[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Lex / PPMacroExpansion.cpp
blob30c4abdbad8aa4462552d1639651f9068d1dbc17
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/ObjCRuntime.h"
22 #include "clang/Basic/SourceLocation.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/CodeCompletionHandler.h"
25 #include "clang/Lex/DirectoryLookup.h"
26 #include "clang/Lex/ExternalPreprocessorSource.h"
27 #include "clang/Lex/HeaderSearch.h"
28 #include "clang/Lex/LexDiagnostic.h"
29 #include "clang/Lex/LiteralSupport.h"
30 #include "clang/Lex/MacroArgs.h"
31 #include "clang/Lex/MacroInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorLexer.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Lex/Token.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/FoldingSet.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/StringSwitch.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/Path.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstring>
54 #include <ctime>
55 #include <optional>
56 #include <string>
57 #include <tuple>
58 #include <utility>
60 using namespace clang;
62 MacroDirective *
63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
64 if (!II->hadMacroDefinition())
65 return nullptr;
66 auto Pos = CurSubmoduleState->Macros.find(II);
67 return Pos == CurSubmoduleState->Macros.end() ? nullptr
68 : Pos->second.getLatest();
71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
72 assert(MD && "MacroDirective should be non-zero!");
73 assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
75 MacroState &StoredMD = CurSubmoduleState->Macros[II];
76 auto *OldMD = StoredMD.getLatest();
77 MD->setPrevious(OldMD);
78 StoredMD.setLatest(MD);
79 StoredMD.overrideActiveModuleMacros(*this, II);
81 if (needModuleMacros()) {
82 // Track that we created a new macro directive, so we know we should
83 // consider building a ModuleMacro for it when we get to the end of
84 // the module.
85 PendingModuleMacroNames.push_back(II);
88 // Set up the identifier as having associated macro history.
89 II->setHasMacroDefinition(true);
90 if (!MD->isDefined() && !LeafModuleMacros.contains(II))
91 II->setHasMacroDefinition(false);
92 if (II->isFromAST())
93 II->setChangedSinceDeserialization();
96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
97 MacroDirective *ED,
98 MacroDirective *MD) {
99 // Normally, when a macro is defined, it goes through appendMacroDirective()
100 // above, which chains a macro to previous defines, undefs, etc.
101 // However, in a pch, the whole macro history up to the end of the pch is
102 // stored, so ASTReader goes through this function instead.
103 // However, built-in macros are already registered in the Preprocessor
104 // ctor, and ASTWriter stops writing the macro chain at built-in macros,
105 // so in that case the chain from the pch needs to be spliced to the existing
106 // built-in.
108 assert(II && MD);
109 MacroState &StoredMD = CurSubmoduleState->Macros[II];
111 if (auto *OldMD = StoredMD.getLatest()) {
112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the
113 // predefines buffer in module builds. However, in module builds, modules
114 // are loaded completely before predefines are processed, so StoredMD
115 // will be nullptr for them when they're loaded. StoredMD should only be
116 // non-nullptr for builtins read from a pch file.
117 assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
118 "only built-ins should have an entry here");
119 assert(!OldMD->getPrevious() && "builtin should only have a single entry");
120 ED->setPrevious(OldMD);
121 StoredMD.setLatest(MD);
122 } else {
123 StoredMD = MD;
126 // Setup the identifier as having associated macro history.
127 II->setHasMacroDefinition(true);
128 if (!MD->isDefined() && !LeafModuleMacros.contains(II))
129 II->setHasMacroDefinition(false);
132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
133 MacroInfo *Macro,
134 ArrayRef<ModuleMacro *> Overrides,
135 bool &New) {
136 llvm::FoldingSetNodeID ID;
137 ModuleMacro::Profile(ID, Mod, II);
139 void *InsertPos;
140 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
141 New = false;
142 return MM;
145 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
146 ModuleMacros.InsertNode(MM, InsertPos);
148 // Each overridden macro is now overridden by one more macro.
149 bool HidAny = false;
150 for (auto *O : Overrides) {
151 HidAny |= (O->NumOverriddenBy == 0);
152 ++O->NumOverriddenBy;
155 // If we were the first overrider for any macro, it's no longer a leaf.
156 auto &LeafMacros = LeafModuleMacros[II];
157 if (HidAny) {
158 llvm::erase_if(LeafMacros,
159 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
162 // The new macro is always a leaf macro.
163 LeafMacros.push_back(MM);
164 // The identifier now has defined macros (that may or may not be visible).
165 II->setHasMacroDefinition(true);
167 New = true;
168 return MM;
171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
172 const IdentifierInfo *II) {
173 llvm::FoldingSetNodeID ID;
174 ModuleMacro::Profile(ID, Mod, II);
176 void *InsertPos;
177 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
181 ModuleMacroInfo &Info) {
182 assert(Info.ActiveModuleMacrosGeneration !=
183 CurSubmoduleState->VisibleModules.getGeneration() &&
184 "don't need to update this macro name info");
185 Info.ActiveModuleMacrosGeneration =
186 CurSubmoduleState->VisibleModules.getGeneration();
188 auto Leaf = LeafModuleMacros.find(II);
189 if (Leaf == LeafModuleMacros.end()) {
190 // No imported macros at all: nothing to do.
191 return;
194 Info.ActiveModuleMacros.clear();
196 // Every macro that's locally overridden is overridden by a visible macro.
197 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
198 for (auto *O : Info.OverriddenMacros)
199 NumHiddenOverrides[O] = -1;
201 // Collect all macros that are not overridden by a visible macro.
202 llvm::SmallVector<ModuleMacro *, 16> Worklist;
203 for (auto *LeafMM : Leaf->second) {
204 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
205 if (NumHiddenOverrides.lookup(LeafMM) == 0)
206 Worklist.push_back(LeafMM);
208 while (!Worklist.empty()) {
209 auto *MM = Worklist.pop_back_val();
210 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
211 // We only care about collecting definitions; undefinitions only act
212 // to override other definitions.
213 if (MM->getMacroInfo())
214 Info.ActiveModuleMacros.push_back(MM);
215 } else {
216 for (auto *O : MM->overrides())
217 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
218 Worklist.push_back(O);
221 // Our reverse postorder walk found the macros in reverse order.
222 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
224 // Determine whether the macro name is ambiguous.
225 MacroInfo *MI = nullptr;
226 bool IsSystemMacro = true;
227 bool IsAmbiguous = false;
228 if (auto *MD = Info.MD) {
229 while (MD && isa<VisibilityMacroDirective>(MD))
230 MD = MD->getPrevious();
231 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
232 MI = DMD->getInfo();
233 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
236 for (auto *Active : Info.ActiveModuleMacros) {
237 auto *NewMI = Active->getMacroInfo();
239 // Before marking the macro as ambiguous, check if this is a case where
240 // both macros are in system headers. If so, we trust that the system
241 // did not get it wrong. This also handles cases where Clang's own
242 // headers have a different spelling of certain system macros:
243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
247 // overrides the system limits.h's macros, so there's no conflict here.
248 if (MI && NewMI != MI &&
249 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
250 IsAmbiguous = true;
251 IsSystemMacro &= Active->getOwningModule()->IsSystem ||
252 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
253 MI = NewMI;
255 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
259 ArrayRef<ModuleMacro*> Leaf;
260 auto LeafIt = LeafModuleMacros.find(II);
261 if (LeafIt != LeafModuleMacros.end())
262 Leaf = LeafIt->second;
263 const MacroState *State = nullptr;
264 auto Pos = CurSubmoduleState->Macros.find(II);
265 if (Pos != CurSubmoduleState->Macros.end())
266 State = &Pos->second;
268 llvm::errs() << "MacroState " << State << " " << II->getNameStart();
269 if (State && State->isAmbiguous(*this, II))
270 llvm::errs() << " ambiguous";
271 if (State && !State->getOverriddenMacros().empty()) {
272 llvm::errs() << " overrides";
273 for (auto *O : State->getOverriddenMacros())
274 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
276 llvm::errs() << "\n";
278 // Dump local macro directives.
