[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / CodeGen / CodeGenTypes.cpp
blob29f4f51dc08b5ec2cf2f0b0d5117b1e60c5272fb
1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenTypes.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout = false;
37 LongDoubleReferenced = false;
40 CodeGenTypes::~CodeGenTypes() {
41 for (llvm::FoldingSet<CGFunctionInfo>::iterator
42 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
43 delete &*I++;
46 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
47 return CGM.getCodeGenOpts();
50 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
51 llvm::StructType *Ty,
52 StringRef suffix) {
53 SmallString<256> TypeName;
54 llvm::raw_svector_ostream OS(TypeName);
55 OS << RD->getKindName() << '.';
57 // FIXME: We probably want to make more tweaks to the printing policy. For
58 // example, we should probably enable PrintCanonicalTypes and
59 // FullyQualifiedNames.
60 PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
61 Policy.SuppressInlineNamespace = false;
63 // Name the codegen type after the typedef name
64 // if there is no tag type name available
65 if (RD->getIdentifier()) {
66 // FIXME: We should not have to check for a null decl context here.
67 // Right now we do it because the implicit Obj-C decls don't have one.
68 if (RD->getDeclContext())
69 RD->printQualifiedName(OS, Policy);
70 else
71 RD->printName(OS, Policy);
72 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
73 // FIXME: We should not have to check for a null decl context here.
74 // Right now we do it because the implicit Obj-C decls don't have one.
75 if (TDD->getDeclContext())
76 TDD->printQualifiedName(OS, Policy);
77 else
78 TDD->printName(OS);
79 } else
80 OS << "anon";
82 if (!suffix.empty())
83 OS << suffix;
85 Ty->setName(OS.str());
88 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
89 /// ConvertType in that it is used to convert to the memory representation for
90 /// a type. For example, the scalar representation for _Bool is i1, but the
91 /// memory representation is usually i8 or i32, depending on the target.
92 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
93 if (T->isConstantMatrixType()) {
94 const Type *Ty = Context.getCanonicalType(T).getTypePtr();
95 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
96 return llvm::ArrayType::get(ConvertType(MT->getElementType()),
97 MT->getNumRows() * MT->getNumColumns());
100 llvm::Type *R = ConvertType(T);
102 // Check for the boolean vector case.
103 if (T->isExtVectorBoolType()) {
104 auto *FixedVT = cast<llvm::FixedVectorType>(R);
105 // Pad to at least one byte.
106 uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8);
107 return llvm::IntegerType::get(FixedVT->getContext(), BytePadded);
110 // If this is a bool type, or a bit-precise integer type in a bitfield
111 // representation, map this integer to the target-specified size.
112 if ((ForBitField && T->isBitIntType()) ||
113 (!T->isBitIntType() && R->isIntegerTy(1)))
114 return llvm::IntegerType::get(getLLVMContext(),
115 (unsigned)Context.getTypeSize(T));
117 // Else, don't map it.
118 return R;
121 /// isRecordLayoutComplete - Return true if the specified type is already
122 /// completely laid out.
123 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
124 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
125 RecordDeclTypes.find(Ty);
126 return I != RecordDeclTypes.end() && !I->second->isOpaque();
129 /// isFuncParamTypeConvertible - Return true if the specified type in a
130 /// function parameter or result position can be converted to an IR type at this
131 /// point. This boils down to being whether it is complete.
132 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
133 // Some ABIs cannot have their member pointers represented in IR unless
134 // certain circumstances have been reached.
135 if (const auto *MPT = Ty->getAs<MemberPointerType>())
136 return getCXXABI().isMemberPointerConvertible(MPT);
138 // If this isn't a tagged type, we can convert it!
139 const TagType *TT = Ty->getAs<TagType>();
140 if (!TT) return true;
142 // Incomplete types cannot be converted.
