1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the top level handling of macro expansion for the
12 //===----------------------------------------------------------------------===//
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/ObjCRuntime.h"
22 #include "clang/Basic/SourceLocation.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/CodeCompletionHandler.h"
25 #include "clang/Lex/DirectoryLookup.h"
26 #include "clang/Lex/ExternalPreprocessorSource.h"
27 #include "clang/Lex/HeaderSearch.h"
28 #include "clang/Lex/LexDiagnostic.h"
29 #include "clang/Lex/LiteralSupport.h"
30 #include "clang/Lex/MacroArgs.h"
31 #include "clang/Lex/MacroInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorLexer.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Lex/Token.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/FoldingSet.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/StringSwitch.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/Path.h"
49 #include "llvm/Support/raw_ostream.h"
60 using namespace clang
;
63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo
*II
) const {
64 if (!II
->hadMacroDefinition())
66 auto Pos
= CurSubmoduleState
->Macros
.find(II
);
67 return Pos
== CurSubmoduleState
->Macros
.end() ? nullptr
68 : Pos
->second
.getLatest();
71 void Preprocessor::appendMacroDirective(IdentifierInfo
*II
, MacroDirective
*MD
){
72 assert(MD
&& "MacroDirective should be non-zero!");
73 assert(!MD
->getPrevious() && "Already attached to a MacroDirective history.");
75 MacroState
&StoredMD
= CurSubmoduleState
->Macros
[II
];
76 auto *OldMD
= StoredMD
.getLatest();
77 MD
->setPrevious(OldMD
);
78 StoredMD
.setLatest(MD
);
79 StoredMD
.overrideActiveModuleMacros(*this, II
);
81 if (needModuleMacros()) {
82 // Track that we created a new macro directive, so we know we should
83 // consider building a ModuleMacro for it when we get to the end of
85 PendingModuleMacroNames
.push_back(II
);
88 // Set up the identifier as having associated macro history.
89 II
->setHasMacroDefinition(true);
90 if (!MD
->isDefined() && !LeafModuleMacros
.contains(II
))
91 II
->setHasMacroDefinition(false);
93 II
->setChangedSinceDeserialization();
96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo
*II
,
99 // Normally, when a macro is defined, it goes through appendMacroDirective()
100 // above, which chains a macro to previous defines, undefs, etc.
101 // However, in a pch, the whole macro history up to the end of the pch is
102 // stored, so ASTReader goes through this function instead.
103 // However, built-in macros are already registered in the Preprocessor
104 // ctor, and ASTWriter stops writing the macro chain at built-in macros,
105 // so in that case the chain from the pch needs to be spliced to the existing
109 MacroState
&StoredMD
= CurSubmoduleState
->Macros
[II
];
111 if (auto *OldMD
= StoredMD
.getLatest()) {
112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the
113 // predefines buffer in module builds. However, in module builds, modules
114 // are loaded completely before predefines are processed, so StoredMD
115 // will be nullptr for them when they're loaded. StoredMD should only be
116 // non-nullptr for builtins read from a pch file.
117 assert(OldMD
->getMacroInfo()->isBuiltinMacro() &&
118 "only built-ins should have an entry here");
119 assert(!OldMD
->getPrevious() && "builtin should only have a single entry");
120 ED
->setPrevious(OldMD
);
121 StoredMD
.setLatest(MD
);
126 // Setup the identifier as having associated macro history.
127 II
->setHasMacroDefinition(true);
128 if (!MD
->isDefined() && !LeafModuleMacros
.contains(II
))
129 II
->setHasMacroDefinition(false);
132 ModuleMacro
*Preprocessor::addModuleMacro(Module
*Mod
, IdentifierInfo
*II
,
134 ArrayRef
<ModuleMacro
*> Overrides
,
136 llvm::FoldingSetNodeID ID
;
137 ModuleMacro::Profile(ID
, Mod
, II
);
140 if (auto *MM
= ModuleMacros
.FindNodeOrInsertPos(ID
, InsertPos
)) {
145 auto *MM
= ModuleMacro::create(*this, Mod
, II
, Macro
, Overrides
);
146 ModuleMacros
.InsertNode(MM
, InsertPos
);
148 // Each overridden macro is now overridden by one more macro.
150 for (auto *O
: Overrides
) {
151 HidAny
|= (O
->NumOverriddenBy
== 0);
152 ++O
->NumOverriddenBy
;
155 // If we were the first overrider for any macro, it's no longer a leaf.
156 auto &LeafMacros
= LeafModuleMacros
[II
];
158 llvm::erase_if(LeafMacros
,
159 [](ModuleMacro
*MM
) { return MM
->NumOverriddenBy
!= 0; });
162 // The new macro is always a leaf macro.
163 LeafMacros
.push_back(MM
);
164 // The identifier now has defined macros (that may or may not be visible).
165 II
->setHasMacroDefinition(true);
171 ModuleMacro
*Preprocessor::getModuleMacro(Module
*Mod
,
172 const IdentifierInfo
*II
) {
173 llvm::FoldingSetNodeID ID
;
174 ModuleMacro::Profile(ID
, Mod
, II
);
177 return ModuleMacros
.FindNodeOrInsertPos(ID
, InsertPos
);
180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo
*II
,
181 ModuleMacroInfo
&Info
) {
182 assert(Info
.ActiveModuleMacrosGeneration
!=
183 CurSubmoduleState
->VisibleModules
.getGeneration() &&
184 "don't need to update this macro name info");
185 Info
.ActiveModuleMacrosGeneration
=
186 CurSubmoduleState
->VisibleModules
.getGeneration();
188 auto Leaf
= LeafModuleMacros
.find(II
);
189 if (Leaf
== LeafModuleMacros
.end()) {
190 // No imported macros at all: nothing to do.
194 Info
.ActiveModuleMacros
.clear();
196 // Every macro that's locally overridden is overridden by a visible macro.
197 llvm::DenseMap
<ModuleMacro
*, int> NumHiddenOverrides
;
198 for (auto *O
: Info
.OverriddenMacros
)
199 NumHiddenOverrides
[O
] = -1;
201 // Collect all macros that are not overridden by a visible macro.
202 llvm::SmallVector
<ModuleMacro
*, 16> Worklist
;
203 for (auto *LeafMM
: Leaf
->second
) {
204 assert(LeafMM
->getNumOverridingMacros() == 0 && "leaf macro overridden");
205 if (NumHiddenOverrides
.lookup(LeafMM
) == 0)
206 Worklist
.push_back(LeafMM
);
208 while (!Worklist
.empty()) {
209 auto *MM
= Worklist
.pop_back_val();
210 if (CurSubmoduleState
->VisibleModules
.isVisible(MM
->getOwningModule())) {
211 // We only care about collecting definitions; undefinitions only act
212 // to override other definitions.
213 if (MM
->getMacroInfo())
214 Info
.ActiveModuleMacros
.push_back(MM
);
216 for (auto *O
: MM
->overrides())
217 if ((unsigned)++NumHiddenOverrides
[O
] == O
->getNumOverridingMacros())
218 Worklist
.push_back(O
);
221 // Our reverse postorder walk found the macros in reverse order.
222 std::reverse(Info
.ActiveModuleMacros
.begin(), Info
.ActiveModuleMacros
.end());
224 // Determine whether the macro name is ambiguous.
225 MacroInfo
*MI
= nullptr;
226 bool IsSystemMacro
= true;
227 bool IsAmbiguous
= false;
228 if (auto *MD
= Info
.MD
) {
229 while (MD
&& isa
<VisibilityMacroDirective
>(MD
))
230 MD
= MD
->getPrevious();
231 if (auto *DMD
= dyn_cast_or_null
<DefMacroDirective
>(MD
)) {
233 IsSystemMacro
&= SourceMgr
.isInSystemHeader(DMD
->getLocation());
236 for (auto *Active
: Info
.ActiveModuleMacros
) {
237 auto *NewMI
= Active
->getMacroInfo();
239 // Before marking the macro as ambiguous, check if this is a case where
240 // both macros are in system headers. If so, we trust that the system
241 // did not get it wrong. This also handles cases where Clang's own
242 // headers have a different spelling of certain system macros:
243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
247 // overrides the system limits.h's macros, so there's no conflict here.
248 if (MI
&& NewMI
!= MI
&&
249 !MI
->isIdenticalTo(*NewMI
, *this, /*Syntactically=*/true))
251 IsSystemMacro
&= Active
->getOwningModule()->IsSystem
||
252 SourceMgr
.isInSystemHeader(NewMI
->getDefinitionLoc());
255 Info
.IsAmbiguous
= IsAmbiguous
&& !IsSystemMacro
;
258 void Preprocessor::dumpMacroInfo(const IdentifierInfo
*II
) {
259 ArrayRef
<ModuleMacro
*> Leaf
;
260 auto LeafIt
= LeafModuleMacros
.find(II
);
261 if (LeafIt
!= LeafModuleMacros
.end())
262 Leaf
= LeafIt
->second
;
263 const MacroState
*State
= nullptr;
264 auto Pos
= CurSubmoduleState
->Macros
.find(II
);
265 if (Pos
!= CurSubmoduleState
->Macros
.end())
266 State
= &Pos
->second
;
268 llvm::errs() << "MacroState " << State
<< " " << II
->getNameStart();
269 if (State
&& State
->isAmbiguous(*this, II
))
270 llvm::errs() << " ambiguous";
271 if (State
&& !State
->getOverriddenMacros().empty()) {
272 llvm::errs() << " overrides";
273 for (auto *O
: State
->getOverriddenMacros())
274 llvm::errs() << " " << O
->getOwningModule()->getFullModuleName();
276 llvm::errs() << "\n";
278 // Dump local macro directives.
