa<llvm::ScalableVectorType>(DstTy)) ||
2191 (isa<llvm::ScalableVectorType>(SrcTy) &&
2192 isa<llvm::FixedVectorType>(DstTy))) {
2193 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2194 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2195 CGF.EmitStoreOfScalar(Src, LV);
2196 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2197 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2198 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2199 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2201 return Builder.CreateBitCast(Src, DstTy);
2203 case CK_AddressSpaceConversion: {
2204 Expr::EvalResult Result;
2205 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2206 Result.Val.isNullPointer()) {
2207 // If E has side effect, it is emitted even if its final result is a
2208 // null pointer. In that case, a DCE pass should be able to
2209 // eliminate the useless instructions emitted during translating E.
2210 if (Result.HasSideEffects)
2211 Visit(E);
2212 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2213 ConvertType(DestTy)), DestTy);
2215 // Since target may map different address spaces in AST to the same address
2216 // space, an address space conversion may end up as a bitcast.
2217 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2218 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2219 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2221 case CK_AtomicToNonAtomic:
2222 case CK_NonAtomicToAtomic:
2223 case CK_UserDefinedConversion:
2224 return Visit(const_cast<Expr*>(E));
2226 case CK_NoOp: {
2227 llvm::Value *V = CE->changesVolatileQualification()
2228 ? EmitLoadOfLValue(CE)
2229 : Visit(const_cast<Expr *>(E));
2230 if (V) {
2231 // CK_NoOp can model a pointer qualification conversion, which can remove
2232 // an array bound and change the IR type.
2233 // FIXME: Once pointee types are removed from IR, remove this.
2234 llvm::Type *T = ConvertType(DestTy);
2235 if (T != V->getType())
2236 V = Builder.CreateBitCast(V, T);
2238 return V;
2241 case CK_BaseToDerived: {
2242 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2243 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2245 Address Base = CGF.EmitPointerWithAlignment(E);
2246 Address Derived =
2247 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2248 CE->path_begin(), CE->path_end(),
2249 CGF.ShouldNullCheckClassCastValue(CE));
2251 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2252 // performed and the object is not of the derived type.
2253 if (CGF.sanitizePerformTypeCheck())
2254 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2255 Derived.getPointer(), DestTy->getPointeeType());
2257 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2258 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2259 /*MayBeNull=*/true,
2260 CodeGenFunction::CFITCK_DerivedCast,
2261 CE->getBeginLoc());
2263 return Derived.getPointer();
2265 case CK_UncheckedDerivedToBase:
2266 case CK_DerivedToBase: {
2267 // The EmitPointerWithAlignment path does this fine; just discard
2268 // the alignment.
2269 return CGF.EmitPointerWithAlignment(CE).getPointer();
2272 case CK_Dynamic: {
2273 Address V = CGF.EmitPointerWithAlignment(E);
2274 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2275 return CGF.EmitDynamicCast(V, DCE);
2278 case CK_ArrayToPointerDecay:
2279 return CGF.EmitArrayToPointerDecay(E).getPointer();
2280 case CK_FunctionToPointerDecay:
2281 return EmitLValue(E).getPointer(CGF);
2283 case CK_NullToPointer:
2284 if (MustVisitNullValue(E))
2285 CGF.EmitIgnoredExpr(E);
2287 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2288 DestTy);
2290 case CK_NullToMemberPointer: {
2291 if (MustVisitNullValue(E))
2292 CGF.EmitIgnoredExpr(E);
2294 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2295 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2298 case CK_ReinterpretMemberPointer:
2299 case CK_BaseToDerivedMemberPointer:
2300 case CK_DerivedToBaseMemberPointer: {
2301 Value *Src = Visit(E);
2303 // Note that the AST doesn't distinguish between checked and
2304 // unchecked member pointer conversions, so we always have to
2305 // implement checked conversions here. This is inefficient when
2306 // actual control flow may be required in order to perform the
2307 // check, which it is for data member pointers (but not member
2308 // function pointers on Itanium and ARM).
2309 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2312 case CK_ARCProduceObject:
2313 return CGF.EmitARCRetainScalarExpr(E);
2314 case CK_ARCConsumeObject:
2315 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2316 case CK_ARCReclaimReturnedObject:
2317 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2318 case CK_ARCExtendBlockObject:
2319 return CGF.EmitARCExtendBlockObject(E);
2321 case CK_CopyAndAutoreleaseBlockObject:
2322 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2324 case CK_FloatingRealToComplex:
2325 case CK_FloatingComplexCast:
2326 case CK_IntegralRealToComplex:
2327 case CK_IntegralComplexCast:
2328 case CK_IntegralComplexToFloatingComplex:
2329 case CK_FloatingComplexToIntegralComplex:
2330 case CK_ConstructorConversion:
2331 case CK_ToUnion:
2332 llvm_unreachable("scalar cast to non-scalar value");
2334 case CK_LValueToRValue:
2335 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2336 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2337 return Visit(const_cast<Expr*>(E));
2339 case CK_IntegralToPointer: {
2340 Value *Src = Visit(const_cast<Expr*>(E));
2342 // First, convert to the correct width so that we control the kind of
2343 // extension.
2344 auto DestLLVMTy = ConvertType(DestTy);
2345 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2346 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2347 llvm::Value* IntResult =
2348 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2350 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2352 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2353 // Going from integer to pointer that could be dynamic requires reloading
2354 // dynamic information from invariant.group.
2355 if (DestTy.mayBeDynamicClass())
2356 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2358 return IntToPtr;
2360 case CK_PointerToIntegral: {
2361 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2362 auto *PtrExpr = Visit(E);
2364 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2365 const QualType SrcType = E->getType();
2367 // Casting to integer requires stripping dynamic information as it does
2368 // not carries it.
2369 if (SrcType.mayBeDynamicClass())
2370 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2373 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2375 case CK_ToVoid: {
2376 CGF.EmitIgnoredExpr(E);
2377 return nullptr;
2379 case CK_MatrixCast: {
2380 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2381 CE->getExprLoc());
2383 case CK_VectorSplat: {
2384 llvm::Type *DstTy = ConvertType(DestTy);
2385 Value *Elt = Visit(const_cast<Expr *>(E));
2386 // Splat the element across to all elements
2387 llvm::ElementCount NumElements =
2388 cast<llvm::VectorType>(DstTy)->getElementCount();
2389 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2392 case CK_FixedPointCast:
2393 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2394 CE->getExprLoc());
2396 case CK_FixedPointToBoolean:
2397 assert(E->getType()->isFixedPointType() &&
2398 "Expected src type to be fixed point type");
2399 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2400 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2401 CE->getExprLoc());
2403 case CK_FixedPointToIntegral:
2404 assert(E->getType()->isFixedPointType() &&
2405 "Expected src type to be fixed point type");
2406 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2407 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2408 CE->getExprLoc());
2410 case CK_IntegralToFixedPoint:
2411 assert(E->getType()->isIntegerType() &&
2412 "Expected src type to be an integer");
2413 assert(DestTy->isFixedPointType() &&
2414 "Expected dest type to be fixed point type");
2415 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2416 CE->getExprLoc());
2418 case CK_IntegralCast: {
2419 ScalarConversionOpts Opts;
2420 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2421 if (!ICE->isPartOfExplicitCast())
2422 Opts = ScalarConversionOpts(CGF.SanOpts);
2424 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2425 CE->getExprLoc(), Opts);
2427 case CK_IntegralToFloating:
2428 case CK_FloatingToIntegral:
2429 case CK_FloatingCast:
2430 case CK_FixedPointToFloating:
2431 case CK_FloatingToFixedPoint: {
2432 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2433 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2434 CE->getExprLoc());
2436 case CK_BooleanToSignedIntegral: {
2437 ScalarConversionOpts Opts;
2438 Opts.TreatBooleanAsSigned = true;
2439 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2440 CE->getExprLoc(), Opts);
2442 case CK_IntegralToBoolean:
2443 return EmitIntToBoolConversion(Visit(E));
2444 case CK_PointerToBoolean:
2445 return EmitPointerToBoolConversion(Visit(E), E->getType());
2446 case CK_FloatingToBoolean: {
2447 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2448 return EmitFloatToBoolConversion(Visit(E));
2450 case CK_MemberPointerToBoolean: {
2451 llvm::Value *MemPtr = Visit(E);
2452 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2453 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2456 case CK_FloatingComplexToReal:
2457 case CK_IntegralComplexToReal:
2458 return CGF.EmitComplexExpr(E, false, true).first;
2460 case CK_FloatingComplexToBoolean:
2461 case CK_IntegralComplexToBoolean: {
2462 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2464 // TODO: kill this function off, inline appropriate case here
2465 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2466 CE->getExprLoc());
2469 case CK_ZeroToOCLOpaqueType: {
2470 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2471 DestTy->isOCLIntelSubgroupAVCType()) &&
2472 "CK_ZeroToOCLEvent cast on non-event type");
2473 return llvm::Constant::getNullValue(ConvertType(DestTy));
2476 case CK_IntToOCLSampler:
2477 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2479 } // end of switch
2481 llvm_unreachable("unknown scalar cast");
2484 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2485 CodeGenFunction::StmtExprEvaluation eval(CGF);
2486 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2487 !E->getType()->isVoidType());
2488 if (!RetAlloca.isValid())
2489 return nullptr;
2490 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2491 E->getExprLoc());
2494 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2495 CodeGenFunction::RunCleanupsScope Scope(CGF);
2496 Value *V = Visit(E->getSubExpr());
2497 // Defend against dominance problems caused by jumps out of expression
2498 // evaluation through the shared cleanup block.
2499 Scope.ForceCleanup({&V});
2500 return V;
2503 //===----------------------------------------------------------------------===//
2504 // Unary Operators
2505 //===----------------------------------------------------------------------===//
2507 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2508 llvm::Value *InVal, bool IsInc,
2509 FPOptions FPFeatures) {
2510 BinOpInfo BinOp;
2511 BinOp.LHS = InVal;
2512 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2513 BinOp.Ty = E->getType();
2514 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2515 BinOp.FPFeatures = FPFeatures;
2516 BinOp.E = E;
2517 return BinOp;
2520 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2521 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2522 llvm::Value *Amount =
2523 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2524 StringRef Name = IsInc ? "inc" : "dec";
2525 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2526 case LangOptions::SOB_Defined:
2527 return Builder.CreateAdd(InVal, Amount, Name);
2528 case LangOptions::SOB_Undefined:
2529 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2530 return Builder.CreateNSWAdd(InVal, Amount, Name);
2531 [[fallthrough]];
2532 case LangOptions::SOB_Trapping:
2533 if (!E->canOverflow())
2534 return Builder.CreateNSWAdd(InVal, Amount, Name);
2535 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2536 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2538 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2541 namespace {
2542 /// Handles check and update for lastprivate conditional variables.
