[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Lex / Preprocessor.cpp
blob45c0f848da66047335588767c47e2cdcbdf27593
1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Preprocessor interface.
11 //===----------------------------------------------------------------------===//
13 // Options to support:
14 // -H - Print the name of each header file used.
15 // -d[DNI] - Dump various things.
16 // -fworking-directory - #line's with preprocessor's working dir.
17 // -fpreprocessed
18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
19 // -W*
20 // -w
22 // Messages to emit:
23 // "Multiple include guards may be useful for:\n"
25 //===----------------------------------------------------------------------===//
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/FileManager.h"
30 #include "clang/Basic/FileSystemStatCache.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/Module.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/CodeCompletionHandler.h"
39 #include "clang/Lex/ExternalPreprocessorSource.h"
40 #include "clang/Lex/HeaderSearch.h"
41 #include "clang/Lex/LexDiagnostic.h"
42 #include "clang/Lex/Lexer.h"
43 #include "clang/Lex/LiteralSupport.h"
44 #include "clang/Lex/MacroArgs.h"
45 #include "clang/Lex/MacroInfo.h"
46 #include "clang/Lex/ModuleLoader.h"
47 #include "clang/Lex/Pragma.h"
48 #include "clang/Lex/PreprocessingRecord.h"
49 #include "clang/Lex/PreprocessorLexer.h"
50 #include "clang/Lex/PreprocessorOptions.h"
51 #include "clang/Lex/ScratchBuffer.h"
52 #include "clang/Lex/Token.h"
53 #include "clang/Lex/TokenLexer.h"
54 #include "llvm/ADT/APInt.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/DenseMap.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallString.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/Support/Capacity.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MemoryBuffer.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <memory>
68 #include <optional>
69 #include <string>
70 #include <utility>
71 #include <vector>
73 using namespace clang;
75 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry)
77 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default;
79 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
80 DiagnosticsEngine &diags, const LangOptions &opts,
81 SourceManager &SM, HeaderSearch &Headers,
82 ModuleLoader &TheModuleLoader,
83 IdentifierInfoLookup *IILookup, bool OwnsHeaders,
84 TranslationUnitKind TUKind)
85 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts),
86 FileMgr(Headers.getFileMgr()), SourceMgr(SM),
87 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers),
88 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr),
89 // As the language options may have not been loaded yet (when
90 // deserializing an ASTUnit), adding keywords to the identifier table is
91 // deferred to Preprocessor::Initialize().
92 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())),
93 TUKind(TUKind), SkipMainFilePreamble(0, true),
94 CurSubmoduleState(&NullSubmoduleState) {
95 OwnsHeaderSearch = OwnsHeaders;
97 // Default to discarding comments.
98 KeepComments = false;
99 KeepMacroComments = false;
100 SuppressIncludeNotFoundError = false;
102 // Macro expansion is enabled.
103 DisableMacroExpansion = false;
104 MacroExpansionInDirectivesOverride = false;
105 InMacroArgs = false;
106 ArgMacro = nullptr;
107 InMacroArgPreExpansion = false;
108 NumCachedTokenLexers = 0;
109 PragmasEnabled = true;
110 ParsingIfOrElifDirective = false;
111 PreprocessedOutput = false;
113 // We haven't read anything from the external source.
114 ReadMacrosFromExternalSource = false;
116 BuiltinInfo = std::make_unique<Builtin::Context>();
118 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of
119 // a macro. They get unpoisoned where it is allowed.
120 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
121 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use);
122 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned();
123 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use);
125 // Initialize the pragma handlers.
126 RegisterBuiltinPragmas();
128 // Initialize builtin macros like __LINE__ and friends.
129 RegisterBuiltinMacros();
131 if(LangOpts.Borland) {
132 Ident__exception_info = getIdentifierInfo("_exception_info");
133 Ident___exception_info = getIdentifierInfo("__exception_info");
134 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation");
135 Ident__exception_code = getIdentifierInfo("_exception_code");
136 Ident___exception_code = getIdentifierInfo("__exception_code");
137 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode");
138 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination");
139 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination");
140 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination");
141 } else {
142 Ident__exception_info = Ident__exception_code = nullptr;
143 Ident__abnormal_termination = Ident___exception_info = nullptr;
144 Ident___exception_code = Ident___abnormal_termination = nullptr;
145 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
146 Ident_AbnormalTermination = nullptr;
149 // Default incremental processing to -fincremental-extensions, clients can
150 // override with `enableIncrementalProcessing` if desired.
151 IncrementalProcessing = LangOpts.IncrementalExtensions;
153 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens.
154 if (usingPCHWithPragmaHdrStop())
155 SkippingUntilPragmaHdrStop = true;
157 // If using a PCH with a through header, start skipping tokens.
158 if (!this->PPOpts->PCHThroughHeader.empty() &&
159 !this->PPOpts->ImplicitPCHInclude.empty())
160 SkippingUntilPCHThroughHeader = true;
162 if (this->PPOpts->GeneratePreamble)
163 PreambleConditionalStack.startRecording();
165 MaxTokens = LangOpts.MaxTokens;
168 Preprocessor::~Preprocessor() {
169 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
171 IncludeMacroStack.clear();
173 // Free any cached macro expanders.
174 // This populates MacroArgCache, so all TokenLexers need to be destroyed
175 // before the code below that frees up the MacroArgCache list.
176 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr);
177 CurTokenLexer.reset();
179 // Free any cached MacroArgs.
180 for (MacroArgs *ArgList = MacroArgCache; ArgList;)
181 ArgList = ArgList->deallocate();
183 // Delete the header search info, if we own it.
184 if (OwnsHeaderSearch)
185 delete &HeaderInfo;
188 void Preprocessor::Initialize(const TargetInfo &Target,
189 const TargetInfo *AuxTarget) {
190 assert((!this->Target || this->Target == &Target) &&
191 "Invalid override of target information");
192 this->Target = &Target;
194 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) &&
195 "Invalid override of aux target information.");
196 this->AuxTarget = AuxTarget;
198 // Initialize information about built-ins.
199 BuiltinInfo->InitializeTarget(Target, AuxTarget);
200 HeaderInfo.setTarget(Target);
202 // Populate the identifier table with info about keywords for the current language.
203 Identifiers.AddKeywords(LangOpts);
205 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo.
206 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod());
208 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine)
209 // Use setting from TargetInfo.
210 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod());
211 else
212 // Set initial value of __FLT_EVAL_METHOD__ from the command line.