279 for (auto *MD
= State
? State
->getLatest() : nullptr; MD
;
280 MD
= MD
->getPrevious()) {
285 // Dump module macros.
286 llvm::DenseSet
<ModuleMacro
*> Active
;
288 State
? State
->getActiveModuleMacros(*this, II
) : std::nullopt
)
290 llvm::DenseSet
<ModuleMacro
*> Visited
;
291 llvm::SmallVector
<ModuleMacro
*, 16> Worklist(Leaf
.begin(), Leaf
.end());
292 while (!Worklist
.empty()) {
293 auto *MM
= Worklist
.pop_back_val();
294 llvm::errs() << " ModuleMacro " << MM
<< " "
295 << MM
->getOwningModule()->getFullModuleName();
296 if (!MM
->getMacroInfo())
297 llvm::errs() << " undef";
299 if (Active
.count(MM
))
300 llvm::errs() << " active";
301 else if (!CurSubmoduleState
->VisibleModules
.isVisible(
302 MM
->getOwningModule()))
303 llvm::errs() << " hidden";
304 else if (MM
->getMacroInfo())
305 llvm::errs() << " overridden";
307 if (!MM
->overrides().empty()) {
308 llvm::errs() << " overrides";
309 for (auto *O
: MM
->overrides()) {
310 llvm::errs() << " " << O
->getOwningModule()->getFullModuleName();
311 if (Visited
.insert(O
).second
)
312 Worklist
.push_back(O
);
315 llvm::errs() << "\n";
316 if (auto *MI
= MM
->getMacroInfo()) {
319 llvm::errs() << "\n";
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
326 static IdentifierInfo
*RegisterBuiltinMacro(Preprocessor
&PP
, const char *Name
){
327 // Get the identifier.
328 IdentifierInfo
*Id
= PP
.getIdentifierInfo(Name
);
330 // Mark it as being a macro that is builtin.
331 MacroInfo
*MI
= PP
.AllocateMacroInfo(SourceLocation());
332 MI
->setIsBuiltinMacro();
333 PP
.appendDefMacroDirective(Id
, MI
);
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
339 void Preprocessor::RegisterBuiltinMacros() {
340 Ident__LINE__
= RegisterBuiltinMacro(*this, "__LINE__");
341 Ident__FILE__
= RegisterBuiltinMacro(*this, "__FILE__");
342 Ident__DATE__
= RegisterBuiltinMacro(*this, "__DATE__");
343 Ident__TIME__
= RegisterBuiltinMacro(*this, "__TIME__");
344 Ident__COUNTER__
= RegisterBuiltinMacro(*this, "__COUNTER__");
345 Ident_Pragma
= RegisterBuiltinMacro(*this, "_Pragma");
346 Ident__FLT_EVAL_METHOD__
= RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__");
348 // C++ Standing Document Extensions.
349 if (getLangOpts().CPlusPlus
)
350 Ident__has_cpp_attribute
=
351 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
353 Ident__has_cpp_attribute
= nullptr;
356 Ident__BASE_FILE__
= RegisterBuiltinMacro(*this, "__BASE_FILE__");
357 Ident__INCLUDE_LEVEL__
= RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
358 Ident__TIMESTAMP__
= RegisterBuiltinMacro(*this, "__TIMESTAMP__");
360 // Microsoft Extensions.
361 if (getLangOpts().MicrosoftExt
) {
362 Ident__identifier
= RegisterBuiltinMacro(*this, "__identifier");
363 Ident__pragma
= RegisterBuiltinMacro(*this, "__pragma");
365 Ident__identifier
= nullptr;
366 Ident__pragma
= nullptr;
370 Ident__FILE_NAME__
= RegisterBuiltinMacro(*this, "__FILE_NAME__");
371 Ident__has_feature
= RegisterBuiltinMacro(*this, "__has_feature");
372 Ident__has_extension
= RegisterBuiltinMacro(*this, "__has_extension");
373 Ident__has_builtin
= RegisterBuiltinMacro(*this, "__has_builtin");
374 Ident__has_constexpr_builtin
=
375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin");
376 Ident__has_attribute
= RegisterBuiltinMacro(*this, "__has_attribute");
377 if (!getLangOpts().CPlusPlus
)
378 Ident__has_c_attribute
= RegisterBuiltinMacro(*this, "__has_c_attribute");
380 Ident__has_c_attribute
= nullptr;
382 Ident__has_declspec
= RegisterBuiltinMacro(*this, "__has_declspec_attribute");
383 Ident__has_include
= RegisterBuiltinMacro(*this, "__has_include");
384 Ident__has_include_next
= RegisterBuiltinMacro(*this, "__has_include_next");
385 Ident__has_warning
= RegisterBuiltinMacro(*this, "__has_warning");
386 Ident__is_identifier
= RegisterBuiltinMacro(*this, "__is_identifier");
387 Ident__is_target_arch
= RegisterBuiltinMacro(*this, "__is_target_arch");
388 Ident__is_target_vendor
= RegisterBuiltinMacro(*this, "__is_target_vendor");
389 Ident__is_target_os
= RegisterBuiltinMacro(*this, "__is_target_os");
390 Ident__is_target_environment
=
391 RegisterBuiltinMacro(*this, "__is_target_environment");
392 Ident__is_target_variant_os
=
393 RegisterBuiltinMacro(*this, "__is_target_variant_os");
394 Ident__is_target_variant_environment
=
395 RegisterBuiltinMacro(*this, "__is_target_variant_environment");
398 Ident__building_module
= RegisterBuiltinMacro(*this, "__building_module");
399 if (!getLangOpts().CurrentModule
.empty())
400 Ident__MODULE__
= RegisterBuiltinMacro(*this, "__MODULE__");
402 Ident__MODULE__
= nullptr;
405 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
406 /// in its expansion, currently expands to that token literally.
407 static bool isTrivialSingleTokenExpansion(const MacroInfo
*MI
,
408 const IdentifierInfo
*MacroIdent
,
410 IdentifierInfo
*II
= MI
->getReplacementToken(0).getIdentifierInfo();
412 // If the token isn't an identifier, it's always literally expanded.
413 if (!II
) return true;
415 // If the information about this identifier is out of date, update it from
416 // the external source.
417 if (II
->isOutOfDate())
418 PP
.getExternalSource()->updateOutOfDateIdentifier(*II
);
420 // If the identifier is a macro, and if that macro is enabled, it may be
421 // expanded so it's not a trivial expansion.
422 if (auto *ExpansionMI
= PP
.getMacroInfo(II
))
423 if (ExpansionMI
->isEnabled() &&
424 // Fast expanding "#define X X" is ok, because X would be disabled.
428 // If this is an object-like macro invocation, it is safe to trivially expand
430 if (MI
->isObjectLike()) return true;
432 // If this is a function-like macro invocation, it's safe to trivially expand
433 // as long as the identifier is not a macro argument.
434 return !llvm::is_contained(MI
->params(), II
);
437 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
438 /// lexed is a '('. If so, consume the token and return true, if not, this
439 /// method should have no observable side-effect on the lexed tokens.
440 bool Preprocessor::isNextPPTokenLParen() {
441 // Do some quick tests for rejection cases.
444 Val
= CurLexer
->isNextPPTokenLParen();
446 Val
= CurTokenLexer
->isNextTokenLParen();
449 // We have run off the end. If it's a source file we don't
450 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
454 for (const IncludeStackInfo
&Entry
: llvm::reverse(IncludeMacroStack
)) {
456 Val
= Entry
.TheLexer
->isNextPPTokenLParen();
458 Val
= Entry
.TheTokenLexer
->isNextTokenLParen();
463 // Ran off the end of a source file?
464 if (Entry
.ThePPLexer
)
469 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
470 // have found something that isn't a '(' or we found the end of the
471 // translation unit. In either case, return false.
475 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
476 /// expanded as a macro, handle it and return the next token as 'Identifier'.
477 bool Preprocessor::HandleMacroExpandedIdentifier(Token
&Identifier
,
478 const MacroDefinition
&M
) {
479 emitMacroExpansionWarnings(Identifier
);
481 MacroInfo
*MI
= M
.getMacroInfo();
483 // If this is a macro expansion in the "#if !defined(x)" line for the file,
484 // then the macro could expand to different things in other contexts, we need
485 // to disable the optimization in this case.
486 if (CurPPLexer
) CurPPLexer
->MIOpt
.ExpandedMacro();
488 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
489 if (MI
->isBuiltinMacro()) {
491 Callbacks
->MacroExpands(Identifier
, M
, Identifier
.getLocation(),
493 ExpandBuiltinMacro(Identifier
);
497 /// Args - If this is a function-like macro expansion, this contains,
498 /// for each macro argument, the list of tokens that were provided to the
500 MacroArgs
*Args
= nullptr;
502 // Remember where the end of the expansion occurred. For an object-like
503 // macro, this is the identifier. For a function-like macro, this is the ')'.
504 SourceLocation ExpansionEnd
= Identifier
.getLocation();
506 // If this is a function-like macro, read the arguments.
507 if (MI
->isFunctionLike()) {
508 // Remember that we are now parsing the arguments to a macro invocation.
509 // Preprocessor directives used inside macro arguments are not portable, and
510 // this enables the warning.
512 ArgMacro
= &Identifier
;
514 Args
= ReadMacroCallArgumentList(Identifier
, MI
, ExpansionEnd
);
516 // Finished parsing args.
520 // If there was an error parsing the arguments, bail out.
521 if (!Args
) return true;
523 ++NumFnMacroExpanded
;
528 // Notice that this macro has been used.