2543 class OMPLastprivateConditionalUpdateRAII {
2544 private:
2545 CodeGenFunction &CGF;
2546 const UnaryOperator *E;
2548 public:
2549 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2550 const UnaryOperator *E)
2551 : CGF(CGF), E(E) {}
2552 ~OMPLastprivateConditionalUpdateRAII() {
2553 if (CGF.getLangOpts().OpenMP)
2554 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2555 CGF, E->getSubExpr());
2558 } // namespace
2560 llvm::Value *
2561 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2562 bool isInc, bool isPre) {
2563 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2564 QualType type = E->getSubExpr()->getType();
2565 llvm::PHINode *atomicPHI = nullptr;
2566 llvm::Value *value;
2567 llvm::Value *input;
2569 int amount = (isInc ? 1 : -1);
2570 bool isSubtraction = !isInc;
2572 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2573 type = atomicTy->getValueType();
2574 if (isInc && type->isBooleanType()) {
2575 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2576 if (isPre) {
2577 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2578 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2579 return Builder.getTrue();
2581 // For atomic bool increment, we just store true and return it for
2582 // preincrement, do an atomic swap with true for postincrement
2583 return Builder.CreateAtomicRMW(
2584 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2585 llvm::AtomicOrdering::SequentiallyConsistent);
2587 // Special case for atomic increment / decrement on integers, emit
2588 // atomicrmw instructions. We skip this if we want to be doing overflow
2589 // checking, and fall into the slow path with the atomic cmpxchg loop.
2590 if (!type->isBooleanType() && type->isIntegerType() &&
2591 !(type->isUnsignedIntegerType() &&
2592 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2593 CGF.getLangOpts().getSignedOverflowBehavior() !=
2594 LangOptions::SOB_Trapping) {
2595 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2596 llvm::AtomicRMWInst::Sub;
2597 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2598 llvm::Instruction::Sub;
2599 llvm::Value *amt = CGF.EmitToMemory(
2600 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2601 llvm::Value *old =
2602 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2603 llvm::AtomicOrdering::SequentiallyConsistent);
2604 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2606 value = EmitLoadOfLValue(LV, E->getExprLoc());
2607 input = value;
2608 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2609 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2610 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2611 value = CGF.EmitToMemory(value, type);
2612 Builder.CreateBr(opBB);
2613 Builder.SetInsertPoint(opBB);
2614 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2615 atomicPHI->addIncoming(value, startBB);
2616 value = atomicPHI;
2617 } else {
2618 value = EmitLoadOfLValue(LV, E->getExprLoc());
2619 input = value;
2622 // Special case of integer increment that we have to check first: bool++.
2623 // Due to promotion rules, we get:
2624 // bool++ -> bool = bool + 1
2625 // -> bool = (int)bool + 1
2626 // -> bool = ((int)bool + 1 != 0)
2627 // An interesting aspect of this is that increment is always true.
2628 // Decrement does not have this property.
2629 if (isInc && type->isBooleanType()) {
2630 value = Builder.getTrue();
2632 // Most common case by far: integer increment.
2633 } else if (type->isIntegerType()) {
2634 QualType promotedType;
2635 bool canPerformLossyDemotionCheck = false;
2636 if (CGF.getContext().isPromotableIntegerType(type)) {
2637 promotedType = CGF.getContext().getPromotedIntegerType(type);
2638 assert(promotedType != type && "Shouldn't promote to the same type.");
2639 canPerformLossyDemotionCheck = true;
2640 canPerformLossyDemotionCheck &=
2641 CGF.getContext().getCanonicalType(type) !=
2642 CGF.getContext().getCanonicalType(promotedType);
2643 canPerformLossyDemotionCheck &=
2644 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2645 type, promotedType);
2646 assert((!canPerformLossyDemotionCheck ||
2647 type->isSignedIntegerOrEnumerationType() ||
2648 promotedType->isSignedIntegerOrEnumerationType() ||
2649 ConvertType(type)->getScalarSizeInBits() ==
2650 ConvertType(promotedType)->getScalarSizeInBits()) &&
2651 "The following check expects that if we do promotion to different "
2652 "underlying canonical type, at least one of the types (either "
2653 "base or promoted) will be signed, or the bitwidths will match.");
2655 if (CGF.SanOpts.hasOneOf(
2656 SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2657 canPerformLossyDemotionCheck) {
2658 // While `x += 1` (for `x` with width less than int) is modeled as
2659 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2660 // ease; inc/dec with width less than int can't overflow because of
2661 // promotion rules, so we omit promotion+demotion, which means that we can
2662 // not catch lossy "demotion". Because we still want to catch these cases
2663 // when the sanitizer is enabled, we perform the promotion, then perform
2664 // the increment/decrement in the wider type, and finally
2665 // perform the demotion. This will catch lossy demotions.
2667 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2668 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2669 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2670 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2671 // emitted.
2672 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2673 ScalarConversionOpts(CGF.SanOpts));
2675 // Note that signed integer inc/dec with width less than int can't
2676 // overflow because of promotion rules; we're just eliding a few steps
2677 // here.
2678 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2679 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2680 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2681 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2682 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2683 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2684 } else {
2685 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2686 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2689 // Next most common: pointer increment.
2690 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2691 QualType type = ptr->getPointeeType();
2693 // VLA types don't have constant size.
2694 if (const VariableArrayType *vla
2695 = CGF.getContext().getAsVariableArrayType(type)) {
2696 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2697 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2698 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2699 if (CGF.getLangOpts().isSignedOverflowDefined())
2700 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2701 else
2702 value = CGF.EmitCheckedInBoundsGEP(
2703 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2704 E->getExprLoc(), "vla.inc");
2706 // Arithmetic on function pointers (!) is just +-1.
2707 } else if (type->isFunctionType()) {
2708 llvm::Value *amt = Builder.getInt32(amount);
2710 if (CGF.getLangOpts().isSignedOverflowDefined())
2711 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2712 else
2713 value =
2714 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2715 /*SignedIndices=*/false, isSubtraction,
2716 E->getExprLoc(), "incdec.funcptr");
2718 // For everything else, we can just do a simple increment.
2719 } else {
2720 llvm::Value *amt = Builder.getInt32(amount);
2721 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2722 if (CGF.getLangOpts().isSignedOverflowDefined())
2723 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2724 else
2725 value = CGF.EmitCheckedInBoundsGEP(
2726 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2727 E->getExprLoc(), "incdec.ptr");
2730 // Vector increment/decrement.
2731 } else if (type->isVectorType()) {
2732 if (type->hasIntegerRepresentation()) {
2733 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2735 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2736 } else {
2737 value = Builder.CreateFAdd(
2738 value,
2739 llvm::ConstantFP::get(value->getType(), amount),
2740 isInc ? "inc" : "dec");
2743 // Floating point.
2744 } else if (type->isRealFloatingType()) {
2745 // Add the inc/dec to the real part.
2746 llvm::Value *amt;
2747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2749 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2750 // Another special case: half FP increment should be done via float
2751 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2752 value = Builder.CreateCall(
2753 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2754 CGF.CGM.FloatTy),
2755 input, "incdec.conv");
2756 } else {
2757 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2761 if (value->getType()->isFloatTy())
2762 amt = llvm::ConstantFP::get(VMContext,
2763 llvm::APFloat(static_cast<float>(amount)));
2764 else if (value->getType()->isDoubleTy())
2765 amt = llvm::ConstantFP::get(VMContext,
2766 llvm::APFloat(static_cast<double>(amount)));
2767 else {
2768 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
2769 // Convert from float.
2770 llvm::APFloat F(static_cast<float>(amount));
2771 bool ignored;
2772 const llvm::fltSemantics *FS;
2773 // Don't use getFloatTypeSemantics because Half isn't
2774 // necessarily represented using the "half" LLVM type.
2775 if (value->getType()->isFP128Ty())
2776 FS = &CGF.getTarget().getFloat128Format();
2777 else if (value->getType()->isHalfTy())
2778 FS = &CGF.getTarget().getHalfFormat();
2779 else if (value->getType()->isBFloatTy())
2780 FS = &CGF.getTarget().getBFloat16Format();
2781 else if (value->getType()->isPPC_FP128Ty())
2782 FS = &CGF.getTarget().getIbm128Format();
2783 else
2784 FS = &CGF.getTarget().getLongDoubleFormat();
2785 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2786 amt = llvm::ConstantFP::get(VMContext, F);
2788 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2790 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2791 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2792 value = Builder.CreateCall(
2793 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2794 CGF.CGM.FloatTy),
2795 value, "incdec.conv");
2796 } else {
2797 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2801 // Fixed-point types.
2802 } else if (type->isFixedPointType()) {
2803 // Fixed-point types are tricky. In some cases, it isn't possible to
2804 // represent a 1 or a -1 in the type at all. Piggyback off of
2805 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2806 BinOpInfo Info;
2807 Info.E = E;
2808 Info.Ty = E->getType();
2809 Info.Opcode = isInc ? BO_Add : BO_Sub;
2810 Info.LHS = value;
2811 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2812 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2813 // since -1 is guaranteed to be representable.
2814 if (type->isSignedFixedPointType()) {
2815 Info.Opcode = isInc ? BO_Sub : BO_Add;
2816 Info.RHS = Builder.CreateNeg(Info.RHS);
2818 // Now, convert from our invented integer literal to the type of the unary
2819 // op. This will upscale and saturate if necessary. This value can become
2820 // undef in some cases.
2821 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2822 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2823 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2824 value = EmitFixedPointBinOp(Info);
2826 // Objective-C pointer types.
2827 } else {
2828 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2830 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2831 if (!isInc) size = -size;
2832 llvm::Value *sizeValue =
2833 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2835 if (CGF.getLangOpts().isSignedOverflowDefined())
2836 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2837 else
2838 value = CGF.EmitCheckedInBoundsGEP(
2839 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2840 E->getExprLoc(), "incdec.objptr");
2841 value = Builder.CreateBitCast(value, input->getType());
2844 if (atomicPHI) {
2845 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2846 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2847 auto Pair = CGF.EmitAtomicCompareExchange(
2848 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2849 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2850 llvm::Value *success = Pair.second;
2851 atomicPHI->addIncoming(old, curBlock);
2852 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2853 Builder.SetInsertPoint(contBB);
2854 return isPre ? value : input;
2857 // Store the updated result through the lvalue.
2858 if (LV.isBitField())
2859 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2860 else
2861 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2863 // If this is a postinc, return the value read from memory, otherwise use the
2864 // updated value.
2865 return isPre ? value : input;
2869 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2870 QualType PromotionType) {
2871 QualType promotionTy = PromotionType.isNull()
2872 ? getPromotionType(E->getSubExpr()->getType())
2873 : PromotionType;
2874 Value *result = VisitPlus(E, promotionTy);
2875 if (result && !promotionTy.isNull())
2876 result = EmitUnPromotedValue(result, E->getType());
2877 return result;
2880 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2881 QualType PromotionType) {
2882 // This differs from gcc, though, most likely due to a bug in gcc.
2883 TestAndClearIgnoreResultAssign();
2884 if (!PromotionType.isNull())
2885 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2886 return Visit(E->getSubExpr());
2889 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2890 QualType PromotionType) {
2891 QualType promotionTy = PromotionType.isNull()
2892 ? getPromotionType(E->getSubExpr()->getType())
2893 : PromotionType;
2894 Value *result = VisitMinus(E, promotionTy);
2895 if (result && !promotionTy.isNull())
2896 result = EmitUnPromotedValue(result, E->getType());
2897 return result;
2900 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2901 QualType PromotionType) {
2902 TestAndClearIgnoreResultAssign();
2903 Value *Op;
2904 if (!PromotionType.isNull())
2905 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2906 else
2907 Op = Visit(E->getSubExpr());
2909 // Generate a unary FNeg for FP ops.
2910 if (Op->getType()->isFPOrFPVectorTy())
2911 return Builder.CreateFNeg(Op, "fneg");
2913 // Emit unary minus with EmitSub so we handle overflow cases etc.
2914 BinOpInfo BinOp;
2915 BinOp.RHS = Op;
2916 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2917 BinOp.Ty = E->getType();
2918 BinOp.Opcode = BO_Sub;
2919 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2920 BinOp.E = E;
2921 return EmitSub(BinOp);
2924 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2925 TestAndClearIgnoreResultAssign();
2926 Value *Op = Visit(E->getSubExpr());
2927 return Builder.CreateNot(Op, "not");
2930 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2931 // Perform vector logical not on comparison with zero vector.