213 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod());
216 void Preprocessor::InitializeForModelFile() {
217 NumEnteredSourceFiles = 0;
219 // Reset pragmas
220 PragmaHandlersBackup = std::move(PragmaHandlers);
221 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef());
222 RegisterBuiltinPragmas();
224 // Reset PredefinesFileID
225 PredefinesFileID = FileID();
228 void Preprocessor::FinalizeForModelFile() {
229 NumEnteredSourceFiles = 1;
231 PragmaHandlers = std::move(PragmaHandlersBackup);
234 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
235 llvm::errs() << tok::getTokenName(Tok.getKind());
237 if (!Tok.isAnnotation())
238 llvm::errs() << " '" << getSpelling(Tok) << "'";
240 if (!DumpFlags) return;
242 llvm::errs() << "\t";
243 if (Tok.isAtStartOfLine())
244 llvm::errs() << " [StartOfLine]";
245 if (Tok.hasLeadingSpace())
246 llvm::errs() << " [LeadingSpace]";
247 if (Tok.isExpandDisabled())
248 llvm::errs() << " [ExpandDisabled]";
249 if (Tok.needsCleaning()) {
250 const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
251 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
252 << "']";
255 llvm::errs() << "\tLoc=<";
256 DumpLocation(Tok.getLocation());
257 llvm::errs() << ">";
260 void Preprocessor::DumpLocation(SourceLocation Loc) const {
261 Loc.print(llvm::errs(), SourceMgr);
264 void Preprocessor::DumpMacro(const MacroInfo &MI) const {
265 llvm::errs() << "MACRO: ";
266 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
267 DumpToken(MI.getReplacementToken(i));
268 llvm::errs() << " ";
270 llvm::errs() << "\n";
273 void Preprocessor::PrintStats() {
274 llvm::errs() << "\n*** Preprocessor Stats:\n";
275 llvm::errs() << NumDirectives << " directives found:\n";
276 llvm::errs() << " " << NumDefined << " #define.\n";
277 llvm::errs() << " " << NumUndefined << " #undef.\n";
278 llvm::errs() << " #include/#include_next/#import:\n";
279 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n";
280 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n";
281 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n";
282 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n";
283 llvm::errs() << " " << NumEndif << " #endif.\n";
284 llvm::errs() << " " << NumPragma << " #pragma.\n";
285 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
287 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
288 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
289 << NumFastMacroExpanded << " on the fast path.\n";
290 llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
291 << " token paste (##) operations performed, "
292 << NumFastTokenPaste << " on the fast path.\n";
294 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
296 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory();
297 llvm::errs() << "\n Macro Expanded Tokens: "
298 << llvm::capacity_in_bytes(MacroExpandedTokens);
299 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity();
300 // FIXME: List information for all submodules.
301 llvm::errs() << "\n Macros: "
302 << llvm::capacity_in_bytes(CurSubmoduleState->Macros);
303 llvm::errs() << "\n #pragma push_macro Info: "
304 << llvm::capacity_in_bytes(PragmaPushMacroInfo);
305 llvm::errs() << "\n Poison Reasons: "
306 << llvm::capacity_in_bytes(PoisonReasons);
307 llvm::errs() << "\n Comment Handlers: "
308 << llvm::capacity_in_bytes(CommentHandlers) << "\n";
311 Preprocessor::macro_iterator
312 Preprocessor::macro_begin(bool IncludeExternalMacros) const {
313 if (IncludeExternalMacros && ExternalSource &&
314 !ReadMacrosFromExternalSource) {
315 ReadMacrosFromExternalSource = true;
316 ExternalSource->ReadDefinedMacros();
319 // Make sure we cover all macros in visible modules.
320 for (const ModuleMacro &Macro : ModuleMacros)
321 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState()));
323 return CurSubmoduleState->Macros.begin();
326 size_t Preprocessor::getTotalMemory() const {
327 return BP.getTotalMemory()
328 + llvm::capacity_in_bytes(MacroExpandedTokens)
329 + Predefines.capacity() /* Predefines buffer. */
330 // FIXME: Include sizes from all submodules, and include MacroInfo sizes,
331 // and ModuleMacros.
332 + llvm::capacity_in_bytes(CurSubmoduleState->Macros)
333 + llvm::capacity_in_bytes(PragmaPushMacroInfo)
334 + llvm::capacity_in_bytes(PoisonReasons)
335 + llvm::capacity_in_bytes(CommentHandlers);
338 Preprocessor::macro_iterator
339 Preprocessor::macro_end(bool IncludeExternalMacros) const {
340 if (IncludeExternalMacros && ExternalSource &&
341 !ReadMacrosFromExternalSource) {
342 ReadMacrosFromExternalSource = true;
343 ExternalSource->ReadDefinedMacros();
346 return CurSubmoduleState->Macros.end();
349 /// Compares macro tokens with a specified token value sequence.
350 static bool MacroDefinitionEquals(const MacroInfo *MI,
351 ArrayRef<TokenValue> Tokens) {
352 return Tokens.size() == MI->getNumTokens() &&
353 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin());
356 StringRef Preprocessor::getLastMacroWithSpelling(
357 SourceLocation Loc,
358 ArrayRef<TokenValue> Tokens) const {
359 SourceLocation BestLocation;
360 StringRef BestSpelling;
361 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
362 I != E; ++I) {
363 const MacroDirective::DefInfo
364 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
365 if (!Def || !Def.getMacroInfo())
366 continue;
367 if (!Def.getMacroInfo()->isObjectLike())
368 continue;
369 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens))
370 continue;
371 SourceLocation Location = Def.getLocation();
372 // Choose the macro defined latest.
373 if (BestLocation.isInvalid() ||
374 (Location.isValid() &&
375 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) {
376 BestLocation = Location;
377 BestSpelling = I->first->getName();
380 return BestSpelling;
383 void Preprocessor::recomputeCurLexerKind() {
384 if (CurLexer)
385 CurLexerKind = CurLexer->isDependencyDirectivesLexer()
386 ? CLK_DependencyDirectivesLexer
387 : CLK_Lexer;
388 else if (CurTokenLexer)
389 CurLexerKind = CLK_TokenLexer;
390 else
391 CurLexerKind = CLK_CachingLexer;
394 bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File,
395 unsigned CompleteLine,
396 unsigned CompleteColumn) {
397 assert(CompleteLine && CompleteColumn && "Starts from 1:1");
398 assert(!CodeCompletionFile && "Already set");
400 // Load the actual file's contents.
401 std::optional<llvm::MemoryBufferRef> Buffer =
402 SourceMgr.getMemoryBufferForFileOrNone(File);
403 if (!Buffer)
404 return true;
406 // Find the byte position of the truncation point.
407 const char *Position = Buffer->getBufferStart();
408 for (unsigned Line = 1; Line < CompleteLine; ++Line) {
409 for (; *Position; ++Position) {
410 if (*Position != '\r' && *Position != '\n')
411 continue;
413 // Eat \r\n or \n\r as a single line.
414 if ((Position[1] == '\r' || Position[1] == '\n') &&
415 Position[0] != Position[1])
416 ++Position;
417 ++Position;
418 break;
422 Position += CompleteColumn - 1;
424 // If pointing inside the preamble, adjust the position at the beginning of
425 // the file after the preamble.
