1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenTypes.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
29 using namespace clang
;
30 using namespace CodeGen
;
32 CodeGenTypes::CodeGenTypes(CodeGenModule
&cgm
)
33 : CGM(cgm
), Context(cgm
.getContext()), TheModule(cgm
.getModule()),
34 Target(cgm
.getTarget()), TheCXXABI(cgm
.getCXXABI()),
35 TheABIInfo(cgm
.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout
= false;
37 LongDoubleReferenced
= false;
40 CodeGenTypes::~CodeGenTypes() {
41 for (llvm::FoldingSet
<CGFunctionInfo
>::iterator
42 I
= FunctionInfos
.begin(), E
= FunctionInfos
.end(); I
!= E
; )
46 const CodeGenOptions
&CodeGenTypes::getCodeGenOpts() const {
47 return CGM
.getCodeGenOpts();
50 void CodeGenTypes::addRecordTypeName(const RecordDecl
*RD
,
53 SmallString
<256> TypeName
;
54 llvm::raw_svector_ostream
OS(TypeName
);
55 OS
<< RD
->getKindName() << '.';
57 // FIXME: We probably want to make more tweaks to the printing policy. For
58 // example, we should probably enable PrintCanonicalTypes and
59 // FullyQualifiedNames.
60 PrintingPolicy Policy
= RD
->getASTContext().getPrintingPolicy();
61 Policy
.SuppressInlineNamespace
= false;
63 // Name the codegen type after the typedef name
64 // if there is no tag type name available
65 if (RD
->getIdentifier()) {
66 // FIXME: We should not have to check for a null decl context here.
67 // Right now we do it because the implicit Obj-C decls don't have one.
68 if (RD
->getDeclContext())
69 RD
->printQualifiedName(OS
, Policy
);
71 RD
->printName(OS
, Policy
);
72 } else if (const TypedefNameDecl
*TDD
= RD
->getTypedefNameForAnonDecl()) {
73 // FIXME: We should not have to check for a null decl context here.
74 // Right now we do it because the implicit Obj-C decls don't have one.
75 if (TDD
->getDeclContext())
76 TDD
->printQualifiedName(OS
, Policy
);
85 Ty
->setName(OS
.str());
88 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
89 /// ConvertType in that it is used to convert to the memory representation for
90 /// a type. For example, the scalar representation for _Bool is i1, but the
91 /// memory representation is usually i8 or i32, depending on the target.
92 llvm::Type
*CodeGenTypes::ConvertTypeForMem(QualType T
, bool ForBitField
) {
93 if (T
->isConstantMatrixType()) {
94 const Type
*Ty
= Context
.getCanonicalType(T
).getTypePtr();
95 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
96 return llvm::ArrayType::get(ConvertType(MT
->getElementType()),
97 MT
->getNumRows() * MT
->getNumColumns());
100 llvm::Type
*R
= ConvertType(T
);
102 // Check for the boolean vector case.
103 if (T
->isExtVectorBoolType()) {
104 auto *FixedVT
= cast
<llvm::FixedVectorType
>(R
);
105 // Pad to at least one byte.
106 uint64_t BytePadded
= std::max
<uint64_t>(FixedVT
->getNumElements(), 8);
107 return llvm::IntegerType::get(FixedVT
->getContext(), BytePadded
);
110 // If this is a bool type, or a bit-precise integer type in a bitfield
111 // representation, map this integer to the target-specified size.
112 if ((ForBitField
&& T
->isBitIntType()) ||
113 (!T
->isBitIntType() && R
->isIntegerTy(1)))
114 return llvm::IntegerType::get(getLLVMContext(),
115 (unsigned)Context
.getTypeSize(T
));
117 // Else, don't map it.
121 /// isRecordLayoutComplete - Return true if the specified type is already
122 /// completely laid out.
