1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 using namespace clang
;
53 using namespace CodeGen
;
55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions
&CGOpts
,
58 const LangOptions
&LangOpts
) {
59 if (CGOpts
.DisableLifetimeMarkers
)
62 // Sanitizers may use markers.
63 if (CGOpts
.SanitizeAddressUseAfterScope
||
64 LangOpts
.Sanitize
.has(SanitizerKind::HWAddress
) ||
65 LangOpts
.Sanitize
.has(SanitizerKind::Memory
))
68 // For now, only in optimized builds.
69 return CGOpts
.OptimizationLevel
!= 0;
72 CodeGenFunction::CodeGenFunction(CodeGenModule
&cgm
, bool suppressNewContext
)
73 : CodeGenTypeCache(cgm
), CGM(cgm
), Target(cgm
.getTarget()),
74 Builder(cgm
, cgm
.getModule().getContext(), llvm::ConstantFolder(),
75 CGBuilderInserterTy(this)),
76 SanOpts(CGM
.getLangOpts().Sanitize
), CurFPFeatures(CGM
.getLangOpts()),
77 DebugInfo(CGM
.getModuleDebugInfo()), PGO(cgm
),
78 ShouldEmitLifetimeMarkers(
79 shouldEmitLifetimeMarkers(CGM
.getCodeGenOpts(), CGM
.getLangOpts())) {
80 if (!suppressNewContext
)
81 CGM
.getCXXABI().getMangleContext().startNewFunction();
84 SetFastMathFlags(CurFPFeatures
);
87 CodeGenFunction::~CodeGenFunction() {
88 assert(LifetimeExtendedCleanupStack
.empty() && "failed to emit a cleanup");
90 if (getLangOpts().OpenMP
&& CurFn
)
91 CGM
.getOpenMPRuntime().functionFinished(*this);
93 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
94 // outlining etc) at some point. Doing it once the function codegen is done
95 // seems to be a reasonable spot. We do it here, as opposed to the deletion
96 // time of the CodeGenModule, because we have to ensure the IR has not yet
97 // been "emitted" to the outside, thus, modifications are still sensible.
98 if (CGM
.getLangOpts().OpenMPIRBuilder
&& CurFn
)
99 CGM
.getOpenMPRuntime().getOMPBuilder().finalize(CurFn
);
102 // Map the LangOption for exception behavior into
103 // the corresponding enum in the IR.
104 llvm::fp::ExceptionBehavior
105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind
) {
108 case LangOptions::FPE_Ignore
: return llvm::fp::ebIgnore
;
109 case LangOptions::FPE_MayTrap
: return llvm::fp::ebMayTrap
;
110 case LangOptions::FPE_Strict
: return llvm::fp::ebStrict
;
112 llvm_unreachable("Unsupported FP Exception Behavior");
116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures
) {
117 llvm::FastMathFlags FMF
;
118 FMF
.setAllowReassoc(FPFeatures
.getAllowFPReassociate());
119 FMF
.setNoNaNs(FPFeatures
.getNoHonorNaNs());
120 FMF
.setNoInfs(FPFeatures
.getNoHonorInfs());
121 FMF
.setNoSignedZeros(FPFeatures
.getNoSignedZero());
122 FMF
.setAllowReciprocal(FPFeatures
.getAllowReciprocal());
123 FMF
.setApproxFunc(FPFeatures
.getAllowApproxFunc());
124 FMF
.setAllowContract(FPFeatures
.allowFPContractAcrossStatement());
125 Builder
.setFastMathFlags(FMF
);
128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
131 ConstructorHelper(E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
135 FPOptions FPFeatures
)
137 ConstructorHelper(FPFeatures
);
140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures
) {
141 OldFPFeatures
= CGF
.CurFPFeatures
;
142 CGF
.CurFPFeatures
= FPFeatures
;
144 OldExcept
= CGF
.Builder
.getDefaultConstrainedExcept();
145 OldRounding
= CGF
.Builder
.getDefaultConstrainedRounding();
147 if (OldFPFeatures
== FPFeatures
)
150 FMFGuard
.emplace(CGF
.Builder
);
152 llvm::RoundingMode NewRoundingBehavior
= FPFeatures
.getRoundingMode();
153 CGF
.Builder
.setDefaultConstrainedRounding(NewRoundingBehavior
);
154 auto NewExceptionBehavior
=
155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind
>(
156 FPFeatures
.getExceptionMode()));
157 CGF
.Builder
.setDefaultConstrainedExcept(NewExceptionBehavior
);
159 CGF
.SetFastMathFlags(FPFeatures
);
161 assert((CGF
.CurFuncDecl
== nullptr || CGF
.Builder
.getIsFPConstrained() ||
162 isa
<CXXConstructorDecl
>(CGF
.CurFuncDecl
) ||
163 isa
<CXXDestructorDecl
>(CGF
.CurFuncDecl
) ||
164 (NewExceptionBehavior
== llvm::fp::ebIgnore
&&
165 NewRoundingBehavior
== llvm::RoundingMode::NearestTiesToEven
)) &&
166 "FPConstrained should be enabled on entire function");
168 auto mergeFnAttrValue
= [&](StringRef Name
, bool Value
) {
170 CGF
.CurFn
->getFnAttribute(Name
).getValueAsBool();
171 auto NewValue
= OldValue
& Value
;
172 if (OldValue
!= NewValue
)
173 CGF
.CurFn
->addFnAttr(Name
, llvm::toStringRef(NewValue
));
175 mergeFnAttrValue("no-infs-fp-math", FPFeatures
.getNoHonorInfs());
176 mergeFnAttrValue("no-nans-fp-math", FPFeatures
.getNoHonorNaNs());
177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures
.getNoSignedZero());
180 FPFeatures
.getAllowFPReassociate() && FPFeatures
.getAllowReciprocal() &&
181 FPFeatures
.getAllowApproxFunc() && FPFeatures
.getNoSignedZero() &&
182 FPFeatures
.allowFPContractAcrossStatement());
185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
186 CGF
.CurFPFeatures
= OldFPFeatures
;
187 CGF
.Builder
.setDefaultConstrainedExcept(OldExcept
);
188 CGF
.Builder
.setDefaultConstrainedRounding(OldRounding
);
191 LValue
CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
) {
192 LValueBaseInfo BaseInfo
;
193 TBAAAccessInfo TBAAInfo
;
194 CharUnits Alignment
= CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
);
195 Address
Addr(V
, ConvertTypeForMem(T
), Alignment
);
196 return LValue::MakeAddr(Addr
, T
, getContext(), BaseInfo
, TBAAInfo
);
199 /// Given a value of type T* that may not be to a complete object,
200 /// construct an l-value with the natural pointee alignment of T.
202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value
*V
, QualType T
) {
203 LValueBaseInfo BaseInfo
;
204 TBAAAccessInfo TBAAInfo
;
205 CharUnits Align
= CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
,
206 /* forPointeeType= */ true);
207 Address
Addr(V
, ConvertTypeForMem(T
), Align
);
208 return MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
212 llvm::Type
*CodeGenFunction::ConvertTypeForMem(QualType T
) {
213 return CGM
.getTypes().ConvertTypeForMem(T
);
216 llvm::Type
*CodeGenFunction::ConvertType(QualType T
) {
217 return CGM
.getTypes().ConvertType(T
);
220 TypeEvaluationKind
CodeGenFunction::getEvaluationKind(QualType type
) {
221 type
= type
.getCanonicalType();
223 switch (type
->getTypeClass()) {
224 #define TYPE(name, parent)
225 #define ABSTRACT_TYPE(name, parent)
226 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
227 #define DEPENDENT_TYPE(name, parent) case Type::name:
228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
229 #include "clang/AST/TypeNodes.inc"
230 llvm_unreachable("non-canonical or dependent type in IR-generation");
233 case Type::DeducedTemplateSpecialization
:
234 llvm_unreachable("undeduced type in IR-generation");
236 // Various scalar types.
239 case Type::BlockPointer
:
240 case Type::LValueReference
:
241 case Type::RValueReference
:
242 case Type::MemberPointer
:
244 case Type::ExtVector
:
245 case Type::ConstantMatrix
:
246 case Type::FunctionProto
:
247 case Type::FunctionNoProto
:
249 case Type::ObjCObjectPointer
:
258 // Arrays, records, and Objective-C objects.
259 case Type::ConstantArray
:
260 case Type::IncompleteArray
:
261 case Type::VariableArray
:
263 case Type::ObjCObject
:
264 case Type::ObjCInterface
:
265 return TEK_Aggregate
;
267 // We operate on atomic values according to their underlying type.
269 type
= cast
<AtomicType
>(type
)->getValueType();
272 llvm_unreachable("unknown type kind!");
276 llvm::DebugLoc
CodeGenFunction::EmitReturnBlock() {
277 // For cleanliness, we try to avoid emitting the return block for
279 llvm::BasicBlock
*CurBB
= Builder
.GetInsertBlock();
282 assert(!CurBB
->getTerminator() && "Unexpected terminated block.");
284 // We have a valid insert point, reuse it if it is empty or there are no
285 // explicit jumps to the return block.
286 if (CurBB
->empty() || ReturnBlock
.getBlock()->use_empty()) {
287 ReturnBlock
.getBlock()->replaceAllUsesWith(CurBB
);
288 delete ReturnBlock
.getBlock();
289 ReturnBlock
= JumpDest();
291 EmitBlock(ReturnBlock
.getBlock());
292 return llvm::DebugLoc();
295 // Otherwise, if the return block is the target of a single direct
296 // branch then we can just put the code in that block instead. This
297 // cleans up functions which started with a unified return block.
298 if (ReturnBlock
.getBlock()->hasOneUse()) {
299 llvm::BranchInst
*BI
=
300 dyn_cast
<llvm::BranchInst
>(*ReturnBlock
.getBlock()->user_begin());
301 if (BI
&& BI
->isUnconditional() &&
302 BI
->getSuccessor(0) == ReturnBlock
.getBlock()) {
303 // Record/return the DebugLoc of the simple 'return' expression to be used
304 // later by the actual 'ret' instruction.
305 llvm::DebugLoc Loc
= BI
->getDebugLoc();
306 Builder
.SetInsertPoint(BI
->getParent());
307 BI
->eraseFromParent();
308 delete ReturnBlock
.getBlock();
309 ReturnBlock
= JumpDest();
314 // FIXME: We are at an unreachable point, there is no reason to emit the block
315 // unless it has uses. However, we still need a place to put the debug
316 // region.end for now.
318 EmitBlock(ReturnBlock
.getBlock());
319 return llvm::DebugLoc();
322 static void EmitIfUsed(CodeGenFunction
&CGF
, llvm::BasicBlock
*BB
) {
324 if (!BB
->use_empty()) {
325 CGF
.CurFn
->insert(CGF
.CurFn
->end(), BB
);
331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc
) {
332 assert(BreakContinueStack
.empty() &&
333 "mismatched push/pop in break/continue stack!");
335 bool OnlySimpleReturnStmts
= NumSimpleReturnExprs
> 0
336 && NumSimpleReturnExprs
== NumReturnExprs
337 && ReturnBlock
.getBlock()->use_empty();
338 // Usually the return expression is evaluated before the cleanup
339 // code. If the function contains only a simple return statement,
340 // such as a constant, the location before the cleanup code becomes
341 // the last useful breakpoint in the function, because the simple
342 // return expression will be evaluated after the cleanup code. To be
343 // safe, set the debug location for cleanup code to the location of
344 // the return statement. Otherwise the cleanup code should be at the
345 // end of the function's lexical scope.
347 // If there are multiple branches to the return block, the branch
348 // instructions will get the location of the return statements and
350 if (CGDebugInfo
*DI
= getDebugInfo()) {
351 if (OnlySimpleReturnStmts
)
352 DI
->EmitLocation(Builder
, LastStopPoint
);
354 DI
->EmitLocation(Builder
, EndLoc
);
357 // Pop any cleanups that might have been associated with the
358 // parameters. Do this in whatever block we're currently in; it's
359 // important to do this before we enter the return block or return
360 // edges will be *really* confused.
361 bool HasCleanups
= EHStack
.stable_begin() != PrologueCleanupDepth
;
362 bool HasOnlyLifetimeMarkers
=
363 HasCleanups
&& EHStack
.containsOnlyLifetimeMarkers(PrologueCleanupDepth
);
364 bool EmitRetDbgLoc
= !HasCleanups
|| HasOnlyLifetimeMarkers
;
366 std::optional
<ApplyDebugLocation
> OAL
;
368 // Make sure the line table doesn't jump back into the body for
369 // the ret after it's been at EndLoc.
370 if (CGDebugInfo
*DI
= getDebugInfo()) {
371 if (OnlySimpleReturnStmts
)
372 DI
->EmitLocation(Builder
, EndLoc
);
374 // We may not have a valid end location. Try to apply it anyway, and
375 // fall back to an artificial location if needed.
376 OAL
= ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc
);
379 PopCleanupBlocks(PrologueCleanupDepth
);
382 // Emit function epilog (to return).
383 llvm::DebugLoc Loc
= EmitReturnBlock();
385 if (ShouldInstrumentFunction()) {
386 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
387 CurFn
->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
388 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
389 CurFn
->addFnAttr("instrument-function-exit-inlined",
390 "__cyg_profile_func_exit");
393 // Emit debug descriptor for function end.
394 if (CGDebugInfo
*DI
= getDebugInfo())
395 DI
->EmitFunctionEnd(Builder
, CurFn
);
397 // Reset the debug location to that of the simple 'return' expression, if any
398 // rather than that of the end of the function's scope '}'.
399 ApplyDebugLocation
AL(*this, Loc
);
400 EmitFunctionEpilog(*CurFnInfo
, EmitRetDbgLoc
, EndLoc
);
401 EmitEndEHSpec(CurCodeDecl
);
403 assert(EHStack
.empty() &&
404 "did not remove all scopes from cleanup stack!");
406 // If someone did an indirect goto, emit the indirect goto block at the end of
408 if (IndirectBranch
) {
409 EmitBlock(IndirectBranch
->getParent());
410 Builder
.ClearInsertionPoint();
413 // If some of our locals escaped, insert a call to llvm.localescape in the
415 if (!EscapedLocals
.empty()) {
416 // Invert the map from local to index into a simple vector. There should be
418 SmallVector
<llvm::Value
*, 4> EscapeArgs
;
419 EscapeArgs
.resize(EscapedLocals
.size());
420 for (auto &Pair
: EscapedLocals
)
421 EscapeArgs
[Pair
.second
] = Pair
.first
;
422 llvm::Function
*FrameEscapeFn
= llvm::Intrinsic::getDeclaration(
423 &CGM
.getModule(), llvm::Intrinsic::localescape
);
424 CGBuilderTy(*this, AllocaInsertPt
).CreateCall(FrameEscapeFn
, EscapeArgs
);
427 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
428 llvm::Instruction
*Ptr
= AllocaInsertPt
;
429 AllocaInsertPt
= nullptr;
430 Ptr
->eraseFromParent();
432 // PostAllocaInsertPt, if created, was lazily created when it was required,
433 // remove it now since it was just created for our own convenience.