2932 if (E->getType()->isVectorType() &&
2933 E->getType()->castAs<VectorType>()->getVectorKind() ==
2934 VectorKind::Generic) {
2935 Value *Oper = Visit(E->getSubExpr());
2936 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2937 Value *Result;
2938 if (Oper->getType()->isFPOrFPVectorTy()) {
2939 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2940 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2941 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2942 } else
2943 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2944 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2947 // Compare operand to zero.
2948 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2950 // Invert value.
2951 // TODO: Could dynamically modify easy computations here. For example, if
2952 // the operand is an icmp ne, turn into icmp eq.
2953 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2955 // ZExt result to the expr type.
2956 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2959 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2960 // Try folding the offsetof to a constant.
2961 Expr::EvalResult EVResult;
2962 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2963 llvm::APSInt Value = EVResult.Val.getInt();
2964 return Builder.getInt(Value);
2967 // Loop over the components of the offsetof to compute the value.
2968 unsigned n = E->getNumComponents();
2969 llvm::Type* ResultType = ConvertType(E->getType());
2970 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2971 QualType CurrentType = E->getTypeSourceInfo()->getType();
2972 for (unsigned i = 0; i != n; ++i) {
2973 OffsetOfNode ON = E->getComponent(i);
2974 llvm::Value *Offset = nullptr;
2975 switch (ON.getKind()) {
2976 case OffsetOfNode::Array: {
2977 // Compute the index
2978 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2979 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2980 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2981 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2983 // Save the element type
2984 CurrentType =
2985 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2987 // Compute the element size
2988 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2989 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2991 // Multiply out to compute the result
2992 Offset = Builder.CreateMul(Idx, ElemSize);
2993 break;
2996 case OffsetOfNode::Field: {
2997 FieldDecl *MemberDecl = ON.getField();
2998 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2999 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3001 // Compute the index of the field in its parent.
3002 unsigned i = 0;
3003 // FIXME: It would be nice if we didn't have to loop here!
3004 for (RecordDecl::field_iterator Field = RD->field_begin(),
3005 FieldEnd = RD->field_end();
3006 Field != FieldEnd; ++Field, ++i) {
3007 if (*Field == MemberDecl)
3008 break;
3010 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3012 // Compute the offset to the field
3013 int64_t OffsetInt = RL.getFieldOffset(i) /
3014 CGF.getContext().getCharWidth();
3015 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3017 // Save the element type.
3018 CurrentType = MemberDecl->getType();
3019 break;
3022 case OffsetOfNode::Identifier:
3023 llvm_unreachable("dependent __builtin_offsetof");
3025 case OffsetOfNode::Base: {
3026 if (ON.getBase()->isVirtual()) {
3027 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3028 continue;
3031 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3032 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3034 // Save the element type.
3035 CurrentType = ON.getBase()->getType();
3037 // Compute the offset to the base.
3038 auto *BaseRT = CurrentType->castAs<RecordType>();
3039 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3040 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3041 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3042 break;
3045 Result = Builder.CreateAdd(Result, Offset);
3047 return Result;
3050 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3051 /// argument of the sizeof expression as an integer.
3052 Value *
3053 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3054 const UnaryExprOrTypeTraitExpr *E) {
3055 QualType TypeToSize = E->getTypeOfArgument();
3056 if (E->getKind() == UETT_SizeOf) {
3057 if (const VariableArrayType *VAT =
3058 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3059 if (E->isArgumentType()) {
3060 // sizeof(type) - make sure to emit the VLA size.
3061 CGF.EmitVariablyModifiedType(TypeToSize);
3062 } else {
3063 // C99 6.5.3.4p2: If the argument is an expression of type
3064 // VLA, it is evaluated.
3065 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3068 auto VlaSize = CGF.getVLASize(VAT);
3069 llvm::Value *size = VlaSize.NumElts;
3071 // Scale the number of non-VLA elements by the non-VLA element size.
3072 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3073 if (!eltSize.isOne())
3074 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3076 return size;
3078 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3079 auto Alignment =
3080 CGF.getContext()
3081 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3082 E->getTypeOfArgument()->getPointeeType()))
3083 .getQuantity();
3084 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3085 } else if (E->getKind() == UETT_VectorElements) {
3086 auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3087 return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3090 // If this isn't sizeof(vla), the result must be constant; use the constant
3091 // folding logic so we don't have to duplicate it here.
3092 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3095 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3096 QualType PromotionType) {
3097 QualType promotionTy = PromotionType.isNull()
3098 ? getPromotionType(E->getSubExpr()->getType())
3099 : PromotionType;
3100 Value *result = VisitReal(E, promotionTy);
3101 if (result && !promotionTy.isNull())
3102 result = EmitUnPromotedValue(result, E->getType());
3103 return result;
3106 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3107 QualType PromotionType) {
3108 Expr *Op = E->getSubExpr();
3109 if (Op->getType()->isAnyComplexType()) {
3110 // If it's an l-value, load through the appropriate subobject l-value.
3111 // Note that we have to ask E because Op might be an l-value that
3112 // this won't work for, e.g. an Obj-C property.
3113 if (E->isGLValue()) {
3114 if (!PromotionType.isNull()) {
3115 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3116 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3117 if (result.first)
3118 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3119 return result.first;
3120 } else {
3121 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3122 .getScalarVal();
3125 // Otherwise, calculate and project.
3126 return CGF.EmitComplexExpr(Op, false, true).first;
3129 if (!PromotionType.isNull())
3130 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3131 return Visit(Op);
3134 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3135 QualType PromotionType) {
3136 QualType promotionTy = PromotionType.isNull()
3137 ? getPromotionType(E->getSubExpr()->getType())
3138 : PromotionType;
3139 Value *result = VisitImag(E, promotionTy);
3140 if (result && !promotionTy.isNull())
3141 result = EmitUnPromotedValue(result, E->getType());
3142 return result;
3145 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3146 QualType PromotionType) {
3147 Expr *Op = E->getSubExpr();
3148 if (Op->getType()->isAnyComplexType()) {
3149 // If it's an l-value, load through the appropriate subobject l-value.
3150 // Note that we have to ask E because Op might be an l-value that
3151 // this won't work for, e.g. an Obj-C property.
3152 if (Op->isGLValue()) {
3153 if (!PromotionType.isNull()) {
3154 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3155 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3156 if (result.second)
3157 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3158 return result.second;
3159 } else {
3160 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3161 .getScalarVal();
3164 // Otherwise, calculate and project.
3165 return CGF.EmitComplexExpr(Op, true, false).second;
3168 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3169 // effects are evaluated, but not the actual value.
3170 if (Op->isGLValue())
3171 CGF.EmitLValue(Op);
3172 else if (!PromotionType.isNull())
3173 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3174 else
3175 CGF.EmitScalarExpr(Op, true);
3176 if (!PromotionType.isNull())
3177 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3178 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3181 //===----------------------------------------------------------------------===//
3182 // Binary Operators
3183 //===----------------------------------------------------------------------===//
3185 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3186 QualType PromotionType) {
3187 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3190 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3191 QualType ExprType) {
3192 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3195 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3196 E = E->IgnoreParens();
3197 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3198 switch (BO->getOpcode()) {
3199 #define HANDLE_BINOP(OP) \
3200 case BO_##OP: \
3201 return Emit##OP(EmitBinOps(BO, PromotionType));
3202 HANDLE_BINOP(Add)
3203 HANDLE_BINOP(Sub)
3204 HANDLE_BINOP(Mul)
3205 HANDLE_BINOP(Div)
3206 #undef HANDLE_BINOP
3207 default:
3208 break;
3210 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3211 switch (UO->getOpcode()) {
3212 case UO_Imag:
3213 return VisitImag(UO, PromotionType);
3214 case UO_Real:
3215 return VisitReal(UO, PromotionType);
3216 case UO_Minus:
3217 return VisitMinus(UO, PromotionType);
3218 case UO_Plus:
3219 return VisitPlus(UO, PromotionType);
3220 default:
3221 break;
3224 auto result = Visit(const_cast<Expr *>(E));
3225 if (result) {
3226 if (!PromotionType.isNull())
3227 return EmitPromotedValue(result, PromotionType);
3228 else
3229 return EmitUnPromotedValue(result, E->getType());
3231 return result;
3234 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3235 QualType PromotionType) {
3236 TestAndClearIgnoreResultAssign();
3237 BinOpInfo Result;
3238 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3239 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3240 if (!PromotionType.isNull())
3241 Result.Ty = PromotionType;
3242 else
3243 Result.Ty = E->getType();
3244 Result.Opcode = E->getOpcode();
3245 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3246 Result.E = E;
3247 return Result;
3250 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3251 const CompoundAssignOperator *E,
3252 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3253 Value *&Result) {
3254 QualType LHSTy = E->getLHS()->getType();
3255 BinOpInfo OpInfo;
3257 if (E->getComputationResultType()->isAnyComplexType())
3258 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3260 // Emit the RHS first. __block variables need to have the rhs evaluated
3261 // first, plus this should improve codegen a little.
3263 QualType PromotionTypeCR;
3264 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3265 if (PromotionTypeCR.isNull())
3266 PromotionTypeCR = E->getComputationResultType();
3267 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3268 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3269 if (!PromotionTypeRHS.isNull())
3270 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3271 else
3272 OpInfo.RHS = Visit(E->getRHS());
3273 OpInfo.Ty = PromotionTypeCR;
3274 OpInfo.Opcode = E->getOpcode();
3275 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3276 OpInfo.E = E;
3277 // Load/convert the LHS.
3278 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3280 llvm::PHINode *atomicPHI = nullptr;
3281 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3282 QualType type = atomicTy->getValueType();
3283 if (!type->isBooleanType() && type->isIntegerType() &&
3284 !(type->isUnsignedIntegerType() &&
3285 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3286 CGF.getLangOpts().getSignedOverflowBehavior() !=
3287 LangOptions::SOB_Trapping) {
3288 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3289 llvm::Instruction::BinaryOps Op;
3290 switch (OpInfo.Opcode) {
3291 // We don't have atomicrmw operands for *, %, /, <<, >>
3292 case BO_MulAssign: case BO_DivAssign:
3293 case BO_RemAssign:
3294 case BO_ShlAssign:
3295 case BO_ShrAssign:
3296 break;
3297 case BO_AddAssign:
3298 AtomicOp = llvm::AtomicRMWInst::Add;
3299 Op = llvm::Instruction::Add;
3300 break;
3301 case BO_SubAssign:
3302 AtomicOp = llvm::AtomicRMWInst::Sub;
3303 Op = llvm::Instruction::Sub;
3304 break;
3305 case BO_AndAssign:
3306 AtomicOp = llvm::AtomicRMWInst::And;
3307 Op = llvm::Instruction::And;
3308 break;
3309 case BO_XorAssign:
3310 AtomicOp = llvm::AtomicRMWInst::Xor;
3311 Op = llvm::Instruction::Xor;
3312 break;
3313 case BO_OrAssign:
3314 AtomicOp = llvm::AtomicRMWInst::Or;
3315 Op = llvm::Instruction::Or;
3316 break;
3317 default:
3318 llvm_unreachable("Invalid compound assignment type");
3320 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3321 llvm::Value *Amt = CGF.EmitToMemory(
3322 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3323 E->getExprLoc()),
3324 LHSTy);
3325 Value *OldVal = Builder.CreateAtomicRMW(
3326 AtomicOp, LHSLV.getPointer(CGF), Amt,
3327 llvm::AtomicOrdering::SequentiallyConsistent);
3329 // Since operation is atomic, the result type is guaranteed to be the
3330 // same as the input in LLVM terms.
