[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / CodeGen / MicrosoftCXXABI.cpp
blob4e55d6be376a517e5cbeef6a5d4b5f26f62d6525
1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
14 //===----------------------------------------------------------------------===//
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGVTables.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenTypes.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/CXXInheritance.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/VTableBuilder.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringSet.h"
32 #include "llvm/IR/Intrinsics.h"
34 using namespace clang;
35 using namespace CodeGen;
37 namespace {
39 /// Holds all the vbtable globals for a given class.
40 struct VBTableGlobals {
41 const VPtrInfoVector *VBTables;
42 SmallVector<llvm::GlobalVariable *, 2> Globals;
45 class MicrosoftCXXABI : public CGCXXABI {
46 public:
47 MicrosoftCXXABI(CodeGenModule &CGM)
48 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
49 ClassHierarchyDescriptorType(nullptr),
50 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
51 ThrowInfoType(nullptr) {
52 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() ||
53 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) &&
54 "visibility export mapping option unimplemented in this ABI");
57 bool HasThisReturn(GlobalDecl GD) const override;
58 bool hasMostDerivedReturn(GlobalDecl GD) const override;
60 bool classifyReturnType(CGFunctionInfo &FI) const override;
62 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
64 bool isSRetParameterAfterThis() const override { return true; }
66 bool isThisCompleteObject(GlobalDecl GD) const override {
67 // The Microsoft ABI doesn't use separate complete-object vs.
68 // base-object variants of constructors, but it does of destructors.
69 if (isa<CXXDestructorDecl>(GD.getDecl())) {
70 switch (GD.getDtorType()) {
71 case Dtor_Complete:
72 case Dtor_Deleting:
73 return true;
75 case Dtor_Base:
76 return false;
78 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
80 llvm_unreachable("bad dtor kind");
83 // No other kinds.
84 return false;
87 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
88 FunctionArgList &Args) const override {
89 assert(Args.size() >= 2 &&
90 "expected the arglist to have at least two args!");
91 // The 'most_derived' parameter goes second if the ctor is variadic and
92 // has v-bases.
93 if (CD->getParent()->getNumVBases() > 0 &&
94 CD->getType()->castAs<FunctionProtoType>()->isVariadic())
95 return 2;
96 return 1;
99 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
100 std::vector<CharUnits> VBPtrOffsets;
101 const ASTContext &Context = getContext();
102 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
104 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
105 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
106 const ASTRecordLayout &SubobjectLayout =
107 Context.getASTRecordLayout(VBT->IntroducingObject);
108 CharUnits Offs = VBT->NonVirtualOffset;
109 Offs += SubobjectLayout.getVBPtrOffset();
110 if (VBT->getVBaseWithVPtr())
111 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
112 VBPtrOffsets.push_back(Offs);
114 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
115 return VBPtrOffsets;
118 StringRef GetPureVirtualCallName() override { return "_purecall"; }
119 StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
121 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
122 Address Ptr, QualType ElementType,
123 const CXXDestructorDecl *Dtor) override;
125 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
126 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
128 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
130 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
131 const VPtrInfo &Info);
133 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
134 CatchTypeInfo
135 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
137 /// MSVC needs an extra flag to indicate a catchall.
138 CatchTypeInfo getCatchAllTypeInfo() override {
139 // For -EHa catch(...) must handle HW exception
140 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions
141 if (getContext().getLangOpts().EHAsynch)
142 return CatchTypeInfo{nullptr, 0};
143 else
144 return CatchTypeInfo{nullptr, 0x40};
147 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
148 void EmitBadTypeidCall(CodeGenFunction &CGF) override;
149 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
150 Address ThisPtr,
151 llvm::Type *StdTypeInfoPtrTy) override;
153 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
154 QualType SrcRecordTy) override;
156 bool shouldEmitExactDynamicCast(QualType DestRecordTy) override {
157 // TODO: Add support for exact dynamic_casts.
158 return false;
160 llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value,
161 QualType SrcRecordTy, QualType DestTy,
162 QualType DestRecordTy,
163 llvm::BasicBlock *CastSuccess,
164 llvm::BasicBlock *CastFail) override {
165 llvm_unreachable("unsupported");
168 llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value,
169 QualType SrcRecordTy, QualType DestTy,
170 QualType DestRecordTy,
171 llvm::BasicBlock *CastEnd) override;
173 llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
174 QualType SrcRecordTy) override;
176 bool EmitBadCastCall(CodeGenFunction &CGF) override;
177 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
178 return false;
181 llvm::Value *
182 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
183 const CXXRecordDecl *ClassDecl,
184 const CXXRecordDecl *BaseClassDecl) override;
186 llvm::BasicBlock *
187 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
188 const CXXRecordDecl *RD) override;
190 llvm::BasicBlock *
191 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
193 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
194 const CXXRecordDecl *RD) override;
196 void EmitCXXConstructors(const CXXConstructorDecl *D) override;
198 // Background on MSVC destructors
199 // ==============================
201 // Both Itanium and MSVC ABIs have destructor variants. The variant names
202 // roughly correspond in the following way:
203 // Itanium Microsoft
204 // Base -> no name, just ~Class
205 // Complete -> vbase destructor
206 // Deleting -> scalar deleting destructor
207 // vector deleting destructor
209 // The base and complete destructors are the same as in Itanium, although the
210 // complete destructor does not accept a VTT parameter when there are virtual
211 // bases. A separate mechanism involving vtordisps is used to ensure that
212 // virtual methods of destroyed subobjects are not called.
214 // The deleting destructors accept an i32 bitfield as a second parameter. Bit
215 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
216 // pointer points to an array. The scalar deleting destructor assumes that
217 // bit 2 is zero, and therefore does not contain a loop.
219 // For virtual destructors, only one entry is reserved in the vftable, and it
220 // always points to the vector deleting destructor. The vector deleting
221 // destructor is the most general, so it can be used to destroy objects in
222 // place, delete single heap objects, or delete arrays.
224 // A TU defining a non-inline destructor is only guaranteed to emit a base
225 // destructor, and all of the other variants are emitted on an as-needed basis
226 // in COMDATs. Because a non-base destructor can be emitted in a TU that
227 // lacks a definition for the destructor, non-base destructors must always
228 // delegate to or alias the base destructor.
230 AddedStructorArgCounts
231 buildStructorSignature(GlobalDecl GD,
232 SmallVectorImpl<CanQualType> &ArgTys) override;
234 /// Non-base dtors should be emitted as delegating thunks in this ABI.
235 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
236 CXXDtorType DT) const override {
237 return DT != Dtor_Base;
240 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
241 const CXXDestructorDecl *Dtor,
242 CXXDtorType DT) const override;
244 llvm::GlobalValue::LinkageTypes
245 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
246 CXXDtorType DT) const override;
248 void EmitCXXDestructors(const CXXDestructorDecl *D) override;
250 const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override {
251 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
253 if (MD->isVirtual()) {
254 GlobalDecl LookupGD = GD;
255 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
256 // Complete dtors take a pointer to the complete object,
257 // thus don't need adjustment.
258 if (GD.getDtorType() == Dtor_Complete)
259 return MD->getParent();
261 // There's only Dtor_Deleting in vftable but it shares the this
262 // adjustment with the base one, so look up the deleting one instead.
263 LookupGD = GlobalDecl(DD, Dtor_Deleting);
265 MethodVFTableLocation ML =
266 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
268 // The vbases might be ordered differently in the final overrider object
269 // and the complete object, so the "this" argument may sometimes point to
270 // memory that has no particular type (e.g. past the complete object).
271 // In this case, we just use a generic pointer type.
272 // FIXME: might want to have a more precise type in the non-virtual
273 // multiple inheritance case.
274 if (ML.VBase || !ML.VFPtrOffset.isZero())
275 return nullptr;
277 return MD->getParent();
280 Address
281 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
282 Address This,
283 bool VirtualCall) override;
285 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
286 FunctionArgList &Params) override;
288 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
290 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF,
291 const CXXConstructorDecl *D,
292 CXXCtorType Type,
293 bool ForVirtualBase,
294 bool Delegating) override;
296 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF,
297 const CXXDestructorDecl *DD,
298 CXXDtorType Type,
299 bool ForVirtualBase,
300 bool Delegating) override;
302 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
303 CXXDtorType Type, bool ForVirtualBase,
304 bool Delegating, Address This,
305 QualType ThisTy) override;
307 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
308 llvm::GlobalVariable *VTable);
310 void emitVTableDefinitions(CodeGenVTables &CGVT,
311 const CXXRecordDecl *RD) override;
313 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
314 CodeGenFunction::VPtr Vptr) override;
316 /// Don't initialize vptrs if dynamic class
317 /// is marked with the 'novtable' attribute.
318 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
319 return !VTableClass->hasAttr<MSNoVTableAttr>();
322 llvm::Constant *
323 getVTableAddressPoint(BaseSubobject Base,
324 const CXXRecordDecl *VTableClass) override;
326 llvm::Value *getVTableAddressPointInStructor(
327 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
328 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
330 llvm::Constant *
331 getVTableAddressPointForConstExpr(BaseSubobject Base,
332 const CXXRecordDecl *VTableClass) override;
334 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
335 CharUnits VPtrOffset) override;
337 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
338 Address This, llvm::Type *Ty,
339 SourceLocation Loc) override;
341 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
342 const CXXDestructorDecl *Dtor,
343 CXXDtorType DtorType, Address This,
344 DeleteOrMemberCallExpr E) override;
346 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
347 CallArgList &CallArgs) override {
348 assert(GD.getDtorType() == Dtor_Deleting &&
349 "Only deleting destructor thunks are available in this ABI");
350 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
351 getContext().IntTy);
354 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
356 llvm::GlobalVariable *
357 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
358 llvm::GlobalVariable::LinkageTypes Linkage);
360 llvm::GlobalVariable *
361 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
362 const CXXRecordDecl *DstRD) {
363 SmallString<256> OutName;
364 llvm::raw_svector_ostream Out(OutName);
365 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
366 StringRef MangledName = OutName.str();
368 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
369 return VDispMap;
371 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
372 unsigned NumEntries = 1 + SrcRD->getNumVBases();
373 SmallVector<llvm::Constant *, 4> Map(NumEntries,
374 llvm::UndefValue::get(CGM.IntTy));
375 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
376 bool AnyDifferent = false;
377 for (const auto &I : SrcRD->vbases()) {
378 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
379 if (!DstRD->isVirtuallyDerivedFrom(VBase))
380 continue;
382 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
383 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
384 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
385 AnyDifferent |= SrcVBIndex != DstVBIndex;
387 // This map would be useless, don't use it.
388 if (!AnyDifferent)
389 return nullptr;
391 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
392 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
393 llvm::GlobalValue::LinkageTypes Linkage =
394 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
395 ? llvm::GlobalValue::LinkOnceODRLinkage
396 : llvm::GlobalValue::InternalLinkage;
397 auto *VDispMap = new llvm::GlobalVariable(
398 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
399 /*Initializer=*/Init, MangledName);
400 return VDispMap;
403 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
404 llvm::GlobalVariable *GV) const;
406 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
407 GlobalDecl GD, bool ReturnAdjustment) override {
408 GVALinkage Linkage =
409 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
411 if (Linkage == GVA_Internal)
412 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
413 else if (ReturnAdjustment)
414 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
415 else
416 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
419 bool exportThunk() override { return false; }
421 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
422 const ThisAdjustment &TA) override;
424 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
425 const ReturnAdjustment &RA) override;
427 void EmitThreadLocalInitFuncs(
428 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
429 ArrayRef<llvm::Function *> CXXThreadLocalInits,
430 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
432 bool usesThreadWrapperFunction(const VarDecl *VD) const override {
433 return getContext().getLangOpts().isCompatibleWithMSVC(
434 LangOptions::MSVC2019_5) &&
435 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD));
437 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
438 QualType LValType) override;
440 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
441 llvm::GlobalVariable *DeclPtr,
442 bool PerformInit) override;
443 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
444 llvm::FunctionCallee Dtor,
445 llvm::Constant *Addr) override;
447 // ==== Notes on array cookies =========
449 // MSVC seems to only use cookies when the class has a destructor; a
450 // two-argument usual array deallocation function isn't sufficient.
452 // For example, this code prints "100" and "1":
453 // struct A {
454 // char x;
455 // void *operator new[](size_t sz) {
456 // printf("%u\n", sz);
457 // return malloc(sz);
458 // }
459 // void operator delete[](void *p, size_t sz) {
460 // printf("%u\n", sz);
461 // free(p);
462 // }
463 // };
464 // int main() {
465 // A *p = new A[100];
466 // delete[] p;
467 // }
468 // Whereas it prints "104" and "104" if you give A a destructor.
470 bool requiresArrayCookie(const CXXDeleteExpr *expr,
471 QualType elementType) override;
472 bool requiresArrayCookie(const CXXNewExpr *expr) override;
473 CharUnits getArrayCookieSizeImpl(QualType type) override;
474 Address InitializeArrayCookie(CodeGenFunction &CGF,
475 Address NewPtr,
476 llvm::Value *NumElements,
477 const CXXNewExpr *expr,
478 QualType ElementType) override;
479 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
480 Address allocPtr,
481 CharUnits cookieSize) override;
483 friend struct MSRTTIBuilder;
485 bool isImageRelative() const {
486 return CGM.getTarget().getPointerWidth(LangAS::Default) == 64;
489 // 5 routines for constructing the llvm types for MS RTTI structs.
490 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
491 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
492 TDTypeName += llvm::utostr(TypeInfoString.size());
493 llvm::StructType *&TypeDescriptorType =
494 TypeDescriptorTypeMap[TypeInfoString.size()];
495 if (TypeDescriptorType)
496 return TypeDescriptorType;
497 llvm::Type *FieldTypes[] = {
498 CGM.Int8PtrPtrTy,
499 CGM.Int8PtrTy,
500 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
501 TypeDescriptorType =
502 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
503 return TypeDescriptorType;
506 llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
507 if (!isImageRelative())
508 return PtrType;
509 return CGM.IntTy;
512 llvm::StructType *getBaseClassDescriptorType() {
513 if (BaseClassDescriptorType)
514 return BaseClassDescriptorType;
515 llvm::Type *FieldTypes[] = {
516 getImageRelativeType(CGM.Int8PtrTy),
517 CGM.IntTy,
518 CGM.IntTy,
519 CGM.IntTy,
520 CGM.IntTy,
521 CGM.IntTy,
522 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
524 BaseClassDescriptorType = llvm::StructType::create(
525 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
526 return BaseClassDescriptorType;
529 llvm::StructType *getClassHierarchyDescriptorType() {
530 if (ClassHierarchyDescriptorType)
531 return ClassHierarchyDescriptorType;
532 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
533 ClassHierarchyDescriptorType = llvm::StructType::create(
534 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
535 llvm::Type *FieldTypes[] = {
536 CGM.IntTy,
537 CGM.IntTy,
538 CGM.IntTy,
539 getImageRelativeType(
540 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
542 ClassHierarchyDescriptorType->setBody(FieldTypes);
543 return ClassHierarchyDescriptorType;
546 llvm::StructType *getCompleteObjectLocatorType() {
547 if (CompleteObjectLocatorType)
548 return CompleteObjectLocatorType;
549 CompleteObjectLocatorType = llvm::StructType::create(
550 CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
551 llvm::Type *FieldTypes[] = {
552 CGM.IntTy,
553 CGM.IntTy,
554 CGM.IntTy,
555 getImageRelativeType(CGM.Int8PtrTy),
556 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
557 getImageRelativeType(CompleteObjectLocatorType),
559 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
560 if (!isImageRelative())
561 FieldTypesRef = FieldTypesRef.drop_back();
562 CompleteObjectLocatorType->setBody(FieldTypesRef);
563 return CompleteObjectLocatorType;
566 llvm::GlobalVariable *getImageBase() {
567 StringRef Name = "__ImageBase";
568 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
569 return GV;
571 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
572 /*isConstant=*/true,
573 llvm::GlobalValue::ExternalLinkage,
574 /*Initializer=*/nullptr, Name);
575 CGM.setDSOLocal(GV);
576 return GV;
579 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
580 if (!isImageRelative())
581 return PtrVal;
583 if (PtrVal->isNullValue())
584 return llvm::Constant::getNullValue(CGM.IntTy);
586 llvm::Constant *ImageBaseAsInt =
587 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
588 llvm::Constant *PtrValAsInt =
589 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
590 llvm::Constant *Diff =
591 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
592 /*HasNUW=*/true, /*HasNSW=*/true);
593 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
596 private:
597 MicrosoftMangleContext &getMangleContext() {
598 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
601 llvm::Constant *getZeroInt() {
602 return llvm::ConstantInt::get(CGM.IntTy, 0);
605 llvm::Constant *getAllOnesInt() {
606 return llvm::Constant::getAllOnesValue(CGM.IntTy);
609 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
611 void
612 GetNullMemberPointerFields(const MemberPointerType *MPT,
613 llvm::SmallVectorImpl<llvm::Constant *> &fields);
615 /// Shared code for virtual base adjustment. Returns the offset from
616 /// the vbptr to the virtual base. Optionally returns the address of the
617 /// vbptr itself.