531 // Remember where the token is expanded.
532 SourceLocation ExpandLoc
= Identifier
.getLocation();
533 SourceRange
ExpansionRange(ExpandLoc
, ExpansionEnd
);
537 // We can have macro expansion inside a conditional directive while
538 // reading the function macro arguments. To ensure, in that case, that
539 // MacroExpands callbacks still happen in source order, queue this
540 // callback to have it happen after the function macro callback.
541 DelayedMacroExpandsCallbacks
.push_back(
542 MacroExpandsInfo(Identifier
, M
, ExpansionRange
));
544 Callbacks
->MacroExpands(Identifier
, M
, ExpansionRange
, Args
);
545 if (!DelayedMacroExpandsCallbacks
.empty()) {
546 for (const MacroExpandsInfo
&Info
: DelayedMacroExpandsCallbacks
) {
547 // FIXME: We lose macro args info with delayed callback.
548 Callbacks
->MacroExpands(Info
.Tok
, Info
.MD
, Info
.Range
,
551 DelayedMacroExpandsCallbacks
.clear();
556 // If the macro definition is ambiguous, complain.
557 if (M
.isAmbiguous()) {
558 Diag(Identifier
, diag::warn_pp_ambiguous_macro
)
559 << Identifier
.getIdentifierInfo();
560 Diag(MI
->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen
)
561 << Identifier
.getIdentifierInfo();
562 M
.forAllDefinitions([&](const MacroInfo
*OtherMI
) {
564 Diag(OtherMI
->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other
)
565 << Identifier
.getIdentifierInfo();
569 // If we started lexing a macro, enter the macro expansion body.
571 // If this macro expands to no tokens, don't bother to push it onto the
572 // expansion stack, only to take it right back off.
573 if (MI
->getNumTokens() == 0) {
574 // No need for arg info.
575 if (Args
) Args
->destroy(*this);
577 // Propagate whitespace info as if we had pushed, then popped,
579 Identifier
.setFlag(Token::LeadingEmptyMacro
);
580 PropagateLineStartLeadingSpaceInfo(Identifier
);
581 ++NumFastMacroExpanded
;
583 } else if (MI
->getNumTokens() == 1 &&
584 isTrivialSingleTokenExpansion(MI
, Identifier
.getIdentifierInfo(),
586 // Otherwise, if this macro expands into a single trivially-expanded
587 // token: expand it now. This handles common cases like
590 // No need for arg info.
591 if (Args
) Args
->destroy(*this);
593 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
594 // identifier to the expanded token.
595 bool isAtStartOfLine
= Identifier
.isAtStartOfLine();
596 bool hasLeadingSpace
= Identifier
.hasLeadingSpace();
598 // Replace the result token.
599 Identifier
= MI
->getReplacementToken(0);
601 // Restore the StartOfLine/LeadingSpace markers.
602 Identifier
.setFlagValue(Token::StartOfLine
, isAtStartOfLine
);
603 Identifier
.setFlagValue(Token::LeadingSpace
, hasLeadingSpace
);
605 // Update the tokens location to include both its expansion and physical
608 SourceMgr
.createExpansionLoc(Identifier
.getLocation(), ExpandLoc
,
609 ExpansionEnd
,Identifier
.getLength());
610 Identifier
.setLocation(Loc
);
612 // If this is a disabled macro or #define X X, we must mark the result as
614 if (IdentifierInfo
*NewII
= Identifier
.getIdentifierInfo()) {
615 if (MacroInfo
*NewMI
= getMacroInfo(NewII
))
616 if (!NewMI
->isEnabled() || NewMI
== MI
) {
617 Identifier
.setFlag(Token::DisableExpand
);
618 // Don't warn for "#define X X" like "#define bool bool" from
620 if (NewMI
!= MI
|| MI
->isFunctionLike())
621 Diag(Identifier
, diag::pp_disabled_macro_expansion
);
625 // Since this is not an identifier token, it can't be macro expanded, so
627 ++NumFastMacroExpanded
;
631 // Start expanding the macro.
632 EnterMacro(Identifier
, ExpansionEnd
, MI
, Args
);
641 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
642 /// token vector are properly nested.
643 static bool CheckMatchedBrackets(const SmallVectorImpl
<Token
> &Tokens
) {
644 SmallVector
<Bracket
, 8> Brackets
;
645 for (SmallVectorImpl
<Token
>::const_iterator I
= Tokens
.begin(),
648 if (I
->is(tok::l_paren
)) {
649 Brackets
.push_back(Paren
);
650 } else if (I
->is(tok::r_paren
)) {
651 if (Brackets
.empty() || Brackets
.back() == Brace
)
654 } else if (I
->is(tok::l_brace
)) {
655 Brackets
.push_back(Brace
);
656 } else if (I
->is(tok::r_brace
)) {
657 if (Brackets
.empty() || Brackets
.back() == Paren
)
662 return Brackets
.empty();
665 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
666 /// vector of tokens in NewTokens. The new number of arguments will be placed
667 /// in NumArgs and the ranges which need to surrounded in parentheses will be
669 /// Returns false if the token stream cannot be changed. If this is because
670 /// of an initializer list starting a macro argument, the range of those
671 /// initializer lists will be place in InitLists.
672 static bool GenerateNewArgTokens(Preprocessor
&PP
,
673 SmallVectorImpl
<Token
> &OldTokens
,
674 SmallVectorImpl
<Token
> &NewTokens
,
676 SmallVectorImpl
<SourceRange
> &ParenHints
,
677 SmallVectorImpl
<SourceRange
> &InitLists
) {
678 if (!CheckMatchedBrackets(OldTokens
))
681 // Once it is known that the brackets are matched, only a simple count of the
685 // First token of a new macro argument.
686 SmallVectorImpl
<Token
>::iterator ArgStartIterator
= OldTokens
.begin();
688 // First closing brace in a new macro argument. Used to generate
689 // SourceRanges for InitLists.
690 SmallVectorImpl
<Token
>::iterator ClosingBrace
= OldTokens
.end();
693 // Set to true when a macro separator token is found inside a braced list.
694 // If true, the fixed argument spans multiple old arguments and ParenHints
696 bool FoundSeparatorToken
= false;
697 for (SmallVectorImpl
<Token
>::iterator I
= OldTokens
.begin(),
700 if (I
->is(tok::l_brace
)) {
702 } else if (I
->is(tok::r_brace
)) {
704 if (Braces
== 0 && ClosingBrace
== E
&& FoundSeparatorToken
)
706 } else if (I
->is(tok::eof
)) {
707 // EOF token is used to separate macro arguments
709 // Assume comma separator is actually braced list separator and change
710 // it back to a comma.
711 FoundSeparatorToken
= true;
712 I
->setKind(tok::comma
);
714 } else { // Braces == 0
715 // Separator token still separates arguments.
718 // If the argument starts with a brace, it can't be fixed with
719 // parentheses. A different diagnostic will be given.
720 if (FoundSeparatorToken
&& ArgStartIterator
->is(tok::l_brace
)) {
722 SourceRange(ArgStartIterator
->getLocation(),
723 PP
.getLocForEndOfToken(ClosingBrace
->getLocation())));
728 if (FoundSeparatorToken
) {
729 TempToken
.startToken();
730 TempToken
.setKind(tok::l_paren
);
731 TempToken
.setLocation(ArgStartIterator
->getLocation());
732 TempToken
.setLength(0);
733 NewTokens
.push_back(TempToken
);
736 // Copy over argument tokens
737 NewTokens
.insert(NewTokens
.end(), ArgStartIterator
, I
);
739 // Add right paren and store the paren locations in ParenHints
740 if (FoundSeparatorToken
) {
741 SourceLocation Loc
= PP
.getLocForEndOfToken((I
- 1)->getLocation());
742 TempToken
.startToken();
743 TempToken
.setKind(tok::r_paren
);
744 TempToken
.setLocation(Loc
);
745 TempToken
.setLength(0);
746 NewTokens
.push_back(TempToken
);
747 ParenHints
.push_back(SourceRange(ArgStartIterator
->getLocation(),
751 // Copy separator token
752 NewTokens
.push_back(*I
);
755 ArgStartIterator
= I
+ 1;
756 FoundSeparatorToken
= false;
761 return !ParenHints
.empty() && InitLists
.empty();
764 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
765 /// token is the '(' of the macro, this method is invoked to read all of the
766 /// actual arguments specified for the macro invocation. This returns null on
768 MacroArgs
*Preprocessor::ReadMacroCallArgumentList(Token
&MacroName
,
770 SourceLocation
&MacroEnd
) {
771 // The number of fixed arguments to parse.
772 unsigned NumFixedArgsLeft
= MI
->getNumParams();
773 bool isVariadic
= MI
->isVariadic();
775 // Outer loop, while there are more arguments, keep reading them.
778 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
779 // an argument value in a macro could expand to ',' or '(' or ')'.
780 LexUnexpandedToken(Tok
);
781 assert(Tok
.is(tok::l_paren
) && "Error computing l-paren-ness?");
783 // ArgTokens - Build up a list of tokens that make up each argument. Each
784 // argument is separated by an EOF token. Use a SmallVector so we can avoid
785 // heap allocations in the common case.
786 SmallVector
<Token
, 64> ArgTokens
;
787 bool ContainsCodeCompletionTok
= false;
788 bool FoundElidedComma
= false;
790 SourceLocation TooManyArgsLoc
;
792 unsigned NumActuals
= 0;
793 while (Tok
.isNot(tok::r_paren
)) {
794 if (ContainsCodeCompletionTok
&& Tok
.isOneOf(tok::eof
, tok::eod
))
797 assert(Tok
.isOneOf(tok::l_paren
, tok::comma
) &&
798 "only expect argument separators here");
800 size_t ArgTokenStart
= ArgTokens
.size();
801 SourceLocation ArgStartLoc
= Tok
.getLocation();
803 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
804 // that we already consumed the first one.