434 if (PostAllocaInsertPt
) {
435 llvm::Instruction
*PostPtr
= PostAllocaInsertPt
;
436 PostAllocaInsertPt
= nullptr;
437 PostPtr
->eraseFromParent();
440 // If someone took the address of a label but never did an indirect goto, we
441 // made a zero entry PHI node, which is illegal, zap it now.
442 if (IndirectBranch
) {
443 llvm::PHINode
*PN
= cast
<llvm::PHINode
>(IndirectBranch
->getAddress());
444 if (PN
->getNumIncomingValues() == 0) {
445 PN
->replaceAllUsesWith(llvm::UndefValue::get(PN
->getType()));
446 PN
->eraseFromParent();
450 EmitIfUsed(*this, EHResumeBlock
);
451 EmitIfUsed(*this, TerminateLandingPad
);
452 EmitIfUsed(*this, TerminateHandler
);
453 EmitIfUsed(*this, UnreachableBlock
);
455 for (const auto &FuncletAndParent
: TerminateFunclets
)
456 EmitIfUsed(*this, FuncletAndParent
.second
);
458 if (CGM
.getCodeGenOpts().EmitDeclMetadata
)
461 for (const auto &R
: DeferredReplacements
) {
462 if (llvm::Value
*Old
= R
.first
) {
463 Old
->replaceAllUsesWith(R
.second
);
464 cast
<llvm::Instruction
>(Old
)->eraseFromParent();
467 DeferredReplacements
.clear();
469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
470 // PHIs if the current function is a coroutine. We don't do it for all
471 // functions as it may result in slight increase in numbers of instructions
472 // if compiled with no optimizations. We do it for coroutine as the lifetime
473 // of CleanupDestSlot alloca make correct coroutine frame building very
475 if (NormalCleanupDest
.isValid() && isCoroutine()) {
476 llvm::DominatorTree
DT(*CurFn
);
477 llvm::PromoteMemToReg(
478 cast
<llvm::AllocaInst
>(NormalCleanupDest
.getPointer()), DT
);
479 NormalCleanupDest
= Address::invalid();
482 // Scan function arguments for vector width.
483 for (llvm::Argument
&A
: CurFn
->args())
484 if (auto *VT
= dyn_cast
<llvm::VectorType
>(A
.getType()))
486 std::max((uint64_t)LargestVectorWidth
,
487 VT
->getPrimitiveSizeInBits().getKnownMinValue());
489 // Update vector width based on return type.
490 if (auto *VT
= dyn_cast
<llvm::VectorType
>(CurFn
->getReturnType()))
492 std::max((uint64_t)LargestVectorWidth
,
493 VT
->getPrimitiveSizeInBits().getKnownMinValue());
495 if (CurFnInfo
->getMaxVectorWidth() > LargestVectorWidth
)
496 LargestVectorWidth
= CurFnInfo
->getMaxVectorWidth();
498 // Add the required-vector-width attribute. This contains the max width from:
499 // 1. min-vector-width attribute used in the source program.
500 // 2. Any builtins used that have a vector width specified.
501 // 3. Values passed in and out of inline assembly.
502 // 4. Width of vector arguments and return types for this function.
503 // 5. Width of vector aguments and return types for functions called by this
505 if (getContext().getTargetInfo().getTriple().isX86())
506 CurFn
->addFnAttr("min-legal-vector-width",
507 llvm::utostr(LargestVectorWidth
));
509 // Add vscale_range attribute if appropriate.
510 std::optional
<std::pair
<unsigned, unsigned>> VScaleRange
=
511 getContext().getTargetInfo().getVScaleRange(getLangOpts());
513 CurFn
->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
514 getLLVMContext(), VScaleRange
->first
, VScaleRange
->second
));
517 // If we generated an unreachable return block, delete it now.
518 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty()) {
519 Builder
.ClearInsertionPoint();
520 ReturnBlock
.getBlock()->eraseFromParent();
522 if (ReturnValue
.isValid()) {
523 auto *RetAlloca
= dyn_cast
<llvm::AllocaInst
>(ReturnValue
.getPointer());
524 if (RetAlloca
&& RetAlloca
->use_empty()) {
525 RetAlloca
->eraseFromParent();
526 ReturnValue
= Address::invalid();
531 /// ShouldInstrumentFunction - Return true if the current function should be
532 /// instrumented with __cyg_profile_func_* calls
533 bool CodeGenFunction::ShouldInstrumentFunction() {
534 if (!CGM
.getCodeGenOpts().InstrumentFunctions
&&
535 !CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
&&
536 !CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
538 if (!CurFuncDecl
|| CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>())
543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
546 return CurFuncDecl
->hasAttr
<DisableSanitizerInstrumentationAttr
>();
549 /// ShouldXRayInstrument - Return true if the current function should be
550 /// instrumented with XRay nop sleds.
551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
552 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
;
555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
558 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
559 (CGM
.getCodeGenOpts().XRayAlwaysEmitCustomEvents
||
560 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
561 XRayInstrKind::Custom
);
564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
565 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
566 (CGM
.getCodeGenOpts().XRayAlwaysEmitTypedEvents
||
567 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
568 XRayInstrKind::Typed
);
572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty
) const {
573 // Remove any (C++17) exception specifications, to allow calling e.g. a
574 // noexcept function through a non-noexcept pointer.
575 if (!Ty
->isFunctionNoProtoType())
576 Ty
= getContext().getFunctionTypeWithExceptionSpec(Ty
, EST_None
);
578 llvm::raw_string_ostream
Out(Mangled
);
579 CGM
.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty
, Out
, false);
580 return llvm::ConstantInt::get(
581 CGM
.Int32Ty
, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled
)));
584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl
*FD
,
585 llvm::Function
*Fn
) {
586 if (!FD
->hasAttr
<OpenCLKernelAttr
>() && !FD
->hasAttr
<CUDAGlobalAttr
>())
589 llvm::LLVMContext
&Context
= getLLVMContext();
591 CGM
.GenKernelArgMetadata(Fn
, FD
, this);
593 if (!getLangOpts().OpenCL
)
596 if (const VecTypeHintAttr
*A
= FD
->getAttr
<VecTypeHintAttr
>()) {
597 QualType HintQTy
= A
->getTypeHint();
598 const ExtVectorType
*HintEltQTy
= HintQTy
->getAs
<ExtVectorType
>();
599 bool IsSignedInteger
=
600 HintQTy
->isSignedIntegerType() ||
601 (HintEltQTy
&& HintEltQTy
->getElementType()->isSignedIntegerType());
602 llvm::Metadata
*AttrMDArgs
[] = {
603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604 CGM
.getTypes().ConvertType(A
->getTypeHint()))),
605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606 llvm::IntegerType::get(Context
, 32),
607 llvm::APInt(32, (uint64_t)(IsSignedInteger
? 1 : 0))))};
608 Fn
->setMetadata("vec_type_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
611 if (const WorkGroupSizeHintAttr
*A
= FD
->getAttr
<WorkGroupSizeHintAttr
>()) {
612 llvm::Metadata
*AttrMDArgs
[] = {
613 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
616 Fn
->setMetadata("work_group_size_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
619 if (const ReqdWorkGroupSizeAttr
*A
= FD
->getAttr
<ReqdWorkGroupSizeAttr
>()) {
620 llvm::Metadata
*AttrMDArgs
[] = {
621 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
622 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
623 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
624 Fn
->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context
, AttrMDArgs
));
627 if (const OpenCLIntelReqdSubGroupSizeAttr
*A
=
628 FD
->getAttr
<OpenCLIntelReqdSubGroupSizeAttr
>()) {
629 llvm::Metadata
*AttrMDArgs
[] = {
630 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getSubGroupSize()))};
631 Fn
->setMetadata("intel_reqd_sub_group_size",
632 llvm::MDNode::get(Context
, AttrMDArgs
));
636 /// Determine whether the function F ends with a return stmt.
637 static bool endsWithReturn(const Decl
* F
) {
638 const Stmt
*Body
= nullptr;
639 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(F
))
640 Body
= FD
->getBody();
641 else if (auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(F
))
642 Body
= OMD
->getBody();
644 if (auto *CS
= dyn_cast_or_null
<CompoundStmt
>(Body
)) {
645 auto LastStmt
= CS
->body_rbegin();
646 if (LastStmt
!= CS
->body_rend())
647 return isa
<ReturnStmt
>(*LastStmt
);
652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function
*Fn
) {
653 if (SanOpts
.has(SanitizerKind::Thread
)) {
654 Fn
->addFnAttr("sanitize_thread_no_checking_at_run_time");
655 Fn
->removeFnAttr(llvm::Attribute::SanitizeThread
);
659 /// Check if the return value of this function requires sanitization.
660 bool CodeGenFunction::requiresReturnValueCheck() const {
661 return requiresReturnValueNullabilityCheck() ||
662 (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) && CurCodeDecl
&&
663 CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>());
666 static bool matchesStlAllocatorFn(const Decl
*D
, const ASTContext
&Ctx
) {
667 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(D
);
668 if (!MD
|| !MD
->getDeclName().getAsIdentifierInfo() ||
669 !MD
->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670 (MD
->getNumParams() != 1 && MD
->getNumParams() != 2))
673 if (MD
->parameters()[0]->getType().getCanonicalType() != Ctx
.getSizeType())
676 if (MD
->getNumParams() == 2) {
677 auto *PT
= MD
->parameters()[1]->getType()->getAs
<PointerType
>();
678 if (!PT
|| !PT
->isVoidPointerType() ||
679 !PT
->getPointeeType().isConstQualified())
686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI
&ABI
, QualType Ty
) {
687 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
688 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl
*MD
) {
692 return getTarget().getTriple().getArch() == llvm::Triple::x86
&&
693 getTarget().getCXXABI().isMicrosoft() &&
694 llvm::any_of(MD
->parameters(), [&](ParmVarDecl
*P
) {
695 return isInAllocaArgument(CGM
.getCXXABI(), P
->getType());
699 /// Return the UBSan prologue signature for \p FD if one is available.
700 static llvm::Constant
*getPrologueSignature(CodeGenModule
&CGM
,
701 const FunctionDecl
*FD
) {
702 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
705 return CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
);
708 void CodeGenFunction::StartFunction(GlobalDecl GD
, QualType RetTy
,
710 const CGFunctionInfo
&FnInfo
,
711 const FunctionArgList
&Args
,
713 SourceLocation StartLoc
) {
715 "Do not use a CodeGenFunction object for more than one function");
717 const Decl
*D
= GD
.getDecl();
719 DidCallStackSave
= false;
721 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(D
);
722 if (FD
&& FD
->usesSEHTry())
724 CurFuncDecl
= (D
? D
->getNonClosureContext() : nullptr);
728 assert(CurFn
->isDeclaration() && "Function already has body?");
730 // If this function is ignored for any of the enabled sanitizers,
731 // disable the sanitizer for the function.
733 #define SANITIZER(NAME, ID) \
734 if (SanOpts.empty()) \
736 if (SanOpts.has(SanitizerKind::ID)) \
737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
738 SanOpts.set(SanitizerKind::ID, false);
740 #include "clang/Basic/Sanitizers.def"
745 const bool SanitizeBounds
= SanOpts
.hasOneOf(SanitizerKind::Bounds
);
746 SanitizerMask no_sanitize_mask
;
747 bool NoSanitizeCoverage
= false;
749 for (auto *Attr
: D
->specific_attrs
<NoSanitizeAttr
>()) {
750 no_sanitize_mask
|= Attr
->getMask();
751 // SanitizeCoverage is not handled by SanOpts.
752 if (Attr
->hasCoverage())
753 NoSanitizeCoverage
= true;
756 // Apply the no_sanitize* attributes to SanOpts.
757 SanOpts
.Mask
&= ~no_sanitize_mask
;
758 if (no_sanitize_mask
& SanitizerKind::Address
)
759 SanOpts
.set(SanitizerKind::KernelAddress
, false);
760 if (no_sanitize_mask
& SanitizerKind::KernelAddress
)
761 SanOpts
.set(SanitizerKind::Address
, false);
762 if (no_sanitize_mask
& SanitizerKind::HWAddress
)
763 SanOpts
.set(SanitizerKind::KernelHWAddress
, false);
764 if (no_sanitize_mask
& SanitizerKind::KernelHWAddress
)
765 SanOpts
.set(SanitizerKind::HWAddress
, false);
767 if (SanitizeBounds
&& !SanOpts
.hasOneOf(SanitizerKind::Bounds
))
768 Fn
->addFnAttr(llvm::Attribute::NoSanitizeBounds
);
770 if (NoSanitizeCoverage
&& CGM
.getCodeGenOpts().hasSanitizeCoverage())
771 Fn
->addFnAttr(llvm::Attribute::NoSanitizeCoverage
);
773 // Some passes need the non-negated no_sanitize attribute. Pass them on.
774 if (CGM
.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
775 if (no_sanitize_mask
& SanitizerKind::Thread
)
776 Fn
->addFnAttr("no_sanitize_thread");
780 if (ShouldSkipSanitizerInstrumentation()) {
781 CurFn
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
783 // Apply sanitizer attributes to the function.