618 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
619 Address Base,
620 llvm::Value *VBPtrOffset,
621 llvm::Value *VBTableOffset,
622 llvm::Value **VBPtr = nullptr);
624 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
625 Address Base,
626 int32_t VBPtrOffset,
627 int32_t VBTableOffset,
628 llvm::Value **VBPtr = nullptr) {
629 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
630 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
631 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
632 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
635 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
636 performBaseAdjustment(CodeGenFunction &CGF, Address Value,
637 QualType SrcRecordTy);
639 /// Performs a full virtual base adjustment. Used to dereference
640 /// pointers to members of virtual bases.
641 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
642 const CXXRecordDecl *RD, Address Base,
643 llvm::Value *VirtualBaseAdjustmentOffset,
644 llvm::Value *VBPtrOffset /* optional */);
646 /// Emits a full member pointer with the fields common to data and
647 /// function member pointers.
648 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
649 bool IsMemberFunction,
650 const CXXRecordDecl *RD,
651 CharUnits NonVirtualBaseAdjustment,
652 unsigned VBTableIndex);
654 bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
655 llvm::Constant *MP);
657 /// - Initialize all vbptrs of 'this' with RD as the complete type.
658 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
660 /// Caching wrapper around VBTableBuilder::enumerateVBTables().
661 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
663 /// Generate a thunk for calling a virtual member function MD.
664 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
665 const MethodVFTableLocation &ML);
667 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
668 CharUnits offset);
670 public:
671 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
673 bool isZeroInitializable(const MemberPointerType *MPT) override;
675 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
676 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
677 return RD->hasAttr<MSInheritanceAttr>();
680 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
682 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
683 CharUnits offset) override;
684 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
685 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
687 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
688 llvm::Value *L,
689 llvm::Value *R,
690 const MemberPointerType *MPT,
691 bool Inequality) override;
693 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
694 llvm::Value *MemPtr,
695 const MemberPointerType *MPT) override;
697 llvm::Value *
698 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
699 Address Base, llvm::Value *MemPtr,
700 const MemberPointerType *MPT) override;
702 llvm::Value *EmitNonNullMemberPointerConversion(
703 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
704 CastKind CK, CastExpr::path_const_iterator PathBegin,
705 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
706 CGBuilderTy &Builder);
708 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
709 const CastExpr *E,
710 llvm::Value *Src) override;
712 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
713 llvm::Constant *Src) override;
715 llvm::Constant *EmitMemberPointerConversion(
716 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
717 CastKind CK, CastExpr::path_const_iterator PathBegin,
718 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
720 CGCallee
721 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
722 Address This, llvm::Value *&ThisPtrForCall,
723 llvm::Value *MemPtr,
724 const MemberPointerType *MPT) override;
726 void emitCXXStructor(GlobalDecl GD) override;
728 llvm::StructType *getCatchableTypeType() {
729 if (CatchableTypeType)
730 return CatchableTypeType;
731 llvm::Type *FieldTypes[] = {
732 CGM.IntTy, // Flags
733 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
734 CGM.IntTy, // NonVirtualAdjustment
735 CGM.IntTy, // OffsetToVBPtr
736 CGM.IntTy, // VBTableIndex
737 CGM.IntTy, // Size
738 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
740 CatchableTypeType = llvm::StructType::create(
741 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
742 return CatchableTypeType;
745 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
746 llvm::StructType *&CatchableTypeArrayType =
747 CatchableTypeArrayTypeMap[NumEntries];
748 if (CatchableTypeArrayType)
749 return CatchableTypeArrayType;
751 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
752 CTATypeName += llvm::utostr(NumEntries);
753 llvm::Type *CTType =
754 getImageRelativeType(getCatchableTypeType()->getPointerTo());
755 llvm::Type *FieldTypes[] = {
756 CGM.IntTy, // NumEntries
757 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
759 CatchableTypeArrayType =
760 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
761 return CatchableTypeArrayType;
764 llvm::StructType *getThrowInfoType() {
765 if (ThrowInfoType)
766 return ThrowInfoType;
767 llvm::Type *FieldTypes[] = {
768 CGM.IntTy, // Flags
769 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
770 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
771 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
773 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
774 "eh.ThrowInfo");
775 return ThrowInfoType;
778 llvm::FunctionCallee getThrowFn() {
779 // _CxxThrowException is passed an exception object and a ThrowInfo object
780 // which describes the exception.
781 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
782 llvm::FunctionType *FTy =
783 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
784 llvm::FunctionCallee Throw =
785 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
786 // _CxxThrowException is stdcall on 32-bit x86 platforms.
787 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
788 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
789 Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
791 return Throw;
794 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
795 CXXCtorType CT);
797 llvm::Constant *getCatchableType(QualType T,
798 uint32_t NVOffset = 0,
799 int32_t VBPtrOffset = -1,
800 uint32_t VBIndex = 0);
802 llvm::GlobalVariable *getCatchableTypeArray(QualType T);
804 llvm::GlobalVariable *getThrowInfo(QualType T) override;
806 std::pair<llvm::Value *, const CXXRecordDecl *>
807 LoadVTablePtr(CodeGenFunction &CGF, Address This,
808 const CXXRecordDecl *RD) override;
810 bool
811 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override;
813 private:
814 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
815 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
816 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
817 /// All the vftables that have been referenced.
818 VFTablesMapTy VFTablesMap;
819 VTablesMapTy VTablesMap;
821 /// This set holds the record decls we've deferred vtable emission for.
822 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
825 /// All the vbtables which have been referenced.
826 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
828 /// Info on the global variable used to guard initialization of static locals.
829 /// The BitIndex field is only used for externally invisible declarations.
830 struct GuardInfo {
831 GuardInfo() = default;
832 llvm::GlobalVariable *Guard = nullptr;
833 unsigned BitIndex = 0;
836 /// Map from DeclContext to the current guard variable. We assume that the
837 /// AST is visited in source code order.
838 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
839 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
840 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
842 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
843 llvm::StructType *BaseClassDescriptorType;
844 llvm::StructType *ClassHierarchyDescriptorType;
845 llvm::StructType *CompleteObjectLocatorType;
847 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
849 llvm::StructType *CatchableTypeType;
850 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
851 llvm::StructType *ThrowInfoType;
856 CGCXXABI::RecordArgABI
857 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
858 // Use the default C calling convention rules for things that can be passed in
859 // registers, i.e. non-trivially copyable records or records marked with
860 // [[trivial_abi]].
861 if (RD->canPassInRegisters())
862 return RAA_Default;
864 switch (CGM.getTarget().getTriple().getArch()) {
865 default:
866 // FIXME: Implement for other architectures.
867 return RAA_Indirect;
869 case llvm::Triple::thumb:
870 // Pass things indirectly for now because it is simple.
871 // FIXME: This is incompatible with MSVC for arguments with a dtor and no
872 // copy ctor.
873 return RAA_Indirect;
875 case llvm::Triple::x86: {
876 // If the argument has *required* alignment greater than four bytes, pass
877 // it indirectly. Prior to MSVC version 19.14, passing overaligned
878 // arguments was not supported and resulted in a compiler error. In 19.14
879 // and later versions, such arguments are now passed indirectly.
880 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl());
881 if (Info.isAlignRequired() && Info.Align > 4)
882 return RAA_Indirect;
884 // If C++ prohibits us from making a copy, construct the arguments directly
885 // into argument memory.
886 return RAA_DirectInMemory;
889 case llvm::Triple::x86_64:
890 case llvm::Triple::aarch64:
891 return RAA_Indirect;
894 llvm_unreachable("invalid enum");
897 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
898 const CXXDeleteExpr *DE,
899 Address Ptr,
900 QualType ElementType,
901 const CXXDestructorDecl *Dtor) {
902 // FIXME: Provide a source location here even though there's no
903 // CXXMemberCallExpr for dtor call.
904 bool UseGlobalDelete = DE->isGlobalDelete();
905 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
906 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
907 if (UseGlobalDelete)
908 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
911 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
912 llvm::Value *Args[] = {
913 llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
914 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
915 llvm::FunctionCallee Fn = getThrowFn();
916 if (isNoReturn)
917 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
918 else
919 CGF.EmitRuntimeCallOrInvoke(Fn, Args);
922 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
923 const CXXCatchStmt *S) {
924 // In the MS ABI, the runtime handles the copy, and the catch handler is
925 // responsible for destruction.
926 VarDecl *CatchParam = S->getExceptionDecl();
927 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
928 llvm::CatchPadInst *CPI =
929 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
930 CGF.CurrentFuncletPad = CPI;
932 // If this is a catch-all or the catch parameter is unnamed, we don't need to
933 // emit an alloca to the object.
934 if (!CatchParam || !CatchParam->getDeclName()) {
935 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
936 return;
939 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
940 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
941 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
942 CGF.EmitAutoVarCleanups(var);
945 /// We need to perform a generic polymorphic operation (like a typeid
946 /// or a cast), which requires an object with a vfptr. Adjust the
947 /// address to point to an object with a vfptr.
948 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
949 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
950 QualType SrcRecordTy) {
951 Value = Value.withElementType(CGF.Int8Ty);
952 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
953 const ASTContext &Context = getContext();
955 // If the class itself has a vfptr, great. This check implicitly
956 // covers non-virtual base subobjects: a class with its own virtual
957 // functions would be a candidate to be a primary base.
958 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
959 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
960 SrcDecl);
962 // Okay, one of the vbases must have a vfptr, or else this isn't
963 // actually a polymorphic class.
964 const CXXRecordDecl *PolymorphicBase = nullptr;
965 for (auto &Base : SrcDecl->vbases()) {
966 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
967 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
968 PolymorphicBase = BaseDecl;
969 break;
972 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
974 llvm::Value *Offset =
975 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
976 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
977 Value.getElementType(), Value.getPointer(), Offset);
978 CharUnits VBaseAlign =
979 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
980 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset,
981 PolymorphicBase);
984 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
985 QualType SrcRecordTy) {
986 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
987 return IsDeref &&
988 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
991 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
992 llvm::Value *Argument) {
993 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
994 llvm::FunctionType *FTy =
995 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
996 llvm::Value *Args[] = {Argument};
997 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
998 return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
1001 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
1002 llvm::CallBase *Call =
1003 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
1004 Call->setDoesNotReturn();
1005 CGF.Builder.CreateUnreachable();
1008 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
1009 QualType SrcRecordTy,
1010 Address ThisPtr,
1011 llvm::Type *StdTypeInfoPtrTy) {
1012 std::tie(ThisPtr, std::ignore, std::ignore) =
1013 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
1014 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
1015 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
1018 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
1019 QualType SrcRecordTy) {
1020 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1021 return SrcIsPtr &&
1022 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
1025 llvm::Value *MicrosoftCXXABI::emitDynamicCastCall(
1026 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy,
1027 QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
1028 llvm::Value *SrcRTTI =
1029 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1030 llvm::Value *DestRTTI =
1031 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1033 llvm::Value *Offset;
1034 std::tie(This, Offset, std::ignore) =
1035 performBaseAdjustment(CGF, This, SrcRecordTy);
1036 llvm::Value *ThisPtr = This.getPointer();
1037 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1039 // PVOID __RTDynamicCast(
1040 // PVOID inptr,
1041 // LONG VfDelta,
1042 // PVOID SrcType,
1043 // PVOID TargetType,
1044 // BOOL isReference)
1045 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1046 CGF.Int8PtrTy, CGF.Int32Ty};
1047 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1048 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1049 "__RTDynamicCast");
1050 llvm::Value *Args[] = {
1051 ThisPtr, Offset, SrcRTTI, DestRTTI,
1052 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1053 return CGF.EmitRuntimeCallOrInvoke(Function, Args);
1056 llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF,
1057 Address Value,
1058 QualType SrcRecordTy) {
1059 std::tie(Value, std::ignore, std::ignore) =
1060 performBaseAdjustment(CGF, Value, SrcRecordTy);
1062 // PVOID __RTCastToVoid(
1063 // PVOID inptr)
1064 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1065 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1066 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1067 "__RTCastToVoid");
1068 llvm::Value *Args[] = {Value.getPointer()};
1069 return CGF.EmitRuntimeCall(Function, Args);
1072 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1073 return false;
1076 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1077 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1078 const CXXRecordDecl *BaseClassDecl) {
1079 const ASTContext &Context = getContext();
1080 int64_t VBPtrChars =
1081 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1082 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1083 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1084 CharUnits VBTableChars =
1085 IntSize *
1086 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1087 llvm::Value *VBTableOffset =
1088 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1090 llvm::Value *VBPtrToNewBase =
1091 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1092 VBPtrToNewBase =
1093 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1094 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1097 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1098 return isa<CXXConstructorDecl>(GD.getDecl());
1101 static bool isDeletingDtor(GlobalDecl GD) {
1102 return isa<CXXDestructorDecl>(GD.getDecl()) &&
1103 GD.getDtorType() == Dtor_Deleting;
1106 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1107 return isDeletingDtor(GD);
1110 static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty,
1111 CodeGenModule &CGM) {
1112 // On AArch64, HVAs that can be passed in registers can also be returned
1113 // in registers. (Note this is using the MSVC definition of an HVA; see
1114 // isPermittedToBeHomogeneousAggregate().)
1115 const Type *Base = nullptr;
1116 uint64_t NumElts = 0;
1117 if (CGM.getTarget().getTriple().isAArch64() &&
1118 CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) &&
1119 isa<VectorType>(Base)) {
1120 return true;
1123 // We use the C++14 definition of an aggregate, so we also
1124 // check for:
1125 // No private or protected non static data members.
1126 // No base classes
1127 // No virtual functions
1128 // Additionally, we need to ensure that there is a trivial copy assignment
1129 // operator, a trivial destructor and no user-provided constructors.
1130 if (RD->hasProtectedFields() || RD->hasPrivateFields())
1131 return false;
1132 if (RD->getNumBases() > 0)
1133 return false;
1134 if (RD->isPolymorphic())
1135 return false;
1136 if (RD->hasNonTrivialCopyAssignment())
1137 return false;
1138 for (const CXXConstructorDecl *Ctor : RD->ctors())
1139 if (Ctor->isUserProvided())
1140 return false;
1141 if (RD->hasNonTrivialDestructor())
1142 return false;
1143 return true;
1146 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1147 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1148 if (!RD)
1149 return false;
1151 bool isTrivialForABI = RD->canPassInRegisters() &&
1152 isTrivialForMSVC(RD, FI.getReturnType(), CGM);
1154 // MSVC always returns structs indirectly from C++ instance methods.
1155 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod();
1157 if (isIndirectReturn) {
1158 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1159 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1161 // MSVC always passes `this` before the `sret` parameter.
1162 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1164 // On AArch64, use the `inreg` attribute if the object is considered to not
1165 // be trivially copyable, or if this is an instance method struct return.
1166 FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64());
1168 return true;
1171 // Otherwise, use the C ABI rules.
1172 return false;
1175 llvm::BasicBlock *
1176 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1177 const CXXRecordDecl *RD) {
1178 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1179 assert(IsMostDerivedClass &&
1180 "ctor for a class with virtual bases must have an implicit parameter");
1181 llvm::Value *IsCompleteObject =
1182 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1184 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1185 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1186 CGF.Builder.CreateCondBr(IsCompleteObject,
1187 CallVbaseCtorsBB, SkipVbaseCtorsBB);
1189 CGF.EmitBlock(CallVbaseCtorsBB);
1191 // Fill in the vbtable pointers here.
1192 EmitVBPtrStores(CGF, RD);
1194 // CGF will put the base ctor calls in this basic block for us later.
1196 return SkipVbaseCtorsBB;
1199 llvm::BasicBlock *
1200 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1201 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1202 assert(IsMostDerivedClass &&
1203 "ctor for a class with virtual bases must have an implicit parameter");
1204 llvm::Value *IsCompleteObject =
1205 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1207 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1208 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1209 CGF.Builder.CreateCondBr(IsCompleteObject,
1210 CallVbaseDtorsBB, SkipVbaseDtorsBB);
1212 CGF.EmitBlock(CallVbaseDtorsBB);
1213 // CGF will put the base dtor calls in this basic block for us later.