805 unsigned NumParens
= 0;
808 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
809 // an argument value in a macro could expand to ',' or '(' or ')'.
810 LexUnexpandedToken(Tok
);
812 if (Tok
.isOneOf(tok::eof
, tok::eod
)) { // "#if f(<eof>" & "#if f(\n"
813 if (!ContainsCodeCompletionTok
) {
814 Diag(MacroName
, diag::err_unterm_macro_invoc
);
815 Diag(MI
->getDefinitionLoc(), diag::note_macro_here
)
816 << MacroName
.getIdentifierInfo();
817 // Do not lose the EOF/EOD. Return it to the client.
821 // Do not lose the EOF/EOD.
822 auto Toks
= std::make_unique
<Token
[]>(1);
824 EnterTokenStream(std::move(Toks
), 1, true, /*IsReinject*/ false);
826 } else if (Tok
.is(tok::r_paren
)) {
827 // If we found the ) token, the macro arg list is done.
828 if (NumParens
-- == 0) {
829 MacroEnd
= Tok
.getLocation();
830 if (!ArgTokens
.empty() &&
831 ArgTokens
.back().commaAfterElided()) {
832 FoundElidedComma
= true;
836 } else if (Tok
.is(tok::l_paren
)) {
838 } else if (Tok
.is(tok::comma
)) {
839 // In Microsoft-compatibility mode, single commas from nested macro
840 // expansions should not be considered as argument separators. We test
841 // for this with the IgnoredComma token flag.
842 if (Tok
.getFlags() & Token::IgnoredComma
) {
843 // However, in MSVC's preprocessor, subsequent expansions do treat
844 // these commas as argument separators. This leads to a common
845 // workaround used in macros that need to work in both MSVC and
846 // compliant preprocessors. Therefore, the IgnoredComma flag can only
847 // apply once to any given token.
848 Tok
.clearFlag(Token::IgnoredComma
);
849 } else if (NumParens
== 0) {
850 // Comma ends this argument if there are more fixed arguments
851 // expected. However, if this is a variadic macro, and this is part of
852 // the variadic part, then the comma is just an argument token.
855 if (NumFixedArgsLeft
> 1)
858 } else if (Tok
.is(tok::comment
) && !KeepMacroComments
) {
859 // If this is a comment token in the argument list and we're just in
860 // -C mode (not -CC mode), discard the comment.
862 } else if (!Tok
.isAnnotation() && Tok
.getIdentifierInfo() != nullptr) {
863 // Reading macro arguments can cause macros that we are currently
864 // expanding from to be popped off the expansion stack. Doing so causes
865 // them to be reenabled for expansion. Here we record whether any
866 // identifiers we lex as macro arguments correspond to disabled macros.
867 // If so, we mark the token as noexpand. This is a subtle aspect of
869 if (MacroInfo
*MI
= getMacroInfo(Tok
.getIdentifierInfo()))
870 if (!MI
->isEnabled())
871 Tok
.setFlag(Token::DisableExpand
);
872 } else if (Tok
.is(tok::code_completion
)) {
873 ContainsCodeCompletionTok
= true;
875 CodeComplete
->CodeCompleteMacroArgument(MacroName
.getIdentifierInfo(),
877 // Don't mark that we reached the code-completion point because the
878 // parser is going to handle the token and there will be another
879 // code-completion callback.
882 ArgTokens
.push_back(Tok
);
885 // If this was an empty argument list foo(), don't add this as an empty
887 if (ArgTokens
.empty() && Tok
.getKind() == tok::r_paren
)
890 // If this is not a variadic macro, and too many args were specified, emit
892 if (!isVariadic
&& NumFixedArgsLeft
== 0 && TooManyArgsLoc
.isInvalid()) {
893 if (ArgTokens
.size() != ArgTokenStart
)
894 TooManyArgsLoc
= ArgTokens
[ArgTokenStart
].getLocation();
896 TooManyArgsLoc
= ArgStartLoc
;
899 // Empty arguments are standard in C99 and C++0x, and are supported as an
900 // extension in other modes.
901 if (ArgTokens
.size() == ArgTokenStart
&& !getLangOpts().C99
)
902 Diag(Tok
, getLangOpts().CPlusPlus11
903 ? diag::warn_cxx98_compat_empty_fnmacro_arg
904 : diag::ext_empty_fnmacro_arg
);
906 // Add a marker EOF token to the end of the token list for this argument.
909 EOFTok
.setKind(tok::eof
);
910 EOFTok
.setLocation(Tok
.getLocation());
912 ArgTokens
.push_back(EOFTok
);
914 if (!ContainsCodeCompletionTok
&& NumFixedArgsLeft
!= 0)
918 // Okay, we either found the r_paren. Check to see if we parsed too few
920 unsigned MinArgsExpected
= MI
->getNumParams();
922 // If this is not a variadic macro, and too many args were specified, emit
924 if (!isVariadic
&& NumActuals
> MinArgsExpected
&&
925 !ContainsCodeCompletionTok
) {
926 // Emit the diagnostic at the macro name in case there is a missing ).
927 // Emitting it at the , could be far away from the macro name.
928 Diag(TooManyArgsLoc
, diag::err_too_many_args_in_macro_invoc
);
929 Diag(MI
->getDefinitionLoc(), diag::note_macro_here
)
930 << MacroName
.getIdentifierInfo();
932 // Commas from braced initializer lists will be treated as argument
933 // separators inside macros. Attempt to correct for this with parentheses.
934 // TODO: See if this can be generalized to angle brackets for templates
935 // inside macro arguments.
937 SmallVector
<Token
, 4> FixedArgTokens
;
938 unsigned FixedNumArgs
= 0;
939 SmallVector
<SourceRange
, 4> ParenHints
, InitLists
;
940 if (!GenerateNewArgTokens(*this, ArgTokens
, FixedArgTokens
, FixedNumArgs
,
941 ParenHints
, InitLists
)) {
942 if (!InitLists
.empty()) {
943 DiagnosticBuilder DB
=
945 diag::note_init_list_at_beginning_of_macro_argument
);
946 for (SourceRange Range
: InitLists
)
951 if (FixedNumArgs
!= MinArgsExpected
)
954 DiagnosticBuilder DB
= Diag(MacroName
, diag::note_suggest_parens_for_macro
);
955 for (SourceRange ParenLocation
: ParenHints
) {
956 DB
<< FixItHint::CreateInsertion(ParenLocation
.getBegin(), "(");
957 DB
<< FixItHint::CreateInsertion(ParenLocation
.getEnd(), ")");
959 ArgTokens
.swap(FixedArgTokens
);
960 NumActuals
= FixedNumArgs
;
963 // See MacroArgs instance var for description of this.
964 bool isVarargsElided
= false;
966 if (ContainsCodeCompletionTok
) {
967 // Recover from not-fully-formed macro invocation during code-completion.
970 EOFTok
.setKind(tok::eof
);
971 EOFTok
.setLocation(Tok
.getLocation());
973 for (; NumActuals
< MinArgsExpected
; ++NumActuals
)
974 ArgTokens
.push_back(EOFTok
);
977 if (NumActuals
< MinArgsExpected
) {
978 // There are several cases where too few arguments is ok, handle them now.
979 if (NumActuals
== 0 && MinArgsExpected
== 1) {
980 // #define A(X) or #define A(...) ---> A()
982 // If there is exactly one argument, and that argument is missing,
983 // then we have an empty "()" argument empty list. This is fine, even if
984 // the macro expects one argument (the argument is just empty).
985 isVarargsElided
= MI
->isVariadic();
986 } else if ((FoundElidedComma
|| MI
->isVariadic()) &&
987 (NumActuals
+1 == MinArgsExpected
|| // A(x, ...) -> A(X)
988 (NumActuals
== 0 && MinArgsExpected
== 2))) {// A(x,...) -> A()
989 // Varargs where the named vararg parameter is missing: OK as extension.
993 // If the macro contains the comma pasting extension, the diagnostic
994 // is suppressed; we know we'll get another diagnostic later.
995 if (!MI
->hasCommaPasting()) {
996 // C++20 allows this construct, but standards before C++20 and all C
997 // standards do not allow the construct (we allow it as an extension).
998 Diag(Tok
, getLangOpts().CPlusPlus20
999 ? diag::warn_cxx17_compat_missing_varargs_arg
1000 : diag::ext_missing_varargs_arg
);
1001 Diag(MI
->getDefinitionLoc(), diag::note_macro_here
)
1002 << MacroName
.getIdentifierInfo();
1005 // Remember this occurred, allowing us to elide the comma when used for
1007 // #define A(x, foo...) blah(a, ## foo)
1008 // #define B(x, ...) blah(a, ## __VA_ARGS__)
1009 // #define C(...) blah(a, ## __VA_ARGS__)
1011 isVarargsElided
= true;
1012 } else if (!ContainsCodeCompletionTok
) {
1013 // Otherwise, emit the error.
1014 Diag(Tok
, diag::err_too_few_args_in_macro_invoc
);
1015 Diag(MI
->getDefinitionLoc(), diag::note_macro_here
)
1016 << MacroName
.getIdentifierInfo();
1020 // Add a marker EOF token to the end of the token list for this argument.
1021 SourceLocation EndLoc
= Tok
.getLocation();
1023 Tok
.setKind(tok::eof
);
1024 Tok
.setLocation(EndLoc
);
1026 ArgTokens
.push_back(Tok
);
1028 // If we expect two arguments, add both as empty.