123 bool CodeGenTypes::isRecordLayoutComplete(const Type
*Ty
) const {
124 llvm::DenseMap
<const Type
*, llvm::StructType
*>::const_iterator I
=
125 RecordDeclTypes
.find(Ty
);
126 return I
!= RecordDeclTypes
.end() && !I
->second
->isOpaque();
129 /// isFuncParamTypeConvertible - Return true if the specified type in a
130 /// function parameter or result position can be converted to an IR type at this
131 /// point. This boils down to being whether it is complete.
132 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty
) {
133 // Some ABIs cannot have their member pointers represented in IR unless
134 // certain circumstances have been reached.
135 if (const auto *MPT
= Ty
->getAs
<MemberPointerType
>())
136 return getCXXABI().isMemberPointerConvertible(MPT
);
138 // If this isn't a tagged type, we can convert it!
139 const TagType
*TT
= Ty
->getAs
<TagType
>();
140 if (!TT
) return true;
142 // Incomplete types cannot be converted.
143 return !TT
->isIncompleteType();
147 /// Code to verify a given function type is complete, i.e. the return type
148 /// and all of the parameter types are complete. Also check to see if we are in
149 /// a RS_StructPointer context, and if so whether any struct types have been
150 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
151 /// that cannot be converted to an IR type.
152 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType
*FT
) {
153 if (!isFuncParamTypeConvertible(FT
->getReturnType()))
156 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
157 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
158 if (!isFuncParamTypeConvertible(FPT
->getParamType(i
)))
164 /// UpdateCompletedType - When we find the full definition for a TagDecl,
165 /// replace the 'opaque' type we previously made for it if applicable.
166 void CodeGenTypes::UpdateCompletedType(const TagDecl
*TD
) {
167 // If this is an enum being completed, then we flush all non-struct types from
168 // the cache. This allows function types and other things that may be derived
169 // from the enum to be recomputed.
170 if (const EnumDecl
*ED
= dyn_cast
<EnumDecl
>(TD
)) {
171 // Only flush the cache if we've actually already converted this type.
172 if (TypeCache
.count(ED
->getTypeForDecl())) {
173 // Okay, we formed some types based on this. We speculated that the enum
174 // would be lowered to i32, so we only need to flush the cache if this
176 if (!ConvertType(ED
->getIntegerType())->isIntegerTy(32))
179 // If necessary, provide the full definition of a type only used with a
180 // declaration so far.
181 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
182 DI
->completeType(ED
);
186 // If we completed a RecordDecl that we previously used and converted to an
187 // anonymous type, then go ahead and complete it now.
188 const RecordDecl
*RD
= cast
<RecordDecl
>(TD
);
189 if (RD
->isDependentType()) return;
191 // Only complete it if we converted it already. If we haven't converted it
192 // yet, we'll just do it lazily.
193 if (RecordDeclTypes
.count(Context
.getTagDeclType(RD
).getTypePtr()))
194 ConvertRecordDeclType(RD
);
196 // If necessary, provide the full definition of a type only used with a
197 // declaration so far.
198 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
199 DI
->completeType(RD
);
202 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
203 QualType T
= Context
.getRecordType(RD
);
204 T
= Context
.getCanonicalType(T
);
206 const Type
*Ty
= T
.getTypePtr();
207 if (RecordsWithOpaqueMemberPointers
.count(Ty
)) {
209 RecordsWithOpaqueMemberPointers
.clear();
213 static llvm::Type
*getTypeForFormat(llvm::LLVMContext
&VMContext
,
214 const llvm::fltSemantics
&format
,
215 bool UseNativeHalf
= false) {
216 if (&format
== &llvm::APFloat::IEEEhalf()) {
218 return llvm::Type::getHalfTy(VMContext
);
220 return llvm::Type::getInt16Ty(VMContext
);
222 if (&format
== &llvm::APFloat::BFloat())
223 return llvm::Type::getBFloatTy(VMContext
);
224 if (&format
== &llvm::APFloat::IEEEsingle())
225 return llvm::Type::getFloatTy(VMContext
);
226 if (&format
== &llvm::APFloat::IEEEdouble())
227 return llvm::Type::getDoubleTy(VMContext
);
228 if (&format
== &llvm::APFloat::IEEEquad())
229 return llvm::Type::getFP128Ty(VMContext
);
230 if (&format
== &llvm::APFloat::PPCDoubleDouble())
231 return llvm::Type::getPPC_FP128Ty(VMContext
);
232 if (&format
== &llvm::APFloat::x87DoubleExtended())
233 return llvm::Type::getX86_FP80Ty(VMContext
);
234 llvm_unreachable("Unknown float format!");
237 llvm::Type
*CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT
) {
238 assert(QFT
.isCanonical());
239 const FunctionType
*FT
= cast
<FunctionType
>(QFT
.getTypePtr());
240 // First, check whether we can build the full function type. If the
241 // function type depends on an incomplete type (e.g. a struct or enum), we
242 // cannot lower the function type.
