[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Driver / Driver.cpp
blob6f5ff8141032677d426d5e63d343c56fe4b9da4c
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/TargetID.h"
53 #include "clang/Basic/Version.h"
54 #include "clang/Config/config.h"
55 #include "clang/Driver/Action.h"
56 #include "clang/Driver/Compilation.h"
57 #include "clang/Driver/DriverDiagnostic.h"
58 #include "clang/Driver/InputInfo.h"
59 #include "clang/Driver/Job.h"
60 #include "clang/Driver/Options.h"
61 #include "clang/Driver/Phases.h"
62 #include "clang/Driver/SanitizerArgs.h"
63 #include "clang/Driver/Tool.h"
64 #include "clang/Driver/ToolChain.h"
65 #include "clang/Driver/Types.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/StringExtras.h"
69 #include "llvm/ADT/StringRef.h"
70 #include "llvm/ADT/StringSet.h"
71 #include "llvm/ADT/StringSwitch.h"
72 #include "llvm/Config/llvm-config.h"
73 #include "llvm/MC/TargetRegistry.h"
74 #include "llvm/Option/Arg.h"
75 #include "llvm/Option/ArgList.h"
76 #include "llvm/Option/OptSpecifier.h"
77 #include "llvm/Option/OptTable.h"
78 #include "llvm/Option/Option.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/ExitCodes.h"
82 #include "llvm/Support/FileSystem.h"
83 #include "llvm/Support/FormatVariadic.h"
84 #include "llvm/Support/MD5.h"
85 #include "llvm/Support/Path.h"
86 #include "llvm/Support/PrettyStackTrace.h"
87 #include "llvm/Support/Process.h"
88 #include "llvm/Support/Program.h"
89 #include "llvm/Support/StringSaver.h"
90 #include "llvm/Support/VirtualFileSystem.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/TargetParser/Host.h"
93 #include <cstdlib> // ::getenv
94 #include <map>
95 #include <memory>
96 #include <optional>
97 #include <set>
98 #include <utility>
99 #if LLVM_ON_UNIX
100 #include <unistd.h> // getpid
101 #endif
103 using namespace clang::driver;
104 using namespace clang;
105 using namespace llvm::opt;
107 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
108 const ArgList &Args) {
109 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
110 // Offload compilation flow does not support multiple targets for now. We
111 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
112 // to support multiple tool chains first.
113 switch (OffloadTargets.size()) {
114 default:
115 D.Diag(diag::err_drv_only_one_offload_target_supported);
116 return std::nullopt;
117 case 0:
118 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
119 return std::nullopt;
120 case 1:
121 break;
123 return llvm::Triple(OffloadTargets[0]);
126 static std::optional<llvm::Triple>
127 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
128 const llvm::Triple &HostTriple) {
129 if (!Args.hasArg(options::OPT_offload_EQ)) {
130 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
131 : "nvptx-nvidia-cuda");
133 auto TT = getOffloadTargetTriple(D, Args);
134 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
135 TT->getArch() == llvm::Triple::spirv64)) {
136 if (Args.hasArg(options::OPT_emit_llvm))
137 return TT;
138 D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
139 return std::nullopt;
141 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
142 return std::nullopt;
144 static std::optional<llvm::Triple>
145 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
146 if (!Args.hasArg(options::OPT_offload_EQ)) {
147 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149 auto TT = getOffloadTargetTriple(D, Args);
150 if (!TT)
151 return std::nullopt;
152 if (TT->getArch() == llvm::Triple::amdgcn &&
153 TT->getVendor() == llvm::Triple::AMD &&
154 TT->getOS() == llvm::Triple::AMDHSA)
155 return TT;
156 if (TT->getArch() == llvm::Triple::spirv64)
157 return TT;
158 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
159 return std::nullopt;
162 // static
163 std::string Driver::GetResourcesPath(StringRef BinaryPath,
164 StringRef CustomResourceDir) {
165 // Since the resource directory is embedded in the module hash, it's important
166 // that all places that need it call this function, so that they get the
167 // exact same string ("a/../b/" and "b/" get different hashes, for example).
169 // Dir is bin/ or lib/, depending on where BinaryPath is.
170 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172 SmallString<128> P(Dir);
173 if (CustomResourceDir != "") {
174 llvm::sys::path::append(P, CustomResourceDir);
175 } else {
176 // On Windows, libclang.dll is in bin/.
177 // On non-Windows, libclang.so/.dylib is in lib/.
178 // With a static-library build of libclang, LibClangPath will contain the
179 // path of the embedding binary, which for LLVM binaries will be in bin/.
180 // ../lib gets us to lib/ in both cases.
181 P = llvm::sys::path::parent_path(Dir);
182 // This search path is also created in the COFF driver of lld, so any
183 // changes here also needs to happen in lld/COFF/Driver.cpp
184 llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
185 CLANG_VERSION_MAJOR_STRING);
188 return std::string(P.str());
191 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
192 DiagnosticsEngine &Diags, std::string Title,
193 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
194 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
195 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
196 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
197 ModulesModeCXX20(false), LTOMode(LTOK_None),
198 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
199 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
200 CCLogDiagnostics(false), CCGenDiagnostics(false),
201 CCPrintProcessStats(false), CCPrintInternalStats(false),
202 TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
203 CheckInputsExist(true), ProbePrecompiled(true),
204 SuppressMissingInputWarning(false) {
205 // Provide a sane fallback if no VFS is specified.
206 if (!this->VFS)
207 this->VFS = llvm::vfs::getRealFileSystem();
209 Name = std::string(llvm::sys::path::filename(ClangExecutable));
210 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
211 InstalledDir = Dir; // Provide a sensible default installed dir.
213 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
214 // Prepend InstalledDir if SysRoot is relative
215 SmallString<128> P(InstalledDir);
216 llvm::sys::path::append(P, SysRoot);
217 SysRoot = std::string(P);
220 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
221 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
222 #endif
223 #if defined(CLANG_CONFIG_FILE_USER_DIR)
225 SmallString<128> P;
226 llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
227 UserConfigDir = static_cast<std::string>(P);
229 #endif
231 // Compute the path to the resource directory.
232 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
235 void Driver::setDriverMode(StringRef Value) {
236 static StringRef OptName =
237 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
238 if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
239 .Case("gcc", GCCMode)
240 .Case("g++", GXXMode)
241 .Case("cpp", CPPMode)
242 .Case("cl", CLMode)
243 .Case("flang", FlangMode)
244 .Case("dxc", DXCMode)
245 .Default(std::nullopt))
246 Mode = *M;
247 else
248 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
251 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
252 bool UseDriverMode, bool &ContainsError) {
253 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
254 ContainsError = false;
256 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
257 unsigned MissingArgIndex, MissingArgCount;
258 InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
259 MissingArgCount, VisibilityMask);
261 // Check for missing argument error.
262 if (MissingArgCount) {
263 Diag(diag::err_drv_missing_argument)
264 << Args.getArgString(MissingArgIndex) << MissingArgCount;
265 ContainsError |=
266 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
267 SourceLocation()) > DiagnosticsEngine::Warning;
270 // Check for unsupported options.
271 for (const Arg *A : Args) {
272 if (A->getOption().hasFlag(options::Unsupported)) {
273 Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
274 ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
275 SourceLocation()) >
276 DiagnosticsEngine::Warning;
277 continue;
280 // Warn about -mcpu= without an argument.
281 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
282 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
283 ContainsError |= Diags.getDiagnosticLevel(
284 diag::warn_drv_empty_joined_argument,
285 SourceLocation()) > DiagnosticsEngine::Warning;
289 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
290 unsigned DiagID;
291 auto ArgString = A->getAsString(Args);
292 std::string Nearest;
293 if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
294 if (!IsCLMode() &&
295 getOpts().findExact(ArgString, Nearest,
296 llvm::opt::Visibility(options::CC1Option))) {
297 DiagID = diag::err_drv_unknown_argument_with_suggestion;
298 Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
299 } else {
300 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
301 : diag::err_drv_unknown_argument;
302 Diags.Report(DiagID) << ArgString;
304 } else {
305 DiagID = IsCLMode()
306 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
307 : diag::err_drv_unknown_argument_with_suggestion;
308 Diags.Report(DiagID) << ArgString << Nearest;
310 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
311 DiagnosticsEngine::Warning;
314 for (const Arg *A : Args.filtered(options::OPT_o)) {
315 if (ArgStrings[A->getIndex()] == A->getSpelling())
316 continue;
318 // Warn on joined arguments that are similar to a long argument.
319 std::string ArgString = ArgStrings[A->getIndex()];
320 std::string Nearest;
321 if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
322 Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
323 << A->getAsString(Args) << Nearest;
326 return Args;
329 // Determine which compilation mode we are in. We look for options which
330 // affect the phase, starting with the earliest phases, and record which
331 // option we used to determine the final phase.
332 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
333 Arg **FinalPhaseArg) const {
334 Arg *PhaseArg = nullptr;
335 phases::ID FinalPhase;
337 // -{E,EP,P,M,MM} only run the preprocessor.
338 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
339 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
340 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
341 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
342 CCGenDiagnostics) {
343 FinalPhase = phases::Preprocess;
345 // --precompile only runs up to precompilation.
346 // Options that cause the output of C++20 compiled module interfaces or
347 // header units have the same effect.
348 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
349 (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
350 (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
351 options::OPT_fmodule_header_EQ))) {
352 FinalPhase = phases::Precompile;
353 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
354 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
355 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
356 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
357 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
358 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
359 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
360 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
361 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
362 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
363 FinalPhase = phases::Compile;
365 // -S only runs up to the backend.
366 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
367 FinalPhase = phases::Backend;
369 // -c compilation only runs up to the assembler.
370 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
371 FinalPhase = phases::Assemble;
373 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
374 FinalPhase = phases::IfsMerge;
376 // Otherwise do everything.
377 } else
378 FinalPhase = phases::Link;
380 if (FinalPhaseArg)
381 *FinalPhaseArg = PhaseArg;
383 return FinalPhase;
386 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
387 StringRef Value, bool Claim = true) {
388 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
389 Args.getBaseArgs().MakeIndex(Value), Value.data());
390 Args.AddSynthesizedArg(A);
391 if (Claim)
392 A->claim();
393 return A;
396 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
397 const llvm::opt::OptTable &Opts = getOpts();
398 DerivedArgList *DAL = new DerivedArgList(Args);
400 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
401 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
402 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
403 bool IgnoreUnused = false;
404 for (Arg *A : Args) {
405 if (IgnoreUnused)
406 A->claim();
408 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
409 IgnoreUnused = true;
410 continue;
412 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
413 IgnoreUnused = false;
414 continue;
417 // Unfortunately, we have to parse some forwarding options (-Xassembler,
418 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
419 // (assembler and preprocessor), or bypass a previous driver ('collect2').
421 // Rewrite linker options, to replace --no-demangle with a custom internal
422 // option.
423 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
424 A->getOption().matches(options::OPT_Xlinker)) &&
425 A->containsValue("--no-demangle")) {
426 // Add the rewritten no-demangle argument.
427 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
429 // Add the remaining values as Xlinker arguments.
430 for (StringRef Val : A->getValues())
431 if (Val != "--no-demangle")
432 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
434 continue;
437 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
438 // some build systems. We don't try to be complete here because we don't
439 // care to encourage this usage model.
440 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
441 (A->getValue(0) == StringRef("-MD") ||
442 A->getValue(0) == StringRef("-MMD"))) {
443 // Rewrite to -MD/-MMD along with -MF.
444 if (A->getValue(0) == StringRef("-MD"))
445 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
446 else
447 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
448 if (A->getNumValues() == 2)
449 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
450 continue;
453 // Rewrite reserved library names.
454 if (A->getOption().matches(options::OPT_l)) {
455 StringRef Value = A->getValue();
457 // Rewrite unless -nostdlib is present.
458 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
459 Value == "stdc++") {
460 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
461 continue;
464 // Rewrite unconditionally.
465 if (Value == "cc_kext") {
466 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
467 continue;
471 // Pick up inputs via the -- option.
472 if (A->getOption().matches(options::OPT__DASH_DASH)) {
473 A->claim();
474 for (StringRef Val : A->getValues())
475 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
476 continue;
479 DAL->append(A);
482 // DXC mode quits before assembly if an output object file isn't specified.
483 if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
484 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
486 // Enforce -static if -miamcu is present.
487 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
488 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
490 // Add a default value of -mlinker-version=, if one was given and the user
491 // didn't specify one.
492 #if defined(HOST_LINK_VERSION)
493 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
494 strlen(HOST_LINK_VERSION) > 0) {
495 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
496 HOST_LINK_VERSION);
497 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
499 #endif
501 return DAL;
504 /// Compute target triple from args.
506 /// This routine provides the logic to compute a target triple from various
507 /// args passed to the driver and the default triple string.
508 static llvm::Triple computeTargetTriple(const Driver &D,
509 StringRef TargetTriple,
510 const ArgList &Args,
511 StringRef DarwinArchName = "") {
512 // FIXME: Already done in Compilation *Driver::BuildCompilation
513 if (const Arg *A = Args.getLastArg(options::OPT_target))
514 TargetTriple = A->getValue();
516 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
518 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
519 // -gnu* only, and we can not change this, so we have to detect that case as
520 // being the Hurd OS.
521 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
522 Target.setOSName("hurd");
524 // Handle Apple-specific options available here.
525 if (Target.isOSBinFormatMachO()) {
526 // If an explicit Darwin arch name is given, that trumps all.
527 if (!DarwinArchName.empty()) {
528 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
529 Args);
530 return Target;
533 // Handle the Darwin '-arch' flag.
534 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
535 StringRef ArchName = A->getValue();
536 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
540 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
541 // '-mbig-endian'/'-EB'.
542 if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
543 options::OPT_mbig_endian)) {
544 llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
545 ? Target.getLittleEndianArchVariant()
546 : Target.getBigEndianArchVariant();
547 if (T.getArch() != llvm::Triple::UnknownArch) {
548 Target = std::move(T);
549 Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
553 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
554 if (Target.getArch() == llvm::Triple::tce)
555 return Target;
557 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
558 if (Target.isOSAIX()) {
559 if (std::optional<std::string> ObjectModeValue =
560 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
561 StringRef ObjectMode = *ObjectModeValue;
562 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
564 if (ObjectMode.equals("64")) {
565 AT = Target.get64BitArchVariant().getArch();
566 } else if (ObjectMode.equals("32")) {
567 AT = Target.get32BitArchVariant().getArch();
568 } else {
569 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
572 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
573 Target.setArch(AT);
577 // The `-maix[32|64]` flags are only valid for AIX targets.
578 if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
579 A && !Target.isOSAIX())
580 D.Diag(diag::err_drv_unsupported_opt_for_target)
581 << A->getAsString(Args) << Target.str();
583 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
584 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
585 options::OPT_m32, options::OPT_m16,
586 options::OPT_maix32, options::OPT_maix64);
587 if (A) {
588 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
590 if (A->getOption().matches(options::OPT_m64) ||
591 A->getOption().matches(options::OPT_maix64)) {
592 AT = Target.get64BitArchVariant().getArch();
593 if (Target.getEnvironment() == llvm::Triple::GNUX32)
594 Target.setEnvironment(llvm::Triple::GNU);
595 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
596 Target.setEnvironment(llvm::Triple::Musl);
597 } else if (A->getOption().matches(options::OPT_mx32) &&
598 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
599 AT = llvm::Triple::x86_64;
600 if (Target.getEnvironment() == llvm::Triple::Musl)
601 Target.setEnvironment(llvm::Triple::MuslX32);
602 else
603 Target.setEnvironment(llvm::Triple::GNUX32);
604 } else if (A->getOption().matches(options::OPT_m32) ||
605 A->getOption().matches(options::OPT_maix32)) {
606 AT = Target.get32BitArchVariant().getArch();
607 if (Target.getEnvironment() == llvm::Triple::GNUX32)
608 Target.setEnvironment(llvm::Triple::GNU);
609 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
610 Target.setEnvironment(llvm::Triple::Musl);
611 } else if (A->getOption().matches(options::OPT_m16) &&
612 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
613 AT = llvm::Triple::x86;
614 Target.setEnvironment(llvm::Triple::CODE16);
617 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
618 Target.setArch(AT);
619 if (Target.isWindowsGNUEnvironment())
620 toolchains::MinGW::fixTripleArch(D, Target, Args);
624 // Handle -miamcu flag.
625 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
626 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
627 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
628 << Target.str();
630 if (A && !A->getOption().matches(options::OPT_m32))
631 D.Diag(diag::err_drv_argument_not_allowed_with)
632 << "-miamcu" << A->getBaseArg().getAsString(Args);
634 Target.setArch(llvm::Triple::x86);
635 Target.setArchName("i586");
636 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
637 Target.setEnvironmentName("");
638 Target.setOS(llvm::Triple::ELFIAMCU);
639 Target.setVendor(llvm::Triple::UnknownVendor);
640 Target.setVendorName("intel");
643 // If target is MIPS adjust the target triple
644 // accordingly to provided ABI name.
645 if (Target.isMIPS()) {
646 if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
647 StringRef ABIName = A->getValue();
648 if (ABIName == "32") {
649 Target = Target.get32BitArchVariant();
650 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
651 Target.getEnvironment() == llvm::Triple::GNUABIN32)
652 Target.setEnvironment(llvm::Triple::GNU);
653 } else if (ABIName == "n32") {
654 Target = Target.get64BitArchVariant();
655 if (Target.getEnvironment() == llvm::Triple::GNU ||
656 Target.getEnvironment() == llvm::Triple::GNUABI64)
657 Target.setEnvironment(llvm::Triple::GNUABIN32);
658 } else if (ABIName == "64") {
659 Target = Target.get64BitArchVariant();
660 if (Target.getEnvironment() == llvm::Triple::GNU ||
661 Target.getEnvironment() == llvm::Triple::GNUABIN32)
662 Target.setEnvironment(llvm::Triple::GNUABI64);
667 // If target is RISC-V adjust the target triple according to
668 // provided architecture name
669 if (Target.isRISCV()) {
670 if (Args.hasArg(options::OPT_march_EQ) ||
671 Args.hasArg(options::OPT_mcpu_EQ)) {
672 StringRef ArchName = tools::riscv::getRISCVArch(Args, Target);
673 if (ArchName.starts_with_insensitive("rv32"))
674 Target.setArch(llvm::Triple::riscv32);
675 else if (ArchName.starts_with_insensitive("rv64"))
676 Target.setArch(llvm::Triple::riscv64);
680 return Target;
683 // Parse the LTO options and record the type of LTO compilation
684 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
685 // option occurs last.
686 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
687 OptSpecifier OptEq, OptSpecifier OptNeg) {
688 if (!Args.hasFlag(OptEq, OptNeg, false))
689 return LTOK_None;
691 const Arg *A = Args.getLastArg(OptEq);
692 StringRef LTOName = A->getValue();
694 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
695 .Case("full", LTOK_Full)
696 .Case("thin", LTOK_Thin)
697 .Default(LTOK_Unknown);
699 if (LTOMode == LTOK_Unknown) {
700 D.Diag(diag::err_drv_unsupported_option_argument)
701 << A->getSpelling() << A->getValue();
702 return LTOK_None;
704 return LTOMode;
707 // Parse the LTO options.
708 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
709 LTOMode =
710 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
712 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
713 options::OPT_fno_offload_lto);
715 // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
716 if (Args.hasFlag(options::OPT_fopenmp_target_jit,
717 options::OPT_fno_openmp_target_jit, false)) {
718 if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
719 options::OPT_fno_offload_lto))
720 if (OffloadLTOMode != LTOK_Full)
721 Diag(diag::err_drv_incompatible_options)
722 << A->getSpelling() << "-fopenmp-target-jit";
723 OffloadLTOMode = LTOK_Full;
727 /// Compute the desired OpenMP runtime from the flags provided.
728 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
729 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
731 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
732 if (A)
733 RuntimeName = A->getValue();
735 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
736 .Case("libomp", OMPRT_OMP)
737 .Case("libgomp", OMPRT_GOMP)
738 .Case("libiomp5", OMPRT_IOMP5)
739 .Default(OMPRT_Unknown);
741 if (RT == OMPRT_Unknown) {
742 if (A)
743 Diag(diag::err_drv_unsupported_option_argument)
744 << A->getSpelling() << A->getValue();
745 else
746 // FIXME: We could use a nicer diagnostic here.
747 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
750 return RT;
753 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
754 InputList &Inputs) {
757 // CUDA/HIP
759 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
760 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
761 bool IsCuda =
762 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
763 return types::isCuda(I.first);
765 bool IsHIP =
766 llvm::any_of(Inputs,
767 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
768 return types::isHIP(I.first);
769 }) ||
770 C.getInputArgs().hasArg(options::OPT_hip_link) ||
771 C.getInputArgs().hasArg(options::OPT_hipstdpar);
772 if (IsCuda && IsHIP) {
773 Diag(clang::diag::err_drv_mix_cuda_hip);
774 return;
776 if (IsCuda) {
777 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
778 const llvm::Triple &HostTriple = HostTC->getTriple();
779 auto OFK = Action::OFK_Cuda;
780 auto CudaTriple =
781 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
782 if (!CudaTriple)
783 return;
784 // Use the CUDA and host triples as the key into the ToolChains map,
785 // because the device toolchain we create depends on both.
786 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
787 if (!CudaTC) {
788 CudaTC = std::make_unique<toolchains::CudaToolChain>(
789 *this, *CudaTriple, *HostTC, C.getInputArgs());
791 // Emit a warning if the detected CUDA version is too new.
792 CudaInstallationDetector &CudaInstallation =
793 static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
794 if (CudaInstallation.isValid())
795 CudaInstallation.WarnIfUnsupportedVersion();
797 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
798 } else if (IsHIP) {
799 if (auto *OMPTargetArg =
800 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
801 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
802 << OMPTargetArg->getSpelling() << "HIP";
803 return;
805 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
806 auto OFK = Action::OFK_HIP;
807 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
808 if (!HIPTriple)
809 return;
810 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
811 *HostTC, OFK);
812 assert(HIPTC && "Could not create offloading device tool chain.");
813 C.addOffloadDeviceToolChain(HIPTC, OFK);
817 // OpenMP
819 // We need to generate an OpenMP toolchain if the user specified targets with
820 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
821 bool IsOpenMPOffloading =
822 C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
823 options::OPT_fno_openmp, false) &&
824 (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
825 C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
826 if (IsOpenMPOffloading) {
827 // We expect that -fopenmp-targets is always used in conjunction with the
828 // option -fopenmp specifying a valid runtime with offloading support, i.e.
829 // libomp or libiomp.
830 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
831 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
832 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
833 return;
836 llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
837 llvm::StringMap<StringRef> FoundNormalizedTriples;
838 std::multiset<StringRef> OpenMPTriples;
840 // If the user specified -fopenmp-targets= we create a toolchain for each
841 // valid triple. Otherwise, if only --offload-arch= was specified we instead
842 // attempt to derive the appropriate toolchains from the arguments.
843 if (Arg *OpenMPTargets =
844 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
845 if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
846 Diag(clang::diag::warn_drv_empty_joined_argument)
847 << OpenMPTargets->getAsString(C.getInputArgs());
848 return;
850 for (StringRef T : OpenMPTargets->getValues())
851 OpenMPTriples.insert(T);
852 } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
853 !IsHIP && !IsCuda) {
854 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
855 auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
856 auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
857 HostTC->getTriple());
859 // Attempt to deduce the offloading triple from the set of architectures.
860 // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
861 // to temporarily create these toolchains so that we can access tools for
862 // inferring architectures.
863 llvm::DenseSet<StringRef> Archs;
864 if (NVPTXTriple) {
865 auto TempTC = std::make_unique<toolchains::CudaToolChain>(
866 *this, *NVPTXTriple, *HostTC, C.getInputArgs());
867 for (StringRef Arch : getOffloadArchs(
868 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
869 Archs.insert(Arch);
871 if (AMDTriple) {
872 auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
873 *this, *AMDTriple, *HostTC, C.getInputArgs());
874 for (StringRef Arch : getOffloadArchs(
875 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
876 Archs.insert(Arch);
878 if (!AMDTriple && !NVPTXTriple) {
879 for (StringRef Arch :
880 getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
881 Archs.insert(Arch);
884 for (StringRef Arch : Archs) {
885 if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
886 getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
887 DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
888 } else if (AMDTriple &&
889 IsAMDGpuArch(StringToCudaArch(
890 getProcessorFromTargetID(*AMDTriple, Arch)))) {
891 DerivedArchs[AMDTriple->getTriple()].insert(Arch);
892 } else {
893 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
894 return;
898 // If the set is empty then we failed to find a native architecture.