1215 return SkipVbaseDtorsBB;
1218 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1219 CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1220 // In most cases, an override for a vbase virtual method can adjust
1221 // the "this" parameter by applying a constant offset.
1222 // However, this is not enough while a constructor or a destructor of some
1223 // class X is being executed if all the following conditions are met:
1224 // - X has virtual bases, (1)
1225 // - X overrides a virtual method M of a vbase Y, (2)
1226 // - X itself is a vbase of the most derived class.
1228 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1229 // which holds the extra amount of "this" adjustment we must do when we use
1230 // the X vftables (i.e. during X ctor or dtor).
1231 // Outside the ctors and dtors, the values of vtorDisps are zero.
1233 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1234 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1235 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1236 CGBuilderTy &Builder = CGF.Builder;
1238 llvm::Value *Int8This = nullptr; // Initialize lazily.
1240 for (const CXXBaseSpecifier &S : RD->vbases()) {
1241 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1242 auto I = VBaseMap.find(VBase);
1243 assert(I != VBaseMap.end());
1244 if (!I->second.hasVtorDisp())
1245 continue;
1247 llvm::Value *VBaseOffset =
1248 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1249 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1251 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1252 llvm::Value *VtorDispValue = Builder.CreateSub(
1253 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1254 "vtordisp.value");
1255 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1257 if (!Int8This)
1258 Int8This = getThisValue(CGF);
1260 llvm::Value *VtorDispPtr =
1261 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset);
1262 // vtorDisp is always the 32-bits before the vbase in the class layout.
1263 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4);
1265 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1266 CharUnits::fromQuantity(4));
1270 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1271 const CXXMethodDecl *MD) {
1272 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1273 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1274 CallingConv ActualCallingConv =
1275 MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1276 return ExpectedCallingConv == ActualCallingConv;
1279 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1280 // There's only one constructor type in this ABI.
1281 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1283 // Exported default constructors either have a simple call-site where they use
1284 // the typical calling convention and have a single 'this' pointer for an
1285 // argument -or- they get a wrapper function which appropriately thunks to the
1286 // real default constructor. This thunk is the default constructor closure.
1287 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() &&
1288 D->isDefined()) {
1289 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1290 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1291 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1292 CGM.setGVProperties(Fn, D);
1297 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1298 const CXXRecordDecl *RD) {
1299 Address This = getThisAddress(CGF);
1300 This = This.withElementType(CGM.Int8Ty);
1301 const ASTContext &Context = getContext();
1302 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1304 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1305 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1306 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1307 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1308 const ASTRecordLayout &SubobjectLayout =
1309 Context.getASTRecordLayout(VBT->IntroducingObject);
1310 CharUnits Offs = VBT->NonVirtualOffset;
1311 Offs += SubobjectLayout.getVBPtrOffset();
1312 if (VBT->getVBaseWithVPtr())
1313 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1314 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1315 llvm::Value *GVPtr =
1316 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1317 VBPtr = VBPtr.withElementType(GVPtr->getType());
1318 CGF.Builder.CreateStore(GVPtr, VBPtr);
1322 CGCXXABI::AddedStructorArgCounts
1323 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1324 SmallVectorImpl<CanQualType> &ArgTys) {
1325 AddedStructorArgCounts Added;
1326 // TODO: 'for base' flag
1327 if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1328 GD.getDtorType() == Dtor_Deleting) {
1329 // The scalar deleting destructor takes an implicit int parameter.
1330 ArgTys.push_back(getContext().IntTy);
1331 ++Added.Suffix;
1333 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1334 if (!CD)
1335 return Added;
1337 // All parameters are already in place except is_most_derived, which goes
1338 // after 'this' if it's variadic and last if it's not.
1340 const CXXRecordDecl *Class = CD->getParent();
1341 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1342 if (Class->getNumVBases()) {
1343 if (FPT->isVariadic()) {
1344 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1345 ++Added.Prefix;
1346 } else {
1347 ArgTys.push_back(getContext().IntTy);
1348 ++Added.Suffix;
1352 return Added;
1355 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1356 const CXXDestructorDecl *Dtor,
1357 CXXDtorType DT) const {
1358 // Deleting destructor variants are never imported or exported. Give them the
1359 // default storage class.
1360 if (DT == Dtor_Deleting) {
1361 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1362 } else {
1363 const NamedDecl *ND = Dtor;
1364 CGM.setDLLImportDLLExport(GV, ND);
1368 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1369 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1370 // Internal things are always internal, regardless of attributes. After this,
1371 // we know the thunk is externally visible.
1372 if (Linkage == GVA_Internal)
1373 return llvm::GlobalValue::InternalLinkage;
1375 switch (DT) {
1376 case Dtor_Base:
1377 // The base destructor most closely tracks the user-declared constructor, so
1378 // we delegate back to the normal declarator case.
1379 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage);
1380 case Dtor_Complete:
1381 // The complete destructor is like an inline function, but it may be
1382 // imported and therefore must be exported as well. This requires changing
1383 // the linkage if a DLL attribute is present.
1384 if (Dtor->hasAttr<DLLExportAttr>())
1385 return llvm::GlobalValue::WeakODRLinkage;
1386 if (Dtor->hasAttr<DLLImportAttr>())
1387 return llvm::GlobalValue::AvailableExternallyLinkage;
1388 return llvm::GlobalValue::LinkOnceODRLinkage;
1389 case Dtor_Deleting:
1390 // Deleting destructors are like inline functions. They have vague linkage
1391 // and are emitted everywhere they are used. They are internal if the class
1392 // is internal.
1393 return llvm::GlobalValue::LinkOnceODRLinkage;
1394 case Dtor_Comdat:
1395 llvm_unreachable("MS C++ ABI does not support comdat dtors");
1397 llvm_unreachable("invalid dtor type");
1400 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1401 // The TU defining a dtor is only guaranteed to emit a base destructor. All
1402 // other destructor variants are delegating thunks.
1403 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1405 // If the class is dllexported, emit the complete (vbase) destructor wherever
1406 // the base dtor is emitted.
1407 // FIXME: To match MSVC, this should only be done when the class is exported
1408 // with -fdllexport-inlines enabled.
1409 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1410 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1413 CharUnits
1414 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1415 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1417 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1418 // Complete destructors take a pointer to the complete object as a
1419 // parameter, thus don't need this adjustment.
1420 if (GD.getDtorType() == Dtor_Complete)
1421 return CharUnits();
1423 // There's no Dtor_Base in vftable but it shares the this adjustment with
1424 // the deleting one, so look it up instead.
1425 GD = GlobalDecl(DD, Dtor_Deleting);
1428 MethodVFTableLocation ML =
1429 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1430 CharUnits Adjustment = ML.VFPtrOffset;
1432 // Normal virtual instance methods need to adjust from the vfptr that first
1433 // defined the virtual method to the virtual base subobject, but destructors
1434 // do not. The vector deleting destructor thunk applies this adjustment for
1435 // us if necessary.
1436 if (isa<CXXDestructorDecl>(MD))
1437 Adjustment = CharUnits::Zero();
1439 if (ML.VBase) {
1440 const ASTRecordLayout &DerivedLayout =
1441 getContext().getASTRecordLayout(MD->getParent());
1442 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1445 return Adjustment;
1448 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1449 CodeGenFunction &CGF, GlobalDecl GD, Address This,
1450 bool VirtualCall) {
1451 if (!VirtualCall) {
1452 // If the call of a virtual function is not virtual, we just have to
1453 // compensate for the adjustment the virtual function does in its prologue.
1454 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1455 if (Adjustment.isZero())
1456 return This;
1458 This = This.withElementType(CGF.Int8Ty);
1459 assert(Adjustment.isPositive());
1460 return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1463 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1465 GlobalDecl LookupGD = GD;
1466 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1467 // Complete dtors take a pointer to the complete object,
1468 // thus don't need adjustment.
1469 if (GD.getDtorType() == Dtor_Complete)
1470 return This;
1472 // There's only Dtor_Deleting in vftable but it shares the this adjustment
1473 // with the base one, so look up the deleting one instead.
1474 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1476 MethodVFTableLocation ML =
1477 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1479 CharUnits StaticOffset = ML.VFPtrOffset;
1481 // Base destructors expect 'this' to point to the beginning of the base
1482 // subobject, not the first vfptr that happens to contain the virtual dtor.
1483 // However, we still need to apply the virtual base adjustment.
1484 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1485 StaticOffset = CharUnits::Zero();
1487 Address Result = This;
1488 if (ML.VBase) {
1489 Result = Result.withElementType(CGF.Int8Ty);
1491 const CXXRecordDecl *Derived = MD->getParent();
1492 const CXXRecordDecl *VBase = ML.VBase;
1493 llvm::Value *VBaseOffset =
1494 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1495 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP(
1496 Result.getElementType(), Result.getPointer(), VBaseOffset);
1497 CharUnits VBaseAlign =
1498 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1499 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign);
1501 if (!StaticOffset.isZero()) {
1502 assert(StaticOffset.isPositive());
1503 Result = Result.withElementType(CGF.Int8Ty);
1504 if (ML.VBase) {
1505 // Non-virtual adjustment might result in a pointer outside the allocated
1506 // object, e.g. if the final overrider class is laid out after the virtual
1507 // base that declares a method in the most derived class.
1508 // FIXME: Update the code that emits this adjustment in thunks prologues.
1509 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1510 } else {
1511 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1514 return Result;
1517 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1518 QualType &ResTy,
1519 FunctionArgList &Params) {
1520 ASTContext &Context = getContext();
1521 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1522 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1523 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1524 auto *IsMostDerived = ImplicitParamDecl::Create(
1525 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1526 &Context.Idents.get("is_most_derived"), Context.IntTy,
1527 ImplicitParamDecl::Other);
1528 // The 'most_derived' parameter goes second if the ctor is variadic and last
1529 // if it's not. Dtors can't be variadic.
1530 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1531 if (FPT->isVariadic())
1532 Params.insert(Params.begin() + 1, IsMostDerived);
1533 else
1534 Params.push_back(IsMostDerived);
1535 getStructorImplicitParamDecl(CGF) = IsMostDerived;
1536 } else if (isDeletingDtor(CGF.CurGD)) {
1537 auto *ShouldDelete = ImplicitParamDecl::Create(
1538 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1539 &Context.Idents.get("should_call_delete"), Context.IntTy,
1540 ImplicitParamDecl::Other);
1541 Params.push_back(ShouldDelete);
1542 getStructorImplicitParamDecl(CGF) = ShouldDelete;
1546 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1547 // Naked functions have no prolog.
1548 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1549 return;
1551 // Overridden virtual methods of non-primary bases need to adjust the incoming
1552 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1553 // sizeof(void*) to adjust from B* to C*:
1554 // struct A { virtual void a(); };
1555 // struct B { virtual void b(); };
1556 // struct C : A, B { virtual void b(); };
1558 // Leave the value stored in the 'this' alloca unadjusted, so that the
1559 // debugger sees the unadjusted value. Microsoft debuggers require this, and
1560 // will apply the ThisAdjustment in the method type information.
1561 // FIXME: Do something better for DWARF debuggers, which won't expect this,
1562 // without making our codegen depend on debug info settings.
1563 llvm::Value *This = loadIncomingCXXThis(CGF);
1564 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1565 if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1566 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1567 if (!Adjustment.isZero()) {
1568 assert(Adjustment.isPositive());
1569 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1570 -Adjustment.getQuantity());
1573 setCXXABIThisValue(CGF, This);
1575 // If this is a function that the ABI specifies returns 'this', initialize
1576 // the return slot to 'this' at the start of the function.
1578 // Unlike the setting of return types, this is done within the ABI
1579 // implementation instead of by clients of CGCXXABI because:
1580 // 1) getThisValue is currently protected
1581 // 2) in theory, an ABI could implement 'this' returns some other way;
1582 // HasThisReturn only specifies a contract, not the implementation
1583 if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD))
1584 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1586 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1587 assert(getStructorImplicitParamDecl(CGF) &&
1588 "no implicit parameter for a constructor with virtual bases?");
1589 getStructorImplicitParamValue(CGF)
1590 = CGF.Builder.CreateLoad(
1591 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1592 "is_most_derived");
1595 if (isDeletingDtor(CGF.CurGD)) {
1596 assert(getStructorImplicitParamDecl(CGF) &&
1597 "no implicit parameter for a deleting destructor?");
1598 getStructorImplicitParamValue(CGF)
1599 = CGF.Builder.CreateLoad(
1600 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1601 "should_call_delete");
1605 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs(
1606 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1607 bool ForVirtualBase, bool Delegating) {
1608 assert(Type == Ctor_Complete || Type == Ctor_Base);
1610 // Check if we need a 'most_derived' parameter.
1611 if (!D->getParent()->getNumVBases())
1612 return AddedStructorArgs{};
1614 // Add the 'most_derived' argument second if we are variadic or last if not.
1615 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1616 llvm::Value *MostDerivedArg;
1617 if (Delegating) {
1618 MostDerivedArg = getStructorImplicitParamValue(CGF);
1619 } else {
1620 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1622 if (FPT->isVariadic()) {
1623 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}});
1625 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}});
1628 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam(
1629 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type,
1630 bool ForVirtualBase, bool Delegating) {
1631 return nullptr;
1634 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1635 const CXXDestructorDecl *DD,
1636 CXXDtorType Type, bool ForVirtualBase,
1637 bool Delegating, Address This,
1638 QualType ThisTy) {
1639 // Use the base destructor variant in place of the complete destructor variant
1640 // if the class has no virtual bases. This effectively implements some of the
1641 // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1642 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1643 Type = Dtor_Base;
1645 GlobalDecl GD(DD, Type);
1646 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1648 if (DD->isVirtual()) {
1649 assert(Type != CXXDtorType::Dtor_Deleting &&
1650 "The deleting destructor should only be called via a virtual call");
1651 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1652 This, false);
1655 llvm::BasicBlock *BaseDtorEndBB = nullptr;
1656 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1657 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1660 llvm::Value *Implicit =
1661 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase,
1662 Delegating); // = nullptr
1663 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1664 /*ImplicitParam=*/Implicit,
1665 /*ImplicitParamTy=*/QualType(), nullptr);
1666 if (BaseDtorEndBB) {
1667 // Complete object handler should continue to be the remaining
1668 CGF.Builder.CreateBr(BaseDtorEndBB);
1669 CGF.EmitBlock(BaseDtorEndBB);
1673 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1674 const CXXRecordDecl *RD,
1675 llvm::GlobalVariable *VTable) {
1676 if (!CGM.getCodeGenOpts().LTOUnit)
1677 return;
1679 // TODO: Should VirtualFunctionElimination also be supported here?
1680 // See similar handling in CodeGenModule::EmitVTableTypeMetadata.
1681 if (CGM.getCodeGenOpts().WholeProgramVTables) {
1682 llvm::DenseSet<const CXXRecordDecl *> Visited;
1683 llvm::GlobalObject::VCallVisibility TypeVis =
1684 CGM.GetVCallVisibilityLevel(RD, Visited);
1685 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1686 VTable->setVCallVisibilityMetadata(TypeVis);
1689 // The location of the first virtual function pointer in the virtual table,
1690 // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1691 // disabled, or sizeof(void*) if RTTI is enabled.
1692 CharUnits AddressPoint =
1693 getContext().getLangOpts().RTTIData
1694 ? getContext().toCharUnitsFromBits(
1695 getContext().getTargetInfo().getPointerWidth(LangAS::Default))
1696 : CharUnits::Zero();
1698 if (Info.PathToIntroducingObject.empty()) {
1699 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1700 return;
1703 // Add a bitset entry for the least derived base belonging to this vftable.
1704 CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1705 Info.PathToIntroducingObject.back());
1707 // Add a bitset entry for each derived class that is laid out at the same
1708 // offset as the least derived base.
1709 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1710 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1711 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1713 const ASTRecordLayout &Layout =
1714 getContext().getASTRecordLayout(DerivedRD);
1715 CharUnits Offset;
1716 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1717 if (VBI == Layout.getVBaseOffsetsMap().end())
1718 Offset = Layout.getBaseClassOffset(BaseRD);
1719 else
1720 Offset = VBI->second.VBaseOffset;
1721 if (!Offset.isZero())
1722 return;
1723 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1726 // Finally do the same for the most derived class.