1029 if (NumActuals
== 0 && MinArgsExpected
== 2)
1030 ArgTokens
.push_back(Tok
);
1032 } else if (NumActuals
> MinArgsExpected
&& !MI
->isVariadic() &&
1033 !ContainsCodeCompletionTok
) {
1034 // Emit the diagnostic at the macro name in case there is a missing ).
1035 // Emitting it at the , could be far away from the macro name.
1036 Diag(MacroName
, diag::err_too_many_args_in_macro_invoc
);
1037 Diag(MI
->getDefinitionLoc(), diag::note_macro_here
)
1038 << MacroName
.getIdentifierInfo();
1042 return MacroArgs::create(MI
, ArgTokens
, isVarargsElided
, *this);
1045 /// Keeps macro expanded tokens for TokenLexers.
1047 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1048 /// going to lex in the cache and when it finishes the tokens are removed
1049 /// from the end of the cache.
1050 Token
*Preprocessor::cacheMacroExpandedTokens(TokenLexer
*tokLexer
,
1051 ArrayRef
<Token
> tokens
) {
1056 size_t newIndex
= MacroExpandedTokens
.size();
1057 bool cacheNeedsToGrow
= tokens
.size() >
1058 MacroExpandedTokens
.capacity()-MacroExpandedTokens
.size();
1059 MacroExpandedTokens
.append(tokens
.begin(), tokens
.end());
1061 if (cacheNeedsToGrow
) {
1062 // Go through all the TokenLexers whose 'Tokens' pointer points in the
1063 // buffer and update the pointers to the (potential) new buffer array.
1064 for (const auto &Lexer
: MacroExpandingLexersStack
) {
1065 TokenLexer
*prevLexer
;
1067 std::tie(prevLexer
, tokIndex
) = Lexer
;
1068 prevLexer
->Tokens
= MacroExpandedTokens
.data() + tokIndex
;
1072 MacroExpandingLexersStack
.push_back(std::make_pair(tokLexer
, newIndex
));
1073 return MacroExpandedTokens
.data() + newIndex
;
1076 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1077 assert(!MacroExpandingLexersStack
.empty());
1078 size_t tokIndex
= MacroExpandingLexersStack
.back().second
;
1079 assert(tokIndex
< MacroExpandedTokens
.size());
1080 // Pop the cached macro expanded tokens from the end.
1081 MacroExpandedTokens
.resize(tokIndex
);
1082 MacroExpandingLexersStack
.pop_back();
1085 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1086 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1087 /// the identifier tokens inserted.
1088 static void ComputeDATE_TIME(SourceLocation
&DATELoc
, SourceLocation
&TIMELoc
,
1092 if (PP
.getPreprocessorOpts().SourceDateEpoch
) {
1093 TT
= *PP
.getPreprocessorOpts().SourceDateEpoch
;
1094 TM
= std::gmtime(&TT
);
1096 TT
= std::time(nullptr);
1097 TM
= std::localtime(&TT
);
1100 static const char * const Months
[] = {
1101 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1105 SmallString
<32> TmpBuffer
;
1106 llvm::raw_svector_ostream
TmpStream(TmpBuffer
);
1108 TmpStream
<< llvm::format("\"%s %2d %4d\"", Months
[TM
->tm_mon
],
1109 TM
->tm_mday
, TM
->tm_year
+ 1900);
1111 TmpStream
<< "??? ?? ????";
1113 TmpTok
.startToken();
1114 PP
.CreateString(TmpStream
.str(), TmpTok
);
1115 DATELoc
= TmpTok
.getLocation();
1119 SmallString
<32> TmpBuffer
;
1120 llvm::raw_svector_ostream
TmpStream(TmpBuffer
);
1122 TmpStream
<< llvm::format("\"%02d:%02d:%02d\"", TM
->tm_hour
, TM
->tm_min
,
1125 TmpStream
<< "??:??:??";
1127 TmpTok
.startToken();
1128 PP
.CreateString(TmpStream
.str(), TmpTok
);
1129 TIMELoc
= TmpTok
.getLocation();
1133 /// HasFeature - Return true if we recognize and implement the feature
1134 /// specified by the identifier as a standard language feature.
1135 static bool HasFeature(const Preprocessor
&PP
, StringRef Feature
) {
1136 const LangOptions
&LangOpts
= PP
.getLangOpts();
1138 // Normalize the feature name, __foo__ becomes foo.
1139 if (Feature
.startswith("__") && Feature
.endswith("__") && Feature
.size() >= 4)
1140 Feature
= Feature
.substr(2, Feature
.size() - 4);
1142 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1143 return llvm::StringSwitch
<bool>(Feature
)
1144 #include "clang/Basic/Features.def"
1149 /// HasExtension - Return true if we recognize and implement the feature
1150 /// specified by the identifier, either as an extension or a standard language
1152 static bool HasExtension(const Preprocessor
&PP
, StringRef Extension
) {
1153 if (HasFeature(PP
, Extension
))
1156 // If the use of an extension results in an error diagnostic, extensions are
1157 // effectively unavailable, so just return false here.
1158 if (PP
.getDiagnostics().getExtensionHandlingBehavior() >=
1159 diag::Severity::Error
)
1162 const LangOptions
&LangOpts
= PP
.getLangOpts();
1164 // Normalize the extension name, __foo__ becomes foo.
1165 if (Extension
.startswith("__") && Extension
.endswith("__") &&
1166 Extension
.size() >= 4)
1167 Extension
= Extension
.substr(2, Extension
.size() - 4);
1169 // Because we inherit the feature list from HasFeature, this string switch
1170 // must be less restrictive than HasFeature's.
1171 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1172 return llvm::StringSwitch
<bool>(Extension
)
1173 #include "clang/Basic/Features.def"
1178 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1179 /// or '__has_include_next("path")' expression.
1180 /// Returns true if successful.
1181 static bool EvaluateHasIncludeCommon(Token
&Tok
, IdentifierInfo
*II
,
1183 ConstSearchDirIterator LookupFrom
,
1184 const FileEntry
*LookupFromFile
) {
1185 // Save the location of the current token. If a '(' is later found, use
1186 // that location. If not, use the end of this location instead.
1187 SourceLocation LParenLoc
= Tok
.getLocation();
1189 // These expressions are only allowed within a preprocessor directive.
1190 if (!PP
.isParsingIfOrElifDirective()) {
1191 PP
.Diag(LParenLoc
, diag::err_pp_directive_required
) << II
;
1192 // Return a valid identifier token.
1193 assert(Tok
.is(tok::identifier
));
1194 Tok
.setIdentifierInfo(II
);
1198 // Get '('. If we don't have a '(', try to form a header-name token.
1200 if (PP
.LexHeaderName(Tok
))
1202 } while (Tok
.getKind() == tok::comment
);
1204 // Ensure we have a '('.
1205 if (Tok
.isNot(tok::l_paren
)) {
1206 // No '(', use end of last token.
1207 LParenLoc
= PP
.getLocForEndOfToken(LParenLoc
);
1208 PP
.Diag(LParenLoc
, diag::err_pp_expected_after
) << II
<< tok::l_paren
;
1209 // If the next token looks like a filename or the start of one,
1210 // assume it is and process it as such.
1211 if (Tok
.isNot(tok::header_name
))
1214 // Save '(' location for possible missing ')' message.
1215 LParenLoc
= Tok
.getLocation();
1216 if (PP
.LexHeaderName(Tok
))
1220 if (Tok
.isNot(tok::header_name
)) {
1221 PP
.Diag(Tok
.getLocation(), diag::err_pp_expects_filename
);
1225 // Reserve a buffer to get the spelling.
1226 SmallString
<128> FilenameBuffer
;
1227 bool Invalid
= false;
1228 StringRef Filename
= PP
.getSpelling(Tok
, FilenameBuffer
, &Invalid
);
1232 SourceLocation FilenameLoc
= Tok
.getLocation();
1235 PP
.LexNonComment(Tok
);
1237 // Ensure we have a trailing ).
1238 if (Tok
.isNot(tok::r_paren
)) {
1239 PP
.Diag(PP
.getLocForEndOfToken(FilenameLoc
), diag::err_pp_expected_after
)
1240 << II
<< tok::r_paren
;
1241 PP
.Diag(LParenLoc
, diag::note_matching
) << tok::l_paren
;
1245 bool isAngled
= PP
.GetIncludeFilenameSpelling(Tok
.getLocation(), Filename
);
1246 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1248 if (Filename
.empty())
1251 // Passing this to LookupFile forces header search to check whether the found
1252 // file belongs to a module. Skipping that check could incorrectly mark
1253 // modular header as textual, causing issues down the line.
1254 ModuleMap::KnownHeader KH
;
1256 // Search include directories.
1257 OptionalFileEntryRef File
=
1258 PP
.LookupFile(FilenameLoc
, Filename
, isAngled
, LookupFrom
, LookupFromFile
,
1259 nullptr, nullptr, nullptr, &KH
, nullptr, nullptr);
1261 if (PPCallbacks
*Callbacks
= PP
.getPPCallbacks()) {
1262 SrcMgr::CharacteristicKind FileType
= SrcMgr::C_User
;
1264 FileType
= PP
.getHeaderSearchInfo().getFileDirFlavor(*File
);
1265 Callbacks
->HasInclude(FilenameLoc
, Filename
, isAngled
, File
, FileType
);
1268 // Get the result value. A result of true means the file exists.