899 if (Archs.empty()) {
900 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
901 << "native";
902 return;
905 for (const auto &TripleAndArchs : DerivedArchs)
906 OpenMPTriples.insert(TripleAndArchs.first());
909 for (StringRef Val : OpenMPTriples) {
910 llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
911 std::string NormalizedName = TT.normalize();
913 // Make sure we don't have a duplicate triple.
914 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
915 if (Duplicate != FoundNormalizedTriples.end()) {
916 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
917 << Val << Duplicate->second;
918 continue;
921 // Store the current triple so that we can check for duplicates in the
922 // following iterations.
923 FoundNormalizedTriples[NormalizedName] = Val;
925 // If the specified target is invalid, emit a diagnostic.
926 if (TT.getArch() == llvm::Triple::UnknownArch)
927 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
928 else {
929 const ToolChain *TC;
930 // Device toolchains have to be selected differently. They pair host
931 // and device in their implementation.
932 if (TT.isNVPTX() || TT.isAMDGCN()) {
933 const ToolChain *HostTC =
934 C.getSingleOffloadToolChain<Action::OFK_Host>();
935 assert(HostTC && "Host toolchain should be always defined.");
936 auto &DeviceTC =
937 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
938 if (!DeviceTC) {
939 if (TT.isNVPTX())
940 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
941 *this, TT, *HostTC, C.getInputArgs());
942 else if (TT.isAMDGCN())
943 DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
944 *this, TT, *HostTC, C.getInputArgs());
945 else
946 assert(DeviceTC && "Device toolchain not defined.");
949 TC = DeviceTC.get();
950 } else
951 TC = &getToolChain(C.getInputArgs(), TT);
952 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
953 if (DerivedArchs.contains(TT.getTriple()))
954 KnownArchs[TC] = DerivedArchs[TT.getTriple()];
957 } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
958 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
959 return;
963 // TODO: Add support for other offloading programming models here.
967 static void appendOneArg(InputArgList &Args, const Arg *Opt,
968 const Arg *BaseArg) {
969 // The args for config files or /clang: flags belong to different InputArgList
970 // objects than Args. This copies an Arg from one of those other InputArgLists
971 // to the ownership of Args.
972 unsigned Index = Args.MakeIndex(Opt->getSpelling());
973 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
974 Index, BaseArg);
975 Copy->getValues() = Opt->getValues();
976 if (Opt->isClaimed())
977 Copy->claim();
978 Copy->setOwnsValues(Opt->getOwnsValues());
979 Opt->setOwnsValues(false);
980 Args.append(Copy);
983 bool Driver::readConfigFile(StringRef FileName,
984 llvm::cl::ExpansionContext &ExpCtx) {
985 // Try opening the given file.
986 auto Status = getVFS().status(FileName);
987 if (!Status) {
988 Diag(diag::err_drv_cannot_open_config_file)
989 << FileName << Status.getError().message();
990 return true;
992 if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
993 Diag(diag::err_drv_cannot_open_config_file)
994 << FileName << "not a regular file";
995 return true;
998 // Try reading the given file.
999 SmallVector<const char *, 32> NewCfgArgs;
1000 if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1001 Diag(diag::err_drv_cannot_read_config_file)
1002 << FileName << toString(std::move(Err));
1003 return true;
1006 // Read options from config file.
1007 llvm::SmallString<128> CfgFileName(FileName);
1008 llvm::sys::path::native(CfgFileName);
1009 bool ContainErrors;
1010 std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1011 ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1012 if (ContainErrors)
1013 return true;
1015 // Claim all arguments that come from a configuration file so that the driver
1016 // does not warn on any that is unused.
1017 for (Arg *A : *NewOptions)
1018 A->claim();
1020 if (!CfgOptions)
1021 CfgOptions = std::move(NewOptions);
1022 else {
1023 // If this is a subsequent config file, append options to the previous one.
1024 for (auto *Opt : *NewOptions) {
1025 const Arg *BaseArg = &Opt->getBaseArg();
1026 if (BaseArg == Opt)
1027 BaseArg = nullptr;
1028 appendOneArg(*CfgOptions, Opt, BaseArg);
1031 ConfigFiles.push_back(std::string(CfgFileName));
1032 return false;
1035 bool Driver::loadConfigFiles() {
1036 llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1037 llvm::cl::tokenizeConfigFile);
1038 ExpCtx.setVFS(&getVFS());
1040 // Process options that change search path for config files.
1041 if (CLOptions) {
1042 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1043 SmallString<128> CfgDir;
1044 CfgDir.append(
1045 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1046 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1047 SystemConfigDir.clear();
1048 else
1049 SystemConfigDir = static_cast<std::string>(CfgDir);
1051 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1052 SmallString<128> CfgDir;
1053 llvm::sys::fs::expand_tilde(
1054 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1055 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1056 UserConfigDir.clear();
1057 else
1058 UserConfigDir = static_cast<std::string>(CfgDir);
1062 // Prepare list of directories where config file is searched for.
1063 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1064 ExpCtx.setSearchDirs(CfgFileSearchDirs);
1066 // First try to load configuration from the default files, return on error.
1067 if (loadDefaultConfigFiles(ExpCtx))
1068 return true;
1070 // Then load configuration files specified explicitly.
1071 SmallString<128> CfgFilePath;
1072 if (CLOptions) {
1073 for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1074 // If argument contains directory separator, treat it as a path to
1075 // configuration file.
1076 if (llvm::sys::path::has_parent_path(CfgFileName)) {
1077 CfgFilePath.assign(CfgFileName);
1078 if (llvm::sys::path::is_relative(CfgFilePath)) {
1079 if (getVFS().makeAbsolute(CfgFilePath)) {
1080 Diag(diag::err_drv_cannot_open_config_file)
1081 << CfgFilePath << "cannot get absolute path";
1082 return true;
1085 } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1086 // Report an error that the config file could not be found.
1087 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1088 for (const StringRef &SearchDir : CfgFileSearchDirs)
1089 if (!SearchDir.empty())
1090 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1091 return true;
1094 // Try to read the config file, return on error.
1095 if (readConfigFile(CfgFilePath, ExpCtx))
1096 return true;
1100 // No error occurred.
1101 return false;
1104 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1105 // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1106 // value.
1107 if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1108 if (*NoConfigEnv)
1109 return false;
1111 if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1112 return false;
1114 std::string RealMode = getExecutableForDriverMode(Mode);
1115 std::string Triple;
1117 // If name prefix is present, no --target= override was passed via CLOptions
1118 // and the name prefix is not a valid triple, force it for backwards
1119 // compatibility.
1120 if (!ClangNameParts.TargetPrefix.empty() &&
1121 computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1122 "/invalid/") {
1123 llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1124 if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1125 PrefixTriple.isOSUnknown())
1126 Triple = PrefixTriple.str();
1129 // Otherwise, use the real triple as used by the driver.
1130 if (Triple.empty()) {
1131 llvm::Triple RealTriple =
1132 computeTargetTriple(*this, TargetTriple, *CLOptions);
1133 Triple = RealTriple.str();
1134 assert(!Triple.empty());
1137 // Search for config files in the following order:
1138 // 1. <triple>-<mode>.cfg using real driver mode
1139 // (e.g. i386-pc-linux-gnu-clang++.cfg).
1140 // 2. <triple>-<mode>.cfg using executable suffix
1141 // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1142 // 3. <triple>.cfg + <mode>.cfg using real driver mode
1143 // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1144 // 4. <triple>.cfg + <mode>.cfg using executable suffix
1145 // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1147 // Try loading <triple>-<mode>.cfg, and return if we find a match.
1148 SmallString<128> CfgFilePath;
1149 std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1150 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1151 return readConfigFile(CfgFilePath, ExpCtx);
1153 bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1154 ClangNameParts.ModeSuffix != RealMode;
1155 if (TryModeSuffix) {
1156 CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1157 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1158 return readConfigFile(CfgFilePath, ExpCtx);
1161 // Try loading <mode>.cfg, and return if loading failed. If a matching file
1162 // was not found, still proceed on to try <triple>.cfg.
1163 CfgFileName = RealMode + ".cfg";
1164 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1165 if (readConfigFile(CfgFilePath, ExpCtx))
1166 return true;
1167 } else if (TryModeSuffix) {
1168 CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1169 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1170 readConfigFile(CfgFilePath, ExpCtx))
1171 return true;
1174 // Try loading <triple>.cfg and return if we find a match.
1175 CfgFileName = Triple + ".cfg";
1176 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1177 return readConfigFile(CfgFilePath, ExpCtx);
1179 // If we were unable to find a config file deduced from executable name,
1180 // that is not an error.
1181 return false;
1184 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1185 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1187 // FIXME: Handle environment options which affect driver behavior, somewhere
1188 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1190 // We look for the driver mode option early, because the mode can affect
1191 // how other options are parsed.
1193 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1194 if (!DriverMode.empty())
1195 setDriverMode(DriverMode);
1197 // FIXME: What are we going to do with -V and -b?
1199 // Arguments specified in command line.
1200 bool ContainsError;
1201 CLOptions = std::make_unique<InputArgList>(
1202 ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1204 // Try parsing configuration file.
1205 if (!ContainsError)
1206 ContainsError = loadConfigFiles();
1207 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1209 // All arguments, from both config file and command line.
1210 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1211 : std::move(*CLOptions));
1213 if (HasConfigFile)
1214 for (auto *Opt : *CLOptions) {
1215 if (Opt->getOption().matches(options::OPT_config))
1216 continue;
1217 const Arg *BaseArg = &Opt->getBaseArg();
1218 if (BaseArg == Opt)
1219 BaseArg = nullptr;
1220 appendOneArg(Args, Opt, BaseArg);
1223 // In CL mode, look for any pass-through arguments
1224 if (IsCLMode() && !ContainsError) {
1225 SmallVector<const char *, 16> CLModePassThroughArgList;
1226 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1227 A->claim();
1228 CLModePassThroughArgList.push_back(A->getValue());
1231 if (!CLModePassThroughArgList.empty()) {
1232 // Parse any pass through args using default clang processing rather
1233 // than clang-cl processing.
1234 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1235 ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1236 ContainsError));
1238 if (!ContainsError)
1239 for (auto *Opt : *CLModePassThroughOptions) {
1240 appendOneArg(Args, Opt, nullptr);
1245 // Check for working directory option before accessing any files
1246 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1247 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1248 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1250 // FIXME: This stuff needs to go into the Compilation, not the driver.
1251 bool CCCPrintPhases;
1253 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1254 Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1255 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1257 // f(no-)integated-cc1 is also used very early in main.
1258 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1259 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1261 // Ignore -pipe.
1262 Args.ClaimAllArgs(options::OPT_pipe);
1264 // Extract -ccc args.
1266 // FIXME: We need to figure out where this behavior should live. Most of it
1267 // should be outside in the client; the parts that aren't should have proper
1268 // options, either by introducing new ones or by overloading gcc ones like -V
1269 // or -b.
1270 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1271 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1272 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1273 CCCGenericGCCName = A->getValue();
1275 // Process -fproc-stat-report options.
1276 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1277 CCPrintProcessStats = true;
1278 CCPrintStatReportFilename = A->getValue();
1280 if (Args.hasArg(options::OPT_fproc_stat_report))
1281 CCPrintProcessStats = true;
1283 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1284 // and getToolChain is const.
1285 if (IsCLMode()) {
1286 // clang-cl targets MSVC-style Win32.
1287 llvm::Triple T(TargetTriple);
1288 T.setOS(llvm::Triple::Win32);
1289 T.setVendor(llvm::Triple::PC);
1290 T.setEnvironment(llvm::Triple::MSVC);
1291 T.setObjectFormat(llvm::Triple::COFF);
1292 if (Args.hasArg(options::OPT__SLASH_arm64EC))
1293 T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1294 TargetTriple = T.str();
1295 } else if (IsDXCMode()) {
1296 // Build TargetTriple from target_profile option for clang-dxc.
1297 if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1298 StringRef TargetProfile = A->getValue();
1299 if (auto Triple =
1300 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1301 TargetTriple = *Triple;
1302 else
1303 Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1305 A->claim();
1307 // TODO: Specify Vulkan target environment somewhere in the triple.
1308 if (Args.hasArg(options::OPT_spirv)) {
1309 llvm::Triple T(TargetTriple);
1310 T.setArch(llvm::Triple::spirv);
1311 TargetTriple = T.str();
1313 } else {
1314 Diag(diag::err_drv_dxc_missing_target_profile);
1318 if (const Arg *A = Args.getLastArg(options::OPT_target))
1319 TargetTriple = A->getValue();
1320 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1321 Dir = InstalledDir = A->getValue();
1322 for (const Arg *A : Args.filtered(options::OPT_B)) {
1323 A->claim();
1324 PrefixDirs.push_back(A->getValue(0));
1326 if (std::optional<std::string> CompilerPathValue =
1327 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1328 StringRef CompilerPath = *CompilerPathValue;
1329 while (!CompilerPath.empty()) {
1330 std::pair<StringRef, StringRef> Split =
1331 CompilerPath.split(llvm::sys::EnvPathSeparator);
1332 PrefixDirs.push_back(std::string(Split.first));
1333 CompilerPath = Split.second;
1336 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1337 SysRoot = A->getValue();
1338 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1339 DyldPrefix = A->getValue();
1341 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1342 ResourceDir = A->getValue();
1344 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1345 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1346 .Case("cwd", SaveTempsCwd)
1347 .Case("obj", SaveTempsObj)
1348 .Default(SaveTempsCwd);
1351 if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1352 options::OPT_offload_device_only,
1353 options::OPT_offload_host_device)) {
1354 if (A->getOption().matches(options::OPT_offload_host_only))
1355 Offload = OffloadHost;
1356 else if (A->getOption().matches(options::OPT_offload_device_only))
1357 Offload = OffloadDevice;
1358 else
1359 Offload = OffloadHostDevice;
1362 setLTOMode(Args);
1364 // Process -fembed-bitcode= flags.
1365 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1366 StringRef Name = A->getValue();
1367 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1368 .Case("off", EmbedNone)
1369 .Case("all", EmbedBitcode)
1370 .Case("bitcode", EmbedBitcode)
1371 .Case("marker", EmbedMarker)
1372 .Default(~0U);
1373 if (Model == ~0U) {
1374 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1375 << Name;
1376 } else
1377 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1380 // Remove existing compilation database so that each job can append to it.
1381 if (Arg *A = Args.getLastArg(options::OPT_MJ))
1382 llvm::sys::fs::remove(A->getValue());
1384 // Setting up the jobs for some precompile cases depends on whether we are
1385 // treating them as PCH, implicit modules or C++20 ones.
1386 // TODO: inferring the mode like this seems fragile (it meets the objective
1387 // of not requiring anything new for operation, however).
1388 const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1389 ModulesModeCXX20 =
1390 !Args.hasArg(options::OPT_fmodules) && Std &&
1391 (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1392 Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1393 Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1394 Std->containsValue("c++latest"));
1396 // Process -fmodule-header{=} flags.
1397 if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1398 options::OPT_fmodule_header)) {
1399 // These flags force C++20 handling of headers.
1400 ModulesModeCXX20 = true;
1401 if (A->getOption().matches(options::OPT_fmodule_header))
1402 CXX20HeaderType = HeaderMode_Default;
1403 else {
1404 StringRef ArgName = A->getValue();
1405 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1406 .Case("user", HeaderMode_User)
1407 .Case("system", HeaderMode_System)
1408 .Default(~0U);
1409 if (Kind == ~0U) {
1410 Diags.Report(diag::err_drv_invalid_value)
1411 << A->getAsString(Args) << ArgName;
1412 } else
1413 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1417 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1418 std::make_unique<InputArgList>(std::move(Args));
1420 // Perform the default argument translations.
1421 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1423 // Owned by the host.
1424 const ToolChain &TC = getToolChain(
1425 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1427 // Report warning when arm64EC option is overridden by specified target
1428 if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1429 TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1430 UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1431 getDiags().Report(clang::diag::warn_target_override_arm64ec)
1432 << TC.getTriple().str();
1435 // A common user mistake is specifying a target of aarch64-none-eabi or
1436 // arm-none-elf whereas the correct names are aarch64-none-elf &
1437 // arm-none-eabi. Detect these cases and issue a warning.
1438 if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1439 TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1440 switch (TC.getTriple().getArch()) {
1441 case llvm::Triple::arm:
1442 case llvm::Triple::armeb:
1443 case llvm::Triple::thumb:
1444 case llvm::Triple::thumbeb:
1445 if (TC.getTriple().getEnvironmentName() == "elf") {
1446 Diag(diag::warn_target_unrecognized_env)
1447 << TargetTriple
1448 << (TC.getTriple().getArchName().str() + "-none-eabi");
1450 break;
1451 case llvm::Triple::aarch64:
1452 case llvm::Triple::aarch64_be:
1453 case llvm::Triple::aarch64_32:
1454 if (TC.getTriple().getEnvironmentName().startswith("eabi")) {
1455 Diag(diag::warn_target_unrecognized_env)
1456 << TargetTriple
1457 << (TC.getTriple().getArchName().str() + "-none-elf");
1459 break;
1460 default:
1461 break;
1465 // The compilation takes ownership of Args.
1466 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1467 ContainsError);
1469 if (!HandleImmediateArgs(*C))
1470 return C;
1472 // Construct the list of inputs.
1473 InputList Inputs;
1474 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1476 // Populate the tool chains for the offloading devices, if any.
1477 CreateOffloadingDeviceToolChains(*C, Inputs);
1479 // Construct the list of abstract actions to perform for this compilation. On
1480 // MachO targets this uses the driver-driver and universal actions.
1481 if (TC.getTriple().isOSBinFormatMachO())
1482 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1483 else
1484 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1486 if (CCCPrintPhases) {
1487 PrintActions(*C);
1488 return C;
1491 BuildJobs(*C);
1493 return C;
1496 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1497 llvm::opt::ArgStringList ASL;
1498 for (const auto *A : Args) {
1499 // Use user's original spelling of flags. For example, use
1500 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1501 // wrote the former.
1502 while (A->getAlias())
1503 A = A->getAlias();
1504 A->render(Args, ASL);
1507 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1508 if (I != ASL.begin())
1509 OS << ' ';
1510 llvm::sys::printArg(OS, *I, true);
1512 OS << '\n';
1515 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1516 SmallString<128> &CrashDiagDir) {
1517 using namespace llvm::sys;
1518 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1519 "Only knows about .crash files on Darwin");
1521 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1522 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1523 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1524 path::home_directory(CrashDiagDir);
1525 if (CrashDiagDir.startswith("/var/root"))
1526 CrashDiagDir = "/";
1527 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1528 int PID =
1529 #if LLVM_ON_UNIX
1530 getpid();
1531 #else
1533 #endif
1534 std::error_code EC;
1535 fs::file_status FileStatus;
1536 TimePoint<> LastAccessTime;
1537 SmallString<128> CrashFilePath;
1538 // Lookup the .crash files and get the one generated by a subprocess spawned
1539 // by this driver invocation.
1540 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1541 File != FileEnd && !EC; File.increment(EC)) {
1542 StringRef FileName = path::filename(File->path());
1543 if (!FileName.startswith(Name))
1544 continue;
1545 if (fs::status(File->path(), FileStatus))
1546 continue;
1547 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1548 llvm::MemoryBuffer::getFile(File->path());
1549 if (!CrashFile)
1550 continue;
1551 // The first line should start with "Process:", otherwise this isn't a real
1552 // .crash file.
1553 StringRef Data = CrashFile.get()->getBuffer();
1554 if (!Data.startswith("Process:"))
1555 continue;
1556 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1557 size_t ParentProcPos = Data.find("Parent Process:");
1558 if (ParentProcPos == StringRef::npos)
1559 continue;
1560 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1561 if (LineEnd == StringRef::npos)
1562 continue;
1563 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1564 int OpenBracket = -1, CloseBracket = -1;
1565 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1566 if (ParentProcess[i] == '[')
1567 OpenBracket = i;
1568 if (ParentProcess[i] == ']')
1569 CloseBracket = i;
1571 // Extract the parent process PID from the .crash file and check whether
1572 // it matches this driver invocation pid.
1573 int CrashPID;
1574 if (OpenBracket < 0 || CloseBracket < 0 ||
1575 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1576 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1577 continue;
1580 // Found a .crash file matching the driver pid. To avoid getting an older
1581 // and misleading crash file, continue looking for the most recent.
1582 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1583 // multiple crashes poiting to the same parent process. Since the driver
1584 // does not collect pid information for the dispatched invocation there's
1585 // currently no way to distinguish among them.
1586 const auto FileAccessTime = FileStatus.getLastModificationTime();
1587 if (FileAccessTime > LastAccessTime) {
1588 CrashFilePath.assign(File->path());
1589 LastAccessTime = FileAccessTime;
1593 // If found, copy it over to the location of other reproducer files.
1594 if (!CrashFilePath.empty()) {
1595 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1596 if (EC)
1597 return false;
1598 return true;
1601 return false;
1604 static const char BugReporMsg[] =
1605 "\n********************\n\n"
1606 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1607 "Preprocessed source(s) and associated run script(s) are located at:";
1609 // When clang crashes, produce diagnostic information including the fully
1610 // preprocessed source file(s). Request that the developer attach the
1611 // diagnostic information to a bug report.
1612 void Driver::generateCompilationDiagnostics(
1613 Compilation &C, const Command &FailingCommand,
1614 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1615 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1616 return;
1618 unsigned Level = 1;
1619 if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1620 Level = llvm::StringSwitch<unsigned>(A->getValue())
1621 .Case("off", 0)
1622 .Case("compiler", 1)
1623 .Case("all", 2)
1624 .Default(1);
1626 if (!Level)
1627 return;
1629 // Don't try to generate diagnostics for dsymutil jobs.
1630 if (FailingCommand.getCreator().isDsymutilJob())
1631 return;
1633 bool IsLLD = false;
1634 ArgStringList SavedTemps;
1635 if (FailingCommand.getCreator().isLinkJob()) {
1636 C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1637 if (!IsLLD || Level < 2)
1638 return;
1640 // If lld crashed, we will re-run the same command with the input it used
1641 // to have. In that case we should not remove temp files in
1642 // initCompilationForDiagnostics yet. They will be added back and removed
1643 // later.
1644 SavedTemps = std::move(C.getTempFiles());
1645 assert(!C.getTempFiles().size());
1648 // Print the version of the compiler.
1649 PrintVersion(C, llvm::errs());
1651 // Suppress driver output and emit preprocessor output to temp file.
1652 CCGenDiagnostics = true;
1654 // Save the original job command(s).
1655 Command Cmd = FailingCommand;
1657 // Keep track of whether we produce any errors while trying to produce
1658 // preprocessed sources.
1659 DiagnosticErrorTrap Trap(Diags);
1661 // Suppress tool output.
1662 C.initCompilationForDiagnostics();
1664 // If lld failed, rerun it again with --reproduce.
1665 if (IsLLD) {
1666 const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1667 Command NewLLDInvocation = Cmd;
1668 llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1669 StringRef ReproduceOption =
1670 C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1671 ? "/reproduce:"
1672 : "--reproduce=";
1673 ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1674 NewLLDInvocation.replaceArguments(std::move(ArgList));
1676 // Redirect stdout/stderr to /dev/null.
1677 NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1678 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1679 Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1680 Diag(clang::diag::note_drv_command_failed_diag_msg)
1681 << "\n\n********************";
1682 if (Report)
1683 Report->TemporaryFiles.push_back(TmpName);
1684 return;
1687 // Construct the list of inputs.
1688 InputList Inputs;
1689 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1691 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1692 bool IgnoreInput = false;
1694 // Ignore input from stdin or any inputs that cannot be preprocessed.
1695 // Check type first as not all linker inputs have a value.
1696 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1697 IgnoreInput = true;
1698 } else if (!strcmp(it->second->getValue(), "-")) {
1699 Diag(clang::diag::note_drv_command_failed_diag_msg)
1700 << "Error generating preprocessed source(s) - "
1701 "ignoring input from stdin.";
1702 IgnoreInput = true;
1705 if (IgnoreInput) {
1706 it = Inputs.erase(it);
1707 ie = Inputs.end();
1708 } else {
1709 ++it;
1713 if (Inputs.empty()) {
1714 Diag(clang::diag::note_drv_command_failed_diag_msg)
1715 << "Error generating preprocessed source(s) - "
1716 "no preprocessable inputs.";
1717 return;
1720 // Don't attempt to generate preprocessed files if multiple -arch options are
1721 // used, unless they're all duplicates.
1722 llvm::StringSet<> ArchNames;
1723 for (const Arg *A : C.getArgs()) {
1724 if (A->getOption().matches(options::OPT_arch)) {
1725 StringRef ArchName = A->getValue();
1726 ArchNames.insert(ArchName);
1729 if (ArchNames.size() > 1) {
1730 Diag(clang::diag::note_drv_command_failed_diag_msg)
1731 << "Error generating preprocessed source(s) - cannot generate "
1732 "preprocessed source with multiple -arch options.";
1733 return;
1736 // Construct the list of abstract actions to perform for this compilation. On
1737 // Darwin OSes this uses the driver-driver and builds universal actions.