243 if (!isFuncTypeConvertible(FT
)) {
244 // This function's type depends on an incomplete tag type.
246 // Force conversion of all the relevant record types, to make sure
247 // we re-convert the FunctionType when appropriate.
248 if (const RecordType
*RT
= FT
->getReturnType()->getAs
<RecordType
>())
249 ConvertRecordDeclType(RT
->getDecl());
250 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
251 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
252 if (const RecordType
*RT
= FPT
->getParamType(i
)->getAs
<RecordType
>())
253 ConvertRecordDeclType(RT
->getDecl());
255 SkippedLayout
= true;
257 // Return a placeholder type.
258 return llvm::StructType::get(getLLVMContext());
261 // The function type can be built; call the appropriate routines to
263 const CGFunctionInfo
*FI
;
264 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
)) {
265 FI
= &arrangeFreeFunctionType(
266 CanQual
<FunctionProtoType
>::CreateUnsafe(QualType(FPT
, 0)));
268 const FunctionNoProtoType
*FNPT
= cast
<FunctionNoProtoType
>(FT
);
269 FI
= &arrangeFreeFunctionType(
270 CanQual
<FunctionNoProtoType
>::CreateUnsafe(QualType(FNPT
, 0)));
273 llvm::Type
*ResultType
= nullptr;
274 // If there is something higher level prodding our CGFunctionInfo, then
275 // don't recurse into it again.
276 if (FunctionsBeingProcessed
.count(FI
)) {
278 ResultType
= llvm::StructType::get(getLLVMContext());
279 SkippedLayout
= true;
282 // Otherwise, we're good to go, go ahead and convert it.
283 ResultType
= GetFunctionType(*FI
);
289 /// ConvertType - Convert the specified type to its LLVM form.
290 llvm::Type
*CodeGenTypes::ConvertType(QualType T
) {
291 T
= Context
.getCanonicalType(T
);
293 const Type
*Ty
= T
.getTypePtr();
295 // For the device-side compilation, CUDA device builtin surface/texture types
296 // may be represented in different types.
297 if (Context
.getLangOpts().CUDAIsDevice
) {
298 if (T
->isCUDADeviceBuiltinSurfaceType()) {
299 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
300 .getCUDADeviceBuiltinSurfaceDeviceType())
302 } else if (T
->isCUDADeviceBuiltinTextureType()) {
303 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
304 .getCUDADeviceBuiltinTextureDeviceType())
309 // RecordTypes are cached and processed specially.
310 if (const RecordType
*RT
= dyn_cast
<RecordType
>(Ty
))
311 return ConvertRecordDeclType(RT
->getDecl());
313 llvm::Type
*CachedType
= nullptr;
314 auto TCI
= TypeCache
.find(Ty
);
315 if (TCI
!= TypeCache
.end())
316 CachedType
= TCI
->second
;
317 // With expensive checks, check that the type we compute matches the
319 #ifndef EXPENSIVE_CHECKS
324 // If we don't have it in the cache, convert it now.