279 for (auto *MD = State ? State->getLatest() : nullptr; MD;
280 MD = MD->getPrevious()) {
281 llvm::errs() << " ";
282 MD->dump();
285 // Dump module macros.
286 llvm::DenseSet<ModuleMacro*> Active;
287 for (auto *MM :
288 State ? State->getActiveModuleMacros(*this, II) : std::nullopt)
289 Active.insert(MM);
290 llvm::DenseSet<ModuleMacro*> Visited;
291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
292 while (!Worklist.empty()) {
293 auto *MM = Worklist.pop_back_val();
294 llvm::errs() << " ModuleMacro " << MM << " "
295 << MM->getOwningModule()->getFullModuleName();
296 if (!MM->getMacroInfo())
297 llvm::errs() << " undef";
299 if (Active.count(MM))
300 llvm::errs() << " active";
301 else if (!CurSubmoduleState->VisibleModules.isVisible(
302 MM->getOwningModule()))
303 llvm::errs() << " hidden";
304 else if (MM->getMacroInfo())
305 llvm::errs() << " overridden";
307 if (!MM->overrides().empty()) {
308 llvm::errs() << " overrides";
309 for (auto *O : MM->overrides()) {
310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
311 if (Visited.insert(O).second)
312 Worklist.push_back(O);
315 llvm::errs() << "\n";
316 if (auto *MI = MM->getMacroInfo()) {
317 llvm::errs() << " ";
318 MI->dump();
319 llvm::errs() << "\n";
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
327 // Get the identifier.
328 IdentifierInfo *Id = PP.getIdentifierInfo(Name);
330 // Mark it as being a macro that is builtin.
331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
332 MI->setIsBuiltinMacro();
333 PP.appendDefMacroDirective(Id, MI);
334 return Id;
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
339 void Preprocessor::RegisterBuiltinMacros() {
340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__");
348 // C++ Standing Document Extensions.
349 if (getLangOpts().CPlusPlus)
350 Ident__has_cpp_attribute =
351 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
352 else
353 Ident__has_cpp_attribute = nullptr;
355 // GCC Extensions.
356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
360 // Microsoft Extensions.
361 if (getLangOpts().MicrosoftExt) {
362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
364 } else {
365 Ident__identifier = nullptr;
366 Ident__pragma = nullptr;
369 // Clang Extensions.
370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__");
371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
374 Ident__has_constexpr_builtin =
375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin");
376 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
377 if (!getLangOpts().CPlusPlus)
378 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
379 else
380 Ident__has_c_attribute = nullptr;
382 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
383 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
384 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
385 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
386 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
387 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch");
388 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
389 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os");
390 Ident__is_target_environment =
391 RegisterBuiltinMacro(*this, "__is_target_environment");
392 Ident__is_target_variant_os =
393 RegisterBuiltinMacro(*this, "__is_target_variant_os");
394 Ident__is_target_variant_environment =
395 RegisterBuiltinMacro(*this, "__is_target_variant_environment");
397 // Modules.
398 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
399 if (!getLangOpts().CurrentModule.empty())
400 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
401 else
402 Ident__MODULE__ = nullptr;
405 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
406 /// in its expansion, currently expands to that token literally.
407 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
408 const IdentifierInfo *MacroIdent,
409 Preprocessor &PP) {
410 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
412 // If the token isn't an identifier, it's always literally expanded.
413 if (!II) return true;
415 // If the information about this identifier is out of date, update it from
416 // the external source.
417 if (II->isOutOfDate())
418 PP.getExternalSource()->updateOutOfDateIdentifier(*II);
420 // If the identifier is a macro, and if that macro is enabled, it may be
421 // expanded so it's not a trivial expansion.
422 if (auto *ExpansionMI = PP.getMacroInfo(II))
423 if (ExpansionMI->isEnabled() &&
424 // Fast expanding "#define X X" is ok, because X would be disabled.
425 II != MacroIdent)
426 return false;
428 // If this is an object-like macro invocation, it is safe to trivially expand
429 // it.
430 if (MI->isObjectLike()) return true;
432 // If this is a function-like macro invocation, it's safe to trivially expand
433 // as long as the identifier is not a macro argument.
434 return !llvm::is_contained(MI->params(), II);
437 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
438 /// lexed is a '('. If so, consume the token and return true, if not, this
439 /// method should have no observable side-effect on the lexed tokens.
440 bool Preprocessor::isNextPPTokenLParen() {
441 // Do some quick tests for rejection cases.
442 unsigned Val;
443 if (CurLexer)
444 Val = CurLexer->isNextPPTokenLParen();
445 else
446 Val = CurTokenLexer->isNextTokenLParen();
448 if (Val == 2) {
449 // We have run off the end. If it's a source file we don't
450 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
451 // macro stack.
452 if (CurPPLexer)
453 return false;
454 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
455 if (Entry.TheLexer)
456 Val = Entry.TheLexer->isNextPPTokenLParen();
457 else
458 Val = Entry.TheTokenLexer->isNextTokenLParen();
460 if (Val != 2)
461 break;
463 // Ran off the end of a source file?
464 if (Entry.ThePPLexer)
465 return false;
469 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
470 // have found something that isn't a '(' or we found the end of the
471 // translation unit. In either case, return false.
472 return Val == 1;
475 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
476 /// expanded as a macro, handle it and return the next token as 'Identifier'.
477 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
478 const MacroDefinition &M) {
479 emitMacroExpansionWarnings(Identifier);
481 MacroInfo *MI = M.getMacroInfo();
483 // If this is a macro expansion in the "#if !defined(x)" line for the file,
484 // then the macro could expand to different things in other contexts, we need
485 // to disable the optimization in this case.
486 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
488 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
489 if (MI->isBuiltinMacro()) {
490 if (Callbacks)
491 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
492 /*Args=*/nullptr);
493 ExpandBuiltinMacro(Identifier);
494 return true;
497 /// Args - If this is a function-like macro expansion, this contains,
498 /// for each macro argument, the list of tokens that were provided to the
499 /// invocation.
500 MacroArgs *Args = nullptr;
502 // Remember where the end of the expansion occurred. For an object-like
503 // macro, this is the identifier. For a function-like macro, this is the ')'.
504 SourceLocation ExpansionEnd = Identifier.getLocation();
506 // If this is a function-like macro, read the arguments.
507 if (MI->isFunctionLike()) {
508 // Remember that we are now parsing the arguments to a macro invocation.
509 // Preprocessor directives used inside macro arguments are not portable, and
510 // this enables the warning.
511 InMacroArgs = true;
512 ArgMacro = &Identifier;
514 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
516 // Finished parsing args.
517 InMacroArgs = false;
518 ArgMacro = nullptr;
520 // If there was an error parsing the arguments, bail out.
521 if (!Args) return true;
523 ++NumFnMacroExpanded;
524 } else {
525 ++NumMacroExpanded;
528 // Notice that this macro has been used.
529 markMacroAsUsed(MI);
531 // Remember where the token is expanded.
532 SourceLocation ExpandLoc = Identifier.getLocation();
533 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
535 if (Callbacks) {
536 if (InMacroArgs) {
537 // We can have macro expansion inside a conditional directive while
538 // reading the function macro arguments. To ensure, in that case, that
539 // MacroExpands callbacks still happen in source order, queue this
540 // callback to have it happen after the function macro callback.
541 DelayedMacroExpandsCallbacks.push_back(
542 MacroExpandsInfo(Identifier, M, ExpansionRange));
543 } else {
544 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
545 if (!DelayedMacroExpandsCallbacks.empty()) {
546 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
547 // FIXME: We lose macro args info with delayed callback.
548 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
549 /*Args=*/nullptr);
551 DelayedMacroExpandsCallbacks.clear();
556 // If the macro definition is ambiguous, complain.