1738 const ToolChain &TC = C.getDefaultToolChain();
1739 if (TC.getTriple().isOSBinFormatMachO())
1740 BuildUniversalActions(C, TC, Inputs);
1741 else
1742 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1744 BuildJobs(C);
1746 // If there were errors building the compilation, quit now.
1747 if (Trap.hasErrorOccurred()) {
1748 Diag(clang::diag::note_drv_command_failed_diag_msg)
1749 << "Error generating preprocessed source(s).";
1750 return;
1753 // Generate preprocessed output.
1754 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1755 C.ExecuteJobs(C.getJobs(), FailingCommands);
1757 // If any of the preprocessing commands failed, clean up and exit.
1758 if (!FailingCommands.empty()) {
1759 Diag(clang::diag::note_drv_command_failed_diag_msg)
1760 << "Error generating preprocessed source(s).";
1761 return;
1764 const ArgStringList &TempFiles = C.getTempFiles();
1765 if (TempFiles.empty()) {
1766 Diag(clang::diag::note_drv_command_failed_diag_msg)
1767 << "Error generating preprocessed source(s).";
1768 return;
1771 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1773 SmallString<128> VFS;
1774 SmallString<128> ReproCrashFilename;
1775 for (const char *TempFile : TempFiles) {
1776 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1777 if (Report)
1778 Report->TemporaryFiles.push_back(TempFile);
1779 if (ReproCrashFilename.empty()) {
1780 ReproCrashFilename = TempFile;
1781 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1783 if (StringRef(TempFile).endswith(".cache")) {
1784 // In some cases (modules) we'll dump extra data to help with reproducing
1785 // the crash into a directory next to the output.
1786 VFS = llvm::sys::path::filename(TempFile);
1787 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1791 for (const char *TempFile : SavedTemps)
1792 C.addTempFile(TempFile);
1794 // Assume associated files are based off of the first temporary file.
1795 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1797 llvm::SmallString<128> Script(CrashInfo.Filename);
1798 llvm::sys::path::replace_extension(Script, "sh");
1799 std::error_code EC;
1800 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1801 llvm::sys::fs::FA_Write,
1802 llvm::sys::fs::OF_Text);
1803 if (EC) {
1804 Diag(clang::diag::note_drv_command_failed_diag_msg)
1805 << "Error generating run script: " << Script << " " << EC.message();
1806 } else {
1807 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1808 << "# Driver args: ";
1809 printArgList(ScriptOS, C.getInputArgs());
1810 ScriptOS << "# Original command: ";
1811 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1812 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1813 if (!AdditionalInformation.empty())
1814 ScriptOS << "\n# Additional information: " << AdditionalInformation
1815 << "\n";
1816 if (Report)
1817 Report->TemporaryFiles.push_back(std::string(Script.str()));
1818 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1821 // On darwin, provide information about the .crash diagnostic report.
1822 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1823 SmallString<128> CrashDiagDir;
1824 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1825 Diag(clang::diag::note_drv_command_failed_diag_msg)
1826 << ReproCrashFilename.str();
1827 } else { // Suggest a directory for the user to look for .crash files.
1828 llvm::sys::path::append(CrashDiagDir, Name);
1829 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1830 Diag(clang::diag::note_drv_command_failed_diag_msg)
1831 << "Crash backtrace is located in";
1832 Diag(clang::diag::note_drv_command_failed_diag_msg)
1833 << CrashDiagDir.str();
1834 Diag(clang::diag::note_drv_command_failed_diag_msg)
1835 << "(choose the .crash file that corresponds to your crash)";
1839 Diag(clang::diag::note_drv_command_failed_diag_msg)
1840 << "\n\n********************";
1843 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1844 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1845 // capacity if the tool does not support response files, there is a chance/
1846 // that things will just work without a response file, so we silently just
1847 // skip it.
1848 if (Cmd.getResponseFileSupport().ResponseKind ==
1849 ResponseFileSupport::RF_None ||
1850 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1851 Cmd.getArguments()))
1852 return;
1854 std::string TmpName = GetTemporaryPath("response", "txt");
1855 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1858 int Driver::ExecuteCompilation(
1859 Compilation &C,
1860 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1861 if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1862 if (C.getArgs().hasArg(options::OPT_v))
1863 C.getJobs().Print(llvm::errs(), "\n", true);
1865 C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1867 // If there were errors building the compilation, quit now.
1868 if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1869 return 1;
1871 return 0;
1874 // Just print if -### was present.
1875 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1876 C.getJobs().Print(llvm::errs(), "\n", true);
1877 return Diags.hasErrorOccurred() ? 1 : 0;
1880 // If there were errors building the compilation, quit now.
1881 if (Diags.hasErrorOccurred())
1882 return 1;
1884 // Set up response file names for each command, if necessary.
1885 for (auto &Job : C.getJobs())
1886 setUpResponseFiles(C, Job);
1888 C.ExecuteJobs(C.getJobs(), FailingCommands);
1890 // If the command succeeded, we are done.
1891 if (FailingCommands.empty())
1892 return 0;
1894 // Otherwise, remove result files and print extra information about abnormal
1895 // failures.
1896 int Res = 0;
1897 for (const auto &CmdPair : FailingCommands) {
1898 int CommandRes = CmdPair.first;
1899 const Command *FailingCommand = CmdPair.second;
1901 // Remove result files if we're not saving temps.
1902 if (!isSaveTempsEnabled()) {
1903 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1904 C.CleanupFileMap(C.getResultFiles(), JA, true);
1906 // Failure result files are valid unless we crashed.
1907 if (CommandRes < 0)
1908 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1911 // llvm/lib/Support/*/Signals.inc will exit with a special return code
1912 // for SIGPIPE. Do not print diagnostics for this case.
1913 if (CommandRes == EX_IOERR) {
1914 Res = CommandRes;
1915 continue;
1918 // Print extra information about abnormal failures, if possible.
1920 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1921 // status was 1, assume the command failed normally. In particular, if it
1922 // was the compiler then assume it gave a reasonable error code. Failures
1923 // in other tools are less common, and they generally have worse
1924 // diagnostics, so always print the diagnostic there.
1925 const Tool &FailingTool = FailingCommand->getCreator();
1927 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1928 // FIXME: See FIXME above regarding result code interpretation.
1929 if (CommandRes < 0)
1930 Diag(clang::diag::err_drv_command_signalled)
1931 << FailingTool.getShortName();
1932 else
1933 Diag(clang::diag::err_drv_command_failed)
1934 << FailingTool.getShortName() << CommandRes;
1937 return Res;
1940 void Driver::PrintHelp(bool ShowHidden) const {
1941 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1943 // TODO: We're overriding the mask for flang here to keep this NFC for the
1944 // option refactoring, but what we really need to do is annotate the flags
1945 // that Flang uses.
1946 if (IsFlangMode())
1947 VisibilityMask = llvm::opt::Visibility(options::FlangOption);
1949 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1950 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1951 ShowHidden, /*ShowAllAliases=*/false,
1952 VisibilityMask);
1955 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1956 if (IsFlangMode()) {
1957 OS << getClangToolFullVersion("flang-new") << '\n';
1958 } else {
1959 // FIXME: The following handlers should use a callback mechanism, we don't
1960 // know what the client would like to do.
1961 OS << getClangFullVersion() << '\n';
1963 const ToolChain &TC = C.getDefaultToolChain();
1964 OS << "Target: " << TC.getTripleString() << '\n';
1966 // Print the threading model.
1967 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1968 // Don't print if the ToolChain would have barfed on it already
1969 if (TC.isThreadModelSupported(A->getValue()))
1970 OS << "Thread model: " << A->getValue();
1971 } else
1972 OS << "Thread model: " << TC.getThreadModel();
1973 OS << '\n';
1975 // Print out the install directory.
1976 OS << "InstalledDir: " << InstalledDir << '\n';
1978 // If configuration files were used, print their paths.
1979 for (auto ConfigFile : ConfigFiles)
1980 OS << "Configuration file: " << ConfigFile << '\n';
1983 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1984 /// option.
1985 static void PrintDiagnosticCategories(raw_ostream &OS) {
1986 // Skip the empty category.
1987 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1988 ++i)
1989 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1992 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1993 if (PassedFlags == "")
1994 return;
1995 // Print out all options that start with a given argument. This is used for
1996 // shell autocompletion.
1997 std::vector<std::string> SuggestedCompletions;
1998 std::vector<std::string> Flags;
2000 llvm::opt::Visibility VisibilityMask(options::ClangOption);
2002 // Make sure that Flang-only options don't pollute the Clang output
2003 // TODO: Make sure that Clang-only options don't pollute Flang output
2004 if (IsFlangMode())
2005 VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2007 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2008 // because the latter indicates that the user put space before pushing tab
2009 // which should end up in a file completion.
2010 const bool HasSpace = PassedFlags.endswith(",");
2012 // Parse PassedFlags by "," as all the command-line flags are passed to this
2013 // function separated by ","
2014 StringRef TargetFlags = PassedFlags;
2015 while (TargetFlags != "") {
2016 StringRef CurFlag;
2017 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2018 Flags.push_back(std::string(CurFlag));
2021 // We want to show cc1-only options only when clang is invoked with -cc1 or
2022 // -Xclang.
2023 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2024 VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2026 const llvm::opt::OptTable &Opts = getOpts();
2027 StringRef Cur;
2028 Cur = Flags.at(Flags.size() - 1);
2029 StringRef Prev;
2030 if (Flags.size() >= 2) {
2031 Prev = Flags.at(Flags.size() - 2);
2032 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2035 if (SuggestedCompletions.empty())
2036 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2038 // If Flags were empty, it means the user typed `clang [tab]` where we should
2039 // list all possible flags. If there was no value completion and the user
2040 // pressed tab after a space, we should fall back to a file completion.
2041 // We're printing a newline to be consistent with what we print at the end of
2042 // this function.
2043 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2044 llvm::outs() << '\n';
2045 return;
2048 // When flag ends with '=' and there was no value completion, return empty
2049 // string and fall back to the file autocompletion.
2050 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
2051 // If the flag is in the form of "--autocomplete=-foo",
2052 // we were requested to print out all option names that start with "-foo".
2053 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2054 SuggestedCompletions = Opts.findByPrefix(
2055 Cur, VisibilityMask,
2056 /*DisableFlags=*/options::Unsupported | options::Ignored);
2058 // We have to query the -W flags manually as they're not in the OptTable.
2059 // TODO: Find a good way to add them to OptTable instead and them remove
2060 // this code.
2061 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2062 if (S.startswith(Cur))
2063 SuggestedCompletions.push_back(std::string(S));
2066 // Sort the autocomplete candidates so that shells print them out in a
2067 // deterministic order. We could sort in any way, but we chose
2068 // case-insensitive sorting for consistency with the -help option
2069 // which prints out options in the case-insensitive alphabetical order.
2070 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2071 if (int X = A.compare_insensitive(B))
2072 return X < 0;
2073 return A.compare(B) > 0;
2076 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2079 bool Driver::HandleImmediateArgs(const Compilation &C) {
2080 // The order these options are handled in gcc is all over the place, but we
2081 // don't expect inconsistencies w.r.t. that to matter in practice.
2083 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2084 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2085 return false;
2088 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2089 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2090 // return an answer which matches our definition of __VERSION__.
2091 llvm::outs() << CLANG_VERSION_STRING << "\n";
2092 return false;
2095 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2096 PrintDiagnosticCategories(llvm::outs());
2097 return false;
2100 if (C.getArgs().hasArg(options::OPT_help) ||
2101 C.getArgs().hasArg(options::OPT__help_hidden)) {
2102 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2103 return false;
2106 if (C.getArgs().hasArg(options::OPT__version)) {
2107 // Follow gcc behavior and use stdout for --version and stderr for -v.
2108 PrintVersion(C, llvm::outs());
2109 return false;
2112 if (C.getArgs().hasArg(options::OPT_v) ||
2113 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2114 C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2115 C.getArgs().hasArg(options::OPT_print_supported_extensions)) {
2116 PrintVersion(C, llvm::errs());
2117 SuppressMissingInputWarning = true;
2120 if (C.getArgs().hasArg(options::OPT_v)) {
2121 if (!SystemConfigDir.empty())
2122 llvm::errs() << "System configuration file directory: "
2123 << SystemConfigDir << "\n";
2124 if (!UserConfigDir.empty())
2125 llvm::errs() << "User configuration file directory: "
2126 << UserConfigDir << "\n";
2129 const ToolChain &TC = C.getDefaultToolChain();
2131 if (C.getArgs().hasArg(options::OPT_v))
2132 TC.printVerboseInfo(llvm::errs());
2134 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2135 llvm::outs() << ResourceDir << '\n';
2136 return false;
2139 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2140 llvm::outs() << "programs: =";
2141 bool separator = false;
2142 // Print -B and COMPILER_PATH.
2143 for (const std::string &Path : PrefixDirs) {
2144 if (separator)
2145 llvm::outs() << llvm::sys::EnvPathSeparator;
2146 llvm::outs() << Path;
2147 separator = true;
2149 for (const std::string &Path : TC.getProgramPaths()) {
2150 if (separator)
2151 llvm::outs() << llvm::sys::EnvPathSeparator;
2152 llvm::outs() << Path;
2153 separator = true;
2155 llvm::outs() << "\n";
2156 llvm::outs() << "libraries: =" << ResourceDir;
2158 StringRef sysroot = C.getSysRoot();
2160 for (const std::string &Path : TC.getFilePaths()) {
2161 // Always print a separator. ResourceDir was the first item shown.
2162 llvm::outs() << llvm::sys::EnvPathSeparator;
2163 // Interpretation of leading '=' is needed only for NetBSD.
2164 if (Path[0] == '=')
2165 llvm::outs() << sysroot << Path.substr(1);
2166 else
2167 llvm::outs() << Path;
2169 llvm::outs() << "\n";
2170 return false;
2173 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2174 if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2175 llvm::outs() << *RuntimePath << '\n';
2176 else
2177 llvm::outs() << TC.getCompilerRTPath() << '\n';
2178 return false;
2181 if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2182 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2183 for (std::size_t I = 0; I != Flags.size(); I += 2)
2184 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2185 return false;
2188 // FIXME: The following handlers should use a callback mechanism, we don't
2189 // know what the client would like to do.
2190 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2191 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2192 return false;
2195 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2196 StringRef ProgName = A->getValue();
2198 // Null program name cannot have a path.
2199 if (! ProgName.empty())
2200 llvm::outs() << GetProgramPath(ProgName, TC);
2202 llvm::outs() << "\n";
2203 return false;
2206 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2207 StringRef PassedFlags = A->getValue();
2208 HandleAutocompletions(PassedFlags);
2209 return false;
2212 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2213 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2214 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2215 RegisterEffectiveTriple TripleRAII(TC, Triple);
2216 switch (RLT) {
2217 case ToolChain::RLT_CompilerRT:
2218 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2219 break;
2220 case ToolChain::RLT_Libgcc:
2221 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2222 break;
2224 return false;
2227 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2228 for (const Multilib &Multilib : TC.getMultilibs())
2229 llvm::outs() << Multilib << "\n";
2230 return false;
2233 if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2234 Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2235 llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2236 std::set<llvm::StringRef> SortedFlags;
2237 for (const auto &FlagEntry : ExpandedFlags)
2238 SortedFlags.insert(FlagEntry.getKey());
2239 for (auto Flag : SortedFlags)
2240 llvm::outs() << Flag << '\n';
2241 return false;
2244 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2245 for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2246 if (Multilib.gccSuffix().empty())
2247 llvm::outs() << ".\n";
2248 else {
2249 StringRef Suffix(Multilib.gccSuffix());
2250 assert(Suffix.front() == '/');
2251 llvm::outs() << Suffix.substr(1) << "\n";
2254 return false;
2257 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2258 llvm::outs() << TC.getTripleString() << "\n";
2259 return false;
2262 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2263 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2264 llvm::outs() << Triple.getTriple() << "\n";
2265 return false;
2268 if (C.getArgs().hasArg(options::OPT_print_targets)) {
2269 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2270 return false;
2273 return true;
2276 enum {
2277 TopLevelAction = 0,
2278 HeadSibAction = 1,
2279 OtherSibAction = 2,
2282 // Display an action graph human-readably. Action A is the "sink" node
2283 // and latest-occuring action. Traversal is in pre-order, visiting the
2284 // inputs to each action before printing the action itself.
2285 static unsigned PrintActions1(const Compilation &C, Action *A,
2286 std::map<Action *, unsigned> &Ids,
2287 Twine Indent = {}, int Kind = TopLevelAction) {
2288 if (Ids.count(A)) // A was already visited.
2289 return Ids[A];
2291 std::string str;
2292 llvm::raw_string_ostream os(str);
2294 auto getSibIndent = [](int K) -> Twine {
2295 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2298 Twine SibIndent = Indent + getSibIndent(Kind);
2299 int SibKind = HeadSibAction;
2300 os << Action::getClassName(A->getKind()) << ", ";
2301 if (InputAction *IA = dyn_cast<InputAction>(A)) {
2302 os << "\"" << IA->getInputArg().getValue() << "\"";
2303 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2304 os << '"' << BIA->getArchName() << '"' << ", {"
2305 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2306 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2307 bool IsFirst = true;
2308 OA->doOnEachDependence(
2309 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2310 assert(TC && "Unknown host toolchain");
2311 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2312 // sm_35 this will generate:
2313 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2314 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2315 if (!IsFirst)
2316 os << ", ";
2317 os << '"';
2318 os << A->getOffloadingKindPrefix();
2319 os << " (";
2320 os << TC->getTriple().normalize();
2321 if (BoundArch)
2322 os << ":" << BoundArch;
2323 os << ")";
2324 os << '"';
2325 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2326 IsFirst = false;
2327 SibKind = OtherSibAction;
2329 } else {
2330 const ActionList *AL = &A->getInputs();
2332 if (AL->size()) {
2333 const char *Prefix = "{";
2334 for (Action *PreRequisite : *AL) {
2335 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2336 Prefix = ", ";
2337 SibKind = OtherSibAction;
2339 os << "}";
2340 } else
2341 os << "{}";
2344 // Append offload info for all options other than the offloading action
2345 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2346 std::string offload_str;
2347 llvm::raw_string_ostream offload_os(offload_str);
2348 if (!isa<OffloadAction>(A)) {
2349 auto S = A->getOffloadingKindPrefix();
2350 if (!S.empty()) {
2351 offload_os << ", (" << S;
2352 if (A->getOffloadingArch())
2353 offload_os << ", " << A->getOffloadingArch();
2354 offload_os << ")";
2358 auto getSelfIndent = [](int K) -> Twine {
2359 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2362 unsigned Id = Ids.size();
2363 Ids[A] = Id;
2364 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2365 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2367 return Id;
2370 // Print the action graphs in a compilation C.
2371 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2372 void Driver::PrintActions(const Compilation &C) const {
2373 std::map<Action *, unsigned> Ids;
2374 for (Action *A : C.getActions())
2375 PrintActions1(C, A, Ids);
2378 /// Check whether the given input tree contains any compilation or
2379 /// assembly actions.
2380 static bool ContainsCompileOrAssembleAction(const Action *A) {
2381 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2382 isa<AssembleJobAction>(A))
2383 return true;
2385 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2388 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2389 const InputList &BAInputs) const {
2390 DerivedArgList &Args = C.getArgs();
2391 ActionList &Actions = C.getActions();
2392 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2393 // Collect the list of architectures. Duplicates are allowed, but should only
2394 // be handled once (in the order seen).
2395 llvm::StringSet<> ArchNames;
2396 SmallVector<const char *, 4> Archs;
2397 for (Arg *A : Args) {
2398 if (A->getOption().matches(options::OPT_arch)) {
2399 // Validate the option here; we don't save the type here because its
2400 // particular spelling may participate in other driver choices.
2401 llvm::Triple::ArchType Arch =
2402 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2403 if (Arch == llvm::Triple::UnknownArch) {
2404 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2405 continue;
2408 A->claim();
2409 if (ArchNames.insert(A->getValue()).second)
2410 Archs.push_back(A->getValue());
2414 // When there is no explicit arch for this platform, make sure we still bind
2415 // the architecture (to the default) so that -Xarch_ is handled correctly.
2416 if (!Archs.size())
2417 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2419 ActionList SingleActions;
2420 BuildActions(C, Args, BAInputs, SingleActions);
2422 // Add in arch bindings for every top level action, as well as lipo and
2423 // dsymutil steps if needed.
2424 for (Action* Act : SingleActions) {
2425 // Make sure we can lipo this kind of output. If not (and it is an actual
2426 // output) then we disallow, since we can't create an output file with the
2427 // right name without overwriting it. We could remove this oddity by just
2428 // changing the output names to include the arch, which would also fix
2429 // -save-temps. Compatibility wins for now.
2431 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2432 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2433 << types::getTypeName(Act->getType());
2435 ActionList Inputs;
2436 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2437 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2439 // Lipo if necessary, we do it this way because we need to set the arch flag
2440 // so that -Xarch_ gets overwritten.
2441 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2442 Actions.append(Inputs.begin(), Inputs.end());
2443 else
2444 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2446 // Handle debug info queries.
2447 Arg *A = Args.getLastArg(options::OPT_g_Group);
2448 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2449 !A->getOption().matches(options::OPT_gstabs);
2450 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2451 ContainsCompileOrAssembleAction(Actions.back())) {
2453 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2454 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2455 // because the debug info will refer to a temporary object file which
2456 // will be removed at the end of the compilation process.
2457 if (Act->getType() == types::TY_Image) {
2458 ActionList Inputs;
2459 Inputs.push_back(Actions.back());
2460 Actions.pop_back();
2461 Actions.push_back(
2462 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2465 // Verify the debug info output.
2466 if (Args.hasArg(options::OPT_verify_debug_info)) {
2467 Action* LastAction = Actions.back();
2468 Actions.pop_back();
2469 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2470 LastAction, types::TY_Nothing));
2476 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2477 types::ID Ty, bool TypoCorrect) const {
2478 if (!getCheckInputsExist())
2479 return true;
2481 // stdin always exists.
2482 if (Value == "-")
2483 return true;
2485 // If it's a header to be found in the system or user search path, then defer
2486 // complaints about its absence until those searches can be done. When we
2487 // are definitely processing headers for C++20 header units, extend this to
2488 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2489 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2490 (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2491 return true;
2493 if (getVFS().exists(Value))
2494 return true;
2496 if (TypoCorrect) {
2497 // Check if the filename is a typo for an option flag. OptTable thinks
2498 // that all args that are not known options and that start with / are
2499 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2500 // the option `/diagnostics:caret` than a reference to a file in the root
2501 // directory.
2502 std::string Nearest;
2503 if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2504 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2505 << Value << Nearest;
2506 return false;
2510 // In CL mode, don't error on apparently non-existent linker inputs, because
2511 // they can be influenced by linker flags the clang driver might not
2512 // understand.
2513 // Examples:
2514 // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2515 // module look for an MSVC installation in the registry. (We could ask
2516 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2517 // look in the registry might move into lld-link in the future so that
2518 // lld-link invocations in non-MSVC shells just work too.)
2519 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2520 // including /libpath:, which is used to find .lib and .obj files.
2521 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2522 // it. (If we don't end up invoking the linker, this means we'll emit a
2523 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2524 // of an error.)
2526 // Only do this skip after the typo correction step above. `/Brepo` is treated
2527 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2528 // an error if we have a flag that's within an edit distance of 1 from a
2529 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2530 // driver in the unlikely case they run into this.)
2532 // Don't do this for inputs that start with a '/', else we'd pass options
2533 // like /libpath: through to the linker silently.
2535 // Emitting an error for linker inputs can also cause incorrect diagnostics
2536 // with the gcc driver. The command
2537 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2538 // will make lld look for some/dir/file.o, while we will diagnose here that
2539 // `/file.o` does not exist. However, configure scripts check if
2540 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2541 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2542 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2543 // unknown flags.)
2544 if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2545 return true;
2547 Diag(clang::diag::err_drv_no_such_file) << Value;
2548 return false;
2551 // Get the C++20 Header Unit type corresponding to the input type.
2552 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2553 switch (HM) {
2554 case HeaderMode_User:
2555 return types::TY_CXXUHeader;
2556 case HeaderMode_System:
2557 return types::TY_CXXSHeader;
2558 case HeaderMode_Default:
2559 break;
2560 case HeaderMode_None:
2561 llvm_unreachable("should not be called in this case");
2563 return types::TY_CXXHUHeader;
2566 // Construct a the list of inputs and their types.