325 llvm::Type
*ResultType
= nullptr;
326 switch (Ty
->getTypeClass()) {
327 case Type::Record
: // Handled above.
328 #define TYPE(Class, Base)
329 #define ABSTRACT_TYPE(Class, Base)
330 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
331 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
332 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
333 #include "clang/AST/TypeNodes.inc"
334 llvm_unreachable("Non-canonical or dependent types aren't possible.");
336 case Type::Builtin
: {
337 switch (cast
<BuiltinType
>(Ty
)->getKind()) {
338 case BuiltinType::Void
:
339 case BuiltinType::ObjCId
:
340 case BuiltinType::ObjCClass
:
341 case BuiltinType::ObjCSel
:
342 // LLVM void type can only be used as the result of a function call. Just
343 // map to the same as char.
344 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
347 case BuiltinType::Bool
:
348 // Note that we always return bool as i1 for use as a scalar type.
349 ResultType
= llvm::Type::getInt1Ty(getLLVMContext());
352 case BuiltinType::Char_S
:
353 case BuiltinType::Char_U
:
354 case BuiltinType::SChar
:
355 case BuiltinType::UChar
:
356 case BuiltinType::Short
:
357 case BuiltinType::UShort
:
358 case BuiltinType::Int
:
359 case BuiltinType::UInt
:
360 case BuiltinType::Long
:
361 case BuiltinType::ULong
:
362 case BuiltinType::LongLong
:
363 case BuiltinType::ULongLong
:
364 case BuiltinType::WChar_S
:
365 case BuiltinType::WChar_U
:
366 case BuiltinType::Char8
:
367 case BuiltinType::Char16
:
368 case BuiltinType::Char32
:
369 case BuiltinType::ShortAccum
:
370 case BuiltinType::Accum
:
371 case BuiltinType::LongAccum
:
372 case BuiltinType::UShortAccum
:
373 case BuiltinType::UAccum
:
374 case BuiltinType::ULongAccum
:
375 case BuiltinType::ShortFract
:
376 case BuiltinType::Fract
:
377 case BuiltinType::LongFract
:
378 case BuiltinType::UShortFract
:
379 case BuiltinType::UFract
:
380 case BuiltinType::ULongFract
:
381 case BuiltinType::SatShortAccum
:
382 case BuiltinType::SatAccum
:
383 case BuiltinType::SatLongAccum
:
384 case BuiltinType::SatUShortAccum
:
385 case BuiltinType::SatUAccum
:
386 case BuiltinType::SatULongAccum
:
387 case BuiltinType::SatShortFract
:
388 case BuiltinType::SatFract
:
389 case BuiltinType::SatLongFract
:
390 case BuiltinType::SatUShortFract
:
391 case BuiltinType::SatUFract
:
392 case BuiltinType::SatULongFract
:
393 ResultType
= llvm::IntegerType::get(getLLVMContext(),
394 static_cast<unsigned>(Context
.getTypeSize(T
)));
397 case BuiltinType::Float16
:
399 getTypeForFormat(getLLVMContext(), Context
.getFloatTypeSemantics(T
),
400 /* UseNativeHalf = */ true);
403 case BuiltinType::Half
:
404 // Half FP can either be storage-only (lowered to i16) or native.