784 if (SanOpts
.hasOneOf(SanitizerKind::Address
| SanitizerKind::KernelAddress
))
785 Fn
->addFnAttr(llvm::Attribute::SanitizeAddress
);
786 if (SanOpts
.hasOneOf(SanitizerKind::HWAddress
|
787 SanitizerKind::KernelHWAddress
))
788 Fn
->addFnAttr(llvm::Attribute::SanitizeHWAddress
);
789 if (SanOpts
.has(SanitizerKind::MemtagStack
))
790 Fn
->addFnAttr(llvm::Attribute::SanitizeMemTag
);
791 if (SanOpts
.has(SanitizerKind::Thread
))
792 Fn
->addFnAttr(llvm::Attribute::SanitizeThread
);
793 if (SanOpts
.hasOneOf(SanitizerKind::Memory
| SanitizerKind::KernelMemory
))
794 Fn
->addFnAttr(llvm::Attribute::SanitizeMemory
);
796 if (SanOpts
.has(SanitizerKind::SafeStack
))
797 Fn
->addFnAttr(llvm::Attribute::SafeStack
);
798 if (SanOpts
.has(SanitizerKind::ShadowCallStack
))
799 Fn
->addFnAttr(llvm::Attribute::ShadowCallStack
);
801 // Apply fuzzing attribute to the function.
802 if (SanOpts
.hasOneOf(SanitizerKind::Fuzzer
| SanitizerKind::FuzzerNoLink
))
803 Fn
->addFnAttr(llvm::Attribute::OptForFuzzing
);
805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
807 if (SanOpts
.has(SanitizerKind::Thread
)) {
808 if (const auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(D
)) {
809 IdentifierInfo
*II
= OMD
->getSelector().getIdentifierInfoForSlot(0);
810 if (OMD
->getMethodFamily() == OMF_dealloc
||
811 OMD
->getMethodFamily() == OMF_initialize
||
812 (OMD
->getSelector().isUnarySelector() && II
->isStr(".cxx_destruct"))) {
813 markAsIgnoreThreadCheckingAtRuntime(Fn
);
818 // Ignore unrelated casts in STL allocate() since the allocator must cast
819 // from void* to T* before object initialization completes. Don't match on the
820 // namespace because not all allocators are in std::
821 if (D
&& SanOpts
.has(SanitizerKind::CFIUnrelatedCast
)) {
822 if (matchesStlAllocatorFn(D
, getContext()))
823 SanOpts
.Mask
&= ~SanitizerKind::CFIUnrelatedCast
;
826 // Ignore null checks in coroutine functions since the coroutines passes
827 // are not aware of how to move the extra UBSan instructions across the split
828 // coroutine boundaries.
829 if (D
&& SanOpts
.has(SanitizerKind::Null
))
830 if (FD
&& FD
->getBody() &&
831 FD
->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass
)
832 SanOpts
.Mask
&= ~SanitizerKind::Null
;
834 // Apply xray attributes to the function (as a string, for now)
835 bool AlwaysXRayAttr
= false;
836 if (const auto *XRayAttr
= D
? D
->getAttr
<XRayInstrumentAttr
>() : nullptr) {
837 if (CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
838 XRayInstrKind::FunctionEntry
) ||
839 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
840 XRayInstrKind::FunctionExit
)) {
841 if (XRayAttr
->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
842 Fn
->addFnAttr("function-instrument", "xray-always");
843 AlwaysXRayAttr
= true;
845 if (XRayAttr
->neverXRayInstrument())
846 Fn
->addFnAttr("function-instrument", "xray-never");
847 if (const auto *LogArgs
= D
->getAttr
<XRayLogArgsAttr
>())
848 if (ShouldXRayInstrumentFunction())
849 Fn
->addFnAttr("xray-log-args",
850 llvm::utostr(LogArgs
->getArgumentCount()));
853 if (ShouldXRayInstrumentFunction() && !CGM
.imbueXRayAttrs(Fn
, Loc
))
855 "xray-instruction-threshold",
856 llvm::itostr(CGM
.getCodeGenOpts().XRayInstructionThreshold
));
859 if (ShouldXRayInstrumentFunction()) {
860 if (CGM
.getCodeGenOpts().XRayIgnoreLoops
)
861 Fn
->addFnAttr("xray-ignore-loops");
863 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
864 XRayInstrKind::FunctionExit
))
865 Fn
->addFnAttr("xray-skip-exit");
867 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
868 XRayInstrKind::FunctionEntry
))
869 Fn
->addFnAttr("xray-skip-entry");
871 auto FuncGroups
= CGM
.getCodeGenOpts().XRayTotalFunctionGroups
;
872 if (FuncGroups
> 1) {
873 auto FuncName
= llvm::ArrayRef
<uint8_t>(CurFn
->getName().bytes_begin(),
874 CurFn
->getName().bytes_end());
875 auto Group
= crc32(FuncName
) % FuncGroups
;
876 if (Group
!= CGM
.getCodeGenOpts().XRaySelectedFunctionGroup
&&
878 Fn
->addFnAttr("function-instrument", "xray-never");
882 if (CGM
.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone
) {
883 switch (CGM
.isFunctionBlockedFromProfileInstr(Fn
, Loc
)) {
884 case ProfileList::Skip
:
885 Fn
->addFnAttr(llvm::Attribute::SkipProfile
);
887 case ProfileList::Forbid
:
888 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
890 case ProfileList::Allow
:
895 unsigned Count
, Offset
;
896 if (const auto *Attr
=
897 D
? D
->getAttr
<PatchableFunctionEntryAttr
>() : nullptr) {
898 Count
= Attr
->getCount();
899 Offset
= Attr
->getOffset();
901 Count
= CGM
.getCodeGenOpts().PatchableFunctionEntryCount
;
902 Offset
= CGM
.getCodeGenOpts().PatchableFunctionEntryOffset
;
904 if (Count
&& Offset
<= Count
) {
905 Fn
->addFnAttr("patchable-function-entry", std::to_string(Count
- Offset
));
907 Fn
->addFnAttr("patchable-function-prefix", std::to_string(Offset
));
909 // Instruct that functions for COFF/CodeView targets should start with a
910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
911 // backends as they don't need it -- instructions on these architectures are
912 // always atomically patchable at runtime.
913 if (CGM
.getCodeGenOpts().HotPatch
&&
914 getContext().getTargetInfo().getTriple().isX86() &&
915 getContext().getTargetInfo().getTriple().getEnvironment() !=
916 llvm::Triple::CODE16
)
917 Fn
->addFnAttr("patchable-function", "prologue-short-redirect");
919 // Add no-jump-tables value.
920 if (CGM
.getCodeGenOpts().NoUseJumpTables
)
921 Fn
->addFnAttr("no-jump-tables", "true");
923 // Add no-inline-line-tables value.
924 if (CGM
.getCodeGenOpts().NoInlineLineTables
)
925 Fn
->addFnAttr("no-inline-line-tables");
927 // Add profile-sample-accurate value.
928 if (CGM
.getCodeGenOpts().ProfileSampleAccurate
)
929 Fn
->addFnAttr("profile-sample-accurate");
931 if (!CGM
.getCodeGenOpts().SampleProfileFile
.empty())
932 Fn
->addFnAttr("use-sample-profile");
934 if (D
&& D
->hasAttr
<CFICanonicalJumpTableAttr
>())
935 Fn
->addFnAttr("cfi-canonical-jump-table");
937 if (D
&& D
->hasAttr
<NoProfileFunctionAttr
>())
938 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
941 // Function attributes take precedence over command line flags.
942 if (auto *A
= D
->getAttr
<FunctionReturnThunksAttr
>()) {
943 switch (A
->getThunkType()) {
944 case FunctionReturnThunksAttr::Kind::Keep
:
946 case FunctionReturnThunksAttr::Kind::Extern
:
947 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
950 } else if (CGM
.getCodeGenOpts().FunctionReturnThunks
)
951 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
954 if (FD
&& (getLangOpts().OpenCL
||
955 (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
))) {
956 // Add metadata for a kernel function.
957 EmitKernelMetadata(FD
, Fn
);
960 // If we are checking function types, emit a function type signature as
962 if (FD
&& SanOpts
.has(SanitizerKind::Function
)) {
963 if (llvm::Constant
*PrologueSig
= getPrologueSignature(CGM
, FD
)) {
964 llvm::LLVMContext
&Ctx
= Fn
->getContext();
965 llvm::MDBuilder
MDB(Ctx
);
967 llvm::LLVMContext::MD_func_sanitize
,
968 MDB
.createRTTIPointerPrologue(
969 PrologueSig
, getUBSanFunctionTypeHash(FD
->getType())));
973 // If we're checking nullability, we need to know whether we can check the
974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
975 if (SanOpts
.has(SanitizerKind::NullabilityReturn
)) {
976 auto Nullability
= FnRetTy
->getNullability();
977 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
) {
978 if (!(SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) &&
979 CurCodeDecl
&& CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>()))
980 RetValNullabilityPrecondition
=
981 llvm::ConstantInt::getTrue(getLLVMContext());
985 // If we're in C++ mode and the function name is "main", it is guaranteed
986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
987 // used within a program").
989 // OpenCL C 2.0 v2.2-11 s6.9.i:
990 // Recursion is not supported.
992 // SYCL v1.2.1 s3.10:
993 // kernels cannot include RTTI information, exception classes,
994 // recursive code, virtual functions or make use of C++ libraries that
995 // are not compiled for the device.
996 if (FD
&& ((getLangOpts().CPlusPlus
&& FD
->isMain()) ||
997 getLangOpts().OpenCL
|| getLangOpts().SYCLIsDevice
||
998 (getLangOpts().CUDA
&& FD
->hasAttr
<CUDAGlobalAttr
>())))
999 Fn
->addFnAttr(llvm::Attribute::NoRecurse
);
1001 llvm::RoundingMode RM
= getLangOpts().getDefaultRoundingMode();
1002 llvm::fp::ExceptionBehavior FPExceptionBehavior
=
1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1004 Builder
.setDefaultConstrainedRounding(RM
);
1005 Builder
.setDefaultConstrainedExcept(FPExceptionBehavior
);
1006 if ((FD
&& (FD
->UsesFPIntrin() || FD
->hasAttr
<StrictFPAttr
>())) ||
1007 (!FD
&& (FPExceptionBehavior
!= llvm::fp::ebIgnore
||
1008 RM
!= llvm::RoundingMode::NearestTiesToEven
))) {
1009 Builder
.setIsFPConstrained(true);
1010 Fn
->addFnAttr(llvm::Attribute::StrictFP
);
1013 // If a custom alignment is used, force realigning to this alignment on
1014 // any main function which certainly will need it.
1015 if (FD
&& ((FD
->isMain() || FD
->isMSVCRTEntryPoint()) &&
1016 CGM
.getCodeGenOpts().StackAlignment
))
1017 Fn
->addFnAttr("stackrealign");
1019 // "main" doesn't need to zero out call-used registers.
1020 if (FD
&& FD
->isMain())
1021 Fn
->removeFnAttr("zero-call-used-regs");
1023 llvm::BasicBlock
*EntryBB
= createBasicBlock("entry", CurFn
);
1025 // Create a marker to make it easy to insert allocas into the entryblock
1026 // later. Don't create this with the builder, because we don't want it
1028 llvm::Value
*Undef
= llvm::UndefValue::get(Int32Ty
);
1029 AllocaInsertPt
= new llvm::BitCastInst(Undef
, Int32Ty
, "allocapt", EntryBB
);
1031 ReturnBlock
= getJumpDestInCurrentScope("return");
1033 Builder
.SetInsertPoint(EntryBB
);
1035 // If we're checking the return value, allocate space for a pointer to a
1036 // precise source location of the checked return statement.
1037 if (requiresReturnValueCheck()) {
1038 ReturnLocation
= CreateDefaultAlignTempAlloca(Int8PtrTy
, "return.sloc.ptr");
1039 Builder
.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy
),
1043 // Emit subprogram debug descriptor.
1044 if (CGDebugInfo
*DI
= getDebugInfo()) {
1045 // Reconstruct the type from the argument list so that implicit parameters,
1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1048 DI
->emitFunctionStart(GD
, Loc
, StartLoc
,
1049 DI
->getFunctionType(FD
, RetTy
, Args
), CurFn
,
1053 if (ShouldInstrumentFunction()) {
1054 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
1055 CurFn
->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1056 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
1057 CurFn
->addFnAttr("instrument-function-entry-inlined",
1058 "__cyg_profile_func_enter");
1059 if (CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
1060 CurFn
->addFnAttr("instrument-function-entry-inlined",
1061 "__cyg_profile_func_enter_bare");
1064 // Since emitting the mcount call here impacts optimizations such as function
1065 // inlining, we just add an attribute to insert a mcount call in backend.
1066 // The attribute "counting-function" is set to mcount function name which is
1067 // architecture dependent.
1068 if (CGM
.getCodeGenOpts().InstrumentForProfiling
) {
1069 // Calls to fentry/mcount should not be generated if function has
1070 // the no_instrument_function attribute.
1071 if (!CurFuncDecl
|| !CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>()) {
1072 if (CGM
.getCodeGenOpts().CallFEntry
)
1073 Fn
->addFnAttr("fentry-call", "true");
1075 Fn
->addFnAttr("instrument-function-entry-inlined",
1076 getTarget().getMCountName());
1078 if (CGM
.getCodeGenOpts().MNopMCount
) {
1079 if (!CGM
.getCodeGenOpts().CallFEntry
)
1080 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1081 << "-mnop-mcount" << "-mfentry";
1082 Fn
->addFnAttr("mnop-mcount");
1085 if (CGM
.getCodeGenOpts().RecordMCount
) {
1086 if (!CGM
.getCodeGenOpts().CallFEntry
)
1087 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1088 << "-mrecord-mcount" << "-mfentry";
1089 Fn
->addFnAttr("mrecord-mcount");
1094 if (CGM
.getCodeGenOpts().PackedStack
) {
1095 if (getContext().getTargetInfo().getTriple().getArch() !=
1096 llvm::Triple::systemz
)
1097 CGM
.getDiags().Report(diag::err_opt_not_valid_on_target
)
1098 << "-mpacked-stack";
1099 Fn
->addFnAttr("packed-stack");
1102 if (CGM
.getCodeGenOpts().WarnStackSize
!= UINT_MAX
&&
1103 !CGM
.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than
, Loc
))
1104 Fn
->addFnAttr("warn-stack-size",
1105 std::to_string(CGM
.getCodeGenOpts().WarnStackSize
));
1107 if (RetTy
->isVoidType()) {
1108 // Void type; nothing to return.
1109 ReturnValue
= Address::invalid();
1111 // Count the implicit return.
1112 if (!endsWithReturn(D
))
1114 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
) {
1115 // Indirect return; emit returned value directly into sret slot.
1116 // This reduces code size, and affects correctness in C++.