1727 if (Info.FullOffsetInMDC.isZero())
1728 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1731 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1732 const CXXRecordDecl *RD) {
1733 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1734 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1736 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1737 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1738 if (VTable->hasInitializer())
1739 continue;
1741 const VTableLayout &VTLayout =
1742 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1744 llvm::Constant *RTTI = nullptr;
1745 if (any_of(VTLayout.vtable_components(),
1746 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1747 RTTI = getMSCompleteObjectLocator(RD, *Info);
1749 ConstantInitBuilder builder(CGM);
1750 auto components = builder.beginStruct();
1751 CGVT.createVTableInitializer(components, VTLayout, RTTI,
1752 VTable->hasLocalLinkage());
1753 components.finishAndSetAsInitializer(VTable);
1755 emitVTableTypeMetadata(*Info, RD, VTable);
1759 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1760 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1761 return Vptr.NearestVBase != nullptr;
1764 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1765 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1766 const CXXRecordDecl *NearestVBase) {
1767 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1768 if (!VTableAddressPoint) {
1769 assert(Base.getBase()->getNumVBases() &&
1770 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1772 return VTableAddressPoint;
1775 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1776 const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1777 SmallString<256> &Name) {
1778 llvm::raw_svector_ostream Out(Name);
1779 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1782 llvm::Constant *
1783 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1784 const CXXRecordDecl *VTableClass) {
1785 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1786 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1787 return VFTablesMap[ID];
1790 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1791 BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1792 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1793 assert(VFTable && "Couldn't find a vftable for the given base?");
1794 return VFTable;
1797 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1798 CharUnits VPtrOffset) {
1799 // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1800 // shouldn't be used in the given record type. We want to cache this result in
1801 // VFTablesMap, thus a simple zero check is not sufficient.
1803 VFTableIdTy ID(RD, VPtrOffset);
1804 VTablesMapTy::iterator I;
1805 bool Inserted;
1806 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1807 if (!Inserted)
1808 return I->second;
1810 llvm::GlobalVariable *&VTable = I->second;
1812 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1813 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1815 if (DeferredVFTables.insert(RD).second) {
1816 // We haven't processed this record type before.
1817 // Queue up this vtable for possible deferred emission.
1818 CGM.addDeferredVTable(RD);
1820 #ifndef NDEBUG
1821 // Create all the vftables at once in order to make sure each vftable has
1822 // a unique mangled name.
1823 llvm::StringSet<> ObservedMangledNames;
1824 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1825 SmallString<256> Name;
1826 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1827 if (!ObservedMangledNames.insert(Name.str()).second)
1828 llvm_unreachable("Already saw this mangling before?");
1830 #endif
1833 const std::unique_ptr<VPtrInfo> *VFPtrI =
1834 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) {
1835 return VPI->FullOffsetInMDC == VPtrOffset;
1837 if (VFPtrI == VFPtrs.end()) {
1838 VFTablesMap[ID] = nullptr;
1839 return nullptr;
1841 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1843 SmallString<256> VFTableName;
1844 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1846 // Classes marked __declspec(dllimport) need vftables generated on the
1847 // import-side in order to support features like constexpr. No other
1848 // translation unit relies on the emission of the local vftable, translation
1849 // units are expected to generate them as needed.
1851 // Because of this unique behavior, we maintain this logic here instead of
1852 // getVTableLinkage.
1853 llvm::GlobalValue::LinkageTypes VFTableLinkage =
1854 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1855 : CGM.getVTableLinkage(RD);
1856 bool VFTableComesFromAnotherTU =
1857 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1858 llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1859 bool VTableAliasIsRequred =
1860 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1862 if (llvm::GlobalValue *VFTable =
1863 CGM.getModule().getNamedGlobal(VFTableName)) {
1864 VFTablesMap[ID] = VFTable;
1865 VTable = VTableAliasIsRequred
1866 ? cast<llvm::GlobalVariable>(
1867 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject())
1868 : cast<llvm::GlobalVariable>(VFTable);
1869 return VTable;
1872 const VTableLayout &VTLayout =
1873 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1874 llvm::GlobalValue::LinkageTypes VTableLinkage =
1875 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1877 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1879 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1881 // Create a backing variable for the contents of VTable. The VTable may
1882 // or may not include space for a pointer to RTTI data.
1883 llvm::GlobalValue *VFTable;
1884 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1885 /*isConstant=*/true, VTableLinkage,
1886 /*Initializer=*/nullptr, VTableName);
1887 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1889 llvm::Comdat *C = nullptr;
1890 if (!VFTableComesFromAnotherTU &&
1891 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1892 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1893 VTableAliasIsRequred)))
1894 C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1896 // Only insert a pointer into the VFTable for RTTI data if we are not
1897 // importing it. We never reference the RTTI data directly so there is no
1898 // need to make room for it.
1899 if (VTableAliasIsRequred) {
1900 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1901 llvm::ConstantInt::get(CGM.Int32Ty, 0),
1902 llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1903 // Create a GEP which points just after the first entry in the VFTable,
1904 // this should be the location of the first virtual method.
1905 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1906 VTable->getValueType(), VTable, GEPIndices);
1907 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1908 VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1909 if (C)
1910 C->setSelectionKind(llvm::Comdat::Largest);
1912 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1913 /*AddressSpace=*/0, VFTableLinkage,
1914 VFTableName.str(), VTableGEP,
1915 &CGM.getModule());
1916 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1917 } else {
1918 // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1919 // be referencing any RTTI data.
1920 // The GlobalVariable will end up being an appropriate definition of the
1921 // VFTable.
1922 VFTable = VTable;
1924 if (C)
1925 VTable->setComdat(C);
1927 if (RD->hasAttr<DLLExportAttr>())
1928 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1930 VFTablesMap[ID] = VFTable;
1931 return VTable;
1934 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1935 GlobalDecl GD,
1936 Address This,
1937 llvm::Type *Ty,
1938 SourceLocation Loc) {
1939 CGBuilderTy &Builder = CGF.Builder;
1941 Ty = Ty->getPointerTo();
1942 Address VPtr =
1943 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1945 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1946 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(),
1947 MethodDecl->getParent());
1949 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1950 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1952 // Compute the identity of the most derived class whose virtual table is
1953 // located at the MethodVFTableLocation ML.
1954 auto getObjectWithVPtr = [&] {
1955 return llvm::find_if(VFTContext.getVFPtrOffsets(
1956 ML.VBase ? ML.VBase : MethodDecl->getParent()),
1957 [&](const std::unique_ptr<VPtrInfo> &Info) {
1958 return Info->FullOffsetInMDC == ML.VFPtrOffset;
1960 ->get()
1961 ->ObjectWithVPtr;
1964 llvm::Value *VFunc;
1965 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1966 VFunc = CGF.EmitVTableTypeCheckedLoad(
1967 getObjectWithVPtr(), VTable, Ty,
1968 ML.Index *
1969 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) /
1971 } else {
1972 if (CGM.getCodeGenOpts().PrepareForLTO)
1973 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1975 llvm::Value *VFuncPtr =
1976 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn");
1977 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign());
1980 CGCallee Callee(GD, VFunc);
1981 return Callee;
1984 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1985 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1986 Address This, DeleteOrMemberCallExpr E) {
1987 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1988 auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1989 assert((CE != nullptr) ^ (D != nullptr));
1990 assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1991 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1993 // We have only one destructor in the vftable but can get both behaviors
1994 // by passing an implicit int parameter.
1995 GlobalDecl GD(Dtor, Dtor_Deleting);
1996 const CGFunctionInfo *FInfo =
1997 &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1998 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1999 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
2001 ASTContext &Context = getContext();
2002 llvm::Value *ImplicitParam = llvm::ConstantInt::get(
2003 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
2004 DtorType == Dtor_Deleting);
2006 QualType ThisTy;
2007 if (CE) {
2008 ThisTy = CE->getObjectType();
2009 } else {
2010 ThisTy = D->getDestroyedType();
2013 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
2014 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
2015 ImplicitParam, Context.IntTy, CE);
2016 return RV.getScalarVal();
2019 const VBTableGlobals &
2020 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
2021 // At this layer, we can key the cache off of a single class, which is much
2022 // easier than caching each vbtable individually.
2023 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
2024 bool Added;
2025 std::tie(Entry, Added) =
2026 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
2027 VBTableGlobals &VBGlobals = Entry->second;
2028 if (!Added)
2029 return VBGlobals;
2031 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2032 VBGlobals.VBTables = &Context.enumerateVBTables(RD);
2034 // Cache the globals for all vbtables so we don't have to recompute the
2035 // mangled names.
2036 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
2037 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
2038 E = VBGlobals.VBTables->end();
2039 I != E; ++I) {
2040 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
2043 return VBGlobals;
2046 llvm::Function *
2047 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
2048 const MethodVFTableLocation &ML) {
2049 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
2050 "can't form pointers to ctors or virtual dtors");
2052 // Calculate the mangled name.
2053 SmallString<256> ThunkName;
2054 llvm::raw_svector_ostream Out(ThunkName);
2055 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
2057 // If the thunk has been generated previously, just return it.
2058 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
2059 return cast<llvm::Function>(GV);
2061 // Create the llvm::Function.
2062 const CGFunctionInfo &FnInfo =
2063 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
2064 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
2065 llvm::Function *ThunkFn =
2066 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
2067 ThunkName.str(), &CGM.getModule());
2068 assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2070 ThunkFn->setLinkage(MD->isExternallyVisible()
2071 ? llvm::GlobalValue::LinkOnceODRLinkage
2072 : llvm::GlobalValue::InternalLinkage);
2073 if (MD->isExternallyVisible())
2074 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2076 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
2077 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2079 // Add the "thunk" attribute so that LLVM knows that the return type is
2080 // meaningless. These thunks can be used to call functions with differing
2081 // return types, and the caller is required to cast the prototype
2082 // appropriately to extract the correct value.
2083 ThunkFn->addFnAttr("thunk");
2085 // These thunks can be compared, so they are not unnamed.
2086 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2088 // Start codegen.
2089 CodeGenFunction CGF(CGM);
2090 CGF.CurGD = GlobalDecl(MD);
2091 CGF.CurFuncIsThunk = true;
2093 // Build FunctionArgs, but only include the implicit 'this' parameter
2094 // declaration.
2095 FunctionArgList FunctionArgs;
2096 buildThisParam(CGF, FunctionArgs);
2098 // Start defining the function.
2099 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2100 FunctionArgs, MD->getLocation(), SourceLocation());
2102 ApplyDebugLocation AL(CGF, MD->getLocation());
2103 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2105 // Load the vfptr and then callee from the vftable. The callee should have
2106 // adjusted 'this' so that the vfptr is at offset zero.
2107 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo();
2108 llvm::Value *VTable = CGF.GetVTablePtr(
2109 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent());
2111 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
2112 ThunkPtrTy, VTable, ML.Index, "vfn");
2113 llvm::Value *Callee =
2114 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign());
2116 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2118 return ThunkFn;
2121 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2122 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2123 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2124 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2125 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2126 if (GV->isDeclaration())
2127 emitVBTableDefinition(*VBT, RD, GV);
2131 llvm::GlobalVariable *
2132 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2133 llvm::GlobalVariable::LinkageTypes Linkage) {
2134 SmallString<256> OutName;
2135 llvm::raw_svector_ostream Out(OutName);
2136 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2137 StringRef Name = OutName.str();
2139 llvm::ArrayType *VBTableType =
2140 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2142 assert(!CGM.getModule().getNamedGlobal(Name) &&
2143 "vbtable with this name already exists: mangling bug?");
2144 CharUnits Alignment =
2145 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2146 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2147 Name, VBTableType, Linkage, Alignment.getAsAlign());
2148 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2150 if (RD->hasAttr<DLLImportAttr>())
2151 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2152 else if (RD->hasAttr<DLLExportAttr>())
2153 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2155 if (!GV->hasExternalLinkage())
2156 emitVBTableDefinition(VBT, RD, GV);
2158 return GV;
2161 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2162 const CXXRecordDecl *RD,
2163 llvm::GlobalVariable *GV) const {
2164 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2166 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2167 "should only emit vbtables for classes with vbtables");
2169 const ASTRecordLayout &BaseLayout =
2170 getContext().getASTRecordLayout(VBT.IntroducingObject);
2171 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2173 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2174 nullptr);
2176 // The offset from ObjectWithVPtr's vbptr to itself always leads.
2177 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2178 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2180 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2181 for (const auto &I : ObjectWithVPtr->vbases()) {
2182 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2183 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2184 assert(!Offset.isNegative());
2186 // Make it relative to the subobject vbptr.
2187 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2188 if (VBT.getVBaseWithVPtr())
2189 CompleteVBPtrOffset +=
2190 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2191 Offset -= CompleteVBPtrOffset;
2193 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2194 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2195 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2198 assert(Offsets.size() ==
2199 cast<llvm::ArrayType>(GV->getValueType())->getNumElements());
2200 llvm::ArrayType *VBTableType =
2201 llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2202 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2203 GV->setInitializer(Init);
2205 if (RD->hasAttr<DLLImportAttr>())
2206 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2209 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2210 Address This,
2211 const ThisAdjustment &TA) {
2212 if (TA.isEmpty())
2213 return This.getPointer();
2215 This = This.withElementType(CGF.Int8Ty);
2217 llvm::Value *V;
2218 if (TA.Virtual.isEmpty()) {
2219 V = This.getPointer();
2220 } else {
2221 assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2222 // Adjust the this argument based on the vtordisp value.
2223 Address VtorDispPtr =
2224 CGF.Builder.CreateConstInBoundsByteGEP(This,
2225 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2226 VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty);
2227 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2228 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(),
2229 CGF.Builder.CreateNeg(VtorDisp));
2231 // Unfortunately, having applied the vtordisp means that we no
2232 // longer really have a known alignment for the vbptr step.
2233 // We'll assume the vbptr is pointer-aligned.
2235 if (TA.Virtual.Microsoft.VBPtrOffset) {
2236 // If the final overrider is defined in a virtual base other than the one
2237 // that holds the vfptr, we have to use a vtordispex thunk which looks up
2238 // the vbtable of the derived class.
2239 assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2240 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2241 llvm::Value *VBPtr;
2242 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(
2243 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()),
2244 -TA.Virtual.Microsoft.VBPtrOffset,
2245 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2246 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2250 if (TA.NonVirtual) {
2251 // Non-virtual adjustment might result in a pointer outside the allocated
2252 // object, e.g. if the final overrider class is laid out after the virtual
2253 // base that declares a method in the most derived class.
2254 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual);
2257 // Don't need to bitcast back, the call CodeGen will handle this.
2258 return V;
2261 llvm::Value *
2262 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2263 const ReturnAdjustment &RA) {
2264 if (RA.isEmpty())
2265 return Ret.getPointer();
2267 auto OrigTy = Ret.getType();
2268 Ret = Ret.withElementType(CGF.Int8Ty);
2270 llvm::Value *V = Ret.getPointer();
2271 if (RA.Virtual.Microsoft.VBIndex) {
2272 assert(RA.Virtual.Microsoft.VBIndex > 0);
2273 int32_t IntSize = CGF.getIntSize().getQuantity();
2274 llvm::Value *VBPtr;
2275 llvm::Value *VBaseOffset =
2276 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2277 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2278 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2281 if (RA.NonVirtual)
2282 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2284 // Cast back to the original type.
2285 return CGF.Builder.CreateBitCast(V, OrigTy);
2288 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2289 QualType elementType) {
2290 // Microsoft seems to completely ignore the possibility of a
2291 // two-argument usual deallocation function.
2292 return elementType.isDestructedType();
2295 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2296 // Microsoft seems to completely ignore the possibility of a
2297 // two-argument usual deallocation function.
2298 return expr->getAllocatedType().isDestructedType();
2301 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2302 // The array cookie is always a size_t; we then pad that out to the
2303 // alignment of the element type.
2304 ASTContext &Ctx = getContext();
2305 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2306 Ctx.getTypeAlignInChars(type));
2309 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2310 Address allocPtr,
2311 CharUnits cookieSize) {
2312 Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy);
2313 return CGF.Builder.CreateLoad(numElementsPtr);
2316 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2317 Address newPtr,
2318 llvm::Value *numElements,
2319 const CXXNewExpr *expr,
2320 QualType elementType) {
2321 assert(requiresArrayCookie(expr));
2323 // The size of the cookie.
2324 CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2326 // Compute an offset to the cookie.
2327 Address cookiePtr = newPtr;
2329 // Write the number of elements into the appropriate slot.