405 ResultType
= getTypeForFormat(
406 getLLVMContext(), Context
.getFloatTypeSemantics(T
),
407 Context
.getLangOpts().NativeHalfType
||
408 !Context
.getTargetInfo().useFP16ConversionIntrinsics());
410 case BuiltinType::LongDouble
:
411 LongDoubleReferenced
= true;
413 case BuiltinType::BFloat16
:
414 case BuiltinType::Float
:
415 case BuiltinType::Double
:
416 case BuiltinType::Float128
:
417 case BuiltinType::Ibm128
:
418 ResultType
= getTypeForFormat(getLLVMContext(),
419 Context
.getFloatTypeSemantics(T
),
420 /* UseNativeHalf = */ false);
423 case BuiltinType::NullPtr
:
424 // Model std::nullptr_t as i8*
425 ResultType
= llvm::Type::getInt8PtrTy(getLLVMContext());
428 case BuiltinType::UInt128
:
429 case BuiltinType::Int128
:
430 ResultType
= llvm::IntegerType::get(getLLVMContext(), 128);
433 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
434 case BuiltinType::Id:
435 #include "clang/Basic/OpenCLImageTypes.def"
436 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
437 case BuiltinType::Id:
438 #include "clang/Basic/OpenCLExtensionTypes.def"
439 case BuiltinType::OCLSampler
:
440 case BuiltinType::OCLEvent
:
441 case BuiltinType::OCLClkEvent
:
442 case BuiltinType::OCLQueue
:
443 case BuiltinType::OCLReserveID
:
444 ResultType
= CGM
.getOpenCLRuntime().convertOpenCLSpecificType(Ty
);
446 case BuiltinType::SveInt8
:
447 case BuiltinType::SveUint8
:
448 case BuiltinType::SveInt8x2
:
449 case BuiltinType::SveUint8x2
:
450 case BuiltinType::SveInt8x3
:
451 case BuiltinType::SveUint8x3
:
452 case BuiltinType::SveInt8x4
:
453 case BuiltinType::SveUint8x4
:
454 case BuiltinType::SveInt16
:
455 case BuiltinType::SveUint16
:
456 case BuiltinType::SveInt16x2
:
457 case BuiltinType::SveUint16x2
:
458 case BuiltinType::SveInt16x3
:
459 case BuiltinType::SveUint16x3
:
460 case BuiltinType::SveInt16x4
:
461 case BuiltinType::SveUint16x4
:
462 case BuiltinType::SveInt32
:
463 case BuiltinType::SveUint32
:
464 case BuiltinType::SveInt32x2
:
465 case BuiltinType::SveUint32x2
:
466 case BuiltinType::SveInt32x3
:
467 case BuiltinType::SveUint32x3
:
468 case BuiltinType::SveInt32x4
:
469 case BuiltinType::SveUint32x4
:
470 case BuiltinType::SveInt64
:
471 case BuiltinType::SveUint64
:
472 case BuiltinType::SveInt64x2
:
473 case BuiltinType::SveUint64x2
:
474 case BuiltinType::SveInt64x3
:
475 case BuiltinType::SveUint64x3
:
476 case BuiltinType::SveInt64x4
:
477 case BuiltinType::SveUint64x4
:
478 case BuiltinType::SveBool
:
479 case BuiltinType::SveBoolx2
:
480 case BuiltinType::SveBoolx4
:
481 case BuiltinType::SveFloat16
:
482 case BuiltinType::SveFloat16x2
:
483 case BuiltinType::SveFloat16x3
:
484 case BuiltinType::SveFloat16x4
:
485 case BuiltinType::SveFloat32
:
486 case BuiltinType::SveFloat32x2
:
487 case BuiltinType::SveFloat32x3
:
488 case BuiltinType::SveFloat32x4
:
489 case BuiltinType::SveFloat64
:
490 case BuiltinType::SveFloat64x2
:
491 case BuiltinType::SveFloat64x3
:
492 case BuiltinType::SveFloat64x4
:
493 case BuiltinType::SveBFloat16
:
494 case BuiltinType::SveBFloat16x2
:
495 case BuiltinType::SveBFloat16x3
:
496 case BuiltinType::SveBFloat16x4
: {
497 ASTContext::BuiltinVectorTypeInfo Info
=
498 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
499 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
500 Info
.EC
.getKnownMinValue() *
503 case BuiltinType::SveCount
:
504 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
505 #define PPC_VECTOR_TYPE(Name, Id, Size) \
506 case BuiltinType::Id: \
508 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
510 #include "clang/Basic/PPCTypes.def"
511 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
512 #include "clang/Basic/RISCVVTypes.def"
514 ASTContext::BuiltinVectorTypeInfo Info
=
515 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
516 // Tuple types are expressed as aggregregate types of the same scalable
517 // vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x
518 // 2 x i32>, <vscale x 2 x i32>}).