3331 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3332 return LHSLV;
3335 // FIXME: For floating point types, we should be saving and restoring the
3336 // floating point environment in the loop.
3337 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3338 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3339 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3340 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3341 Builder.CreateBr(opBB);
3342 Builder.SetInsertPoint(opBB);
3343 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3344 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3345 OpInfo.LHS = atomicPHI;
3347 else
3348 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3350 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3351 SourceLocation Loc = E->getExprLoc();
3352 if (!PromotionTypeLHS.isNull())
3353 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3354 E->getExprLoc());
3355 else
3356 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3357 E->getComputationLHSType(), Loc);
3359 // Expand the binary operator.
3360 Result = (this->*Func)(OpInfo);
3362 // Convert the result back to the LHS type,
3363 // potentially with Implicit Conversion sanitizer check.
3364 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3365 ScalarConversionOpts(CGF.SanOpts));
3367 if (atomicPHI) {
3368 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3369 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3370 auto Pair = CGF.EmitAtomicCompareExchange(
3371 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3372 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3373 llvm::Value *success = Pair.second;
3374 atomicPHI->addIncoming(old, curBlock);
3375 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3376 Builder.SetInsertPoint(contBB);
3377 return LHSLV;
3380 // Store the result value into the LHS lvalue. Bit-fields are handled
3381 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3382 // 'An assignment expression has the value of the left operand after the
3383 // assignment...'.
3384 if (LHSLV.isBitField())
3385 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3386 else
3387 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3389 if (CGF.getLangOpts().OpenMP)
3390 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3391 E->getLHS());
3392 return LHSLV;
3395 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3396 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3397 bool Ignore = TestAndClearIgnoreResultAssign();
3398 Value *RHS = nullptr;
3399 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3401 // If the result is clearly ignored, return now.
3402 if (Ignore)
3403 return nullptr;
3405 // The result of an assignment in C is the assigned r-value.
3406 if (!CGF.getLangOpts().CPlusPlus)
3407 return RHS;
3409 // If the lvalue is non-volatile, return the computed value of the assignment.
3410 if (!LHS.isVolatileQualified())
3411 return RHS;
3413 // Otherwise, reload the value.
3414 return EmitLoadOfLValue(LHS, E->getExprLoc());
3417 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3418 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3419 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3421 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3422 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3423 SanitizerKind::IntegerDivideByZero));
3426 const auto *BO = cast<BinaryOperator>(Ops.E);
3427 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3428 Ops.Ty->hasSignedIntegerRepresentation() &&
3429 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3430 Ops.mayHaveIntegerOverflow()) {
3431 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3433 llvm::Value *IntMin =
3434 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3435 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3437 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3438 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3439 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3440 Checks.push_back(
3441 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3444 if (Checks.size() > 0)
3445 EmitBinOpCheck(Checks, Ops);
3448 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3450 CodeGenFunction::SanitizerScope SanScope(&CGF);
3451 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3452 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3453 Ops.Ty->isIntegerType() &&
3454 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3455 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3456 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3457 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3458 Ops.Ty->isRealFloatingType() &&
3459 Ops.mayHaveFloatDivisionByZero()) {
3460 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3461 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3462 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3463 Ops);
3467 if (Ops.Ty->isConstantMatrixType()) {
3468 llvm::MatrixBuilder MB(Builder);
3469 // We need to check the types of the operands of the operator to get the
3470 // correct matrix dimensions.
3471 auto *BO = cast<BinaryOperator>(Ops.E);
3472 (void)BO;
3473 assert(
3474 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3475 "first operand must be a matrix");
3476 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3477 "second operand must be an arithmetic type");
3478 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3479 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3480 Ops.Ty->hasUnsignedIntegerRepresentation());
3483 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3484 llvm::Value *Val;
3485 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3486 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3487 CGF.SetDivFPAccuracy(Val);
3488 return Val;
3490 else if (Ops.isFixedPointOp())
3491 return EmitFixedPointBinOp(Ops);
3492 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3493 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3494 else
3495 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3498 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3499 // Rem in C can't be a floating point type: C99 6.5.5p2.
3500 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3501 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3502 Ops.Ty->isIntegerType() &&
3503 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3504 CodeGenFunction::SanitizerScope SanScope(&CGF);
3505 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3506 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3509 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3510 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3511 else
3512 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3515 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3516 unsigned IID;
3517 unsigned OpID = 0;
3518 SanitizerHandler OverflowKind;
3520 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3521 switch (Ops.Opcode) {
3522 case BO_Add:
3523 case BO_AddAssign:
3524 OpID = 1;
3525 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3526 llvm::Intrinsic::uadd_with_overflow;
3527 OverflowKind = SanitizerHandler::AddOverflow;
3528 break;
3529 case BO_Sub:
3530 case BO_SubAssign:
3531 OpID = 2;
3532 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3533 llvm::Intrinsic::usub_with_overflow;
3534 OverflowKind = SanitizerHandler::SubOverflow;
3535 break;
3536 case BO_Mul:
3537 case BO_MulAssign:
3538 OpID = 3;
3539 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3540 llvm::Intrinsic::umul_with_overflow;
3541 OverflowKind = SanitizerHandler::MulOverflow;
3542 break;
3543 default:
3544 llvm_unreachable("Unsupported operation for overflow detection");
3546 OpID <<= 1;
3547 if (isSigned)
3548 OpID |= 1;
3550 CodeGenFunction::SanitizerScope SanScope(&CGF);
3551 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3553 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3555 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3556 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3557 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3559 // Handle overflow with llvm.trap if no custom handler has been specified.
3560 const std::string *handlerName =
3561 &CGF.getLangOpts().OverflowHandler;
3562 if (handlerName->empty()) {
3563 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3564 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3565 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3566 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3567 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3568 : SanitizerKind::UnsignedIntegerOverflow;
3569 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3570 } else
3571 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3572 return result;
3575 // Branch in case of overflow.
3576 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3577 llvm::BasicBlock *continueBB =
3578 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3579 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3581 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3583 // If an overflow handler is set, then we want to call it and then use its
3584 // result, if it returns.
3585 Builder.SetInsertPoint(overflowBB);
3587 // Get the overflow handler.
3588 llvm::Type *Int8Ty = CGF.Int8Ty;
3589 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3590 llvm::FunctionType *handlerTy =
3591 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3592 llvm::FunctionCallee handler =
3593 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3595 // Sign extend the args to 64-bit, so that we can use the same handler for
3596 // all types of overflow.
3597 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3598 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3600 // Call the handler with the two arguments, the operation, and the size of
3601 // the result.
3602 llvm::Value *handlerArgs[] = {
3603 lhs,
3604 rhs,
3605 Builder.getInt8(OpID),
3606 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3608 llvm::Value *handlerResult =
3609 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3611 // Truncate the result back to the desired size.
3612 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3613 Builder.CreateBr(continueBB);
3615 Builder.SetInsertPoint(continueBB);
3616 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3617 phi->addIncoming(result, initialBB);
3618 phi->addIncoming(handlerResult, overflowBB);
3620 return phi;
3623 /// Emit pointer + index arithmetic.
3624 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3625 const BinOpInfo &op,
3626 bool isSubtraction) {
3627 // Must have binary (not unary) expr here. Unary pointer
3628 // increment/decrement doesn't use this path.
3629 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3631 Value *pointer = op.LHS;
3632 Expr *pointerOperand = expr->getLHS();
3633 Value *index = op.RHS;
3634 Expr *indexOperand = expr->getRHS();
3636 // In a subtraction, the LHS is always the pointer.
3637 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3638 std::swap(pointer, index);
3639 std::swap(pointerOperand, indexOperand);
3642 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3644 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3645 auto &DL = CGF.CGM.getDataLayout();
3646 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3648 // Some versions of glibc and gcc use idioms (particularly in their malloc
3649 // routines) that add a pointer-sized integer (known to be a pointer value)
3650 // to a null pointer in order to cast the value back to an integer or as
3651 // part of a pointer alignment algorithm. This is undefined behavior, but
3652 // we'd like to be able to compile programs that use it.
3654 // Normally, we'd generate a GEP with a null-pointer base here in response
3655 // to that code, but it's also UB to dereference a pointer created that
3656 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3657 // generate a direct cast of the integer value to a pointer.
3659 // The idiom (p = nullptr + N) is not met if any of the following are true:
3661 // The operation is subtraction.
3662 // The index is not pointer-sized.
3663 // The pointer type is not byte-sized.
3665 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3666 op.Opcode,
3667 expr->getLHS(),
3668 expr->getRHS()))
3669 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3671 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3672 // Zero-extend or sign-extend the pointer value according to
3673 // whether the index is signed or not.
3674 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3675 "idx.ext");
3678 // If this is subtraction, negate the index.
3679 if (isSubtraction)
3680 index = CGF.Builder.CreateNeg(index, "idx.neg");
3682 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3683 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3684 /*Accessed*/ false);
3686 const PointerType *pointerType
3687 = pointerOperand->getType()->getAs<PointerType>();
3688 if (!pointerType) {
3689 QualType objectType = pointerOperand->getType()
3690 ->castAs<ObjCObjectPointerType>()
3691 ->getPointeeType();
3692 llvm::Value *objectSize
3693 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3695 index = CGF.Builder.CreateMul(index, objectSize);
3697 Value *result =
3698 CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
3699 return CGF.Builder.CreateBitCast(result, pointer->getType());
3702 QualType elementType = pointerType->getPointeeType();
3703 if (const VariableArrayType *vla
3704 = CGF.getContext().getAsVariableArrayType(elementType)) {
3705 // The element count here is the total number of non-VLA elements.
3706 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3708 // Effectively, the multiply by the VLA size is part of the GEP.
3709 // GEP indexes are signed, and scaling an index isn't permitted to
3710 // signed-overflow, so we use the same semantics for our explicit
3711 // multiply. We suppress this if overflow is not undefined behavior.
3712 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3713 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3714 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3715 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3716 } else {
3717 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3718 pointer = CGF.EmitCheckedInBoundsGEP(
3719 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3720 "add.ptr");
3722 return pointer;
3725 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3726 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3727 // future proof.
3728 llvm::Type *elemTy;
3729 if (elementType->isVoidType() || elementType->isFunctionType())
3730 elemTy = CGF.Int8Ty;
3731 else
3732 elemTy = CGF.ConvertTypeForMem(elementType);
3734 if (CGF.getLangOpts().isSignedOverflowDefined())
3735 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3737 return CGF.EmitCheckedInBoundsGEP(
3738 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3739 "add.ptr");
3742 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3743 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3744 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3745 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3746 // efficient operations.
3747 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3748 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3749 bool negMul, bool negAdd) {
3750 Value *MulOp0 = MulOp->getOperand(0);
3751 Value *MulOp1 = MulOp->getOperand(1);
3752 if (negMul)
3753 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3754 if (negAdd)
3755 Addend = Builder.CreateFNeg(Addend, "neg");
3757 Value *FMulAdd = nullptr;
3758 if (Builder.getIsFPConstrained()) {
3759 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3760 "Only constrained operation should be created when Builder is in FP "
3761 "constrained mode");
3762 FMulAdd = Builder.CreateConstrainedFPCall(
3763 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3764 Addend->getType()),
3765 {MulOp0, MulOp1, Addend});
3766 } else {
3767 FMulAdd = Builder.CreateCall(
3768 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3769 {MulOp0, MulOp1, Addend});
3771 MulOp->eraseFromParent();
3773 return FMulAdd;
3776 // Check whether it would be legal to emit an fmuladd intrinsic call to
3777 // represent op and if so, build the fmuladd.