557 if (M.isAmbiguous()) {
558 Diag(Identifier, diag::warn_pp_ambiguous_macro)
559 << Identifier.getIdentifierInfo();
560 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
561 << Identifier.getIdentifierInfo();
562 M.forAllDefinitions([&](const MacroInfo *OtherMI) {
563 if (OtherMI != MI)
564 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
565 << Identifier.getIdentifierInfo();
569 // If we started lexing a macro, enter the macro expansion body.
571 // If this macro expands to no tokens, don't bother to push it onto the
572 // expansion stack, only to take it right back off.
573 if (MI->getNumTokens() == 0) {
574 // No need for arg info.
575 if (Args) Args->destroy(*this);
577 // Propagate whitespace info as if we had pushed, then popped,
578 // a macro context.
579 Identifier.setFlag(Token::LeadingEmptyMacro);
580 PropagateLineStartLeadingSpaceInfo(Identifier);
581 ++NumFastMacroExpanded;
582 return false;
583 } else if (MI->getNumTokens() == 1 &&
584 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
585 *this)) {
586 // Otherwise, if this macro expands into a single trivially-expanded
587 // token: expand it now. This handles common cases like
588 // "#define VAL 42".
590 // No need for arg info.
591 if (Args) Args->destroy(*this);
593 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
594 // identifier to the expanded token.
595 bool isAtStartOfLine = Identifier.isAtStartOfLine();
596 bool hasLeadingSpace = Identifier.hasLeadingSpace();
598 // Replace the result token.
599 Identifier = MI->getReplacementToken(0);
601 // Restore the StartOfLine/LeadingSpace markers.
602 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
603 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
605 // Update the tokens location to include both its expansion and physical
606 // locations.
607 SourceLocation Loc =
608 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
609 ExpansionEnd,Identifier.getLength());
610 Identifier.setLocation(Loc);
612 // If this is a disabled macro or #define X X, we must mark the result as
613 // unexpandable.
614 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
615 if (MacroInfo *NewMI = getMacroInfo(NewII))
616 if (!NewMI->isEnabled() || NewMI == MI) {
617 Identifier.setFlag(Token::DisableExpand);
618 // Don't warn for "#define X X" like "#define bool bool" from
619 // stdbool.h.
620 if (NewMI != MI || MI->isFunctionLike())
621 Diag(Identifier, diag::pp_disabled_macro_expansion);
625 // Since this is not an identifier token, it can't be macro expanded, so
626 // we're done.
627 ++NumFastMacroExpanded;
628 return true;
631 // Start expanding the macro.
632 EnterMacro(Identifier, ExpansionEnd, MI, Args);
633 return false;
636 enum Bracket {
637 Brace,
638 Paren
641 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
642 /// token vector are properly nested.
643 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
644 SmallVector<Bracket, 8> Brackets;
645 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
646 E = Tokens.end();
647 I != E; ++I) {
648 if (I->is(tok::l_paren)) {
649 Brackets.push_back(Paren);
650 } else if (I->is(tok::r_paren)) {
651 if (Brackets.empty() || Brackets.back() == Brace)
652 return false;
653 Brackets.pop_back();
654 } else if (I->is(tok::l_brace)) {
655 Brackets.push_back(Brace);
656 } else if (I->is(tok::r_brace)) {
657 if (Brackets.empty() || Brackets.back() == Paren)
658 return false;
659 Brackets.pop_back();
662 return Brackets.empty();
665 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
666 /// vector of tokens in NewTokens. The new number of arguments will be placed
667 /// in NumArgs and the ranges which need to surrounded in parentheses will be
668 /// in ParenHints.
669 /// Returns false if the token stream cannot be changed. If this is because
670 /// of an initializer list starting a macro argument, the range of those
671 /// initializer lists will be place in InitLists.
672 static bool GenerateNewArgTokens(Preprocessor &PP,
673 SmallVectorImpl<Token> &OldTokens,
674 SmallVectorImpl<Token> &NewTokens,
675 unsigned &NumArgs,
676 SmallVectorImpl<SourceRange> &ParenHints,
677 SmallVectorImpl<SourceRange> &InitLists) {
678 if (!CheckMatchedBrackets(OldTokens))
679 return false;
681 // Once it is known that the brackets are matched, only a simple count of the
682 // braces is needed.
683 unsigned Braces = 0;
685 // First token of a new macro argument.
686 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
688 // First closing brace in a new macro argument. Used to generate
689 // SourceRanges for InitLists.
690 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
691 NumArgs = 0;
692 Token TempToken;
693 // Set to true when a macro separator token is found inside a braced list.
694 // If true, the fixed argument spans multiple old arguments and ParenHints
695 // will be updated.
696 bool FoundSeparatorToken = false;
697 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
698 E = OldTokens.end();
699 I != E; ++I) {
700 if (I->is(tok::l_brace)) {
701 ++Braces;
702 } else if (I->is(tok::r_brace)) {
703 --Braces;
704 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
705 ClosingBrace = I;
706 } else if (I->is(tok::eof)) {
707 // EOF token is used to separate macro arguments
708 if (Braces != 0) {
709 // Assume comma separator is actually braced list separator and change
710 // it back to a comma.
711 FoundSeparatorToken = true;
712 I->setKind(tok::comma);
713 I->setLength(1);
714 } else { // Braces == 0
715 // Separator token still separates arguments.
716 ++NumArgs;
718 // If the argument starts with a brace, it can't be fixed with
719 // parentheses. A different diagnostic will be given.
720 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
721 InitLists.push_back(
722 SourceRange(ArgStartIterator->getLocation(),
723 PP.getLocForEndOfToken(ClosingBrace->getLocation())));
724 ClosingBrace = E;
727 // Add left paren
728 if (FoundSeparatorToken) {
729 TempToken.startToken();
730 TempToken.setKind(tok::l_paren);
731 TempToken.setLocation(ArgStartIterator->getLocation());
732 TempToken.setLength(0);
733 NewTokens.push_back(TempToken);
736 // Copy over argument tokens
737 NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
739 // Add right paren and store the paren locations in ParenHints
740 if (FoundSeparatorToken) {
741 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
742 TempToken.startToken();
743 TempToken.setKind(tok::r_paren);
744 TempToken.setLocation(Loc);
745 TempToken.setLength(0);
746 NewTokens.push_back(TempToken);
747 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
748 Loc));
751 // Copy separator token
752 NewTokens.push_back(*I);
754 // Reset values
755 ArgStartIterator = I + 1;
756 FoundSeparatorToken = false;
761 return !ParenHints.empty() && InitLists.empty();
764 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
765 /// token is the '(' of the macro, this method is invoked to read all of the
766 /// actual arguments specified for the macro invocation. This returns null on
767 /// error.
768 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
769 MacroInfo *MI,
770 SourceLocation &MacroEnd) {
771 // The number of fixed arguments to parse.
772 unsigned NumFixedArgsLeft = MI->getNumParams();
773 bool isVariadic = MI->isVariadic();
775 // Outer loop, while there are more arguments, keep reading them.
776 Token Tok;
778 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
779 // an argument value in a macro could expand to ',' or '(' or ')'.
780 LexUnexpandedToken(Tok);
781 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
783 // ArgTokens - Build up a list of tokens that make up each argument. Each
784 // argument is separated by an EOF token. Use a SmallVector so we can avoid
785 // heap allocations in the common case.
786 SmallVector<Token, 64> ArgTokens;
787 bool ContainsCodeCompletionTok = false;
788 bool FoundElidedComma = false;
790 SourceLocation TooManyArgsLoc;
792 unsigned NumActuals = 0;
793 while (Tok.isNot(tok::r_paren)) {
794 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
795 break;
797 assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
798 "only expect argument separators here");
800 size_t ArgTokenStart = ArgTokens.size();
801 SourceLocation ArgStartLoc = Tok.getLocation();
803 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
804 // that we already consumed the first one.