426 if (SkipMainFilePreamble.first &&
427 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) {
428 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
429 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
432 if (Position > Buffer->getBufferEnd())
433 Position = Buffer->getBufferEnd();
435 CodeCompletionFile = File;
436 CodeCompletionOffset = Position - Buffer->getBufferStart();
438 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(
439 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier());
440 char *NewBuf = NewBuffer->getBufferStart();
441 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf);
442 *NewPos = '\0';
443 std::copy(Position, Buffer->getBufferEnd(), NewPos+1);
444 SourceMgr.overrideFileContents(File, std::move(NewBuffer));
446 return false;
449 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir,
450 bool IsAngled) {
451 setCodeCompletionReached();
452 if (CodeComplete)
453 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled);
456 void Preprocessor::CodeCompleteNaturalLanguage() {
457 setCodeCompletionReached();
458 if (CodeComplete)
459 CodeComplete->CodeCompleteNaturalLanguage();
462 /// getSpelling - This method is used to get the spelling of a token into a
463 /// SmallVector. Note that the returned StringRef may not point to the
464 /// supplied buffer if a copy can be avoided.
465 StringRef Preprocessor::getSpelling(const Token &Tok,
466 SmallVectorImpl<char> &Buffer,
467 bool *Invalid) const {
468 // NOTE: this has to be checked *before* testing for an IdentifierInfo.
469 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) {
470 // Try the fast path.
471 if (const IdentifierInfo *II = Tok.getIdentifierInfo())
472 return II->getName();
475 // Resize the buffer if we need to copy into it.
476 if (Tok.needsCleaning())
477 Buffer.resize(Tok.getLength());
479 const char *Ptr = Buffer.data();
480 unsigned Len = getSpelling(Tok, Ptr, Invalid);
481 return StringRef(Ptr, Len);
484 /// CreateString - Plop the specified string into a scratch buffer and return a
485 /// location for it. If specified, the source location provides a source
486 /// location for the token.
487 void Preprocessor::CreateString(StringRef Str, Token &Tok,
488 SourceLocation ExpansionLocStart,
489 SourceLocation ExpansionLocEnd) {
490 Tok.setLength(Str.size());
492 const char *DestPtr;
493 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr);
495 if (ExpansionLocStart.isValid())
496 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart,
497 ExpansionLocEnd, Str.size());
498 Tok.setLocation(Loc);
500 // If this is a raw identifier or a literal token, set the pointer data.
501 if (Tok.is(tok::raw_identifier))
502 Tok.setRawIdentifierData(DestPtr);
503 else if (Tok.isLiteral())
504 Tok.setLiteralData(DestPtr);
507 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) {
508 auto &SM = getSourceManager();
509 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
510 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc);
511 bool Invalid = false;
512 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
513 if (Invalid)
514 return SourceLocation();
516 // FIXME: We could consider re-using spelling for tokens we see repeatedly.
517 const char *DestPtr;
518 SourceLocation Spelling =
519 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr);
520 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length));
523 Module *Preprocessor::getCurrentModule() {
524 if (!getLangOpts().isCompilingModule())
525 return nullptr;
527 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule);
530 Module *Preprocessor::getCurrentModuleImplementation() {
531 if (!getLangOpts().isCompilingModuleImplementation())
532 return nullptr;
534 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName);
537 //===----------------------------------------------------------------------===//
538 // Preprocessor Initialization Methods
539 //===----------------------------------------------------------------------===//
541 /// EnterMainSourceFile - Enter the specified FileID as the main source file,
542 /// which implicitly adds the builtin defines etc.
543 void Preprocessor::EnterMainSourceFile() {
544 // We do not allow the preprocessor to reenter the main file. Doing so will
545 // cause FileID's to accumulate information from both runs (e.g. #line
546 // information) and predefined macros aren't guaranteed to be set properly.
547 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
548 FileID MainFileID = SourceMgr.getMainFileID();
550 // If MainFileID is loaded it means we loaded an AST file, no need to enter
551 // a main file.
552 if (!SourceMgr.isLoadedFileID(MainFileID)) {
553 // Enter the main file source buffer.
554 EnterSourceFile(MainFileID, nullptr, SourceLocation());
556 // If we've been asked to skip bytes in the main file (e.g., as part of a
557 // precompiled preamble), do so now.
558 if (SkipMainFilePreamble.first > 0)
559 CurLexer->SetByteOffset(SkipMainFilePreamble.first,
560 SkipMainFilePreamble.second);
562 // Tell the header info that the main file was entered. If the file is later
563 // #imported, it won't be re-entered.
564 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID))
565 markIncluded(*FE);
568 // Preprocess Predefines to populate the initial preprocessor state.
569 std::unique_ptr<llvm::MemoryBuffer> SB =
570 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>");
571 assert(SB && "Cannot create predefined source buffer");
572 FileID FID = SourceMgr.createFileID(std::move(SB));
573 assert(FID.isValid() && "Could not create FileID for predefines?");
574 setPredefinesFileID(FID);
576 // Start parsing the predefines.
577 EnterSourceFile(FID, nullptr, SourceLocation());
579 if (!PPOpts->PCHThroughHeader.empty()) {
580 // Lookup and save the FileID for the through header. If it isn't found
581 // in the search path, it's a fatal error.
582 OptionalFileEntryRef File = LookupFile(
583 SourceLocation(), PPOpts->PCHThroughHeader,
584 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr,
585 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr,
586 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
587 /*IsFrameworkFound=*/nullptr);
588 if (!File) {
589 Diag(SourceLocation(), diag::err_pp_through_header_not_found)
590 << PPOpts->PCHThroughHeader;
591 return;
593 setPCHThroughHeaderFileID(
594 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User));
597 // Skip tokens from the Predefines and if needed the main file.
598 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) ||
599 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop))
600 SkipTokensWhileUsingPCH();
603 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) {
604 assert(PCHThroughHeaderFileID.isInvalid() &&
605 "PCHThroughHeaderFileID already set!");
606 PCHThroughHeaderFileID = FID;
609 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) {
610 assert(PCHThroughHeaderFileID.isValid() &&
611 "Invalid PCH through header FileID");
612 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID);
615 bool Preprocessor::creatingPCHWithThroughHeader() {
616 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
617 PCHThroughHeaderFileID.isValid();
620 bool Preprocessor::usingPCHWithThroughHeader() {
621 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
622 PCHThroughHeaderFileID.isValid();
625 bool Preprocessor::creatingPCHWithPragmaHdrStop() {
626 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop;
629 bool Preprocessor::usingPCHWithPragmaHdrStop() {
630 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop;
633 /// Skip tokens until after the #include of the through header or
634 /// until after a #pragma hdrstop is seen. Tokens in the predefines file
635 /// and the main file may be skipped. If the end of the predefines file
636 /// is reached, skipping continues into the main file. If the end of the
637 /// main file is reached, it's a fatal error.