2567 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2568 InputList &Inputs) const {
2569 const llvm::opt::OptTable &Opts = getOpts();
2570 // Track the current user specified (-x) input. We also explicitly track the
2571 // argument used to set the type; we only want to claim the type when we
2572 // actually use it, so we warn about unused -x arguments.
2573 types::ID InputType = types::TY_Nothing;
2574 Arg *InputTypeArg = nullptr;
2576 // The last /TC or /TP option sets the input type to C or C++ globally.
2577 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2578 options::OPT__SLASH_TP)) {
2579 InputTypeArg = TCTP;
2580 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2581 ? types::TY_C
2582 : types::TY_CXX;
2584 Arg *Previous = nullptr;
2585 bool ShowNote = false;
2586 for (Arg *A :
2587 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2588 if (Previous) {
2589 Diag(clang::diag::warn_drv_overriding_option)
2590 << Previous->getSpelling() << A->getSpelling();
2591 ShowNote = true;
2593 Previous = A;
2595 if (ShowNote)
2596 Diag(clang::diag::note_drv_t_option_is_global);
2599 // CUDA/HIP and their preprocessor expansions can be accepted by CL mode.
2600 // Warn -x after last input file has no effect
2601 auto LastXArg = Args.getLastArgValue(options::OPT_x);
2602 const llvm::StringSet<> ValidXArgs = {"cuda", "hip", "cui", "hipi"};
2603 if (!IsCLMode() || ValidXArgs.contains(LastXArg)) {
2604 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2605 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2606 if (LastXArg && LastInputArg &&
2607 LastInputArg->getIndex() < LastXArg->getIndex())
2608 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2609 } else {
2610 // In CL mode suggest /TC or /TP since -x doesn't make sense if passed via
2611 // /clang:.
2612 if (auto *A = Args.getLastArg(options::OPT_x))
2613 Diag(diag::err_drv_unsupported_opt_with_suggestion)
2614 << A->getAsString(Args) << "/TC' or '/TP";
2617 for (Arg *A : Args) {
2618 if (A->getOption().getKind() == Option::InputClass) {
2619 const char *Value = A->getValue();
2620 types::ID Ty = types::TY_INVALID;
2622 // Infer the input type if necessary.
2623 if (InputType == types::TY_Nothing) {
2624 // If there was an explicit arg for this, claim it.
2625 if (InputTypeArg)
2626 InputTypeArg->claim();
2628 // stdin must be handled specially.
2629 if (memcmp(Value, "-", 2) == 0) {
2630 if (IsFlangMode()) {
2631 Ty = types::TY_Fortran;
2632 } else if (IsDXCMode()) {
2633 Ty = types::TY_HLSL;
2634 } else {
2635 // If running with -E, treat as a C input (this changes the
2636 // builtin macros, for example). This may be overridden by -ObjC
2637 // below.
2639 // Otherwise emit an error but still use a valid type to avoid
2640 // spurious errors (e.g., no inputs).
2641 assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2642 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2643 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2644 : clang::diag::err_drv_unknown_stdin_type);
2645 Ty = types::TY_C;
2647 } else {
2648 // Otherwise lookup by extension.
2649 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2650 // clang-cl /E, or Object otherwise.
2651 // We use a host hook here because Darwin at least has its own
2652 // idea of what .s is.
2653 if (const char *Ext = strrchr(Value, '.'))
2654 Ty = TC.LookupTypeForExtension(Ext + 1);
2656 if (Ty == types::TY_INVALID) {
2657 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2658 Ty = types::TY_CXX;
2659 else if (CCCIsCPP() || CCGenDiagnostics)
2660 Ty = types::TY_C;
2661 else
2662 Ty = types::TY_Object;
2665 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2666 // should autodetect some input files as C++ for g++ compatibility.
2667 if (CCCIsCXX()) {
2668 types::ID OldTy = Ty;
2669 Ty = types::lookupCXXTypeForCType(Ty);
2671 // Do not complain about foo.h, when we are known to be processing
2672 // it as a C++20 header unit.
2673 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2674 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2675 << getTypeName(OldTy) << getTypeName(Ty);
2678 // If running with -fthinlto-index=, extensions that normally identify
2679 // native object files actually identify LLVM bitcode files.
2680 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2681 Ty == types::TY_Object)
2682 Ty = types::TY_LLVM_BC;
2685 // -ObjC and -ObjC++ override the default language, but only for "source
2686 // files". We just treat everything that isn't a linker input as a
2687 // source file.
2689 // FIXME: Clean this up if we move the phase sequence into the type.
2690 if (Ty != types::TY_Object) {
2691 if (Args.hasArg(options::OPT_ObjC))
2692 Ty = types::TY_ObjC;
2693 else if (Args.hasArg(options::OPT_ObjCXX))
2694 Ty = types::TY_ObjCXX;
2697 // Disambiguate headers that are meant to be header units from those
2698 // intended to be PCH. Avoid missing '.h' cases that are counted as
2699 // C headers by default - we know we are in C++ mode and we do not
2700 // want to issue a complaint about compiling things in the wrong mode.
2701 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2702 hasHeaderMode())
2703 Ty = CXXHeaderUnitType(CXX20HeaderType);
2704 } else {
2705 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2706 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2707 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2708 // object files.
2709 const char *Ext = strrchr(Value, '.');
2710 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2711 Ty = types::TY_Object;
2713 if (Ty == types::TY_INVALID) {
2714 Ty = InputType;
2715 InputTypeArg->claim();
2719 if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2720 Args.hasArgNoClaim(options::OPT_hipstdpar))
2721 Ty = types::TY_HIP;
2723 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2724 Inputs.push_back(std::make_pair(Ty, A));
2726 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2727 StringRef Value = A->getValue();
2728 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2729 /*TypoCorrect=*/false)) {
2730 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2731 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2733 A->claim();
2734 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2735 StringRef Value = A->getValue();
2736 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2737 /*TypoCorrect=*/false)) {
2738 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2739 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2741 A->claim();
2742 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2743 // Just treat as object type, we could make a special type for this if
2744 // necessary.
2745 Inputs.push_back(std::make_pair(types::TY_Object, A));
2747 } else if (A->getOption().matches(options::OPT_x)) {
2748 InputTypeArg = A;
2749 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2750 A->claim();
2752 // Follow gcc behavior and treat as linker input for invalid -x
2753 // options. Its not clear why we shouldn't just revert to unknown; but
2754 // this isn't very important, we might as well be bug compatible.
2755 if (!InputType) {
2756 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2757 InputType = types::TY_Object;
2760 // If the user has put -fmodule-header{,=} then we treat C++ headers as
2761 // header unit inputs. So we 'promote' -xc++-header appropriately.
2762 if (InputType == types::TY_CXXHeader && hasHeaderMode())
2763 InputType = CXXHeaderUnitType(CXX20HeaderType);
2764 } else if (A->getOption().getID() == options::OPT_U) {
2765 assert(A->getNumValues() == 1 && "The /U option has one value.");
2766 StringRef Val = A->getValue(0);
2767 if (Val.find_first_of("/\\") != StringRef::npos) {
2768 // Warn about e.g. "/Users/me/myfile.c".
2769 Diag(diag::warn_slash_u_filename) << Val;
2770 Diag(diag::note_use_dashdash);
2774 if (CCCIsCPP() && Inputs.empty()) {
2775 // If called as standalone preprocessor, stdin is processed
2776 // if no other input is present.
2777 Arg *A = MakeInputArg(Args, Opts, "-");
2778 Inputs.push_back(std::make_pair(types::TY_C, A));
2782 namespace {
2783 /// Provides a convenient interface for different programming models to generate
2784 /// the required device actions.
2785 class OffloadingActionBuilder final {
2786 /// Flag used to trace errors in the builder.
2787 bool IsValid = false;
2789 /// The compilation that is using this builder.
2790 Compilation &C;
2792 /// Map between an input argument and the offload kinds used to process it.
2793 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2795 /// Map between a host action and its originating input argument.
2796 std::map<Action *, const Arg *> HostActionToInputArgMap;
2798 /// Builder interface. It doesn't build anything or keep any state.
2799 class DeviceActionBuilder {
2800 public:
2801 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2803 enum ActionBuilderReturnCode {
2804 // The builder acted successfully on the current action.
2805 ABRT_Success,
2806 // The builder didn't have to act on the current action.
2807 ABRT_Inactive,
2808 // The builder was successful and requested the host action to not be
2809 // generated.
2810 ABRT_Ignore_Host,
2813 protected:
2814 /// Compilation associated with this builder.
2815 Compilation &C;
2817 /// Tool chains associated with this builder. The same programming
2818 /// model may have associated one or more tool chains.
2819 SmallVector<const ToolChain *, 2> ToolChains;
2821 /// The derived arguments associated with this builder.
2822 DerivedArgList &Args;
2824 /// The inputs associated with this builder.
2825 const Driver::InputList &Inputs;
2827 /// The associated offload kind.
2828 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2830 public:
2831 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2832 const Driver::InputList &Inputs,
2833 Action::OffloadKind AssociatedOffloadKind)
2834 : C(C), Args(Args), Inputs(Inputs),
2835 AssociatedOffloadKind(AssociatedOffloadKind) {}
2836 virtual ~DeviceActionBuilder() {}
2838 /// Fill up the array \a DA with all the device dependences that should be
2839 /// added to the provided host action \a HostAction. By default it is
2840 /// inactive.
2841 virtual ActionBuilderReturnCode
2842 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2843 phases::ID CurPhase, phases::ID FinalPhase,
2844 PhasesTy &Phases) {
2845 return ABRT_Inactive;
2848 /// Update the state to include the provided host action \a HostAction as a
2849 /// dependency of the current device action. By default it is inactive.
2850 virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2851 return ABRT_Inactive;
2854 /// Append top level actions generated by the builder.
2855 virtual void appendTopLevelActions(ActionList &AL) {}
2857 /// Append linker device actions generated by the builder.
2858 virtual void appendLinkDeviceActions(ActionList &AL) {}
2860 /// Append linker host action generated by the builder.
2861 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2863 /// Append linker actions generated by the builder.
2864 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2866 /// Initialize the builder. Return true if any initialization errors are
2867 /// found.
2868 virtual bool initialize() { return false; }
2870 /// Return true if the builder can use bundling/unbundling.
2871 virtual bool canUseBundlerUnbundler() const { return false; }
2873 /// Return true if this builder is valid. We have a valid builder if we have
2874 /// associated device tool chains.
2875 bool isValid() { return !ToolChains.empty(); }
2877 /// Return the associated offload kind.
2878 Action::OffloadKind getAssociatedOffloadKind() {
2879 return AssociatedOffloadKind;
2883 /// Base class for CUDA/HIP action builder. It injects device code in
2884 /// the host backend action.
2885 class CudaActionBuilderBase : public DeviceActionBuilder {
2886 protected:
2887 /// Flags to signal if the user requested host-only or device-only
2888 /// compilation.
2889 bool CompileHostOnly = false;
2890 bool CompileDeviceOnly = false;
2891 bool EmitLLVM = false;
2892 bool EmitAsm = false;
2894 /// ID to identify each device compilation. For CUDA it is simply the
2895 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2896 /// arch string plus feature strings delimited by a plus sign, e.g.
2897 /// gfx906+xnack.
2898 struct TargetID {
2899 /// Target ID string which is persistent throughout the compilation.
2900 const char *ID;
2901 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2902 TargetID(const char *ID) : ID(ID) {}
2903 operator const char *() { return ID; }
2904 operator StringRef() { return StringRef(ID); }
2906 /// List of GPU architectures to use in this compilation.
2907 SmallVector<TargetID, 4> GpuArchList;
2909 /// The CUDA actions for the current input.
2910 ActionList CudaDeviceActions;
2912 /// The CUDA fat binary if it was generated for the current input.
2913 Action *CudaFatBinary = nullptr;
2915 /// Flag that is set to true if this builder acted on the current input.
2916 bool IsActive = false;
2918 /// Flag for -fgpu-rdc.
2919 bool Relocatable = false;
2921 /// Default GPU architecture if there's no one specified.
2922 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2924 /// Method to generate compilation unit ID specified by option
2925 /// '-fuse-cuid='.
2926 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2927 UseCUIDKind UseCUID = CUID_Hash;
2929 /// Compilation unit ID specified by option '-cuid='.
2930 StringRef FixedCUID;
2932 public:
2933 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2934 const Driver::InputList &Inputs,
2935 Action::OffloadKind OFKind)
2936 : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2938 CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2939 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2940 options::OPT_fno_gpu_rdc, /*Default=*/false);
2943 ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
2944 // While generating code for CUDA, we only depend on the host input action
2945 // to trigger the creation of all the CUDA device actions.
2947 // If we are dealing with an input action, replicate it for each GPU
2948 // architecture. If we are in host-only mode we return 'success' so that
2949 // the host uses the CUDA offload kind.
2950 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2951 assert(!GpuArchList.empty() &&
2952 "We should have at least one GPU architecture.");
2954 // If the host input is not CUDA or HIP, we don't need to bother about
2955 // this input.
2956 if (!(IA->getType() == types::TY_CUDA ||
2957 IA->getType() == types::TY_HIP ||
2958 IA->getType() == types::TY_PP_HIP)) {
2959 // The builder will ignore this input.
2960 IsActive = false;
2961 return ABRT_Inactive;
2964 // Set the flag to true, so that the builder acts on the current input.
2965 IsActive = true;
2967 if (CompileHostOnly)
2968 return ABRT_Success;
2970 // Replicate inputs for each GPU architecture.
2971 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2972 : types::TY_CUDA_DEVICE;
2973 std::string CUID = FixedCUID.str();
2974 if (CUID.empty()) {
2975 if (UseCUID == CUID_Random)
2976 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2977 /*LowerCase=*/true);
2978 else if (UseCUID == CUID_Hash) {
2979 llvm::MD5 Hasher;
2980 llvm::MD5::MD5Result Hash;
2981 SmallString<256> RealPath;
2982 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2983 /*expand_tilde=*/true);
2984 Hasher.update(RealPath);
2985 for (auto *A : Args) {
2986 if (A->getOption().matches(options::OPT_INPUT))
2987 continue;
2988 Hasher.update(A->getAsString(Args));
2990 Hasher.final(Hash);
2991 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2994 IA->setId(CUID);
2996 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2997 CudaDeviceActions.push_back(
2998 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3001 return ABRT_Success;
3004 // If this is an unbundling action use it as is for each CUDA toolchain.
3005 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3007 // If -fgpu-rdc is disabled, should not unbundle since there is no
3008 // device code to link.
3009 if (UA->getType() == types::TY_Object && !Relocatable)
3010 return ABRT_Inactive;
3012 CudaDeviceActions.clear();
3013 auto *IA = cast<InputAction>(UA->getInputs().back());
3014 std::string FileName = IA->getInputArg().getAsString(Args);
3015 // Check if the type of the file is the same as the action. Do not
3016 // unbundle it if it is not. Do not unbundle .so files, for example,
3017 // which are not object files. Files with extension ".lib" is classified
3018 // as TY_Object but they are actually archives, therefore should not be
3019 // unbundled here as objects. They will be handled at other places.
3020 const StringRef LibFileExt = ".lib";
3021 if (IA->getType() == types::TY_Object &&
3022 (!llvm::sys::path::has_extension(FileName) ||
3023 types::lookupTypeForExtension(
3024 llvm::sys::path::extension(FileName).drop_front()) !=
3025 types::TY_Object ||
3026 llvm::sys::path::extension(FileName) == LibFileExt))
3027 return ABRT_Inactive;
3029 for (auto Arch : GpuArchList) {
3030 CudaDeviceActions.push_back(UA);
3031 UA->registerDependentActionInfo(ToolChains[0], Arch,
3032 AssociatedOffloadKind);
3034 IsActive = true;
3035 return ABRT_Success;
3038 return IsActive ? ABRT_Success : ABRT_Inactive;
3041 void appendTopLevelActions(ActionList &AL) override {
3042 // Utility to append actions to the top level list.
3043 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3044 OffloadAction::DeviceDependences Dep;
3045 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3046 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3049 // If we have a fat binary, add it to the list.
3050 if (CudaFatBinary) {
3051 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
3052 CudaDeviceActions.clear();
3053 CudaFatBinary = nullptr;
3054 return;
3057 if (CudaDeviceActions.empty())
3058 return;
3060 // If we have CUDA actions at this point, that's because we have a have
3061 // partial compilation, so we should have an action for each GPU
3062 // architecture.
3063 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3064 "Expecting one action per GPU architecture.");
3065 assert(ToolChains.size() == 1 &&
3066 "Expecting to have a single CUDA toolchain.");
3067 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3068 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3070 CudaDeviceActions.clear();
3073 /// Get canonicalized offload arch option. \returns empty StringRef if the
3074 /// option is invalid.
3075 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3077 virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3078 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3080 bool initialize() override {
3081 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3082 AssociatedOffloadKind == Action::OFK_HIP);
3084 // We don't need to support CUDA.
3085 if (AssociatedOffloadKind == Action::OFK_Cuda &&
3086 !C.hasOffloadToolChain<Action::OFK_Cuda>())
3087 return false;
3089 // We don't need to support HIP.
3090 if (AssociatedOffloadKind == Action::OFK_HIP &&
3091 !C.hasOffloadToolChain<Action::OFK_HIP>())
3092 return false;
3094 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3095 assert(HostTC && "No toolchain for host compilation.");
3096 if (HostTC->getTriple().isNVPTX() ||
3097 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3098 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3099 // an error and abort pipeline construction early so we don't trip
3100 // asserts that assume device-side compilation.
3101 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3102 << HostTC->getTriple().getArchName();
3103 return true;
3106 ToolChains.push_back(
3107 AssociatedOffloadKind == Action::OFK_Cuda
3108 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3109 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3111 CompileHostOnly = C.getDriver().offloadHostOnly();
3112 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3113 EmitAsm = Args.getLastArg(options::OPT_S);
3114 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3115 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3116 StringRef UseCUIDStr = A->getValue();
3117 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3118 .Case("hash", CUID_Hash)
3119 .Case("random", CUID_Random)
3120 .Case("none", CUID_None)
3121 .Default(CUID_Invalid);
3122 if (UseCUID == CUID_Invalid) {
3123 C.getDriver().Diag(diag::err_drv_invalid_value)
3124 << A->getAsString(Args) << UseCUIDStr;
3125 C.setContainsError();
3126 return true;
3130 // --offload and --offload-arch options are mutually exclusive.
3131 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3132 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3133 options::OPT_no_offload_arch_EQ)) {
3134 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3135 << "--offload";
3138 // Collect all offload arch parameters, removing duplicates.
3139 std::set<StringRef> GpuArchs;
3140 bool Error = false;
3141 for (Arg *A : Args) {
3142 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3143 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3144 continue;
3145 A->claim();
3147 for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3148 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3149 ArchStr == "all") {
3150 GpuArchs.clear();
3151 } else if (ArchStr == "native") {
3152 const ToolChain &TC = *ToolChains.front();
3153 auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3154 if (!GPUsOrErr) {
3155 TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3156 << llvm::Triple::getArchTypeName(TC.getArch())
3157 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3158 continue;
3161 for (auto GPU : *GPUsOrErr) {
3162 GpuArchs.insert(Args.MakeArgString(GPU));
3164 } else {
3165 ArchStr = getCanonicalOffloadArch(ArchStr);
3166 if (ArchStr.empty()) {
3167 Error = true;
3168 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3169 GpuArchs.insert(ArchStr);
3170 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3171 GpuArchs.erase(ArchStr);
3172 else
3173 llvm_unreachable("Unexpected option.");
3178 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3179 if (ConflictingArchs) {
3180 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3181 << ConflictingArchs->first << ConflictingArchs->second;
3182 C.setContainsError();
3183 return true;
3186 // Collect list of GPUs remaining in the set.
3187 for (auto Arch : GpuArchs)
3188 GpuArchList.push_back(Arch.data());
3190 // Default to sm_20 which is the lowest common denominator for
3191 // supported GPUs. sm_20 code should work correctly, if
3192 // suboptimally, on all newer GPUs.
3193 if (GpuArchList.empty()) {
3194 if (ToolChains.front()->getTriple().isSPIRV())
3195 GpuArchList.push_back(CudaArch::Generic);
3196 else
3197 GpuArchList.push_back(DefaultCudaArch);
3200 return Error;
3204 /// \brief CUDA action builder. It injects device code in the host backend
3205 /// action.
3206 class CudaActionBuilder final : public CudaActionBuilderBase {
3207 public:
3208 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3209 const Driver::InputList &Inputs)
3210 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3211 DefaultCudaArch = CudaArch::SM_35;
3214 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3215 CudaArch Arch = StringToCudaArch(ArchStr);
3216 if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3217 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3218 return StringRef();
3220 return CudaArchToString(Arch);
3223 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3224 getConflictOffloadArchCombination(
3225 const std::set<StringRef> &GpuArchs) override {
3226 return std::nullopt;
3229 ActionBuilderReturnCode
3230 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3231 phases::ID CurPhase, phases::ID FinalPhase,
3232 PhasesTy &Phases) override {
3233 if (!IsActive)
3234 return ABRT_Inactive;
3236 // If we don't have more CUDA actions, we don't have any dependences to
3237 // create for the host.
3238 if (CudaDeviceActions.empty())
3239 return ABRT_Success;
3241 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3242 "Expecting one action per GPU architecture.");
3243 assert(!CompileHostOnly &&
3244 "Not expecting CUDA actions in host-only compilation.");
3246 // If we are generating code for the device or we are in a backend phase,
3247 // we attempt to generate the fat binary. We compile each arch to ptx and
3248 // assemble to cubin, then feed the cubin *and* the ptx into a device
3249 // "link" action, which uses fatbinary to combine these cubins into one
3250 // fatbin. The fatbin is then an input to the host action if not in
3251 // device-only mode.
3252 if (CompileDeviceOnly || CurPhase == phases::Backend) {
3253 ActionList DeviceActions;
3254 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3255 // Produce the device action from the current phase up to the assemble
3256 // phase.
3257 for (auto Ph : Phases) {
3258 // Skip the phases that were already dealt with.
3259 if (Ph < CurPhase)
3260 continue;
3261 // We have to be consistent with the host final phase.
3262 if (Ph > FinalPhase)
3263 break;
3265 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3266 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3268 if (Ph == phases::Assemble)
3269 break;
3272 // If we didn't reach the assemble phase, we can't generate the fat
3273 // binary. We don't need to generate the fat binary if we are not in
3274 // device-only mode.
3275 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3276 CompileDeviceOnly)
3277 continue;
3279 Action *AssembleAction = CudaDeviceActions[I];
3280 assert(AssembleAction->getType() == types::TY_Object);
3281 assert(AssembleAction->getInputs().size() == 1);
3283 Action *BackendAction = AssembleAction->getInputs()[0];
3284 assert(BackendAction->getType() == types::TY_PP_Asm);
3286 for (auto &A : {AssembleAction, BackendAction}) {
3287 OffloadAction::DeviceDependences DDep;
3288 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3289 DeviceActions.push_back(
3290 C.MakeAction<OffloadAction>(DDep, A->getType()));
3294 // We generate the fat binary if we have device input actions.
3295 if (!DeviceActions.empty()) {
3296 CudaFatBinary =
3297 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3299 if (!CompileDeviceOnly) {
3300 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3301 Action::OFK_Cuda);
3302 // Clear the fat binary, it is already a dependence to an host
3303 // action.
3304 CudaFatBinary = nullptr;
3307 // Remove the CUDA actions as they are already connected to an host
3308 // action or fat binary.
3309 CudaDeviceActions.clear();
3312 // We avoid creating host action in device-only mode.
3313 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3314 } else if (CurPhase > phases::Backend) {
3315 // If we are past the backend phase and still have a device action, we
3316 // don't have to do anything as this action is already a device
3317 // top-level action.
3318 return ABRT_Success;
3321 assert(CurPhase < phases::Backend && "Generating single CUDA "
3322 "instructions should only occur "
3323 "before the backend phase!");
3325 // By default, we produce an action for each device arch.
3326 for (Action *&A : CudaDeviceActions)
3327 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3329 return ABRT_Success;
3332 /// \brief HIP action builder. It injects device code in the host backend
3333 /// action.
3334 class HIPActionBuilder final : public CudaActionBuilderBase {
3335 /// The linker inputs obtained for each device arch.
3336 SmallVector<ActionList, 8> DeviceLinkerInputs;
3337 // The default bundling behavior depends on the type of output, therefore
3338 // BundleOutput needs to be tri-value: None, true, or false.
3339 // Bundle code objects except --no-gpu-output is specified for device
3340 // only compilation. Bundle other type of output files only if
3341 // --gpu-bundle-output is specified for device only compilation.