805 unsigned NumParens = 0;
807 while (true) {
808 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
809 // an argument value in a macro could expand to ',' or '(' or ')'.
810 LexUnexpandedToken(Tok);
812 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
813 if (!ContainsCodeCompletionTok) {
814 Diag(MacroName, diag::err_unterm_macro_invoc);
815 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
816 << MacroName.getIdentifierInfo();
817 // Do not lose the EOF/EOD. Return it to the client.
818 MacroName = Tok;
819 return nullptr;
821 // Do not lose the EOF/EOD.
822 auto Toks = std::make_unique<Token[]>(1);
823 Toks[0] = Tok;
824 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
825 break;
826 } else if (Tok.is(tok::r_paren)) {
827 // If we found the ) token, the macro arg list is done.
828 if (NumParens-- == 0) {
829 MacroEnd = Tok.getLocation();
830 if (!ArgTokens.empty() &&
831 ArgTokens.back().commaAfterElided()) {
832 FoundElidedComma = true;
834 break;
836 } else if (Tok.is(tok::l_paren)) {
837 ++NumParens;
838 } else if (Tok.is(tok::comma)) {
839 // In Microsoft-compatibility mode, single commas from nested macro
840 // expansions should not be considered as argument separators. We test
841 // for this with the IgnoredComma token flag.
842 if (Tok.getFlags() & Token::IgnoredComma) {
843 // However, in MSVC's preprocessor, subsequent expansions do treat
844 // these commas as argument separators. This leads to a common
845 // workaround used in macros that need to work in both MSVC and
846 // compliant preprocessors. Therefore, the IgnoredComma flag can only
847 // apply once to any given token.
848 Tok.clearFlag(Token::IgnoredComma);
849 } else if (NumParens == 0) {
850 // Comma ends this argument if there are more fixed arguments
851 // expected. However, if this is a variadic macro, and this is part of
852 // the variadic part, then the comma is just an argument token.
853 if (!isVariadic)
854 break;
855 if (NumFixedArgsLeft > 1)
856 break;
858 } else if (Tok.is(tok::comment) && !KeepMacroComments) {
859 // If this is a comment token in the argument list and we're just in
860 // -C mode (not -CC mode), discard the comment.
861 continue;
862 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
863 // Reading macro arguments can cause macros that we are currently
864 // expanding from to be popped off the expansion stack. Doing so causes
865 // them to be reenabled for expansion. Here we record whether any
866 // identifiers we lex as macro arguments correspond to disabled macros.
867 // If so, we mark the token as noexpand. This is a subtle aspect of
868 // C99 6.10.3.4p2.
869 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
870 if (!MI->isEnabled())
871 Tok.setFlag(Token::DisableExpand);
872 } else if (Tok.is(tok::code_completion)) {
873 ContainsCodeCompletionTok = true;
874 if (CodeComplete)
875 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
876 MI, NumActuals);
877 // Don't mark that we reached the code-completion point because the
878 // parser is going to handle the token and there will be another
879 // code-completion callback.
882 ArgTokens.push_back(Tok);
885 // If this was an empty argument list foo(), don't add this as an empty
886 // argument.
887 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
888 break;
890 // If this is not a variadic macro, and too many args were specified, emit
891 // an error.
892 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
893 if (ArgTokens.size() != ArgTokenStart)
894 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
895 else
896 TooManyArgsLoc = ArgStartLoc;
899 // Empty arguments are standard in C99 and C++0x, and are supported as an
900 // extension in other modes.
901 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
902 Diag(Tok, getLangOpts().CPlusPlus11
903 ? diag::warn_cxx98_compat_empty_fnmacro_arg
904 : diag::ext_empty_fnmacro_arg);
906 // Add a marker EOF token to the end of the token list for this argument.
907 Token EOFTok;
908 EOFTok.startToken();
909 EOFTok.setKind(tok::eof);
910 EOFTok.setLocation(Tok.getLocation());
911 EOFTok.setLength(0);
912 ArgTokens.push_back(EOFTok);
913 ++NumActuals;
914 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
915 --NumFixedArgsLeft;
918 // Okay, we either found the r_paren. Check to see if we parsed too few
919 // arguments.
920 unsigned MinArgsExpected = MI->getNumParams();
922 // If this is not a variadic macro, and too many args were specified, emit
923 // an error.
924 if (!isVariadic && NumActuals > MinArgsExpected &&
925 !ContainsCodeCompletionTok) {
926 // Emit the diagnostic at the macro name in case there is a missing ).
927 // Emitting it at the , could be far away from the macro name.
928 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
929 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
930 << MacroName.getIdentifierInfo();
932 // Commas from braced initializer lists will be treated as argument
933 // separators inside macros. Attempt to correct for this with parentheses.
934 // TODO: See if this can be generalized to angle brackets for templates
935 // inside macro arguments.
937 SmallVector<Token, 4> FixedArgTokens;
938 unsigned FixedNumArgs = 0;
939 SmallVector<SourceRange, 4> ParenHints, InitLists;
940 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
941 ParenHints, InitLists)) {
942 if (!InitLists.empty()) {
943 DiagnosticBuilder DB =
944 Diag(MacroName,
945 diag::note_init_list_at_beginning_of_macro_argument);
946 for (SourceRange Range : InitLists)
947 DB << Range;
949 return nullptr;
951 if (FixedNumArgs != MinArgsExpected)
952 return nullptr;
954 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
955 for (SourceRange ParenLocation : ParenHints) {
956 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
957 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
959 ArgTokens.swap(FixedArgTokens);
960 NumActuals = FixedNumArgs;
963 // See MacroArgs instance var for description of this.
964 bool isVarargsElided = false;
966 if (ContainsCodeCompletionTok) {
967 // Recover from not-fully-formed macro invocation during code-completion.
968 Token EOFTok;
969 EOFTok.startToken();
970 EOFTok.setKind(tok::eof);
971 EOFTok.setLocation(Tok.getLocation());
972 EOFTok.setLength(0);
973 for (; NumActuals < MinArgsExpected; ++NumActuals)
974 ArgTokens.push_back(EOFTok);
977 if (NumActuals < MinArgsExpected) {
978 // There are several cases where too few arguments is ok, handle them now.
979 if (NumActuals == 0 && MinArgsExpected == 1) {
980 // #define A(X) or #define A(...) ---> A()
982 // If there is exactly one argument, and that argument is missing,
983 // then we have an empty "()" argument empty list. This is fine, even if
984 // the macro expects one argument (the argument is just empty).
985 isVarargsElided = MI->isVariadic();
986 } else if ((FoundElidedComma || MI->isVariadic()) &&
987 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
988 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
989 // Varargs where the named vararg parameter is missing: OK as extension.
990 // #define A(x, ...)
991 // A("blah")
993 // If the macro contains the comma pasting extension, the diagnostic
994 // is suppressed; we know we'll get another diagnostic later.
995 if (!MI->hasCommaPasting()) {
996 // C++20 allows this construct, but standards before C++20 and all C
997 // standards do not allow the construct (we allow it as an extension).
998 Diag(Tok, getLangOpts().CPlusPlus20
999 ? diag::warn_cxx17_compat_missing_varargs_arg
1000 : diag::ext_missing_varargs_arg);
1001 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1002 << MacroName.getIdentifierInfo();
1005 // Remember this occurred, allowing us to elide the comma when used for
1006 // cases like:
1007 // #define A(x, foo...) blah(a, ## foo)
1008 // #define B(x, ...) blah(a, ## __VA_ARGS__)
1009 // #define C(...) blah(a, ## __VA_ARGS__)
1010 // A(x) B(x) C()
1011 isVarargsElided = true;
1012 } else if (!ContainsCodeCompletionTok) {
1013 // Otherwise, emit the error.