3779 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3780 // Does NOT check the type of the operation - it's assumed that this function
3781 // will be called from contexts where it's known that the type is contractable.
3782 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3783 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3784 bool isSub=false) {
3786 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3787 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3788 "Only fadd/fsub can be the root of an fmuladd.");
3790 // Check whether this op is marked as fusable.
3791 if (!op.FPFeatures.allowFPContractWithinStatement())
3792 return nullptr;
3794 Value *LHS = op.LHS;
3795 Value *RHS = op.RHS;
3797 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
3798 // it is the only use of its operand.
3799 bool NegLHS = false;
3800 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
3801 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3802 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
3803 LHS = LHSUnOp->getOperand(0);
3804 NegLHS = true;
3808 bool NegRHS = false;
3809 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
3810 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3811 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
3812 RHS = RHSUnOp->getOperand(0);
3813 NegRHS = true;
3817 // We have a potentially fusable op. Look for a mul on one of the operands.
3818 // Also, make sure that the mul result isn't used directly. In that case,
3819 // there's no point creating a muladd operation.
3820 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
3821 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3822 (LHSBinOp->use_empty() || NegLHS)) {
3823 // If we looked through fneg, erase it.
3824 if (NegLHS)
3825 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3826 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3829 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
3830 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3831 (RHSBinOp->use_empty() || NegRHS)) {
3832 // If we looked through fneg, erase it.
3833 if (NegRHS)
3834 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3835 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3839 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
3840 if (LHSBinOp->getIntrinsicID() ==
3841 llvm::Intrinsic::experimental_constrained_fmul &&
3842 (LHSBinOp->use_empty() || NegLHS)) {
3843 // If we looked through fneg, erase it.
3844 if (NegLHS)
3845 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3846 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3849 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
3850 if (RHSBinOp->getIntrinsicID() ==
3851 llvm::Intrinsic::experimental_constrained_fmul &&
3852 (RHSBinOp->use_empty() || NegRHS)) {
3853 // If we looked through fneg, erase it.
3854 if (NegRHS)
3855 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3856 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3860 return nullptr;
3863 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3864 if (op.LHS->getType()->isPointerTy() ||
3865 op.RHS->getType()->isPointerTy())
3866 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3868 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3869 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3870 case LangOptions::SOB_Defined:
3871 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3872 case LangOptions::SOB_Undefined:
3873 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3874 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3875 [[fallthrough]];
3876 case LangOptions::SOB_Trapping:
3877 if (CanElideOverflowCheck(CGF.getContext(), op))
3878 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3879 return EmitOverflowCheckedBinOp(op);
3883 // For vector and matrix adds, try to fold into a fmuladd.
3884 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3885 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3886 // Try to form an fmuladd.
3887 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3888 return FMulAdd;
3891 if (op.Ty->isConstantMatrixType()) {
3892 llvm::MatrixBuilder MB(Builder);
3893 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3894 return MB.CreateAdd(op.LHS, op.RHS);
3897 if (op.Ty->isUnsignedIntegerType() &&
3898 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3899 !CanElideOverflowCheck(CGF.getContext(), op))
3900 return EmitOverflowCheckedBinOp(op);
3902 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3903 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3904 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3907 if (op.isFixedPointOp())
3908 return EmitFixedPointBinOp(op);
3910 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3913 /// The resulting value must be calculated with exact precision, so the operands
3914 /// may not be the same type.
3915 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3916 using llvm::APSInt;
3917 using llvm::ConstantInt;
3919 // This is either a binary operation where at least one of the operands is
3920 // a fixed-point type, or a unary operation where the operand is a fixed-point
3921 // type. The result type of a binary operation is determined by
3922 // Sema::handleFixedPointConversions().
3923 QualType ResultTy = op.Ty;
3924 QualType LHSTy, RHSTy;
3925 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3926 RHSTy = BinOp->getRHS()->getType();
3927 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3928 // For compound assignment, the effective type of the LHS at this point
3929 // is the computation LHS type, not the actual LHS type, and the final
3930 // result type is not the type of the expression but rather the
3931 // computation result type.
3932 LHSTy = CAO->getComputationLHSType();
3933 ResultTy = CAO->getComputationResultType();
3934 } else
3935 LHSTy = BinOp->getLHS()->getType();
3936 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3937 LHSTy = UnOp->getSubExpr()->getType();
3938 RHSTy = UnOp->getSubExpr()->getType();
3940 ASTContext &Ctx = CGF.getContext();
3941 Value *LHS = op.LHS;
3942 Value *RHS = op.RHS;
3944 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3945 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3946 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3947 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3949 // Perform the actual operation.
3950 Value *Result;
3951 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3952 switch (op.Opcode) {
3953 case BO_AddAssign:
3954 case BO_Add:
3955 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3956 break;
3957 case BO_SubAssign:
3958 case BO_Sub:
3959 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3960 break;
3961 case BO_MulAssign:
3962 case BO_Mul:
3963 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3964 break;
3965 case BO_DivAssign:
3966 case BO_Div:
3967 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3968 break;
3969 case BO_ShlAssign:
3970 case BO_Shl:
3971 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3972 break;
3973 case BO_ShrAssign:
3974 case BO_Shr:
3975 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3976 break;
3977 case BO_LT:
3978 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3979 case BO_GT:
3980 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3981 case BO_LE:
3982 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3983 case BO_GE:
3984 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3985 case BO_EQ:
3986 // For equality operations, we assume any padding bits on unsigned types are
3987 // zero'd out. They could be overwritten through non-saturating operations
3988 // that cause overflow, but this leads to undefined behavior.
3989 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3990 case BO_NE:
3991 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3992 case BO_Cmp:
3993 case BO_LAnd:
3994 case BO_LOr:
3995 llvm_unreachable("Found unimplemented fixed point binary operation");
3996 case BO_PtrMemD:
3997 case BO_PtrMemI:
3998 case BO_Rem:
3999 case BO_Xor:
4000 case BO_And:
4001 case BO_Or:
4002 case BO_Assign:
4003 case BO_RemAssign:
4004 case BO_AndAssign:
4005 case BO_XorAssign:
4006 case BO_OrAssign:
4007 case BO_Comma:
4008 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4011 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4012 BinaryOperator::isShiftAssignOp(op.Opcode);
4013 // Convert to the result type.
4014 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4015 : CommonFixedSema,
4016 ResultFixedSema);
4019 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4020 // The LHS is always a pointer if either side is.
4021 if (!op.LHS->getType()->isPointerTy()) {
4022 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4023 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4024 case LangOptions::SOB_Defined:
4025 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4026 case LangOptions::SOB_Undefined:
4027 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4028 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4029 [[fallthrough]];
4030 case LangOptions::SOB_Trapping:
4031 if (CanElideOverflowCheck(CGF.getContext(), op))
4032 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4033 return EmitOverflowCheckedBinOp(op);
4037 // For vector and matrix subs, try to fold into a fmuladd.
4038 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4039 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4040 // Try to form an fmuladd.
4041 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4042 return FMulAdd;
4045 if (op.Ty->isConstantMatrixType()) {
4046 llvm::MatrixBuilder MB(Builder);
4047 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4048 return MB.CreateSub(op.LHS, op.RHS);
4051 if (op.Ty->isUnsignedIntegerType() &&
4052 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4053 !CanElideOverflowCheck(CGF.getContext(), op))
4054 return EmitOverflowCheckedBinOp(op);
4056 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4057 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4058 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4061 if (op.isFixedPointOp())
4062 return EmitFixedPointBinOp(op);
4064 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4067 // If the RHS is not a pointer, then we have normal pointer
4068 // arithmetic.
4069 if (!op.RHS->getType()->isPointerTy())
4070 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4072 // Otherwise, this is a pointer subtraction.
4074 // Do the raw subtraction part.
4075 llvm::Value *LHS
4076 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4077 llvm::Value *RHS
4078 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4079 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4081 // Okay, figure out the element size.
4082 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4083 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4085 llvm::Value *divisor = nullptr;
4087 // For a variable-length array, this is going to be non-constant.
4088 if (const VariableArrayType *vla
4089 = CGF.getContext().getAsVariableArrayType(elementType)) {
4090 auto VlaSize = CGF.getVLASize(vla);
4091 elementType = VlaSize.Type;
4092 divisor = VlaSize.NumElts;
4094 // Scale the number of non-VLA elements by the non-VLA element size.
4095 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4096 if (!eltSize.isOne())
4097 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4099 // For everything elese, we can just compute it, safe in the
4100 // assumption that Sema won't let anything through that we can't
4101 // safely compute the size of.
4102 } else {
4103 CharUnits elementSize;
4104 // Handle GCC extension for pointer arithmetic on void* and
4105 // function pointer types.
4106 if (elementType->isVoidType() || elementType->isFunctionType())
4107 elementSize = CharUnits::One();
4108 else
4109 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4111 // Don't even emit the divide for element size of 1.
4112 if (elementSize.isOne())
4113 return diffInChars;
4115 divisor = CGF.CGM.getSize(elementSize);
4118 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4119 // pointer difference in C is only defined in the case where both operands
4120 // are pointing to elements of an array.
4121 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4124 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4125 llvm::IntegerType *Ty;
4126 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4127 Ty = cast<llvm::IntegerType>(VT->getElementType());
4128 else
4129 Ty = cast<llvm::IntegerType>(LHS->getType());
4130 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4133 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4134 const Twine &Name) {
4135 llvm::IntegerType *Ty;
4136 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4137 Ty = cast<llvm::IntegerType>(VT->getElementType());
4138 else
4139 Ty = cast<llvm::IntegerType>(LHS->getType());
4141 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4142 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4144 return Builder.CreateURem(
4145 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4148 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4149 // TODO: This misses out on the sanitizer check below.
4150 if (Ops.isFixedPointOp())
4151 return EmitFixedPointBinOp(Ops);
4153 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4154 // RHS to the same size as the LHS.
4155 Value *RHS = Ops.RHS;
4156 if (Ops.LHS->getType() != RHS->getType())
4157 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4159 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4160 Ops.Ty->hasSignedIntegerRepresentation() &&
4161 !CGF.getLangOpts().isSignedOverflowDefined() &&
4162 !CGF.getLangOpts().CPlusPlus20;
4163 bool SanitizeUnsignedBase =
4164 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4165 Ops.Ty->hasUnsignedIntegerRepresentation();
4166 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4167 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4168 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4169 if (CGF.getLangOpts().OpenCL)
4170 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4171 else if ((SanitizeBase || SanitizeExponent) &&
4172 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4173 CodeGenFunction::SanitizerScope SanScope(&CGF);
4174 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4175 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4176 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4178 if (SanitizeExponent) {
4179 Checks.push_back(
4180 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4183 if (SanitizeBase) {
4184 // Check whether we are shifting any non-zero bits off the top of the
4185 // integer. We only emit this check if exponent is valid - otherwise
4186 // instructions below will have undefined behavior themselves.