1117 auto AI
= CurFn
->arg_begin();
1118 if (CurFnInfo
->getReturnInfo().isSRetAfterThis())
1121 Address(&*AI
, ConvertType(RetTy
),
1122 CurFnInfo
->getReturnInfo().getIndirectAlign(), KnownNonNull
);
1123 if (!CurFnInfo
->getReturnInfo().getIndirectByVal()) {
1124 ReturnValuePointer
=
1125 CreateDefaultAlignTempAlloca(Int8PtrTy
, "result.ptr");
1126 Builder
.CreateStore(Builder
.CreatePointerBitCastOrAddrSpaceCast(
1127 ReturnValue
.getPointer(), Int8PtrTy
),
1128 ReturnValuePointer
);
1130 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::InAlloca
&&
1131 !hasScalarEvaluationKind(CurFnInfo
->getReturnType())) {
1132 // Load the sret pointer from the argument struct and return into that.
1133 unsigned Idx
= CurFnInfo
->getReturnInfo().getInAllocaFieldIndex();
1134 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
1136 llvm::Value
*Addr
= Builder
.CreateStructGEP(
1137 CurFnInfo
->getArgStruct(), &*EI
, Idx
);
1139 cast
<llvm::GetElementPtrInst
>(Addr
)->getResultElementType();
1140 ReturnValuePointer
= Address(Addr
, Ty
, getPointerAlign());
1141 Addr
= Builder
.CreateAlignedLoad(Ty
, Addr
, getPointerAlign(), "agg.result");
1142 ReturnValue
= Address(Addr
, ConvertType(RetTy
),
1143 CGM
.getNaturalTypeAlignment(RetTy
), KnownNonNull
);
1145 ReturnValue
= CreateIRTemp(RetTy
, "retval");
1147 // Tell the epilog emitter to autorelease the result. We do this
1148 // now so that various specialized functions can suppress it
1149 // during their IR-generation.
1150 if (getLangOpts().ObjCAutoRefCount
&&
1151 !CurFnInfo
->isReturnsRetained() &&
1152 RetTy
->isObjCRetainableType())
1153 AutoreleaseResult
= true;
1156 EmitStartEHSpec(CurCodeDecl
);
1158 PrologueCleanupDepth
= EHStack
.stable_begin();
1160 // Emit OpenMP specific initialization of the device functions.
1161 if (getLangOpts().OpenMP
&& CurCodeDecl
)
1162 CGM
.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl
);
1164 // Handle emitting HLSL entry functions.
1165 if (D
&& D
->hasAttr
<HLSLShaderAttr
>())
1166 CGM
.getHLSLRuntime().emitEntryFunction(FD
, Fn
);
1168 EmitFunctionProlog(*CurFnInfo
, CurFn
, Args
);
1170 if (const CXXMethodDecl
*MD
= dyn_cast_if_present
<CXXMethodDecl
>(D
);
1171 MD
&& !MD
->isStatic()) {
1173 MD
->getParent()->isLambda() && MD
->getOverloadedOperator() == OO_Call
;
1174 if (MD
->isImplicitObjectMemberFunction())
1175 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
1177 // We're in a lambda; figure out the captures.
1178 MD
->getParent()->getCaptureFields(LambdaCaptureFields
,
1179 LambdaThisCaptureField
);
1180 if (LambdaThisCaptureField
) {
1181 // If the lambda captures the object referred to by '*this' - either by
1182 // value or by reference, make sure CXXThisValue points to the correct
1185 // Get the lvalue for the field (which is a copy of the enclosing object
1186 // or contains the address of the enclosing object).
1187 LValue ThisFieldLValue
= EmitLValueForLambdaField(LambdaThisCaptureField
);
1188 if (!LambdaThisCaptureField
->getType()->isPointerType()) {
1189 // If the enclosing object was captured by value, just use its address.
1190 CXXThisValue
= ThisFieldLValue
.getAddress(*this).getPointer();
1192 // Load the lvalue pointed to by the field, since '*this' was captured
1195 EmitLoadOfLValue(ThisFieldLValue
, SourceLocation()).getScalarVal();
1198 for (auto *FD
: MD
->getParent()->fields()) {
1199 if (FD
->hasCapturedVLAType()) {
1200 auto *ExprArg
= EmitLoadOfLValue(EmitLValueForLambdaField(FD
),
1201 SourceLocation()).getScalarVal();
1202 auto VAT
= FD
->getCapturedVLAType();
1203 VLASizeMap
[VAT
->getSizeExpr()] = ExprArg
;
1206 } else if (MD
->isImplicitObjectMemberFunction()) {
1207 // Not in a lambda; just use 'this' from the method.
1208 // FIXME: Should we generate a new load for each use of 'this'? The
1209 // fast register allocator would be happier...
1210 CXXThisValue
= CXXABIThisValue
;
1213 // Check the 'this' pointer once per function, if it's available.
1214 if (CXXABIThisValue
) {
1215 SanitizerSet SkippedChecks
;
1216 SkippedChecks
.set(SanitizerKind::ObjectSize
, true);
1217 QualType ThisTy
= MD
->getThisType();
1219 // If this is the call operator of a lambda with no captures, it
1220 // may have a static invoker function, which may call this operator with
1221 // a null 'this' pointer.
1222 if (isLambdaCallOperator(MD
) && MD
->getParent()->isCapturelessLambda())
1223 SkippedChecks
.set(SanitizerKind::Null
, true);
1226 isa
<CXXConstructorDecl
>(MD
) ? TCK_ConstructorCall
: TCK_MemberCall
,
1227 Loc
, CXXABIThisValue
, ThisTy
, CXXABIThisAlignment
, SkippedChecks
);
1231 // If any of the arguments have a variably modified type, make sure to
1232 // emit the type size, but only if the function is not naked. Naked functions
1233 // have no prolog to run this evaluation.
1234 if (!FD
|| !FD
->hasAttr
<NakedAttr
>()) {
1235 for (const VarDecl
*VD
: Args
) {
1236 // Dig out the type as written from ParmVarDecls; it's unclear whether
1237 // the standard (C99 6.9.1p10) requires this, but we're following the
1238 // precedent set by gcc.
1240 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(VD
))
1241 Ty
= PVD
->getOriginalType();
1245 if (Ty
->isVariablyModifiedType())
1246 EmitVariablyModifiedType(Ty
);
1249 // Emit a location at the end of the prologue.
1250 if (CGDebugInfo
*DI
= getDebugInfo())
1251 DI
->EmitLocation(Builder
, StartLoc
);
1252 // TODO: Do we need to handle this in two places like we do with
1253 // target-features/target-cpu?
1255 if (const auto *VecWidth
= CurFuncDecl
->getAttr
<MinVectorWidthAttr
>())
1256 LargestVectorWidth
= VecWidth
->getVectorWidth();
1259 void CodeGenFunction::EmitFunctionBody(const Stmt
*Body
) {
1260 incrementProfileCounter(Body
);
1261 if (const CompoundStmt
*S
= dyn_cast
<CompoundStmt
>(Body
))
1262 EmitCompoundStmtWithoutScope(*S
);
1266 // This is checked after emitting the function body so we know if there
1267 // are any permitted infinite loops.
1268 if (checkIfFunctionMustProgress())
1269 CurFn
->addFnAttr(llvm::Attribute::MustProgress
);
1272 /// When instrumenting to collect profile data, the counts for some blocks
1273 /// such as switch cases need to not include the fall-through counts, so
1274 /// emit a branch around the instrumentation code. When not instrumenting,
1275 /// this just calls EmitBlock().
1276 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock
*BB
,
1278 llvm::BasicBlock
*SkipCountBB
= nullptr;
1279 if (HaveInsertPoint() && CGM
.getCodeGenOpts().hasProfileClangInstr()) {
1280 // When instrumenting for profiling, the fallthrough to certain
1281 // statements needs to skip over the instrumentation code so that we
1282 // get an accurate count.
1283 SkipCountBB
= createBasicBlock("skipcount");
1284 EmitBranch(SkipCountBB
);
1287 uint64_t CurrentCount
= getCurrentProfileCount();
1288 incrementProfileCounter(S
);
1289 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount
);
1291 EmitBlock(SkipCountBB
);
1294 /// Tries to mark the given function nounwind based on the
1295 /// non-existence of any throwing calls within it. We believe this is
1296 /// lightweight enough to do at -O0.
1297 static void TryMarkNoThrow(llvm::Function
*F
) {
1298 // LLVM treats 'nounwind' on a function as part of the type, so we
1299 // can't do this on functions that can be overwritten.
1300 if (F
->isInterposable()) return;
1302 for (llvm::BasicBlock
&BB
: *F
)
1303 for (llvm::Instruction
&I
: BB
)
1307 F
->setDoesNotThrow();
1310 QualType
CodeGenFunction::BuildFunctionArgList(GlobalDecl GD
,
1311 FunctionArgList
&Args
) {
1312 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1313 QualType ResTy
= FD
->getReturnType();
1315 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
1316 if (MD
&& MD
->isImplicitObjectMemberFunction()) {
1317 if (CGM
.getCXXABI().HasThisReturn(GD
))
1318 ResTy
= MD
->getThisType();
1319 else if (CGM
.getCXXABI().hasMostDerivedReturn(GD
))
1320 ResTy
= CGM
.getContext().VoidPtrTy
;
1321 CGM
.getCXXABI().buildThisParam(*this, Args
);
1324 // The base version of an inheriting constructor whose constructed base is a
1325 // virtual base is not passed any arguments (because it doesn't actually call
1326 // the inherited constructor).
1327 bool PassedParams
= true;
1328 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(FD
))
1329 if (auto Inherited
= CD
->getInheritedConstructor())
1331 getTypes().inheritingCtorHasParams(Inherited
, GD
.getCtorType());
1334 for (auto *Param
: FD
->parameters()) {
1335 Args
.push_back(Param
);
1336 if (!Param
->hasAttr
<PassObjectSizeAttr
>())
1339 auto *Implicit
= ImplicitParamDecl::Create(
1340 getContext(), Param
->getDeclContext(), Param
->getLocation(),
1341 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other
);
1342 SizeArguments
[Param
] = Implicit
;
1343 Args
.push_back(Implicit
);
1347 if (MD
&& (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)))
1348 CGM
.getCXXABI().addImplicitStructorParams(*this, ResTy
, Args
);
1353 void CodeGenFunction::GenerateCode(GlobalDecl GD
, llvm::Function
*Fn
,
1354 const CGFunctionInfo
&FnInfo
) {
1355 assert(Fn
&& "generating code for null Function");
1356 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1359 FunctionArgList Args
;
1360 QualType ResTy
= BuildFunctionArgList(GD
, Args
);
1362 if (FD
->isInlineBuiltinDeclaration()) {
1363 // When generating code for a builtin with an inline declaration, use a
1364 // mangled name to hold the actual body, while keeping an external
1365 // definition in case the function pointer is referenced somewhere.
1366 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1367 llvm::Module
*M
= Fn
->getParent();
1368 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
1370 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
1371 llvm::GlobalValue::InternalLinkage
,
1372 Fn
->getAddressSpace(), FDInlineName
, M
);
1373 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
1375 Fn
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
1378 // Detect the unusual situation where an inline version is shadowed by a
1379 // non-inline version. In that case we should pick the external one
1380 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1381 // to detect that situation before we reach codegen, so do some late
1383 for (const FunctionDecl
*PD
= FD
->getPreviousDecl(); PD
;
1384 PD
= PD
->getPreviousDecl()) {
1385 if (LLVM_UNLIKELY(PD
->isInlineBuiltinDeclaration())) {
1386 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1387 llvm::Module
*M
= Fn
->getParent();
1388 if (llvm::Function
*Clone
= M
->getFunction(FDInlineName
)) {
1389 Clone
->replaceAllUsesWith(Fn
);
1390 Clone
->eraseFromParent();
1397 // Check if we should generate debug info for this function.
1398 if (FD
->hasAttr
<NoDebugAttr
>()) {
1399 // Clear non-distinct debug info that was possibly attached to the function
1400 // due to an earlier declaration without the nodebug attribute
1401 Fn
->setSubprogram(nullptr);
1402 // Disable debug info indefinitely for this function
1403 DebugInfo
= nullptr;
1406 // The function might not have a body if we're generating thunks for a
1407 // function declaration.
1408 SourceRange BodyRange
;
1409 if (Stmt
*Body
= FD
->getBody())
1410 BodyRange
= Body
->getSourceRange();
1412 BodyRange
= FD
->getLocation();
1413 CurEHLocation
= BodyRange
.getEnd();
1415 // Use the location of the start of the function to determine where
1416 // the function definition is located. By default use the location
1417 // of the declaration as the location for the subprogram. A function
1418 // may lack a declaration in the source code if it is created by code
1419 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1420 SourceLocation Loc
= FD
->getLocation();
1422 // If this is a function specialization then use the pattern body
1423 // as the location for the function.
1424 if (const FunctionDecl
*SpecDecl
= FD
->getTemplateInstantiationPattern())
1425 if (SpecDecl
->hasBody(SpecDecl
))
1426 Loc
= SpecDecl
->getLocation();
1428 Stmt
*Body
= FD
->getBody();
1431 // Coroutines always emit lifetime markers.
1432 if (isa
<CoroutineBodyStmt
>(Body
))
1433 ShouldEmitLifetimeMarkers
= true;
1435 // Initialize helper which will detect jumps which can cause invalid
1436 // lifetime markers.
1437 if (ShouldEmitLifetimeMarkers
)
1438 Bypasses
.Init(Body
);
1441 // Emit the standard function prologue.
1442 StartFunction(GD
, ResTy
, Fn
, FnInfo
, Args
, Loc
, BodyRange
.getBegin());
1444 // Save parameters for coroutine function.
1445 if (Body
&& isa_and_nonnull
<CoroutineBodyStmt
>(Body
))
1446 llvm::append_range(FnArgs
, FD
->parameters());
1448 // Generate the body of the function.
1449 PGO
.assignRegionCounters(GD
, CurFn
);
1450 if (isa
<CXXDestructorDecl
>(FD
))
1451 EmitDestructorBody(Args
);
1452 else if (isa
<CXXConstructorDecl
>(FD
))
1453 EmitConstructorBody(Args
);
1454 else if (getLangOpts().CUDA
&&
1455 !getLangOpts().CUDAIsDevice
&&
1456 FD
->hasAttr
<CUDAGlobalAttr
>())
1457 CGM
.getCUDARuntime().emitDeviceStub(*this, Args
);
1458 else if (isa
<CXXMethodDecl
>(FD
) &&
1459 cast
<CXXMethodDecl
>(FD
)->isLambdaStaticInvoker()) {
1460 // The lambda static invoker function is special, because it forwards or
1461 // clones the body of the function call operator (but is actually static).