143 return !TT->isIncompleteType();
147 /// Code to verify a given function type is complete, i.e. the return type
148 /// and all of the parameter types are complete. Also check to see if we are in
149 /// a RS_StructPointer context, and if so whether any struct types have been
150 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
151 /// that cannot be converted to an IR type.
152 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
153 if (!isFuncParamTypeConvertible(FT->getReturnType()))
154 return false;
156 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
157 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
158 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
159 return false;
161 return true;
164 /// UpdateCompletedType - When we find the full definition for a TagDecl,
165 /// replace the 'opaque' type we previously made for it if applicable.
166 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
167 // If this is an enum being completed, then we flush all non-struct types from
168 // the cache. This allows function types and other things that may be derived
169 // from the enum to be recomputed.
170 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
171 // Only flush the cache if we've actually already converted this type.
172 if (TypeCache.count(ED->getTypeForDecl())) {
173 // Okay, we formed some types based on this. We speculated that the enum
174 // would be lowered to i32, so we only need to flush the cache if this
175 // didn't happen.
176 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
177 TypeCache.clear();
179 // If necessary, provide the full definition of a type only used with a
180 // declaration so far.
181 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
182 DI->completeType(ED);
183 return;
186 // If we completed a RecordDecl that we previously used and converted to an
187 // anonymous type, then go ahead and complete it now.
188 const RecordDecl *RD = cast<RecordDecl>(TD);
189 if (RD->isDependentType()) return;
191 // Only complete it if we converted it already. If we haven't converted it
192 // yet, we'll just do it lazily.
193 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
194 ConvertRecordDeclType(RD);
196 // If necessary, provide the full definition of a type only used with a
197 // declaration so far.
198 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
199 DI->completeType(RD);
202 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
203 QualType T = Context.getRecordType(RD);
204 T = Context.getCanonicalType(T);
206 const Type *Ty = T.getTypePtr();
207 if (RecordsWithOpaqueMemberPointers.count(Ty)) {
208 TypeCache.clear();
209 RecordsWithOpaqueMemberPointers.clear();
213 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
214 const llvm::fltSemantics &format,
215 bool UseNativeHalf = false) {
216 if (&format == &llvm::APFloat::IEEEhalf()) {
217 if (UseNativeHalf)
218 return llvm::Type::getHalfTy(VMContext);
219 else
220 return llvm::Type::getInt16Ty(VMContext);
222 if (&format == &llvm::APFloat::BFloat())
223 return llvm::Type::getBFloatTy(VMContext);
224 if (&format == &llvm::APFloat::IEEEsingle())
225 return llvm::Type::getFloatTy(VMContext);
226 if (&format == &llvm::APFloat::IEEEdouble())
227 return llvm::Type::getDoubleTy(VMContext);
228 if (&format == &llvm::APFloat::IEEEquad())
229 return llvm::Type::getFP128Ty(VMContext);
230 if (&format == &llvm::APFloat::PPCDoubleDouble())
231 return llvm::Type::getPPC_FP128Ty(VMContext);
232 if (&format == &llvm::APFloat::x87DoubleExtended())
233 return llvm::Type::getX86_FP80Ty(VMContext);
234 llvm_unreachable("Unknown float format!");
237 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
238 assert(QFT.isCanonical());
239 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
240 // First, check whether we can build the full function type. If the
241 // function type depends on an incomplete type (e.g. a struct or enum), we
242 // cannot lower the function type.
243 if (!isFuncTypeConvertible(FT)) {
244 // This function's type depends on an incomplete tag type.
246 // Force conversion of all the relevant record types, to make sure
247 // we re-convert the FunctionType when appropriate.
248 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
249 ConvertRecordDeclType(RT->getDecl());
250 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
251 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
252 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
253 ConvertRecordDeclType(RT->getDecl());
255 SkippedLayout = true;
257 // Return a placeholder type.
258 return llvm::StructType::get(getLLVMContext());
261 // The function type can be built; call the appropriate routines to
262 // build it.