638 void Preprocessor::SkipTokensWhileUsingPCH() {
639 bool ReachedMainFileEOF = false;
640 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader;
641 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop;
642 Token Tok;
643 while (true) {
644 bool InPredefines =
645 (CurLexer && CurLexer->getFileID() == getPredefinesFileID());
646 switch (CurLexerKind) {
647 case CLK_Lexer:
648 CurLexer->Lex(Tok);
649 break;
650 case CLK_TokenLexer:
651 CurTokenLexer->Lex(Tok);
652 break;
653 case CLK_CachingLexer:
654 CachingLex(Tok);
655 break;
656 case CLK_DependencyDirectivesLexer:
657 CurLexer->LexDependencyDirectiveToken(Tok);
658 break;
659 case CLK_LexAfterModuleImport:
660 LexAfterModuleImport(Tok);
661 break;
663 if (Tok.is(tok::eof) && !InPredefines) {
664 ReachedMainFileEOF = true;
665 break;
667 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader)
668 break;
669 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop)
670 break;
672 if (ReachedMainFileEOF) {
673 if (UsingPCHThroughHeader)
674 Diag(SourceLocation(), diag::err_pp_through_header_not_seen)
675 << PPOpts->PCHThroughHeader << 1;
676 else if (!PPOpts->PCHWithHdrStopCreate)
677 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen);
681 void Preprocessor::replayPreambleConditionalStack() {
682 // Restore the conditional stack from the preamble, if there is one.
683 if (PreambleConditionalStack.isReplaying()) {
684 assert(CurPPLexer &&
685 "CurPPLexer is null when calling replayPreambleConditionalStack.");
686 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack());
687 PreambleConditionalStack.doneReplaying();
688 if (PreambleConditionalStack.reachedEOFWhileSkipping())
689 SkipExcludedConditionalBlock(
690 PreambleConditionalStack.SkipInfo->HashTokenLoc,
691 PreambleConditionalStack.SkipInfo->IfTokenLoc,
692 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion,
693 PreambleConditionalStack.SkipInfo->FoundElse,
694 PreambleConditionalStack.SkipInfo->ElseLoc);
698 void Preprocessor::EndSourceFile() {
699 // Notify the client that we reached the end of the source file.
700 if (Callbacks)
701 Callbacks->EndOfMainFile();
704 //===----------------------------------------------------------------------===//
705 // Lexer Event Handling.
706 //===----------------------------------------------------------------------===//
708 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
709 /// identifier information for the token and install it into the token,
710 /// updating the token kind accordingly.
711 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
712 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
714 // Look up this token, see if it is a macro, or if it is a language keyword.
715 IdentifierInfo *II;
716 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
717 // No cleaning needed, just use the characters from the lexed buffer.
718 II = getIdentifierInfo(Identifier.getRawIdentifier());
719 } else {
720 // Cleaning needed, alloca a buffer, clean into it, then use the buffer.
721 SmallString<64> IdentifierBuffer;
722 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer);
724 if (Identifier.hasUCN()) {
725 SmallString<64> UCNIdentifierBuffer;
726 expandUCNs(UCNIdentifierBuffer, CleanedStr);
727 II = getIdentifierInfo(UCNIdentifierBuffer);
728 } else {
729 II = getIdentifierInfo(CleanedStr);
733 // Update the token info (identifier info and appropriate token kind).
734 // FIXME: the raw_identifier may contain leading whitespace which is removed
735 // from the cleaned identifier token. The SourceLocation should be updated to
736 // refer to the non-whitespace character. For instance, the text "\\\nB" (a
737 // line continuation before 'B') is parsed as a single tok::raw_identifier and
738 // is cleaned to tok::identifier "B". After cleaning the token's length is
739 // still 3 and the SourceLocation refers to the location of the backslash.
740 Identifier.setIdentifierInfo(II);
741 Identifier.setKind(II->getTokenID());
743 return II;
746 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
747 PoisonReasons[II] = DiagID;
750 void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
751 assert(Ident__exception_code && Ident__exception_info);
752 assert(Ident___exception_code && Ident___exception_info);
753 Ident__exception_code->setIsPoisoned(Poison);
754 Ident___exception_code->setIsPoisoned(Poison);
755 Ident_GetExceptionCode->setIsPoisoned(Poison);
756 Ident__exception_info->setIsPoisoned(Poison);
757 Ident___exception_info->setIsPoisoned(Poison);
758 Ident_GetExceptionInfo->setIsPoisoned(Poison);
759 Ident__abnormal_termination->setIsPoisoned(Poison);
760 Ident___abnormal_termination->setIsPoisoned(Poison);
761 Ident_AbnormalTermination->setIsPoisoned(Poison);
764 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
765 assert(Identifier.getIdentifierInfo() &&
766 "Can't handle identifiers without identifier info!");
767 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
768 PoisonReasons.find(Identifier.getIdentifierInfo());
769 if(it == PoisonReasons.end())
770 Diag(Identifier, diag::err_pp_used_poisoned_id);
771 else
772 Diag(Identifier,it->second) << Identifier.getIdentifierInfo();
775 void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const {
776 assert(II.isOutOfDate() && "not out of date");
777 getExternalSource()->updateOutOfDateIdentifier(II);
780 /// HandleIdentifier - This callback is invoked when the lexer reads an
781 /// identifier. This callback looks up the identifier in the map and/or
782 /// potentially macro expands it or turns it into a named token (like 'for').
784 /// Note that callers of this method are guarded by checking the
785 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the
786 /// IdentifierInfo methods that compute these properties will need to change to
787 /// match.
788 bool Preprocessor::HandleIdentifier(Token &Identifier) {
789 assert(Identifier.getIdentifierInfo() &&
790 "Can't handle identifiers without identifier info!");
792 IdentifierInfo &II = *Identifier.getIdentifierInfo();
794 // If the information about this identifier is out of date, update it from
795 // the external source.
796 // We have to treat __VA_ARGS__ in a special way, since it gets
797 // serialized with isPoisoned = true, but our preprocessor may have
798 // unpoisoned it if we're defining a C99 macro.
799 if (II.isOutOfDate()) {
800 bool CurrentIsPoisoned = false;
801 const bool IsSpecialVariadicMacro =
802 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__;
803 if (IsSpecialVariadicMacro)
804 CurrentIsPoisoned = II.isPoisoned();
806 updateOutOfDateIdentifier(II);
807 Identifier.setKind(II.getTokenID());
809 if (IsSpecialVariadicMacro)
810 II.setIsPoisoned(CurrentIsPoisoned);
813 // If this identifier was poisoned, and if it was not produced from a macro
814 // expansion, emit an error.
815 if (II.isPoisoned() && CurPPLexer) {
816 HandlePoisonedIdentifier(Identifier);
819 // If this is a macro to be expanded, do it.