2330 Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy);
2331 CGF.Builder.CreateStore(numElements, numElementsPtr);
2333 // Finally, compute a pointer to the actual data buffer by skipping
2334 // over the cookie completely.
2335 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2338 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2339 llvm::FunctionCallee Dtor,
2340 llvm::Constant *Addr) {
2341 // Create a function which calls the destructor.
2342 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2344 // extern "C" int __tlregdtor(void (*f)(void));
2345 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2346 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2348 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2349 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2350 if (llvm::Function *TLRegDtorFn =
2351 dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2352 TLRegDtorFn->setDoesNotThrow();
2354 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2357 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2358 llvm::FunctionCallee Dtor,
2359 llvm::Constant *Addr) {
2360 if (D.isNoDestroy(CGM.getContext()))
2361 return;
2363 if (D.getTLSKind())
2364 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2366 // HLSL doesn't support atexit.
2367 if (CGM.getLangOpts().HLSL)
2368 return CGM.AddCXXDtorEntry(Dtor, Addr);
2370 // The default behavior is to use atexit.
2371 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2374 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2375 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2376 ArrayRef<llvm::Function *> CXXThreadLocalInits,
2377 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2378 if (CXXThreadLocalInits.empty())
2379 return;
2381 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2382 llvm::Triple::x86
2383 ? "/include:___dyn_tls_init@12"
2384 : "/include:__dyn_tls_init");
2386 // This will create a GV in the .CRT$XDU section. It will point to our
2387 // initialization function. The CRT will call all of these function
2388 // pointers at start-up time and, eventually, at thread-creation time.
2389 auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2390 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2391 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2392 llvm::GlobalVariable::InternalLinkage, InitFunc,
2393 Twine(InitFunc->getName(), "$initializer$"));
2394 InitFuncPtr->setSection(".CRT$XDU");
2395 // This variable has discardable linkage, we have to add it to @llvm.used to
2396 // ensure it won't get discarded.
2397 CGM.addUsedGlobal(InitFuncPtr);
2398 return InitFuncPtr;
2401 std::vector<llvm::Function *> NonComdatInits;
2402 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2403 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2404 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2405 llvm::Function *F = CXXThreadLocalInits[I];
2407 // If the GV is already in a comdat group, then we have to join it.
2408 if (llvm::Comdat *C = GV->getComdat())
2409 AddToXDU(F)->setComdat(C);
2410 else
2411 NonComdatInits.push_back(F);
2414 if (!NonComdatInits.empty()) {
2415 llvm::FunctionType *FTy =
2416 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2417 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(
2418 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2419 SourceLocation(), /*TLS=*/true);
2420 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2422 AddToXDU(InitFunc);
2426 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) {
2427 // __tls_guard comes from the MSVC runtime and reflects
2428 // whether TLS has been initialized for a particular thread.
2429 // It is set from within __dyn_tls_init by the runtime.
2430 // Every library and executable has its own variable.
2431 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext());
2432 llvm::Constant *TlsGuardConstant =
2433 CGM.CreateRuntimeVariable(VTy, "__tls_guard");
2434 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant);
2436 TlsGuard->setThreadLocal(true);
2438 return TlsGuard;
2441 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) {
2442 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers
2443 // dynamic TLS initialization by calling __dyn_tls_init internally.
2444 llvm::FunctionType *FTy =
2445 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {},
2446 /*isVarArg=*/false);
2447 return CGM.CreateRuntimeFunction(
2448 FTy, "__dyn_tls_on_demand_init",
2449 llvm::AttributeList::get(CGM.getLLVMContext(),
2450 llvm::AttributeList::FunctionIndex,
2451 llvm::Attribute::NoUnwind),
2452 /*Local=*/true);
2455 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard,
2456 llvm::BasicBlock *DynInitBB,
2457 llvm::BasicBlock *ContinueBB) {
2458 llvm::LoadInst *TlsGuardValue =
2459 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One()));
2460 llvm::Value *CmpResult =
2461 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0));
2462 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB);
2465 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF,
2466 llvm::GlobalValue *TlsGuard,
2467 llvm::BasicBlock *ContinueBB) {
2468 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM);
2469 llvm::Function *InitializerFunction =
2470 cast<llvm::Function>(Initializer.getCallee());
2471 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction);
2472 CallVal->setCallingConv(InitializerFunction->getCallingConv());
2474 CGF.Builder.CreateBr(ContinueBB);
2477 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) {
2478 llvm::BasicBlock *DynInitBB =
2479 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn);
2480 llvm::BasicBlock *ContinueBB =
2481 CGF.createBasicBlock("dyntls.continue", CGF.CurFn);
2483 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM);
2485 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB);
2486 CGF.Builder.SetInsertPoint(DynInitBB);
2487 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB);
2488 CGF.Builder.SetInsertPoint(ContinueBB);
2491 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2492 const VarDecl *VD,
2493 QualType LValType) {
2494 // Dynamic TLS initialization works by checking the state of a
2495 // guard variable (__tls_guard) to see whether TLS initialization
2496 // for a thread has happend yet.
2497 // If not, the initialization is triggered on-demand
2498 // by calling __dyn_tls_on_demand_init.
2499 emitDynamicTlsInitialization(CGF);
2501 // Emit the variable just like any regular global variable.
2503 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2504 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2506 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2507 Address Addr(V, RealVarTy, Alignment);
2509 LValue LV = VD->getType()->isReferenceType()
2510 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2511 AlignmentSource::Decl)
2512 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl);
2513 return LV;
2516 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2517 StringRef VarName("_Init_thread_epoch");
2518 CharUnits Align = CGM.getIntAlign();
2519 if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2520 return ConstantAddress(GV, GV->getValueType(), Align);
2521 auto *GV = new llvm::GlobalVariable(
2522 CGM.getModule(), CGM.IntTy,
2523 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2524 /*Initializer=*/nullptr, VarName,
2525 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2526 GV->setAlignment(Align.getAsAlign());
2527 return ConstantAddress(GV, GV->getValueType(), Align);
2530 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2531 llvm::FunctionType *FTy =
2532 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2533 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2534 return CGM.CreateRuntimeFunction(
2535 FTy, "_Init_thread_header",
2536 llvm::AttributeList::get(CGM.getLLVMContext(),
2537 llvm::AttributeList::FunctionIndex,
2538 llvm::Attribute::NoUnwind),
2539 /*Local=*/true);
2542 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2543 llvm::FunctionType *FTy =
2544 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2545 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2546 return CGM.CreateRuntimeFunction(
2547 FTy, "_Init_thread_footer",
2548 llvm::AttributeList::get(CGM.getLLVMContext(),
2549 llvm::AttributeList::FunctionIndex,
2550 llvm::Attribute::NoUnwind),
2551 /*Local=*/true);
2554 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2555 llvm::FunctionType *FTy =
2556 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2557 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2558 return CGM.CreateRuntimeFunction(
2559 FTy, "_Init_thread_abort",
2560 llvm::AttributeList::get(CGM.getLLVMContext(),
2561 llvm::AttributeList::FunctionIndex,
2562 llvm::Attribute::NoUnwind),
2563 /*Local=*/true);
2566 namespace {
2567 struct ResetGuardBit final : EHScopeStack::Cleanup {
2568 Address Guard;
2569 unsigned GuardNum;
2570 ResetGuardBit(Address Guard, unsigned GuardNum)
2571 : Guard(Guard), GuardNum(GuardNum) {}
2573 void Emit(CodeGenFunction &CGF, Flags flags) override {
2574 // Reset the bit in the mask so that the static variable may be
2575 // reinitialized.
2576 CGBuilderTy &Builder = CGF.Builder;
2577 llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2578 llvm::ConstantInt *Mask =
2579 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2580 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2584 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2585 llvm::Value *Guard;
2586 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2588 void Emit(CodeGenFunction &CGF, Flags flags) override {
2589 // Calling _Init_thread_abort will reset the guard's state.
2590 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2595 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2596 llvm::GlobalVariable *GV,
2597 bool PerformInit) {
2598 // MSVC only uses guards for static locals.
2599 if (!D.isStaticLocal()) {
2600 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2601 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2602 llvm::Function *F = CGF.CurFn;
2603 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2604 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2605 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2606 return;
2609 bool ThreadlocalStatic = D.getTLSKind();
2610 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2612 // Thread-safe static variables which aren't thread-specific have a
2613 // per-variable guard.
2614 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2616 CGBuilderTy &Builder = CGF.Builder;
2617 llvm::IntegerType *GuardTy = CGF.Int32Ty;
2618 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2619 CharUnits GuardAlign = CharUnits::fromQuantity(4);
2621 // Get the guard variable for this function if we have one already.
2622 GuardInfo *GI = nullptr;
2623 if (ThreadlocalStatic)
2624 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2625 else if (!ThreadsafeStatic)
2626 GI = &GuardVariableMap[D.getDeclContext()];
2628 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2629 unsigned GuardNum;
2630 if (D.isExternallyVisible()) {
2631 // Externally visible variables have to be numbered in Sema to properly
2632 // handle unreachable VarDecls.
2633 GuardNum = getContext().getStaticLocalNumber(&D);
2634 assert(GuardNum > 0);
2635 GuardNum--;
2636 } else if (HasPerVariableGuard) {
2637 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2638 } else {
2639 // Non-externally visible variables are numbered here in CodeGen.
2640 GuardNum = GI->BitIndex++;
2643 if (!HasPerVariableGuard && GuardNum >= 32) {
2644 if (D.isExternallyVisible())
2645 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2646 GuardNum %= 32;
2647 GuardVar = nullptr;
2650 if (!GuardVar) {
2651 // Mangle the name for the guard.
2652 SmallString<256> GuardName;
2654 llvm::raw_svector_ostream Out(GuardName);
2655 if (HasPerVariableGuard)
2656 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2657 Out);
2658 else
2659 getMangleContext().mangleStaticGuardVariable(&D, Out);
2662 // Create the guard variable with a zero-initializer. Just absorb linkage,
2663 // visibility and dll storage class from the guarded variable.
2664 GuardVar =
2665 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2666 GV->getLinkage(), Zero, GuardName.str());
2667 GuardVar->setVisibility(GV->getVisibility());
2668 GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2669 GuardVar->setAlignment(GuardAlign.getAsAlign());
2670 if (GuardVar->isWeakForLinker())
2671 GuardVar->setComdat(
2672 CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2673 if (D.getTLSKind())
2674 CGM.setTLSMode(GuardVar, D);
2675 if (GI && !HasPerVariableGuard)
2676 GI->Guard = GuardVar;
2679 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign);
2681 assert(GuardVar->getLinkage() == GV->getLinkage() &&
2682 "static local from the same function had different linkage");
2684 if (!HasPerVariableGuard) {
2685 // Pseudo code for the test:
2686 // if (!(GuardVar & MyGuardBit)) {
2687 // GuardVar |= MyGuardBit;
2688 // ... initialize the object ...;
2689 // }
2691 // Test our bit from the guard variable.
2692 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2693 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2694 llvm::Value *NeedsInit =
2695 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2696 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2697 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2698 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2699 CodeGenFunction::GuardKind::VariableGuard, &D);
2701 // Set our bit in the guard variable and emit the initializer and add a global
2702 // destructor if appropriate.
2703 CGF.EmitBlock(InitBlock);
2704 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2705 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2706 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2707 CGF.PopCleanupBlock();
2708 Builder.CreateBr(EndBlock);
2710 // Continue.
2711 CGF.EmitBlock(EndBlock);
2712 } else {
2713 // Pseudo code for the test:
2714 // if (TSS > _Init_thread_epoch) {
2715 // _Init_thread_header(&TSS);
2716 // if (TSS == -1) {
2717 // ... initialize the object ...;
2718 // _Init_thread_footer(&TSS);
2719 // }
2720 // }
2722 // The algorithm is almost identical to what can be found in the appendix
2723 // found in N2325.
2725 // This BasicBLock determines whether or not we have any work to do.
2726 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2727 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2728 llvm::LoadInst *InitThreadEpoch =
2729 Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2730 llvm::Value *IsUninitialized =
2731 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2732 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2733 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2734 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2735 CodeGenFunction::GuardKind::VariableGuard, &D);
2737 // This BasicBlock attempts to determine whether or not this thread is
2738 // responsible for doing the initialization.
2739 CGF.EmitBlock(AttemptInitBlock);
2740 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2741 GuardAddr.getPointer());
2742 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2743 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2744 llvm::Value *ShouldDoInit =
2745 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2746 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2747 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2749 // Ok, we ended up getting selected as the initializing thread.
2750 CGF.EmitBlock(InitBlock);
2751 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2752 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2753 CGF.PopCleanupBlock();
2754 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2755 GuardAddr.getPointer());
2756 Builder.CreateBr(EndBlock);
2758 CGF.EmitBlock(EndBlock);
2762 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2763 // Null-ness for function memptrs only depends on the first field, which is
2764 // the function pointer. The rest don't matter, so we can zero initialize.
2765 if (MPT->isMemberFunctionPointer())
2766 return true;
2768 // The virtual base adjustment field is always -1 for null, so if we have one
2769 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
2770 // valid field offset.
2771 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2772 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2773 return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2774 RD->nullFieldOffsetIsZero());
2777 llvm::Type *
2778 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2779 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2780 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2781 llvm::SmallVector<llvm::Type *, 4> fields;
2782 if (MPT->isMemberFunctionPointer())
2783 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
2784 else
2785 fields.push_back(CGM.IntTy); // FieldOffset
2787 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2788 Inheritance))
2789 fields.push_back(CGM.IntTy);
2790 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2791 fields.push_back(CGM.IntTy);
2792 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2793 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
2795 if (fields.size() == 1)
2796 return fields[0];
2797 return llvm::StructType::get(CGM.getLLVMContext(), fields);
2800 void MicrosoftCXXABI::
2801 GetNullMemberPointerFields(const MemberPointerType *MPT,
2802 llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2803 assert(fields.empty());
2804 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2805 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2806 if (MPT->isMemberFunctionPointer()) {
2807 // FunctionPointerOrVirtualThunk
2808 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2809 } else {
2810 if (RD->nullFieldOffsetIsZero())
2811 fields.push_back(getZeroInt()); // FieldOffset
2812 else
2813 fields.push_back(getAllOnesInt()); // FieldOffset
2816 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2817 Inheritance))
2818 fields.push_back(getZeroInt());
2819 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2820 fields.push_back(getZeroInt());
2821 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2822 fields.push_back(getAllOnesInt());
2825 llvm::Constant *
2826 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2827 llvm::SmallVector<llvm::Constant *, 4> fields;
2828 GetNullMemberPointerFields(MPT, fields);
2829 if (fields.size() == 1)
2830 return fields[0];
2831 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2832 assert(Res->getType() == ConvertMemberPointerType(MPT));
2833 return Res;
2836 llvm::Constant *
2837 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2838 bool IsMemberFunction,
2839 const CXXRecordDecl *RD,
2840 CharUnits NonVirtualBaseAdjustment,
2841 unsigned VBTableIndex) {
2842 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2844 // Single inheritance class member pointer are represented as scalars instead
2845 // of aggregates.
2846 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2847 return FirstField;
2849 llvm::SmallVector<llvm::Constant *, 4> fields;
2850 fields.push_back(FirstField);
2852 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2853 fields.push_back(llvm::ConstantInt::get(
2854 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2856 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2857 CharUnits Offs = CharUnits::Zero();
2858 if (VBTableIndex)
2859 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2860 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2863 // The rest of the fields are adjusted by conversions to a more derived class.
2864 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2865 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2867 return llvm::ConstantStruct::getAnon(fields);
2870 llvm::Constant *
2871 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2872 CharUnits offset) {
2873 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2876 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2877 CharUnits offset) {
2878 if (RD->getMSInheritanceModel() ==
2879 MSInheritanceModel::Virtual)
2880 offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2881 llvm::Constant *FirstField =
2882 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2883 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2884 CharUnits::Zero(), /*VBTableIndex=*/0);
2887 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2888 QualType MPType) {
2889 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2890 const ValueDecl *MPD = MP.getMemberPointerDecl();
2891 if (!MPD)
2892 return EmitNullMemberPointer(DstTy);
2894 ASTContext &Ctx = getContext();
2895 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2897 llvm::Constant *C;
2898 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2899 C = EmitMemberFunctionPointer(MD);
2900 } else {
2901 // For a pointer to data member, start off with the offset of the field in
2902 // the class in which it was declared, and convert from there if necessary.
2903 // For indirect field decls, get the outermost anonymous field and use the
2904 // parent class.