263 const CGFunctionInfo *FI;
264 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
265 FI = &arrangeFreeFunctionType(
266 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
267 } else {
268 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
269 FI = &arrangeFreeFunctionType(
270 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
273 llvm::Type *ResultType = nullptr;
274 // If there is something higher level prodding our CGFunctionInfo, then
275 // don't recurse into it again.
276 if (FunctionsBeingProcessed.count(FI)) {
278 ResultType = llvm::StructType::get(getLLVMContext());
279 SkippedLayout = true;
280 } else {
282 // Otherwise, we're good to go, go ahead and convert it.
283 ResultType = GetFunctionType(*FI);
286 return ResultType;
289 /// ConvertType - Convert the specified type to its LLVM form.
290 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
291 T = Context.getCanonicalType(T);
293 const Type *Ty = T.getTypePtr();
295 // For the device-side compilation, CUDA device builtin surface/texture types
296 // may be represented in different types.
297 if (Context.getLangOpts().CUDAIsDevice) {
298 if (T->isCUDADeviceBuiltinSurfaceType()) {
299 if (auto *Ty = CGM.getTargetCodeGenInfo()
300 .getCUDADeviceBuiltinSurfaceDeviceType())
301 return Ty;
302 } else if (T->isCUDADeviceBuiltinTextureType()) {
303 if (auto *Ty = CGM.getTargetCodeGenInfo()
304 .getCUDADeviceBuiltinTextureDeviceType())
305 return Ty;
309 // RecordTypes are cached and processed specially.
310 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
311 return ConvertRecordDeclType(RT->getDecl());
313 llvm::Type *CachedType = nullptr;
314 auto TCI = TypeCache.find(Ty);
315 if (TCI != TypeCache.end())
316 CachedType = TCI->second;
317 // With expensive checks, check that the type we compute matches the
318 // cached type.
319 #ifndef EXPENSIVE_CHECKS
320 if (CachedType)
321 return CachedType;
322 #endif
324 // If we don't have it in the cache, convert it now.
325 llvm::Type *ResultType = nullptr;
326 switch (Ty->getTypeClass()) {
327 case Type::Record: // Handled above.
328 #define TYPE(Class, Base)
329 #define ABSTRACT_TYPE(Class, Base)
330 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
331 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
332 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
333 #include "clang/AST/TypeNodes.inc"
334 llvm_unreachable("Non-canonical or dependent types aren't possible.");
336 case Type::Builtin: {
337 switch (cast<BuiltinType>(Ty)->getKind()) {
338 case BuiltinType::Void:
339 case BuiltinType::ObjCId:
340 case BuiltinType::ObjCClass:
341 case BuiltinType::ObjCSel:
342 // LLVM void type can only be used as the result of a function call. Just
343 // map to the same as char.
344 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
345 break;
347 case BuiltinType::Bool:
348 // Note that we always return bool as i1 for use as a scalar type.