1462 EmitLambdaStaticInvokeBody(cast
<CXXMethodDecl
>(FD
));
1463 } else if (isa
<CXXMethodDecl
>(FD
) &&
1464 isLambdaCallOperator(cast
<CXXMethodDecl
>(FD
)) &&
1465 !FnInfo
.isDelegateCall() &&
1466 cast
<CXXMethodDecl
>(FD
)->getParent()->getLambdaStaticInvoker() &&
1467 hasInAllocaArg(cast
<CXXMethodDecl
>(FD
))) {
1468 // If emitting a lambda with static invoker on X86 Windows, change
1469 // the call operator body.
1470 // Make sure that this is a call operator with an inalloca arg and check
1471 // for delegate call to make sure this is the original call op and not the
1472 // new forwarding function for the static invoker.
1473 EmitLambdaInAllocaCallOpBody(cast
<CXXMethodDecl
>(FD
));
1474 } else if (FD
->isDefaulted() && isa
<CXXMethodDecl
>(FD
) &&
1475 (cast
<CXXMethodDecl
>(FD
)->isCopyAssignmentOperator() ||
1476 cast
<CXXMethodDecl
>(FD
)->isMoveAssignmentOperator())) {
1477 // Implicit copy-assignment gets the same special treatment as implicit
1478 // copy-constructors.
1479 emitImplicitAssignmentOperatorBody(Args
);
1481 EmitFunctionBody(Body
);
1483 llvm_unreachable("no definition for emitted function");
1485 // C++11 [stmt.return]p2:
1486 // Flowing off the end of a function [...] results in undefined behavior in
1487 // a value-returning function.
1489 // If the '}' that terminates a function is reached, and the value of the
1490 // function call is used by the caller, the behavior is undefined.
1491 if (getLangOpts().CPlusPlus
&& !FD
->hasImplicitReturnZero() && !SawAsmBlock
&&
1492 !FD
->getReturnType()->isVoidType() && Builder
.GetInsertBlock()) {
1493 bool ShouldEmitUnreachable
=
1494 CGM
.getCodeGenOpts().StrictReturn
||
1495 !CGM
.MayDropFunctionReturn(FD
->getASTContext(), FD
->getReturnType());
1496 if (SanOpts
.has(SanitizerKind::Return
)) {
1497 SanitizerScope
SanScope(this);
1498 llvm::Value
*IsFalse
= Builder
.getFalse();
1499 EmitCheck(std::make_pair(IsFalse
, SanitizerKind::Return
),
1500 SanitizerHandler::MissingReturn
,
1501 EmitCheckSourceLocation(FD
->getLocation()), std::nullopt
);
1502 } else if (ShouldEmitUnreachable
) {
1503 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1504 EmitTrapCall(llvm::Intrinsic::trap
);
1506 if (SanOpts
.has(SanitizerKind::Return
) || ShouldEmitUnreachable
) {
1507 Builder
.CreateUnreachable();
1508 Builder
.ClearInsertionPoint();
1512 // Emit the standard function epilogue.
1513 FinishFunction(BodyRange
.getEnd());
1515 // If we haven't marked the function nothrow through other means, do
1516 // a quick pass now to see if we can.
1517 if (!CurFn
->doesNotThrow())
1518 TryMarkNoThrow(CurFn
);
1521 /// ContainsLabel - Return true if the statement contains a label in it. If
1522 /// this statement is not executed normally, it not containing a label means
1523 /// that we can just remove the code.
1524 bool CodeGenFunction::ContainsLabel(const Stmt
*S
, bool IgnoreCaseStmts
) {
1525 // Null statement, not a label!
1526 if (!S
) return false;
1528 // If this is a label, we have to emit the code, consider something like:
1529 // if (0) { ... foo: bar(); } goto foo;
1531 // TODO: If anyone cared, we could track __label__'s, since we know that you
1532 // can't jump to one from outside their declared region.
1533 if (isa
<LabelStmt
>(S
))
1536 // If this is a case/default statement, and we haven't seen a switch, we have
1537 // to emit the code.
1538 if (isa
<SwitchCase
>(S
) && !IgnoreCaseStmts
)
1541 // If this is a switch statement, we want to ignore cases below it.
1542 if (isa
<SwitchStmt
>(S
))
1543 IgnoreCaseStmts
= true;
1545 // Scan subexpressions for verboten labels.
1546 for (const Stmt
*SubStmt
: S
->children())
1547 if (ContainsLabel(SubStmt
, IgnoreCaseStmts
))
1553 /// containsBreak - Return true if the statement contains a break out of it.
1554 /// If the statement (recursively) contains a switch or loop with a break
1555 /// inside of it, this is fine.
1556 bool CodeGenFunction::containsBreak(const Stmt
*S
) {
1557 // Null statement, not a label!
1558 if (!S
) return false;
1560 // If this is a switch or loop that defines its own break scope, then we can
1561 // include it and anything inside of it.
1562 if (isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) || isa
<DoStmt
>(S
) ||
1566 if (isa
<BreakStmt
>(S
))
1569 // Scan subexpressions for verboten breaks.
1570 for (const Stmt
*SubStmt
: S
->children())
1571 if (containsBreak(SubStmt
))
1577 bool CodeGenFunction::mightAddDeclToScope(const Stmt
*S
) {
1578 if (!S
) return false;
1580 // Some statement kinds add a scope and thus never add a decl to the current
1581 // scope. Note, this list is longer than the list of statements that might
1582 // have an unscoped decl nested within them, but this way is conservatively
1583 // correct even if more statement kinds are added.
1584 if (isa
<IfStmt
>(S
) || isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) ||
1585 isa
<DoStmt
>(S
) || isa
<ForStmt
>(S
) || isa
<CompoundStmt
>(S
) ||
1586 isa
<CXXForRangeStmt
>(S
) || isa
<CXXTryStmt
>(S
) ||
1587 isa
<ObjCForCollectionStmt
>(S
) || isa
<ObjCAtTryStmt
>(S
))
1590 if (isa
<DeclStmt
>(S
))
1593 for (const Stmt
*SubStmt
: S
->children())
1594 if (mightAddDeclToScope(SubStmt
))
1600 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1601 /// to a constant, or if it does but contains a label, return false. If it
1602 /// constant folds return true and set the boolean result in Result.
1603 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1606 llvm::APSInt ResultInt
;
1607 if (!ConstantFoldsToSimpleInteger(Cond
, ResultInt
, AllowLabels
))
1610 ResultBool
= ResultInt
.getBoolValue();
1614 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1615 /// to a constant, or if it does but contains a label, return false. If it
1616 /// constant folds return true and set the folded value.
1617 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1618 llvm::APSInt
&ResultInt
,
1620 // FIXME: Rename and handle conversion of other evaluatable things
1622 Expr::EvalResult Result
;
1623 if (!Cond
->EvaluateAsInt(Result
, getContext()))
1624 return false; // Not foldable, not integer or not fully evaluatable.
1626 llvm::APSInt Int
= Result
.Val
.getInt();
1627 if (!AllowLabels
&& CodeGenFunction::ContainsLabel(Cond
))
1628 return false; // Contains a label.
1634 /// Determine whether the given condition is an instrumentable condition
1635 /// (i.e. no "&&" or "||").
1636 bool CodeGenFunction::isInstrumentedCondition(const Expr
*C
) {
1637 // Bypass simplistic logical-NOT operator before determining whether the
1638 // condition contains any other logical operator.
1639 if (const UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(C
->IgnoreParens()))
1640 if (UnOp
->getOpcode() == UO_LNot
)
1641 C
= UnOp
->getSubExpr();
1643 const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(C
->IgnoreParens());
1644 return (!BOp
|| !BOp
->isLogicalOp());
1647 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1648 /// increments a profile counter based on the semantics of the given logical
1649 /// operator opcode. This is used to instrument branch condition coverage for
1650 /// logical operators.
1651 void CodeGenFunction::EmitBranchToCounterBlock(
1652 const Expr
*Cond
, BinaryOperator::Opcode LOp
, llvm::BasicBlock
*TrueBlock
,
1653 llvm::BasicBlock
*FalseBlock
, uint64_t TrueCount
/* = 0 */,
1654 Stmt::Likelihood LH
/* =None */, const Expr
*CntrIdx
/* = nullptr */) {
1655 // If not instrumenting, just emit a branch.
1656 bool InstrumentRegions
= CGM
.getCodeGenOpts().hasProfileClangInstr();
1657 if (!InstrumentRegions
|| !isInstrumentedCondition(Cond
))
1658 return EmitBranchOnBoolExpr(Cond
, TrueBlock
, FalseBlock
, TrueCount
, LH
);
1660 llvm::BasicBlock
*ThenBlock
= nullptr;
1661 llvm::BasicBlock
*ElseBlock
= nullptr;
1662 llvm::BasicBlock
*NextBlock
= nullptr;
1664 // Create the block we'll use to increment the appropriate counter.
1665 llvm::BasicBlock
*CounterIncrBlock
= createBasicBlock("lop.rhscnt");
1667 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1668 // means we need to evaluate the condition and increment the counter on TRUE:
1671 // goto CounterIncrBlock;
1675 // CounterIncrBlock:
1679 if (LOp
== BO_LAnd
) {
1680 ThenBlock
= CounterIncrBlock
;
1681 ElseBlock
= FalseBlock
;
1682 NextBlock
= TrueBlock
;
1685 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1686 // we need to evaluate the condition and increment the counter on FALSE:
1691 // goto CounterIncrBlock;
1693 // CounterIncrBlock:
1697 else if (LOp
== BO_LOr
) {
1698 ThenBlock
= TrueBlock
;
1699 ElseBlock
= CounterIncrBlock
;
1700 NextBlock
= FalseBlock
;
1702 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1705 // Emit Branch based on condition.
1706 EmitBranchOnBoolExpr(Cond
, ThenBlock
, ElseBlock
, TrueCount
, LH
);
1708 // Emit the block containing the counter increment(s).
1709 EmitBlock(CounterIncrBlock
);
1711 // Increment corresponding counter; if index not provided, use Cond as index.
1712 incrementProfileCounter(CntrIdx
? CntrIdx
: Cond
);
1714 // Go to the next block.
1715 EmitBranch(NextBlock
);
1718 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1719 /// statement) to the specified blocks. Based on the condition, this might try
1720 /// to simplify the codegen of the conditional based on the branch.
1721 /// \param LH The value of the likelihood attribute on the True branch.
1722 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr
*Cond
,
1723 llvm::BasicBlock
*TrueBlock
,
1724 llvm::BasicBlock
*FalseBlock
,
1726 Stmt::Likelihood LH
) {
1727 Cond
= Cond
->IgnoreParens();
1729 if (const BinaryOperator
*CondBOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
1731 // Handle X && Y in a condition.
1732 if (CondBOp
->getOpcode() == BO_LAnd
) {
1733 // If we have "1 && X", simplify the code. "0 && X" would have constant
1734 // folded if the case was simple enough.
1735 bool ConstantBool
= false;
1736 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1738 // br(1 && X) -> br(X).
1739 incrementProfileCounter(CondBOp
);
1740 return EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1741 FalseBlock
, TrueCount
, LH
);
1744 // If we have "X && 1", simplify the code to use an uncond branch.
1745 // "X && 0" would have been constant folded to 0.
1746 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1748 // br(X && 1) -> br(X).
1749 return EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LAnd
, TrueBlock
,
1750 FalseBlock
, TrueCount
, LH
, CondBOp
);
1753 // Emit the LHS as a conditional. If the LHS conditional is false, we
1754 // want to jump to the FalseBlock.
1755 llvm::BasicBlock
*LHSTrue
= createBasicBlock("land.lhs.true");
1756 // The counter tells us how often we evaluate RHS, and all of TrueCount
1757 // can be propagated to that branch.
1758 uint64_t RHSCount
= getProfileCount(CondBOp
->getRHS());
1760 ConditionalEvaluation
eval(*this);
1762 ApplyDebugLocation
DL(*this, Cond
);
1763 // Propagate the likelihood attribute like __builtin_expect
1764 // __builtin_expect(X && Y, 1) -> X and Y are likely
1765 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1766 EmitBranchOnBoolExpr(CondBOp
->getLHS(), LHSTrue
, FalseBlock
, RHSCount
,
1767 LH
== Stmt::LH_Unlikely
? Stmt::LH_None
: LH
);
1771 incrementProfileCounter(CondBOp
);
1772 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1774 // Any temporaries created here are conditional.
1776 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1777 FalseBlock
, TrueCount
, LH
);
1783 if (CondBOp
->getOpcode() == BO_LOr
) {
1784 // If we have "0 || X", simplify the code. "1 || X" would have constant
1785 // folded if the case was simple enough.
1786 bool ConstantBool
= false;
1787 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1789 // br(0 || X) -> br(X).
1790 incrementProfileCounter(CondBOp
);
1791 return EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
,
1792 FalseBlock
, TrueCount
, LH
);
1795 // If we have "X || 0", simplify the code to use an uncond branch.
1796 // "X || 1" would have been constant folded to 1.
1797 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1799 // br(X || 0) -> br(X).
1800 return EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LOr
, TrueBlock
,
1801 FalseBlock
, TrueCount
, LH
, CondBOp
);
1804 // Emit the LHS as a conditional. If the LHS conditional is true, we
1805 // want to jump to the TrueBlock.
1806 llvm::BasicBlock
*LHSFalse
= createBasicBlock("lor.lhs.false");
1807 // We have the count for entry to the RHS and for the whole expression
1808 // being true, so we can divy up True count between the short circuit and
1811 getCurrentProfileCount() - getProfileCount(CondBOp
->getRHS());
1812 uint64_t RHSCount
= TrueCount
- LHSCount
;
1814 ConditionalEvaluation
eval(*this);
1816 // Propagate the likelihood attribute like __builtin_expect
1817 // __builtin_expect(X || Y, 1) -> only Y is likely
1818 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1819 ApplyDebugLocation
DL(*this, Cond
);
1820 EmitBranchOnBoolExpr(CondBOp
->getLHS(), TrueBlock
, LHSFalse
, LHSCount
,
1821 LH
== Stmt::LH_Likely
? Stmt::LH_None
: LH
);
1822 EmitBlock(LHSFalse
);
1825 incrementProfileCounter(CondBOp
);
1826 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1828 // Any temporaries created here are conditional.