820 if (const MacroDefinition MD = getMacroDefinition(&II)) {
821 const auto *MI = MD.getMacroInfo();
822 assert(MI && "macro definition with no macro info?");
823 if (!DisableMacroExpansion) {
824 if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
825 // C99 6.10.3p10: If the preprocessing token immediately after the
826 // macro name isn't a '(', this macro should not be expanded.
827 if (!MI->isFunctionLike() || isNextPPTokenLParen())
828 return HandleMacroExpandedIdentifier(Identifier, MD);
829 } else {
830 // C99 6.10.3.4p2 says that a disabled macro may never again be
831 // expanded, even if it's in a context where it could be expanded in the
832 // future.
833 Identifier.setFlag(Token::DisableExpand);
834 if (MI->isObjectLike() || isNextPPTokenLParen())
835 Diag(Identifier, diag::pp_disabled_macro_expansion);
840 // If this identifier is a keyword in a newer Standard or proposed Standard,
841 // produce a warning. Don't warn if we're not considering macro expansion,
842 // since this identifier might be the name of a macro.
843 // FIXME: This warning is disabled in cases where it shouldn't be, like
844 // "#define constexpr constexpr", "int constexpr;"
845 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
846 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts()))
847 << II.getName();
848 // Don't diagnose this keyword again in this translation unit.
849 II.setIsFutureCompatKeyword(false);
852 // If this is an extension token, diagnose its use.
853 // We avoid diagnosing tokens that originate from macro definitions.
854 // FIXME: This warning is disabled in cases where it shouldn't be,
855 // like "#define TY typeof", "TY(1) x".
856 if (II.isExtensionToken() && !DisableMacroExpansion)
857 Diag(Identifier, diag::ext_token_used);
859 // If this is the 'import' contextual keyword following an '@', note
860 // that the next token indicates a module name.
862 // Note that we do not treat 'import' as a contextual
863 // keyword when we're in a caching lexer, because caching lexers only get
864 // used in contexts where import declarations are disallowed.
866 // Likewise if this is the standard C++ import keyword.
867 if (((LastTokenWasAt && II.isModulesImport()) ||
868 Identifier.is(tok::kw_import)) &&
869 !InMacroArgs && !DisableMacroExpansion &&
870 (getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
871 CurLexerKind != CLK_CachingLexer) {
872 ModuleImportLoc = Identifier.getLocation();
873 NamedModuleImportPath.clear();
874 IsAtImport = true;
875 ModuleImportExpectsIdentifier = true;
876 CurLexerKind = CLK_LexAfterModuleImport;
878 return true;
881 void Preprocessor::Lex(Token &Result) {
882 ++LexLevel;
884 // We loop here until a lex function returns a token; this avoids recursion.
885 bool ReturnedToken;
886 do {
887 switch (CurLexerKind) {
888 case CLK_Lexer:
889 ReturnedToken = CurLexer->Lex(Result);
890 break;
891 case CLK_TokenLexer:
892 ReturnedToken = CurTokenLexer->Lex(Result);
893 break;
894 case CLK_CachingLexer:
895 CachingLex(Result);
896 ReturnedToken = true;
897 break;
898 case CLK_DependencyDirectivesLexer:
899 ReturnedToken = CurLexer->LexDependencyDirectiveToken(Result);
900 break;
901 case CLK_LexAfterModuleImport:
902 ReturnedToken = LexAfterModuleImport(Result);
903 break;
905 } while (!ReturnedToken);
907 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure)
908 return;
910 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) {
911 // Remember the identifier before code completion token.
912 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo());
913 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc());
914 // Set IdenfitierInfo to null to avoid confusing code that handles both
915 // identifiers and completion tokens.
916 Result.setIdentifierInfo(nullptr);
919 // Update StdCXXImportSeqState to track our position within a C++20 import-seq
920 // if this token is being produced as a result of phase 4 of translation.
921 // Update TrackGMFState to decide if we are currently in a Global Module
922 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state
923 // depends on the prevailing StdCXXImportSeq state in two cases.
924 if (getLangOpts().CPlusPlusModules && LexLevel == 1 &&
925 !Result.getFlag(Token::IsReinjected)) {
926 switch (Result.getKind()) {
927 case tok::l_paren: case tok::l_square: case tok::l_brace:
928 StdCXXImportSeqState.handleOpenBracket();
929 break;
930 case tok::r_paren: case tok::r_square:
931 StdCXXImportSeqState.handleCloseBracket();
932 break;
933 case tok::r_brace:
934 StdCXXImportSeqState.handleCloseBrace();
935 break;
936 // This token is injected to represent the translation of '#include "a.h"'
937 // into "import a.h;". Mimic the notional ';'.
938 case tok::annot_module_include:
939 case tok::semi:
940 TrackGMFState.handleSemi();
941 StdCXXImportSeqState.handleSemi();
942 ModuleDeclState.handleSemi();
943 break;
944 case tok::header_name:
945 case tok::annot_header_unit:
946 StdCXXImportSeqState.handleHeaderName();
947 break;
948 case tok::kw_export:
949 TrackGMFState.handleExport();
950 StdCXXImportSeqState.handleExport();
951 ModuleDeclState.handleExport();
952 break;
953 case tok::colon:
954 ModuleDeclState.handleColon();
955 break;
956 case tok::period:
957 ModuleDeclState.handlePeriod();
958 break;
959 case tok::identifier:
960 // Check "import" and "module" when there is no open bracket. The two
961 // identifiers are not meaningful with open brackets.
962 if (StdCXXImportSeqState.atTopLevel()) {
963 if (Result.getIdentifierInfo()->isModulesImport()) {
964 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq());
965 StdCXXImportSeqState.handleImport();
966 if (StdCXXImportSeqState.afterImportSeq()) {
967 ModuleImportLoc = Result.getLocation();
968 NamedModuleImportPath.clear();
969 IsAtImport = false;
970 ModuleImportExpectsIdentifier = true;
971 CurLexerKind = CLK_LexAfterModuleImport;
973 break;
974 } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) {
975 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq());
976 ModuleDeclState.handleModule();
977 break;
980 ModuleDeclState.handleIdentifier(Result.getIdentifierInfo());
981 if (ModuleDeclState.isModuleCandidate())
982 break;
983 [[fallthrough]];
984 default:
985 TrackGMFState.handleMisc();
986 StdCXXImportSeqState.handleMisc();
987 ModuleDeclState.handleMisc();
988 break;
992 LastTokenWasAt = Result.is(tok::at);
993 --LexLevel;
995 if ((LexLevel == 0 || PreprocessToken) &&
996 !Result.getFlag(Token::IsReinjected)) {
997 if (LexLevel == 0)
998 ++TokenCount;
999 if (OnToken)
1000 OnToken(Result);
1004 void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) {
1005 while (1) {
1006 Token Tok;
1007 Lex(Tok);
1008 if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod,
1009 tok::annot_repl_input_end))
1010 break;
1011 if (Tokens != nullptr)
1012 Tokens->push_back(Tok);
1016 /// Lex a header-name token (including one formed from header-name-tokens if
1017 /// \p AllowConcatenation is \c true).