3342 std::optional<bool> BundleOutput;
3343 std::optional<bool> EmitReloc;
3345 public:
3346 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3347 const Driver::InputList &Inputs)
3348 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3350 DefaultCudaArch = CudaArch::GFX906;
3352 if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3353 options::OPT_fno_hip_emit_relocatable)) {
3354 EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3355 options::OPT_fno_hip_emit_relocatable, false);
3357 if (*EmitReloc) {
3358 if (Relocatable) {
3359 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3360 << "-fhip-emit-relocatable"
3361 << "-fgpu-rdc";
3364 if (!CompileDeviceOnly) {
3365 C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3366 << "-fhip-emit-relocatable"
3367 << "--cuda-device-only";
3372 if (Args.hasArg(options::OPT_gpu_bundle_output,
3373 options::OPT_no_gpu_bundle_output))
3374 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3375 options::OPT_no_gpu_bundle_output, true) &&
3376 (!EmitReloc || !*EmitReloc);
3379 bool canUseBundlerUnbundler() const override { return true; }
3381 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3382 llvm::StringMap<bool> Features;
3383 // getHIPOffloadTargetTriple() is known to return valid value as it has
3384 // been called successfully in the CreateOffloadingDeviceToolChains().
3385 auto ArchStr = parseTargetID(
3386 *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3387 &Features);
3388 if (!ArchStr) {
3389 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3390 C.setContainsError();
3391 return StringRef();
3393 auto CanId = getCanonicalTargetID(*ArchStr, Features);
3394 return Args.MakeArgStringRef(CanId);
3397 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3398 getConflictOffloadArchCombination(
3399 const std::set<StringRef> &GpuArchs) override {
3400 return getConflictTargetIDCombination(GpuArchs);
3403 ActionBuilderReturnCode
3404 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3405 phases::ID CurPhase, phases::ID FinalPhase,
3406 PhasesTy &Phases) override {
3407 if (!IsActive)
3408 return ABRT_Inactive;
3410 // amdgcn does not support linking of object files, therefore we skip
3411 // backend and assemble phases to output LLVM IR. Except for generating
3412 // non-relocatable device code, where we generate fat binary for device
3413 // code and pass to host in Backend phase.
3414 if (CudaDeviceActions.empty())
3415 return ABRT_Success;
3417 assert(((CurPhase == phases::Link && Relocatable) ||
3418 CudaDeviceActions.size() == GpuArchList.size()) &&
3419 "Expecting one action per GPU architecture.");
3420 assert(!CompileHostOnly &&
3421 "Not expecting HIP actions in host-only compilation.");
3423 bool ShouldLink = !EmitReloc || !*EmitReloc;
3425 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3426 !EmitAsm && ShouldLink) {
3427 // If we are in backend phase, we attempt to generate the fat binary.
3428 // We compile each arch to IR and use a link action to generate code
3429 // object containing ISA. Then we use a special "link" action to create
3430 // a fat binary containing all the code objects for different GPU's.
3431 // The fat binary is then an input to the host action.
3432 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3433 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3434 // When LTO is enabled, skip the backend and assemble phases and
3435 // use lld to link the bitcode.
3436 ActionList AL;
3437 AL.push_back(CudaDeviceActions[I]);
3438 // Create a link action to link device IR with device library
3439 // and generate ISA.
3440 CudaDeviceActions[I] =
3441 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3442 } else {
3443 // When LTO is not enabled, we follow the conventional
3444 // compiler phases, including backend and assemble phases.
3445 ActionList AL;
3446 Action *BackendAction = nullptr;
3447 if (ToolChains.front()->getTriple().isSPIRV()) {
3448 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3449 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3450 types::ID Output = Args.hasArg(options::OPT_S)
3451 ? types::TY_LLVM_IR
3452 : types::TY_LLVM_BC;
3453 BackendAction =
3454 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3455 } else
3456 BackendAction = C.getDriver().ConstructPhaseAction(
3457 C, Args, phases::Backend, CudaDeviceActions[I],
3458 AssociatedOffloadKind);
3459 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3460 C, Args, phases::Assemble, BackendAction,
3461 AssociatedOffloadKind);
3462 AL.push_back(AssembleAction);
3463 // Create a link action to link device IR with device library
3464 // and generate ISA.
3465 CudaDeviceActions[I] =
3466 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3469 // OffloadingActionBuilder propagates device arch until an offload
3470 // action. Since the next action for creating fatbin does
3471 // not have device arch, whereas the above link action and its input
3472 // have device arch, an offload action is needed to stop the null
3473 // device arch of the next action being propagated to the above link
3474 // action.
3475 OffloadAction::DeviceDependences DDep;
3476 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3477 AssociatedOffloadKind);
3478 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3479 DDep, CudaDeviceActions[I]->getType());
3482 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3483 // Create HIP fat binary with a special "link" action.
3484 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3485 types::TY_HIP_FATBIN);
3487 if (!CompileDeviceOnly) {
3488 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3489 AssociatedOffloadKind);
3490 // Clear the fat binary, it is already a dependence to an host
3491 // action.
3492 CudaFatBinary = nullptr;
3495 // Remove the CUDA actions as they are already connected to an host
3496 // action or fat binary.
3497 CudaDeviceActions.clear();
3500 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3501 } else if (CurPhase == phases::Link) {
3502 if (!ShouldLink)
3503 return ABRT_Success;
3504 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3505 // This happens to each device action originated from each input file.
3506 // Later on, device actions in DeviceLinkerInputs are used to create
3507 // device link actions in appendLinkDependences and the created device
3508 // link actions are passed to the offload action as device dependence.
3509 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3510 auto LI = DeviceLinkerInputs.begin();
3511 for (auto *A : CudaDeviceActions) {
3512 LI->push_back(A);
3513 ++LI;
3516 // We will pass the device action as a host dependence, so we don't
3517 // need to do anything else with them.
3518 CudaDeviceActions.clear();
3519 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3522 // By default, we produce an action for each device arch.
3523 for (Action *&A : CudaDeviceActions)
3524 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3525 AssociatedOffloadKind);
3527 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3528 *BundleOutput) {
3529 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3530 OffloadAction::DeviceDependences DDep;
3531 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3532 AssociatedOffloadKind);
3533 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3534 DDep, CudaDeviceActions[I]->getType());
3536 CudaFatBinary =
3537 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3538 CudaDeviceActions.clear();
3541 return (CompileDeviceOnly &&
3542 (CurPhase == FinalPhase ||
3543 (!ShouldLink && CurPhase == phases::Assemble)))
3544 ? ABRT_Ignore_Host
3545 : ABRT_Success;
3548 void appendLinkDeviceActions(ActionList &AL) override {
3549 if (DeviceLinkerInputs.size() == 0)
3550 return;
3552 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3553 "Linker inputs and GPU arch list sizes do not match.");
3555 ActionList Actions;
3556 unsigned I = 0;
3557 // Append a new link action for each device.
3558 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3559 for (auto &LI : DeviceLinkerInputs) {
3561 types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3562 ? types::TY_LLVM_BC
3563 : types::TY_Image;
3565 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3566 // Linking all inputs for the current GPU arch.
3567 // LI contains all the inputs for the linker.
3568 OffloadAction::DeviceDependences DeviceLinkDeps;
3569 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3570 GpuArchList[I], AssociatedOffloadKind);
3571 Actions.push_back(C.MakeAction<OffloadAction>(
3572 DeviceLinkDeps, DeviceLinkAction->getType()));
3573 ++I;
3575 DeviceLinkerInputs.clear();
3577 // If emitting LLVM, do not generate final host/device compilation action
3578 if (Args.hasArg(options::OPT_emit_llvm)) {
3579 AL.append(Actions);
3580 return;
3583 // Create a host object from all the device images by embedding them
3584 // in a fat binary for mixed host-device compilation. For device-only
3585 // compilation, creates a fat binary.
3586 OffloadAction::DeviceDependences DDeps;
3587 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3588 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3589 Actions,
3590 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3591 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3592 AssociatedOffloadKind);
3593 // Offload the host object to the host linker.
3594 AL.push_back(
3595 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3596 } else {
3597 AL.append(Actions);
3601 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3603 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3607 /// TODO: Add the implementation for other specialized builders here.
3610 /// Specialized builders being used by this offloading action builder.
3611 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3613 /// Flag set to true if all valid builders allow file bundling/unbundling.
3614 bool CanUseBundler;
3616 public:
3617 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3618 const Driver::InputList &Inputs)
3619 : C(C) {
3620 // Create a specialized builder for each device toolchain.
3622 IsValid = true;
3624 // Create a specialized builder for CUDA.
3625 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3627 // Create a specialized builder for HIP.
3628 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3631 // TODO: Build other specialized builders here.
3634 // Initialize all the builders, keeping track of errors. If all valid
3635 // builders agree that we can use bundling, set the flag to true.
3636 unsigned ValidBuilders = 0u;
3637 unsigned ValidBuildersSupportingBundling = 0u;
3638 for (auto *SB : SpecializedBuilders) {
3639 IsValid = IsValid && !SB->initialize();
3641 // Update the counters if the builder is valid.
3642 if (SB->isValid()) {
3643 ++ValidBuilders;
3644 if (SB->canUseBundlerUnbundler())
3645 ++ValidBuildersSupportingBundling;
3648 CanUseBundler =
3649 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3652 ~OffloadingActionBuilder() {
3653 for (auto *SB : SpecializedBuilders)
3654 delete SB;
3657 /// Record a host action and its originating input argument.
3658 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3659 assert(HostAction && "Invalid host action");
3660 assert(InputArg && "Invalid input argument");
3661 auto Loc = HostActionToInputArgMap.find(HostAction);
3662 if (Loc == HostActionToInputArgMap.end())
3663 HostActionToInputArgMap[HostAction] = InputArg;
3664 assert(HostActionToInputArgMap[HostAction] == InputArg &&
3665 "host action mapped to multiple input arguments");
3668 /// Generate an action that adds device dependences (if any) to a host action.
3669 /// If no device dependence actions exist, just return the host action \a
3670 /// HostAction. If an error is found or if no builder requires the host action
3671 /// to be generated, return nullptr.
3672 Action *
3673 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3674 phases::ID CurPhase, phases::ID FinalPhase,
3675 DeviceActionBuilder::PhasesTy &Phases) {
3676 if (!IsValid)
3677 return nullptr;
3679 if (SpecializedBuilders.empty())
3680 return HostAction;
3682 assert(HostAction && "Invalid host action!");
3683 recordHostAction(HostAction, InputArg);
3685 OffloadAction::DeviceDependences DDeps;
3686 // Check if all the programming models agree we should not emit the host
3687 // action. Also, keep track of the offloading kinds employed.
3688 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3689 unsigned InactiveBuilders = 0u;
3690 unsigned IgnoringBuilders = 0u;
3691 for (auto *SB : SpecializedBuilders) {
3692 if (!SB->isValid()) {
3693 ++InactiveBuilders;
3694 continue;
3696 auto RetCode =
3697 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3699 // If the builder explicitly says the host action should be ignored,
3700 // we need to increment the variable that tracks the builders that request
3701 // the host object to be ignored.
3702 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3703 ++IgnoringBuilders;
3705 // Unless the builder was inactive for this action, we have to record the
3706 // offload kind because the host will have to use it.
3707 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3708 OffloadKind |= SB->getAssociatedOffloadKind();
3711 // If all builders agree that the host object should be ignored, just return
3712 // nullptr.
3713 if (IgnoringBuilders &&
3714 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3715 return nullptr;
3717 if (DDeps.getActions().empty())
3718 return HostAction;
3720 // We have dependences we need to bundle together. We use an offload action
3721 // for that.
3722 OffloadAction::HostDependence HDep(
3723 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3724 /*BoundArch=*/nullptr, DDeps);
3725 return C.MakeAction<OffloadAction>(HDep, DDeps);
3728 /// Generate an action that adds a host dependence to a device action. The
3729 /// results will be kept in this action builder. Return true if an error was
3730 /// found.
3731 bool addHostDependenceToDeviceActions(Action *&HostAction,
3732 const Arg *InputArg) {
3733 if (!IsValid)
3734 return true;
3736 recordHostAction(HostAction, InputArg);
3738 // If we are supporting bundling/unbundling and the current action is an
3739 // input action of non-source file, we replace the host action by the
3740 // unbundling action. The bundler tool has the logic to detect if an input
3741 // is a bundle or not and if the input is not a bundle it assumes it is a
3742 // host file. Therefore it is safe to create an unbundling action even if
3743 // the input is not a bundle.
3744 if (CanUseBundler && isa<InputAction>(HostAction) &&
3745 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3746 (!types::isSrcFile(HostAction->getType()) ||
3747 HostAction->getType() == types::TY_PP_HIP)) {
3748 auto UnbundlingHostAction =
3749 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3750 UnbundlingHostAction->registerDependentActionInfo(
3751 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3752 /*BoundArch=*/StringRef(), Action::OFK_Host);
3753 HostAction = UnbundlingHostAction;
3754 recordHostAction(HostAction, InputArg);
3757 assert(HostAction && "Invalid host action!");
3759 // Register the offload kinds that are used.
3760 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3761 for (auto *SB : SpecializedBuilders) {
3762 if (!SB->isValid())
3763 continue;
3765 auto RetCode = SB->addDeviceDependences(HostAction);
3767 // Host dependences for device actions are not compatible with that same
3768 // action being ignored.
3769 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3770 "Host dependence not expected to be ignored.!");
3772 // Unless the builder was inactive for this action, we have to record the
3773 // offload kind because the host will have to use it.
3774 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3775 OffloadKind |= SB->getAssociatedOffloadKind();
3778 // Do not use unbundler if the Host does not depend on device action.
3779 if (OffloadKind == Action::OFK_None && CanUseBundler)
3780 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3781 HostAction = UA->getInputs().back();
3783 return false;
3786 /// Add the offloading top level actions to the provided action list. This
3787 /// function can replace the host action by a bundling action if the
3788 /// programming models allow it.
3789 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3790 const Arg *InputArg) {
3791 if (HostAction)
3792 recordHostAction(HostAction, InputArg);
3794 // Get the device actions to be appended.
3795 ActionList OffloadAL;
3796 for (auto *SB : SpecializedBuilders) {
3797 if (!SB->isValid())
3798 continue;
3799 SB->appendTopLevelActions(OffloadAL);
3802 // If we can use the bundler, replace the host action by the bundling one in
3803 // the resulting list. Otherwise, just append the device actions. For
3804 // device only compilation, HostAction is a null pointer, therefore only do
3805 // this when HostAction is not a null pointer.
3806 if (CanUseBundler && HostAction &&
3807 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3808 // Add the host action to the list in order to create the bundling action.
3809 OffloadAL.push_back(HostAction);
3811 // We expect that the host action was just appended to the action list
3812 // before this method was called.
3813 assert(HostAction == AL.back() && "Host action not in the list??");
3814 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3815 recordHostAction(HostAction, InputArg);
3816 AL.back() = HostAction;
3817 } else
3818 AL.append(OffloadAL.begin(), OffloadAL.end());
3820 // Propagate to the current host action (if any) the offload information
3821 // associated with the current input.
3822 if (HostAction)
3823 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3824 /*BoundArch=*/nullptr);
3825 return false;
3828 void appendDeviceLinkActions(ActionList &AL) {
3829 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3830 if (!SB->isValid())
3831 continue;
3832 SB->appendLinkDeviceActions(AL);
3836 Action *makeHostLinkAction() {
3837 // Build a list of device linking actions.
3838 ActionList DeviceAL;
3839 appendDeviceLinkActions(DeviceAL);
3840 if (DeviceAL.empty())
3841 return nullptr;
3843 // Let builders add host linking actions.
3844 Action* HA = nullptr;
3845 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3846 if (!SB->isValid())
3847 continue;
3848 HA = SB->appendLinkHostActions(DeviceAL);
3849 // This created host action has no originating input argument, therefore
3850 // needs to set its offloading kind directly.
3851 if (HA)
3852 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3853 /*BoundArch=*/nullptr);
3855 return HA;
3858 /// Processes the host linker action. This currently consists of replacing it
3859 /// with an offload action if there are device link objects and propagate to
3860 /// the host action all the offload kinds used in the current compilation. The
3861 /// resulting action is returned.
3862 Action *processHostLinkAction(Action *HostAction) {
3863 // Add all the dependences from the device linking actions.
3864 OffloadAction::DeviceDependences DDeps;
3865 for (auto *SB : SpecializedBuilders) {
3866 if (!SB->isValid())
3867 continue;
3869 SB->appendLinkDependences(DDeps);
3872 // Calculate all the offload kinds used in the current compilation.
3873 unsigned ActiveOffloadKinds = 0u;
3874 for (auto &I : InputArgToOffloadKindMap)
3875 ActiveOffloadKinds |= I.second;
3877 // If we don't have device dependencies, we don't have to create an offload
3878 // action.
3879 if (DDeps.getActions().empty()) {
3880 // Set all the active offloading kinds to the link action. Given that it
3881 // is a link action it is assumed to depend on all actions generated so
3882 // far.
3883 HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3884 /*BoundArch=*/nullptr);
3885 // Propagate active offloading kinds for each input to the link action.
3886 // Each input may have different active offloading kind.
3887 for (auto *A : HostAction->inputs()) {
3888 auto ArgLoc = HostActionToInputArgMap.find(A);
3889 if (ArgLoc == HostActionToInputArgMap.end())
3890 continue;
3891 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3892 if (OFKLoc == InputArgToOffloadKindMap.end())
3893 continue;
3894 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3896 return HostAction;
3899 // Create the offload action with all dependences. When an offload action
3900 // is created the kinds are propagated to the host action, so we don't have
3901 // to do that explicitly here.
3902 OffloadAction::HostDependence HDep(
3903 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3904 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3905 return C.MakeAction<OffloadAction>(HDep, DDeps);
3908 } // anonymous namespace.
3910 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3911 const InputList &Inputs,
3912 ActionList &Actions) const {
3914 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3915 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3916 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3917 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3918 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3919 Args.eraseArg(options::OPT__SLASH_Yc);
3920 Args.eraseArg(options::OPT__SLASH_Yu);
3921 YcArg = YuArg = nullptr;
3923 if (YcArg && Inputs.size() > 1) {
3924 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3925 Args.eraseArg(options::OPT__SLASH_Yc);
3926 YcArg = nullptr;
3929 Arg *FinalPhaseArg;
3930 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3932 if (FinalPhase == phases::Link) {
3933 if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3934 Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
3935 Args.AddFlagArg(nullptr,
3936 getOpts().getOption(options::OPT_frtlib_add_rpath));
3938 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3939 if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3940 Diag(clang::diag::err_drv_emit_llvm_link);
3941 if (IsCLMode() && LTOMode != LTOK_None &&
3942 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3943 .equals_insensitive("lld"))
3944 Diag(clang::diag::err_drv_lto_without_lld);
3946 // If -dumpdir is not specified, give a default prefix derived from the link
3947 // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
3948 // `-dumpdir x-` to cc1. If -o is unspecified, use
3949 // stem(getDefaultImageName()) (usually stem("a.out") = "a").
3950 if (!Args.hasArg(options::OPT_dumpdir)) {
3951 Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
3952 Arg *Arg = Args.MakeSeparateArg(
3953 nullptr, getOpts().getOption(options::OPT_dumpdir),
3954 Args.MakeArgString(
3955 (FinalOutput ? FinalOutput->getValue()
3956 : llvm::sys::path::stem(getDefaultImageName())) +
3957 "-"));
3958 Arg->claim();
3959 Args.append(Arg);
3963 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3964 // If only preprocessing or /Y- is used, all pch handling is disabled.
3965 // Rather than check for it everywhere, just remove clang-cl pch-related
3966 // flags here.
3967 Args.eraseArg(options::OPT__SLASH_Fp);
3968 Args.eraseArg(options::OPT__SLASH_Yc);
3969 Args.eraseArg(options::OPT__SLASH_Yu);
3970 YcArg = YuArg = nullptr;
3973 unsigned LastPLSize = 0;
3974 for (auto &I : Inputs) {
3975 types::ID InputType = I.first;
3976 const Arg *InputArg = I.second;
3978 auto PL = types::getCompilationPhases(InputType);
3979 LastPLSize = PL.size();
3981 // If the first step comes after the final phase we are doing as part of
3982 // this compilation, warn the user about it.
3983 phases::ID InitialPhase = PL[0];
3984 if (InitialPhase > FinalPhase) {
3985 if (InputArg->isClaimed())
3986 continue;
3988 // Claim here to avoid the more general unused warning.
3989 InputArg->claim();
3991 // Suppress all unused style warnings with -Qunused-arguments
3992 if (Args.hasArg(options::OPT_Qunused_arguments))
3993 continue;
3995 // Special case when final phase determined by binary name, rather than
3996 // by a command-line argument with a corresponding Arg.
3997 if (CCCIsCPP())
3998 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3999 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4000 // Special case '-E' warning on a previously preprocessed file to make
4001 // more sense.
4002 else if (InitialPhase == phases::Compile &&
4003 (Args.getLastArg(options::OPT__SLASH_EP,
4004 options::OPT__SLASH_P) ||
4005 Args.getLastArg(options::OPT_E) ||
4006 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4007 getPreprocessedType(InputType) == types::TY_INVALID)
4008 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4009 << InputArg->getAsString(Args) << !!FinalPhaseArg
4010 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4011 else
4012 Diag(clang::diag::warn_drv_input_file_unused)
4013 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4014 << !!FinalPhaseArg
4015 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4016 continue;
4019 if (YcArg) {
4020 // Add a separate precompile phase for the compile phase.
4021 if (FinalPhase >= phases::Compile) {
4022 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4023 // Build the pipeline for the pch file.
4024 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4025 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4026 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4027 assert(ClangClPch);
4028 Actions.push_back(ClangClPch);
4029 // The driver currently exits after the first failed command. This
4030 // relies on that behavior, to make sure if the pch generation fails,
4031 // the main compilation won't run.
4032 // FIXME: If the main compilation fails, the PCH generation should
4033 // probably not be considered successful either.
4038 // If we are linking, claim any options which are obviously only used for
4039 // compilation.
4040 // FIXME: Understand why the last Phase List length is used here.
4041 if (FinalPhase == phases::Link && LastPLSize == 1) {
4042 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4043 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4047 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4048 const InputList &Inputs, ActionList &Actions) const {
4049 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4051 if (!SuppressMissingInputWarning && Inputs.empty()) {
4052 Diag(clang::diag::err_drv_no_input_files);
4053 return;
4056 // Diagnose misuse of /Fo.
4057 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4058 StringRef V = A->getValue();
4059 if (Inputs.size() > 1 && !V.empty() &&
4060 !llvm::sys::path::is_separator(V.back())) {
4061 // Check whether /Fo tries to name an output file for multiple inputs.
4062 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4063 << A->getSpelling() << V;
4064 Args.eraseArg(options::OPT__SLASH_Fo);
4068 // Diagnose misuse of /Fa.
4069 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4070 StringRef V = A->getValue();
4071 if (Inputs.size() > 1 && !V.empty() &&
4072 !llvm::sys::path::is_separator(V.back())) {
4073 // Check whether /Fa tries to name an asm file for multiple inputs.
4074 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4075 << A->getSpelling() << V;
4076 Args.eraseArg(options::OPT__SLASH_Fa);
4080 // Diagnose misuse of /o.
4081 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4082 if (A->getValue()[0] == '\0') {
4083 // It has to have a value.
4084 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4085 Args.eraseArg(options::OPT__SLASH_o);
4089 handleArguments(C, Args, Inputs, Actions);
4091 bool UseNewOffloadingDriver =
4092 C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4093 Args.hasFlag(options::OPT_offload_new_driver,
4094 options::OPT_no_offload_new_driver, false);
4096 // Builder to be used to build offloading actions.
4097 std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4098 !UseNewOffloadingDriver
4099 ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4100 : nullptr;
4102 // Construct the actions to perform.
4103 ExtractAPIJobAction *ExtractAPIAction = nullptr;
4104 ActionList LinkerInputs;
4105 ActionList MergerInputs;
4107 for (auto &I : Inputs) {
4108 types::ID InputType = I.first;
4109 const Arg *InputArg = I.second;
4111 auto PL = types::getCompilationPhases(*this, Args, InputType);
4112 if (PL.empty())
4113 continue;
4115 auto FullPL = types::getCompilationPhases(InputType);
4117 // Build the pipeline for this file.
4118 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4120 // Use the current host action in any of the offloading actions, if
4121 // required.
4122 if (!UseNewOffloadingDriver)
4123 if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4124 break;
4126 for (phases::ID Phase : PL) {
4128 // Add any offload action the host action depends on.