1014 Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1015 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1016 << MacroName.getIdentifierInfo();
1017 return nullptr;
1020 // Add a marker EOF token to the end of the token list for this argument.
1021 SourceLocation EndLoc = Tok.getLocation();
1022 Tok.startToken();
1023 Tok.setKind(tok::eof);
1024 Tok.setLocation(EndLoc);
1025 Tok.setLength(0);
1026 ArgTokens.push_back(Tok);
1028 // If we expect two arguments, add both as empty.
1029 if (NumActuals == 0 && MinArgsExpected == 2)
1030 ArgTokens.push_back(Tok);
1032 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1033 !ContainsCodeCompletionTok) {
1034 // Emit the diagnostic at the macro name in case there is a missing ).
1035 // Emitting it at the , could be far away from the macro name.
1036 Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1037 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1038 << MacroName.getIdentifierInfo();
1039 return nullptr;
1042 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1045 /// Keeps macro expanded tokens for TokenLexers.
1047 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1048 /// going to lex in the cache and when it finishes the tokens are removed
1049 /// from the end of the cache.
1050 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1051 ArrayRef<Token> tokens) {
1052 assert(tokLexer);
1053 if (tokens.empty())
1054 return nullptr;
1056 size_t newIndex = MacroExpandedTokens.size();
1057 bool cacheNeedsToGrow = tokens.size() >
1058 MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1059 MacroExpandedTokens.append(tokens.begin(), tokens.end());
1061 if (cacheNeedsToGrow) {
1062 // Go through all the TokenLexers whose 'Tokens' pointer points in the
1063 // buffer and update the pointers to the (potential) new buffer array.
1064 for (const auto &Lexer : MacroExpandingLexersStack) {
1065 TokenLexer *prevLexer;
1066 size_t tokIndex;
1067 std::tie(prevLexer, tokIndex) = Lexer;
1068 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1072 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1073 return MacroExpandedTokens.data() + newIndex;
1076 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1077 assert(!MacroExpandingLexersStack.empty());
1078 size_t tokIndex = MacroExpandingLexersStack.back().second;
1079 assert(tokIndex < MacroExpandedTokens.size());
1080 // Pop the cached macro expanded tokens from the end.
1081 MacroExpandedTokens.resize(tokIndex);
1082 MacroExpandingLexersStack.pop_back();
1085 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1086 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1087 /// the identifier tokens inserted.
1088 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1089 Preprocessor &PP) {
1090 time_t TT;
1091 std::tm *TM;
1092 if (PP.getPreprocessorOpts().SourceDateEpoch) {
1093 TT = *PP.getPreprocessorOpts().SourceDateEpoch;
1094 TM = std::gmtime(&TT);
1095 } else {
1096 TT = std::time(nullptr);
1097 TM = std::localtime(&TT);
1100 static const char * const Months[] = {
1101 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1105 SmallString<32> TmpBuffer;
1106 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1107 if (TM)
1108 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1109 TM->tm_mday, TM->tm_year + 1900);
1110 else
1111 TmpStream << "??? ?? ????";
1112 Token TmpTok;
1113 TmpTok.startToken();
1114 PP.CreateString(TmpStream.str(), TmpTok);
1115 DATELoc = TmpTok.getLocation();
1119 SmallString<32> TmpBuffer;
1120 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1121 if (TM)
1122 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min,
1123 TM->tm_sec);
1124 else
1125 TmpStream << "??:??:??";
1126 Token TmpTok;
1127 TmpTok.startToken();
1128 PP.CreateString(TmpStream.str(), TmpTok);
1129 TIMELoc = TmpTok.getLocation();
1133 /// HasFeature - Return true if we recognize and implement the feature
1134 /// specified by the identifier as a standard language feature.
1135 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1136 const LangOptions &LangOpts = PP.getLangOpts();
1138 // Normalize the feature name, __foo__ becomes foo.
1139 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1140 Feature = Feature.substr(2, Feature.size() - 4);
1142 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1143 return llvm::StringSwitch<bool>(Feature)
1144 #include "clang/Basic/Features.def"
1145 .Default(false);
1146 #undef FEATURE
1149 /// HasExtension - Return true if we recognize and implement the feature
1150 /// specified by the identifier, either as an extension or a standard language
1151 /// feature.
1152 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1153 if (HasFeature(PP, Extension))
1154 return true;
1156 // If the use of an extension results in an error diagnostic, extensions are
1157 // effectively unavailable, so just return false here.
1158 if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1159 diag::Severity::Error)
1160 return false;
1162 const LangOptions &LangOpts = PP.getLangOpts();
1164 // Normalize the extension name, __foo__ becomes foo.
1165 if (Extension.startswith("__") && Extension.endswith("__") &&
1166 Extension.size() >= 4)
1167 Extension = Extension.substr(2, Extension.size() - 4);
1169 // Because we inherit the feature list from HasFeature, this string switch
1170 // must be less restrictive than HasFeature's.
1171 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1172 return llvm::StringSwitch<bool>(Extension)
1173 #include "clang/Basic/Features.def"
1174 .Default(false);
1175 #undef EXTENSION
1178 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1179 /// or '__has_include_next("path")' expression.
1180 /// Returns true if successful.
1181 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II,
1182 Preprocessor &PP,
1183 ConstSearchDirIterator LookupFrom,
1184 const FileEntry *LookupFromFile) {
1185 // Save the location of the current token. If a '(' is later found, use
1186 // that location. If not, use the end of this location instead.
1187 SourceLocation LParenLoc = Tok.getLocation();
1189 // These expressions are only allowed within a preprocessor directive.
1190 if (!PP.isParsingIfOrElifDirective()) {
1191 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1192 // Return a valid identifier token.
1193 assert(Tok.is(tok::identifier));
1194 Tok.setIdentifierInfo(II);
1195 return false;
1198 // Get '('. If we don't have a '(', try to form a header-name token.
1199 do {
1200 if (PP.LexHeaderName(Tok))
1201 return false;
1202 } while (Tok.getKind() == tok::comment);
1204 // Ensure we have a '('.
1205 if (Tok.isNot(tok::l_paren)) {
1206 // No '(', use end of last token.
1207 LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1208 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1209 // If the next token looks like a filename or the start of one,
1210 // assume it is and process it as such.
1211 if (Tok.isNot(tok::header_name))
1212 return false;
1213 } else {
1214 // Save '(' location for possible missing ')' message.
1215 LParenLoc = Tok.getLocation();
1216 if (PP.LexHeaderName(Tok))
1217 return false;
1220 if (Tok.isNot(tok::header_name)) {
1221 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1222 return false;
1225 // Reserve a buffer to get the spelling.
1226 SmallString<128> FilenameBuffer;
1227 bool Invalid = false;
1228 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1229 if (Invalid)
1230 return false;
1232 SourceLocation FilenameLoc = Tok.getLocation();
1234 // Get ')'.
1235 PP.LexNonComment(Tok);
1237 // Ensure we have a trailing ).
1238 if (Tok.isNot(tok::r_paren)) {
1239 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1240 << II << tok::r_paren;
1241 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1242 return false;
1245 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1246 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1247 // error.
1248 if (Filename.empty())
1249 return false;
1251 // Passing this to LookupFile forces header search to check whether the found
1252 // file belongs to a module. Skipping that check could incorrectly mark
1253 // modular header as textual, causing issues down the line.
1254 ModuleMap::KnownHeader KH;
1256 // Search include directories.
1257 OptionalFileEntryRef File =
1258 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1259 nullptr, nullptr, nullptr, &KH, nullptr, nullptr);
1261 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1262 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1263 if (File)
1264 FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File);
1265 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1268 // Get the result value. A result of true means the file exists.
1269 return File.has_value();
1272 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) {
1273 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr);
1276 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) {
1277 ConstSearchDirIterator Lookup = nullptr;
1278 const FileEntry *LookupFromFile;
1279 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok);
1281 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile);
1284 /// Process single-argument builtin feature-like macros that return
1285 /// integer values.