1830 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
, FalseBlock
,
1839 if (const UnaryOperator
*CondUOp
= dyn_cast
<UnaryOperator
>(Cond
)) {
1840 // br(!x, t, f) -> br(x, f, t)
1841 if (CondUOp
->getOpcode() == UO_LNot
) {
1842 // Negate the count.
1843 uint64_t FalseCount
= getCurrentProfileCount() - TrueCount
;
1844 // The values of the enum are chosen to make this negation possible.
1845 LH
= static_cast<Stmt::Likelihood
>(-LH
);
1846 // Negate the condition and swap the destination blocks.
1847 return EmitBranchOnBoolExpr(CondUOp
->getSubExpr(), FalseBlock
, TrueBlock
,
1852 if (const ConditionalOperator
*CondOp
= dyn_cast
<ConditionalOperator
>(Cond
)) {
1853 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1854 llvm::BasicBlock
*LHSBlock
= createBasicBlock("cond.true");
1855 llvm::BasicBlock
*RHSBlock
= createBasicBlock("cond.false");
1857 // The ConditionalOperator itself has no likelihood information for its
1858 // true and false branches. This matches the behavior of __builtin_expect.
1859 ConditionalEvaluation
cond(*this);
1860 EmitBranchOnBoolExpr(CondOp
->getCond(), LHSBlock
, RHSBlock
,
1861 getProfileCount(CondOp
), Stmt::LH_None
);
1863 // When computing PGO branch weights, we only know the overall count for
1864 // the true block. This code is essentially doing tail duplication of the
1865 // naive code-gen, introducing new edges for which counts are not
1866 // available. Divide the counts proportionally between the LHS and RHS of
1867 // the conditional operator.
1868 uint64_t LHSScaledTrueCount
= 0;
1871 getProfileCount(CondOp
) / (double)getCurrentProfileCount();
1872 LHSScaledTrueCount
= TrueCount
* LHSRatio
;
1876 EmitBlock(LHSBlock
);
1877 incrementProfileCounter(CondOp
);
1879 ApplyDebugLocation
DL(*this, Cond
);
1880 EmitBranchOnBoolExpr(CondOp
->getLHS(), TrueBlock
, FalseBlock
,
1881 LHSScaledTrueCount
, LH
);
1886 EmitBlock(RHSBlock
);
1887 EmitBranchOnBoolExpr(CondOp
->getRHS(), TrueBlock
, FalseBlock
,
1888 TrueCount
- LHSScaledTrueCount
, LH
);
1894 if (const CXXThrowExpr
*Throw
= dyn_cast
<CXXThrowExpr
>(Cond
)) {
1895 // Conditional operator handling can give us a throw expression as a
1896 // condition for a case like:
1897 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1899 // br(c, throw x, br(y, t, f))
1900 EmitCXXThrowExpr(Throw
, /*KeepInsertionPoint*/false);
1904 // Emit the code with the fully general case.
1907 ApplyDebugLocation
DL(*this, Cond
);
1908 CondV
= EvaluateExprAsBool(Cond
);
1911 llvm::MDNode
*Weights
= nullptr;
1912 llvm::MDNode
*Unpredictable
= nullptr;
1914 // If the branch has a condition wrapped by __builtin_unpredictable,
1915 // create metadata that specifies that the branch is unpredictable.
1916 // Don't bother if not optimizing because that metadata would not be used.
1917 auto *Call
= dyn_cast
<CallExpr
>(Cond
->IgnoreImpCasts());
1918 if (Call
&& CGM
.getCodeGenOpts().OptimizationLevel
!= 0) {
1919 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(Call
->getCalleeDecl());
1920 if (FD
&& FD
->getBuiltinID() == Builtin::BI__builtin_unpredictable
) {
1921 llvm::MDBuilder
MDHelper(getLLVMContext());
1922 Unpredictable
= MDHelper
.createUnpredictable();
1926 // If there is a Likelihood knowledge for the cond, lower it.
1927 // Note that if not optimizing this won't emit anything.
1928 llvm::Value
*NewCondV
= emitCondLikelihoodViaExpectIntrinsic(CondV
, LH
);
1929 if (CondV
!= NewCondV
)
1932 // Otherwise, lower profile counts. Note that we do this even at -O0.
1933 uint64_t CurrentCount
= std::max(getCurrentProfileCount(), TrueCount
);
1934 Weights
= createProfileWeights(TrueCount
, CurrentCount
- TrueCount
);
1937 Builder
.CreateCondBr(CondV
, TrueBlock
, FalseBlock
, Weights
, Unpredictable
);
1940 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1941 /// specified stmt yet.
1942 void CodeGenFunction::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1943 CGM
.ErrorUnsupported(S
, Type
);
1946 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1947 /// variable-length array whose elements have a non-zero bit-pattern.
1949 /// \param baseType the inner-most element type of the array
1950 /// \param src - a char* pointing to the bit-pattern for a single
1951 /// base element of the array
1952 /// \param sizeInChars - the total size of the VLA, in chars
1953 static void emitNonZeroVLAInit(CodeGenFunction
&CGF
, QualType baseType
,
1954 Address dest
, Address src
,
1955 llvm::Value
*sizeInChars
) {
1956 CGBuilderTy
&Builder
= CGF
.Builder
;
1958 CharUnits baseSize
= CGF
.getContext().getTypeSizeInChars(baseType
);
1959 llvm::Value
*baseSizeInChars
1960 = llvm::ConstantInt::get(CGF
.IntPtrTy
, baseSize
.getQuantity());
1962 Address begin
= dest
.withElementType(CGF
.Int8Ty
);
1963 llvm::Value
*end
= Builder
.CreateInBoundsGEP(
1964 begin
.getElementType(), begin
.getPointer(), sizeInChars
, "vla.end");
1966 llvm::BasicBlock
*originBB
= CGF
.Builder
.GetInsertBlock();
1967 llvm::BasicBlock
*loopBB
= CGF
.createBasicBlock("vla-init.loop");
1968 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("vla-init.cont");
1970 // Make a loop over the VLA. C99 guarantees that the VLA element
1971 // count must be nonzero.
1972 CGF
.EmitBlock(loopBB
);
1974 llvm::PHINode
*cur
= Builder
.CreatePHI(begin
.getType(), 2, "vla.cur");
1975 cur
->addIncoming(begin
.getPointer(), originBB
);
1977 CharUnits curAlign
=
1978 dest
.getAlignment().alignmentOfArrayElement(baseSize
);
1980 // memcpy the individual element bit-pattern.
1981 Builder
.CreateMemCpy(Address(cur
, CGF
.Int8Ty
, curAlign
), src
, baseSizeInChars
,
1982 /*volatile*/ false);
1984 // Go to the next element.
1986 Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, cur
, baseSizeInChars
, "vla.next");
1988 // Leave if that's the end of the VLA.
1989 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, end
, "vla-init.isdone");
1990 Builder
.CreateCondBr(done
, contBB
, loopBB
);
1991 cur
->addIncoming(next
, loopBB
);
1993 CGF
.EmitBlock(contBB
);
1997 CodeGenFunction::EmitNullInitialization(Address DestPtr
, QualType Ty
) {
1998 // Ignore empty classes in C++.
1999 if (getLangOpts().CPlusPlus
) {
2000 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
2001 if (cast
<CXXRecordDecl
>(RT
->getDecl())->isEmpty())
2006 if (DestPtr
.getElementType() != Int8Ty
)
2007 DestPtr
= DestPtr
.withElementType(Int8Ty
);
2009 // Get size and alignment info for this aggregate.
2010 CharUnits size
= getContext().getTypeSizeInChars(Ty
);
2012 llvm::Value
*SizeVal
;
2013 const VariableArrayType
*vla
;
2015 // Don't bother emitting a zero-byte memset.
2016 if (size
.isZero()) {
2017 // But note that getTypeInfo returns 0 for a VLA.
2018 if (const VariableArrayType
*vlaType
=
2019 dyn_cast_or_null
<VariableArrayType
>(
2020 getContext().getAsArrayType(Ty
))) {
2021 auto VlaSize
= getVLASize(vlaType
);
2022 SizeVal
= VlaSize
.NumElts
;
2023 CharUnits eltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
2024 if (!eltSize
.isOne())
2025 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(eltSize
));
2031 SizeVal
= CGM
.getSize(size
);
2035 // If the type contains a pointer to data member we can't memset it to zero.
2036 // Instead, create a null constant and copy it to the destination.
2037 // TODO: there are other patterns besides zero that we can usefully memset,
2038 // like -1, which happens to be the pattern used by member-pointers.
2039 if (!CGM
.getTypes().isZeroInitializable(Ty
)) {
2040 // For a VLA, emit a single element, then splat that over the VLA.
2041 if (vla
) Ty
= getContext().getBaseElementType(vla
);
2043 llvm::Constant
*NullConstant
= CGM
.EmitNullConstant(Ty
);
2045 llvm::GlobalVariable
*NullVariable
=
2046 new llvm::GlobalVariable(CGM
.getModule(), NullConstant
->getType(),
2047 /*isConstant=*/true,
2048 llvm::GlobalVariable::PrivateLinkage
,
2049 NullConstant
, Twine());
2050 CharUnits NullAlign
= DestPtr
.getAlignment();
2051 NullVariable
->setAlignment(NullAlign
.getAsAlign());
2052 Address
SrcPtr(NullVariable
, Builder
.getInt8Ty(), NullAlign
);
2054 if (vla
) return emitNonZeroVLAInit(*this, Ty
, DestPtr
, SrcPtr
, SizeVal
);
2056 // Get and call the appropriate llvm.memcpy overload.
2057 Builder
.CreateMemCpy(DestPtr
, SrcPtr
, SizeVal
, false);
2061 // Otherwise, just memset the whole thing to zero. This is legal
2062 // because in LLVM, all default initializers (other than the ones we just
2063 // handled above) are guaranteed to have a bit pattern of all zeros.
2064 Builder
.CreateMemSet(DestPtr
, Builder
.getInt8(0), SizeVal
, false);
2067 llvm::BlockAddress
*CodeGenFunction::GetAddrOfLabel(const LabelDecl
*L
) {
2068 // Make sure that there is a block for the indirect goto.
2069 if (!IndirectBranch
)
2070 GetIndirectGotoBlock();
2072 llvm::BasicBlock
*BB
= getJumpDestForLabel(L
).getBlock();
2074 // Make sure the indirect branch includes all of the address-taken blocks.
2075 IndirectBranch
->addDestination(BB
);
2076 return llvm::BlockAddress::get(CurFn
, BB
);
2079 llvm::BasicBlock
*CodeGenFunction::GetIndirectGotoBlock() {
2080 // If we already made the indirect branch for indirect goto, return its block.
2081 if (IndirectBranch
) return IndirectBranch
->getParent();
2083 CGBuilderTy
TmpBuilder(*this, createBasicBlock("indirectgoto"));
2085 // Create the PHI node that indirect gotos will add entries to.
2086 llvm::Value
*DestVal
= TmpBuilder
.CreatePHI(Int8PtrTy
, 0,
2087 "indirect.goto.dest");
2089 // Create the indirect branch instruction.
2090 IndirectBranch
= TmpBuilder
.CreateIndirectBr(DestVal
);
2091 return IndirectBranch
->getParent();
2094 /// Computes the length of an array in elements, as well as the base
2095 /// element type and a properly-typed first element pointer.
2096 llvm::Value
*CodeGenFunction::emitArrayLength(const ArrayType
*origArrayType
,
2099 const ArrayType
*arrayType
= origArrayType
;
2101 // If it's a VLA, we have to load the stored size. Note that
2102 // this is the size of the VLA in bytes, not its size in elements.
2103 llvm::Value
*numVLAElements
= nullptr;
2104 if (isa
<VariableArrayType
>(arrayType
)) {
2105 numVLAElements
= getVLASize(cast
<VariableArrayType
>(arrayType
)).NumElts
;
2107 // Walk into all VLAs. This doesn't require changes to addr,
2108 // which has type T* where T is the first non-VLA element type.
2110 QualType elementType
= arrayType
->getElementType();
2111 arrayType
= getContext().getAsArrayType(elementType
);
2113 // If we only have VLA components, 'addr' requires no adjustment.
2115 baseType
= elementType
;
2116 return numVLAElements
;
2118 } while (isa
<VariableArrayType
>(arrayType
));
2120 // We get out here only if we find a constant array type
2124 // We have some number of constant-length arrays, so addr should
2125 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2126 // down to the first element of addr.
2127 SmallVector
<llvm::Value
*, 8> gepIndices
;
2129 // GEP down to the array type.
2130 llvm::ConstantInt
*zero
= Builder
.getInt32(0);
2131 gepIndices
.push_back(zero
);
2133 uint64_t countFromCLAs
= 1;
2136 llvm::ArrayType
*llvmArrayType
=
2137 dyn_cast
<llvm::ArrayType
>(addr
.getElementType());
2138 while (llvmArrayType
) {
2139 assert(isa
<ConstantArrayType
>(arrayType
));
2140 assert(cast
<ConstantArrayType
>(arrayType
)->getSize().getZExtValue()
2141 == llvmArrayType
->getNumElements());
2143 gepIndices
.push_back(zero
);
2144 countFromCLAs
*= llvmArrayType
->getNumElements();
2145 eltType
= arrayType
->getElementType();
2148 dyn_cast
<llvm::ArrayType
>(llvmArrayType
->getElementType());
2149 arrayType
= getContext().getAsArrayType(arrayType
->getElementType());
2150 assert((!llvmArrayType
|| arrayType
) &&
2151 "LLVM and Clang types are out-of-synch");
2155 // From this point onwards, the Clang array type has been emitted
2156 // as some other type (probably a packed struct). Compute the array
2157 // size, and just emit the 'begin' expression as a bitcast.
2160 cast
<ConstantArrayType
>(arrayType
)->getSize().getZExtValue();
2161 eltType
= arrayType
->getElementType();
2162 arrayType
= getContext().getAsArrayType(eltType
);
2165 llvm::Type
*baseType
= ConvertType(eltType
);
2166 addr
= addr
.withElementType(baseType
);
2168 // Create the actual GEP.
2169 addr
= Address(Builder
.CreateInBoundsGEP(
2170 addr
.getElementType(), addr
.getPointer(), gepIndices
, "array.begin"),
2171 ConvertTypeForMem(eltType
),
2172 addr
.getAlignment());
2177 llvm::Value
*numElements
2178 = llvm::ConstantInt::get(SizeTy
, countFromCLAs
);
2180 // If we had any VLA dimensions, factor them in.