349 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
350 break;
352 case BuiltinType::Char_S:
353 case BuiltinType::Char_U:
354 case BuiltinType::SChar:
355 case BuiltinType::UChar:
356 case BuiltinType::Short:
357 case BuiltinType::UShort:
358 case BuiltinType::Int:
359 case BuiltinType::UInt:
360 case BuiltinType::Long:
361 case BuiltinType::ULong:
362 case BuiltinType::LongLong:
363 case BuiltinType::ULongLong:
364 case BuiltinType::WChar_S:
365 case BuiltinType::WChar_U:
366 case BuiltinType::Char8:
367 case BuiltinType::Char16:
368 case BuiltinType::Char32:
369 case BuiltinType::ShortAccum:
370 case BuiltinType::Accum:
371 case BuiltinType::LongAccum:
372 case BuiltinType::UShortAccum:
373 case BuiltinType::UAccum:
374 case BuiltinType::ULongAccum:
375 case BuiltinType::ShortFract:
376 case BuiltinType::Fract:
377 case BuiltinType::LongFract:
378 case BuiltinType::UShortFract:
379 case BuiltinType::UFract:
380 case BuiltinType::ULongFract:
381 case BuiltinType::SatShortAccum:
382 case BuiltinType::SatAccum:
383 case BuiltinType::SatLongAccum:
384 case BuiltinType::SatUShortAccum:
385 case BuiltinType::SatUAccum:
386 case BuiltinType::SatULongAccum:
387 case BuiltinType::SatShortFract:
388 case BuiltinType::SatFract:
389 case BuiltinType::SatLongFract:
390 case BuiltinType::SatUShortFract:
391 case BuiltinType::SatUFract:
392 case BuiltinType::SatULongFract:
393 ResultType = llvm::IntegerType::get(getLLVMContext(),
394 static_cast<unsigned>(Context.getTypeSize(T)));
395 break;
397 case BuiltinType::Float16:
398 ResultType =
399 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
400 /* UseNativeHalf = */ true);
401 break;
403 case BuiltinType::Half:
404 // Half FP can either be storage-only (lowered to i16) or native.
405 ResultType = getTypeForFormat(
406 getLLVMContext(), Context.getFloatTypeSemantics(T),
407 Context.getLangOpts().NativeHalfType ||
408 !Context.getTargetInfo().useFP16ConversionIntrinsics());
409 break;
410 case BuiltinType::LongDouble:
411 LongDoubleReferenced = true;
412 LLVM_FALLTHROUGH;
413 case BuiltinType::BFloat16:
414 case BuiltinType::Float:
415 case BuiltinType::Double:
416 case BuiltinType::Float128:
417 case BuiltinType::Ibm128:
418 ResultType = getTypeForFormat(getLLVMContext(),
419 Context.getFloatTypeSemantics(T),
420 /* UseNativeHalf = */ false);
421 break;
423 case BuiltinType::NullPtr:
424 // Model std::nullptr_t as i8*
425 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
426 break;
428 case BuiltinType::UInt128:
429 case BuiltinType::Int128:
430 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
431 break;
433 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
434 case BuiltinType::Id:
435 #include "clang/Basic/OpenCLImageTypes.def"
436 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
437 case BuiltinType::Id:
438 #include "clang/Basic/OpenCLExtensionTypes.def"
439 case BuiltinType::OCLSampler:
440 case BuiltinType::OCLEvent:
441 case BuiltinType::OCLClkEvent:
442 case BuiltinType::OCLQueue:
443 case BuiltinType::OCLReserveID:
444 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
445 break;
446 case BuiltinType::SveInt8:
447 case BuiltinType::SveUint8:
448 case BuiltinType::SveInt8x2:
449 case BuiltinType::SveUint8x2:
450 case BuiltinType::SveInt8x3:
451 case BuiltinType::SveUint8x3:
452 case BuiltinType::SveInt8x4:
453 case BuiltinType::SveUint8x4:
454 case BuiltinType::SveInt16:
455 case BuiltinType::SveUint16:
456 case BuiltinType::SveInt16x2:
457 case BuiltinType::SveUint16x2:
458 case BuiltinType::SveInt16x3:
459 case BuiltinType::SveUint16x3:
460 case BuiltinType::SveInt16x4:
461 case BuiltinType::SveUint16x4:
462 case BuiltinType::SveInt32:
463 case BuiltinType::SveUint32:
464 case BuiltinType::SveInt32x2:
465 case BuiltinType::SveUint32x2:
466 case BuiltinType::SveInt32x3:
467 case BuiltinType::SveUint32x3:
468 case BuiltinType::SveInt32x4:
469 case BuiltinType::SveUint32x4:
470 case BuiltinType::SveInt64:
471 case BuiltinType::SveUint64:
472 case BuiltinType::SveInt64x2:
473 case BuiltinType::SveUint64x2:
474 case BuiltinType::SveInt64x3:
475 case BuiltinType::SveUint64x3:
476 case BuiltinType::SveInt64x4:
477 case BuiltinType::SveUint64x4:
478 case BuiltinType::SveBool:
479 case BuiltinType::SveBoolx2:
480 case BuiltinType::SveBoolx4:
481 case BuiltinType::SveFloat16:
482 case BuiltinType::SveFloat16x2:
483 case BuiltinType::SveFloat16x3:
484 case BuiltinType::SveFloat16x4:
485 case BuiltinType::SveFloat32:
486 case BuiltinType::SveFloat32x2:
487 case BuiltinType::SveFloat32x3:
488 case BuiltinType::SveFloat32x4:
489 case BuiltinType::SveFloat64:
490 case BuiltinType::SveFloat64x2:
491 case BuiltinType::SveFloat64x3:
492 case BuiltinType::SveFloat64x4:
493 case BuiltinType::SveBFloat16:
494 case BuiltinType::SveBFloat16x2:
495 case BuiltinType::SveBFloat16x3:
496 case BuiltinType::SveBFloat16x4: {
497 ASTContext::BuiltinVectorTypeInfo Info =
498 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
499 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
500 Info.EC.getKnownMinValue() *
501 Info.NumVectors);
503 case BuiltinType::SveCount:
504 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
505 #define PPC_VECTOR_TYPE(Name, Id, Size) \
506 case BuiltinType::Id: \
507 ResultType = \
508 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
509 break;
510 #include "clang/Basic/PPCTypes.def"
511 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
512 #include "clang/Basic/RISCVVTypes.def"
514 ASTContext::BuiltinVectorTypeInfo Info =
515 Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
516 // Tuple types are expressed as aggregregate types of the same scalable
517 // vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x
518 // 2 x i32>, <vscale x 2 x i32>}).
519 if (Info.NumVectors != 1) {
520 llvm::Type *EltTy = llvm::ScalableVectorType::get(
521 ConvertType(Info.ElementType), Info.EC.getKnownMinValue());
522 llvm::SmallVector<llvm::Type *, 4> EltTys(Info.NumVectors, EltTy);
523 return llvm::StructType::get(getLLVMContext(), EltTys);
525 return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
526 Info.EC.getKnownMinValue() *
527 Info.NumVectors);
529 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
530 case BuiltinType::Id: { \
531 if (BuiltinType::Id == BuiltinType::WasmExternRef) \
532 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
533 else \
534 llvm_unreachable("Unexpected wasm reference builtin type!"); \
535 } break;
536 #include "clang/Basic/WebAssemblyReferenceTypes.def"
537 case BuiltinType::Dependent:
538 #define BUILTIN_TYPE(Id, SingletonId)
539 #define PLACEHOLDER_TYPE(Id, SingletonId) \
540 case BuiltinType::Id:
541 #include "clang/AST/BuiltinTypes.def"
542 llvm_unreachable("Unexpected placeholder builtin type!");
544 break;
546 case Type::Auto:
547 case Type::DeducedTemplateSpecialization:
548 llvm_unreachable("Unexpected undeduced type!");
549 case Type::Complex: {
550 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
551 ResultType = llvm::StructType::get(EltTy, EltTy);
552 break;
554 case Type::LValueReference:
555 case Type::RValueReference: {
556 const ReferenceType *RTy = cast<ReferenceType>(Ty);
557 QualType ETy = RTy->getPointeeType();
558 unsigned AS = getTargetAddressSpace(ETy);
559 ResultType = llvm::PointerType::get(getLLVMContext(), AS);
560 break;
562 case Type::Pointer: {
563 const PointerType *PTy = cast<PointerType>(Ty);
564 QualType ETy = PTy->getPointeeType();
565 unsigned AS = getTargetAddressSpace(ETy);
566 ResultType = llvm::PointerType::get(getLLVMContext(), AS);
567 break;
570 case Type::VariableArray: {
571 const VariableArrayType *A = cast<VariableArrayType>(Ty);
572 assert(A->getIndexTypeCVRQualifiers() == 0 &&
573 "FIXME: We only handle trivial array types so far!");
574 // VLAs resolve to the innermost element type; this matches
575 // the return of alloca, and there isn't any obviously better choice.