1286 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1287 Token &Tok, IdentifierInfo *II,
1288 Preprocessor &PP, bool ExpandArgs,
1289 llvm::function_ref<
1290 int(Token &Tok,
1291 bool &HasLexedNextTok)> Op) {
1292 // Parse the initial '('.
1293 PP.LexUnexpandedToken(Tok);
1294 if (Tok.isNot(tok::l_paren)) {
1295 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1296 << tok::l_paren;
1298 // Provide a dummy '0' value on output stream to elide further errors.
1299 if (!Tok.isOneOf(tok::eof, tok::eod)) {
1300 OS << 0;
1301 Tok.setKind(tok::numeric_constant);
1303 return;
1306 unsigned ParenDepth = 1;
1307 SourceLocation LParenLoc = Tok.getLocation();
1308 std::optional<int> Result;
1310 Token ResultTok;
1311 bool SuppressDiagnostic = false;
1312 while (true) {
1313 // Parse next token.
1314 if (ExpandArgs)
1315 PP.Lex(Tok);
1316 else
1317 PP.LexUnexpandedToken(Tok);
1319 already_lexed:
1320 switch (Tok.getKind()) {
1321 case tok::eof:
1322 case tok::eod:
1323 // Don't provide even a dummy value if the eod or eof marker is
1324 // reached. Simply provide a diagnostic.
1325 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1326 return;
1328 case tok::comma:
1329 if (!SuppressDiagnostic) {
1330 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1331 SuppressDiagnostic = true;
1333 continue;
1335 case tok::l_paren:
1336 ++ParenDepth;
1337 if (Result)
1338 break;
1339 if (!SuppressDiagnostic) {
1340 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1341 SuppressDiagnostic = true;
1343 continue;
1345 case tok::r_paren:
1346 if (--ParenDepth > 0)
1347 continue;
1349 // The last ')' has been reached; return the value if one found or
1350 // a diagnostic and a dummy value.
1351 if (Result) {
1352 OS << *Result;
1353 // For strict conformance to __has_cpp_attribute rules, use 'L'
1354 // suffix for dated literals.
1355 if (*Result > 1)
1356 OS << 'L';
1357 } else {
1358 OS << 0;
1359 if (!SuppressDiagnostic)
1360 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1362 Tok.setKind(tok::numeric_constant);
1363 return;
1365 default: {
1366 // Parse the macro argument, if one not found so far.
1367 if (Result)
1368 break;
1370 bool HasLexedNextToken = false;
1371 Result = Op(Tok, HasLexedNextToken);
1372 ResultTok = Tok;
1373 if (HasLexedNextToken)
1374 goto already_lexed;
1375 continue;
1379 // Diagnose missing ')'.
1380 if (!SuppressDiagnostic) {
1381 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1382 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1383 Diag << LastII;
1384 else
1385 Diag << ResultTok.getKind();
1386 Diag << tok::r_paren << ResultTok.getLocation();
1388 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1389 SuppressDiagnostic = true;
1394 /// Helper function to return the IdentifierInfo structure of a Token
1395 /// or generate a diagnostic if none available.
1396 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1397 Preprocessor &PP,
1398 signed DiagID) {
1399 IdentifierInfo *II;
1400 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1401 return II;
1403 PP.Diag(Tok.getLocation(), DiagID);
1404 return nullptr;
1407 /// Implements the __is_target_arch builtin macro.
1408 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1409 std::string ArchName = II->getName().lower() + "--";
1410 llvm::Triple Arch(ArchName);
1411 const llvm::Triple &TT = TI.getTriple();
1412 if (TT.isThumb()) {
1413 // arm matches thumb or thumbv7. armv7 matches thumbv7.
1414 if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1415 Arch.getSubArch() == TT.getSubArch()) &&
1416 ((TT.getArch() == llvm::Triple::thumb &&
1417 Arch.getArch() == llvm::Triple::arm) ||
1418 (TT.getArch() == llvm::Triple::thumbeb &&
1419 Arch.getArch() == llvm::Triple::armeb)))
1420 return true;
1422 // Check the parsed arch when it has no sub arch to allow Clang to
1423 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1424 return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1425 Arch.getSubArch() == TT.getSubArch()) &&
1426 Arch.getArch() == TT.getArch();
1429 /// Implements the __is_target_vendor builtin macro.
1430 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1431 StringRef VendorName = TI.getTriple().getVendorName();
1432 if (VendorName.empty())
1433 VendorName = "unknown";
1434 return VendorName.equals_insensitive(II->getName());
1437 /// Implements the __is_target_os builtin macro.
1438 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1439 std::string OSName =
1440 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1441 llvm::Triple OS(OSName);
1442 if (OS.getOS() == llvm::Triple::Darwin) {
1443 // Darwin matches macos, ios, etc.
1444 return TI.getTriple().isOSDarwin();
1446 return TI.getTriple().getOS() == OS.getOS();
1449 /// Implements the __is_target_environment builtin macro.
1450 static bool isTargetEnvironment(const TargetInfo &TI,
1451 const IdentifierInfo *II) {
1452 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1453 llvm::Triple Env(EnvName);
1454 // The unknown environment is matched only if
1455 // '__is_target_environment(unknown)' is used.
1456 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment &&
1457 EnvName != "---unknown")
1458 return false;
1459 return TI.getTriple().getEnvironment() == Env.getEnvironment();
1462 /// Implements the __is_target_variant_os builtin macro.
1463 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) {
1464 if (TI.getTriple().isOSDarwin()) {
1465 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1466 if (!VariantTriple)
1467 return false;
1469 std::string OSName =
1470 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1471 llvm::Triple OS(OSName);
1472 if (OS.getOS() == llvm::Triple::Darwin) {
1473 // Darwin matches macos, ios, etc.
1474 return VariantTriple->isOSDarwin();
1476 return VariantTriple->getOS() == OS.getOS();
1478 return false;
1481 /// Implements the __is_target_variant_environment builtin macro.
1482 static bool isTargetVariantEnvironment(const TargetInfo &TI,
1483 const IdentifierInfo *II) {
1484 if (TI.getTriple().isOSDarwin()) {
1485 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1486 if (!VariantTriple)
1487 return false;
1488 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1489 llvm::Triple Env(EnvName);
1490 return VariantTriple->getEnvironment() == Env.getEnvironment();
1492 return false;
1495 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1496 /// as a builtin macro, handle it and return the next token as 'Tok'.
1497 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1498 // Figure out which token this is.
1499 IdentifierInfo *II = Tok.getIdentifierInfo();
1500 assert(II && "Can't be a macro without id info!");
1502 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1503 // invoke the pragma handler, then lex the token after it.
1504 if (II == Ident_Pragma)
1505 return Handle_Pragma(Tok);
1506 else if (II == Ident__pragma) // in non-MS mode this is null
1507 return HandleMicrosoft__pragma(Tok);
1509 ++NumBuiltinMacroExpanded;
1511 SmallString<128> TmpBuffer;
1512 llvm::raw_svector_ostream OS(TmpBuffer);
1514 // Set up the return result.
1515 Tok.setIdentifierInfo(nullptr);
1516 Tok.clearFlag(Token::NeedsCleaning);
1517 bool IsAtStartOfLine = Tok.isAtStartOfLine();
1518 bool HasLeadingSpace = Tok.hasLeadingSpace();
1520 if (II == Ident__LINE__) {
1521 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1522 // source file) of the current source line (an integer constant)". This can
1523 // be affected by #line.
1524 SourceLocation Loc = Tok.getLocation();
1526 // Advance to the location of the first _, this might not be the first byte
1527 // of the token if it starts with an escaped newline.
1528 Loc = AdvanceToTokenCharacter(Loc, 0);
1530 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1531 // a macro expansion. This doesn't matter for object-like macros, but
1532 // can matter for a function-like macro that expands to contain __LINE__.