1269 return File
.has_value();
1272 bool Preprocessor::EvaluateHasInclude(Token
&Tok
, IdentifierInfo
*II
) {
1273 return EvaluateHasIncludeCommon(Tok
, II
, *this, nullptr, nullptr);
1276 bool Preprocessor::EvaluateHasIncludeNext(Token
&Tok
, IdentifierInfo
*II
) {
1277 ConstSearchDirIterator Lookup
= nullptr;
1278 const FileEntry
*LookupFromFile
;
1279 std::tie(Lookup
, LookupFromFile
) = getIncludeNextStart(Tok
);
1281 return EvaluateHasIncludeCommon(Tok
, II
, *this, Lookup
, LookupFromFile
);
1284 /// Process single-argument builtin feature-like macros that return
1286 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream
& OS
,
1287 Token
&Tok
, IdentifierInfo
*II
,
1288 Preprocessor
&PP
, bool ExpandArgs
,
1291 bool &HasLexedNextTok
)> Op
) {
1292 // Parse the initial '('.
1293 PP
.LexUnexpandedToken(Tok
);
1294 if (Tok
.isNot(tok::l_paren
)) {
1295 PP
.Diag(Tok
.getLocation(), diag::err_pp_expected_after
) << II
1298 // Provide a dummy '0' value on output stream to elide further errors.
1299 if (!Tok
.isOneOf(tok::eof
, tok::eod
)) {
1301 Tok
.setKind(tok::numeric_constant
);
1306 unsigned ParenDepth
= 1;
1307 SourceLocation LParenLoc
= Tok
.getLocation();
1308 std::optional
<int> Result
;
1311 bool SuppressDiagnostic
= false;
1313 // Parse next token.
1317 PP
.LexUnexpandedToken(Tok
);
1320 switch (Tok
.getKind()) {
1323 // Don't provide even a dummy value if the eod or eof marker is
1324 // reached. Simply provide a diagnostic.
1325 PP
.Diag(Tok
.getLocation(), diag::err_unterm_macro_invoc
);
1329 if (!SuppressDiagnostic
) {
1330 PP
.Diag(Tok
.getLocation(), diag::err_too_many_args_in_macro_invoc
);
1331 SuppressDiagnostic
= true;
1339 if (!SuppressDiagnostic
) {
1340 PP
.Diag(Tok
.getLocation(), diag::err_pp_nested_paren
) << II
;
1341 SuppressDiagnostic
= true;
1346 if (--ParenDepth
> 0)
1349 // The last ')' has been reached; return the value if one found or
1350 // a diagnostic and a dummy value.
1353 // For strict conformance to __has_cpp_attribute rules, use 'L'
1354 // suffix for dated literals.
1359 if (!SuppressDiagnostic
)
1360 PP
.Diag(Tok
.getLocation(), diag::err_too_few_args_in_macro_invoc
);
1362 Tok
.setKind(tok::numeric_constant
);
1366 // Parse the macro argument, if one not found so far.
1370 bool HasLexedNextToken
= false;
1371 Result
= Op(Tok
, HasLexedNextToken
);
1373 if (HasLexedNextToken
)
1379 // Diagnose missing ')'.
1380 if (!SuppressDiagnostic
) {
1381 if (auto Diag
= PP
.Diag(Tok
.getLocation(), diag::err_pp_expected_after
)) {
1382 if (IdentifierInfo
*LastII
= ResultTok
.getIdentifierInfo())
1385 Diag
<< ResultTok
.getKind();
1386 Diag
<< tok::r_paren
<< ResultTok
.getLocation();
1388 PP
.Diag(LParenLoc
, diag::note_matching
) << tok::l_paren
;
1389 SuppressDiagnostic
= true;
1394 /// Helper function to return the IdentifierInfo structure of a Token
1395 /// or generate a diagnostic if none available.
1396 static IdentifierInfo
*ExpectFeatureIdentifierInfo(Token
&Tok
,
1400 if (!Tok
.isAnnotation() && (II
= Tok
.getIdentifierInfo()))
1403 PP
.Diag(Tok
.getLocation(), DiagID
);
1407 /// Implements the __is_target_arch builtin macro.
1408 static bool isTargetArch(const TargetInfo
&TI
, const IdentifierInfo
*II
) {
1409 std::string ArchName
= II
->getName().lower() + "--";
1410 llvm::Triple
Arch(ArchName
);
1411 const llvm::Triple
&TT
= TI
.getTriple();
1413 // arm matches thumb or thumbv7. armv7 matches thumbv7.
1414 if ((Arch
.getSubArch() == llvm::Triple::NoSubArch
||
1415 Arch
.getSubArch() == TT
.getSubArch()) &&
1416 ((TT
.getArch() == llvm::Triple::thumb
&&
1417 Arch
.getArch() == llvm::Triple::arm
) ||
1418 (TT
.getArch() == llvm::Triple::thumbeb
&&
1419 Arch
.getArch() == llvm::Triple::armeb
)))
1422 // Check the parsed arch when it has no sub arch to allow Clang to
1423 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1424 return (Arch
.getSubArch() == llvm::Triple::NoSubArch
||
1425 Arch
.getSubArch() == TT
.getSubArch()) &&
1426 Arch
.getArch() == TT
.getArch();
1429 /// Implements the __is_target_vendor builtin macro.
1430 static bool isTargetVendor(const TargetInfo
&TI
, const IdentifierInfo
*II
) {
1431 StringRef VendorName
= TI
.getTriple().getVendorName();
1432 if (VendorName
.empty())
1433 VendorName
= "unknown";
1434 return VendorName
.equals_insensitive(II
->getName());
1437 /// Implements the __is_target_os builtin macro.
1438 static bool isTargetOS(const TargetInfo
&TI
, const IdentifierInfo
*II
) {
1439 std::string OSName
=
1440 (llvm::Twine("unknown-unknown-") + II
->getName().lower()).str();
1441 llvm::Triple
OS(OSName
);
1442 if (OS
.getOS() == llvm::Triple::Darwin
) {
1443 // Darwin matches macos, ios, etc.
1444 return TI
.getTriple().isOSDarwin();
1446 return TI
.getTriple().getOS() == OS
.getOS();
1449 /// Implements the __is_target_environment builtin macro.
1450 static bool isTargetEnvironment(const TargetInfo
&TI
,
1451 const IdentifierInfo
*II
) {
1452 std::string EnvName
= (llvm::Twine("---") + II
->getName().lower()).str();
1453 llvm::Triple
Env(EnvName
);
1454 // The unknown environment is matched only if
1455 // '__is_target_environment(unknown)' is used.
1456 if (Env
.getEnvironment() == llvm::Triple::UnknownEnvironment
&&
1457 EnvName
!= "---unknown")
1459 return TI
.getTriple().getEnvironment() == Env
.getEnvironment();
1462 /// Implements the __is_target_variant_os builtin macro.
1463 static bool isTargetVariantOS(const TargetInfo
&TI
, const IdentifierInfo
*II
) {
1464 if (TI
.getTriple().isOSDarwin()) {
1465 const llvm::Triple
*VariantTriple
= TI
.getDarwinTargetVariantTriple();
1469 std::string OSName
=
1470 (llvm::Twine("unknown-unknown-") + II
->getName().lower()).str();
1471 llvm::Triple
OS(OSName
);
1472 if (OS
.getOS() == llvm::Triple::Darwin
) {
1473 // Darwin matches macos, ios, etc.
1474 return VariantTriple
->isOSDarwin();
1476 return VariantTriple
->getOS() == OS
.getOS();
1481 /// Implements the __is_target_variant_environment builtin macro.
1482 static bool isTargetVariantEnvironment(const TargetInfo
&TI
,
1483 const IdentifierInfo
*II
) {
1484 if (TI
.getTriple().isOSDarwin()) {
1485 const llvm::Triple
*VariantTriple
= TI
.getDarwinTargetVariantTriple();
1488 std::string EnvName
= (llvm::Twine("---") + II
->getName().lower()).str();
1489 llvm::Triple
Env(EnvName
);
1490 return VariantTriple
->getEnvironment() == Env
.getEnvironment();
1495 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1496 /// as a builtin macro, handle it and return the next token as 'Tok'.
1497 void Preprocessor::ExpandBuiltinMacro(Token
&Tok
) {
1498 // Figure out which token this is.
1499 IdentifierInfo
*II
= Tok
.getIdentifierInfo();
1500 assert(II
&& "Can't be a macro without id info!");
1502 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1503 // invoke the pragma handler, then lex the token after it.
1504 if (II
== Ident_Pragma
)
1505 return Handle_Pragma(Tok
);
1506 else if (II
== Ident__pragma
) // in non-MS mode this is null
1507 return HandleMicrosoft__pragma(Tok
);
1509 ++NumBuiltinMacroExpanded
;
1511 SmallString
<128> TmpBuffer
;
1512 llvm::raw_svector_ostream
OS(TmpBuffer
);
1514 // Set up the return result.
1515 Tok
.setIdentifierInfo(nullptr);
1516 Tok
.clearFlag(Token::NeedsCleaning
);
1517 bool IsAtStartOfLine
= Tok
.isAtStartOfLine();
1518 bool HasLeadingSpace
= Tok
.hasLeadingSpace();
1520 if (II
== Ident__LINE__
) {
1521 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1522 // source file) of the current source line (an integer constant)". This can
1523 // be affected by #line.
1524 SourceLocation Loc
= Tok
.getLocation();
1526 // Advance to the location of the first _, this might not be the first byte
1527 // of the token if it starts with an escaped newline.
1528 Loc
= AdvanceToTokenCharacter(Loc
, 0);
1530 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1531 // a macro expansion. This doesn't matter for object-like macros, but
1532 // can matter for a function-like macro that expands to contain __LINE__.