4129 if (!UseNewOffloadingDriver)
4130 Current = OffloadBuilder->addDeviceDependencesToHostAction(
4131 Current, InputArg, Phase, PL.back(), FullPL);
4132 if (!Current)
4133 break;
4135 // Queue linker inputs.
4136 if (Phase == phases::Link) {
4137 assert(Phase == PL.back() && "linking must be final compilation step.");
4138 // We don't need to generate additional link commands if emitting AMD
4139 // bitcode or compiling only for the offload device
4140 if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4141 (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4142 !offloadDeviceOnly())
4143 LinkerInputs.push_back(Current);
4144 Current = nullptr;
4145 break;
4148 // TODO: Consider removing this because the merged may not end up being
4149 // the final Phase in the pipeline. Perhaps the merged could just merge
4150 // and then pass an artifact of some sort to the Link Phase.
4151 // Queue merger inputs.
4152 if (Phase == phases::IfsMerge) {
4153 assert(Phase == PL.back() && "merging must be final compilation step.");
4154 MergerInputs.push_back(Current);
4155 Current = nullptr;
4156 break;
4159 if (Phase == phases::Precompile && ExtractAPIAction) {
4160 ExtractAPIAction->addHeaderInput(Current);
4161 Current = nullptr;
4162 break;
4165 // FIXME: Should we include any prior module file outputs as inputs of
4166 // later actions in the same command line?
4168 // Otherwise construct the appropriate action.
4169 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4171 // We didn't create a new action, so we will just move to the next phase.
4172 if (NewCurrent == Current)
4173 continue;
4175 if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4176 ExtractAPIAction = EAA;
4178 Current = NewCurrent;
4180 // Try to build the offloading actions and add the result as a dependency
4181 // to the host.
4182 if (UseNewOffloadingDriver)
4183 Current = BuildOffloadingActions(C, Args, I, Current);
4184 // Use the current host action in any of the offloading actions, if
4185 // required.
4186 else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4187 InputArg))
4188 break;
4190 if (Current->getType() == types::TY_Nothing)
4191 break;
4194 // If we ended with something, add to the output list.
4195 if (Current)
4196 Actions.push_back(Current);
4198 // Add any top level actions generated for offloading.
4199 if (!UseNewOffloadingDriver)
4200 OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4201 else if (Current)
4202 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4203 /*BoundArch=*/nullptr);
4206 // Add a link action if necessary.
4208 if (LinkerInputs.empty()) {
4209 Arg *FinalPhaseArg;
4210 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4211 if (!UseNewOffloadingDriver)
4212 OffloadBuilder->appendDeviceLinkActions(Actions);
4215 if (!LinkerInputs.empty()) {
4216 if (!UseNewOffloadingDriver)
4217 if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4218 LinkerInputs.push_back(Wrapper);
4219 Action *LA;
4220 // Check if this Linker Job should emit a static library.
4221 if (ShouldEmitStaticLibrary(Args)) {
4222 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4223 } else if (UseNewOffloadingDriver ||
4224 Args.hasArg(options::OPT_offload_link)) {
4225 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4226 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4227 /*BoundArch=*/nullptr);
4228 } else {
4229 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4231 if (!UseNewOffloadingDriver)
4232 LA = OffloadBuilder->processHostLinkAction(LA);
4233 Actions.push_back(LA);
4236 // Add an interface stubs merge action if necessary.
4237 if (!MergerInputs.empty())
4238 Actions.push_back(
4239 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4241 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4242 auto PhaseList = types::getCompilationPhases(
4243 types::TY_IFS_CPP,
4244 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4246 ActionList MergerInputs;
4248 for (auto &I : Inputs) {
4249 types::ID InputType = I.first;
4250 const Arg *InputArg = I.second;
4252 // Currently clang and the llvm assembler do not support generating symbol
4253 // stubs from assembly, so we skip the input on asm files. For ifs files
4254 // we rely on the normal pipeline setup in the pipeline setup code above.
4255 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4256 InputType == types::TY_Asm)
4257 continue;
4259 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4261 for (auto Phase : PhaseList) {
4262 switch (Phase) {
4263 default:
4264 llvm_unreachable(
4265 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4266 case phases::Compile: {
4267 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4268 // files where the .o file is located. The compile action can not
4269 // handle this.
4270 if (InputType == types::TY_Object)
4271 break;
4273 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4274 break;
4276 case phases::IfsMerge: {
4277 assert(Phase == PhaseList.back() &&
4278 "merging must be final compilation step.");
4279 MergerInputs.push_back(Current);
4280 Current = nullptr;
4281 break;
4286 // If we ended with something, add to the output list.
4287 if (Current)
4288 Actions.push_back(Current);
4291 // Add an interface stubs merge action if necessary.
4292 if (!MergerInputs.empty())
4293 Actions.push_back(
4294 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4297 for (auto Opt : {options::OPT_print_supported_cpus,
4298 options::OPT_print_supported_extensions}) {
4299 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4300 // custom Compile phase that prints out supported cpu models and quits.
4302 // If --print-supported-extensions is specified, call the helper function
4303 // RISCVMarchHelp in RISCVISAInfo.cpp that prints out supported extensions
4304 // and quits.
4305 if (Arg *A = Args.getLastArg(Opt)) {
4306 if (Opt == options::OPT_print_supported_extensions &&
4307 !C.getDefaultToolChain().getTriple().isRISCV() &&
4308 !C.getDefaultToolChain().getTriple().isAArch64() &&
4309 !C.getDefaultToolChain().getTriple().isARM()) {
4310 C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4311 << "--print-supported-extensions";
4312 return;
4315 // Use the -mcpu=? flag as the dummy input to cc1.
4316 Actions.clear();
4317 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4318 Actions.push_back(
4319 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4320 for (auto &I : Inputs)
4321 I.second->claim();
4325 // Call validator for dxil when -Vd not in Args.
4326 if (C.getDefaultToolChain().getTriple().isDXIL()) {
4327 // Only add action when needValidation.
4328 const auto &TC =
4329 static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4330 if (TC.requiresValidation(Args)) {
4331 Action *LastAction = Actions.back();
4332 Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4333 LastAction, types::TY_DX_CONTAINER));
4337 // Claim ignored clang-cl options.
4338 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4341 /// Returns the canonical name for the offloading architecture when using a HIP
4342 /// or CUDA architecture.
4343 static StringRef getCanonicalArchString(Compilation &C,
4344 const llvm::opt::DerivedArgList &Args,
4345 StringRef ArchStr,
4346 const llvm::Triple &Triple,
4347 bool SuppressError = false) {
4348 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4349 // expecting the triple to be only NVPTX / AMDGPU.
4350 CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4351 if (!SuppressError && Triple.isNVPTX() &&
4352 (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4353 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4354 << "CUDA" << ArchStr;
4355 return StringRef();
4356 } else if (!SuppressError && Triple.isAMDGPU() &&
4357 (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4358 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4359 << "HIP" << ArchStr;
4360 return StringRef();
4363 if (IsNVIDIAGpuArch(Arch))
4364 return Args.MakeArgStringRef(CudaArchToString(Arch));
4366 if (IsAMDGpuArch(Arch)) {
4367 llvm::StringMap<bool> Features;
4368 auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4369 if (!HIPTriple)
4370 return StringRef();
4371 auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4372 if (!Arch) {
4373 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4374 C.setContainsError();
4375 return StringRef();
4377 return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4380 // If the input isn't CUDA or HIP just return the architecture.
4381 return ArchStr;
4384 /// Checks if the set offloading architectures does not conflict. Returns the
4385 /// incompatible pair if a conflict occurs.
4386 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4387 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4388 llvm::Triple Triple) {
4389 if (!Triple.isAMDGPU())
4390 return std::nullopt;
4392 std::set<StringRef> ArchSet;
4393 llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4394 return getConflictTargetIDCombination(ArchSet);
4397 llvm::DenseSet<StringRef>
4398 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4399 Action::OffloadKind Kind, const ToolChain *TC,
4400 bool SuppressError) const {
4401 if (!TC)
4402 TC = &C.getDefaultToolChain();
4404 // --offload and --offload-arch options are mutually exclusive.
4405 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4406 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4407 options::OPT_no_offload_arch_EQ)) {
4408 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4409 << "--offload"
4410 << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4411 ? "--offload-arch"
4412 : "--no-offload-arch");
4415 if (KnownArchs.contains(TC))
4416 return KnownArchs.lookup(TC);
4418 llvm::DenseSet<StringRef> Archs;
4419 for (auto *Arg : Args) {
4420 // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4421 std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4422 if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4423 ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4424 Arg->claim();
4425 unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4426 ExtractedArg = getOpts().ParseOneArg(Args, Index);
4427 Arg = ExtractedArg.get();
4430 // Add or remove the seen architectures in order of appearance. If an
4431 // invalid architecture is given we simply exit.
4432 if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4433 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4434 if (Arch == "native" || Arch.empty()) {
4435 auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4436 if (!GPUsOrErr) {
4437 if (SuppressError)
4438 llvm::consumeError(GPUsOrErr.takeError());
4439 else
4440 TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4441 << llvm::Triple::getArchTypeName(TC->getArch())
4442 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4443 continue;
4446 for (auto ArchStr : *GPUsOrErr) {
4447 Archs.insert(
4448 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4449 TC->getTriple(), SuppressError));
4451 } else {
4452 StringRef ArchStr = getCanonicalArchString(
4453 C, Args, Arch, TC->getTriple(), SuppressError);
4454 if (ArchStr.empty())
4455 return Archs;
4456 Archs.insert(ArchStr);
4459 } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4460 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4461 if (Arch == "all") {
4462 Archs.clear();
4463 } else {
4464 StringRef ArchStr = getCanonicalArchString(
4465 C, Args, Arch, TC->getTriple(), SuppressError);
4466 if (ArchStr.empty())
4467 return Archs;
4468 Archs.erase(ArchStr);
4474 if (auto ConflictingArchs =
4475 getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4476 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4477 << ConflictingArchs->first << ConflictingArchs->second;
4478 C.setContainsError();
4481 // Skip filling defaults if we're just querying what is availible.
4482 if (SuppressError)
4483 return Archs;
4485 if (Archs.empty()) {
4486 if (Kind == Action::OFK_Cuda)
4487 Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4488 else if (Kind == Action::OFK_HIP)
4489 Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4490 else if (Kind == Action::OFK_OpenMP)
4491 Archs.insert(StringRef());
4492 } else {
4493 Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4494 Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4497 return Archs;
4500 Action *Driver::BuildOffloadingActions(Compilation &C,
4501 llvm::opt::DerivedArgList &Args,
4502 const InputTy &Input,
4503 Action *HostAction) const {
4504 // Don't build offloading actions if explicitly disabled or we do not have a
4505 // valid source input and compile action to embed it in. If preprocessing only
4506 // ignore embedding.
4507 if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4508 !(isa<CompileJobAction>(HostAction) ||
4509 getFinalPhase(Args) == phases::Preprocess))
4510 return HostAction;
4512 ActionList OffloadActions;
4513 OffloadAction::DeviceDependences DDeps;
4515 const Action::OffloadKind OffloadKinds[] = {
4516 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4518 for (Action::OffloadKind Kind : OffloadKinds) {
4519 SmallVector<const ToolChain *, 2> ToolChains;
4520 ActionList DeviceActions;
4522 auto TCRange = C.getOffloadToolChains(Kind);
4523 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4524 ToolChains.push_back(TI->second);
4526 if (ToolChains.empty())
4527 continue;
4529 types::ID InputType = Input.first;
4530 const Arg *InputArg = Input.second;
4532 // The toolchain can be active for unsupported file types.
4533 if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4534 (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4535 continue;
4537 // Get the product of all bound architectures and toolchains.
4538 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4539 for (const ToolChain *TC : ToolChains)
4540 for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4541 TCAndArchs.push_back(std::make_pair(TC, Arch));
4543 for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4544 DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4546 if (DeviceActions.empty())
4547 return HostAction;
4549 auto PL = types::getCompilationPhases(*this, Args, InputType);
4551 for (phases::ID Phase : PL) {
4552 if (Phase == phases::Link) {
4553 assert(Phase == PL.back() && "linking must be final compilation step.");
4554 break;
4557 auto TCAndArch = TCAndArchs.begin();
4558 for (Action *&A : DeviceActions) {
4559 if (A->getType() == types::TY_Nothing)
4560 continue;
4562 // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4563 A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4564 TCAndArch->first);
4565 A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4567 if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4568 Kind == Action::OFK_OpenMP &&
4569 HostAction->getType() != types::TY_Nothing) {
4570 // OpenMP offloading has a dependency on the host compile action to
4571 // identify which declarations need to be emitted. This shouldn't be
4572 // collapsed with any other actions so we can use it in the device.
4573 HostAction->setCannotBeCollapsedWithNextDependentAction();
4574 OffloadAction::HostDependence HDep(
4575 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4576 TCAndArch->second.data(), Kind);
4577 OffloadAction::DeviceDependences DDep;
4578 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4579 A = C.MakeAction<OffloadAction>(HDep, DDep);
4582 ++TCAndArch;
4586 // Compiling HIP in non-RDC mode requires linking each action individually.
4587 for (Action *&A : DeviceActions) {
4588 if ((A->getType() != types::TY_Object &&
4589 A->getType() != types::TY_LTO_BC) ||
4590 Kind != Action::OFK_HIP ||
4591 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4592 continue;
4593 ActionList LinkerInput = {A};
4594 A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4597 auto TCAndArch = TCAndArchs.begin();
4598 for (Action *A : DeviceActions) {
4599 DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4600 OffloadAction::DeviceDependences DDep;
4601 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4602 OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4603 ++TCAndArch;
4607 if (offloadDeviceOnly())
4608 return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4610 if (OffloadActions.empty())
4611 return HostAction;
4613 OffloadAction::DeviceDependences DDep;
4614 if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4615 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4616 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4617 // each translation unit without requiring any linking.
4618 Action *FatbinAction =
4619 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4620 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4621 nullptr, Action::OFK_Cuda);
4622 } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4623 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4624 false)) {
4625 // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4626 // translation unit, linking each input individually.
4627 Action *FatbinAction =
4628 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4629 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4630 nullptr, Action::OFK_HIP);
4631 } else {
4632 // Package all the offloading actions into a single output that can be
4633 // embedded in the host and linked.
4634 Action *PackagerAction =
4635 C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4636 DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4637 nullptr, C.getActiveOffloadKinds());
4640 // If we are unable to embed a single device output into the host, we need to
4641 // add each device output as a host dependency to ensure they are still built.
4642 bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4643 return A->getType() == types::TY_Nothing;
4644 }) && isa<CompileJobAction>(HostAction);
4645 OffloadAction::HostDependence HDep(
4646 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4647 /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4648 return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4651 Action *Driver::ConstructPhaseAction(
4652 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4653 Action::OffloadKind TargetDeviceOffloadKind) const {
4654 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4656 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4657 // encode this in the steps because the intermediate type depends on
4658 // arguments. Just special case here.
4659 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4660 return Input;
4662 // Build the appropriate action.
4663 switch (Phase) {
4664 case phases::Link:
4665 llvm_unreachable("link action invalid here.");
4666 case phases::IfsMerge:
4667 llvm_unreachable("ifsmerge action invalid here.");
4668 case phases::Preprocess: {
4669 types::ID OutputTy;
4670 // -M and -MM specify the dependency file name by altering the output type,
4671 // -if -MD and -MMD are not specified.
4672 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4673 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4674 OutputTy = types::TY_Dependencies;
4675 } else {
4676 OutputTy = Input->getType();
4677 // For these cases, the preprocessor is only translating forms, the Output
4678 // still needs preprocessing.
4679 if (!Args.hasFlag(options::OPT_frewrite_includes,
4680 options::OPT_fno_rewrite_includes, false) &&
4681 !Args.hasFlag(options::OPT_frewrite_imports,
4682 options::OPT_fno_rewrite_imports, false) &&
4683 !Args.hasFlag(options::OPT_fdirectives_only,
4684 options::OPT_fno_directives_only, false) &&
4685 !CCGenDiagnostics)
4686 OutputTy = types::getPreprocessedType(OutputTy);
4687 assert(OutputTy != types::TY_INVALID &&
4688 "Cannot preprocess this input type!");
4690 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4692 case phases::Precompile: {
4693 // API extraction should not generate an actual precompilation action.
4694 if (Args.hasArg(options::OPT_extract_api))
4695 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4697 types::ID OutputTy = getPrecompiledType(Input->getType());
4698 assert(OutputTy != types::TY_INVALID &&
4699 "Cannot precompile this input type!");
4701 // If we're given a module name, precompile header file inputs as a
4702 // module, not as a precompiled header.
4703 const char *ModName = nullptr;
4704 if (OutputTy == types::TY_PCH) {
4705 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4706 ModName = A->getValue();
4707 if (ModName)
4708 OutputTy = types::TY_ModuleFile;
4711 if (Args.hasArg(options::OPT_fsyntax_only)) {
4712 // Syntax checks should not emit a PCH file
4713 OutputTy = types::TY_Nothing;
4716 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4718 case phases::Compile: {
4719 if (Args.hasArg(options::OPT_fsyntax_only))
4720 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4721 if (Args.hasArg(options::OPT_rewrite_objc))
4722 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4723 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4724 return C.MakeAction<CompileJobAction>(Input,
4725 types::TY_RewrittenLegacyObjC);
4726 if (Args.hasArg(options::OPT__analyze))
4727 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4728 if (Args.hasArg(options::OPT__migrate))
4729 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4730 if (Args.hasArg(options::OPT_emit_ast))
4731 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4732 if (Args.hasArg(options::OPT_module_file_info))
4733 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4734 if (Args.hasArg(options::OPT_verify_pch))
4735 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4736 if (Args.hasArg(options::OPT_extract_api))
4737 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4738 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4740 case phases::Backend: {
4741 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4742 types::ID Output;
4743 if (Args.hasArg(options::OPT_S))
4744 Output = types::TY_LTO_IR;
4745 else if (Args.hasArg(options::OPT_ffat_lto_objects))
4746 Output = types::TY_PP_Asm;
4747 else
4748 Output = types::TY_LTO_BC;
4749 return C.MakeAction<BackendJobAction>(Input, Output);
4751 if (isUsingLTO(/* IsOffload */ true) &&
4752 TargetDeviceOffloadKind != Action::OFK_None) {
4753 types::ID Output =
4754 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4755 return C.MakeAction<BackendJobAction>(Input, Output);
4757 if (Args.hasArg(options::OPT_emit_llvm) ||
4758 (((Input->getOffloadingToolChain() &&
4759 Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4760 TargetDeviceOffloadKind == Action::OFK_HIP) &&
4761 (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4762 false) ||
4763 TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4764 types::ID Output =
4765 Args.hasArg(options::OPT_S) &&
4766 (TargetDeviceOffloadKind == Action::OFK_None ||
4767 offloadDeviceOnly() ||
4768 (TargetDeviceOffloadKind == Action::OFK_HIP &&
4769 !Args.hasFlag(options::OPT_offload_new_driver,
4770 options::OPT_no_offload_new_driver, false)))
4771 ? types::TY_LLVM_IR
4772 : types::TY_LLVM_BC;
4773 return C.MakeAction<BackendJobAction>(Input, Output);
4775 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4777 case phases::Assemble:
4778 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4781 llvm_unreachable("invalid phase in ConstructPhaseAction");
4784 void Driver::BuildJobs(Compilation &C) const {
4785 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4787 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4789 // It is an error to provide a -o option if we are making multiple output
4790 // files. There are exceptions:
4792 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4793 // generate the stub file at the same time that we generate the real
4794 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4795 // stubs there will also be a .ifs and .ifso at the same location.
4797 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4798 // and -c is passed, we still want to be able to generate a .ifs file while
4799 // we are also generating .o files. So we allow more than one output file in
4800 // this case as well.
4802 // OffloadClass of type TY_Nothing: device-only output will place many outputs
4803 // into a single offloading action. We should count all inputs to the action
4804 // as outputs. Also ignore device-only outputs if we're compiling with
4805 // -fsyntax-only.
4806 if (FinalOutput) {
4807 unsigned NumOutputs = 0;
4808 unsigned NumIfsOutputs = 0;
4809 for (const Action *A : C.getActions()) {
4810 if (A->getType() != types::TY_Nothing &&
4811 A->getType() != types::TY_DX_CONTAINER &&
4812 !(A->getKind() == Action::IfsMergeJobClass ||
4813 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4814 A->getKind() == clang::driver::Action::CompileJobClass &&
4815 0 == NumIfsOutputs++) ||
4816 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4817 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4818 ++NumOutputs;
4819 else if (A->getKind() == Action::OffloadClass &&
4820 A->getType() == types::TY_Nothing &&
4821 !C.getArgs().hasArg(options::OPT_fsyntax_only))
4822 NumOutputs += A->size();
4825 if (NumOutputs > 1) {
4826 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4827 FinalOutput = nullptr;
4831 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4833 // Collect the list of architectures.
4834 llvm::StringSet<> ArchNames;
4835 if (RawTriple.isOSBinFormatMachO())
4836 for (const Arg *A : C.getArgs())
4837 if (A->getOption().matches(options::OPT_arch))
4838 ArchNames.insert(A->getValue());
4840 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4841 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4842 for (Action *A : C.getActions()) {
4843 // If we are linking an image for multiple archs then the linker wants
4844 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4845 // doesn't fit in cleanly because we have to pass this information down.
4847 // FIXME: This is a hack; find a cleaner way to integrate this into the
4848 // process.
4849 const char *LinkingOutput = nullptr;
4850 if (isa<LipoJobAction>(A)) {
4851 if (FinalOutput)
4852 LinkingOutput = FinalOutput->getValue();
4853 else
4854 LinkingOutput = getDefaultImageName();
4857 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4858 /*BoundArch*/ StringRef(),
4859 /*AtTopLevel*/ true,
4860 /*MultipleArchs*/ ArchNames.size() > 1,
4861 /*LinkingOutput*/ LinkingOutput, CachedResults,
4862 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4865 // If we have more than one job, then disable integrated-cc1 for now. Do this
4866 // also when we need to report process execution statistics.
4867 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4868 for (auto &J : C.getJobs())
4869 J.InProcess = false;
4871 if (CCPrintProcessStats) {
4872 C.setPostCallback([=](const Command &Cmd, int Res) {
4873 std::optional<llvm::sys::ProcessStatistics> ProcStat =
4874 Cmd.getProcessStatistics();
4875 if (!ProcStat)
4876 return;
4878 const char *LinkingOutput = nullptr;
4879 if (FinalOutput)
4880 LinkingOutput = FinalOutput->getValue();
4881 else if (!Cmd.getOutputFilenames().empty())
4882 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4883 else
4884 LinkingOutput = getDefaultImageName();
4886 if (CCPrintStatReportFilename.empty()) {
4887 using namespace llvm;
4888 // Human readable output.
4889 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4890 << "output=" << LinkingOutput;
4891 outs() << ", total="
4892 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4893 << ", user="
4894 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4895 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4896 } else {
4897 // CSV format.
4898 std::string Buffer;
4899 llvm::raw_string_ostream Out(Buffer);
4900 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4901 /*Quote*/ true);
4902 Out << ',';
4903 llvm::sys::printArg(Out, LinkingOutput, true);
4904 Out << ',' << ProcStat->TotalTime.count() << ','
4905 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4906 << '\n';
4907 Out.flush();
4908 std::error_code EC;
4909 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4910 llvm::sys::fs::OF_Append |
4911 llvm::sys::fs::OF_Text);
4912 if (EC)
4913 return;
4914 auto L = OS.lock();
4915 if (!L) {
4916 llvm::errs() << "ERROR: Cannot lock file "
4917 << CCPrintStatReportFilename << ": "
4918 << toString(L.takeError()) << "\n";
4919 return;
4921 OS << Buffer;
4922 OS.flush();
4927 // If the user passed -Qunused-arguments or there were errors, don't warn
4928 // about any unused arguments.
4929 if (Diags.hasErrorOccurred() ||
4930 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4931 return;
4933 // Claim -fdriver-only here.
4934 (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4935 // Claim -### here.
4936 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4938 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4939 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4940 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4942 bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
4943 // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
4944 // longer ShortName "clang integrated assembler" while other assemblers just
4945 // use "assembler".
4946 return strstr(J.getCreator().getShortName(), "assembler");
4948 for (Arg *A : C.getArgs()) {
4949 // FIXME: It would be nice to be able to send the argument to the
4950 // DiagnosticsEngine, so that extra values, position, and so on could be
4951 // printed.
4952 if (!A->isClaimed()) {
4953 if (A->getOption().hasFlag(options::NoArgumentUnused))
4954 continue;
4956 // Suppress the warning automatically if this is just a flag, and it is an
4957 // instance of an argument we already claimed.