2182 numElements
= Builder
.CreateNUWMul(numVLAElements
, numElements
);
2187 CodeGenFunction::VlaSizePair
CodeGenFunction::getVLASize(QualType type
) {
2188 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2189 assert(vla
&& "type was not a variable array type!");
2190 return getVLASize(vla
);
2193 CodeGenFunction::VlaSizePair
2194 CodeGenFunction::getVLASize(const VariableArrayType
*type
) {
2195 // The number of elements so far; always size_t.
2196 llvm::Value
*numElements
= nullptr;
2198 QualType elementType
;
2200 elementType
= type
->getElementType();
2201 llvm::Value
*vlaSize
= VLASizeMap
[type
->getSizeExpr()];
2202 assert(vlaSize
&& "no size for VLA!");
2203 assert(vlaSize
->getType() == SizeTy
);
2206 numElements
= vlaSize
;
2208 // It's undefined behavior if this wraps around, so mark it that way.
2209 // FIXME: Teach -fsanitize=undefined to trap this.
2210 numElements
= Builder
.CreateNUWMul(numElements
, vlaSize
);
2212 } while ((type
= getContext().getAsVariableArrayType(elementType
)));
2214 return { numElements
, elementType
};
2217 CodeGenFunction::VlaSizePair
2218 CodeGenFunction::getVLAElements1D(QualType type
) {
2219 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2220 assert(vla
&& "type was not a variable array type!");
2221 return getVLAElements1D(vla
);
2224 CodeGenFunction::VlaSizePair
2225 CodeGenFunction::getVLAElements1D(const VariableArrayType
*Vla
) {
2226 llvm::Value
*VlaSize
= VLASizeMap
[Vla
->getSizeExpr()];
2227 assert(VlaSize
&& "no size for VLA!");
2228 assert(VlaSize
->getType() == SizeTy
);
2229 return { VlaSize
, Vla
->getElementType() };
2232 void CodeGenFunction::EmitVariablyModifiedType(QualType type
) {
2233 assert(type
->isVariablyModifiedType() &&
2234 "Must pass variably modified type to EmitVLASizes!");
2236 EnsureInsertPoint();
2238 // We're going to walk down into the type and look for VLA
2241 assert(type
->isVariablyModifiedType());
2243 const Type
*ty
= type
.getTypePtr();
2244 switch (ty
->getTypeClass()) {
2246 #define TYPE(Class, Base)
2247 #define ABSTRACT_TYPE(Class, Base)
2248 #define NON_CANONICAL_TYPE(Class, Base)
2249 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2250 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2251 #include "clang/AST/TypeNodes.inc"
2252 llvm_unreachable("unexpected dependent type!");
2254 // These types are never variably-modified.
2258 case Type::ExtVector
:
2259 case Type::ConstantMatrix
:
2263 case Type::TemplateSpecialization
:
2264 case Type::ObjCTypeParam
:
2265 case Type::ObjCObject
:
2266 case Type::ObjCInterface
:
2267 case Type::ObjCObjectPointer
:
2269 llvm_unreachable("type class is never variably-modified!");
2271 case Type::Elaborated
:
2272 type
= cast
<ElaboratedType
>(ty
)->getNamedType();
2275 case Type::Adjusted
:
2276 type
= cast
<AdjustedType
>(ty
)->getAdjustedType();
2280 type
= cast
<DecayedType
>(ty
)->getPointeeType();
2284 type
= cast
<PointerType
>(ty
)->getPointeeType();
2287 case Type::BlockPointer
:
2288 type
= cast
<BlockPointerType
>(ty
)->getPointeeType();
2291 case Type::LValueReference
:
2292 case Type::RValueReference
:
2293 type
= cast
<ReferenceType
>(ty
)->getPointeeType();
2296 case Type::MemberPointer
:
2297 type
= cast
<MemberPointerType
>(ty
)->getPointeeType();
2300 case Type::ConstantArray
:
2301 case Type::IncompleteArray
:
2302 // Losing element qualification here is fine.
2303 type
= cast
<ArrayType
>(ty
)->getElementType();
2306 case Type::VariableArray
: {
2307 // Losing element qualification here is fine.
2308 const VariableArrayType
*vat
= cast
<VariableArrayType
>(ty
);
2310 // Unknown size indication requires no size computation.
2311 // Otherwise, evaluate and record it.
2312 if (const Expr
*sizeExpr
= vat
->getSizeExpr()) {
2313 // It's possible that we might have emitted this already,
2314 // e.g. with a typedef and a pointer to it.
2315 llvm::Value
*&entry
= VLASizeMap
[sizeExpr
];
2317 llvm::Value
*size
= EmitScalarExpr(sizeExpr
);
2320 // If the size is an expression that is not an integer constant
2321 // expression [...] each time it is evaluated it shall have a value
2322 // greater than zero.
2323 if (SanOpts
.has(SanitizerKind::VLABound
)) {
2324 SanitizerScope
SanScope(this);
2325 llvm::Value
*Zero
= llvm::Constant::getNullValue(size
->getType());
2326 clang::QualType SEType
= sizeExpr
->getType();
2327 llvm::Value
*CheckCondition
=
2328 SEType
->isSignedIntegerType()
2329 ? Builder
.CreateICmpSGT(size
, Zero
)
2330 : Builder
.CreateICmpUGT(size
, Zero
);
2331 llvm::Constant
*StaticArgs
[] = {
2332 EmitCheckSourceLocation(sizeExpr
->getBeginLoc()),
2333 EmitCheckTypeDescriptor(SEType
)};
2334 EmitCheck(std::make_pair(CheckCondition
, SanitizerKind::VLABound
),
2335 SanitizerHandler::VLABoundNotPositive
, StaticArgs
, size
);
2338 // Always zexting here would be wrong if it weren't
2339 // undefined behavior to have a negative bound.
2340 // FIXME: What about when size's type is larger than size_t?
2341 entry
= Builder
.CreateIntCast(size
, SizeTy
, /*signed*/ false);
2344 type
= vat
->getElementType();
2348 case Type::FunctionProto
:
2349 case Type::FunctionNoProto
:
2350 type
= cast
<FunctionType
>(ty
)->getReturnType();
2355 case Type::UnaryTransform
:
2356 case Type::Attributed
:
2357 case Type::BTFTagAttributed
:
2358 case Type::SubstTemplateTypeParm
:
2359 case Type::MacroQualified
:
2360 // Keep walking after single level desugaring.
2361 type
= type
.getSingleStepDesugaredType(getContext());
2365 case Type::Decltype
:
2367 case Type::DeducedTemplateSpecialization
:
2368 // Stop walking: nothing to do.
2371 case Type::TypeOfExpr
:
2372 // Stop walking: emit typeof expression.
2373 EmitIgnoredExpr(cast
<TypeOfExprType
>(ty
)->getUnderlyingExpr());
2377 type
= cast
<AtomicType
>(ty
)->getValueType();
2381 type
= cast
<PipeType
>(ty
)->getElementType();
2384 } while (type
->isVariablyModifiedType());
2387 Address
CodeGenFunction::EmitVAListRef(const Expr
* E
) {
2388 if (getContext().getBuiltinVaListType()->isArrayType())
2389 return EmitPointerWithAlignment(E
);
2390 return EmitLValue(E
).getAddress(*this);
2393 Address
CodeGenFunction::EmitMSVAListRef(const Expr
*E
) {
2394 return EmitLValue(E
).getAddress(*this);
2397 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr
*E
,
2398 const APValue
&Init
) {
2399 assert(Init
.hasValue() && "Invalid DeclRefExpr initializer!");
2400 if (CGDebugInfo
*Dbg
= getDebugInfo())
2401 if (CGM
.getCodeGenOpts().hasReducedDebugInfo())
2402 Dbg
->EmitGlobalVariable(E
->getDecl(), Init
);
2405 CodeGenFunction::PeepholeProtection
2406 CodeGenFunction::protectFromPeepholes(RValue rvalue
) {
2407 // At the moment, the only aggressive peephole we do in IR gen
2408 // is trunc(zext) folding, but if we add more, we can easily
2409 // extend this protection.
2411 if (!rvalue
.isScalar()) return PeepholeProtection();
2412 llvm::Value
*value
= rvalue
.getScalarVal();
2413 if (!isa
<llvm::ZExtInst
>(value
)) return PeepholeProtection();
2415 // Just make an extra bitcast.
2416 assert(HaveInsertPoint());
2417 llvm::Instruction
*inst
= new llvm::BitCastInst(value
, value
->getType(), "",
2418 Builder
.GetInsertBlock());
2420 PeepholeProtection protection
;
2421 protection
.Inst
= inst
;
2425 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection
) {
2426 if (!protection
.Inst
) return;
2428 // In theory, we could try to duplicate the peepholes now, but whatever.
2429 protection
.Inst
->eraseFromParent();
2432 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2433 QualType Ty
, SourceLocation Loc
,
2434 SourceLocation AssumptionLoc
,
2435 llvm::Value
*Alignment
,
2436 llvm::Value
*OffsetValue
) {
2437 if (Alignment
->getType() != IntPtrTy
)
2439 Builder
.CreateIntCast(Alignment
, IntPtrTy
, false, "casted.align");
2440 if (OffsetValue
&& OffsetValue
->getType() != IntPtrTy
)
2442 Builder
.CreateIntCast(OffsetValue
, IntPtrTy
, true, "casted.offset");
2443 llvm::Value
*TheCheck
= nullptr;
2444 if (SanOpts
.has(SanitizerKind::Alignment
)) {
2445 llvm::Value
*PtrIntValue
=
2446 Builder
.CreatePtrToInt(PtrValue
, IntPtrTy
, "ptrint");
2449 bool IsOffsetZero
= false;
2450 if (const auto *CI
= dyn_cast
<llvm::ConstantInt
>(OffsetValue
))
2451 IsOffsetZero
= CI
->isZero();
2454 PtrIntValue
= Builder
.CreateSub(PtrIntValue
, OffsetValue
, "offsetptr");
2457 llvm::Value
*Zero
= llvm::ConstantInt::get(IntPtrTy
, 0);
2459 Builder
.CreateSub(Alignment
, llvm::ConstantInt::get(IntPtrTy
, 1));
2460 llvm::Value
*MaskedPtr
= Builder
.CreateAnd(PtrIntValue
, Mask
, "maskedptr");
2461 TheCheck
= Builder
.CreateICmpEQ(MaskedPtr
, Zero
, "maskcond");
2463 llvm::Instruction
*Assumption
= Builder
.CreateAlignmentAssumption(
2464 CGM
.getDataLayout(), PtrValue
, Alignment
, OffsetValue
);
2466 if (!SanOpts
.has(SanitizerKind::Alignment
))
2468 emitAlignmentAssumptionCheck(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2469 OffsetValue
, TheCheck
, Assumption
);
2472 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2474 SourceLocation AssumptionLoc
,
2475 llvm::Value
*Alignment
,
2476 llvm::Value
*OffsetValue
) {
2477 QualType Ty
= E
->getType();
2478 SourceLocation Loc
= E
->getExprLoc();
2480 emitAlignmentAssumption(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2484 llvm::Value
*CodeGenFunction::EmitAnnotationCall(llvm::Function
*AnnotationFn
,
2485 llvm::Value
*AnnotatedVal
,
2486 StringRef AnnotationStr
,
2487 SourceLocation Location
,
2488 const AnnotateAttr
*Attr
) {
2489 SmallVector
<llvm::Value
*, 5> Args
= {
2491 Builder
.CreateBitCast(CGM
.EmitAnnotationString(AnnotationStr
),
2493 Builder
.CreateBitCast(CGM
.EmitAnnotationUnit(Location
),
2495 CGM
.EmitAnnotationLineNo(Location
),
2498 Args
.push_back(CGM
.EmitAnnotationArgs(Attr
));
2499 return Builder
.CreateCall(AnnotationFn
, Args
);
2502 void CodeGenFunction::EmitVarAnnotations(const VarDecl
*D
, llvm::Value
*V
) {
2503 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2504 // FIXME We create a new bitcast for every annotation because that's what
2505 // llvm-gcc was doing.
2506 unsigned AS
= V
->getType()->getPointerAddressSpace();
2507 llvm::Type
*I8PtrTy
= Builder
.getPtrTy(AS
);
2508 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
2509 EmitAnnotationCall(CGM
.getIntrinsic(llvm::Intrinsic::var_annotation
,
2510 {I8PtrTy
, CGM
.ConstGlobalsPtrTy
}),
2511 Builder
.CreateBitCast(V
, I8PtrTy
, V
->getName()),
2512 I
->getAnnotation(), D
->getLocation(), I
);
2515 Address
CodeGenFunction::EmitFieldAnnotations(const FieldDecl
*D
,
2517 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2518 llvm::Value
*V
= Addr
.getPointer();
2519 llvm::Type
*VTy
= V
->getType();
2520 auto *PTy
= dyn_cast
<llvm::PointerType
>(VTy
);
2521 unsigned AS
= PTy
? PTy
->getAddressSpace() : 0;
2522 llvm::PointerType
*IntrinTy
=
2523 llvm::PointerType::get(CGM
.getLLVMContext(), AS
);
2524 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::ptr_annotation
,
2525 {IntrinTy
, CGM
.ConstGlobalsPtrTy
});
2527 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>()) {
2528 // FIXME Always emit the cast inst so we can differentiate between
2529 // annotation on the first field of a struct and annotation on the struct
2531 if (VTy
!= IntrinTy
)
2532 V
= Builder
.CreateBitCast(V
, IntrinTy
);
2533 V
= EmitAnnotationCall(F
, V
, I
->getAnnotation(), D
->getLocation(), I
);
2534 V
= Builder
.CreateBitCast(V
, VTy
);
2537 return Address(V
, Addr
.getElementType(), Addr
.getAlignment());
2540 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2542 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction
*CGF
)
2544 assert(!CGF
->IsSanitizerScope
);
2545 CGF
->IsSanitizerScope
= true;
2548 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2549 CGF
->IsSanitizerScope
= false;
2552 void CodeGenFunction::InsertHelper(llvm::Instruction
*I
,
2553 const llvm::Twine
&Name
,
2554 llvm::BasicBlock
*BB
,
2555 llvm::BasicBlock::iterator InsertPt
) const {
2556 LoopStack
.InsertHelper(I
);
2557 if (IsSanitizerScope
)
2558 I
->setNoSanitizeMetadata();
2561 void CGBuilderInserter::InsertHelper(
2562 llvm::Instruction
*I
, const llvm::Twine
&Name
, llvm::BasicBlock
*BB
,
2563 llvm::BasicBlock::iterator InsertPt
) const {
2564 llvm::IRBuilderDefaultInserter::InsertHelper(I
, Name
, BB
, InsertPt
);
2566 CGF
->InsertHelper(I
, Name
, BB
, InsertPt
);
2569 // Emits an error if we don't have a valid set of target features for the
2571 void CodeGenFunction::checkTargetFeatures(const CallExpr
*E
,
2572 const FunctionDecl
*TargetDecl
) {
2573 return checkTargetFeatures(E
->getBeginLoc(), TargetDecl
);
2576 // Emits an error if we don't have a valid set of target features for the
2578 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc
,
2579 const FunctionDecl
*TargetDecl
) {
2580 // Early exit if this is an indirect call.