519 if (Info
.NumVectors
!= 1) {
520 llvm::Type
*EltTy
= llvm::ScalableVectorType::get(
521 ConvertType(Info
.ElementType
), Info
.EC
.getKnownMinValue());
522 llvm::SmallVector
<llvm::Type
*, 4> EltTys(Info
.NumVectors
, EltTy
);
523 return llvm::StructType::get(getLLVMContext(), EltTys
);
525 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
526 Info
.EC
.getKnownMinValue() *
529 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
530 case BuiltinType::Id: { \
531 if (BuiltinType::Id == BuiltinType::WasmExternRef) \
532 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
534 llvm_unreachable("Unexpected wasm reference builtin type!"); \
536 #include "clang/Basic/WebAssemblyReferenceTypes.def"
537 case BuiltinType::Dependent
:
538 #define BUILTIN_TYPE(Id, SingletonId)
539 #define PLACEHOLDER_TYPE(Id, SingletonId) \
540 case BuiltinType::Id:
541 #include "clang/AST/BuiltinTypes.def"
542 llvm_unreachable("Unexpected placeholder builtin type!");
547 case Type::DeducedTemplateSpecialization
:
548 llvm_unreachable("Unexpected undeduced type!");
549 case Type::Complex
: {
550 llvm::Type
*EltTy
= ConvertType(cast
<ComplexType
>(Ty
)->getElementType());
551 ResultType
= llvm::StructType::get(EltTy
, EltTy
);
554 case Type::LValueReference
:
555 case Type::RValueReference
: {
556 const ReferenceType
*RTy
= cast
<ReferenceType
>(Ty
);
557 QualType ETy
= RTy
->getPointeeType();
558 unsigned AS
= getTargetAddressSpace(ETy
);
559 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
562 case Type::Pointer
: {
563 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
564 QualType ETy
= PTy
->getPointeeType();
565 unsigned AS
= getTargetAddressSpace(ETy
);
566 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
570 case Type::VariableArray
: {
571 const VariableArrayType
*A
= cast
<VariableArrayType
>(Ty
);
572 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
573 "FIXME: We only handle trivial array types so far!");
574 // VLAs resolve to the innermost element type; this matches
575 // the return of alloca, and there isn't any obviously better choice.
576 ResultType
= ConvertTypeForMem(A
->getElementType());
579 case Type::IncompleteArray
: {
580 const IncompleteArrayType
*A
= cast
<IncompleteArrayType
>(Ty
);
581 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
582 "FIXME: We only handle trivial array types so far!");
583 // int X[] -> [0 x int], unless the element type is not sized. If it is
584 // unsized (e.g. an incomplete struct) just use [0 x i8].
585 ResultType
= ConvertTypeForMem(A
->getElementType());
586 if (!ResultType
->isSized()) {
587 SkippedLayout
= true;
588 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
590 ResultType
= llvm::ArrayType::get(ResultType
, 0);
593 case Type::ConstantArray
: {
594 const ConstantArrayType
*A
= cast
<ConstantArrayType
>(Ty
);
595 llvm::Type
*EltTy
= ConvertTypeForMem(A
->getElementType());
597 // Lower arrays of undefined struct type to arrays of i8 just to have a
599 if (!EltTy
->isSized()) {
600 SkippedLayout
= true;
601 EltTy
= llvm::Type::getInt8Ty(getLLVMContext());
604 ResultType
= llvm::ArrayType::get(EltTy
, A
->getSize().getZExtValue());
607 case Type::ExtVector
:
609 const auto *VT
= cast
<VectorType
>(Ty
);
610 // An ext_vector_type of Bool is really a vector of bits.