1019 /// \param FilenameTok Filled in with the next token. On success, this will
1020 /// be either a header_name token. On failure, it will be whatever other
1021 /// token was found instead.
1022 /// \param AllowMacroExpansion If \c true, allow the header name to be formed
1023 /// by macro expansion (concatenating tokens as necessary if the first
1024 /// token is a '<').
1025 /// \return \c true if we reached EOD or EOF while looking for a > token in
1026 /// a concatenated header name and diagnosed it. \c false otherwise.
1027 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) {
1028 // Lex using header-name tokenization rules if tokens are being lexed from
1029 // a file. Just grab a token normally if we're in a macro expansion.
1030 if (CurPPLexer)
1031 CurPPLexer->LexIncludeFilename(FilenameTok);
1032 else
1033 Lex(FilenameTok);
1035 // This could be a <foo/bar.h> file coming from a macro expansion. In this
1036 // case, glue the tokens together into an angle_string_literal token.
1037 SmallString<128> FilenameBuffer;
1038 if (FilenameTok.is(tok::less) && AllowMacroExpansion) {
1039 bool StartOfLine = FilenameTok.isAtStartOfLine();
1040 bool LeadingSpace = FilenameTok.hasLeadingSpace();
1041 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro();
1043 SourceLocation Start = FilenameTok.getLocation();
1044 SourceLocation End;
1045 FilenameBuffer.push_back('<');
1047 // Consume tokens until we find a '>'.
1048 // FIXME: A header-name could be formed starting or ending with an
1049 // alternative token. It's not clear whether that's ill-formed in all
1050 // cases.
1051 while (FilenameTok.isNot(tok::greater)) {
1052 Lex(FilenameTok);
1053 if (FilenameTok.isOneOf(tok::eod, tok::eof)) {
1054 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater;
1055 Diag(Start, diag::note_matching) << tok::less;
1056 return true;
1059 End = FilenameTok.getLocation();
1061 // FIXME: Provide code completion for #includes.
1062 if (FilenameTok.is(tok::code_completion)) {
1063 setCodeCompletionReached();
1064 Lex(FilenameTok);
1065 continue;
1068 // Append the spelling of this token to the buffer. If there was a space
1069 // before it, add it now.
1070 if (FilenameTok.hasLeadingSpace())
1071 FilenameBuffer.push_back(' ');
1073 // Get the spelling of the token, directly into FilenameBuffer if
1074 // possible.
1075 size_t PreAppendSize = FilenameBuffer.size();
1076 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength());
1078 const char *BufPtr = &FilenameBuffer[PreAppendSize];
1079 unsigned ActualLen = getSpelling(FilenameTok, BufPtr);
1081 // If the token was spelled somewhere else, copy it into FilenameBuffer.
1082 if (BufPtr != &FilenameBuffer[PreAppendSize])
1083 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
1085 // Resize FilenameBuffer to the correct size.
1086 if (FilenameTok.getLength() != ActualLen)
1087 FilenameBuffer.resize(PreAppendSize + ActualLen);
1090 FilenameTok.startToken();
1091 FilenameTok.setKind(tok::header_name);
1092 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine);
1093 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace);
1094 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro);
1095 CreateString(FilenameBuffer, FilenameTok, Start, End);
1096 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) {
1097 // Convert a string-literal token of the form " h-char-sequence "
1098 // (produced by macro expansion) into a header-name token.
1100 // The rules for header-names don't quite match the rules for
1101 // string-literals, but all the places where they differ result in
1102 // undefined behavior, so we can and do treat them the same.
1104 // A string-literal with a prefix or suffix is not translated into a
1105 // header-name. This could theoretically be observable via the C++20
1106 // context-sensitive header-name formation rules.
1107 StringRef Str = getSpelling(FilenameTok, FilenameBuffer);
1108 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"')
1109 FilenameTok.setKind(tok::header_name);
1112 return false;
1115 /// Collect the tokens of a C++20 pp-import-suffix.
1116 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) {
1117 // FIXME: For error recovery, consider recognizing attribute syntax here
1118 // and terminating / diagnosing a missing semicolon if we find anything
1119 // else? (Can we leave that to the parser?)
1120 unsigned BracketDepth = 0;
1121 while (true) {
1122 Toks.emplace_back();
1123 Lex(Toks.back());
1125 switch (Toks.back().getKind()) {
1126 case tok::l_paren: case tok::l_square: case tok::l_brace:
1127 ++BracketDepth;
1128 break;
1130 case tok::r_paren: case tok::r_square: case tok::r_brace:
1131 if (BracketDepth == 0)
1132 return;
1133 --BracketDepth;
1134 break;
1136 case tok::semi:
1137 if (BracketDepth == 0)
1138 return;
1139 break;
1141 case tok::eof:
1142 return;
1144 default:
1145 break;
1151 /// Lex a token following the 'import' contextual keyword.
1153 /// pp-import: [C++20]
1154 /// import header-name pp-import-suffix[opt] ;
1155 /// import header-name-tokens pp-import-suffix[opt] ;
1156 /// [ObjC] @ import module-name ;
1157 /// [Clang] import module-name ;
1159 /// header-name-tokens:
1160 /// string-literal
1161 /// < [any sequence of preprocessing-tokens other than >] >
1163 /// module-name:
1164 /// module-name-qualifier[opt] identifier
1166 /// module-name-qualifier
1167 /// module-name-qualifier[opt] identifier .
1169 /// We respond to a pp-import by importing macros from the named module.
1170 bool Preprocessor::LexAfterModuleImport(Token &Result) {
1171 // Figure out what kind of lexer we actually have.
1172 recomputeCurLexerKind();
1174 // Lex the next token. The header-name lexing rules are used at the start of
1175 // a pp-import.
1177 // For now, we only support header-name imports in C++20 mode.
1178 // FIXME: Should we allow this in all language modes that support an import
1179 // declaration as an extension?
1180 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) {
1181 if (LexHeaderName(Result))
1182 return true;
1184 if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) {
1185 std::string Name = ModuleDeclState.getPrimaryName().str();
1186 Name += ":";
1187 NamedModuleImportPath.push_back(
1188 {getIdentifierInfo(Name), Result.getLocation()});
1189 CurLexerKind = CLK_LexAfterModuleImport;
1190 return true;
1192 } else {
1193 Lex(Result);
1196 // Allocate a holding buffer for a sequence of tokens and introduce it into
1197 // the token stream.
1198 auto EnterTokens = [this](ArrayRef<Token> Toks) {
1199 auto ToksCopy = std::make_unique<Token[]>(Toks.size());
1200 std::copy(Toks.begin(), Toks.end(), ToksCopy.get());
1201 EnterTokenStream(std::move(ToksCopy), Toks.size(),
1202 /*DisableMacroExpansion*/ true, /*IsReinject*/ false);
1205 bool ImportingHeader = Result.is(tok::header_name);
1206 // Check for a header-name.