4187 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4188 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4189 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4190 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4191 llvm::Value *PromotedWidthMinusOne =
4192 (RHS == Ops.RHS) ? WidthMinusOne
4193 : GetWidthMinusOneValue(Ops.LHS, RHS);
4194 CGF.EmitBlock(CheckShiftBase);
4195 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4196 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4197 /*NUW*/ true, /*NSW*/ true),
4198 "shl.check");
4199 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4200 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4201 // Under C++11's rules, shifting a 1 bit into the sign bit is
4202 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4203 // define signed left shifts, so we use the C99 and C++11 rules there).
4204 // Unsigned shifts can always shift into the top bit.
4205 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4206 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4208 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4209 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4210 CGF.EmitBlock(Cont);
4211 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4212 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4213 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4214 Checks.push_back(std::make_pair(
4215 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4216 : SanitizerKind::UnsignedShiftBase));
4219 assert(!Checks.empty());
4220 EmitBinOpCheck(Checks, Ops);
4223 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4226 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4227 // TODO: This misses out on the sanitizer check below.
4228 if (Ops.isFixedPointOp())
4229 return EmitFixedPointBinOp(Ops);
4231 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4232 // RHS to the same size as the LHS.
4233 Value *RHS = Ops.RHS;
4234 if (Ops.LHS->getType() != RHS->getType())
4235 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4237 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4238 if (CGF.getLangOpts().OpenCL)
4239 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4240 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4241 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4242 CodeGenFunction::SanitizerScope SanScope(&CGF);
4243 llvm::Value *Valid =
4244 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4245 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4248 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4249 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4250 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4253 enum IntrinsicType { VCMPEQ, VCMPGT };
4254 // return corresponding comparison intrinsic for given vector type
4255 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4256 BuiltinType::Kind ElemKind) {
4257 switch (ElemKind) {
4258 default: llvm_unreachable("unexpected element type");
4259 case BuiltinType::Char_U:
4260 case BuiltinType::UChar:
4261 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4262 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4263 case BuiltinType::Char_S:
4264 case BuiltinType::SChar:
4265 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4266 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4267 case BuiltinType::UShort:
4268 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4269 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4270 case BuiltinType::Short:
4271 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4272 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4273 case BuiltinType::UInt:
4274 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4275 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4276 case BuiltinType::Int:
4277 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4278 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4279 case BuiltinType::ULong:
4280 case BuiltinType::ULongLong:
4281 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4282 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4283 case BuiltinType::Long:
4284 case BuiltinType::LongLong:
4285 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4286 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4287 case BuiltinType::Float:
4288 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4289 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4290 case BuiltinType::Double:
4291 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4292 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4293 case BuiltinType::UInt128:
4294 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4295 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4296 case BuiltinType::Int128:
4297 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4298 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4302 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4303 llvm::CmpInst::Predicate UICmpOpc,
4304 llvm::CmpInst::Predicate SICmpOpc,
4305 llvm::CmpInst::Predicate FCmpOpc,
4306 bool IsSignaling) {
4307 TestAndClearIgnoreResultAssign();
4308 Value *Result;
4309 QualType LHSTy = E->getLHS()->getType();
4310 QualType RHSTy = E->getRHS()->getType();
4311 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4312 assert(E->getOpcode() == BO_EQ ||
4313 E->getOpcode() == BO_NE);
4314 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4315 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4316 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4317 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4318 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4319 BinOpInfo BOInfo = EmitBinOps(E);
4320 Value *LHS = BOInfo.LHS;
4321 Value *RHS = BOInfo.RHS;
4323 // If AltiVec, the comparison results in a numeric type, so we use
4324 // intrinsics comparing vectors and giving 0 or 1 as a result
4325 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4326 // constants for mapping CR6 register bits to predicate result
4327 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4329 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4331 // in several cases vector arguments order will be reversed
4332 Value *FirstVecArg = LHS,
4333 *SecondVecArg = RHS;
4335 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4336 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4338 switch(E->getOpcode()) {
4339 default: llvm_unreachable("is not a comparison operation");
4340 case BO_EQ:
4341 CR6 = CR6_LT;
4342 ID = GetIntrinsic(VCMPEQ, ElementKind);
4343 break;
4344 case BO_NE:
4345 CR6 = CR6_EQ;
4346 ID = GetIntrinsic(VCMPEQ, ElementKind);
4347 break;
4348 case BO_LT:
4349 CR6 = CR6_LT;
4350 ID = GetIntrinsic(VCMPGT, ElementKind);
4351 std::swap(FirstVecArg, SecondVecArg);
4352 break;
4353 case BO_GT:
4354 CR6 = CR6_LT;
4355 ID = GetIntrinsic(VCMPGT, ElementKind);
4356 break;
4357 case BO_LE:
4358 if (ElementKind == BuiltinType::Float) {
4359 CR6 = CR6_LT;
4360 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4361 std::swap(FirstVecArg, SecondVecArg);
4363 else {
4364 CR6 = CR6_EQ;
4365 ID = GetIntrinsic(VCMPGT, ElementKind);
4367 break;
4368 case BO_GE:
4369 if (ElementKind == BuiltinType::Float) {
4370 CR6 = CR6_LT;
4371 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4373 else {
4374 CR6 = CR6_EQ;
4375 ID = GetIntrinsic(VCMPGT, ElementKind);
4376 std::swap(FirstVecArg, SecondVecArg);
4378 break;
4381 Value *CR6Param = Builder.getInt32(CR6);
4382 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4383 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4385 // The result type of intrinsic may not be same as E->getType().
4386 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4387 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4388 // do nothing, if ResultTy is not i1 at the same time, it will cause
4389 // crash later.
4390 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4391 if (ResultTy->getBitWidth() > 1 &&
4392 E->getType() == CGF.getContext().BoolTy)
4393 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4394 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4395 E->getExprLoc());
4398 if (BOInfo.isFixedPointOp()) {
4399 Result = EmitFixedPointBinOp(BOInfo);
4400 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4401 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4402 if (!IsSignaling)
4403 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4404 else
4405 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4406 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4407 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4408 } else {
4409 // Unsigned integers and pointers.
4411 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4412 !isa<llvm::ConstantPointerNull>(LHS) &&
4413 !isa<llvm::ConstantPointerNull>(RHS)) {
4415 // Dynamic information is required to be stripped for comparisons,
4416 // because it could leak the dynamic information. Based on comparisons
4417 // of pointers to dynamic objects, the optimizer can replace one pointer
4418 // with another, which might be incorrect in presence of invariant
4419 // groups. Comparison with null is safe because null does not carry any
4420 // dynamic information.
4421 if (LHSTy.mayBeDynamicClass())
4422 LHS = Builder.CreateStripInvariantGroup(LHS);
4423 if (RHSTy.mayBeDynamicClass())
4424 RHS = Builder.CreateStripInvariantGroup(RHS);
4427 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4430 // If this is a vector comparison, sign extend the result to the appropriate
4431 // vector integer type and return it (don't convert to bool).
4432 if (LHSTy->isVectorType())
4433 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4435 } else {
4436 // Complex Comparison: can only be an equality comparison.
4437 CodeGenFunction::ComplexPairTy LHS, RHS;
4438 QualType CETy;
4439 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4440 LHS = CGF.EmitComplexExpr(E->getLHS());
4441 CETy = CTy->getElementType();
4442 } else {
4443 LHS.first = Visit(E->getLHS());
4444 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4445 CETy = LHSTy;
4447 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4448 RHS = CGF.EmitComplexExpr(E->getRHS());
4449 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4450 CTy->getElementType()) &&
4451 "The element types must always match.");
4452 (void)CTy;
4453 } else {
4454 RHS.first = Visit(E->getRHS());
4455 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4456 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4457 "The element types must always match.");
4460 Value *ResultR, *ResultI;
4461 if (CETy->isRealFloatingType()) {
4462 // As complex comparisons can only be equality comparisons, they
4463 // are never signaling comparisons.
4464 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4465 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4466 } else {
4467 // Complex comparisons can only be equality comparisons. As such, signed
4468 // and unsigned opcodes are the same.
4469 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4470 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4473 if (E->getOpcode() == BO_EQ) {
4474 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4475 } else {
4476 assert(E->getOpcode() == BO_NE &&
4477 "Complex comparison other than == or != ?");
4478 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4482 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4483 E->getExprLoc());
4486 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4487 bool Ignore = TestAndClearIgnoreResultAssign();
4489 Value *RHS;
4490 LValue LHS;
4492 switch (E->getLHS()->getType().getObjCLifetime()) {
4493 case Qualifiers::OCL_Strong:
4494 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4495 break;
4497 case Qualifiers::OCL_Autoreleasing:
4498 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4499 break;
4501 case Qualifiers::OCL_ExplicitNone:
4502 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4503 break;
4505 case Qualifiers::OCL_Weak:
4506 RHS = Visit(E->getRHS());
4507 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4508 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4509 break;
4511 case Qualifiers::OCL_None:
4512 // __block variables need to have the rhs evaluated first, plus
4513 // this should improve codegen just a little.
4514 RHS = Visit(E->getRHS());
4515 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4517 // Store the value into the LHS. Bit-fields are handled specially
4518 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4519 // 'An assignment expression has the value of the left operand after
4520 // the assignment...'.
4521 if (LHS.isBitField()) {
4522 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4523 } else {
4524 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4525 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4529 // If the result is clearly ignored, return now.
4530 if (Ignore)
4531 return nullptr;
4533 // The result of an assignment in C is the assigned r-value.
4534 if (!CGF.getLangOpts().CPlusPlus)
4535 return RHS;
4537 // If the lvalue is non-volatile, return the computed value of the assignment.
4538 if (!LHS.isVolatileQualified())
4539 return RHS;
4541 // Otherwise, reload the value.
4542 return EmitLoadOfLValue(LHS, E->getExprLoc());
4545 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4546 // Perform vector logical and on comparisons with zero vectors.
4547 if (E->getType()->isVectorType()) {
4548 CGF.incrementProfileCounter(E);
4550 Value *LHS = Visit(E->getLHS());
4551 Value *RHS = Visit(E->getRHS());
4552 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4553 if (LHS->getType()->isFPOrFPVectorTy()) {
4554 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4555 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4556 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4557 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4558 } else {
4559 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4560 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4562 Value *And = Builder.CreateAnd(LHS, RHS);
4563 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4566 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4567 llvm::Type *ResTy = ConvertType(E->getType());
4569 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4570 // If we have 1 && X, just emit X without inserting the control flow.
4571 bool LHSCondVal;
4572 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4573 if (LHSCondVal) { // If we have 1 && X, just emit X.
4574 CGF.incrementProfileCounter(E);
4576 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4578 // If we're generating for profiling or coverage, generate a branch to a
4579 // block that increments the RHS counter needed to track branch condition
4580 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4581 // "FalseBlock" after the increment is done.
4582 if (InstrumentRegions &&
4583 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4584 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4585 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4586 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4587 CGF.EmitBlock(RHSBlockCnt);
4588 CGF.incrementProfileCounter(E->getRHS());
4589 CGF.EmitBranch(FBlock);
4590 CGF.EmitBlock(FBlock);
4593 // ZExt result to int or bool.
4594 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4597 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4598 if (!CGF.ContainsLabel(E->getRHS()))
4599 return llvm::Constant::getNullValue(ResTy);
4602 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4603 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4605 CodeGenFunction::ConditionalEvaluation eval(CGF);
4607 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4608 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4609 CGF.getProfileCount(E->getRHS()));
4611 // Any edges into the ContBlock are now from an (indeterminate number of)
4612 // edges from this first condition. All of these values will be false. Start
4613 // setting up the PHI node in the Cont Block for this.