611 llvm::Type
*IRElemTy
= VT
->isExtVectorBoolType()
612 ? llvm::Type::getInt1Ty(getLLVMContext())
613 : ConvertType(VT
->getElementType());
614 ResultType
= llvm::FixedVectorType::get(IRElemTy
, VT
->getNumElements());
617 case Type::ConstantMatrix
: {
618 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
620 llvm::FixedVectorType::get(ConvertType(MT
->getElementType()),
621 MT
->getNumRows() * MT
->getNumColumns());
624 case Type::FunctionNoProto
:
625 case Type::FunctionProto
:
626 ResultType
= ConvertFunctionTypeInternal(T
);
628 case Type::ObjCObject
:
629 ResultType
= ConvertType(cast
<ObjCObjectType
>(Ty
)->getBaseType());
632 case Type::ObjCInterface
: {
633 // Objective-C interfaces are always opaque (outside of the
634 // runtime, which can do whatever it likes); we never refine
636 llvm::Type
*&T
= InterfaceTypes
[cast
<ObjCInterfaceType
>(Ty
)];
638 T
= llvm::StructType::create(getLLVMContext());
643 case Type::ObjCObjectPointer
:
644 ResultType
= llvm::PointerType::getUnqual(getLLVMContext());
648 const EnumDecl
*ED
= cast
<EnumType
>(Ty
)->getDecl();
649 if (ED
->isCompleteDefinition() || ED
->isFixed())
650 return ConvertType(ED
->getIntegerType());
651 // Return a placeholder 'i32' type. This can be changed later when the
652 // type is defined (see UpdateCompletedType), but is likely to be the
654 ResultType
= llvm::Type::getInt32Ty(getLLVMContext());
658 case Type::BlockPointer
: {
659 // Block pointers lower to function type. For function type,
660 // getTargetAddressSpace() returns default address space for
661 // function pointer i.e. program address space. Therefore, for block
662 // pointers, it is important to pass the pointee AST address space when
663 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
664 // address space for data pointers and not function pointers.
665 const QualType FTy
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
666 unsigned AS
= Context
.getTargetAddressSpace(FTy
.getAddressSpace());
667 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
671 case Type::MemberPointer
: {
672 auto *MPTy
= cast
<MemberPointerType
>(Ty
);
673 if (!getCXXABI().isMemberPointerConvertible(MPTy
)) {
674 auto *C
= MPTy
->getClass();
675 auto Insertion
= RecordsWithOpaqueMemberPointers
.insert({C
, nullptr});
676 if (Insertion
.second
)
677 Insertion
.first
->second
= llvm::StructType::create(getLLVMContext());
678 ResultType
= Insertion
.first
->second
;
680 ResultType
= getCXXABI().ConvertMemberPointerType(MPTy
);
686 QualType valueType
= cast
<AtomicType
>(Ty
)->getValueType();
687 ResultType
= ConvertTypeForMem(valueType
);
689 // Pad out to the inflated size if necessary.
690 uint64_t valueSize
= Context
.getTypeSize(valueType
);
691 uint64_t atomicSize
= Context
.getTypeSize(Ty
);
692 if (valueSize
!= atomicSize
) {
693 assert(valueSize
< atomicSize
);
694 llvm::Type
*elts
[] = {
696 llvm::ArrayType::get(CGM
.Int8Ty
, (atomicSize
- valueSize
) / 8)
699 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts
));
704 ResultType
= CGM
.getOpenCLRuntime().getPipeType(cast
<PipeType
>(Ty
));
708 const auto &EIT
= cast
<BitIntType
>(Ty
);
709 ResultType
= llvm::Type::getIntNTy(getLLVMContext(), EIT
->getNumBits());
714 assert(ResultType
&& "Didn't convert a type?");
715 assert((!CachedType
|| CachedType
== ResultType
) &&
716 "Cached type doesn't match computed type");
718 TypeCache
[Ty
] = ResultType
;
722 bool CodeGenModule::isPaddedAtomicType(QualType type
) {
723 return isPaddedAtomicType(type
->castAs
<AtomicType
>());
726 bool CodeGenModule::isPaddedAtomicType(const AtomicType
*type
) {
727 return Context
.getTypeSize(type
) != Context
.getTypeSize(type
->getValueType());
730 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
731 llvm::StructType
*CodeGenTypes::ConvertRecordDeclType(const RecordDecl
*RD
) {
732 // TagDecl's are not necessarily unique, instead use the (clang)
733 // type connected to the decl.