1533 // Skip down through expansion points until we find a file loc for the
1534 // end of the expansion history.
1535 Loc
= SourceMgr
.getExpansionRange(Loc
).getEnd();
1536 PresumedLoc PLoc
= SourceMgr
.getPresumedLoc(Loc
);
1538 // __LINE__ expands to a simple numeric value.
1539 OS
<< (PLoc
.isValid()? PLoc
.getLine() : 1);
1540 Tok
.setKind(tok::numeric_constant
);
1541 } else if (II
== Ident__FILE__
|| II
== Ident__BASE_FILE__
||
1542 II
== Ident__FILE_NAME__
) {
1543 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1544 // character string literal)". This can be affected by #line.
1545 PresumedLoc PLoc
= SourceMgr
.getPresumedLoc(Tok
.getLocation());
1547 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1548 // #include stack instead of the current file.
1549 if (II
== Ident__BASE_FILE__
&& PLoc
.isValid()) {
1550 SourceLocation NextLoc
= PLoc
.getIncludeLoc();
1551 while (NextLoc
.isValid()) {
1552 PLoc
= SourceMgr
.getPresumedLoc(NextLoc
);
1553 if (PLoc
.isInvalid())
1556 NextLoc
= PLoc
.getIncludeLoc();
1560 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1561 SmallString
<256> FN
;
1562 if (PLoc
.isValid()) {
1563 // __FILE_NAME__ is a Clang-specific extension that expands to the
1564 // the last part of __FILE__.
1565 if (II
== Ident__FILE_NAME__
) {
1566 processPathToFileName(FN
, PLoc
, getLangOpts(), getTargetInfo());
1568 FN
+= PLoc
.getFilename();
1569 processPathForFileMacro(FN
, getLangOpts(), getTargetInfo());
1571 Lexer::Stringify(FN
);
1572 OS
<< '"' << FN
<< '"';
1574 Tok
.setKind(tok::string_literal
);
1575 } else if (II
== Ident__DATE__
) {
1576 Diag(Tok
.getLocation(), diag::warn_pp_date_time
);
1577 if (!DATELoc
.isValid())
1578 ComputeDATE_TIME(DATELoc
, TIMELoc
, *this);
1579 Tok
.setKind(tok::string_literal
);
1580 Tok
.setLength(strlen("\"Mmm dd yyyy\""));
1581 Tok
.setLocation(SourceMgr
.createExpansionLoc(DATELoc
, Tok
.getLocation(),
1585 } else if (II
== Ident__TIME__
) {
1586 Diag(Tok
.getLocation(), diag::warn_pp_date_time
);
1587 if (!TIMELoc
.isValid())
1588 ComputeDATE_TIME(DATELoc
, TIMELoc
, *this);
1589 Tok
.setKind(tok::string_literal
);
1590 Tok
.setLength(strlen("\"hh:mm:ss\""));
1591 Tok
.setLocation(SourceMgr
.createExpansionLoc(TIMELoc
, Tok
.getLocation(),
1595 } else if (II
== Ident__INCLUDE_LEVEL__
) {
1596 // Compute the presumed include depth of this token. This can be affected
1597 // by GNU line markers.
1600 PresumedLoc PLoc
= SourceMgr
.getPresumedLoc(Tok
.getLocation());
1601 if (PLoc
.isValid()) {
1602 PLoc
= SourceMgr
.getPresumedLoc(PLoc
.getIncludeLoc());
1603 for (; PLoc
.isValid(); ++Depth
)
1604 PLoc
= SourceMgr
.getPresumedLoc(PLoc
.getIncludeLoc());
1607 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1609 Tok
.setKind(tok::numeric_constant
);
1610 } else if (II
== Ident__TIMESTAMP__
) {
1611 Diag(Tok
.getLocation(), diag::warn_pp_date_time
);
1612 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1613 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1615 if (getPreprocessorOpts().SourceDateEpoch
) {
1616 time_t TT
= *getPreprocessorOpts().SourceDateEpoch
;
1617 std::tm
*TM
= std::gmtime(&TT
);
1618 Result
= asctime(TM
);
1620 // Get the file that we are lexing out of. If we're currently lexing from
1621 // a macro, dig into the include stack.
1622 const FileEntry
*CurFile
= nullptr;
1623 if (PreprocessorLexer
*TheLexer
= getCurrentFileLexer())
1624 CurFile
= SourceMgr
.getFileEntryForID(TheLexer
->getFileID());
1626 time_t TT
= CurFile
->getModificationTime();
1627 struct tm
*TM
= localtime(&TT
);
1628 Result
= asctime(TM
);
1630 Result
= "??? ??? ?? ??:??:?? ????\n";
1633 // Surround the string with " and strip the trailing newline.
1634 OS
<< '"' << StringRef(Result
).drop_back() << '"';
1635 Tok
.setKind(tok::string_literal
);
1636 } else if (II
== Ident__FLT_EVAL_METHOD__
) {
1637 // __FLT_EVAL_METHOD__ is set to the default value.
1638 OS
<< getTUFPEvalMethod();
1639 // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1640 Tok
.setKind(tok::numeric_constant
);
1641 if (getLastFPEvalPragmaLocation().isValid()) {
1642 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered
1644 Diag(Tok
, diag::err_illegal_use_of_flt_eval_macro
);
1645 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here
);
1647 } else if (II
== Ident__COUNTER__
) {
1648 // __COUNTER__ expands to a simple numeric value.
1649 OS
<< CounterValue
++;
1650 Tok
.setKind(tok::numeric_constant
);
1651 } else if (II
== Ident__has_feature
) {
1652 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1653 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1654 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1655 diag::err_feature_check_malformed
);
1656 return II
&& HasFeature(*this, II
->getName());
1658 } else if (II
== Ident__has_extension
) {
1659 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1660 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1661 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1662 diag::err_feature_check_malformed
);
1663 return II
&& HasExtension(*this, II
->getName());
1665 } else if (II
== Ident__has_builtin
) {
1666 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1667 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1668 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1669 diag::err_feature_check_malformed
);
1672 else if (II
->getBuiltinID() != 0) {
1673 switch (II
->getBuiltinID()) {
1674 case Builtin::BI__builtin_operator_new
:
1675 case Builtin::BI__builtin_operator_delete
:
1676 // denotes date of behavior change to support calling arbitrary
1677 // usual allocation and deallocation functions. Required by libc++
1680 return Builtin::evaluateRequiredTargetFeatures(
1681 getBuiltinInfo().getRequiredFeatures(II
->getBuiltinID()),
1682 getTargetInfo().getTargetOpts().FeatureMap
);
1685 } else if (II
->getTokenID() != tok::identifier
||
1686 II
->hasRevertedTokenIDToIdentifier()) {
1687 // Treat all keywords that introduce a custom syntax of the form
1689 // '__some_keyword' '(' [...] ')'
1691 // as being "builtin functions", even if the syntax isn't a valid
1692 // function call (for example, because the builtin takes a type
1694 if (II
->getName().startswith("__builtin_") ||
1695 II
->getName().startswith("__is_") ||
1696 II
->getName().startswith("__has_"))
1698 return llvm::StringSwitch
<bool>(II
->getName())
1699 .Case("__array_rank", true)
1700 .Case("__array_extent", true)
1701 .Case("__reference_binds_to_temporary", true)
1702 .Case("__reference_constructs_from_temporary", true)
1703 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) .Case("__" #Trait, true)
1704 #include "clang/Basic/TransformTypeTraits.def"
1707 return llvm::StringSwitch
<bool>(II
->getName())
1708 // Report builtin templates as being builtins.
1709 .Case("__make_integer_seq", getLangOpts().CPlusPlus
)
1710 .Case("__type_pack_element", getLangOpts().CPlusPlus
)
1711 // Likewise for some builtin preprocessor macros.
1712 // FIXME: This is inconsistent; we usually suggest detecting
1713 // builtin macros via #ifdef. Don't add more cases here.
1714 .Case("__is_target_arch", true)
1715 .Case("__is_target_vendor", true)
1716 .Case("__is_target_os", true)
1717 .Case("__is_target_environment", true)
1718 .Case("__is_target_variant_os", true)
1719 .Case("__is_target_variant_environment", true)
1723 } else if (II
== Ident__has_constexpr_builtin
) {
1724 EvaluateFeatureLikeBuiltinMacro(
1725 OS
, Tok
, II
, *this, false,
1726 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1727 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1728 Tok
, *this, diag::err_feature_check_malformed
);
1731 unsigned BuiltinOp
= II
->getBuiltinID();
1732 return BuiltinOp
!= 0 &&
1733 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp
);
1735 } else if (II
== Ident__is_identifier
) {
1736 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1737 [](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1738 return Tok
.is(tok::identifier
);
1740 } else if (II
== Ident__has_attribute
) {
1741 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, true,
1742 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1743 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1744 diag::err_feature_check_malformed
);
1745 return II
? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU
, nullptr,
1746 II
, getTargetInfo(), getLangOpts())
1749 } else if (II
== Ident__has_declspec
) {
1750 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, true,
1751 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1752 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1753 diag::err_feature_check_malformed
);
1755 const LangOptions
&LangOpts
= getLangOpts();
1756 return LangOpts
.DeclSpecKeyword
&&
1757 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec
, nullptr,
1758 II
, getTargetInfo(), LangOpts
);
1763 } else if (II
== Ident__has_cpp_attribute
||
1764 II
== Ident__has_c_attribute
) {
1765 bool IsCXX
= II
== Ident__has_cpp_attribute
;
1766 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, true,
1767 [&](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1768 IdentifierInfo
*ScopeII
= nullptr;
1769 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1770 Tok
, *this, diag::err_feature_check_malformed
);
1774 // It is possible to receive a scope token. Read the "::", if it is
1775 // available, and the subsequent identifier.