4614 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4615 "", ContBlock);
4616 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4617 PI != PE; ++PI)
4618 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4620 eval.begin(CGF);
4621 CGF.EmitBlock(RHSBlock);
4622 CGF.incrementProfileCounter(E);
4623 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4624 eval.end(CGF);
4626 // Reaquire the RHS block, as there may be subblocks inserted.
4627 RHSBlock = Builder.GetInsertBlock();
4629 // If we're generating for profiling or coverage, generate a branch on the
4630 // RHS to a block that increments the RHS true counter needed to track branch
4631 // condition coverage.
4632 if (InstrumentRegions &&
4633 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4634 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4635 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4636 CGF.EmitBlock(RHSBlockCnt);
4637 CGF.incrementProfileCounter(E->getRHS());
4638 CGF.EmitBranch(ContBlock);
4639 PN->addIncoming(RHSCond, RHSBlockCnt);
4642 // Emit an unconditional branch from this block to ContBlock.
4644 // There is no need to emit line number for unconditional branch.
4645 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4646 CGF.EmitBlock(ContBlock);
4648 // Insert an entry into the phi node for the edge with the value of RHSCond.
4649 PN->addIncoming(RHSCond, RHSBlock);
4651 // Artificial location to preserve the scope information
4653 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4654 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4657 // ZExt result to int.
4658 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4661 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4662 // Perform vector logical or on comparisons with zero vectors.
4663 if (E->getType()->isVectorType()) {
4664 CGF.incrementProfileCounter(E);
4666 Value *LHS = Visit(E->getLHS());
4667 Value *RHS = Visit(E->getRHS());
4668 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4669 if (LHS->getType()->isFPOrFPVectorTy()) {
4670 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4671 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4672 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4673 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4674 } else {
4675 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4676 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4678 Value *Or = Builder.CreateOr(LHS, RHS);
4679 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4682 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4683 llvm::Type *ResTy = ConvertType(E->getType());
4685 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4686 // If we have 0 || X, just emit X without inserting the control flow.
4687 bool LHSCondVal;
4688 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4689 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4690 CGF.incrementProfileCounter(E);
4692 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4694 // If we're generating for profiling or coverage, generate a branch to a
4695 // block that increments the RHS counter need to track branch condition
4696 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4697 // "FalseBlock" after the increment is done.
4698 if (InstrumentRegions &&
4699 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4700 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4701 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4702 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4703 CGF.EmitBlock(RHSBlockCnt);
4704 CGF.incrementProfileCounter(E->getRHS());
4705 CGF.EmitBranch(FBlock);
4706 CGF.EmitBlock(FBlock);
4709 // ZExt result to int or bool.
4710 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4713 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4714 if (!CGF.ContainsLabel(E->getRHS()))
4715 return llvm::ConstantInt::get(ResTy, 1);
4718 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4719 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4721 CodeGenFunction::ConditionalEvaluation eval(CGF);
4723 // Branch on the LHS first. If it is true, go to the success (cont) block.
4724 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4725 CGF.getCurrentProfileCount() -
4726 CGF.getProfileCount(E->getRHS()));
4728 // Any edges into the ContBlock are now from an (indeterminate number of)
4729 // edges from this first condition. All of these values will be true. Start
4730 // setting up the PHI node in the Cont Block for this.
4731 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4732 "", ContBlock);
4733 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4734 PI != PE; ++PI)
4735 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4737 eval.begin(CGF);
4739 // Emit the RHS condition as a bool value.
4740 CGF.EmitBlock(RHSBlock);
4741 CGF.incrementProfileCounter(E);
4742 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4744 eval.end(CGF);
4746 // Reaquire the RHS block, as there may be subblocks inserted.
4747 RHSBlock = Builder.GetInsertBlock();
4749 // If we're generating for profiling or coverage, generate a branch on the
4750 // RHS to a block that increments the RHS true counter needed to track branch
4751 // condition coverage.
4752 if (InstrumentRegions &&
4753 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4754 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4755 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4756 CGF.EmitBlock(RHSBlockCnt);
4757 CGF.incrementProfileCounter(E->getRHS());
4758 CGF.EmitBranch(ContBlock);
4759 PN->addIncoming(RHSCond, RHSBlockCnt);
4762 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4763 // into the phi node for the edge with the value of RHSCond.
4764 CGF.EmitBlock(ContBlock);
4765 PN->addIncoming(RHSCond, RHSBlock);
4767 // ZExt result to int.
4768 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4771 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4772 CGF.EmitIgnoredExpr(E->getLHS());
4773 CGF.EnsureInsertPoint();
4774 return Visit(E->getRHS());
4777 //===----------------------------------------------------------------------===//
4778 // Other Operators
4779 //===----------------------------------------------------------------------===//
4781 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4782 /// expression is cheap enough and side-effect-free enough to evaluate
4783 /// unconditionally instead of conditionally. This is used to convert control
4784 /// flow into selects in some cases.
4785 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4786 CodeGenFunction &CGF) {
4787 // Anything that is an integer or floating point constant is fine.
4788 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4790 // Even non-volatile automatic variables can't be evaluated unconditionally.
4791 // Referencing a thread_local may cause non-trivial initialization work to
4792 // occur. If we're inside a lambda and one of the variables is from the scope
4793 // outside the lambda, that function may have returned already. Reading its
4794 // locals is a bad idea. Also, these reads may introduce races there didn't
4795 // exist in the source-level program.
4799 Value *ScalarExprEmitter::
4800 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4801 TestAndClearIgnoreResultAssign();
4803 // Bind the common expression if necessary.
4804 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4806 Expr *condExpr = E->getCond();
4807 Expr *lhsExpr = E->getTrueExpr();
4808 Expr *rhsExpr = E->getFalseExpr();
4810 // If the condition constant folds and can be elided, try to avoid emitting
4811 // the condition and the dead arm.
4812 bool CondExprBool;
4813 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4814 Expr *live = lhsExpr, *dead = rhsExpr;
4815 if (!CondExprBool) std::swap(live, dead);
4817 // If the dead side doesn't have labels we need, just emit the Live part.
4818 if (!CGF.ContainsLabel(dead)) {
4819 if (CondExprBool)
4820 CGF.incrementProfileCounter(E);
4821 Value *Result = Visit(live);
4823 // If the live part is a throw expression, it acts like it has a void
4824 // type, so evaluating it returns a null Value*. However, a conditional
4825 // with non-void type must return a non-null Value*.
4826 if (!Result && !E->getType()->isVoidType())
4827 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4829 return Result;
4833 // OpenCL: If the condition is a vector, we can treat this condition like
4834 // the select function.
4835 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4836 condExpr->getType()->isExtVectorType()) {
4837 CGF.incrementProfileCounter(E);
4839 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4840 llvm::Value *LHS = Visit(lhsExpr);
4841 llvm::Value *RHS = Visit(rhsExpr);
4843 llvm::Type *condType = ConvertType(condExpr->getType());
4844 auto *vecTy = cast<llvm::FixedVectorType>(condType);
4846 unsigned numElem = vecTy->getNumElements();
4847 llvm::Type *elemType = vecTy->getElementType();
4849 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4850 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4851 llvm::Value *tmp = Builder.CreateSExt(
4852 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4853 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4855 // Cast float to int to perform ANDs if necessary.
4856 llvm::Value *RHSTmp = RHS;
4857 llvm::Value *LHSTmp = LHS;
4858 bool wasCast = false;
4859 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4860 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4861 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4862 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4863 wasCast = true;
4866 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4867 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4868 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4869 if (wasCast)
4870 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4872 return tmp5;
4875 if (condExpr->getType()->isVectorType() ||
4876 condExpr->getType()->isSveVLSBuiltinType()) {
4877 CGF.incrementProfileCounter(E);
4879 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4880 llvm::Value *LHS = Visit(lhsExpr);
4881 llvm::Value *RHS = Visit(rhsExpr);
4883 llvm::Type *CondType = ConvertType(condExpr->getType());
4884 auto *VecTy = cast<llvm::VectorType>(CondType);
4885 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4887 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4888 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4891 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4892 // select instead of as control flow. We can only do this if it is cheap and
4893 // safe to evaluate the LHS and RHS unconditionally.
4894 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4895 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4896 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4897 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4899 CGF.incrementProfileCounter(E, StepV);
4901 llvm::Value *LHS = Visit(lhsExpr);
4902 llvm::Value *RHS = Visit(rhsExpr);
4903 if (!LHS) {
4904 // If the conditional has void type, make sure we return a null Value*.
4905 assert(!RHS && "LHS and RHS types must match");
4906 return nullptr;
4908 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4911 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4912 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4913 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4915 CodeGenFunction::ConditionalEvaluation eval(CGF);
4916 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4917 CGF.getProfileCount(lhsExpr));
4919 CGF.EmitBlock(LHSBlock);
4920 CGF.incrementProfileCounter(E);
4921 eval.begin(CGF);
4922 Value *LHS = Visit(lhsExpr);
4923 eval.end(CGF);
4925 LHSBlock = Builder.GetInsertBlock();
4926 Builder.CreateBr(ContBlock);
4928 CGF.EmitBlock(RHSBlock);
4929 eval.begin(CGF);
4930 Value *RHS = Visit(rhsExpr);
4931 eval.end(CGF);
4933 RHSBlock = Builder.GetInsertBlock();
4934 CGF.EmitBlock(ContBlock);
4936 // If the LHS or RHS is a throw expression, it will be legitimately null.
4937 if (!LHS)
4938 return RHS;
4939 if (!RHS)
4940 return LHS;
4942 // Create a PHI node for the real part.
4943 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4944 PN->addIncoming(LHS, LHSBlock);
4945 PN->addIncoming(RHS, RHSBlock);
4946 return PN;
4949 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4950 return Visit(E->getChosenSubExpr());
4953 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4954 QualType Ty = VE->getType();
4956 if (Ty->isVariablyModifiedType())
4957 CGF.EmitVariablyModifiedType(Ty);
4959 Address ArgValue = Address::invalid();
4960 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4962 llvm::Type *ArgTy = ConvertType(VE->getType());
4964 // If EmitVAArg fails, emit an error.
4965 if (!ArgPtr.isValid()) {
4966 CGF.ErrorUnsupported(VE, "va_arg expression");
4967 return llvm::UndefValue::get(ArgTy);
4970 // FIXME Volatility.
4971 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4973 // If EmitVAArg promoted the type, we must truncate it.
4974 if (ArgTy != Val->getType()) {
4975 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4976 Val = Builder.CreateIntToPtr(Val, ArgTy);
4977 else
4978 Val = Builder.CreateTrunc(Val, ArgTy);
4981 return Val;
4984 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4985 return CGF.EmitBlockLiteral(block);
4988 // Convert a vec3 to vec4, or vice versa.
4989 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4990 Value *Src, unsigned NumElementsDst) {
4991 static constexpr int Mask[] = {0, 1, 2, -1};
4992 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4995 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4996 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4997 // but could be scalar or vectors of different lengths, and either can be
4998 // pointer.
4999 // There are 4 cases:
5000 // 1. non-pointer -> non-pointer : needs 1 bitcast
5001 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
5002 // 3. pointer -> non-pointer
5003 // a) pointer -> intptr_t : needs 1 ptrtoint
5004 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
5005 // 4. non-pointer -> pointer
5006 // a) intptr_t -> pointer : needs 1 inttoptr
5007 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
5008 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
5009 // allow casting directly between pointer types and non-integer non-pointer
5010 // types.
5011 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5012 const llvm::DataLayout &DL,
5013 Value *Src, llvm::Type *DstTy,
5014 StringRef Name = "") {
5015 auto SrcTy = Src->getType();
5017 // Case 1.