576 ResultType = ConvertTypeForMem(A->getElementType());
577 break;
579 case Type::IncompleteArray: {
580 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
581 assert(A->getIndexTypeCVRQualifiers() == 0 &&
582 "FIXME: We only handle trivial array types so far!");
583 // int X[] -> [0 x int], unless the element type is not sized. If it is
584 // unsized (e.g. an incomplete struct) just use [0 x i8].
585 ResultType = ConvertTypeForMem(A->getElementType());
586 if (!ResultType->isSized()) {
587 SkippedLayout = true;
588 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
590 ResultType = llvm::ArrayType::get(ResultType, 0);
591 break;
593 case Type::ConstantArray: {
594 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
595 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
597 // Lower arrays of undefined struct type to arrays of i8 just to have a
598 // concrete type.
599 if (!EltTy->isSized()) {
600 SkippedLayout = true;
601 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
604 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
605 break;
607 case Type::ExtVector:
608 case Type::Vector: {
609 const auto *VT = cast<VectorType>(Ty);
610 // An ext_vector_type of Bool is really a vector of bits.
611 llvm::Type *IRElemTy = VT->isExtVectorBoolType()
612 ? llvm::Type::getInt1Ty(getLLVMContext())
613 : ConvertType(VT->getElementType());
614 ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements());
615 break;
617 case Type::ConstantMatrix: {
618 const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
619 ResultType =
620 llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
621 MT->getNumRows() * MT->getNumColumns());
622 break;
624 case Type::FunctionNoProto:
625 case Type::FunctionProto:
626 ResultType = ConvertFunctionTypeInternal(T);
627 break;
628 case Type::ObjCObject:
629 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
630 break;
632 case Type::ObjCInterface: {
633 // Objective-C interfaces are always opaque (outside of the
634 // runtime, which can do whatever it likes); we never refine
635 // these.
636 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
637 if (!T)
638 T = llvm::StructType::create(getLLVMContext());
639 ResultType = T;
640 break;
643 case Type::ObjCObjectPointer:
644 ResultType = llvm::PointerType::getUnqual(getLLVMContext());
645 break;
647 case Type::Enum: {
648 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
649 if (ED->isCompleteDefinition() || ED->isFixed())
650 return ConvertType(ED->getIntegerType());
651 // Return a placeholder 'i32' type. This can be changed later when the
652 // type is defined (see UpdateCompletedType), but is likely to be the
653 // "right" answer.
654 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
655 break;
658 case Type::BlockPointer: {
659 // Block pointers lower to function type. For function type,
660 // getTargetAddressSpace() returns default address space for
661 // function pointer i.e. program address space. Therefore, for block
662 // pointers, it is important to pass the pointee AST address space when
663 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
664 // address space for data pointers and not function pointers.
665 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
666 unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace());
667 ResultType = llvm::PointerType::get(getLLVMContext(), AS);
668 break;
671 case Type::MemberPointer: {
672 auto *MPTy = cast<MemberPointerType>(Ty);
673 if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
674 auto *C = MPTy->getClass();
675 auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr});
676 if (Insertion.second)
677 Insertion.first->second = llvm::StructType::create(getLLVMContext());
678 ResultType = Insertion.first->second;
679 } else {
680 ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
682 break;
685 case Type::Atomic: {
686 QualType valueType = cast<AtomicType>(Ty)->getValueType();
687 ResultType = ConvertTypeForMem(valueType);
689 // Pad out to the inflated size if necessary.