1533 // Skip down through expansion points until we find a file loc for the
1534 // end of the expansion history.
1535 Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1536 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1538 // __LINE__ expands to a simple numeric value.
1539 OS << (PLoc.isValid()? PLoc.getLine() : 1);
1540 Tok.setKind(tok::numeric_constant);
1541 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1542 II == Ident__FILE_NAME__) {
1543 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1544 // character string literal)". This can be affected by #line.
1545 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1547 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1548 // #include stack instead of the current file.
1549 if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1550 SourceLocation NextLoc = PLoc.getIncludeLoc();
1551 while (NextLoc.isValid()) {
1552 PLoc = SourceMgr.getPresumedLoc(NextLoc);
1553 if (PLoc.isInvalid())
1554 break;
1556 NextLoc = PLoc.getIncludeLoc();
1560 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1561 SmallString<256> FN;
1562 if (PLoc.isValid()) {
1563 // __FILE_NAME__ is a Clang-specific extension that expands to the
1564 // the last part of __FILE__.
1565 if (II == Ident__FILE_NAME__) {
1566 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo());
1567 } else {
1568 FN += PLoc.getFilename();
1569 processPathForFileMacro(FN, getLangOpts(), getTargetInfo());
1571 Lexer::Stringify(FN);
1572 OS << '"' << FN << '"';
1574 Tok.setKind(tok::string_literal);
1575 } else if (II == Ident__DATE__) {
1576 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1577 if (!DATELoc.isValid())
1578 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1579 Tok.setKind(tok::string_literal);
1580 Tok.setLength(strlen("\"Mmm dd yyyy\""));
1581 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1582 Tok.getLocation(),
1583 Tok.getLength()));
1584 return;
1585 } else if (II == Ident__TIME__) {
1586 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1587 if (!TIMELoc.isValid())
1588 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1589 Tok.setKind(tok::string_literal);
1590 Tok.setLength(strlen("\"hh:mm:ss\""));
1591 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1592 Tok.getLocation(),
1593 Tok.getLength()));
1594 return;
1595 } else if (II == Ident__INCLUDE_LEVEL__) {
1596 // Compute the presumed include depth of this token. This can be affected
1597 // by GNU line markers.
1598 unsigned Depth = 0;
1600 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1601 if (PLoc.isValid()) {
1602 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1603 for (; PLoc.isValid(); ++Depth)
1604 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1607 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1608 OS << Depth;
1609 Tok.setKind(tok::numeric_constant);
1610 } else if (II == Ident__TIMESTAMP__) {
1611 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1612 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1613 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1614 const char *Result;
1615 if (getPreprocessorOpts().SourceDateEpoch) {
1616 time_t TT = *getPreprocessorOpts().SourceDateEpoch;
1617 std::tm *TM = std::gmtime(&TT);
1618 Result = asctime(TM);
1619 } else {
1620 // Get the file that we are lexing out of. If we're currently lexing from
1621 // a macro, dig into the include stack.
1622 const FileEntry *CurFile = nullptr;
1623 if (PreprocessorLexer *TheLexer = getCurrentFileLexer())
1624 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1625 if (CurFile) {
1626 time_t TT = CurFile->getModificationTime();
1627 struct tm *TM = localtime(&TT);
1628 Result = asctime(TM);
1629 } else {
1630 Result = "??? ??? ?? ??:??:?? ????\n";
1633 // Surround the string with " and strip the trailing newline.
1634 OS << '"' << StringRef(Result).drop_back() << '"';
1635 Tok.setKind(tok::string_literal);
1636 } else if (II == Ident__FLT_EVAL_METHOD__) {
1637 // __FLT_EVAL_METHOD__ is set to the default value.
1638 OS << getTUFPEvalMethod();
1639 // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1640 Tok.setKind(tok::numeric_constant);
1641 if (getLastFPEvalPragmaLocation().isValid()) {
1642 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered
1643 // by the pragma.
1644 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro);
1645 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here);
1647 } else if (II == Ident__COUNTER__) {
1648 // __COUNTER__ expands to a simple numeric value.
1649 OS << CounterValue++;
1650 Tok.setKind(tok::numeric_constant);
1651 } else if (II == Ident__has_feature) {
1652 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1653 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1654 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1655 diag::err_feature_check_malformed);
1656 return II && HasFeature(*this, II->getName());
1658 } else if (II == Ident__has_extension) {
1659 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1660 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1661 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1662 diag::err_feature_check_malformed);
1663 return II && HasExtension(*this, II->getName());
1665 } else if (II == Ident__has_builtin) {
1666 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1667 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1668 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1669 diag::err_feature_check_malformed);
1670 if (!II)
1671 return false;
1672 else if (II->getBuiltinID() != 0) {
1673 switch (II->getBuiltinID()) {
1674 case Builtin::BI__builtin_operator_new:
1675 case Builtin::BI__builtin_operator_delete:
1676 // denotes date of behavior change to support calling arbitrary
1677 // usual allocation and deallocation functions. Required by libc++
1678 return 201802;
1679 default:
1680 return Builtin::evaluateRequiredTargetFeatures(
1681 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()),
1682 getTargetInfo().getTargetOpts().FeatureMap);
1684 return true;
1685 } else if (II->getTokenID() != tok::identifier ||
1686 II->hasRevertedTokenIDToIdentifier()) {
1687 // Treat all keywords that introduce a custom syntax of the form
1689 // '__some_keyword' '(' [...] ')'
1691 // as being "builtin functions", even if the syntax isn't a valid
1692 // function call (for example, because the builtin takes a type
1693 // argument).
1694 if (II->getName().startswith("__builtin_") ||
1695 II->getName().startswith("__is_") ||
1696 II->getName().startswith("__has_"))
1697 return true;
1698 return llvm::StringSwitch<bool>(II->getName())
1699 .Case("__array_rank", true)
1700 .Case("__array_extent", true)
1701 .Case("__reference_binds_to_temporary", true)
1702 .Case("__reference_constructs_from_temporary", true)
1703 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) .Case("__" #Trait, true)
1704 #include "clang/Basic/TransformTypeTraits.def"
1705 .Default(false);
1706 } else {
1707 return llvm::StringSwitch<bool>(II->getName())
1708 // Report builtin templates as being builtins.
1709 .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1710 .Case("__type_pack_element", getLangOpts().CPlusPlus)
1711 // Likewise for some builtin preprocessor macros.
1712 // FIXME: This is inconsistent; we usually suggest detecting
1713 // builtin macros via #ifdef. Don't add more cases here.
1714 .Case("__is_target_arch", true)
1715 .Case("__is_target_vendor", true)
1716 .Case("__is_target_os", true)
1717 .Case("__is_target_environment", true)
1718 .Case("__is_target_variant_os", true)
1719 .Case("__is_target_variant_environment", true)
1720 .Default(false);
1723 } else if (II == Ident__has_constexpr_builtin) {
1724 EvaluateFeatureLikeBuiltinMacro(
1725 OS, Tok, II, *this, false,
1726 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1727 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1728 Tok, *this, diag::err_feature_check_malformed);
1729 if (!II)
1730 return false;
1731 unsigned BuiltinOp = II->getBuiltinID();
1732 return BuiltinOp != 0 &&
1733 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp);
1735 } else if (II == Ident__is_identifier) {
1736 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1737 [](Token &Tok, bool &HasLexedNextToken) -> int {
1738 return Tok.is(tok::identifier);
1740 } else if (II == Ident__has_attribute) {
1741 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1742 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1743 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1744 diag::err_feature_check_malformed);
1745 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr,
1746 II, getTargetInfo(), getLangOpts())
1747 : 0;
1749 } else if (II == Ident__has_declspec) {
1750 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1751 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1752 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1753 diag::err_feature_check_malformed);
1754 if (II) {
1755 const LangOptions &LangOpts = getLangOpts();
1756 return LangOpts.DeclSpecKeyword &&
1757 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr,
1758 II, getTargetInfo(), LangOpts);
1761 return false;
1763 } else if (II == Ident__has_cpp_attribute ||
1764 II == Ident__has_c_attribute) {
1765 bool IsCXX = II == Ident__has_cpp_attribute;
1766 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1767 [&](Token &Tok, bool &HasLexedNextToken) -> int {
1768 IdentifierInfo *ScopeII = nullptr;
1769 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1770 Tok, *this, diag::err_feature_check_malformed);
1771 if (!II)
1772 return false;
1774 // It is possible to receive a scope token. Read the "::", if it is
1775 // available, and the subsequent identifier.