5018 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5019 return Builder.CreateBitCast(Src, DstTy, Name);
5021 // Case 2.
5022 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5023 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5025 // Case 3.
5026 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5027 // Case 3b.
5028 if (!DstTy->isIntegerTy())
5029 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5030 // Cases 3a and 3b.
5031 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5034 // Case 4b.
5035 if (!SrcTy->isIntegerTy())
5036 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5037 // Cases 4a and 4b.
5038 return Builder.CreateIntToPtr(Src, DstTy, Name);
5041 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5042 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5043 llvm::Type *DstTy = ConvertType(E->getType());
5045 llvm::Type *SrcTy = Src->getType();
5046 unsigned NumElementsSrc =
5047 isa<llvm::VectorType>(SrcTy)
5048 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5049 : 0;
5050 unsigned NumElementsDst =
5051 isa<llvm::VectorType>(DstTy)
5052 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5053 : 0;
5055 // Use bit vector expansion for ext_vector_type boolean vectors.
5056 if (E->getType()->isExtVectorBoolType())
5057 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5059 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5060 // vector to get a vec4, then a bitcast if the target type is different.
5061 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5062 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5063 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5064 DstTy);
5066 Src->setName("astype");
5067 return Src;
5070 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5071 // to vec4 if the original type is not vec4, then a shuffle vector to
5072 // get a vec3.
5073 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5074 auto *Vec4Ty = llvm::FixedVectorType::get(
5075 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5076 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5077 Vec4Ty);
5079 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5080 Src->setName("astype");
5081 return Src;
5084 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5085 Src, DstTy, "astype");
5088 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5089 return CGF.EmitAtomicExpr(E).getScalarVal();
5092 //===----------------------------------------------------------------------===//
5093 // Entry Point into this File
5094 //===----------------------------------------------------------------------===//
5096 /// Emit the computation of the specified expression of scalar type, ignoring
5097 /// the result.
5098 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5099 assert(E && hasScalarEvaluationKind(E->getType()) &&
5100 "Invalid scalar expression to emit");
5102 return ScalarExprEmitter(*this, IgnoreResultAssign)
5103 .Visit(const_cast<Expr *>(E));
5106 /// Emit a conversion from the specified type to the specified destination type,
5107 /// both of which are LLVM scalar types.
5108 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5109 QualType DstTy,
5110 SourceLocation Loc) {
5111 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5112 "Invalid scalar expression to emit");
5113 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5116 /// Emit a conversion from the specified complex type to the specified
5117 /// destination type, where the destination type is an LLVM scalar type.
5118 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5119 QualType SrcTy,
5120 QualType DstTy,
5121 SourceLocation Loc) {
5122 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5123 "Invalid complex -> scalar conversion");
5124 return ScalarExprEmitter(*this)
5125 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5129 Value *
5130 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5131 QualType PromotionType) {
5132 if (!PromotionType.isNull())
5133 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5134 else
5135 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5139 llvm::Value *CodeGenFunction::
5140 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5141 bool isInc, bool isPre) {
5142 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5145 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5146 // object->isa or (*object).isa
5147 // Generate code as for: *(Class*)object
5149 Expr *BaseExpr = E->getBase();
5150 Address Addr = Address::invalid();
5151 if (BaseExpr->isPRValue()) {
5152 llvm::Type *BaseTy =
5153 ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5154 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5155 } else {
5156 Addr = EmitLValue(BaseExpr).getAddress(*this);
5159 // Cast the address to Class*.
5160 Addr = Addr.withElementType(ConvertType(E->getType()));
5161 return MakeAddrLValue(Addr, E->getType());
5165 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5166 const CompoundAssignOperator *E) {
5167 ScalarExprEmitter Scalar(*this);
5168 Value *Result = nullptr;
5169 switch (E->getOpcode()) {
5170 #define COMPOUND_OP(Op) \
5171 case BO_##Op##Assign: \
5172 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5173 Result)
5174 COMPOUND_OP(Mul);
5175 COMPOUND_OP(Div);
5176 COMPOUND_OP(Rem);
5177 COMPOUND_OP(Add);
5178 COMPOUND_OP(Sub);
5179 COMPOUND_OP(Shl);
5180 COMPOUND_OP(Shr);
5181 COMPOUND_OP(And);
5182 COMPOUND_OP(Xor);
5183 COMPOUND_OP(Or);
5184 #undef COMPOUND_OP
5186 case BO_PtrMemD:
5187 case BO_PtrMemI:
5188 case BO_Mul:
5189 case BO_Div:
5190 case BO_Rem:
5191 case BO_Add:
5192 case BO_Sub:
5193 case BO_Shl:
5194 case BO_Shr:
5195 case BO_LT:
5196 case BO_GT:
5197 case BO_LE:
5198 case BO_GE:
5199 case BO_EQ:
5200 case BO_NE:
5201 case BO_Cmp:
5202 case BO_And:
5203 case BO_Xor:
5204 case BO_Or:
5205 case BO_LAnd:
5206 case BO_LOr:
5207 case BO_Assign:
5208 case BO_Comma:
5209 llvm_unreachable("Not valid compound assignment operators");
5212 llvm_unreachable("Unhandled compound assignment operator");
5215 struct GEPOffsetAndOverflow {
5216 // The total (signed) byte offset for the GEP.
5217 llvm::Value *TotalOffset;
5218 // The offset overflow flag - true if the total offset overflows.
5219 llvm::Value *OffsetOverflows;
5222 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5223 /// and compute the total offset it applies from it's base pointer BasePtr.
5224 /// Returns offset in bytes and a boolean flag whether an overflow happened
5225 /// during evaluation.
5226 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5227 llvm::LLVMContext &VMContext,
5228 CodeGenModule &CGM,
5229 CGBuilderTy &Builder) {
5230 const auto &DL = CGM.getDataLayout();
5232 // The total (signed) byte offset for the GEP.
5233 llvm::Value *TotalOffset = nullptr;
5235 // Was the GEP already reduced to a constant?
5236 if (isa<llvm::Constant>(GEPVal)) {
5237 // Compute the offset by casting both pointers to integers and subtracting:
5238 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5239 Value *BasePtr_int =
5240 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5241 Value *GEPVal_int =
5242 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5243 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5244 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5247 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5248 assert(GEP->getPointerOperand() == BasePtr &&
5249 "BasePtr must be the base of the GEP.");
5250 assert(GEP->isInBounds() && "Expected inbounds GEP");
5252 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5254 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5255 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5256 auto *SAddIntrinsic =
5257 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5258 auto *SMulIntrinsic =
5259 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5261 // The offset overflow flag - true if the total offset overflows.
5262 llvm::Value *OffsetOverflows = Builder.getFalse();
5264 /// Return the result of the given binary operation.
5265 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5266 llvm::Value *RHS) -> llvm::Value * {
5267 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5269 // If the operands are constants, return a constant result.
5270 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5271 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5272 llvm::APInt N;
5273 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5274 /*Signed=*/true, N);
5275 if (HasOverflow)
5276 OffsetOverflows = Builder.getTrue();
5277 return llvm::ConstantInt::get(VMContext, N);
5281 // Otherwise, compute the result with checked arithmetic.
5282 auto *ResultAndOverflow = Builder.CreateCall(
5283 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5284 OffsetOverflows = Builder.CreateOr(
5285 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5286 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5289 // Determine the total byte offset by looking at each GEP operand.
5290 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5291 GTI != GTE; ++GTI) {
5292 llvm::Value *LocalOffset;
5293 auto *Index = GTI.getOperand();
5294 // Compute the local offset contributed by this indexing step:
5295 if (auto *STy = GTI.getStructTypeOrNull()) {
5296 // For struct indexing, the local offset is the byte position of the
5297 // specified field.
5298 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5299 LocalOffset = llvm::ConstantInt::get(
5300 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5301 } else {
5302 // Otherwise this is array-like indexing. The local offset is the index
5303 // multiplied by the element size.
5304 auto *ElementSize = llvm::ConstantInt::get(
5305 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5306 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5307 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5310 // If this is the first offset, set it as the total offset. Otherwise, add
5311 // the local offset into the running total.
5312 if (!TotalOffset || TotalOffset == Zero)
5313 TotalOffset = LocalOffset;
5314 else
5315 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5318 return {TotalOffset, OffsetOverflows};
5321 Value *
5322 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5323 ArrayRef<Value *> IdxList,
5324 bool SignedIndices, bool IsSubtraction,
5325 SourceLocation Loc, const Twine &Name) {
5326 llvm::Type *PtrTy = Ptr->getType();
5327 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5329 // If the pointer overflow sanitizer isn't enabled, do nothing.
5330 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5331 return GEPVal;
5333 // Perform nullptr-and-offset check unless the nullptr is defined.
5334 bool PerformNullCheck = !NullPointerIsDefined(
5335 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5336 // Check for overflows unless the GEP got constant-folded,
5337 // and only in the default address space
5338 bool PerformOverflowCheck =
5339 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5341 if (!(PerformNullCheck || PerformOverflowCheck))
5342 return GEPVal;
5344 const auto &DL = CGM.getDataLayout();
5346 SanitizerScope SanScope(this);
5347 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5349 GEPOffsetAndOverflow EvaluatedGEP =
5350 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5352 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5353 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5354 "If the offset got constant-folded, we don't expect that there was an "
5355 "overflow.");
5357 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5359 // Common case: if the total offset is zero, and we are using C++ semantics,
5360 // where nullptr+0 is defined, don't emit a check.
5361 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5362 return GEPVal;
5364 // Now that we've computed the total offset, add it to the base pointer (with
5365 // wrapping semantics).
5366 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5367 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5369 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5371 if (PerformNullCheck) {
5372 // In C++, if the base pointer evaluates to a null pointer value,
5373 // the only valid pointer this inbounds GEP can produce is also
5374 // a null pointer, so the offset must also evaluate to zero.
5375 // Likewise, if we have non-zero base pointer, we can not get null pointer
5376 // as a result, so the offset can not be -intptr_t(BasePtr).
5377 // In other words, both pointers are either null, or both are non-null,
5378 // or the behaviour is undefined.
5380 // C, however, is more strict in this regard, and gives more
5381 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5382 // So both the input to the 'gep inbounds' AND the output must not be null.
5383 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5384 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5385 auto *Valid =
5386 CGM.getLangOpts().CPlusPlus
5387 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5388 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5389 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5392 if (PerformOverflowCheck) {
5393 // The GEP is valid if:
5394 // 1) The total offset doesn't overflow, and
5395 // 2) The sign of the difference between the computed address and the base
5396 // pointer matches the sign of the total offset.
5397 llvm::Value *ValidGEP;
5398 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5399 if (SignedIndices) {
5400 // GEP is computed as `unsigned base + signed offset`, therefore:
5401 // * If offset was positive, then the computed pointer can not be
5402 // [unsigned] less than the base pointer, unless it overflowed.
5403 // * If offset was negative, then the computed pointer can not be
5404 // [unsigned] greater than the bas pointere, unless it overflowed.
5405 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5406 auto *PosOrZeroOffset =
5407 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5408 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5409 ValidGEP =
5410 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5411 } else if (!IsSubtraction) {
5412 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5413 // computed pointer can not be [unsigned] less than base pointer,
5414 // unless there was an overflow.
5415 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5416 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5417 } else {
5418 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5419 // computed pointer can not be [unsigned] greater than base pointer,
5420 // unless there was an overflow.
5421 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5422 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5424 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5425 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5428 assert(!Checks.empty() && "Should have produced some checks.");
5430 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5431 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5432 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5433 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5435 return GEPVal;