2905 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2906 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2907 if (!FD)
2908 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2909 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2910 RD = RD->getMostRecentNonInjectedDecl();
2911 C = EmitMemberDataPointer(RD, FieldOffset);
2914 if (!MemberPointerPath.empty()) {
2915 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2916 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2917 const MemberPointerType *SrcTy =
2918 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2919 ->castAs<MemberPointerType>();
2921 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2922 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2923 const CXXRecordDecl *PrevRD = SrcRD;
2924 for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2925 const CXXRecordDecl *Base = nullptr;
2926 const CXXRecordDecl *Derived = nullptr;
2927 if (DerivedMember) {
2928 Base = PathElem;
2929 Derived = PrevRD;
2930 } else {
2931 Base = PrevRD;
2932 Derived = PathElem;
2934 for (const CXXBaseSpecifier &BS : Derived->bases())
2935 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2936 Base->getCanonicalDecl())
2937 DerivedToBasePath.push_back(&BS);
2938 PrevRD = PathElem;
2940 assert(DerivedToBasePath.size() == MemberPointerPath.size());
2942 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2943 : CK_BaseToDerivedMemberPointer;
2944 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2945 DerivedToBasePath.end(), C);
2947 return C;
2950 llvm::Constant *
2951 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2952 assert(MD->isInstance() && "Member function must not be static!");
2954 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2955 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2956 CodeGenTypes &Types = CGM.getTypes();
2958 unsigned VBTableIndex = 0;
2959 llvm::Constant *FirstField;
2960 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2961 if (!MD->isVirtual()) {
2962 llvm::Type *Ty;
2963 // Check whether the function has a computable LLVM signature.
2964 if (Types.isFuncTypeConvertible(FPT)) {
2965 // The function has a computable LLVM signature; use the correct type.
2966 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2967 } else {
2968 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2969 // function type is incomplete.
2970 Ty = CGM.PtrDiffTy;
2972 FirstField = CGM.GetAddrOfFunction(MD, Ty);
2973 } else {
2974 auto &VTableContext = CGM.getMicrosoftVTableContext();
2975 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2976 FirstField = EmitVirtualMemPtrThunk(MD, ML);
2977 // Include the vfptr adjustment if the method is in a non-primary vftable.
2978 NonVirtualBaseAdjustment += ML.VFPtrOffset;
2979 if (ML.VBase)
2980 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2983 if (VBTableIndex == 0 &&
2984 RD->getMSInheritanceModel() ==
2985 MSInheritanceModel::Virtual)
2986 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2988 // The rest of the fields are common with data member pointers.
2989 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2990 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2991 NonVirtualBaseAdjustment, VBTableIndex);
2994 /// Member pointers are the same if they're either bitwise identical *or* both
2995 /// null. Null-ness for function members is determined by the first field,
2996 /// while for data member pointers we must compare all fields.
2997 llvm::Value *
2998 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2999 llvm::Value *L,
3000 llvm::Value *R,
3001 const MemberPointerType *MPT,
3002 bool Inequality) {
3003 CGBuilderTy &Builder = CGF.Builder;
3005 // Handle != comparisons by switching the sense of all boolean operations.
3006 llvm::ICmpInst::Predicate Eq;
3007 llvm::Instruction::BinaryOps And, Or;
3008 if (Inequality) {
3009 Eq = llvm::ICmpInst::ICMP_NE;
3010 And = llvm::Instruction::Or;
3011 Or = llvm::Instruction::And;
3012 } else {
3013 Eq = llvm::ICmpInst::ICMP_EQ;
3014 And = llvm::Instruction::And;
3015 Or = llvm::Instruction::Or;
3018 // If this is a single field member pointer (single inheritance), this is a
3019 // single icmp.
3020 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3021 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3022 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
3023 Inheritance))
3024 return Builder.CreateICmp(Eq, L, R);
3026 // Compare the first field.
3027 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
3028 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
3029 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
3031 // Compare everything other than the first field.
3032 llvm::Value *Res = nullptr;
3033 llvm::StructType *LType = cast<llvm::StructType>(L->getType());
3034 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
3035 llvm::Value *LF = Builder.CreateExtractValue(L, I);
3036 llvm::Value *RF = Builder.CreateExtractValue(R, I);
3037 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
3038 if (Res)
3039 Res = Builder.CreateBinOp(And, Res, Cmp);
3040 else
3041 Res = Cmp;
3044 // Check if the first field is 0 if this is a function pointer.
3045 if (MPT->isMemberFunctionPointer()) {
3046 // (l1 == r1 && ...) || l0 == 0
3047 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
3048 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
3049 Res = Builder.CreateBinOp(Or, Res, IsZero);
3052 // Combine the comparison of the first field, which must always be true for
3053 // this comparison to succeeed.
3054 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
3057 llvm::Value *
3058 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
3059 llvm::Value *MemPtr,
3060 const MemberPointerType *MPT) {
3061 CGBuilderTy &Builder = CGF.Builder;
3062 llvm::SmallVector<llvm::Constant *, 4> fields;
3063 // We only need one field for member functions.
3064 if (MPT->isMemberFunctionPointer())
3065 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
3066 else
3067 GetNullMemberPointerFields(MPT, fields);
3068 assert(!fields.empty());
3069 llvm::Value *FirstField = MemPtr;
3070 if (MemPtr->getType()->isStructTy())
3071 FirstField = Builder.CreateExtractValue(MemPtr, 0);
3072 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
3074 // For function member pointers, we only need to test the function pointer
3075 // field. The other fields if any can be garbage.
3076 if (MPT->isMemberFunctionPointer())
3077 return Res;
3079 // Otherwise, emit a series of compares and combine the results.
3080 for (int I = 1, E = fields.size(); I < E; ++I) {
3081 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
3082 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
3083 Res = Builder.CreateOr(Res, Next, "memptr.tobool");
3085 return Res;
3088 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
3089 llvm::Constant *Val) {
3090 // Function pointers are null if the pointer in the first field is null.
3091 if (MPT->isMemberFunctionPointer()) {
3092 llvm::Constant *FirstField = Val->getType()->isStructTy() ?
3093 Val->getAggregateElement(0U) : Val;
3094 return FirstField->isNullValue();
3097 // If it's not a function pointer and it's zero initializable, we can easily
3098 // check zero.
3099 if (isZeroInitializable(MPT) && Val->isNullValue())
3100 return true;
3102 // Otherwise, break down all the fields for comparison. Hopefully these
3103 // little Constants are reused, while a big null struct might not be.
3104 llvm::SmallVector<llvm::Constant *, 4> Fields;
3105 GetNullMemberPointerFields(MPT, Fields);
3106 if (Fields.size() == 1) {
3107 assert(Val->getType()->isIntegerTy());
3108 return Val == Fields[0];
3111 unsigned I, E;
3112 for (I = 0, E = Fields.size(); I != E; ++I) {
3113 if (Val->getAggregateElement(I) != Fields[I])
3114 break;
3116 return I == E;
3119 llvm::Value *
3120 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
3121 Address This,
3122 llvm::Value *VBPtrOffset,
3123 llvm::Value *VBTableOffset,
3124 llvm::Value **VBPtrOut) {
3125 CGBuilderTy &Builder = CGF.Builder;
3126 // Load the vbtable pointer from the vbptr in the instance.
3127 llvm::Value *VBPtr = Builder.CreateInBoundsGEP(CGM.Int8Ty, This.getPointer(),
3128 VBPtrOffset, "vbptr");
3129 if (VBPtrOut)
3130 *VBPtrOut = VBPtr;
3132 CharUnits VBPtrAlign;
3133 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
3134 VBPtrAlign = This.getAlignment().alignmentAtOffset(
3135 CharUnits::fromQuantity(CI->getSExtValue()));
3136 } else {
3137 VBPtrAlign = CGF.getPointerAlign();
3140 llvm::Value *VBTable = Builder.CreateAlignedLoad(
3141 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable");
3143 // Translate from byte offset to table index. It improves analyzability.
3144 llvm::Value *VBTableIndex = Builder.CreateAShr(
3145 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
3146 "vbtindex", /*isExact=*/true);
3148 // Load an i32 offset from the vb-table.
3149 llvm::Value *VBaseOffs =
3150 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex);
3151 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs,
3152 CharUnits::fromQuantity(4), "vbase_offs");
3155 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
3156 // it.
3157 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3158 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3159 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3160 CGBuilderTy &Builder = CGF.Builder;
3161 Base = Base.withElementType(CGM.Int8Ty);
3162 llvm::BasicBlock *OriginalBB = nullptr;
3163 llvm::BasicBlock *SkipAdjustBB = nullptr;
3164 llvm::BasicBlock *VBaseAdjustBB = nullptr;
3166 // In the unspecified inheritance model, there might not be a vbtable at all,
3167 // in which case we need to skip the virtual base lookup. If there is a
3168 // vbtable, the first entry is a no-op entry that gives back the original
3169 // base, so look for a virtual base adjustment offset of zero.
3170 if (VBPtrOffset) {
3171 OriginalBB = Builder.GetInsertBlock();
3172 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3173 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3174 llvm::Value *IsVirtual =
3175 Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3176 "memptr.is_vbase");
3177 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3178 CGF.EmitBlock(VBaseAdjustBB);
3181 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3182 // know the vbptr offset.
3183 if (!VBPtrOffset) {
3184 CharUnits offs = CharUnits::Zero();
3185 if (!RD->hasDefinition()) {
3186 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3187 unsigned DiagID = Diags.getCustomDiagID(
3188 DiagnosticsEngine::Error,
3189 "member pointer representation requires a "
3190 "complete class type for %0 to perform this expression");
3191 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3192 } else if (RD->getNumVBases())
3193 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3194 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3196 llvm::Value *VBPtr = nullptr;
3197 llvm::Value *VBaseOffs =
3198 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3199 llvm::Value *AdjustedBase =
3200 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs);
3202 // Merge control flow with the case where we didn't have to adjust.
3203 if (VBaseAdjustBB) {
3204 Builder.CreateBr(SkipAdjustBB);
3205 CGF.EmitBlock(SkipAdjustBB);
3206 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3207 Phi->addIncoming(Base.getPointer(), OriginalBB);
3208 Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3209 return Phi;
3211 return AdjustedBase;
3214 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3215 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3216 const MemberPointerType *MPT) {
3217 assert(MPT->isMemberDataPointer());
3218 CGBuilderTy &Builder = CGF.Builder;
3219 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3220 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3222 // Extract the fields we need, regardless of model. We'll apply them if we
3223 // have them.
3224 llvm::Value *FieldOffset = MemPtr;
3225 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3226 llvm::Value *VBPtrOffset = nullptr;
3227 if (MemPtr->getType()->isStructTy()) {
3228 // We need to extract values.
3229 unsigned I = 0;
3230 FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3231 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3232 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3233 if (inheritanceModelHasVBTableOffsetField(Inheritance))
3234 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3237 llvm::Value *Addr;
3238 if (VirtualBaseAdjustmentOffset) {
3239 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3240 VBPtrOffset);
3241 } else {
3242 Addr = Base.getPointer();
3245 // Apply the offset, which we assume is non-null.
3246 return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset,
3247 "memptr.offset");
3250 llvm::Value *
3251 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3252 const CastExpr *E,
3253 llvm::Value *Src) {
3254 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3255 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3256 E->getCastKind() == CK_ReinterpretMemberPointer);
3258 // Use constant emission if we can.
3259 if (isa<llvm::Constant>(Src))
3260 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3262 // We may be adding or dropping fields from the member pointer, so we need
3263 // both types and the inheritance models of both records.
3264 const MemberPointerType *SrcTy =
3265 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3266 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3267 bool IsFunc = SrcTy->isMemberFunctionPointer();
3269 // If the classes use the same null representation, reinterpret_cast is a nop.
3270 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3271 if (IsReinterpret && IsFunc)
3272 return Src;
3274 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3275 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3276 if (IsReinterpret &&
3277 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3278 return Src;
3280 CGBuilderTy &Builder = CGF.Builder;
3282 // Branch past the conversion if Src is null.
3283 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3284 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3286 // C++ 5.2.10p9: The null member pointer value is converted to the null member
3287 // pointer value of the destination type.
3288 if (IsReinterpret) {
3289 // For reinterpret casts, sema ensures that src and dst are both functions
3290 // or data and have the same size, which means the LLVM types should match.
3291 assert(Src->getType() == DstNull->getType());
3292 return Builder.CreateSelect(IsNotNull, Src, DstNull);
3295 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3296 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3297 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3298 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3299 CGF.EmitBlock(ConvertBB);
3301 llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3302 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3303 Builder);
3305 Builder.CreateBr(ContinueBB);
3307 // In the continuation, choose between DstNull and Dst.
3308 CGF.EmitBlock(ContinueBB);
3309 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3310 Phi->addIncoming(DstNull, OriginalBB);
3311 Phi->addIncoming(Dst, ConvertBB);
3312 return Phi;
3315 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3316 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3317 CastExpr::path_const_iterator PathBegin,
3318 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3319 CGBuilderTy &Builder) {
3320 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3321 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3322 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3323 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3324 bool IsFunc = SrcTy->isMemberFunctionPointer();
3325 bool IsConstant = isa<llvm::Constant>(Src);
3327 // Decompose src.
3328 llvm::Value *FirstField = Src;
3329 llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3330 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3331 llvm::Value *VBPtrOffset = getZeroInt();
3332 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3333 // We need to extract values.
3334 unsigned I = 0;
3335 FirstField = Builder.CreateExtractValue(Src, I++);
3336 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3337 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3338 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3339 VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3340 if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3341 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3344 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3345 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3346 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3348 // For data pointers, we adjust the field offset directly. For functions, we
3349 // have a separate field.
3350 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3352 // The virtual inheritance model has a quirk: the virtual base table is always
3353 // referenced when dereferencing a member pointer even if the member pointer
3354 // is non-virtual. This is accounted for by adjusting the non-virtual offset
3355 // to point backwards to the top of the MDC from the first VBase. Undo this
3356 // adjustment to normalize the member pointer.
3357 llvm::Value *SrcVBIndexEqZero =
3358 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3359 if (SrcInheritance == MSInheritanceModel::Virtual) {
3360 if (int64_t SrcOffsetToFirstVBase =
3361 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3362 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3363 SrcVBIndexEqZero,
3364 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3365 getZeroInt());
3366 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3370 // A non-zero vbindex implies that we are dealing with a source member in a
3371 // floating virtual base in addition to some non-virtual offset. If the
3372 // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3373 // fixed, base. The difference between these two cases is that the vbindex +
3374 // nvoffset *always* point to the member regardless of what context they are
3375 // evaluated in so long as the vbindex is adjusted. A member inside a fixed
3376 // base requires explicit nv adjustment.
3377 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3378 CGM.IntTy,
3379 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3380 .getQuantity());
3382 llvm::Value *NVDisp;
3383 if (IsDerivedToBase)
3384 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3385 else
3386 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3388 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3390 // Update the vbindex to an appropriate value in the destination because
3391 // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3392 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3393 if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3394 inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3395 if (llvm::GlobalVariable *VDispMap =
3396 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3397 llvm::Value *VBIndex = Builder.CreateExactUDiv(
3398 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3399 if (IsConstant) {
3400 llvm::Constant *Mapping = VDispMap->getInitializer();
3401 VirtualBaseAdjustmentOffset =
3402 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3403 } else {
3404 llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3405 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad(
3406 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(),
3407 VDispMap, Idxs),
3408 CharUnits::fromQuantity(4));
3411 DstVBIndexEqZero =
3412 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3416 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize
3417 // it to the offset of the vbptr.
3418 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3419 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3420 CGM.IntTy,
3421 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3422 VBPtrOffset =
3423 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3426 // Likewise, apply a similar adjustment so that dereferencing the member
3427 // pointer correctly accounts for the distance between the start of the first
3428 // virtual base and the top of the MDC.
3429 if (DstInheritance == MSInheritanceModel::Virtual) {
3430 if (int64_t DstOffsetToFirstVBase =
3431 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3432 llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3433 DstVBIndexEqZero,
3434 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3435 getZeroInt());
3436 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3440 // Recompose dst from the null struct and the adjusted fields from src.
3441 llvm::Value *Dst;
3442 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3443 Dst = FirstField;
3444 } else {
3445 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3446 unsigned Idx = 0;
3447 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3448 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3449 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3450 if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3451 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3452 if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3453 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3455 return Dst;
3458 llvm::Constant *
3459 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3460 llvm::Constant *Src) {
3461 const MemberPointerType *SrcTy =
3462 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3463 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3465 CastKind CK = E->getCastKind();
3467 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3468 E->path_end(), Src);
3471 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3472 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3473 CastExpr::path_const_iterator PathBegin,
3474 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3475 assert(CK == CK_DerivedToBaseMemberPointer ||
3476 CK == CK_BaseToDerivedMemberPointer ||
3477 CK == CK_ReinterpretMemberPointer);
3478 // If src is null, emit a new null for dst. We can't return src because dst
3479 // might have a new representation.