734 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
736 llvm::StructType
*&Entry
= RecordDeclTypes
[Key
];
738 // If we don't have a StructType at all yet, create the forward declaration.
740 Entry
= llvm::StructType::create(getLLVMContext());
741 addRecordTypeName(RD
, Entry
, "");
743 llvm::StructType
*Ty
= Entry
;
745 // If this is still a forward declaration, or the LLVM type is already
746 // complete, there's nothing more to do.
747 RD
= RD
->getDefinition();
748 if (!RD
|| !RD
->isCompleteDefinition() || !Ty
->isOpaque())
751 // Force conversion of non-virtual base classes recursively.
752 if (const CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
753 for (const auto &I
: CRD
->bases()) {
754 if (I
.isVirtual()) continue;
755 ConvertRecordDeclType(I
.getType()->castAs
<RecordType
>()->getDecl());
760 std::unique_ptr
<CGRecordLayout
> Layout
= ComputeRecordLayout(RD
, Ty
);
761 CGRecordLayouts
[Key
] = std::move(Layout
);
763 // If this struct blocked a FunctionType conversion, then recompute whatever
764 // was derived from that.
765 // FIXME: This is hugely overconservative.
772 /// getCGRecordLayout - Return record layout info for the given record decl.
773 const CGRecordLayout
&
774 CodeGenTypes::getCGRecordLayout(const RecordDecl
*RD
) {
775 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
777 auto I
= CGRecordLayouts
.find(Key
);
778 if (I
!= CGRecordLayouts
.end())
780 // Compute the type information.
781 ConvertRecordDeclType(RD
);
784 I
= CGRecordLayouts
.find(Key
);
786 assert(I
!= CGRecordLayouts
.end() &&
787 "Unable to find record layout information for type");
791 bool CodeGenTypes::isPointerZeroInitializable(QualType T
) {
792 assert((T
->isAnyPointerType() || T
->isBlockPointerType()) && "Invalid type");
793 return isZeroInitializable(T
);
796 bool CodeGenTypes::isZeroInitializable(QualType T
) {
797 if (T
->getAs
<PointerType
>())
798 return Context
.getTargetNullPointerValue(T
) == 0;
800 if (const auto *AT
= Context
.getAsArrayType(T
)) {
801 if (isa
<IncompleteArrayType
>(AT
))
803 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
804 if (Context
.getConstantArrayElementCount(CAT
) == 0)
806 T
= Context
.getBaseElementType(T
);
809 // Records are non-zero-initializable if they contain any
810 // non-zero-initializable subobjects.
811 if (const RecordType
*RT
= T
->getAs
<RecordType
>()) {
812 const RecordDecl
*RD
= RT
->getDecl();
813 return isZeroInitializable(RD
);
816 // We have to ask the ABI about member pointers.
817 if (const MemberPointerType
*MPT
= T
->getAs
<MemberPointerType
>())
818 return getCXXABI().isZeroInitializable(MPT
);
820 // Everything else is okay.
824 bool CodeGenTypes::isZeroInitializable(const RecordDecl
*RD
) {
825 return getCGRecordLayout(RD
).isZeroInitializable();
828 unsigned CodeGenTypes::getTargetAddressSpace(QualType T
) const {
829 // Return the address space for the type. If the type is a
830 // function type without an address space qualifier, the
831 // program address space is used. Otherwise, the target picks
832 // the best address space based on the type information
833 return T
->isFunctionType() && !T
.hasAddressSpace()
834 ? getDataLayout().getProgramAddressSpace()
835 : getContext().getTargetAddressSpace(T
.getAddressSpace());