2584 // Get the current enclosing function if it exists. If it doesn't
2585 // we can't check the target features anyhow.
2586 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2590 // Grab the required features for the call. For a builtin this is listed in
2591 // the td file with the default cpu, for an always_inline function this is any
2592 // listed cpu and any listed features.
2593 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2594 std::string MissingFeature
;
2595 llvm::StringMap
<bool> CallerFeatureMap
;
2596 CGM
.getContext().getFunctionFeatureMap(CallerFeatureMap
, FD
);
2597 // When compiling in HipStdPar mode we have to be conservative in rejecting
2598 // target specific features in the FE, and defer the possible error to the
2599 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2600 // referenced by an accelerator executable function, we emit an error.
2601 bool IsHipStdPar
= getLangOpts().HIPStdPar
&& getLangOpts().CUDAIsDevice
;
2603 StringRef
FeatureList(CGM
.getContext().BuiltinInfo
.getRequiredFeatures(BuiltinID
));
2604 if (!Builtin::evaluateRequiredTargetFeatures(
2605 FeatureList
, CallerFeatureMap
) && !IsHipStdPar
) {
2606 CGM
.getDiags().Report(Loc
, diag::err_builtin_needs_feature
)
2607 << TargetDecl
->getDeclName()
2610 } else if (!TargetDecl
->isMultiVersion() &&
2611 TargetDecl
->hasAttr
<TargetAttr
>()) {
2612 // Get the required features for the callee.
2614 const TargetAttr
*TD
= TargetDecl
->getAttr
<TargetAttr
>();
2615 ParsedTargetAttr ParsedAttr
=
2616 CGM
.getContext().filterFunctionTargetAttrs(TD
);
2618 SmallVector
<StringRef
, 1> ReqFeatures
;
2619 llvm::StringMap
<bool> CalleeFeatureMap
;
2620 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2622 for (const auto &F
: ParsedAttr
.Features
) {
2623 if (F
[0] == '+' && CalleeFeatureMap
.lookup(F
.substr(1)))
2624 ReqFeatures
.push_back(StringRef(F
).substr(1));
2627 for (const auto &F
: CalleeFeatureMap
) {
2628 // Only positive features are "required".
2630 ReqFeatures
.push_back(F
.getKey());
2632 if (!llvm::all_of(ReqFeatures
, [&](StringRef Feature
) {
2633 if (!CallerFeatureMap
.lookup(Feature
)) {
2634 MissingFeature
= Feature
.str();
2639 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2640 << FD
->getDeclName() << TargetDecl
->getDeclName() << MissingFeature
;
2641 } else if (!FD
->isMultiVersion() && FD
->hasAttr
<TargetAttr
>()) {
2642 llvm::StringMap
<bool> CalleeFeatureMap
;
2643 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2645 for (const auto &F
: CalleeFeatureMap
) {
2646 if (F
.getValue() && (!CallerFeatureMap
.lookup(F
.getKey()) ||
2647 !CallerFeatureMap
.find(F
.getKey())->getValue()) &&
2649 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2650 << FD
->getDeclName() << TargetDecl
->getDeclName() << F
.getKey();
2655 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK
) {
2656 if (!CGM
.getCodeGenOpts().SanitizeStats
)
2659 llvm::IRBuilder
<> IRB(Builder
.GetInsertBlock(), Builder
.GetInsertPoint());
2660 IRB
.SetCurrentDebugLocation(Builder
.getCurrentDebugLocation());
2661 CGM
.getSanStats().create(IRB
, SSK
);
2664 void CodeGenFunction::EmitKCFIOperandBundle(
2665 const CGCallee
&Callee
, SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
2666 const FunctionProtoType
*FP
=
2667 Callee
.getAbstractInfo().getCalleeFunctionProtoType();
2669 Bundles
.emplace_back("kcfi", CGM
.CreateKCFITypeId(FP
->desugar()));
2672 llvm::Value
*CodeGenFunction::FormAArch64ResolverCondition(
2673 const MultiVersionResolverOption
&RO
) {
2674 llvm::SmallVector
<StringRef
, 8> CondFeatures
;
2675 for (const StringRef
&Feature
: RO
.Conditions
.Features
) {
2676 // Form condition for features which are not yet enabled in target
2677 if (!getContext().getTargetInfo().hasFeature(Feature
))
2678 CondFeatures
.push_back(Feature
);
2680 if (!CondFeatures
.empty()) {
2681 return EmitAArch64CpuSupports(CondFeatures
);
2686 llvm::Value
*CodeGenFunction::FormX86ResolverCondition(
2687 const MultiVersionResolverOption
&RO
) {
2688 llvm::Value
*Condition
= nullptr;
2690 if (!RO
.Conditions
.Architecture
.empty()) {
2691 StringRef Arch
= RO
.Conditions
.Architecture
;
2692 // If arch= specifies an x86-64 micro-architecture level, test the feature
2693 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2694 if (Arch
.starts_with("x86-64"))
2695 Condition
= EmitX86CpuSupports({Arch
});
2697 Condition
= EmitX86CpuIs(Arch
);
2700 if (!RO
.Conditions
.Features
.empty()) {
2701 llvm::Value
*FeatureCond
= EmitX86CpuSupports(RO
.Conditions
.Features
);
2703 Condition
? Builder
.CreateAnd(Condition
, FeatureCond
) : FeatureCond
;
2708 static void CreateMultiVersionResolverReturn(CodeGenModule
&CGM
,
2709 llvm::Function
*Resolver
,
2710 CGBuilderTy
&Builder
,
2711 llvm::Function
*FuncToReturn
,
2712 bool SupportsIFunc
) {
2713 if (SupportsIFunc
) {
2714 Builder
.CreateRet(FuncToReturn
);
2718 llvm::SmallVector
<llvm::Value
*, 10> Args(
2719 llvm::make_pointer_range(Resolver
->args()));
2721 llvm::CallInst
*Result
= Builder
.CreateCall(FuncToReturn
, Args
);
2722 Result
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
2724 if (Resolver
->getReturnType()->isVoidTy())
2725 Builder
.CreateRetVoid();
2727 Builder
.CreateRet(Result
);
2730 void CodeGenFunction::EmitMultiVersionResolver(
2731 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2733 llvm::Triple::ArchType ArchType
=
2734 getContext().getTargetInfo().getTriple().getArch();
2737 case llvm::Triple::x86
:
2738 case llvm::Triple::x86_64
:
2739 EmitX86MultiVersionResolver(Resolver
, Options
);
2741 case llvm::Triple::aarch64
:
2742 EmitAArch64MultiVersionResolver(Resolver
, Options
);
2746 assert(false && "Only implemented for x86 and AArch64 targets");
2750 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2751 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2752 assert(!Options
.empty() && "No multiversion resolver options found");
2753 assert(Options
.back().Conditions
.Features
.size() == 0 &&
2754 "Default case must be last");
2755 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2756 assert(SupportsIFunc
&&
2757 "Multiversion resolver requires target IFUNC support");
2758 bool AArch64CpuInitialized
= false;
2759 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2761 for (const MultiVersionResolverOption
&RO
: Options
) {
2762 Builder
.SetInsertPoint(CurBlock
);
2763 llvm::Value
*Condition
= FormAArch64ResolverCondition(RO
);
2765 // The 'default' or 'all features enabled' case.
2767 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2772 if (!AArch64CpuInitialized
) {
2773 Builder
.SetInsertPoint(CurBlock
, CurBlock
->begin());
2774 EmitAArch64CpuInit();
2775 AArch64CpuInitialized
= true;
2776 Builder
.SetInsertPoint(CurBlock
);
2779 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2780 CGBuilderTy
RetBuilder(*this, RetBlock
);
2781 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2783 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2784 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2787 // If no default, emit an unreachable.
2788 Builder
.SetInsertPoint(CurBlock
);
2789 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2790 TrapCall
->setDoesNotReturn();
2791 TrapCall
->setDoesNotThrow();
2792 Builder
.CreateUnreachable();
2793 Builder
.ClearInsertionPoint();
2796 void CodeGenFunction::EmitX86MultiVersionResolver(
2797 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2799 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2801 // Main function's basic block.
2802 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2803 Builder
.SetInsertPoint(CurBlock
);
2806 for (const MultiVersionResolverOption
&RO
: Options
) {
2807 Builder
.SetInsertPoint(CurBlock
);
2808 llvm::Value
*Condition
= FormX86ResolverCondition(RO
);
2810 // The 'default' or 'generic' case.
2812 assert(&RO
== Options
.end() - 1 &&
2813 "Default or Generic case must be last");
2814 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2819 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2820 CGBuilderTy
RetBuilder(*this, RetBlock
);
2821 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2823 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2824 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2827 // If no generic/default, emit an unreachable.
2828 Builder
.SetInsertPoint(CurBlock
);
2829 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2830 TrapCall
->setDoesNotReturn();
2831 TrapCall
->setDoesNotThrow();
2832 Builder
.CreateUnreachable();
2833 Builder
.ClearInsertionPoint();
2836 // Loc - where the diagnostic will point, where in the source code this
2837 // alignment has failed.
2838 // SecondaryLoc - if present (will be present if sufficiently different from
2839 // Loc), the diagnostic will additionally point a "Note:" to this location.
2840 // It should be the location where the __attribute__((assume_aligned))
2842 void CodeGenFunction::emitAlignmentAssumptionCheck(
2843 llvm::Value
*Ptr
, QualType Ty
, SourceLocation Loc
,
2844 SourceLocation SecondaryLoc
, llvm::Value
*Alignment
,
2845 llvm::Value
*OffsetValue
, llvm::Value
*TheCheck
,
2846 llvm::Instruction
*Assumption
) {
2847 assert(Assumption
&& isa
<llvm::CallInst
>(Assumption
) &&
2848 cast
<llvm::CallInst
>(Assumption
)->getCalledOperand() ==
2849 llvm::Intrinsic::getDeclaration(
2850 Builder
.GetInsertBlock()->getParent()->getParent(),
2851 llvm::Intrinsic::assume
) &&
2852 "Assumption should be a call to llvm.assume().");
2853 assert(&(Builder
.GetInsertBlock()->back()) == Assumption
&&
2854 "Assumption should be the last instruction of the basic block, "
2855 "since the basic block is still being generated.");
2857 if (!SanOpts
.has(SanitizerKind::Alignment
))
2860 // Don't check pointers to volatile data. The behavior here is implementation-
2862 if (Ty
->getPointeeType().isVolatileQualified())
2865 // We need to temorairly remove the assumption so we can insert the
2866 // sanitizer check before it, else the check will be dropped by optimizations.
2867 Assumption
->removeFromParent();
2870 SanitizerScope
SanScope(this);
2873 OffsetValue
= Builder
.getInt1(false); // no offset.
2875 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(Loc
),
2876 EmitCheckSourceLocation(SecondaryLoc
),
2877 EmitCheckTypeDescriptor(Ty
)};
2878 llvm::Value
*DynamicData
[] = {EmitCheckValue(Ptr
),
2879 EmitCheckValue(Alignment
),
2880 EmitCheckValue(OffsetValue
)};
2881 EmitCheck({std::make_pair(TheCheck
, SanitizerKind::Alignment
)},
2882 SanitizerHandler::AlignmentAssumption
, StaticData
, DynamicData
);
2885 // We are now in the (new, empty) "cont" basic block.
2886 // Reintroduce the assumption.
2887 Builder
.Insert(Assumption
);
2888 // FIXME: Assumption still has it's original basic block as it's Parent.
2891 llvm::DebugLoc
CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location
) {
2892 if (CGDebugInfo
*DI
= getDebugInfo())
2893 return DI
->SourceLocToDebugLoc(Location
);
2895 return llvm::DebugLoc();
2899 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value
*Cond
,
2900 Stmt::Likelihood LH
) {
2904 case Stmt::LH_Likely
:
2905 case Stmt::LH_Unlikely
:
2906 // Don't generate llvm.expect on -O0 as the backend won't use it for
2908 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
2910 llvm::Type
*CondTy
= Cond
->getType();
2911 assert(CondTy
->isIntegerTy(1) && "expecting condition to be a boolean");
2912 llvm::Function
*FnExpect
=
2913 CGM
.getIntrinsic(llvm::Intrinsic::expect
, CondTy
);
2914 llvm::Value
*ExpectedValueOfCond
=
2915 llvm::ConstantInt::getBool(CondTy
, LH
== Stmt::LH_Likely
);
2916 return Builder
.CreateCall(FnExpect
, {Cond
, ExpectedValueOfCond
},
2917 Cond
->getName() + ".expval");
2919 llvm_unreachable("Unknown Likelihood");
2922 llvm::Value
*CodeGenFunction::emitBoolVecConversion(llvm::Value
*SrcVec
,
2923 unsigned NumElementsDst
,
2924 const llvm::Twine
&Name
) {
2925 auto *SrcTy
= cast
<llvm::FixedVectorType
>(SrcVec
->getType());
2926 unsigned NumElementsSrc
= SrcTy
->getNumElements();
2927 if (NumElementsSrc
== NumElementsDst
)
2930 std::vector
<int> ShuffleMask(NumElementsDst
, -1);
2931 for (unsigned MaskIdx
= 0;
2932 MaskIdx
< std::min
<>(NumElementsDst
, NumElementsSrc
); ++MaskIdx
)
2933 ShuffleMask
[MaskIdx
] = MaskIdx
;
2935 return Builder
.CreateShuffleVector(SrcVec
, ShuffleMask
, Name
);