1776 LexUnexpandedToken(Tok
);
1777 if (Tok
.isNot(tok::coloncolon
))
1778 HasLexedNextToken
= true;
1781 // Lex an expanded token for the attribute name.
1783 II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1784 diag::err_feature_check_malformed
);
1787 AttributeCommonInfo::Syntax Syntax
=
1788 IsCXX
? AttributeCommonInfo::Syntax::AS_CXX11
1789 : AttributeCommonInfo::Syntax::AS_C23
;
1790 return II
? hasAttribute(Syntax
, ScopeII
, II
, getTargetInfo(),
1794 } else if (II
== Ident__has_include
||
1795 II
== Ident__has_include_next
) {
1796 // The argument to these two builtins should be a parenthesized
1797 // file name string literal using angle brackets (<>) or
1798 // double-quotes ("").
1800 if (II
== Ident__has_include
)
1801 Value
= EvaluateHasInclude(Tok
, II
);
1803 Value
= EvaluateHasIncludeNext(Tok
, II
);
1805 if (Tok
.isNot(tok::r_paren
))
1808 Tok
.setKind(tok::numeric_constant
);
1809 } else if (II
== Ident__has_warning
) {
1810 // The argument should be a parenthesized string literal.
1811 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1812 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1813 std::string WarningName
;
1814 SourceLocation StrStartLoc
= Tok
.getLocation();
1816 HasLexedNextToken
= Tok
.is(tok::string_literal
);
1817 if (!FinishLexStringLiteral(Tok
, WarningName
, "'__has_warning'",
1818 /*AllowMacroExpansion=*/false))
1821 // FIXME: Should we accept "-R..." flags here, or should that be
1822 // handled by a separate __has_remark?
1823 if (WarningName
.size() < 3 || WarningName
[0] != '-' ||
1824 WarningName
[1] != 'W') {
1825 Diag(StrStartLoc
, diag::warn_has_warning_invalid_option
);
1829 // Finally, check if the warning flags maps to a diagnostic group.
1830 // We construct a SmallVector here to talk to getDiagnosticIDs().
1831 // Although we don't use the result, this isn't a hot path, and not
1832 // worth special casing.
1833 SmallVector
<diag::kind
, 10> Diags
;
1834 return !getDiagnostics().getDiagnosticIDs()->
1835 getDiagnosticsInGroup(diag::Flavor::WarningOrError
,
1836 WarningName
.substr(2), Diags
);
1838 } else if (II
== Ident__building_module
) {
1839 // The argument to this builtin should be an identifier. The
1840 // builtin evaluates to 1 when that identifier names the module we are
1841 // currently building.
1842 EvaluateFeatureLikeBuiltinMacro(OS
, Tok
, II
, *this, false,
1843 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1844 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(Tok
, *this,
1845 diag::err_expected_id_building_module
);
1846 return getLangOpts().isCompilingModule() && II
&&
1847 (II
->getName() == getLangOpts().CurrentModule
);
1849 } else if (II
== Ident__MODULE__
) {
1850 // The current module as an identifier.
1851 OS
<< getLangOpts().CurrentModule
;
1852 IdentifierInfo
*ModuleII
= getIdentifierInfo(getLangOpts().CurrentModule
);
1853 Tok
.setIdentifierInfo(ModuleII
);
1854 Tok
.setKind(ModuleII
->getTokenID());
1855 } else if (II
== Ident__identifier
) {
1856 SourceLocation Loc
= Tok
.getLocation();
1858 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1859 // if the parens are missing.
1861 if (Tok
.isNot(tok::l_paren
)) {
1862 // No '(', use end of last token.
1863 Diag(getLocForEndOfToken(Loc
), diag::err_pp_expected_after
)
1864 << II
<< tok::l_paren
;
1865 // If the next token isn't valid as our argument, we can't recover.
1866 if (!Tok
.isAnnotation() && Tok
.getIdentifierInfo())
1867 Tok
.setKind(tok::identifier
);
1871 SourceLocation LParenLoc
= Tok
.getLocation();
1874 if (!Tok
.isAnnotation() && Tok
.getIdentifierInfo())
1875 Tok
.setKind(tok::identifier
);
1876 else if (Tok
.is(tok::string_literal
) && !Tok
.hasUDSuffix()) {
1877 StringLiteralParser
Literal(Tok
, *this,
1878 StringLiteralEvalMethod::Unevaluated
);
1879 if (Literal
.hadError
)
1882 Tok
.setIdentifierInfo(getIdentifierInfo(Literal
.GetString()));
1883 Tok
.setKind(tok::identifier
);
1885 Diag(Tok
.getLocation(), diag::err_pp_identifier_arg_not_identifier
)
1887 // Don't walk past anything that's not a real token.
1888 if (Tok
.isOneOf(tok::eof
, tok::eod
) || Tok
.isAnnotation())
1892 // Discard the ')', preserving 'Tok' as our result.
1894 LexNonComment(RParen
);
1895 if (RParen
.isNot(tok::r_paren
)) {
1896 Diag(getLocForEndOfToken(Tok
.getLocation()), diag::err_pp_expected_after
)
1897 << Tok
.getKind() << tok::r_paren
;
1898 Diag(LParenLoc
, diag::note_matching
) << tok::l_paren
;
1901 } else if (II
== Ident__is_target_arch
) {
1902 EvaluateFeatureLikeBuiltinMacro(
1903 OS
, Tok
, II
, *this, false,
1904 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1905 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1906 Tok
, *this, diag::err_feature_check_malformed
);
1907 return II
&& isTargetArch(getTargetInfo(), II
);
1909 } else if (II
== Ident__is_target_vendor
) {
1910 EvaluateFeatureLikeBuiltinMacro(
1911 OS
, Tok
, II
, *this, false,
1912 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1913 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1914 Tok
, *this, diag::err_feature_check_malformed
);
1915 return II
&& isTargetVendor(getTargetInfo(), II
);
1917 } else if (II
== Ident__is_target_os
) {
1918 EvaluateFeatureLikeBuiltinMacro(
1919 OS
, Tok
, II
, *this, false,
1920 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1921 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1922 Tok
, *this, diag::err_feature_check_malformed
);
1923 return II
&& isTargetOS(getTargetInfo(), II
);
1925 } else if (II
== Ident__is_target_environment
) {
1926 EvaluateFeatureLikeBuiltinMacro(
1927 OS
, Tok
, II
, *this, false,
1928 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1929 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1930 Tok
, *this, diag::err_feature_check_malformed
);
1931 return II
&& isTargetEnvironment(getTargetInfo(), II
);
1933 } else if (II
== Ident__is_target_variant_os
) {
1934 EvaluateFeatureLikeBuiltinMacro(
1935 OS
, Tok
, II
, *this, false,
1936 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1937 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1938 Tok
, *this, diag::err_feature_check_malformed
);
1939 return II
&& isTargetVariantOS(getTargetInfo(), II
);
1941 } else if (II
== Ident__is_target_variant_environment
) {
1942 EvaluateFeatureLikeBuiltinMacro(
1943 OS
, Tok
, II
, *this, false,
1944 [this](Token
&Tok
, bool &HasLexedNextToken
) -> int {
1945 IdentifierInfo
*II
= ExpectFeatureIdentifierInfo(
1946 Tok
, *this, diag::err_feature_check_malformed
);
1947 return II
&& isTargetVariantEnvironment(getTargetInfo(), II
);
1950 llvm_unreachable("Unknown identifier!");
1952 CreateString(OS
.str(), Tok
, Tok
.getLocation(), Tok
.getLocation());
1953 Tok
.setFlagValue(Token::StartOfLine
, IsAtStartOfLine
);
1954 Tok
.setFlagValue(Token::LeadingSpace
, HasLeadingSpace
);
1957 void Preprocessor::markMacroAsUsed(MacroInfo
*MI
) {
1958 // If the 'used' status changed, and the macro requires 'unused' warning,
1959 // remove its SourceLocation from the warn-for-unused-macro locations.
1960 if (MI
->isWarnIfUnused() && !MI
->isUsed())
1961 WarnUnusedMacroLocs
.erase(MI
->getDefinitionLoc());
1962 MI
->setIsUsed(true);
1965 void Preprocessor::processPathForFileMacro(SmallVectorImpl
<char> &Path
,
1966 const LangOptions
&LangOpts
,
1967 const TargetInfo
&TI
) {
1968 LangOpts
.remapPathPrefix(Path
);
1969 if (LangOpts
.UseTargetPathSeparator
) {
1970 if (TI
.getTriple().isOSWindows())
1971 llvm::sys::path::remove_dots(Path
, false,
1972 llvm::sys::path::Style::windows_backslash
);
1974 llvm::sys::path::remove_dots(Path
, false, llvm::sys::path::Style::posix
);
1978 void Preprocessor::processPathToFileName(SmallVectorImpl
<char> &FileName
,
1979 const PresumedLoc
&PLoc
,
1980 const LangOptions
&LangOpts
,
1981 const TargetInfo
&TI
) {
1982 // Try to get the last path component, failing that return the original
1983 // presumed location.
1984 StringRef PLFileName
= llvm::sys::path::filename(PLoc
.getFilename());
1985 if (PLFileName
.empty())
1986 PLFileName
= PLoc
.getFilename();
1987 FileName
.append(PLFileName
.begin(), PLFileName
.end());
1988 processPathForFileMacro(FileName
, LangOpts
, TI
);