1776 LexUnexpandedToken(Tok);
1777 if (Tok.isNot(tok::coloncolon))
1778 HasLexedNextToken = true;
1779 else {
1780 ScopeII = II;
1781 // Lex an expanded token for the attribute name.
1782 Lex(Tok);
1783 II = ExpectFeatureIdentifierInfo(Tok, *this,
1784 diag::err_feature_check_malformed);
1787 AttributeCommonInfo::Syntax Syntax =
1788 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11
1789 : AttributeCommonInfo::Syntax::AS_C23;
1790 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1791 getLangOpts())
1792 : 0;
1794 } else if (II == Ident__has_include ||
1795 II == Ident__has_include_next) {
1796 // The argument to these two builtins should be a parenthesized
1797 // file name string literal using angle brackets (<>) or
1798 // double-quotes ("").
1799 bool Value;
1800 if (II == Ident__has_include)
1801 Value = EvaluateHasInclude(Tok, II);
1802 else
1803 Value = EvaluateHasIncludeNext(Tok, II);
1805 if (Tok.isNot(tok::r_paren))
1806 return;
1807 OS << (int)Value;
1808 Tok.setKind(tok::numeric_constant);
1809 } else if (II == Ident__has_warning) {
1810 // The argument should be a parenthesized string literal.
1811 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1812 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1813 std::string WarningName;
1814 SourceLocation StrStartLoc = Tok.getLocation();
1816 HasLexedNextToken = Tok.is(tok::string_literal);
1817 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1818 /*AllowMacroExpansion=*/false))
1819 return false;
1821 // FIXME: Should we accept "-R..." flags here, or should that be
1822 // handled by a separate __has_remark?
1823 if (WarningName.size() < 3 || WarningName[0] != '-' ||
1824 WarningName[1] != 'W') {
1825 Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1826 return false;
1829 // Finally, check if the warning flags maps to a diagnostic group.
1830 // We construct a SmallVector here to talk to getDiagnosticIDs().
1831 // Although we don't use the result, this isn't a hot path, and not
1832 // worth special casing.
1833 SmallVector<diag::kind, 10> Diags;
1834 return !getDiagnostics().getDiagnosticIDs()->
1835 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1836 WarningName.substr(2), Diags);
1838 } else if (II == Ident__building_module) {
1839 // The argument to this builtin should be an identifier. The
1840 // builtin evaluates to 1 when that identifier names the module we are
1841 // currently building.
1842 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1843 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1844 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1845 diag::err_expected_id_building_module);
1846 return getLangOpts().isCompilingModule() && II &&
1847 (II->getName() == getLangOpts().CurrentModule);
1849 } else if (II == Ident__MODULE__) {
1850 // The current module as an identifier.
1851 OS << getLangOpts().CurrentModule;
1852 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1853 Tok.setIdentifierInfo(ModuleII);
1854 Tok.setKind(ModuleII->getTokenID());
1855 } else if (II == Ident__identifier) {
1856 SourceLocation Loc = Tok.getLocation();
1858 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1859 // if the parens are missing.
1860 LexNonComment(Tok);
1861 if (Tok.isNot(tok::l_paren)) {
1862 // No '(', use end of last token.
1863 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1864 << II << tok::l_paren;
1865 // If the next token isn't valid as our argument, we can't recover.
1866 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1867 Tok.setKind(tok::identifier);
1868 return;
1871 SourceLocation LParenLoc = Tok.getLocation();
1872 LexNonComment(Tok);
1874 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1875 Tok.setKind(tok::identifier);
1876 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
1877 StringLiteralParser Literal(Tok, *this,
1878 StringLiteralEvalMethod::Unevaluated);
1879 if (Literal.hadError)
1880 return;
1882 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
1883 Tok.setKind(tok::identifier);
1884 } else {
1885 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1886 << Tok.getKind();
1887 // Don't walk past anything that's not a real token.
1888 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1889 return;
1892 // Discard the ')', preserving 'Tok' as our result.
1893 Token RParen;
1894 LexNonComment(RParen);
1895 if (RParen.isNot(tok::r_paren)) {
1896 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1897 << Tok.getKind() << tok::r_paren;
1898 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1900 return;
1901 } else if (II == Ident__is_target_arch) {
1902 EvaluateFeatureLikeBuiltinMacro(
1903 OS, Tok, II, *this, false,
1904 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1905 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1906 Tok, *this, diag::err_feature_check_malformed);
1907 return II && isTargetArch(getTargetInfo(), II);
1909 } else if (II == Ident__is_target_vendor) {
1910 EvaluateFeatureLikeBuiltinMacro(
1911 OS, Tok, II, *this, false,
1912 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1913 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1914 Tok, *this, diag::err_feature_check_malformed);
1915 return II && isTargetVendor(getTargetInfo(), II);
1917 } else if (II == Ident__is_target_os) {
1918 EvaluateFeatureLikeBuiltinMacro(
1919 OS, Tok, II, *this, false,
1920 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1921 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1922 Tok, *this, diag::err_feature_check_malformed);
1923 return II && isTargetOS(getTargetInfo(), II);
1925 } else if (II == Ident__is_target_environment) {
1926 EvaluateFeatureLikeBuiltinMacro(
1927 OS, Tok, II, *this, false,
1928 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1929 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1930 Tok, *this, diag::err_feature_check_malformed);
1931 return II && isTargetEnvironment(getTargetInfo(), II);
1933 } else if (II == Ident__is_target_variant_os) {
1934 EvaluateFeatureLikeBuiltinMacro(
1935 OS, Tok, II, *this, false,
1936 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1937 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1938 Tok, *this, diag::err_feature_check_malformed);
1939 return II && isTargetVariantOS(getTargetInfo(), II);
1941 } else if (II == Ident__is_target_variant_environment) {
1942 EvaluateFeatureLikeBuiltinMacro(
1943 OS, Tok, II, *this, false,
1944 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1945 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1946 Tok, *this, diag::err_feature_check_malformed);
1947 return II && isTargetVariantEnvironment(getTargetInfo(), II);
1949 } else {
1950 llvm_unreachable("Unknown identifier!");
1952 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1953 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1954 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1957 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1958 // If the 'used' status changed, and the macro requires 'unused' warning,
1959 // remove its SourceLocation from the warn-for-unused-macro locations.
1960 if (MI->isWarnIfUnused() && !MI->isUsed())
1961 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1962 MI->setIsUsed(true);
1965 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path,
1966 const LangOptions &LangOpts,
1967 const TargetInfo &TI) {
1968 LangOpts.remapPathPrefix(Path);
1969 if (LangOpts.UseTargetPathSeparator) {
1970 if (TI.getTriple().isOSWindows())
1971 llvm::sys::path::remove_dots(Path, false,
1972 llvm::sys::path::Style::windows_backslash);
1973 else
1974 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix);
1978 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName,
1979 const PresumedLoc &PLoc,
1980 const LangOptions &LangOpts,
1981 const TargetInfo &TI) {
1982 // Try to get the last path component, failing that return the original
1983 // presumed location.
1984 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1985 if (PLFileName.empty())
1986 PLFileName = PLoc.getFilename();
1987 FileName.append(PLFileName.begin(), PLFileName.end());
1988 processPathForFileMacro(FileName, LangOpts, TI);