1207 SmallVector<Token, 32> Suffix;
1208 if (ImportingHeader) {
1209 // Enter the header-name token into the token stream; a Lex action cannot
1210 // both return a token and cache tokens (doing so would corrupt the token
1211 // cache if the call to Lex comes from CachingLex / PeekAhead).
1212 Suffix.push_back(Result);
1214 // Consume the pp-import-suffix and expand any macros in it now. We'll add
1215 // it back into the token stream later.
1216 CollectPpImportSuffix(Suffix);
1217 if (Suffix.back().isNot(tok::semi)) {
1218 // This is not a pp-import after all.
1219 EnterTokens(Suffix);
1220 return false;
1223 // C++2a [cpp.module]p1:
1224 // The ';' preprocessing-token terminating a pp-import shall not have
1225 // been produced by macro replacement.
1226 SourceLocation SemiLoc = Suffix.back().getLocation();
1227 if (SemiLoc.isMacroID())
1228 Diag(SemiLoc, diag::err_header_import_semi_in_macro);
1230 // Reconstitute the import token.
1231 Token ImportTok;
1232 ImportTok.startToken();
1233 ImportTok.setKind(tok::kw_import);
1234 ImportTok.setLocation(ModuleImportLoc);
1235 ImportTok.setIdentifierInfo(getIdentifierInfo("import"));
1236 ImportTok.setLength(6);
1238 auto Action = HandleHeaderIncludeOrImport(
1239 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc);
1240 switch (Action.Kind) {
1241 case ImportAction::None:
1242 break;
1244 case ImportAction::ModuleBegin:
1245 // Let the parser know we're textually entering the module.
1246 Suffix.emplace_back();
1247 Suffix.back().startToken();
1248 Suffix.back().setKind(tok::annot_module_begin);
1249 Suffix.back().setLocation(SemiLoc);
1250 Suffix.back().setAnnotationEndLoc(SemiLoc);
1251 Suffix.back().setAnnotationValue(Action.ModuleForHeader);
1252 [[fallthrough]];
1254 case ImportAction::ModuleImport:
1255 case ImportAction::HeaderUnitImport:
1256 case ImportAction::SkippedModuleImport:
1257 // We chose to import (or textually enter) the file. Convert the
1258 // header-name token into a header unit annotation token.
1259 Suffix[0].setKind(tok::annot_header_unit);
1260 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation());
1261 Suffix[0].setAnnotationValue(Action.ModuleForHeader);
1262 // FIXME: Call the moduleImport callback?
1263 break;
1264 case ImportAction::Failure:
1265 assert(TheModuleLoader.HadFatalFailure &&
1266 "This should be an early exit only to a fatal error");
1267 Result.setKind(tok::eof);
1268 CurLexer->cutOffLexing();
1269 EnterTokens(Suffix);
1270 return true;
1273 EnterTokens(Suffix);
1274 return false;
1277 // The token sequence
1279 // import identifier (. identifier)*
1281 // indicates a module import directive. We already saw the 'import'
1282 // contextual keyword, so now we're looking for the identifiers.
1283 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
1284 // We expected to see an identifier here, and we did; continue handling
1285 // identifiers.
1286 NamedModuleImportPath.push_back(
1287 std::make_pair(Result.getIdentifierInfo(), Result.getLocation()));
1288 ModuleImportExpectsIdentifier = false;
1289 CurLexerKind = CLK_LexAfterModuleImport;
1290 return true;
1293 // If we're expecting a '.' or a ';', and we got a '.', then wait until we
1294 // see the next identifier. (We can also see a '[[' that begins an
1295 // attribute-specifier-seq here under the Standard C++ Modules.)
1296 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
1297 ModuleImportExpectsIdentifier = true;
1298 CurLexerKind = CLK_LexAfterModuleImport;
1299 return true;
1302 // If we didn't recognize a module name at all, this is not a (valid) import.
1303 if (NamedModuleImportPath.empty() || Result.is(tok::eof))
1304 return true;
1306 // Consume the pp-import-suffix and expand any macros in it now, if we're not
1307 // at the semicolon already.
1308 SourceLocation SemiLoc = Result.getLocation();
1309 if (Result.isNot(tok::semi)) {
1310 Suffix.push_back(Result);
1311 CollectPpImportSuffix(Suffix);
1312 if (Suffix.back().isNot(tok::semi)) {
1313 // This is not an import after all.
1314 EnterTokens(Suffix);
1315 return false;
1317 SemiLoc = Suffix.back().getLocation();
1320 // Under the standard C++ Modules, the dot is just part of the module name,
1321 // and not a real hierarchy separator. Flatten such module names now.
1323 // FIXME: Is this the right level to be performing this transformation?
1324 std::string FlatModuleName;
1325 if (getLangOpts().CPlusPlusModules) {
1326 for (auto &Piece : NamedModuleImportPath) {
1327 // If the FlatModuleName ends with colon, it implies it is a partition.
1328 if (!FlatModuleName.empty() && FlatModuleName.back() != ':')
1329 FlatModuleName += ".";
1330 FlatModuleName += Piece.first->getName();
1332 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second;
1333 NamedModuleImportPath.clear();
1334 NamedModuleImportPath.push_back(
1335 std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc));
1338 Module *Imported = nullptr;
1339 // We don't/shouldn't load the standard c++20 modules when preprocessing.
1340 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) {
1341 Imported = TheModuleLoader.loadModule(ModuleImportLoc,
1342 NamedModuleImportPath,
1343 Module::Hidden,
1344 /*IsInclusionDirective=*/false);
1345 if (Imported)
1346 makeModuleVisible(Imported, SemiLoc);
1349 if (Callbacks)
1350 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported);
1352 if (!Suffix.empty()) {
1353 EnterTokens(Suffix);
1354 return false;
1356 return true;
1359 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
1360 CurSubmoduleState->VisibleModules.setVisible(
1361 M, Loc, [](Module *) {},
1362 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
1363 // FIXME: Include the path in the diagnostic.
1364 // FIXME: Include the import location for the conflicting module.
1365 Diag(ModuleImportLoc, diag::warn_module_conflict)
1366 << Path[0]->getFullModuleName()
1367 << Conflict->getFullModuleName()
1368 << Message;
1371 // Add this module to the imports list of the currently-built submodule.
1372 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
1373 BuildingSubmoduleStack.back().M->Imports.insert(M);
1376 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
1377 const char *DiagnosticTag,
1378 bool AllowMacroExpansion) {
1379 // We need at least one string literal.
1380 if (Result.isNot(tok::string_literal)) {
1381 Diag(Result, diag::err_expected_string_literal)
1382 << /*Source='in...'*/0 << DiagnosticTag;
1383 return false;
1386 // Lex string literal tokens, optionally with macro expansion.