690 uint64_t valueSize = Context.getTypeSize(valueType);
691 uint64_t atomicSize = Context.getTypeSize(Ty);
692 if (valueSize != atomicSize) {
693 assert(valueSize < atomicSize);
694 llvm::Type *elts[] = {
695 ResultType,
696 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
698 ResultType =
699 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts));
701 break;
703 case Type::Pipe: {
704 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
705 break;
707 case Type::BitInt: {
708 const auto &EIT = cast<BitIntType>(Ty);
709 ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
710 break;
714 assert(ResultType && "Didn't convert a type?");
715 assert((!CachedType || CachedType == ResultType) &&
716 "Cached type doesn't match computed type");
718 TypeCache[Ty] = ResultType;
719 return ResultType;
722 bool CodeGenModule::isPaddedAtomicType(QualType type) {
723 return isPaddedAtomicType(type->castAs<AtomicType>());
726 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
727 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
730 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
731 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
732 // TagDecl's are not necessarily unique, instead use the (clang)
733 // type connected to the decl.
734 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
736 llvm::StructType *&Entry = RecordDeclTypes[Key];
738 // If we don't have a StructType at all yet, create the forward declaration.
739 if (!Entry) {
740 Entry = llvm::StructType::create(getLLVMContext());
741 addRecordTypeName(RD, Entry, "");
743 llvm::StructType *Ty = Entry;
745 // If this is still a forward declaration, or the LLVM type is already
746 // complete, there's nothing more to do.
747 RD = RD->getDefinition();
748 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
749 return Ty;
751 // Force conversion of non-virtual base classes recursively.
752 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
753 for (const auto &I : CRD->bases()) {
754 if (I.isVirtual()) continue;
755 ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
759 // Layout fields.
760 std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
761 CGRecordLayouts[Key] = std::move(Layout);
763 // If this struct blocked a FunctionType conversion, then recompute whatever
764 // was derived from that.
765 // FIXME: This is hugely overconservative.
766 if (SkippedLayout)
767 TypeCache.clear();
769 return Ty;
772 /// getCGRecordLayout - Return record layout info for the given record decl.
773 const CGRecordLayout &
774 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
775 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
777 auto I = CGRecordLayouts.find(Key);
778 if (I != CGRecordLayouts.end())
779 return *I->second;
780 // Compute the type information.
781 ConvertRecordDeclType(RD);
783 // Now try again.
784 I = CGRecordLayouts.find(Key);
786 assert(I != CGRecordLayouts.end() &&
787 "Unable to find record layout information for type");
788 return *I->second;
791 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
792 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
793 return isZeroInitializable(T);
796 bool CodeGenTypes::isZeroInitializable(QualType T) {
797 if (T->getAs<PointerType>())
798 return Context.getTargetNullPointerValue(T) == 0;
800 if (const auto *AT = Context.getAsArrayType(T)) {
801 if (isa<IncompleteArrayType>(AT))
802 return true;
803 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
804 if (Context.getConstantArrayElementCount(CAT) == 0)
805 return true;
806 T = Context.getBaseElementType(T);
809 // Records are non-zero-initializable if they contain any
810 // non-zero-initializable subobjects.
811 if (const RecordType *RT = T->getAs<RecordType>()) {
812 const RecordDecl *RD = RT->getDecl();
813 return isZeroInitializable(RD);
816 // We have to ask the ABI about member pointers.
817 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
818 return getCXXABI().isZeroInitializable(MPT);
820 // Everything else is okay.
821 return true;
824 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
825 return getCGRecordLayout(RD).isZeroInitializable();
828 unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const {
829 // Return the address space for the type. If the type is a
830 // function type without an address space qualifier, the
831 // program address space is used. Otherwise, the target picks
832 // the best address space based on the type information
833 return T->isFunctionType() && !T.hasAddressSpace()
834 ? getDataLayout().getProgramAddressSpace()
835 : getContext().getTargetAddressSpace(T.getAddressSpace());