3480 if (MemberPointerConstantIsNull(SrcTy, Src))
3481 return EmitNullMemberPointer(DstTy);
3483 // We don't need to do anything for reinterpret_casts of non-null member
3484 // pointers. We should only get here when the two type representations have
3485 // the same size.
3486 if (CK == CK_ReinterpretMemberPointer)
3487 return Src;
3489 CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3490 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3491 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3493 return Dst;
3496 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3497 CodeGenFunction &CGF, const Expr *E, Address This,
3498 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3499 const MemberPointerType *MPT) {
3500 assert(MPT->isMemberFunctionPointer());
3501 const FunctionProtoType *FPT =
3502 MPT->getPointeeType()->castAs<FunctionProtoType>();
3503 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3504 CGBuilderTy &Builder = CGF.Builder;
3506 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3508 // Extract the fields we need, regardless of model. We'll apply them if we
3509 // have them.
3510 llvm::Value *FunctionPointer = MemPtr;
3511 llvm::Value *NonVirtualBaseAdjustment = nullptr;
3512 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3513 llvm::Value *VBPtrOffset = nullptr;
3514 if (MemPtr->getType()->isStructTy()) {
3515 // We need to extract values.
3516 unsigned I = 0;
3517 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3518 if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3519 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3520 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3521 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3522 if (inheritanceModelHasVBTableOffsetField(Inheritance))
3523 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3526 if (VirtualBaseAdjustmentOffset) {
3527 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3528 VirtualBaseAdjustmentOffset, VBPtrOffset);
3529 } else {
3530 ThisPtrForCall = This.getPointer();
3533 if (NonVirtualBaseAdjustment)
3534 ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall,
3535 NonVirtualBaseAdjustment);
3537 CGCallee Callee(FPT, FunctionPointer);
3538 return Callee;
3541 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3542 return new MicrosoftCXXABI(CGM);
3545 // MS RTTI Overview:
3546 // The run time type information emitted by cl.exe contains 5 distinct types of
3547 // structures. Many of them reference each other.
3549 // TypeInfo: Static classes that are returned by typeid.
3551 // CompleteObjectLocator: Referenced by vftables. They contain information
3552 // required for dynamic casting, including OffsetFromTop. They also contain
3553 // a reference to the TypeInfo for the type and a reference to the
3554 // CompleteHierarchyDescriptor for the type.
3556 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3557 // Used during dynamic_cast to walk a class hierarchy. References a base
3558 // class array and the size of said array.
3560 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
3561 // somewhat of a misnomer because the most derived class is also in the list
3562 // as well as multiple copies of virtual bases (if they occur multiple times
3563 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for
3564 // every path in the hierarchy, in pre-order depth first order. Note, we do
3565 // not declare a specific llvm type for BaseClassArray, it's merely an array
3566 // of BaseClassDescriptor pointers.
3568 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3569 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3570 // BaseClassArray is. It contains information about a class within a
3571 // hierarchy such as: is this base is ambiguous and what is its offset in the
3572 // vbtable. The names of the BaseClassDescriptors have all of their fields
3573 // mangled into them so they can be aggressively deduplicated by the linker.
3575 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3576 StringRef MangledName("??_7type_info@@6B@");
3577 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3578 return VTable;
3579 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3580 /*isConstant=*/true,
3581 llvm::GlobalVariable::ExternalLinkage,
3582 /*Initializer=*/nullptr, MangledName);
3585 namespace {
3587 /// A Helper struct that stores information about a class in a class
3588 /// hierarchy. The information stored in these structs struct is used during
3589 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3590 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3591 // implicit depth first pre-order tree connectivity. getFirstChild and
3592 // getNextSibling allow us to walk the tree efficiently.
3593 struct MSRTTIClass {
3594 enum {
3595 IsPrivateOnPath = 1 | 8,
3596 IsAmbiguous = 2,
3597 IsPrivate = 4,
3598 IsVirtual = 16,
3599 HasHierarchyDescriptor = 64
3601 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3602 uint32_t initialize(const MSRTTIClass *Parent,
3603 const CXXBaseSpecifier *Specifier);
3605 MSRTTIClass *getFirstChild() { return this + 1; }
3606 static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3607 return Child + 1 + Child->NumBases;
3610 const CXXRecordDecl *RD, *VirtualRoot;
3611 uint32_t Flags, NumBases, OffsetInVBase;
3614 /// Recursively initialize the base class array.
3615 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3616 const CXXBaseSpecifier *Specifier) {
3617 Flags = HasHierarchyDescriptor;
3618 if (!Parent) {
3619 VirtualRoot = nullptr;
3620 OffsetInVBase = 0;
3621 } else {
3622 if (Specifier->getAccessSpecifier() != AS_public)
3623 Flags |= IsPrivate | IsPrivateOnPath;
3624 if (Specifier->isVirtual()) {
3625 Flags |= IsVirtual;
3626 VirtualRoot = RD;
3627 OffsetInVBase = 0;
3628 } else {
3629 if (Parent->Flags & IsPrivateOnPath)
3630 Flags |= IsPrivateOnPath;
3631 VirtualRoot = Parent->VirtualRoot;
3632 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3633 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3636 NumBases = 0;
3637 MSRTTIClass *Child = getFirstChild();
3638 for (const CXXBaseSpecifier &Base : RD->bases()) {
3639 NumBases += Child->initialize(this, &Base) + 1;
3640 Child = getNextChild(Child);
3642 return NumBases;
3645 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3646 switch (Ty->getLinkage()) {
3647 case Linkage::Invalid:
3648 llvm_unreachable("Linkage hasn't been computed!");
3650 case Linkage::None:
3651 case Linkage::Internal:
3652 case Linkage::UniqueExternal:
3653 return llvm::GlobalValue::InternalLinkage;
3655 case Linkage::VisibleNone:
3656 case Linkage::Module:
3657 case Linkage::External:
3658 return llvm::GlobalValue::LinkOnceODRLinkage;
3660 llvm_unreachable("Invalid linkage!");
3663 /// An ephemeral helper class for building MS RTTI types. It caches some
3664 /// calls to the module and information about the most derived class in a
3665 /// hierarchy.
3666 struct MSRTTIBuilder {
3667 enum {
3668 HasBranchingHierarchy = 1,
3669 HasVirtualBranchingHierarchy = 2,
3670 HasAmbiguousBases = 4
3673 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3674 : CGM(ABI.CGM), Context(CGM.getContext()),
3675 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3676 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3677 ABI(ABI) {}
3679 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3680 llvm::GlobalVariable *
3681 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3682 llvm::GlobalVariable *getClassHierarchyDescriptor();
3683 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3685 CodeGenModule &CGM;
3686 ASTContext &Context;
3687 llvm::LLVMContext &VMContext;
3688 llvm::Module &Module;
3689 const CXXRecordDecl *RD;
3690 llvm::GlobalVariable::LinkageTypes Linkage;
3691 MicrosoftCXXABI &ABI;
3694 } // namespace
3696 /// Recursively serializes a class hierarchy in pre-order depth first
3697 /// order.
3698 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3699 const CXXRecordDecl *RD) {
3700 Classes.push_back(MSRTTIClass(RD));
3701 for (const CXXBaseSpecifier &Base : RD->bases())
3702 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3705 /// Find ambiguity among base classes.
3706 static void
3707 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3708 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3709 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3710 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3711 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3712 if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3713 !VirtualBases.insert(Class->RD).second) {
3714 Class = MSRTTIClass::getNextChild(Class);
3715 continue;
3717 if (!UniqueBases.insert(Class->RD).second)
3718 AmbiguousBases.insert(Class->RD);
3719 Class++;
3721 if (AmbiguousBases.empty())
3722 return;
3723 for (MSRTTIClass &Class : Classes)
3724 if (AmbiguousBases.count(Class.RD))
3725 Class.Flags |= MSRTTIClass::IsAmbiguous;
3728 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3729 SmallString<256> MangledName;
3731 llvm::raw_svector_ostream Out(MangledName);
3732 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3735 // Check to see if we've already declared this ClassHierarchyDescriptor.
3736 if (auto CHD = Module.getNamedGlobal(MangledName))
3737 return CHD;
3739 // Serialize the class hierarchy and initialize the CHD Fields.
3740 SmallVector<MSRTTIClass, 8> Classes;
3741 serializeClassHierarchy(Classes, RD);
3742 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3743 detectAmbiguousBases(Classes);
3744 int Flags = 0;
3745 for (const MSRTTIClass &Class : Classes) {
3746 if (Class.RD->getNumBases() > 1)
3747 Flags |= HasBranchingHierarchy;
3748 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
3749 // believe the field isn't actually used.
3750 if (Class.Flags & MSRTTIClass::IsAmbiguous)
3751 Flags |= HasAmbiguousBases;
3753 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3754 Flags |= HasVirtualBranchingHierarchy;
3755 // These gep indices are used to get the address of the first element of the
3756 // base class array.
3757 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3758 llvm::ConstantInt::get(CGM.IntTy, 0)};
3760 // Forward-declare the class hierarchy descriptor
3761 auto Type = ABI.getClassHierarchyDescriptorType();
3762 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3763 /*Initializer=*/nullptr,
3764 MangledName);
3765 if (CHD->isWeakForLinker())
3766 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3768 auto *Bases = getBaseClassArray(Classes);
3770 // Initialize the base class ClassHierarchyDescriptor.
3771 llvm::Constant *Fields[] = {
3772 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3773 llvm::ConstantInt::get(CGM.IntTy, Flags),
3774 llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3775 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3776 Bases->getValueType(), Bases,
3777 llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3779 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3780 return CHD;
3783 llvm::GlobalVariable *
3784 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3785 SmallString<256> MangledName;
3787 llvm::raw_svector_ostream Out(MangledName);
3788 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3791 // Forward-declare the base class array.
3792 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3793 // mode) bytes of padding. We provide a pointer sized amount of padding by
3794 // adding +1 to Classes.size(). The sections have pointer alignment and are
3795 // marked pick-any so it shouldn't matter.
3796 llvm::Type *PtrType = ABI.getImageRelativeType(
3797 ABI.getBaseClassDescriptorType()->getPointerTo());
3798 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3799 auto *BCA =
3800 new llvm::GlobalVariable(Module, ArrType,
3801 /*isConstant=*/true, Linkage,
3802 /*Initializer=*/nullptr, MangledName);
3803 if (BCA->isWeakForLinker())
3804 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3806 // Initialize the BaseClassArray.
3807 SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3808 for (MSRTTIClass &Class : Classes)
3809 BaseClassArrayData.push_back(
3810 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3811 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3812 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3813 return BCA;
3816 llvm::GlobalVariable *
3817 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3818 // Compute the fields for the BaseClassDescriptor. They are computed up front
3819 // because they are mangled into the name of the object.
3820 uint32_t OffsetInVBTable = 0;
3821 int32_t VBPtrOffset = -1;
3822 if (Class.VirtualRoot) {
3823 auto &VTableContext = CGM.getMicrosoftVTableContext();
3824 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3825 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3828 SmallString<256> MangledName;
3830 llvm::raw_svector_ostream Out(MangledName);
3831 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3832 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3833 Class.Flags, Out);
3836 // Check to see if we've already declared this object.
3837 if (auto BCD = Module.getNamedGlobal(MangledName))
3838 return BCD;
3840 // Forward-declare the base class descriptor.
3841 auto Type = ABI.getBaseClassDescriptorType();
3842 auto BCD =
3843 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3844 /*Initializer=*/nullptr, MangledName);
3845 if (BCD->isWeakForLinker())
3846 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3848 // Initialize the BaseClassDescriptor.
3849 llvm::Constant *Fields[] = {
3850 ABI.getImageRelativeConstant(
3851 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3852 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3853 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3854 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3855 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3856 llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3857 ABI.getImageRelativeConstant(
3858 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3860 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3861 return BCD;
3864 llvm::GlobalVariable *
3865 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3866 SmallString<256> MangledName;
3868 llvm::raw_svector_ostream Out(MangledName);
3869 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3872 // Check to see if we've already computed this complete object locator.
3873 if (auto COL = Module.getNamedGlobal(MangledName))
3874 return COL;
3876 // Compute the fields of the complete object locator.
3877 int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3878 int VFPtrOffset = 0;
3879 // The offset includes the vtordisp if one exists.
3880 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3881 if (Context.getASTRecordLayout(RD)
3882 .getVBaseOffsetsMap()
3883 .find(VBase)
3884 ->second.hasVtorDisp())
3885 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3887 // Forward-declare the complete object locator.
3888 llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3889 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3890 /*Initializer=*/nullptr, MangledName);
3892 // Initialize the CompleteObjectLocator.
3893 llvm::Constant *Fields[] = {
3894 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3895 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3896 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3897 ABI.getImageRelativeConstant(
3898 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3899 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3900 ABI.getImageRelativeConstant(COL),
3902 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3903 if (!ABI.isImageRelative())
3904 FieldsRef = FieldsRef.drop_back();
3905 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3906 if (COL->isWeakForLinker())
3907 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3908 return COL;
3911 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3912 bool &IsConst, bool &IsVolatile,
3913 bool &IsUnaligned) {
3914 T = Context.getExceptionObjectType(T);
3916 // C++14 [except.handle]p3:
3917 // A handler is a match for an exception object of type E if [...]
3918 // - the handler is of type cv T or const T& where T is a pointer type and
3919 // E is a pointer type that can be converted to T by [...]
3920 // - a qualification conversion
3921 IsConst = false;
3922 IsVolatile = false;
3923 IsUnaligned = false;
3924 QualType PointeeType = T->getPointeeType();
3925 if (!PointeeType.isNull()) {
3926 IsConst = PointeeType.isConstQualified();
3927 IsVolatile = PointeeType.isVolatileQualified();
3928 IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3931 // Member pointer types like "const int A::*" are represented by having RTTI
3932 // for "int A::*" and separately storing the const qualifier.
3933 if (const auto *MPTy = T->getAs<MemberPointerType>())
3934 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3935 MPTy->getClass());
3937 // Pointer types like "const int * const *" are represented by having RTTI
3938 // for "const int **" and separately storing the const qualifier.
3939 if (T->isPointerType())
3940 T = Context.getPointerType(PointeeType.getUnqualifiedType());
3942 return T;
3945 CatchTypeInfo
3946 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3947 QualType CatchHandlerType) {
3948 // TypeDescriptors for exceptions never have qualified pointer types,
3949 // qualifiers are stored separately in order to support qualification
3950 // conversions.
3951 bool IsConst, IsVolatile, IsUnaligned;
3952 Type =
3953 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3955 bool IsReference = CatchHandlerType->isReferenceType();
3957 uint32_t Flags = 0;
3958 if (IsConst)
3959 Flags |= 1;
3960 if (IsVolatile)
3961 Flags |= 2;
3962 if (IsUnaligned)
3963 Flags |= 4;
3964 if (IsReference)
3965 Flags |= 8;
3967 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3968 Flags};
3971 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
3972 /// llvm::GlobalVariable * because different type descriptors have different
3973 /// types, and need to be abstracted. They are abstracting by casting the
3974 /// address to an Int8PtrTy.
3975 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3976 SmallString<256> MangledName;
3978 llvm::raw_svector_ostream Out(MangledName);
3979 getMangleContext().mangleCXXRTTI(Type, Out);
3982 // Check to see if we've already declared this TypeDescriptor.
3983 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3984 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3986 // Note for the future: If we would ever like to do deferred emission of
3987 // RTTI, check if emitting vtables opportunistically need any adjustment.
3989 // Compute the fields for the TypeDescriptor.
3990 SmallString<256> TypeInfoString;
3992 llvm::raw_svector_ostream Out(TypeInfoString);
3993 getMangleContext().mangleCXXRTTIName(Type, Out);
3996 // Declare and initialize the TypeDescriptor.
3997 llvm::Constant *Fields[] = {
3998 getTypeInfoVTable(CGM), // VFPtr
3999 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
4000 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
4001 llvm::StructType *TypeDescriptorType =
4002 getTypeDescriptorType(TypeInfoString);
4003 auto *Var = new llvm::GlobalVariable(
4004 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
4005 getLinkageForRTTI(Type),
4006 llvm::ConstantStruct::get(TypeDescriptorType, Fields),
4007 MangledName);
4008 if (Var->isWeakForLinker())
4009 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
4010 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
4013 /// Gets or a creates a Microsoft CompleteObjectLocator.