1387 SmallVector<Token, 4> StrToks;
1388 do {
1389 StrToks.push_back(Result);
1391 if (Result.hasUDSuffix())
1392 Diag(Result, diag::err_invalid_string_udl);
1394 if (AllowMacroExpansion)
1395 Lex(Result);
1396 else
1397 LexUnexpandedToken(Result);
1398 } while (Result.is(tok::string_literal));
1400 // Concatenate and parse the strings.
1401 StringLiteralParser Literal(StrToks, *this);
1402 assert(Literal.isOrdinary() && "Didn't allow wide strings in");
1404 if (Literal.hadError)
1405 return false;
1407 if (Literal.Pascal) {
1408 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal)
1409 << /*Source='in...'*/0 << DiagnosticTag;
1410 return false;
1413 String = std::string(Literal.GetString());
1414 return true;
1417 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
1418 assert(Tok.is(tok::numeric_constant));
1419 SmallString<8> IntegerBuffer;
1420 bool NumberInvalid = false;
1421 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid);
1422 if (NumberInvalid)
1423 return false;
1424 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(),
1425 getLangOpts(), getTargetInfo(),
1426 getDiagnostics());
1427 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
1428 return false;
1429 llvm::APInt APVal(64, 0);
1430 if (Literal.GetIntegerValue(APVal))
1431 return false;
1432 Lex(Tok);
1433 Value = APVal.getLimitedValue();
1434 return true;
1437 void Preprocessor::addCommentHandler(CommentHandler *Handler) {
1438 assert(Handler && "NULL comment handler");
1439 assert(!llvm::is_contained(CommentHandlers, Handler) &&
1440 "Comment handler already registered");
1441 CommentHandlers.push_back(Handler);
1444 void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
1445 std::vector<CommentHandler *>::iterator Pos =
1446 llvm::find(CommentHandlers, Handler);
1447 assert(Pos != CommentHandlers.end() && "Comment handler not registered");
1448 CommentHandlers.erase(Pos);
1451 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
1452 bool AnyPendingTokens = false;
1453 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
1454 HEnd = CommentHandlers.end();
1455 H != HEnd; ++H) {
1456 if ((*H)->HandleComment(*this, Comment))
1457 AnyPendingTokens = true;
1459 if (!AnyPendingTokens || getCommentRetentionState())
1460 return false;
1461 Lex(result);
1462 return true;
1465 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const {
1466 const MacroAnnotations &A =
1467 getMacroAnnotations(Identifier.getIdentifierInfo());
1468 assert(A.DeprecationInfo &&
1469 "Macro deprecation warning without recorded annotation!");
1470 const MacroAnnotationInfo &Info = *A.DeprecationInfo;
1471 if (Info.Message.empty())
1472 Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1473 << Identifier.getIdentifierInfo() << 0;
1474 else
1475 Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1476 << Identifier.getIdentifierInfo() << 1 << Info.Message;
1477 Diag(Info.Location, diag::note_pp_macro_annotation) << 0;
1480 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const {
1481 const MacroAnnotations &A =
1482 getMacroAnnotations(Identifier.getIdentifierInfo());
1483 assert(A.RestrictExpansionInfo &&
1484 "Macro restricted expansion warning without recorded annotation!");
1485 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo;
1486 if (Info.Message.empty())
1487 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1488 << Identifier.getIdentifierInfo() << 0;
1489 else
1490 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1491 << Identifier.getIdentifierInfo() << 1 << Info.Message;
1492 Diag(Info.Location, diag::note_pp_macro_annotation) << 1;
1495 void Preprocessor::emitFinalMacroWarning(const Token &Identifier,
1496 bool IsUndef) const {
1497 const MacroAnnotations &A =
1498 getMacroAnnotations(Identifier.getIdentifierInfo());
1499 assert(A.FinalAnnotationLoc &&
1500 "Final macro warning without recorded annotation!");
1502 Diag(Identifier, diag::warn_pragma_final_macro)
1503 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1);
1504 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2;
1507 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr,
1508 const SourceLocation &Loc) const {
1509 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in:
1510 auto FirstRegionEndingAfterLoc = llvm::partition_point(
1511 SafeBufferOptOutMap,
1512 [&SourceMgr,
1513 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) {
1514 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc);
1517 if (FirstRegionEndingAfterLoc != SafeBufferOptOutMap.end()) {
1518 // To test if the start location of the found region precedes `Loc`:
1519 return SourceMgr.isBeforeInTranslationUnit(FirstRegionEndingAfterLoc->first,
1520 Loc);
1522 // If we do not find a region whose end location passes `Loc`, we want to
1523 // check if the current region is still open:
1524 if (!SafeBufferOptOutMap.empty() &&
1525 SafeBufferOptOutMap.back().first == SafeBufferOptOutMap.back().second)
1526 return SourceMgr.isBeforeInTranslationUnit(SafeBufferOptOutMap.back().first,
1527 Loc);
1528 return false;
1531 bool Preprocessor::enterOrExitSafeBufferOptOutRegion(
1532 bool isEnter, const SourceLocation &Loc) {
1533 if (isEnter) {
1534 if (isPPInSafeBufferOptOutRegion())
1535 return true; // invalid enter action
1536 InSafeBufferOptOutRegion = true;
1537 CurrentSafeBufferOptOutStart = Loc;
1539 // To set the start location of a new region:
1541 if (!SafeBufferOptOutMap.empty()) {
1542 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back();
1543 assert(PrevRegion->first != PrevRegion->second &&
1544 "Shall not begin a safe buffer opt-out region before closing the "
1545 "previous one.");
1547 // If the start location equals to the end location, we call the region a
1548 // open region or a unclosed region (i.e., end location has not been set
1549 // yet).
1550 SafeBufferOptOutMap.emplace_back(Loc, Loc);
1551 } else {
1552 if (!isPPInSafeBufferOptOutRegion())
1553 return true; // invalid enter action
1554 InSafeBufferOptOutRegion = false;
1556 // To set the end location of the current open region:
1558 assert(!SafeBufferOptOutMap.empty() &&
1559 "Misordered safe buffer opt-out regions");
1560 auto *CurrRegion = &SafeBufferOptOutMap.back();
1561 assert(CurrRegion->first == CurrRegion->second &&
1562 "Set end location to a closed safe buffer opt-out region");
1563 CurrRegion->second = Loc;
1565 return false;
1568 bool Preprocessor::isPPInSafeBufferOptOutRegion() {
1569 return InSafeBufferOptOutRegion;
1571 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) {
1572 StartLoc = CurrentSafeBufferOptOutStart;
1573 return InSafeBufferOptOutRegion;
1576 ModuleLoader::~ModuleLoader() = default;
1578 CommentHandler::~CommentHandler() = default;
1580 EmptylineHandler::~EmptylineHandler() = default;
1582 CodeCompletionHandler::~CodeCompletionHandler() = default;
1584 void Preprocessor::createPreprocessingRecord() {
1585 if (Record)
1586 return;
1588 Record = new PreprocessingRecord(getSourceManager());
1589 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record));