4958 const Option &Opt = A->getOption();
4959 if (Opt.getKind() == Option::FlagClass) {
4960 bool DuplicateClaimed = false;
4962 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4963 if (AA->isClaimed()) {
4964 DuplicateClaimed = true;
4965 break;
4969 if (DuplicateClaimed)
4970 continue;
4973 // In clang-cl, don't mention unknown arguments here since they have
4974 // already been warned about.
4975 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
4976 if (A->getOption().hasFlag(options::TargetSpecific) &&
4977 !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
4978 // When for example -### or -v is used
4979 // without a file, target specific options are not
4980 // consumed/validated.
4981 // Instead emitting an error emit a warning instead.
4982 !C.getActions().empty()) {
4983 Diag(diag::err_drv_unsupported_opt_for_target)
4984 << A->getSpelling() << getTargetTriple();
4985 } else {
4986 Diag(clang::diag::warn_drv_unused_argument)
4987 << A->getAsString(C.getArgs());
4994 namespace {
4995 /// Utility class to control the collapse of dependent actions and select the
4996 /// tools accordingly.
4997 class ToolSelector final {
4998 /// The tool chain this selector refers to.
4999 const ToolChain &TC;
5001 /// The compilation this selector refers to.
5002 const Compilation &C;
5004 /// The base action this selector refers to.
5005 const JobAction *BaseAction;
5007 /// Set to true if the current toolchain refers to host actions.
5008 bool IsHostSelector;
5010 /// Set to true if save-temps and embed-bitcode functionalities are active.
5011 bool SaveTemps;
5012 bool EmbedBitcode;
5014 /// Get previous dependent action or null if that does not exist. If
5015 /// \a CanBeCollapsed is false, that action must be legal to collapse or
5016 /// null will be returned.
5017 const JobAction *getPrevDependentAction(const ActionList &Inputs,
5018 ActionList &SavedOffloadAction,
5019 bool CanBeCollapsed = true) {
5020 // An option can be collapsed only if it has a single input.
5021 if (Inputs.size() != 1)
5022 return nullptr;
5024 Action *CurAction = *Inputs.begin();
5025 if (CanBeCollapsed &&
5026 !CurAction->isCollapsingWithNextDependentActionLegal())
5027 return nullptr;
5029 // If the input action is an offload action. Look through it and save any
5030 // offload action that can be dropped in the event of a collapse.
5031 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5032 // If the dependent action is a device action, we will attempt to collapse
5033 // only with other device actions. Otherwise, we would do the same but
5034 // with host actions only.
5035 if (!IsHostSelector) {
5036 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5037 CurAction =
5038 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5039 if (CanBeCollapsed &&
5040 !CurAction->isCollapsingWithNextDependentActionLegal())
5041 return nullptr;
5042 SavedOffloadAction.push_back(OA);
5043 return dyn_cast<JobAction>(CurAction);
5045 } else if (OA->hasHostDependence()) {
5046 CurAction = OA->getHostDependence();
5047 if (CanBeCollapsed &&
5048 !CurAction->isCollapsingWithNextDependentActionLegal())
5049 return nullptr;
5050 SavedOffloadAction.push_back(OA);
5051 return dyn_cast<JobAction>(CurAction);
5053 return nullptr;
5056 return dyn_cast<JobAction>(CurAction);
5059 /// Return true if an assemble action can be collapsed.
5060 bool canCollapseAssembleAction() const {
5061 return TC.useIntegratedAs() && !SaveTemps &&
5062 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5063 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5064 !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5065 !C.getArgs().hasArg(options::OPT_dxc_Fc);
5068 /// Return true if a preprocessor action can be collapsed.
5069 bool canCollapsePreprocessorAction() const {
5070 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5071 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5072 !C.getArgs().hasArg(options::OPT_rewrite_objc);
5075 /// Struct that relates an action with the offload actions that would be
5076 /// collapsed with it.
5077 struct JobActionInfo final {
5078 /// The action this info refers to.
5079 const JobAction *JA = nullptr;
5080 /// The offload actions we need to take care off if this action is
5081 /// collapsed.
5082 ActionList SavedOffloadAction;
5085 /// Append collapsed offload actions from the give nnumber of elements in the
5086 /// action info array.
5087 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5088 ArrayRef<JobActionInfo> &ActionInfo,
5089 unsigned ElementNum) {
5090 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5091 for (unsigned I = 0; I < ElementNum; ++I)
5092 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5093 ActionInfo[I].SavedOffloadAction.end());
5096 /// Functions that attempt to perform the combining. They detect if that is
5097 /// legal, and if so they update the inputs \a Inputs and the offload action
5098 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5099 /// the combined action is returned. If the combining is not legal or if the
5100 /// tool does not exist, null is returned.
5101 /// Currently three kinds of collapsing are supported:
5102 /// - Assemble + Backend + Compile;
5103 /// - Assemble + Backend ;
5104 /// - Backend + Compile.
5105 const Tool *
5106 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5107 ActionList &Inputs,
5108 ActionList &CollapsedOffloadAction) {
5109 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5110 return nullptr;
5111 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5112 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5113 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5114 if (!AJ || !BJ || !CJ)
5115 return nullptr;
5117 // Get compiler tool.
5118 const Tool *T = TC.SelectTool(*CJ);
5119 if (!T)
5120 return nullptr;
5122 // Can't collapse if we don't have codegen support unless we are
5123 // emitting LLVM IR.
5124 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5125 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5126 return nullptr;
5128 // When using -fembed-bitcode, it is required to have the same tool (clang)
5129 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5130 if (EmbedBitcode) {
5131 const Tool *BT = TC.SelectTool(*BJ);
5132 if (BT == T)
5133 return nullptr;
5136 if (!T->hasIntegratedAssembler())
5137 return nullptr;
5139 Inputs = CJ->getInputs();
5140 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5141 /*NumElements=*/3);
5142 return T;
5144 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5145 ActionList &Inputs,
5146 ActionList &CollapsedOffloadAction) {
5147 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5148 return nullptr;
5149 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5150 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5151 if (!AJ || !BJ)
5152 return nullptr;
5154 // Get backend tool.
5155 const Tool *T = TC.SelectTool(*BJ);
5156 if (!T)
5157 return nullptr;
5159 if (!T->hasIntegratedAssembler())
5160 return nullptr;
5162 Inputs = BJ->getInputs();
5163 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5164 /*NumElements=*/2);
5165 return T;
5167 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5168 ActionList &Inputs,
5169 ActionList &CollapsedOffloadAction) {
5170 if (ActionInfo.size() < 2)
5171 return nullptr;
5172 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5173 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5174 if (!BJ || !CJ)
5175 return nullptr;
5177 // Check if the initial input (to the compile job or its predessor if one
5178 // exists) is LLVM bitcode. In that case, no preprocessor step is required
5179 // and we can still collapse the compile and backend jobs when we have
5180 // -save-temps. I.e. there is no need for a separate compile job just to
5181 // emit unoptimized bitcode.
5182 bool InputIsBitcode = true;
5183 for (size_t i = 1; i < ActionInfo.size(); i++)
5184 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5185 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5186 InputIsBitcode = false;
5187 break;
5189 if (!InputIsBitcode && !canCollapsePreprocessorAction())
5190 return nullptr;
5192 // Get compiler tool.
5193 const Tool *T = TC.SelectTool(*CJ);
5194 if (!T)
5195 return nullptr;
5197 // Can't collapse if we don't have codegen support unless we are
5198 // emitting LLVM IR.
5199 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5200 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5201 return nullptr;
5203 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5204 return nullptr;
5206 Inputs = CJ->getInputs();
5207 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5208 /*NumElements=*/2);
5209 return T;
5212 /// Updates the inputs if the obtained tool supports combining with
5213 /// preprocessor action, and the current input is indeed a preprocessor
5214 /// action. If combining results in the collapse of offloading actions, those
5215 /// are appended to \a CollapsedOffloadAction.
5216 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5217 ActionList &CollapsedOffloadAction) {
5218 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5219 return;
5221 // Attempt to get a preprocessor action dependence.
5222 ActionList PreprocessJobOffloadActions;
5223 ActionList NewInputs;
5224 for (Action *A : Inputs) {
5225 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5226 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5227 NewInputs.push_back(A);
5228 continue;
5231 // This is legal to combine. Append any offload action we found and add the
5232 // current input to preprocessor inputs.
5233 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5234 PreprocessJobOffloadActions.end());
5235 NewInputs.append(PJ->input_begin(), PJ->input_end());
5237 Inputs = NewInputs;
5240 public:
5241 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5242 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5243 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5244 EmbedBitcode(EmbedBitcode) {
5245 assert(BaseAction && "Invalid base action.");
5246 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5249 /// Check if a chain of actions can be combined and return the tool that can
5250 /// handle the combination of actions. The pointer to the current inputs \a
5251 /// Inputs and the list of offload actions \a CollapsedOffloadActions
5252 /// connected to collapsed actions are updated accordingly. The latter enables
5253 /// the caller of the selector to process them afterwards instead of just
5254 /// dropping them. If no suitable tool is found, null will be returned.
5255 const Tool *getTool(ActionList &Inputs,
5256 ActionList &CollapsedOffloadAction) {
5258 // Get the largest chain of actions that we could combine.
5261 SmallVector<JobActionInfo, 5> ActionChain(1);
5262 ActionChain.back().JA = BaseAction;
5263 while (ActionChain.back().JA) {
5264 const Action *CurAction = ActionChain.back().JA;
5266 // Grow the chain by one element.
5267 ActionChain.resize(ActionChain.size() + 1);
5268 JobActionInfo &AI = ActionChain.back();
5270 // Attempt to fill it with the
5271 AI.JA =
5272 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5275 // Pop the last action info as it could not be filled.
5276 ActionChain.pop_back();
5279 // Attempt to combine actions. If all combining attempts failed, just return
5280 // the tool of the provided action. At the end we attempt to combine the
5281 // action with any preprocessor action it may depend on.
5284 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5285 CollapsedOffloadAction);
5286 if (!T)
5287 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5288 if (!T)
5289 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5290 if (!T) {
5291 Inputs = BaseAction->getInputs();
5292 T = TC.SelectTool(*BaseAction);
5295 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5296 return T;
5301 /// Return a string that uniquely identifies the result of a job. The bound arch
5302 /// is not necessarily represented in the toolchain's triple -- for example,
5303 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5304 /// Also, we need to add the offloading device kind, as the same tool chain can
5305 /// be used for host and device for some programming models, e.g. OpenMP.
5306 static std::string GetTriplePlusArchString(const ToolChain *TC,
5307 StringRef BoundArch,
5308 Action::OffloadKind OffloadKind) {
5309 std::string TriplePlusArch = TC->getTriple().normalize();
5310 if (!BoundArch.empty()) {
5311 TriplePlusArch += "-";
5312 TriplePlusArch += BoundArch;
5314 TriplePlusArch += "-";
5315 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5316 return TriplePlusArch;
5319 InputInfoList Driver::BuildJobsForAction(
5320 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5321 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5322 std::map<std::pair<const Action *, std::string>, InputInfoList>
5323 &CachedResults,
5324 Action::OffloadKind TargetDeviceOffloadKind) const {
5325 std::pair<const Action *, std::string> ActionTC = {
5326 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5327 auto CachedResult = CachedResults.find(ActionTC);
5328 if (CachedResult != CachedResults.end()) {
5329 return CachedResult->second;
5331 InputInfoList Result = BuildJobsForActionNoCache(
5332 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5333 CachedResults, TargetDeviceOffloadKind);
5334 CachedResults[ActionTC] = Result;
5335 return Result;
5338 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5339 const JobAction *JA, const char *BaseInput,
5340 const InputInfo &Result) {
5341 Arg *A =
5342 Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5343 if (!A)
5344 return;
5345 SmallString<128> Path;
5346 if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5347 Path = A->getValue();
5348 if (llvm::sys::fs::is_directory(Path)) {
5349 SmallString<128> Tmp(Result.getFilename());
5350 llvm::sys::path::replace_extension(Tmp, "json");
5351 llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5353 } else {
5354 if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5355 // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5356 // end with a path separator.
5357 Path = DumpDir->getValue();
5358 Path += llvm::sys::path::filename(BaseInput);
5359 } else {
5360 Path = Result.getFilename();
5362 llvm::sys::path::replace_extension(Path, "json");
5364 const char *ResultFile = C.getArgs().MakeArgString(Path);
5365 C.addTimeTraceFile(ResultFile, JA);
5366 C.addResultFile(ResultFile, JA);
5369 InputInfoList Driver::BuildJobsForActionNoCache(
5370 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5371 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5372 std::map<std::pair<const Action *, std::string>, InputInfoList>
5373 &CachedResults,
5374 Action::OffloadKind TargetDeviceOffloadKind) const {
5375 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5377 InputInfoList OffloadDependencesInputInfo;
5378 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5379 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5380 // The 'Darwin' toolchain is initialized only when its arguments are
5381 // computed. Get the default arguments for OFK_None to ensure that
5382 // initialization is performed before processing the offload action.
5383 // FIXME: Remove when darwin's toolchain is initialized during construction.
5384 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5386 // The offload action is expected to be used in four different situations.
5388 // a) Set a toolchain/architecture/kind for a host action:
5389 // Host Action 1 -> OffloadAction -> Host Action 2
5391 // b) Set a toolchain/architecture/kind for a device action;
5392 // Device Action 1 -> OffloadAction -> Device Action 2
5394 // c) Specify a device dependence to a host action;
5395 // Device Action 1 _
5396 // \
5397 // Host Action 1 ---> OffloadAction -> Host Action 2
5399 // d) Specify a host dependence to a device action.
5400 // Host Action 1 _
5401 // \
5402 // Device Action 1 ---> OffloadAction -> Device Action 2
5404 // For a) and b), we just return the job generated for the dependences. For
5405 // c) and d) we override the current action with the host/device dependence
5406 // if the current toolchain is host/device and set the offload dependences
5407 // info with the jobs obtained from the device/host dependence(s).
5409 // If there is a single device option or has no host action, just generate
5410 // the job for it.
5411 if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5412 InputInfoList DevA;
5413 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5414 const char *DepBoundArch) {
5415 DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5416 /*MultipleArchs*/ !!DepBoundArch,
5417 LinkingOutput, CachedResults,
5418 DepA->getOffloadingDeviceKind()));
5420 return DevA;
5423 // If 'Action 2' is host, we generate jobs for the device dependences and
5424 // override the current action with the host dependence. Otherwise, we
5425 // generate the host dependences and override the action with the device
5426 // dependence. The dependences can't therefore be a top-level action.
5427 OA->doOnEachDependence(
5428 /*IsHostDependence=*/BuildingForOffloadDevice,
5429 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5430 OffloadDependencesInputInfo.append(BuildJobsForAction(
5431 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5432 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5433 DepA->getOffloadingDeviceKind()));
5436 A = BuildingForOffloadDevice
5437 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5438 : OA->getHostDependence();
5440 // We may have already built this action as a part of the offloading
5441 // toolchain, return the cached input if so.
5442 std::pair<const Action *, std::string> ActionTC = {
5443 OA->getHostDependence(),
5444 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5445 if (CachedResults.find(ActionTC) != CachedResults.end()) {
5446 InputInfoList Inputs = CachedResults[ActionTC];
5447 Inputs.append(OffloadDependencesInputInfo);
5448 return Inputs;
5452 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5453 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5454 // just using Args was better?
5455 const Arg &Input = IA->getInputArg();
5456 Input.claim();
5457 if (Input.getOption().matches(options::OPT_INPUT)) {
5458 const char *Name = Input.getValue();
5459 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5461 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5464 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5465 const ToolChain *TC;
5466 StringRef ArchName = BAA->getArchName();
5468 if (!ArchName.empty())
5469 TC = &getToolChain(C.getArgs(),
5470 computeTargetTriple(*this, TargetTriple,
5471 C.getArgs(), ArchName));
5472 else
5473 TC = &C.getDefaultToolChain();
5475 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5476 MultipleArchs, LinkingOutput, CachedResults,
5477 TargetDeviceOffloadKind);
5481 ActionList Inputs = A->getInputs();
5483 const JobAction *JA = cast<JobAction>(A);
5484 ActionList CollapsedOffloadActions;
5486 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5487 embedBitcodeInObject() && !isUsingLTO());
5488 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5490 if (!T)
5491 return {InputInfo()};
5493 // If we've collapsed action list that contained OffloadAction we
5494 // need to build jobs for host/device-side inputs it may have held.
5495 for (const auto *OA : CollapsedOffloadActions)
5496 cast<OffloadAction>(OA)->doOnEachDependence(
5497 /*IsHostDependence=*/BuildingForOffloadDevice,
5498 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5499 OffloadDependencesInputInfo.append(BuildJobsForAction(
5500 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5501 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5502 DepA->getOffloadingDeviceKind()));
5505 // Only use pipes when there is exactly one input.
5506 InputInfoList InputInfos;
5507 for (const Action *Input : Inputs) {
5508 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5509 // shouldn't get temporary output names.
5510 // FIXME: Clean this up.
5511 bool SubJobAtTopLevel =
5512 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5513 InputInfos.append(BuildJobsForAction(
5514 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5515 CachedResults, A->getOffloadingDeviceKind()));
5518 // Always use the first file input as the base input.
5519 const char *BaseInput = InputInfos[0].getBaseInput();
5520 for (auto &Info : InputInfos) {
5521 if (Info.isFilename()) {
5522 BaseInput = Info.getBaseInput();
5523 break;
5527 // ... except dsymutil actions, which use their actual input as the base
5528 // input.
5529 if (JA->getType() == types::TY_dSYM)
5530 BaseInput = InputInfos[0].getFilename();
5532 // Append outputs of offload device jobs to the input list
5533 if (!OffloadDependencesInputInfo.empty())
5534 InputInfos.append(OffloadDependencesInputInfo.begin(),
5535 OffloadDependencesInputInfo.end());
5537 // Set the effective triple of the toolchain for the duration of this job.
5538 llvm::Triple EffectiveTriple;
5539 const ToolChain &ToolTC = T->getToolChain();
5540 const ArgList &Args =
5541 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5542 if (InputInfos.size() != 1) {
5543 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5544 } else {
5545 // Pass along the input type if it can be unambiguously determined.
5546 EffectiveTriple = llvm::Triple(
5547 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5549 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5551 // Determine the place to write output to, if any.
5552 InputInfo Result;
5553 InputInfoList UnbundlingResults;
5554 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5555 // If we have an unbundling job, we need to create results for all the
5556 // outputs. We also update the results cache so that other actions using
5557 // this unbundling action can get the right results.
5558 for (auto &UI : UA->getDependentActionsInfo()) {
5559 assert(UI.DependentOffloadKind != Action::OFK_None &&
5560 "Unbundling with no offloading??");
5562 // Unbundling actions are never at the top level. When we generate the
5563 // offloading prefix, we also do that for the host file because the
5564 // unbundling action does not change the type of the output which can
5565 // cause a overwrite.
5566 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5567 UI.DependentOffloadKind,
5568 UI.DependentToolChain->getTriple().normalize(),
5569 /*CreatePrefixForHost=*/true);
5570 auto CurI = InputInfo(
5572 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5573 /*AtTopLevel=*/false,
5574 MultipleArchs ||
5575 UI.DependentOffloadKind == Action::OFK_HIP,
5576 OffloadingPrefix),
5577 BaseInput);
5578 // Save the unbundling result.
5579 UnbundlingResults.push_back(CurI);
5581 // Get the unique string identifier for this dependence and cache the
5582 // result.
5583 StringRef Arch;
5584 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5585 if (UI.DependentOffloadKind == Action::OFK_Host)
5586 Arch = StringRef();
5587 else
5588 Arch = UI.DependentBoundArch;
5589 } else
5590 Arch = BoundArch;
5592 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5593 UI.DependentOffloadKind)}] = {
5594 CurI};
5597 // Now that we have all the results generated, select the one that should be
5598 // returned for the current depending action.
5599 std::pair<const Action *, std::string> ActionTC = {
5600 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5601 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5602 "Result does not exist??");
5603 Result = CachedResults[ActionTC].front();
5604 } else if (JA->getType() == types::TY_Nothing)
5605 Result = {InputInfo(A, BaseInput)};
5606 else {
5607 // We only have to generate a prefix for the host if this is not a top-level
5608 // action.
5609 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5610 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5611 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5612 !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5613 AtTopLevel));
5614 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5615 AtTopLevel, MultipleArchs,
5616 OffloadingPrefix),
5617 BaseInput);
5618 if (T->canEmitIR() && OffloadingPrefix.empty())
5619 handleTimeTrace(C, Args, JA, BaseInput, Result);
5622 if (CCCPrintBindings && !CCGenDiagnostics) {
5623 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5624 << " - \"" << T->getName() << "\", inputs: [";
5625 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5626 llvm::errs() << InputInfos[i].getAsString();
5627 if (i + 1 != e)
5628 llvm::errs() << ", ";
5630 if (UnbundlingResults.empty())
5631 llvm::errs() << "], output: " << Result.getAsString() << "\n";
5632 else {
5633 llvm::errs() << "], outputs: [";
5634 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5635 llvm::errs() << UnbundlingResults[i].getAsString();
5636 if (i + 1 != e)
5637 llvm::errs() << ", ";
5639 llvm::errs() << "] \n";
5641 } else {
5642 if (UnbundlingResults.empty())
5643 T->ConstructJob(
5644 C, *JA, Result, InputInfos,
5645 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5646 LinkingOutput);
5647 else
5648 T->ConstructJobMultipleOutputs(
5649 C, *JA, UnbundlingResults, InputInfos,
5650 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5651 LinkingOutput);
5653 return {Result};
5656 const char *Driver::getDefaultImageName() const {
5657 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5658 return Target.isOSWindows() ? "a.exe" : "a.out";
5661 /// Create output filename based on ArgValue, which could either be a
5662 /// full filename, filename without extension, or a directory. If ArgValue
5663 /// does not provide a filename, then use BaseName, and use the extension
5664 /// suitable for FileType.
5665 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5666 StringRef BaseName,
5667 types::ID FileType) {
5668 SmallString<128> Filename = ArgValue;
5670 if (ArgValue.empty()) {
5671 // If the argument is empty, output to BaseName in the current dir.
5672 Filename = BaseName;
5673 } else if (llvm::sys::path::is_separator(Filename.back())) {
5674 // If the argument is a directory, output to BaseName in that dir.
5675 llvm::sys::path::append(Filename, BaseName);
5678 if (!llvm::sys::path::has_extension(ArgValue)) {
5679 // If the argument didn't provide an extension, then set it.
5680 const char *Extension = types::getTypeTempSuffix(FileType, true);
5682 if (FileType == types::TY_Image &&
5683 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5684 // The output file is a dll.
5685 Extension = "dll";
5688 llvm::sys::path::replace_extension(Filename, Extension);
5691 return Args.MakeArgString(Filename.c_str());
5694 static bool HasPreprocessOutput(const Action &JA) {
5695 if (isa<PreprocessJobAction>(JA))
5696 return true;
5697 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5698 return true;
5699 if (isa<OffloadBundlingJobAction>(JA) &&
5700 HasPreprocessOutput(*(JA.getInputs()[0])))
5701 return true;
5702 return false;
5705 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5706 StringRef Suffix, bool MultipleArchs,
5707 StringRef BoundArch,
5708 bool NeedUniqueDirectory) const {
5709 SmallString<128> TmpName;
5710 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5711 std::optional<std::string> CrashDirectory =
5712 CCGenDiagnostics && A
5713 ? std::string(A->getValue())
5714 : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5715 if (CrashDirectory) {
5716 if (!getVFS().exists(*CrashDirectory))
5717 llvm::sys::fs::create_directories(*CrashDirectory);
5718 SmallString<128> Path(*CrashDirectory);
5719 llvm::sys::path::append(Path, Prefix);
5720 const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5721 if (std::error_code EC =
5722 llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5723 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5724 return "";
5726 } else {
5727 if (MultipleArchs && !BoundArch.empty()) {
5728 if (NeedUniqueDirectory) {
5729 TmpName = GetTemporaryDirectory(Prefix);
5730 llvm::sys::path::append(TmpName,
5731 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5732 } else {
5733 TmpName =
5734 GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5737 } else {
5738 TmpName = GetTemporaryPath(Prefix, Suffix);
5741 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5744 // Calculate the output path of the module file when compiling a module unit
5745 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5746 // The behavior is:
5747 // - If `-fmodule-output=` is specfied, then the module file is
5748 // writing to the value.
5749 // - Otherwise if the output object file of the module unit is specified, the
5750 // output path
5751 // of the module file should be the same with the output object file except
5752 // the corresponding suffix. This requires both `-o` and `-c` are specified.
5753 // - Otherwise, the output path of the module file will be the same with the
5754 // input with the corresponding suffix.