4014 llvm::GlobalVariable *
4015 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
4016 const VPtrInfo &Info) {
4017 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
4020 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
4021 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
4022 // There are no constructor variants, always emit the complete destructor.
4023 llvm::Function *Fn =
4024 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
4025 CGM.maybeSetTrivialComdat(*ctor, *Fn);
4026 return;
4029 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
4031 // Emit the base destructor if the base and complete (vbase) destructors are
4032 // equivalent. This effectively implements -mconstructor-aliases as part of
4033 // the ABI.
4034 if (GD.getDtorType() == Dtor_Complete &&
4035 dtor->getParent()->getNumVBases() == 0)
4036 GD = GD.getWithDtorType(Dtor_Base);
4038 // The base destructor is equivalent to the base destructor of its
4039 // base class if there is exactly one non-virtual base class with a
4040 // non-trivial destructor, there are no fields with a non-trivial
4041 // destructor, and the body of the destructor is trivial.
4042 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
4043 return;
4045 llvm::Function *Fn = CGM.codegenCXXStructor(GD);
4046 if (Fn->isWeakForLinker())
4047 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
4050 llvm::Function *
4051 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
4052 CXXCtorType CT) {
4053 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
4055 // Calculate the mangled name.
4056 SmallString<256> ThunkName;
4057 llvm::raw_svector_ostream Out(ThunkName);
4058 getMangleContext().mangleName(GlobalDecl(CD, CT), Out);
4060 // If the thunk has been generated previously, just return it.
4061 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
4062 return cast<llvm::Function>(GV);
4064 // Create the llvm::Function.
4065 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
4066 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
4067 const CXXRecordDecl *RD = CD->getParent();
4068 QualType RecordTy = getContext().getRecordType(RD);
4069 llvm::Function *ThunkFn = llvm::Function::Create(
4070 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
4071 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
4072 FnInfo.getEffectiveCallingConvention()));
4073 if (ThunkFn->isWeakForLinker())
4074 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
4075 bool IsCopy = CT == Ctor_CopyingClosure;
4077 // Start codegen.
4078 CodeGenFunction CGF(CGM);
4079 CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
4081 // Build FunctionArgs.
4082 FunctionArgList FunctionArgs;
4084 // A constructor always starts with a 'this' pointer as its first argument.
4085 buildThisParam(CGF, FunctionArgs);
4087 // Following the 'this' pointer is a reference to the source object that we
4088 // are copying from.
4089 ImplicitParamDecl SrcParam(
4090 getContext(), /*DC=*/nullptr, SourceLocation(),
4091 &getContext().Idents.get("src"),
4092 getContext().getLValueReferenceType(RecordTy,
4093 /*SpelledAsLValue=*/true),
4094 ImplicitParamDecl::Other);
4095 if (IsCopy)
4096 FunctionArgs.push_back(&SrcParam);
4098 // Constructors for classes which utilize virtual bases have an additional
4099 // parameter which indicates whether or not it is being delegated to by a more
4100 // derived constructor.
4101 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
4102 SourceLocation(),
4103 &getContext().Idents.get("is_most_derived"),
4104 getContext().IntTy, ImplicitParamDecl::Other);
4105 // Only add the parameter to the list if the class has virtual bases.
4106 if (RD->getNumVBases() > 0)
4107 FunctionArgs.push_back(&IsMostDerived);
4109 // Start defining the function.
4110 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4111 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
4112 FunctionArgs, CD->getLocation(), SourceLocation());
4113 // Create a scope with an artificial location for the body of this function.
4114 auto AL = ApplyDebugLocation::CreateArtificial(CGF);
4115 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
4116 llvm::Value *This = getThisValue(CGF);
4118 llvm::Value *SrcVal =
4119 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
4120 : nullptr;
4122 CallArgList Args;
4124 // Push the this ptr.
4125 Args.add(RValue::get(This), CD->getThisType());
4127 // Push the src ptr.
4128 if (SrcVal)
4129 Args.add(RValue::get(SrcVal), SrcParam.getType());
4131 // Add the rest of the default arguments.
4132 SmallVector<const Stmt *, 4> ArgVec;
4133 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
4134 for (const ParmVarDecl *PD : params) {
4135 assert(PD->hasDefaultArg() && "ctor closure lacks default args");
4136 ArgVec.push_back(PD->getDefaultArg());
4139 CodeGenFunction::RunCleanupsScope Cleanups(CGF);
4141 const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4142 CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4144 // Insert any ABI-specific implicit constructor arguments.
4145 AddedStructorArgCounts ExtraArgs =
4146 addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4147 /*ForVirtualBase=*/false,
4148 /*Delegating=*/false, Args);
4149 // Call the destructor with our arguments.
4150 llvm::Constant *CalleePtr =
4151 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4152 CGCallee Callee =
4153 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4154 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4155 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4156 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4158 Cleanups.ForceCleanup();
4160 // Emit the ret instruction, remove any temporary instructions created for the
4161 // aid of CodeGen.
4162 CGF.FinishFunction(SourceLocation());
4164 return ThunkFn;
4167 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4168 uint32_t NVOffset,
4169 int32_t VBPtrOffset,
4170 uint32_t VBIndex) {
4171 assert(!T->isReferenceType());
4173 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4174 const CXXConstructorDecl *CD =
4175 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4176 CXXCtorType CT = Ctor_Complete;
4177 if (CD)
4178 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4179 CT = Ctor_CopyingClosure;
4181 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4182 SmallString<256> MangledName;
4184 llvm::raw_svector_ostream Out(MangledName);
4185 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4186 VBPtrOffset, VBIndex, Out);
4188 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4189 return getImageRelativeConstant(GV);
4191 // The TypeDescriptor is used by the runtime to determine if a catch handler
4192 // is appropriate for the exception object.
4193 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4195 // The runtime is responsible for calling the copy constructor if the
4196 // exception is caught by value.
4197 llvm::Constant *CopyCtor;
4198 if (CD) {
4199 if (CT == Ctor_CopyingClosure)
4200 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4201 else
4202 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4204 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4205 } else {
4206 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4208 CopyCtor = getImageRelativeConstant(CopyCtor);
4210 bool IsScalar = !RD;
4211 bool HasVirtualBases = false;
4212 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4213 QualType PointeeType = T;
4214 if (T->isPointerType())
4215 PointeeType = T->getPointeeType();
4216 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4217 HasVirtualBases = RD->getNumVBases() > 0;
4218 if (IdentifierInfo *II = RD->getIdentifier())
4219 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4222 // Encode the relevant CatchableType properties into the Flags bitfield.
4223 // FIXME: Figure out how bits 2 or 8 can get set.
4224 uint32_t Flags = 0;
4225 if (IsScalar)
4226 Flags |= 1;
4227 if (HasVirtualBases)
4228 Flags |= 4;
4229 if (IsStdBadAlloc)
4230 Flags |= 16;
4232 llvm::Constant *Fields[] = {
4233 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4234 TD, // TypeDescriptor
4235 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
4236 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4237 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
4238 llvm::ConstantInt::get(CGM.IntTy, Size), // Size
4239 CopyCtor // CopyCtor
4241 llvm::StructType *CTType = getCatchableTypeType();
4242 auto *GV = new llvm::GlobalVariable(
4243 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4244 llvm::ConstantStruct::get(CTType, Fields), MangledName);
4245 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4246 GV->setSection(".xdata");
4247 if (GV->isWeakForLinker())
4248 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4249 return getImageRelativeConstant(GV);
4252 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4253 assert(!T->isReferenceType());
4255 // See if we've already generated a CatchableTypeArray for this type before.
4256 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4257 if (CTA)
4258 return CTA;
4260 // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4261 // using a SmallSetVector. Duplicates may arise due to virtual bases
4262 // occurring more than once in the hierarchy.
4263 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4265 // C++14 [except.handle]p3:
4266 // A handler is a match for an exception object of type E if [...]
4267 // - the handler is of type cv T or cv T& and T is an unambiguous public
4268 // base class of E, or
4269 // - the handler is of type cv T or const T& where T is a pointer type and
4270 // E is a pointer type that can be converted to T by [...]
4271 // - a standard pointer conversion (4.10) not involving conversions to
4272 // pointers to private or protected or ambiguous classes
4273 const CXXRecordDecl *MostDerivedClass = nullptr;
4274 bool IsPointer = T->isPointerType();
4275 if (IsPointer)
4276 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4277 else
4278 MostDerivedClass = T->getAsCXXRecordDecl();
4280 // Collect all the unambiguous public bases of the MostDerivedClass.
4281 if (MostDerivedClass) {
4282 const ASTContext &Context = getContext();
4283 const ASTRecordLayout &MostDerivedLayout =
4284 Context.getASTRecordLayout(MostDerivedClass);
4285 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4286 SmallVector<MSRTTIClass, 8> Classes;
4287 serializeClassHierarchy(Classes, MostDerivedClass);
4288 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4289 detectAmbiguousBases(Classes);
4290 for (const MSRTTIClass &Class : Classes) {
4291 // Skip any ambiguous or private bases.
4292 if (Class.Flags &
4293 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4294 continue;
4295 // Write down how to convert from a derived pointer to a base pointer.
4296 uint32_t OffsetInVBTable = 0;
4297 int32_t VBPtrOffset = -1;
4298 if (Class.VirtualRoot) {
4299 OffsetInVBTable =
4300 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4301 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4304 // Turn our record back into a pointer if the exception object is a
4305 // pointer.
4306 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4307 if (IsPointer)
4308 RTTITy = Context.getPointerType(RTTITy);
4309 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4310 VBPtrOffset, OffsetInVBTable));
4314 // C++14 [except.handle]p3:
4315 // A handler is a match for an exception object of type E if
4316 // - The handler is of type cv T or cv T& and E and T are the same type
4317 // (ignoring the top-level cv-qualifiers)
4318 CatchableTypes.insert(getCatchableType(T));
4320 // C++14 [except.handle]p3:
4321 // A handler is a match for an exception object of type E if
4322 // - the handler is of type cv T or const T& where T is a pointer type and
4323 // E is a pointer type that can be converted to T by [...]
4324 // - a standard pointer conversion (4.10) not involving conversions to
4325 // pointers to private or protected or ambiguous classes
4327 // C++14 [conv.ptr]p2:
4328 // A prvalue of type "pointer to cv T," where T is an object type, can be
4329 // converted to a prvalue of type "pointer to cv void".
4330 if (IsPointer && T->getPointeeType()->isObjectType())
4331 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4333 // C++14 [except.handle]p3:
4334 // A handler is a match for an exception object of type E if [...]
4335 // - the handler is of type cv T or const T& where T is a pointer or
4336 // pointer to member type and E is std::nullptr_t.
4338 // We cannot possibly list all possible pointer types here, making this
4339 // implementation incompatible with the standard. However, MSVC includes an
4340 // entry for pointer-to-void in this case. Let's do the same.
4341 if (T->isNullPtrType())
4342 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4344 uint32_t NumEntries = CatchableTypes.size();
4345 llvm::Type *CTType =
4346 getImageRelativeType(getCatchableTypeType()->getPointerTo());
4347 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4348 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4349 llvm::Constant *Fields[] = {
4350 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4351 llvm::ConstantArray::get(
4352 AT, llvm::ArrayRef(CatchableTypes.begin(),
4353 CatchableTypes.end())) // CatchableTypes
4355 SmallString<256> MangledName;
4357 llvm::raw_svector_ostream Out(MangledName);
4358 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4360 CTA = new llvm::GlobalVariable(
4361 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4362 llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4363 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4364 CTA->setSection(".xdata");
4365 if (CTA->isWeakForLinker())
4366 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4367 return CTA;
4370 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4371 bool IsConst, IsVolatile, IsUnaligned;
4372 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4374 // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4375 // the exception object may be caught as.
4376 llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4377 // The first field in a CatchableTypeArray is the number of CatchableTypes.
4378 // This is used as a component of the mangled name which means that we need to
4379 // know what it is in order to see if we have previously generated the
4380 // ThrowInfo.
4381 uint32_t NumEntries =
4382 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4383 ->getLimitedValue();
4385 SmallString<256> MangledName;
4387 llvm::raw_svector_ostream Out(MangledName);
4388 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4389 NumEntries, Out);
4392 // Reuse a previously generated ThrowInfo if we have generated an appropriate
4393 // one before.
4394 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4395 return GV;
4397 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4398 // be at least as CV qualified. Encode this requirement into the Flags
4399 // bitfield.
4400 uint32_t Flags = 0;
4401 if (IsConst)
4402 Flags |= 1;
4403 if (IsVolatile)
4404 Flags |= 2;
4405 if (IsUnaligned)
4406 Flags |= 4;
4408 // The cleanup-function (a destructor) must be called when the exception
4409 // object's lifetime ends.
4410 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4411 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4412 if (CXXDestructorDecl *DtorD = RD->getDestructor())
4413 if (!DtorD->isTrivial())
4414 CleanupFn = llvm::ConstantExpr::getBitCast(
4415 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4416 CGM.Int8PtrTy);
4417 // This is unused as far as we can tell, initialize it to null.
4418 llvm::Constant *ForwardCompat =
4419 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4420 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4421 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4422 llvm::StructType *TIType = getThrowInfoType();
4423 llvm::Constant *Fields[] = {
4424 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4425 getImageRelativeConstant(CleanupFn), // CleanupFn
4426 ForwardCompat, // ForwardCompat
4427 PointerToCatchableTypes // CatchableTypeArray
4429 auto *GV = new llvm::GlobalVariable(
4430 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4431 llvm::ConstantStruct::get(TIType, Fields), MangledName.str());
4432 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4433 GV->setSection(".xdata");
4434 if (GV->isWeakForLinker())
4435 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4436 return GV;
4439 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4440 const Expr *SubExpr = E->getSubExpr();
4441 assert(SubExpr && "SubExpr cannot be null");
4442 QualType ThrowType = SubExpr->getType();
4443 // The exception object lives on the stack and it's address is passed to the
4444 // runtime function.
4445 Address AI = CGF.CreateMemTemp(ThrowType);
4446 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4447 /*IsInit=*/true);
4449 // The so-called ThrowInfo is used to describe how the exception object may be
4450 // caught.
4451 llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4453 // Call into the runtime to throw the exception.
4454 llvm::Value *Args[] = {
4455 AI.getPointer(),
4458 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4461 std::pair<llvm::Value *, const CXXRecordDecl *>
4462 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4463 const CXXRecordDecl *RD) {
4464 std::tie(This, std::ignore, RD) =
4465 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4466 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4469 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate(
4470 const CXXRecordDecl *RD) const {
4471 // All aggregates are permitted to be HFA on non-ARM platforms, which mostly
4472 // affects vectorcall on x64/x86.
4473 if (!CGM.getTarget().getTriple().isAArch64())
4474 return true;
4475 // MSVC Windows on Arm64 has its own rules for determining if a type is HFA
4476 // that are inconsistent with the AAPCS64 ABI. The following are our best
4477 // determination of those rules so far, based on observation of MSVC's
4478 // behavior.
4479 if (RD->isEmpty())
4480 return false;
4481 if (RD->isPolymorphic())
4482 return false;
4483 if (RD->hasNonTrivialCopyAssignment())
4484 return false;
4485 if (RD->hasNonTrivialDestructor())
4486 return false;
4487 if (RD->hasNonTrivialDefaultConstructor())
4488 return false;
4489 // These two are somewhat redundant given the caller
4490 // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that
4491 // caller doesn't consider empty bases/fields to be non-homogenous, but it
4492 // looks like Microsoft's AArch64 ABI does care about these empty types &
4493 // anything containing/derived from one is non-homogeneous.
4494 // Instead we could add another CXXABI entry point to query this property and
4495 // have ABIInfo::isHomogeneousAggregate use that property.
4496 // I don't think any other of the features listed above could be true of a
4497 // base/field while not true of the outer struct. For example, if you have a
4498 // base/field that has an non-trivial copy assignment/dtor/default ctor, then
4499 // the outer struct's corresponding operation must be non-trivial.
4500 for (const CXXBaseSpecifier &B : RD->bases()) {
4501 if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) {
4502 if (!isPermittedToBeHomogeneousAggregate(FRD))
4503 return false;
4506 // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate
4507 // checking for padding - but maybe there are ways to end up with an empty
4508 // field without padding? Not that I know of, so don't check fields here &
4509 // rely on the padding check.
4510 return true;