5755 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5756 const char *BaseInput) {
5757 assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5758 (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5759 C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5761 if (Arg *ModuleOutputEQ =
5762 C.getArgs().getLastArg(options::OPT_fmodule_output_EQ))
5763 return C.addResultFile(ModuleOutputEQ->getValue(), &JA);
5765 SmallString<64> OutputPath;
5766 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5767 if (FinalOutput && C.getArgs().hasArg(options::OPT_c))
5768 OutputPath = FinalOutput->getValue();
5769 else
5770 OutputPath = BaseInput;
5772 const char *Extension = types::getTypeTempSuffix(JA.getType());
5773 llvm::sys::path::replace_extension(OutputPath, Extension);
5774 return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5777 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5778 const char *BaseInput,
5779 StringRef OrigBoundArch, bool AtTopLevel,
5780 bool MultipleArchs,
5781 StringRef OffloadingPrefix) const {
5782 std::string BoundArch = OrigBoundArch.str();
5783 if (is_style_windows(llvm::sys::path::Style::native)) {
5784 // BoundArch may contains ':', which is invalid in file names on Windows,
5785 // therefore replace it with '%'.
5786 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5789 llvm::PrettyStackTraceString CrashInfo("Computing output path");
5790 // Output to a user requested destination?
5791 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5792 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5793 return C.addResultFile(FinalOutput->getValue(), &JA);
5796 // For /P, preprocess to file named after BaseInput.
5797 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5798 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5799 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5800 StringRef NameArg;
5801 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5802 NameArg = A->getValue();
5803 return C.addResultFile(
5804 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5805 &JA);
5808 // Default to writing to stdout?
5809 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5810 return "-";
5813 if (JA.getType() == types::TY_ModuleFile &&
5814 C.getArgs().getLastArg(options::OPT_module_file_info)) {
5815 return "-";
5818 if (JA.getType() == types::TY_PP_Asm &&
5819 C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5820 StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5821 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5822 // handle this as part of the SLASH_Fa handling below.
5823 return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5826 if (JA.getType() == types::TY_Object &&
5827 C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5828 StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5829 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5830 // handle this as part of the SLASH_Fo handling below.
5831 return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5834 // Is this the assembly listing for /FA?
5835 if (JA.getType() == types::TY_PP_Asm &&
5836 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5837 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5838 // Use /Fa and the input filename to determine the asm file name.
5839 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5840 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5841 return C.addResultFile(
5842 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5843 &JA);
5846 // DXC defaults to standard out when generating assembly. We check this after
5847 // any DXC flags that might specify a file.
5848 if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5849 return "-";
5851 bool SpecifiedModuleOutput =
5852 C.getArgs().hasArg(options::OPT_fmodule_output) ||
5853 C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5854 if (MultipleArchs && SpecifiedModuleOutput)
5855 Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5857 // If we're emitting a module output with the specified option
5858 // `-fmodule-output`.
5859 if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5860 JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput)
5861 return GetModuleOutputPath(C, JA, BaseInput);
5863 // Output to a temporary file?
5864 if ((!AtTopLevel && !isSaveTempsEnabled() &&
5865 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5866 CCGenDiagnostics) {
5867 StringRef Name = llvm::sys::path::filename(BaseInput);
5868 std::pair<StringRef, StringRef> Split = Name.split('.');
5869 const char *Suffix =
5870 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5871 // The non-offloading toolchain on Darwin requires deterministic input
5872 // file name for binaries to be deterministic, therefore it needs unique
5873 // directory.
5874 llvm::Triple Triple(C.getDriver().getTargetTriple());
5875 bool NeedUniqueDirectory =
5876 (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5877 JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5878 Triple.isOSDarwin();
5879 return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5880 NeedUniqueDirectory);
5883 SmallString<128> BasePath(BaseInput);
5884 SmallString<128> ExternalPath("");
5885 StringRef BaseName;
5887 // Dsymutil actions should use the full path.
5888 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5889 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5890 // We use posix style here because the tests (specifically
5891 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5892 // even on Windows and if we don't then the similar test covering this
5893 // fails.
5894 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5895 llvm::sys::path::filename(BasePath));
5896 BaseName = ExternalPath;
5897 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5898 BaseName = BasePath;
5899 else
5900 BaseName = llvm::sys::path::filename(BasePath);
5902 // Determine what the derived output name should be.
5903 const char *NamedOutput;
5905 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5906 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5907 // The /Fo or /o flag decides the object filename.
5908 StringRef Val =
5909 C.getArgs()
5910 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5911 ->getValue();
5912 NamedOutput =
5913 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5914 } else if (JA.getType() == types::TY_Image &&
5915 C.getArgs().hasArg(options::OPT__SLASH_Fe,
5916 options::OPT__SLASH_o)) {
5917 // The /Fe or /o flag names the linked file.
5918 StringRef Val =
5919 C.getArgs()
5920 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5921 ->getValue();
5922 NamedOutput =
5923 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5924 } else if (JA.getType() == types::TY_Image) {
5925 if (IsCLMode()) {
5926 // clang-cl uses BaseName for the executable name.
5927 NamedOutput =
5928 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5929 } else {
5930 SmallString<128> Output(getDefaultImageName());
5931 // HIP image for device compilation with -fno-gpu-rdc is per compilation
5932 // unit.
5933 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5934 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5935 options::OPT_fno_gpu_rdc, false);
5936 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5937 if (UseOutExtension) {
5938 Output = BaseName;
5939 llvm::sys::path::replace_extension(Output, "");
5941 Output += OffloadingPrefix;
5942 if (MultipleArchs && !BoundArch.empty()) {
5943 Output += "-";
5944 Output.append(BoundArch);
5946 if (UseOutExtension)
5947 Output += ".out";
5948 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5950 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5951 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5952 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5953 C.getArgs().hasArg(options::OPT__SLASH_o)) {
5954 StringRef Val =
5955 C.getArgs()
5956 .getLastArg(options::OPT__SLASH_o)
5957 ->getValue();
5958 NamedOutput =
5959 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5960 } else {
5961 const char *Suffix =
5962 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5963 assert(Suffix && "All types used for output should have a suffix.");
5965 std::string::size_type End = std::string::npos;
5966 if (!types::appendSuffixForType(JA.getType()))
5967 End = BaseName.rfind('.');
5968 SmallString<128> Suffixed(BaseName.substr(0, End));
5969 Suffixed += OffloadingPrefix;
5970 if (MultipleArchs && !BoundArch.empty()) {
5971 Suffixed += "-";
5972 Suffixed.append(BoundArch);
5974 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5975 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5976 // optimized bitcode output.
5977 auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
5978 const llvm::opt::DerivedArgList &Args) {
5979 // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
5980 // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
5981 // (generated in the compile phase.)
5982 const ToolChain *TC = JA.getOffloadingToolChain();
5983 return isa<CompileJobAction>(JA) &&
5984 ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5985 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5986 false)) ||
5987 (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
5988 TC->getTriple().isAMDGPU()));
5990 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5991 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5992 IsAMDRDCInCompilePhase(JA, C.getArgs())))
5993 Suffixed += ".tmp";
5994 Suffixed += '.';
5995 Suffixed += Suffix;
5996 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5999 // Prepend object file path if -save-temps=obj
6000 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6001 JA.getType() != types::TY_PCH) {
6002 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6003 SmallString<128> TempPath(FinalOutput->getValue());
6004 llvm::sys::path::remove_filename(TempPath);
6005 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6006 llvm::sys::path::append(TempPath, OutputFileName);
6007 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6010 // If we're saving temps and the temp file conflicts with the input file,
6011 // then avoid overwriting input file.
6012 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6013 bool SameFile = false;
6014 SmallString<256> Result;
6015 llvm::sys::fs::current_path(Result);
6016 llvm::sys::path::append(Result, BaseName);
6017 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6018 // Must share the same path to conflict.
6019 if (SameFile) {
6020 StringRef Name = llvm::sys::path::filename(BaseInput);
6021 std::pair<StringRef, StringRef> Split = Name.split('.');
6022 std::string TmpName = GetTemporaryPath(
6023 Split.first,
6024 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6025 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6029 // As an annoying special case, PCH generation doesn't strip the pathname.
6030 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6031 llvm::sys::path::remove_filename(BasePath);
6032 if (BasePath.empty())
6033 BasePath = NamedOutput;
6034 else
6035 llvm::sys::path::append(BasePath, NamedOutput);
6036 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6039 return C.addResultFile(NamedOutput, &JA);
6042 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6043 // Search for Name in a list of paths.
6044 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6045 -> std::optional<std::string> {
6046 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6047 // attempting to use this prefix when looking for file paths.
6048 for (const auto &Dir : P) {
6049 if (Dir.empty())
6050 continue;
6051 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6052 llvm::sys::path::append(P, Name);
6053 if (llvm::sys::fs::exists(Twine(P)))
6054 return std::string(P);
6056 return std::nullopt;
6059 if (auto P = SearchPaths(PrefixDirs))
6060 return *P;
6062 SmallString<128> R(ResourceDir);
6063 llvm::sys::path::append(R, Name);
6064 if (llvm::sys::fs::exists(Twine(R)))
6065 return std::string(R.str());
6067 SmallString<128> P(TC.getCompilerRTPath());
6068 llvm::sys::path::append(P, Name);
6069 if (llvm::sys::fs::exists(Twine(P)))
6070 return std::string(P.str());
6072 SmallString<128> D(Dir);
6073 llvm::sys::path::append(D, "..", Name);
6074 if (llvm::sys::fs::exists(Twine(D)))
6075 return std::string(D.str());
6077 if (auto P = SearchPaths(TC.getLibraryPaths()))
6078 return *P;
6080 if (auto P = SearchPaths(TC.getFilePaths()))
6081 return *P;
6083 return std::string(Name);
6086 void Driver::generatePrefixedToolNames(
6087 StringRef Tool, const ToolChain &TC,
6088 SmallVectorImpl<std::string> &Names) const {
6089 // FIXME: Needs a better variable than TargetTriple
6090 Names.emplace_back((TargetTriple + "-" + Tool).str());
6091 Names.emplace_back(Tool);
6094 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6095 llvm::sys::path::append(Dir, Name);
6096 if (llvm::sys::fs::can_execute(Twine(Dir)))
6097 return true;
6098 llvm::sys::path::remove_filename(Dir);
6099 return false;
6102 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6103 SmallVector<std::string, 2> TargetSpecificExecutables;
6104 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6106 // Respect a limited subset of the '-Bprefix' functionality in GCC by
6107 // attempting to use this prefix when looking for program paths.
6108 for (const auto &PrefixDir : PrefixDirs) {
6109 if (llvm::sys::fs::is_directory(PrefixDir)) {
6110 SmallString<128> P(PrefixDir);
6111 if (ScanDirForExecutable(P, Name))
6112 return std::string(P.str());
6113 } else {
6114 SmallString<128> P((PrefixDir + Name).str());
6115 if (llvm::sys::fs::can_execute(Twine(P)))
6116 return std::string(P.str());
6120 const ToolChain::path_list &List = TC.getProgramPaths();
6121 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6122 // For each possible name of the tool look for it in
6123 // program paths first, then the path.
6124 // Higher priority names will be first, meaning that
6125 // a higher priority name in the path will be found
6126 // instead of a lower priority name in the program path.
6127 // E.g. <triple>-gcc on the path will be found instead
6128 // of gcc in the program path
6129 for (const auto &Path : List) {
6130 SmallString<128> P(Path);
6131 if (ScanDirForExecutable(P, TargetSpecificExecutable))
6132 return std::string(P.str());
6135 // Fall back to the path
6136 if (llvm::ErrorOr<std::string> P =
6137 llvm::sys::findProgramByName(TargetSpecificExecutable))
6138 return *P;
6141 return std::string(Name);
6144 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6145 SmallString<128> Path;
6146 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6147 if (EC) {
6148 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6149 return "";
6152 return std::string(Path.str());
6155 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6156 SmallString<128> Path;
6157 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6158 if (EC) {
6159 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6160 return "";
6163 return std::string(Path.str());
6166 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6167 SmallString<128> Output;
6168 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6169 // FIXME: If anybody needs it, implement this obscure rule:
6170 // "If you specify a directory without a file name, the default file name
6171 // is VCx0.pch., where x is the major version of Visual C++ in use."
6172 Output = FpArg->getValue();
6174 // "If you do not specify an extension as part of the path name, an
6175 // extension of .pch is assumed. "
6176 if (!llvm::sys::path::has_extension(Output))
6177 Output += ".pch";
6178 } else {
6179 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6180 Output = YcArg->getValue();
6181 if (Output.empty())
6182 Output = BaseName;
6183 llvm::sys::path::replace_extension(Output, ".pch");
6185 return std::string(Output.str());
6188 const ToolChain &Driver::getToolChain(const ArgList &Args,
6189 const llvm::Triple &Target) const {
6191 auto &TC = ToolChains[Target.str()];
6192 if (!TC) {
6193 switch (Target.getOS()) {
6194 case llvm::Triple::AIX:
6195 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6196 break;
6197 case llvm::Triple::Haiku:
6198 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6199 break;
6200 case llvm::Triple::Darwin:
6201 case llvm::Triple::MacOSX:
6202 case llvm::Triple::IOS:
6203 case llvm::Triple::TvOS:
6204 case llvm::Triple::WatchOS:
6205 case llvm::Triple::DriverKit:
6206 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6207 break;
6208 case llvm::Triple::DragonFly:
6209 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6210 break;
6211 case llvm::Triple::OpenBSD:
6212 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6213 break;
6214 case llvm::Triple::NetBSD:
6215 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6216 break;
6217 case llvm::Triple::FreeBSD:
6218 if (Target.isPPC())
6219 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6220 Args);
6221 else
6222 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6223 break;
6224 case llvm::Triple::Linux:
6225 case llvm::Triple::ELFIAMCU:
6226 if (Target.getArch() == llvm::Triple::hexagon)
6227 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6228 Args);
6229 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6230 !Target.hasEnvironment())
6231 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6232 Args);
6233 else if (Target.isPPC())
6234 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6235 Args);
6236 else if (Target.getArch() == llvm::Triple::ve)
6237 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6238 else if (Target.isOHOSFamily())
6239 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6240 else
6241 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6242 break;
6243 case llvm::Triple::NaCl:
6244 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6245 break;
6246 case llvm::Triple::Fuchsia:
6247 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6248 break;
6249 case llvm::Triple::Solaris:
6250 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6251 break;
6252 case llvm::Triple::CUDA:
6253 TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6254 break;
6255 case llvm::Triple::AMDHSA:
6256 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6257 break;
6258 case llvm::Triple::AMDPAL:
6259 case llvm::Triple::Mesa3D:
6260 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6261 break;
6262 case llvm::Triple::Win32:
6263 switch (Target.getEnvironment()) {
6264 default:
6265 if (Target.isOSBinFormatELF())
6266 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6267 else if (Target.isOSBinFormatMachO())
6268 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6269 else
6270 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6271 break;
6272 case llvm::Triple::GNU:
6273 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6274 break;
6275 case llvm::Triple::Itanium:
6276 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6277 Args);
6278 break;
6279 case llvm::Triple::MSVC:
6280 case llvm::Triple::UnknownEnvironment:
6281 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6282 .starts_with_insensitive("bfd"))
6283 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6284 *this, Target, Args);
6285 else
6286 TC =
6287 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6288 break;
6290 break;
6291 case llvm::Triple::PS4:
6292 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6293 break;
6294 case llvm::Triple::PS5:
6295 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6296 break;
6297 case llvm::Triple::Hurd:
6298 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6299 break;
6300 case llvm::Triple::LiteOS:
6301 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6302 break;
6303 case llvm::Triple::ZOS:
6304 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6305 break;
6306 case llvm::Triple::ShaderModel:
6307 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6308 break;
6309 default:
6310 // Of these targets, Hexagon is the only one that might have
6311 // an OS of Linux, in which case it got handled above already.
6312 switch (Target.getArch()) {
6313 case llvm::Triple::tce:
6314 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6315 break;
6316 case llvm::Triple::tcele:
6317 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6318 break;
6319 case llvm::Triple::hexagon:
6320 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6321 Args);
6322 break;
6323 case llvm::Triple::lanai:
6324 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6325 break;
6326 case llvm::Triple::xcore:
6327 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6328 break;
6329 case llvm::Triple::wasm32:
6330 case llvm::Triple::wasm64:
6331 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6332 break;
6333 case llvm::Triple::avr:
6334 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6335 break;
6336 case llvm::Triple::msp430:
6337 TC =
6338 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6339 break;
6340 case llvm::Triple::riscv32:
6341 case llvm::Triple::riscv64:
6342 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6343 TC =
6344 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6345 else
6346 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6347 break;
6348 case llvm::Triple::ve:
6349 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6350 break;
6351 case llvm::Triple::spirv32:
6352 case llvm::Triple::spirv64:
6353 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6354 break;
6355 case llvm::Triple::csky:
6356 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6357 break;
6358 default:
6359 if (toolchains::BareMetal::handlesTarget(Target))
6360 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6361 else if (Target.isOSBinFormatELF())
6362 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6363 else if (Target.isOSBinFormatMachO())
6364 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6365 else
6366 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6371 return *TC;
6374 const ToolChain &Driver::getOffloadingDeviceToolChain(
6375 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6376 const Action::OffloadKind &TargetDeviceOffloadKind) const {
6377 // Use device / host triples as the key into the ToolChains map because the
6378 // device ToolChain we create depends on both.
6379 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6380 if (!TC) {
6381 // Categorized by offload kind > arch rather than OS > arch like
6382 // the normal getToolChain call, as it seems a reasonable way to categorize
6383 // things.
6384 switch (TargetDeviceOffloadKind) {
6385 case Action::OFK_HIP: {
6386 if (Target.getArch() == llvm::Triple::amdgcn &&
6387 Target.getVendor() == llvm::Triple::AMD &&
6388 Target.getOS() == llvm::Triple::AMDHSA)
6389 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6390 HostTC, Args);
6391 else if (Target.getArch() == llvm::Triple::spirv64 &&
6392 Target.getVendor() == llvm::Triple::UnknownVendor &&
6393 Target.getOS() == llvm::Triple::UnknownOS)
6394 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6395 HostTC, Args);
6396 break;
6398 default:
6399 break;
6403 return *TC;
6406 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6407 // Say "no" if there is not exactly one input of a type clang understands.
6408 if (JA.size() != 1 ||
6409 !types::isAcceptedByClang((*JA.input_begin())->getType()))
6410 return false;
6412 // And say "no" if this is not a kind of action clang understands.
6413 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6414 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6415 !isa<ExtractAPIJobAction>(JA))
6416 return false;
6418 return true;
6421 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6422 // Say "no" if there is not exactly one input of a type flang understands.
6423 if (JA.size() != 1 ||
6424 !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6425 return false;
6427 // And say "no" if this is not a kind of action flang understands.
6428 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6429 !isa<BackendJobAction>(JA))
6430 return false;
6432 return true;
6435 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6436 // Only emit static library if the flag is set explicitly.
6437 if (Args.hasArg(options::OPT_emit_static_lib))
6438 return true;
6439 return false;
6442 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6443 /// grouped values as integers. Numbers which are not provided are set to 0.
6445 /// \return True if the entire string was parsed (9.2), or all groups were
6446 /// parsed (10.3.5extrastuff).
6447 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6448 unsigned &Micro, bool &HadExtra) {
6449 HadExtra = false;
6451 Major = Minor = Micro = 0;
6452 if (Str.empty())
6453 return false;
6455 if (Str.consumeInteger(10, Major))
6456 return false;
6457 if (Str.empty())
6458 return true;
6459 if (Str[0] != '.')
6460 return false;
6462 Str = Str.drop_front(1);
6464 if (Str.consumeInteger(10, Minor))
6465 return false;
6466 if (Str.empty())
6467 return true;
6468 if (Str[0] != '.')
6469 return false;
6470 Str = Str.drop_front(1);
6472 if (Str.consumeInteger(10, Micro))
6473 return false;
6474 if (!Str.empty())
6475 HadExtra = true;
6476 return true;
6479 /// Parse digits from a string \p Str and fulfill \p Digits with
6480 /// the parsed numbers. This method assumes that the max number of
6481 /// digits to look for is equal to Digits.size().
6483 /// \return True if the entire string was parsed and there are
6484 /// no extra characters remaining at the end.
6485 bool Driver::GetReleaseVersion(StringRef Str,
6486 MutableArrayRef<unsigned> Digits) {
6487 if (Str.empty())
6488 return false;
6490 unsigned CurDigit = 0;
6491 while (CurDigit < Digits.size()) {
6492 unsigned Digit;
6493 if (Str.consumeInteger(10, Digit))
6494 return false;
6495 Digits[CurDigit] = Digit;
6496 if (Str.empty())
6497 return true;
6498 if (Str[0] != '.')
6499 return false;
6500 Str = Str.drop_front(1);
6501 CurDigit++;
6504 // More digits than requested, bail out...
6505 return false;
6508 llvm::opt::Visibility
6509 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6510 if (!UseDriverMode)
6511 return llvm::opt::Visibility(options::ClangOption);
6512 if (IsCLMode())
6513 return llvm::opt::Visibility(options::CLOption);
6514 if (IsDXCMode())
6515 return llvm::opt::Visibility(options::DXCOption);
6516 if (IsFlangMode()) {
6517 return llvm::opt::Visibility(options::FlangOption);
6519 return llvm::opt::Visibility(options::ClangOption);
6522 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6523 switch (Mode) {
6524 case GCCMode:
6525 return "clang";
6526 case GXXMode:
6527 return "clang++";
6528 case CPPMode:
6529 return "clang-cpp";
6530 case CLMode:
6531 return "clang-cl";
6532 case FlangMode:
6533 return "flang";
6534 case DXCMode:
6535 return "clang-dxc";
6538 llvm_unreachable("Unhandled Mode");
6541 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6542 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6545 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6546 // -fsave-optimization-record enables it.
6547 if (Args.hasFlag(options::OPT_fsave_optimization_record,
6548 options::OPT_fno_save_optimization_record, false))
6549 return true;
6551 // -fsave-optimization-record=<format> enables it as well.
6552 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6553 options::OPT_fno_save_optimization_record, false))
6554 return true;
6556 // -foptimization-record-file alone enables it too.
6557 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6558 options::OPT_fno_save_optimization_record, false))
6559 return true;
6561 // -foptimization-record-passes alone enables it too.
6562 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6563 options::OPT_fno_save_optimization_record, false))
6564 return true;
6565 return false;
6568 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6569 ArrayRef<const char *> Args) {
6570 static StringRef OptName =
6571 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6572 llvm::StringRef Opt;
6573 for (StringRef Arg : Args) {
6574 if (!Arg.startswith(OptName))
6575 continue;
6576 Opt = Arg;
6578 if (Opt.empty())
6579 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6580 return Opt.consume_front(OptName) ? Opt : "";
6583 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6585 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6586 bool ClangCLMode,
6587 llvm::BumpPtrAllocator &Alloc,
6588 llvm::vfs::FileSystem *FS) {
6589 // Parse response files using the GNU syntax, unless we're in CL mode. There
6590 // are two ways to put clang in CL compatibility mode: ProgName is either
6591 // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6592 // command line parsing can't happen until after response file parsing, so we
6593 // have to manually search for a --driver-mode=cl argument the hard way.
6594 // Finally, our -cc1 tools don't care which tokenization mode we use because
6595 // response files written by clang will tokenize the same way in either mode.
6596 enum { Default, POSIX, Windows } RSPQuoting = Default;
6597 for (const char *F : Args) {
6598 if (strcmp(F, "--rsp-quoting=posix") == 0)
6599 RSPQuoting = POSIX;
6600 else if (strcmp(F, "--rsp-quoting=windows") == 0)
6601 RSPQuoting = Windows;
6604 // Determines whether we want nullptr markers in Args to indicate response
6605 // files end-of-lines. We only use this for the /LINK driver argument with
6606 // clang-cl.exe on Windows.
6607 bool MarkEOLs = ClangCLMode;
6609 llvm::cl::TokenizerCallback Tokenizer;
6610 if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6611 Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6612 else
6613 Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6615 if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).startswith("-cc1"))
6616 MarkEOLs = false;
6618 llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6619 ECtx.setMarkEOLs(MarkEOLs);
6620 if (FS)
6621 ECtx.setVFS(FS);
6623 if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6624 return Err;
6626 // If -cc1 came from a response file, remove the EOL sentinels.
6627 auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6628 [](const char *A) { return A != nullptr; });
6629 if (FirstArg != Args.end() && StringRef(*FirstArg).startswith("-cc1")) {
6630 // If -cc1 came from a response file, remove the EOL sentinels.
6631 if (MarkEOLs) {
6632 auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6633 Args.resize(newEnd - Args.begin());
6637 return llvm::Error::success();